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SUMMARY

In this thesis we numerically compute the scattering lengths and bound states for

sodium-rubidium collisions at low energy. This work was motivated by experiments

which aim to produce Bose-Einstein condensates (BEC) mixtures of sodium-rubidium.

Elastic collision properties are important for the rethermalization of the atoms during

the evaporative cooling process. Inelastic processes, which we also discuss to some

extent, cause trap losses in those experiments. In order to reach the required temper-

ature and density the elastic collision rates should be sufficiently large compared to

the inelastic rates. The scattering lengths, which completely specify the elastic col-

lision parameters at low energy, determine the miscibility and phase diagram of the

sodium-rubidium condensate mixture. We calculate the scattering lengths approxi-

mately and find agreement with previous calculations indicating that miscible phases

of sodium and rubidium condensates do not appear to be feasible in the absence of

external fields.
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CHAPTER 1

INTRODUCTION

Recent theoretical work on cold and ultracold collisions is closely related to the ex-

perimental efforts made in achieving Bose-Einstein condensation (BEC). Therefore

we would like to give a short review of the history of BEC, the related technical

difficulties and the path to its final realization in 1995 (see e.g. [1]).

In 1924 Satyendra Nath Bose wrote a paper on the quantum statistics of photons

[2]. Albert Einstein reviewed his work and extended Bose’s considerations to massive

bosons. That was the hour of birth of Bose-Einstein statistics. Nowadays we know

that all particles with integer spin (i.e. bosons) follow this statistics. When confined

in an external potential, the peculiar feature of Bose gases at low temperature is

that (below a critical temperature) a macroscopic number can occupy the ground

state of the potential. That implies a coherent state of massive particles similar to

the coherent state of massless photons in a laser beam. Simple quantum statistical

considerations allow us to calculate the critical temperature TC for an ideal Bose gas

below which BEC occurs,

TC = h2

2πmkB

(
n

ζ(3/2)

)2/3

(1.1)

with the mass m of each boson and the Riemann zeta function ζ(3/2) ≈ 2.612. The

reason for the occurance of BEC is that the chemical potential µ, which indicates how

much energy is needed to add or remove a particle to a particular state, tends to zero at

low temperatures for bosons. It is important to note that the critical temperature for
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BEC (below mK) is orders of magnitude below the critical temperature for comparable

states of matter like superfluidity or superconductivity. That’s why very sophisticated

experimental methods had to be developed before BEC could be firstly realized.

Interactions play a crucial role in those experiments as we will see in the following.

The first efforts to create BEC in a dilute gas have been made with spin-polarized

hydrogen. Theoretical work by Hecht [3] and Stwalley and Nosanow [4] suggested

that spin-polarized hydrogen remains an atomic gas down to zero temperature at

sufficiently low pressures, because there are no bound states in its triplet potential

and spin-flip collisions, in which molecules could be formed, are suppressed in those

experiments [1]. Experiments have been done in the 1980s and 90s in dilution re-

frigerators whose walls were coated with superfluid helium. The advantage of using

hydrogen was that one completely understood its collisional properties. Nevertheless

it turned out that BEC cannot be realized with hydrogen in this setup because of

recombination at the walls and three-body recombination (if the density of the gas

gets too large).

At the same time, but independently, the technology laser-cooling was developing.

The idea of using laser light for cooling atoms came from papers by Hänsch and

Schawlow [5] and Wineland and Dehmelt [6]. Raab et al. managed to realize the

first magneto-optical trap (MOT) with sodium atoms in 1987 [7]. Furthermore it was

observed that one succeeded to cool atoms below the theoretical Doppler limit. That

was a big mystery at this time, but after a couple of years theoreticians explained the

sub-Doppler temperatures with the effect of polarization gradients and the influence

of differential light shifts (Sisyphus cooling) (see [8],[9],[10],[11] and [12]). All those

experiments were done with alkali atoms. At the beginning of the 1990s there were

two groups of physicists, those, who proposed to achieve BEC in hydrogen, and those,

who proposed to do the same with alkalis using laser cooling methods.

At this point the lowest reachable temperatures (with laser-cooling) were still too
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high for BEC [13]. A promising concept came once again from the hydrogen groups:

evaporative cooling. Early work was done by Harold Hess from the MIT [14]. The

principle is very easy and well-known from everyday routines like the cooling of a

cup of coffee. In ultracold atomic physics atoms are confined in a magnetic trap and

by lowering the boundaries of this potential the hot atoms leave the trap and after

rethermalization the remaining cloud has an overall lower temperature. The lowest

temperatures obtained with hydrogen were around 100 µK, which was still too high

for BEC. Nevertheless, inspired by this work, the JILA group at the University of

Colorado at Boulder (and also Ketterle’s group at the MIT) adapted the concept of

evaporative cooling for their alkali experiments. In combination with laser-cooling

it seemed to be a very promising opportunity which finally led to the successful

realization of BEC of 87Rb in 1995 [15], for which Eric A. Cornell, Carl E. Wieman

and Wolfgang Ketterle were awarded the Nobel prize in 2001.

Atomic collisions are crucial in all those experiments. On the one hand collisions

with the walls of the chamber or with background atoms lead to heating and trap

losses. On the other hand elastic collisions ("good" collisions) are important for the

rethermalization of the remaining atoms in evaporative cooling. Three-body collisions

and dipolar relaxation ("bad" collisions) also cause trap losses, because atoms change

their spin state and are therefore expelled from the trap zone. The principle concern

for cooling is therefore to increase the ratio of good to bad collisions in order to

obtain sufficiently high densities of the trapped atoms at sufficiently low temperatures.

