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Abstract

Subspace representations have been a popular way to
model appearance in computer vision. In Jepson and
Black’s influential paper on EigenTracking, they were
successfully applied in tracking. For noisy targets,
optimization-based algorithms (including EigenTrack-
ing) often fail catastrophically after losing track. Par-
ticle filters have recently emerged as a robust method
for tracking in the presence of multi-modal distributions.
To use subspace representations in a particle filter, the
number of samples increases exponentially as the state
vector includes the subspace coefficients. We introduce
an efficient method for using subspace representations
in a particle filter by applying Rao-Blackwellization to
integrate out the subspace coefficients in the state vec-
tor. Fewer samples are needed since part of the poste-
rior over the state vector is analytically calculated. We
use probabilistic principal component analysis to obtain
analytically tractable integrals. We show experimental
results in a scenario in which we track a target in clutter.

1. Introduction
Subspace representations [21, 2, 6] have been a long-
standing and popular way to model appearance and
shape in computer vision. These methods model the
density over a high-dimensional space of feature vectors
using a generative model, where each vector is assumed
to be a corrupted version of a linear combination of a
small set of basis vectors. The basis vectors are typi-
cally obtained by applying principal components analy-
sis (PCA) to a large training set. This approach has been
used extensively in a variety of settings, including mod-
eling appearance in face detection and recognition (see
e.g. [14] for a review), modeling 2D shape and appear-
ance [7, 6], and 3D shape and appearance [22].

Subspace representations were also successfully used
for tracking, e.g. in Jepson and Black’s influential paper
on EigenTracking [3] in an optimization-based tracking
framework. Similarly, Cootes et al [6, 8] model both ap-
pearance and shape in a recursive state estimation frame-
work. Unfortunately, for noisy targets, optimization-

based tracking algorithms often fail catastrophically af-
ter losing track. Hence, particle filters have recently
emerged as a simple and robust method for tracking in
the presence of substantial non-normal measurements
and/or dynamics [10, 11, 4]. The particle filter approxi-
mates the distribution over the current target state as a set
of weighted samples, which is recursively updated based
on the current measurement, a target motion model, and
a measurement model.

Incorporating subspace representations as the mea-
surement model in a particle filter does present some
challenges, however. The simplest approach to incor-
porating subspace representations into the particle filter
framework is to augment the state space of the target
with the subspace coefficients. This is the method em-
ployed by Blake and Isard to track the an articulated ob-
ject such as a hand in clutter [12]. However, this proves
problematic as the number of samples in the particle fil-
ter needs to increase exponentially with the dimension-
ality of the state space, which now includes the subspace
coefficients [13].

In this paper, we introduce an efficient method for us-
ing subspace representations as part of a particle filter.
In particular, we propose to use Rao-Blackwellization
[16, 5] to integrate out the appearance subspace coeffi-
cients of the state vector, leaving only the original target
state. The advantage of this is that fewer samples are
needed since part of the posterior over the state is analyt-
ically calculated, rather than being approximated using
a more expensive sample representation. We use prob-
abilistic principal component analysis (PPCA), a prob-
abilistic subspace model for which the integral can be
computed analytically [20, 17].

Rao-Blackwellized particle filters have been applied
in other state estimation problems. In [18], the authors
integrate over the 2D target positions and sample over
measurement target assignments to track people based
on noisy position measurements from IR sensors. In
[9], de Freitas uses a Rao-Blackwellized particle filter
for fault detection where Kalman filters are applied over
continuous parameters and samples obtained over dis-
crete fault states. And finally, in [15], the authors inte-



grate over landmark locations in a robotics application
where the goal is to localize a robot while simultane-
ously building a map of the environment.

In the remainder of this paper we first review the
Bayes filter and the particle filter in Section 2, dis-
cuss Rao-Blackwellization and Rao-Blackwellized par-
ticle filters in Section 3, and then specialize that gen-
eral framework to Rao-Blackwellized EigenTracking in
Section 4. In Section 5 we illustrate our approach in a
tracking scenario in which we track a target in clutter. In
this scenario, we compare the performance of a standard
particle filter to a Rao-Blackwellized particle filter.

2. Bayesian Target Tracking
2.1. The Bayes Filter
Target tracking problems can be expressed as a Bayes
filter, in which we recursively update the posterior dis-
tribution P (Xt|Zt) over the target state Xt given all ob-
servations Zt = {Z1..Zt} up to and including time t,
according to:

P (Xt|Zt) ∝ P (Zt|Xt) (1)∫
Xt−1

P (Xt|Xt−1)P (Xt−1|Zt−1)

The likelihood P (Zt|Xt) expresses the measurement
model, the probability that we will observe the measure-
ment Zt given the state Xt at time t. The motion model
P (Xt|Xt−1) predicts the state Xt at time t given the
previous state Xt−1.