Hydrogenic collision properties were well-known in the 1980s, which was mainly the

reason why most groups were using it for their experiments. On the other hand there

was little information about the cold collision properties of alkalis at the beginning

of the 1990s. The promising of achieving BEC with alkalis due to the new cooling

techniques initiated the study of this field. Eventually photoassociation methods were

developed and these led to accurate data about the alkali interaction potentials [16].
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The research reported in this thesis was motivated by experiments with ultracold

sodium-rubidium vapors. Scattering lengths for Na-Rb, which completely determine

the low-energy elastic collision parameters, have been stated in [17] and [18]. Whereas

experimental and numerical methods to obtain the interaction potentials have been

described in detail (e.g. in [18],[19]), the actual calculation of the scattering lengths

was not discussed. In most cases very sophisticated programs, similar to the one

described in [20], are used to analyze the potential. In this work we therefore want

to present a simple numerical procedure for computing the scattering lengths and

bound state energies for a non-analytical potential in order to confirm the results of

previous calculations.

We start with basic ideas of quantum mechanical scattering theory in the sec-

ond chapter, which we support with illustrative examples. In the third chapter we

talk specifically about collisions between alkali atoms. We concentrate on elastic

scattering, but briefly discuss inelastic collisions. We present our calculations which

determine the scattering lengths for Na-Rb numerically and find agreement with the

literature [18]. In the last chapter we present the connection between cold collision

theory and BEC experiments and apply some of those ideas to Na-Rb mixtures.
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CHAPTER 2

FUNDAMENTALS OF SCATTERING THEORY

Scattering theory is a very important topic in quantum mechanics. One of the first

major results in scattering theory was achieved by Ernest Rutherford in 1911 [21].

He described classically the scattering of alpha particles at a gold foil caused by the

Coulomb interaction. Due to an amazing coincidence, it turns out that his classically

derived result for the differential cross section agrees with the quantum mechanical

calculation. Among many others Mott and Massey have worked on quantum scatter-

ing theory and they have published a comprehensive work on the theory of atomic

collisions [22].

In this chapter we would like to present the basic ideas of scattering theory. We

concentrate mainly on elastic processes, but also introduce some ideas about inelastic

collisions. We will in particular work in the low energy limit, as that is the regime in

which cold atomic experiments take place. We complete the theoretical derivations

with illustrative examples.

2.1 Elastic collisions

It is very important to understand the treatment of elastic collisions before describing

more complex interactions. In the first part of this section we present the most general

results. Afterwards we restrict our discussion to interactions at low energy and give

the analytically solvable example of the rectangular well.
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2.1.1 Two-body elastic scattering

The theory of two-body elastic collisions is very well covered in [23]. We want to give

a short review of this topic in order to derive the most important results.

We start with two bodies with masses m1 and m2 which are interacting in a

central potential V (r). Hence, the motion can be separated into the center of mass

and relative motion. The latter is the interesting part and can be described as the

motion of a single particle with relative coordinate ~r = ~r1 − ~r2 and reduced mass

µ = m1m2/(m1 + m2). The energy of the relative motion is given by ~2k2/(2µ) and

the momentum is ~p = ~~k.

Figure 2.1: Scattering process in a central potential with scattering angle θ. The
relative coordinate is ~r and the incoming (outgoing) wave vectors are ~k (~k′).

If we make use of the fact that the potential goes to zero for large distances, we can

write the asymptotic wave function far outside the scattering region as a superposition

of the incoming plane wave and the scattered (outgoing) spherical wave

ψ+(~r) ' 1
(2π)3/2

[
ei
~k·~r + f(~k,~k′) · e

ikr

r

]
(2.1)
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with the scattering amplitude f(~k,~k′), which can be generally written as

f(~k,~k′) = − 1
4π

2µ
~2 (2π)3

∫
d3r

1
(2π)3/2 e

−i~k′·~rV (~r)ψ+(~r) . (2.2)

Note that eq. (2.1) and (2.2) together define an integral equation for the asymptotic

wave function.

Using the fact that ψ(~r) = 〈~r|ψ〉 and V (~r)δ(~r − ~r ′) = 〈~r| V̂ (~̂r) |~r ′〉 and the

definition for the transition operator T̂ |~k〉 = V̂ |ψ〉, where |~k〉 is a plane wave state,

we can rewrite f(~k,~k′):

f(~k,~k′) = − 1
4π

2µ
~2 (2π)3 〈~k′| V̂ |ψ+〉

= − 1
4π

2µ
~2 (2π)3 〈~k′| T̂ |~k〉 .

(2.3)

In case of a weak interaction the problem can be treated perturbatively and in the

first Born approximation T̂ ≈ V̂ .

With the partial wave expansion, which means expanding the state in a com-

plete set of spherical wave states |E, l,m〉, we can rewrite the scattering amplitude.

The transition operator T̂ is a scalar operator, as it commutes with L̂2 and ~̂L for a

spherically symmetric potential. Therefore its matrix elements are diagonal in

terms of the spherical wave states (diagonal in energy because of elastic scattering

and diagonal in l,m as it is a rotational scalar operator)

〈E ′, l′,m′| T̂ |E, l,m〉 = Tl(E)δll′δmm′δ(E − E ′) . (2.4)

We get after a little calculation (shown in [23]):

f(~k,~k′) = −4π2

k

∑
l,m

Tl

(
E = ~2k2

2µ

)
Y m
l (k̂′)Y m∗

l (k̂) . (2.5)

Choosing our coordinate system so that the z-axis points into the k-direction, it
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follows that

f(~k,~k′) = f(k, θ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cos θ) (2.6)

with the partial-wave amplitude

fl(k) ≡ −
πTl(E = ~2k2

2µ )
k

. (2.7)

Each partial wave contribution s, p, d, ... has a different angular momentum l =

0, 1, 2, ...

Now we go back to eq. (2.1) and use the partial wave expansion for a plane wave:

eikz =
∑
l

(2l + 1)Pl(cos θ)
(
eikr − e−i(kr−lπ)

2ikr

)
. (2.8)

Therefore we can write the wave function at large distances as

ψ+(~r) ' 1
(2π)3/2

[
eikz + f(k, θ) · e

ikr

r

]

= 1
(2π)3/2

∑
l

(2l + 1)Pl(cos θ)
2ik

[
(1 + 2ikfl(k))e

ikr

r
− e−i(kr−lπ)

r

]
.

(2.9)

It is now helpful to look at the plane wave function in eq. (2.8) as a superposition

of an outgoing and incoming spherical wave. The presence of scattering just changes

the coefficient of the outgoing part in eq. (2.9)

1→ 1 + 2ikfl(k) . (2.10)

Due to probability conservation and the continuity equation this coefficient must have

an absolute value of 1 and can therefore be written as

1 + 2ikfl(k) = e2iδl(k) . (2.11)
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Thus, we see that the scattering process can just change the phase of the outgoing

wave. This phase shift δl(k) is a real number (it can be complex in the case of inelastic

scattering - see section 2.2.2). If we write the scattering amplitude in terms of δl(k),

we get

f(k, θ) = 1
2ik

∞∑
l=0

(2l + 1)
(
e2iδl(k) − 1

)
Pl(cos θ) . (2.12)

Now we want to describe how the phase shifts δl can be determined for a given

radially symmetric potential V (r). We can factorize the wave function at any point

in space

ψ(~r) = Rl(r)Y m
l (θ, φ) , (2.13)

where Y m
l (θ, φ) are the spherical harmonics and the function Rl(r) solves the radial

Schrödinger equation

− ~2

2µ

(
d2Rl(r)
dr2 + 2

r

dRl(r)
dr

)
+
(
V (r) + ~2l(l + 1)

2µr2 − E
)
Rl(r) = 0 . (2.14)

It is essential to (numerically) solve this equation in order to obtain the phase shifts δl

in the following way. Assuming that the range of the potential is limited, i.e. V (r) = 0

for r > r0 and using the fact that E = ~2k2/(2µ), we can rewrite this equation as the

spherical Bessel differential equation (multiply by r2, divide by −~2/(2µ) and define

the new variable ρ ≡ kr)

ρ2 d
2

dρ2Rl(ρ) + 2ρ d
dρ
Rl(ρ) +

(
ρ2 − l(l + 1)

)
Rl(ρ) = 0 . (2.15)

This equation can be solved by spherical Bessel and Neumann functions or their linear

combinations [24]

h
(1)
l = jl + inl and h

(2)
l = jl − inl . (2.16)

Those functions are called spherical Hankel functions. The whole system has a rota-
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tional symmetry around the z-axis (=~k-direction) and therefore cannot depend on φ.

That’s why we just have to use the spherical harmonics Y 0
l (θ), which are proportional

to the Legendre polynomials Pl(cos θ), i.e. the whole solution for r > r0 has the form

ψ+(~r) = 1
(2π)3/2

∑
l

il(2l + 1)
(
c

(1)
l h

(1)
l (kr) + c

(2)
l h

(2)
l (kr)

)
Pl(cos θ) . (2.17)

Considering now the asymptotic behavior of the spherical Hankel functions

h
(1)
l

r→∞−−−→ ei(kr−lπ/2)

ikr
and h

(2)
l

r→∞−−−→ −e
−i(kr−lπ/2)

ikr
, (2.18)

and using the fact the il = exp(ilπ/2) yields

ψ+(~r)→ 1
(2π)3/2

∑
l

(2l + 1)Pl(cos θ)
ikr

(
c

(1)
l eikr − c(2)

l e−i(kr−lπ)
)
. (2.19)

Comparing this result to eq. (2.9) using the definition of the phase shift (eq. (2.11))

leads to the coefficients c(1,2)
l

c
(1)
l = 1

2e
2iδl(k) and c

(2)
l = 1

2 . (2.20)

It follows that

ψ+(~r) ' 1
(2π)3/2

∑
l

(2l + 1)Pl(cos θ)
2ikr

(
e2iδl(k)+ikr − e−i(kr−lπ)

)

= 1
(2π)3/2

∑
l

(2l + 1)Pl(cos θ)
kr

ei(δl(k)+ lπ
2 ) sin

(
kr − lπ

2 + δl(k)
)
.

(2.21)

Now we need to find the solution of the radial Schrödinger equation for r < r0. If it

is necessary, this calculation has to be done numerically. Claiming continuity of each

partial wave at r = r0, i.e. matching Rl(r < r0) and Rl(r > r0) together, eventually

yields the phase shifts δl.

After this derivation we can write down the differential and total scattering cross
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sections:
dσ

dΩ = |f(k, θ)|2 = 1
4k2

∣∣∣∣∣
∞∑
l=0

(2l + 1)
(
e2iδl(k) − 1

)
Pl(cos θ)

∣∣∣∣∣
2

(2.22)

σtot =
∫
|f(k, θ)|2 dΩ = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k) . (2.23)

The total cross section can be easily calculated using the optical theorem:

σtot = 4π
k
Imf(k, θ = 0) . (2.24)

It is worth mentioning, that we talked so far about distinguishable particles. For

indistinguishable bosons or fermions the wave function has to be symmetrized or

antisymmetrized (due to the spin-statistics theorem of Pauli [25]).