2.2. Particle Filters
In a particle filter [10, 11, 4] we recursively approximate
the posterior P (Xt−1|Zt−1) as a set of N weighted
samples {X(i)

t−1, π
(i)
t−1}N

i=1, where π
(i)
t−1 is the weight for

particle X
(i)
t−1. Given this approximate representation,

we obtain a Monte Carlo approximation of the Bayes
filtering distribution:

P (Xt|Zt) ≈ kP (Zt|Xt)
∑

i

π
(i)
t−1P (Xt|X(i)

t−1) (2)

One way to view a particle filter is as an importance sam-
pler for this distribution. Specifically, N samples X

(j)
t

are drawn from the following proposal distribution q

X
(j)
t ∼ q(Xt)

∆=
∑

i

π
(i)
t−1P (Xt|X(i)

t−1)

and then weighted by the likelihood, i.e.

π
(j)
t = P (Zt|X(j)

t )

This results in a weighted particle approximation
{X(j)

t , π
(j)
t }N

j=1 for the posterior P (Xt|Zt) at time t.
Note that there are alternative ways to view the particle
filter that more easily accommodate other variants (see
e.g. [1]), but the mixture proposal view above is well
suited for our application.

3. Rao-Blackwellization

When modeling a target’s appearance with a subspace
model, the state space is augmented with appearance
coefficients such that the state Xt = (lt, at) now con-
sists of two parts: the location part lt, which models the
position of the target, and the appearance part at, con-
taining the appearance subspace coefficients. The Bayes
filter (1) now becomes:

P (lt, at|Zt) = kP (Zt|lt, at)× (3)∫
lt−1

∫
at−1

P (lt, at|lt−1, at−1)P (lt−1, at−1|Zt−1)

In the above we obtain the posterior over the current
state by integrating over both the location lt−1 and
appearance coefficients at−1 at the previous time-step
t − 1. If we integrate out the appearance part at of the
state, we obtain a marginal filter for the location l:

P (lt|Zt) = k

∫
at

P (Zt|lt, at)× (4)

∫
lt−1

∫
at−1

P (lt, at|lt−1, at−1)P (lt−1, at−1|Zt−1)

In the next section, we will approximate this exact
marginal filter using a hybrid Monte Carlo method, by
sampling over the location lt but analytically represent-
ing the appearance part at of the target state.

3.1. The Rao-Blackwellized Particle Filter

In particle filtering, “Rao-Blackwellization” (RB) refers
to integrating out part of the state analytically, with
the result that the variance of the resulting Rao-
Blackwellized particle filter (RBPF) is sharply reduced
[16]. For the same level of performance fewer samples
will be needed since, intuitively, part of the posterior
over the state is calculated exactly or analytically ap-
proximated rather than approximated using a more ex-
pensive and noisy sample set.

In a Rao-Blackwellized particle filter we approximate
the posterior P (lt−1, at−1|Zt−1) over the previous joint
state by a set of particles {l(i)t−1, w

(i)
t−1, α

(i)
t−1(at−1)}N

i=1,

each with its own conditional distribution α
(i)
t−1(at−1)



over the appearance at−1 [16]:

P (lt−1, at−1|Zt−1) = P (lt−1|Zt−1)P (at−1|lt−1, Z
t−1)

≈
∑

i

w
(i)
t−1δ(l

(i)
t−1)α

(i)
t−1(at−1)

(5)

Formally, α
(i)
t−1(at−1) is defined as the density on at−1

conditioned on particle i and the measurements Zt−1:

α
(i)
t−1(at−1)

∆= P (at−1|l(i)t−1, Z
t−1) (6)

Substituting the hybrid approximation (5) into the ex-
pression for the marginal filter (4), we obtain after some
manipulation the following Monte-Carlo approximation
to the exact marginal Bayes filter:

P (lt|Zt) ≈ k
∑

i

w
(i)
t−1

∫
at

P (Zt|lt, at)× (7)

∫
at−1

P (at|lt, l(i)t−1, at−1)P (lt|l(i)t−1, at−1)α
(i)
t−1(at−1)

Zt

a

l

t

t

a t−1

l t−1

Figure 1: Dynamic Bayes network for the Rao-
Blackwellized particle filter. The target state contains
both the location lt and the subspace coefficients at