At the beginning of this chapter we started off by separating the center of mass

and relative motion. While the former is invariant under particle exchange, the latter

changes sign because ~r = ~r1 − ~r2. That’s why the symmetrized (antisymmetrized)

spatial scattering wave function has to be (eq. (2.9) and eq. (2.12))

ψ+
S
a

(~r) = 1√
2
·
(
ψ+(~r)± ψ+(−~r)

)
= 1√

2
·
(
ψ+(r, θ, φ)± ψ+(r, π − θ, π + φ)

)
' 1√

2
· 1

(2π)3/2

[(
eikz ± e−ikz

)
+ eikr

r
· (f(k, θ)± f(k, π − θ))

]

= 1√
2
· 1

(2π)3/2

(
eikz ± e−ikz

)
+ 1√

2
· 1

(2π)3/2
eikr

r
· 1
ik

∞∑
l=0

(
1± (−1)l

)
(2l + 1)

(
e2iδl(k) − 1

)
Pl(cos θ) ,

(2.25)

where we used the fact that Pl(−x) = (−1)lPl(x). Note that the second term of the

scattering wave function contains r, which is the magnitude of the relative coordinate

and hence does not change sign.

Thus for identical bosons the contribution of even partial waves (s,d,...) is twice as

large as for distinguishable particles whereas odd partial waves vanish. For identical

11



fermions the opposite is true. Furthermore the total cross section for the allowed par-

tial waves in case of indistinguishable particles is twice as large as for distinguishable

particles.

Because for sufficiently low energy partial waves higher than s-waves are supressed

(see next section), identical ultracold fermions are basically noninteracting and cannot

be cooled. Nevertheless one can cool such gases by mixing fermions with different

spin-states which act as distinguishable particles [26].

2.1.2 Low energy limit

In this work we concentrate on collisions in cold and ultracold gases which implies

that the colliding atoms will have very low energy (below mK). The mean kinetic

energy for an ideal gas at a temperature of 1 mK is, for example,

E = 3
2kB · T = 1.3× 10−7eV , (2.26)

and corresponds to an average velocity of (with µ ≈ 18 a.u. for 23Na85Rb)

v =
√

2E
µ
' 1.2 m/s . (2.27)

The effective potential is the sum of the radial potential and the centrifugal barrier
~2l(l+1)

2µr2 . Therefore it is easy to see that for lower incident energies fewer partial waves

contribute to the scattering, because this barrier prevents large l partial waves from

entering the scattering region. In the limit k → 0 the atoms cannot come close

enough except in the l = 0 case. Hence, for sufficiently low temperatures one just

has to consider s-wave collisions. Figure 2.2 shows the long-range part of the Na-Rb

potential (we present the properties of alkali potentials in section 3.1), which is to

12



leading order the van der Waals term and the centrifugal barrier:

V (r) = −C6

r6 + ~2l(l + 1)
2µr2 (2.28)

with C6 = 1.3237 · 107 cm−1 ·Å6 = 1.9067 K ·Å6 [18] and µ ≈ 18 a.u. The centrifugal

barrier for the p-wave has a height of 0.4 mK and for the d-wave 2.0 mK.

3 0 4 0 5 0 6 0 7 0 8 0 9 0

- 8
- 6
- 4
- 2
0
2
4  l = 0

 l = 1
 l = 2

E / k B  [ m K ]

r  [ �]

Figure 2.2: Centrifugal barrier in long-range part of Na-Rb potential for s-, p- and
d-wave (see eq. (2.28))

We will therefore just look at s-wave scattering in the following, which is always

valid for sufficiently low energies. That simplifies enormously all the relations from

the last section. The wave function at large distances becomes, for example,

ψ+(~r) ' 1
(2π)3/2

1
kr
eiδ0(k) sin (kr + δ0(k)) . (2.29)

On the other hand, the wave function has to satisfy the radial Schrödinger equation

13



(eq. (2.14)). Defining ul(r) = r ·Rl(r) in the usual way, substituting and rearranging

yields the well-known one dimensional Schrödinger equation

{
d2

dr2 + 2µ
~2 (E − V (r))− l(l + 1)

r2

}
ul(r) = 0 . (2.30)

As we look for the asymptotic solution (V (r) = 0) in the low energy limit (E = 0)

for s-wave scattering (l = 0), the problem simplifies to

d2

dr2u0(r) = 0 (2.31)

with the simple solution

u0(r) = C(r − a) , (2.32)

where C and a are constants. On the other hand, we can extract ul(r) from eq.

(2.29), which we derived from the partial wave expansion,

u0(r) = sin (kr + δ0(k)) . (2.33)

Those two asymptotic solutions have to agree for k → 0. Taking the logarithmic

derivative yields
u′0(r)
u0(r) = k cot (kr + δ0(k)) k→0→ 1

r − a
. (2.34)

That leads us to the definition of the scattering length (if we set r = 0):

lim
k→0

k cot δ0(k) = −1
a

(2.35)

or,

a = − lim
k→0

tan δ0(k)
k

. (2.36)
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For small k we can expand the phase shift:

a = − lim
k→0

tan {δ0(k = 0) + k · δ′0(k = 0)}
k

= −δ′0(k = 0) , (2.37)

where we used the fact that δ0(k = 0) is an integer multiple of π, as can be seen from

eq. (2.11). That is also stated in Levinson’s theorem [27]

δ0(k = 0) = nbπ , (2.38)

where nb is the number of bound states of the potential. Therefore we find

δ0(k � 1) ' nbπ − ak . (2.39)

The physical meaning of the scattering length can be seen from the long range wave

function

ψ+(r) ∼ sin k(r − a) . (2.40)

In the finite region where the potential is nonzero the wave function is oscillating

rapidly, but outside of this range it is proportional to k(r − a). That’s why the

scattering length gives a shift of the origin of the long-range sinusoidal wave function.

It is either positive, zero or negative (see Figure 2.3). It can be shown that a negative

(positive) scattering length causes effectively an attraction (repulsion). Figuratively,

the free wave is sucked in towards (pushed away from) the origin. Furthermore we

note the total cross section in the low energy limit (by substituting eq. (2.37) into

eq. (2.23)):

σtot = 4πa2 . (2.41)

Note that σtot = 8πa2 for identical bosons, which follows from the preceding discussion

(eq. (2.25)).
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- 2 0 0 2 0 4 0 6 0 8 0 r  [ a 0 ]

u 0 ( r )

Figure 2.3: Illustration of the meaning of the scattering length. It can be positive,
zero or negative (or even diverge as discussed e.g. in 2.1.3). In this figure we can read
off a scattering length of −27, 0 and 46 a0, respectively.
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2.1.3 Example: Rectangular Well

In order to illustrate the solution of an elastic scattering problem, we would like to

present the analytically solvable example of the rectangular well. It is rather simple

but nevertheless very instructive. The potential is given by

V (r) =


−V0 for r < R

0 for r > R
(2.42)

0

 

I

V ( r )

r

- V 0

R

I I

Figure 2.4: Rectangular well potential

The Schrödinger equation (eq. (2.30)) has the simple oscillating solutions (for l=0)

u0(r) =


A sin κr for r < R

B sin(kr + δ0) for r > R
(2.43)
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with κ =
√

2m
~2 (E + V0) and k =

√
2m
~2 |E|. The solution for the three different energies

E = ±V0
2 , 0 is shown in Figure 2.6(a). The phase for the wave inside the barrier must

be zero, because u(r = 0) != 0. Furthermore we claim u and u′ to be continuous at

r = R. That yields

u

u′

∣∣∣∣
r=R

= 1
κ

tan κR = 1
k

tan(kR + δ0) . (2.44)

Therefore the phase shift is given by

δ0(k) = arctan
(
k

κ
tan κR

)
− kR . (2.45)

If κR 6= (2n + 1)π2 (n integer), we can approximate the arc tangent by its argument

as k → 0. Therefore we get

δ0(k) = k

κ
tan κR− kR

= −k
(
R
(

1− tan κR
κR

))
= −ka ,

(2.46)

where we used eq. (2.37) in order to write the scattering length as

a = R
(

1− tan κR
κR

)
. (2.47)

On the other hand, if κR = (2n + 1)π2 , the scattering length diverges in this limit.

But the approximation in eq. (2.46) still holds, if we calculate the scattering length

with the definition in eq. (2.35) and the exact phase shift eq. (2.45). A plot for the

scattering length is given in Figure 2.5. More complicated potentials behave similarly,

and we will discuss the example of alkali atoms in chapter 3. (One should therefore

compare Figure 2.5 to Figure 3.2, respectively eq. (2.47) to eq. (3.13).)
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2
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a / R

κR

Figure 2.5: Scattering length for the rectangular well calculated according to eq.
(2.47).
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Now we want to take a closer look at the meaning of the scattering length in this

example. We can find appropriate combinations of V0 and R, so that the potential

has a positive, negative and infinite scattering length (Figure 2.6(b), 2.6(c), 2.6(d)).

V ( r )

 I I

V 0 / 2

- V 0 / 2

~ r

~ s i n ( k r )

R

~ s i n ( κr )
~ e - k r

r

- V 0

I
0

(a) Analytical solution for various energies

Figure 2.6: Solution for the rectangular well

The change in sign and the resonance-like behavior of the scattering length can

be explained by the development of a new bound state. We see that the bound state

solution outside the well is proportional to exp(−kr). When k → 0, this is a constant

function, which agrees with the solution in Figure 2.6(d). The pole in the plot of the

scattering length in Figure 2.5 is therefore equivalent to a quasi-bound state at zero

energy. To emphasize this fact, we calculate the energy of the bound state. We know

now that the solution for infinitesimal negative energies is proportional to exp(−kr).

From the previous discussion we can also see that the solution for infinitesimal positive
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r
R

a = 1 . 0 5 R

- V 0

0

V ( r )

I I I

(b) Positive scattering length

Figure 2.6: Continued
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a =  - 0 . 5 6  R R
r

V ( r )

- V 0

0

I I I

(c) Negative scattering length

Figure 2.6: Continued
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 r
R

V ( r )

- V 0

0
a = + / - 8

I I I

(d) Resonant bound state at zero energy

Figure 2.6: Continued
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energies is proportional to (r−a) (eq. (2.40)). Now we take the logarithmic derivative

at r = R

− ke−kR

e−kR
= 1
R− a

R�|a|
' −1

a
(2.48)

⇒ k ' 1
a
. (2.49)

The energy of the bound state is therefore given by

Ebs = ~2k2

2µ = ~2

2µa2 . (2.50)

Furthermore the cross section shows a Lorentzian behavior near the resonances

for small k. That can be seen from the following derivation. Firstly we rewrite the

phase shift (eq.(2.45) and (2.47))

δ0(k) = arctan (−ka+ kR)− kR . (2.51)

For k � 1 and a� R (i.e. near resonance with a quasi-bound state) we can approx-

imate this as

δ0(k) ' arctan (−ka) . (2.52)

Now it follows for the total cross section (eq.(2.23))

σ0 = 4π
k2 sin2 δ0(k) = 4π

k2
tan2 δ0(k)

1 + tan2 δ0(k) '
4πa2

1 + k2a2 . (2.53)

We compare this behavior to the exact solution in Figure 2.7. Note that this approx-

imation is just valid for a� R, which means near the resonances. One can see that

the limit of k → 0 holds and we get the expected cross section of 4πa2.