It might seem that we could now implement the same
importance sampling scheme as with the particle filter.
However, the complicated form of the approximation (7)
makes that intractable in general. In theory, it is possible
to directly sample from the approximation (and hence do
away with the importance weights), but this is both com-
putationally and analytically difficult in all but the sim-
plest cases. Hence, to obtain a practical algorithm we
make one additional assumption, namely that the mo-
tion model for the location lt does not depend on the
appearance at−1 at time t − 1:

P (lt|l(i)t−1, at−1) = P (lt|l(i)t−1) (8)

The dynamic Bayes network for this model is shown in
Figure 1. We can now move the motion model out of the
integral in (7), obtaining

P (lt|Zt) ≈ k
∑

i

w
(i)
t−1P (lt|l(i)t−1)× (9)

∫
at

P (Zt|lt, at)
∫

at−1

P (at|lt, l(i)t−1, at−1)α
(i)
t−1(at−1)

Now we can do importance sampling in the
usual way, using the empirical predictive density∑

i w
(i)
t−1P (lt|l(i)t−1) as the proposal density. The final

algorithm is summarized below.

3.2. RB Particle Filter Summary
For each time step t, starting from the posterior approx-
imation {l(i)t−1, w

(i)
t−1, α

(i)
t−1(at−1)}N

i=1, repeat for j ∈
1..N :

1. Randomly select a particle l
(i)
t−1 from the previous

time step according to the weights w
(i)
t−1.

2. Sample a new particle l̂
(j)
t from the chosen model:

l̂
(j)
t ∼ P (lt|l(i)t−1)

3. Extra step: calculate the posterior density α
(j)
t (at)

on the subspace coefficients at:

α
(j)
t (at) = k

(j)
t P (Zt|l̂(j)t , at)×∫

at−1

P (at|l̂(j)t , l
(i)
t−1, at−1)α

(i)
t−1(at−1) (10)

Note that this is where the measurement Zt is in-
tegrated, conditioned on the chosen location l̂

(j)
t .

Also, the integral yields a predictive density on at

given a move from location l
(i)
t−1 to location l

(j)
t .

4. Calculate the importance weight w
(j)
t as the inte-

gral over the unnormalized α
(j)
t (at), i.e.,

w
(j)
t = 1/k

(j)
t

where k
(j)
t is the normalization constant in (10).

4. RB EigenTracking
4.1. Probabilistic PCA
The integrals in the general Rao-Blackwellized particle
filter framework become analytically tractable when we



use the Probabilistic PCA (PPCA) model which is de-
tailed in [20, 17]. In PPCA, a d-dimensional image T is
generated according to a factor-analysis model

T = µ + Wat + n

where µ is the mean of the training image data set, a is a
q-dimensional vector of latent variables, i.e., in our case
a contains the appearance coefficients, and the noise n
is distributed according to an isotropic Gaussian noise
model n ∼ N (0, σ2Id). The d×q factor matrix W con-
tains scaled versions of the first q principal components
Uq of the data (the eigen-images):

W = Uq(Λq − σ2Iq)

Here Λq is a diagonal matrix containing the first q eigen-
values λi, 1 ≤ i ≤ q, and

σ2 =
1

d − q

d∑
i=q+1

λi

is the average of the “lost variance” in the remaining
d− q principal directions. We define dependence on the
sampled location l̂

(j)
t through an inverse warp R−1 on

the image measurement Zt. The warp obtains an im-
age vector T (j) = R−1(Zt, l̂

(j)
t ) from a rectangular re-

gion with an offset center of rotation with position and
orientation l̂

(j)
t . Taking all this together, we obtain the

following Gaussian likelihood model:

P (Zt|l̂(j)t , at) =
1√|2πIdσ2| × (11)

exp−1
2
‖T (j) − µ − Wat‖2

Idσ2

where we write the squared Mahalanobis distance as

‖t − µ‖2
Σ

∆= (t − µ)T Σ−1(t − µ)

4.2. “Extra Step”: Analytical Update
The posterior density αt(at) on the current appearance
coefficients in (10) can be shown to be a normal den-
sity N (at; ât, Pt) by assuming that the coefficients at

change smoothly over time according to a Gaussian pro-
cess:

at|l̂t(j), l(i)t−1, at−1 ∼ N (at−1, Qij)

The diagonal variance Qij can be adapted to the distance

between the locations l̂t
(j)

and l
(i)
t−1, useful in many do-

mains where the target appearance tends to change more
when the target moves quickly. Using the PPCA image
model (11), and under the inductive assumption that the

density αt−1(at−1) on the previous appearance coeffi-
cients at−1 is a normal density N (at−1; ât−1, Pt−1), we
obtain the following Kalman filter update equations for
the subspace coefficients:

P
(j)
t =

(
σ−2WT W + (Qij + Pt−1)−1

)−1
(12)

â
(j)
t = Pt × (σ−2WT y + (Qij + Pt−1)−1ât−1)

where y
∆= T (j) − µ.