It is also very interesting that there are cases where the total cross section is zero.

Especially at very low temperatures where higher partial waves are unimportant,

one finds energies where the incident wave gets almost perfectly transmitted. This

24



0 . 0 0 0 0 . 0 0 2 0 . 0 0 4

1 . 1 1 x 1 0 4

1 . 1 2 x 1 0 4

1 . 1 3 x 1 0 4

 

 e x a c t  c a l c u l a t i o n
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σ/ R 2

k R
Figure 2.7: Lorentzian behavior of the total cross section for rectangular well for low
energies (with κR = 1.55 ⇒ a ' −30R)
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effect is called Ramsauer-Townsend effect. It was first discovered by Carl Ramsauer

in 1920 when he measured the transmission of slow electrons through gases [28]. It

was the first sign of the wave properties of electrons and led to the definition of the

cross section. In classical electromagnetism one would expect a lower cross section for

faster electrons, because they should interact less with the gas molecules when they

have a higher velocity. The quantum mechanical derivation above gives a qualitative

explanation for this effect.

2.2 Inelastic collisions

So far we have dealt with single channel elastic scattering, i.e. the system has just

one possible kinetic energy for the relative motion at each internuclear distance. That

is true, for example, for the scattering of a single electron in a central potential. As

soon as one is considering composite systems, such as atoms, with several internal

degrees of freedom (and therefore different energy levels), exchange collisions (i.e.

inelastic collisions) become important. In general there are different values for the

kinetic energy, because the system can be in the ground state or different possible

excited states for a given total energy. Therefore the initial and final internal state

of a scattering process do not have to be the same. The criteria for a possible tran-

sition during the process are the conservation laws (conservation of energy, angular

momentum), which are consequences of symmetries. When we refer to atoms, the

total rotational invariance in the absence of external fields leads to the conservation of

the overall angular momentum, which corresponds to a set of good quantum numbers

(often denoted by F,MF ).

Inelastic processes are generally more difficult to compute, because accurate in-

formation about possible coupled states is required. Inelastic collisions at low energy

can be described by a complex scattering length with its real (imaginary) part corre-

sponding to the elastic (inelastic) scattering.
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We begin this section by dealing with the special case of a potential with two

channels at short-range and one channel at long-range, which can be treated elas-

tically to a first approximation. Afterwards we investigate the simplest case of two

coupled channels which leads to the close-coupling equation. For illustrative purposes,

we present an example for the numerical solution of the close-coupling equation in

Appendix B.

2.2.1 Two-channel elastic scattering length and elastic spin-flip cross section

Here we want to present a simple approach to compute the low energy scattering

parameters of alkali collisions which we will use later on in section 3.5. Alkali in-

teraction potentials in the absence of external fields are dominated by the hyperfine

interaction at long-range and the central potential at short-range (see section 3.1).

As the atoms approach each other, the electronic clouds overlap and the spin wave

functions form a singlet and triplet state. To a first approximation the interaction is

therefore diagonal in the singlet/triplet representation at small interatomic distances.

However, at long-range the interaction is diagonal in the hyperfine representation.

Between those two regimes, in the so-called recoupling region, a diagonal representa-

tion of the interaction does not exist. An exact treatment of the scattering problem

would therefore require a close-coupling calculation (see next section). However, if

one ignores the recoupling region, i.e. assumes that the transition between the long-

range hyperfine states and short-range singlet and triplet states occurs suddenly, the

recoupling can be done by projection of the corresponding angular momentum eigen-

states (see [29], [30]). Hence, the scattering problem simplifies to a single channel

calculation at short-range and the projection of the singlet/triplet state on the initial

and final states, respectively.

The following derivation is similar to the discussion in [31]. As we will treat

the singlet and triplet channel separately, we get two different scattering amplitudes
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(corresponding to eq. (2.12))

f (S)(k, θ) = 1
2ik

∞∑
l=0

[
e2iδ(S)

l
(k) − 1

]
(2l + 1)Pl(cos θ) . (2.54)

As we look particularly at s-wave scattering (l = 0) in the low energy limit (k → 0),

we find (after using L’Hospital’s rule once):

f (S) = lim
k→0

[
d

dk
δ

(S)
0 (k)

]
· e2iδ(S)

0 (k) . (2.55)

Using eq. (2.37) and (2.38), which is Levinson’s theorem, implies

f (S) = −a(S) . (2.56)

In the general case where we allow exchange collisions (i.e. the initial and final

spin-states of the atoms are different), we can write the asymptotic wave function as

(compare to eq. (2.1))

Ψ(~r; f1,mf1 , f2,mf2) R→∞−−−→ χ(f1,mf1)χ(f2,mf2)ei~k·~r

+
∑

f ′1,m
′
f1

f ′2,m
′
f2

χ(f ′1,m′f1)χ(f ′2,m′f2) · f (f1,mf1 ,f2,mf2 ;f ′1,m′f1
,f ′2,m

′
f2

)(k, θ) · e
ikr

r
, (2.57)

where we sum over all possible final hyperfine states for the scattered wave. The

primed and unprimed quantum numbers indicate the final and initial states respec-

tively. ~r is the relative coordinate and χ denotes the spin wave functions.

Now we want to write the scattering amplitude f (f1,...) in terms of the known

scattering amplitude f (S). Recoupling yields

f
(f1,mf1 ,f2,mf2 ;f ′1,m′f1

,f ′2,m
′
f2

)(k, θ) =
∑
S

∑
mS ,I,mI

A
f1,mf1 ,f2,mf2
S,ms,I,mI

A
f ′1,m

′
f1
,f ′2,m

′
f2

S,ms,I,mI
f(S; k, θ) .

(2.58)
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The coefficients A are derived in the Appendix A.

Restricting ourselves to elastic scattering, which means no exchange colli-

sions, i.e. f1 = f ′1,mf1 = m′f1 , ..., yields the simple form (using eq. (2.56) and

(A.4)):

f (f1,mf1 ,f2,mf2 ) = −
∑
S

P (S) · a(S) , (2.59)

where the P (S) are also derived in the Appendix A. If we now define analogical to eq.

(2.56) a "combined" scattering length a, we get

a = a(0)P (0) + a(1)P (1) (2.60)

as a weighted average of the singlet and triplet scattering lengths.

Now we would like to compute the spin-flip cross section in this approximation.

We just consider the case when one atom changes its hyperfine state, but the other one

remains unchanged, i.e. f1 6= f ′1,mf1 = m′f1 , f2 = f ′2,mf2 = m′f2 (mf1 = m′f1 follows

from angular momentum conservation). In this case eq. (2.38) can be simplified to

(see Appendix A)

f (f1→f ′1) =
√
MSF

2
(
a(1) − a(0)

)
. (2.61)

MSF depends on the participating hyperfine channels. Therefore the spin-flip cross

section can be written as

σSF = 4π
∣∣∣f (f1→f ′1)

∣∣∣2 = MSFπ
(
a(1) − a(0)

)2
. (2.62)

Note that this cross section is still an approximation, because in reality there are other

interactions besides spin-coupling which are responsible for spin-flips and inelastic

processes. On the other hand we restrict ourselves to a partially elastic process,

because the second atom does not change its state. Nevertheless, this approximation

is often used in order to estimate inelastic transition rates ([32],[17]).
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2.2.2 Two-channel scattering and close-coupling equation

In this section we would like to investigate the simplest case of inelastic scattering for

two coupled channels, which leads to the close-coupling equation. For the interested

reader we present a numerical solution for this equation with a simple example in

Appendix B.

As we have seen in section 2.1.1, solving the elastic scattering problem reduces

to solving the Schrödinger equation and claiming a particular long-range behavior

for its solution (see eq. (2.1)). That is in principle also true for the description of

inelastic scattering, but the scalar potential and scattering amplitudes are replaced

by corresponding matrices.

The following derivation is for example given in [22]. We denote the relative

coordinate with ~r, the relative momentum with ~p and the two asymptotic states

with |0〉 and |1〉. Note that those states could already be product states, e.g. |0〉 ≡

|f1,mf1 ; f2,mf2〉 in the case of the hyperfine interaction. The Hamiltonian of the

relative motion is given by

Ĥ = p̂2

2µ + V̂ (~̂r) . (2.63)

And we can write our overall state in coordinate representation

|Ψ〉 =


∫
d3r |~r〉 〈~r| ⊗

∑
i=0,1
|i〉 〈i|

 |Ψ〉 , (2.64)

or

|Ψ〉 =
∑
i=0,1

∫
d3rFi(~r) · |~r, i〉 (2.65)

with Fi(~r) = 〈~r, i|Ψ〉. The Schrödinger equation

Ĥ |Ψ〉 =
(
p̂2

2µ + V̂ (~̂r)
)
|Ψ〉 (2.66)
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can be written as a coupled differential equation. Therefore we multiply it from the

left side with 〈i| and get (using Ĥ |i〉 = Ei |i〉 = ~2

2µk
2
i |i〉)

〈i| Ĥ |Ψ〉 = Ei〈i|Ψ〉 = 〈i|
(
p̂2

2µ + V̂ (~̂r)
)
|Ψ〉 . (2.67)

Slight rearranging and inserting some butterfly operators leads to

Ei〈i|Ψ〉 =
∫
d3rEiFi(~r) = 〈i|

(
p̂2

2µ + V̂ (~̂r)
)
|Ψ〉

=
∫
d3r

∫
d3r′〈i|~r〉 〈~r| p̂

2

2µ |
~r′〉 〈~r′|Ψ〉+

∫
d3r 〈i| V̂ (~̂r) |Ψ〉

=
∫
d3r

− ~2

2µ∇
2Fi(~r) +

∑
j=0,1
〈i| V̂ (~̂r) |j〉Fj(~r)

 .

(2.68)

That yields the close-coupling equations

(
~2

2µ∇
2 + Ei

)
Fi(~r) =

∑
j

Vij(~r)Fj(~r) (i = 0, 1) , (2.69)

where we used that 〈~r| p̂2

2µ |~r
′〉 = − ~2

2µ∇
2δ(~r−~r ′) and the definition of the interaction

matrix

Vij(~r) = 〈i| V̂ (~̂r) |j〉 . (2.70)

The requirement that V̂ is hermitian yields Vij = V ∗ji. We will assume that the

interaction matrix is real though and that it has just a radial dependence Vij(r).