4.3. Calculating the Importance Weights
The importance weight can be derived by leveraging the
Gaussian assumptions made in the measurement model
and analytical update. The result of the integral over the
previous appearance coefficients at−1 in (10) is a Gaus-
sian N (at−1; ât−1, Qij+Pt−1). Since the measurement
model in (11) is also Gaussian, we compute the impor-
tance weight according to

w
(j)
t = k exp−1

2

[
‖T (j) − µ − Wât‖2

Idσ2+

‖ât − ât−1‖2
Qij+Pt−1

]
(13)

and

k =

√|2πPt|√|2πIdσ2|√|2π(Qij + Pt−1)|
Intuitively, a small importance weight is given to parti-
cles with high reconstruction error using the maximum
a posteriori (MAP) estimates of the current appearance
coefficients as well as particles where the difference
between the MAP estimates of the coefficients differ
greatly between time steps.

4.4. EigenTracking Algorithm Summary
For convenience, we include a complete summary of the
tracking algorithm. We track target position and orien-
tation such at lt = [x, y, θ]T . Starting from the posterior
approximation at time t, a set of weighted hybrid parti-
cles {l(i)t−1, w

(i)
t−1, â

(i)
t−1, P

(i)
t−1}N

i=1, repeat for j ∈ 1..N :

1. Randomly select a particle l
(i)
t−1 from the previous

time step according to the weights w
(i)
t−1.

2. Sample from the motion model P (lt|l(i)t−1) for the

chosen particle to obtain a predicted location l̂
(j)
t .

3. Update â
(i)
t−1 and P

(i)
t−1 to â

(j)
t and P

(j)
t according

to the filtering equations in (12).

4. Calculate the weight w
(j)
t according to (13).

Repeating this N times yields the weighted hybrid parti-
cle set {l̂(j)t , w

(j)
t , â

(j)
t , P

(j)
t }N

j=1 at the current time step
t, approximating the posterior P (lt, at|Zt).



5. Experimental Results

We used the Rao-Blackwellized particle filter to track an
unmarked honey bee in an observation hive. The auto-
mated recording of trajectory data has significant appli-
cations in the study of honey bee behavior and physi-
ology [19]. This application presents substantial chal-
lenges due to temporary occlusions that occur in the
close proximity of other bees, complex variations in the
appearance of the tracked bee, and the unpredictability
of the tracked bee’s movements.

(a)

(b)

Figure 2: (a) Tracking honey bees in a hive presents sub-
stantial challenges for a tracker due to temporary occlu-
sions that occur in the close proximity of other bees and
complex variations in the appearance of the tracked bee.
(b) Mean target image with the first 5 principal compo-
nents, or eigen-bees, estimated from a training set

The test sequence was recorded at 15fps at 720x480
pixels and scaled to 360x240 pixels (see Figure 2a ).
We used 40 iterations of EM (see [20]) to learn the
PPCA image model from a training image data set con-
sisted of 172 color bee images, each measuring 14 by
31 pixels. The mean image and the first five principal
components (eigen-bees) are shown in Figure 2b. The
center of rotation of the rectangle was offset 15 pix-
els from the top of the image. Because the motion of
the bee is difficult to predict, we used a Gaussian mo-
tion model where the target state is updated according
to l|lt−1 = A(θt−1)∆l + lt−1 by sampling from a zero

Components Failures MSE
0 11 14.71±34.73
3 8 13.47±32.61
6 4 7.85 ± 18.80
9 1 6.43 ± 14.89
12 0 4.73 ± 10.47

Table 1: When using the RBPF with 500 hybrid parti-
cles, increasing the complexity of the PPCA model by
adding principal components both improved the quality
of the trajectory and decreased the number of failures.

Particles Failures MSE
500 69 52.76±67.68
1500 44 42.37±63.19
3000 33 31.71±51.10
6000 20 21.11±45.03

Table 2: In a “plain” particle filter where the state vector
contains 12 appearance coefficients which are sampled,
instead of computed analytically, the number of particles
required was increased substantially.

mean Gaussian ∆l ∼ N(0, diag(σ2
∆x′σ2

∆y′σ2
∆θ′)) with

preset variances, σ∆x = 2, σ∆y = 3, and σ∆θ = 0.3 for
position and orientation, where A is matrix that rotates a
location l according to the angle θt−1. The variance Qij

in the coefficients was set to and 7Iq and 10Iq when the
position of the target changed by more than 2 pixels.

Using increasingly rich subspace models by adding
additional PPCA components both decreased the num-
ber of failures and improved track quality. In Table 1
we show the results of using the RBPF with 500 hybrid
particles. A failure was recorded when the position re-
ported tracker deviated more than half the width of the
target, 7 pixels in the image, from the ground truth tra-
jectory. When a failure occurred, the tracker was reini-
tialized at the ground truth position and allowed to re-
sume tracking. We measured the quality of the trajectory
by computing the mean squared error (MSE), or squared
distance, of the position reported by tracker from the
ground truth. The zero principal component model is
equivalent to using a simple Gaussian image model with
mean µ and variance σ2Id, which results in poor track-
ing. With q=12 components in the PPCA model we re-
port no failures and track quality markedly improved.

The same results are qualitatively illustrated in Fig-
ure 3, where we have shown the corresponding 2D tra-
jectories for the q = 0 and q = 12 component models.
Through the correlations between pixel color captured
by the principal components the tracker is able to more
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(a) q = 0, using 500 hybrid particles
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(b) q = 12, using 500 hybrid particles

Figure 3: As the complexity of the PPCA image model
is increased the tracking quality improves. The blue
recorded trajectory is shown superimposed on the green
ground truth trajectory. Failures are designated by red
triangles. In (a) and (b) we show trajectories obtained
by models with zero and 12 components respectively.

accurately the model the appearance of the target.
In contrast to the RBPF results, the number of par-

ticles required in a standard particle filter to track at a
worse level of performance grows intractably large. Ta-
ble 2 shows the results we obtained using q=12, for in-
creasing numbers of particles. In Figure 4, we show the
trajectory for standard particle filtering, using 500 parti-
cles to enable comparison with Figure 3. The analytical
update of appearance coefficients in the RB particle filter
substantially decreases the number of samples required
to track a target. For a standard particle filter with 500
particles and 12 principal components 69 failures were
recorded. Whereas, zero failures were recorded for the
RB filter with 500 hybrid particles. Adding particles to
the standard particle filter does improve performance,

100 120 140 160 180 200 220 240 260 280 300
200

220

240

260

280

300

320

q = 12, using 500 particles

Figure 4: In a standard particle filter, the number of par-
ticles required increases exponentially as the state vector
contains 15 dimensions: the location, orientation, and 12
appearance coefficients. For comparison with Figure 3
in which we use an RB filter with 500 hybrid particles,
we plot the trajectory obtained by a standard particle fil-
ter with 500 particles. The blue recorded trajectory is
shown superimposed on the green ground truth trajec-
tory. Failures are designated by red triangles.

but not nearly enough.
This result is not surprising, considering the fact that

the state space sampled over is 15-dimensional: 3 de-
grees of freedom for the the location and orientation,
and 12 additional subspace coefficients to model appear-
ance. It is well known that importance sampling, which
lies at the core of the particle filtering approach (see Sec-
tion 2.2), breaks down in high-dimensional spaces.

6. Conclusions
In this paper, we introduced an efficient method for us-
ing subspace representations as the measurement model
in a particle filter. We applied Rao-Blackwellization to
integrate out the subspace coefficients of the state vector,
and have shown how this can be done in a general Rao-
Blackwellized particle filter framework. For an applica-
tion that is of interest to researchers who study animal
behavior, we specialized the RBPF framework to visual
tracking in a way that closely mimics Jepson and Black’s
influential work on the EigenTracking algorithm. One
possible downside of using a Gaussian latent variable
model is that outliers in the image noise, such as spec-
ular reflections, are not well modeled using a Gaussian
noise model. Hence, one avenue for future work is ex-
amining the use of robust, non-Gaussian subspace mod-
els in the context of the RBPF.



We tested the algorithm in a challenging tracking ap-
plication in which we tracked a target in clutter. The
conclusions we attach to our experiments are twofold:

• Using a subspace appearance model in conjunc-
tion with a particle filter can substantially increase
tracking performance and decrease the number of
tracking failures, especially when tracking targets
that exhibit complex appearance changes over time.

• The analytical update of the subspace coefficients
in the RBPF sharply reduces the number of parti-
cles needed and hence the computational require-
ments to accurately track a target in clutter.

Based on these promising results, we expect that hybrid
sampling approaches will play an increasingly important
role in computer vision tracking applications.
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