That allows us to separate the functions Fi(~r) and do a partial wave expansion

Fi(~r) = 1
k0r

∑
l

(2l + 1)Gil(r)Pl(cos θ) , (2.71)
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which leads to the following coupled differential equations:

[
d2

dr2 + k2
0 −

l(l + 1)
r2 − 2µ

~2 V00(r)
]
G0l(r) = 2µ

~2 V01(r)G1l(r)[
d2

dr2 + k2
1 −

l(l + 1)
r2 − 2µ

~2 V11(r)
]
G1l(r) = 2µ

~2 V10(r)G0l(r) .
(2.72)

The partial wave amplitudes Gil must satisfy the following conditions (similar to

the discussion in section 2.1.1; contrary to the previous case, here the factor αl is

dimensionless, i.e. αl = fl · k0):

Gil(0) = 0

G0l ' il sin
(
k0r − l

π

2

)
+ α00

l e
ik0r

G1l ' α01
l e

ik1r .

(2.73)

Note that we assumed that we enter in the |0〉-channel and that Vij(r → ∞) → 0.

If we have potentials which don’t vanish at infinity, but approach a constant value εi

(e.g. hyperfine interaction), then the energy of the outgoing wave in the |1〉-channel

will be E1 = E0 + ε0− ε1 (see Figure 2.8) and that’s why we define the outgoing wave

number as

k1 =
√
k2

0 + 2µ
~2 (ε0 − ε1) (2.74)

and the asymptotic behavior is still valid. Note that k1 can now be imaginary, if the

incoming channel lies below the outgoing channel. In this case the inelastic scattering

is forbidden and the lower channel is closed. Note however that closed channels can

still play an important role, e.g. in Feshbach resonances (see section 4.2.2).

The partial elastic and inelastic differential cross sections are now given by (fl =
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Figure 2.8: Energy conservation during inelastic scattering process with hyperfine
interaction

αl
k0
)

dσ00
l

dΩ =
∣∣∣∣∣(2l + 1)α00

l · Pl(cos θ)
k0

∣∣∣∣∣
2

dσ01
l

dΩ = k1

k0

∣∣∣∣∣(2l + 1)α01
l · Pl(cos θ)
k0

∣∣∣∣∣
2

.

(2.75)

Integrating yields the according partial total cross sections

σ00
l = 4π

k2
0

(2l + 1)
∣∣∣α00
l

∣∣∣2 and σ01
l = 4πk1

k3
0

(2l + 1)
∣∣∣α01
l

∣∣∣2 , (2.76)

where we used ∫ 1

−1
dx Pl(x)Pm(x) = 2δlm

2l + 1 . (2.77)

The factor k1/k2 arises for the following reason: The cross section is defined as

the ratio of the flux of scattered particles to the flux of incident particles integrated

over the solid angle. At a distance r from the origin the scattered flux is v1 times

the particle number (or probability to find a particle) per unit volume
∣∣∣ α
k0r

∣∣∣2. The

incident flux is given by v0 per unit volume. As vi ∼ ki and therefore v1
v0

= k1
k0
, we get

dσ01 = k1
k0

∣∣∣α01

k0r

∣∣∣2 · r2dΩ, which yields the desired result.

33



There are several different ways of expressing the three independent parameters

α00, α01 and α11 which characterize the scattering process (for each partial wave

independently). Mott and Massey [22] talk of two phase shifts δ(a), δ(b) and a mixing

parameter χ. Many texts deal instead with the S-Matrix elemens S00, S01 and S11

(see e.g. in [26]), where

Sij = δij + 2i
√
kj
ki
αij . (2.78)

The given discussion can be easily generalized when more than two states are coupled,

which means that one just has to solve more coupled differential equations and there-

fore gets more independent parameters. Generally a cross section for each transition

can be defined similarly to eq. (2.76).
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CHAPTER 3

COLLISIONS BETWEEN ALKALI ATOMS

The goal of achieving BEC motivated the study of cold alkali collisions as we discussed

in chapter 1. Experimental methods like photoassociation spectroscopy or clock-

shift measurements (see section 4.2) led to accurate data for the alkali interaction

potentials, which we would like to discuss in the beginning of this chapter. Afterwards

we present a theoretical method, which allows us to compute the scattering length

directly from the energy spectrum of the potential, in particular the highest bound

state. This method is especially useful, because in practice the bound state energy can

be determined spectroscopically. The rest of this chapter follows the structure of the

last one, i.e. firstly we discuss elastic scattering before taking into account inelastic

collisions. In section 3.3 we present a numerical solution of the elastic scattering

problem for the Na-Rb potential and calculate not only the singlet and triplet s-wave

scattering lengths, but also the bound state energies. At the end of this chapter we

discuss some properties of inelastic alkali atom collisions and treat the two-channel

scattering in the elastic limit.

3.1 Alkali interaction potentials

Alkali atoms in the ground level have zero angular momentum, l = 0, and can be

treated as single electron atoms because all shells are closed except for the outermost

one. The electron and nucleus have spins ~s and ~i and the corresponding spin states

s,ms (with s = 1/2) and i,mi respectively. (Nuclear spins for common alkalis are
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given in Table 3.1.) Those spins couple to ~f = ~s+~i with hyperfine quantum numbers

f,mf where f = i± 1/2 (as we limit our discussion on s-wave scattering).

Table 3.1: List of nuclear spins for alkali isotopes

Isotope Nuclear spin i
7Li 3/2

23Na 3/2
39K 3/2
41K 3/2

85Rb 5/2
87Rb 3/2
133Cs 7/2

The general problem of the calculation of interaction potentials for diatomic sys-

tems is very complicated. A helpful tool is the Born-Oppenheimer approximation

[33], which employs an adiabatic assumption justified because the electrons move

much faster than the heavier nuclei. Therefore one fixes the internuclear distance r,

calculates the electronic eigenstates as a function of r and adds the nuclear energy in

order to obtain the overall energy. The resulting potential is dominated by different

terms in the long-range and short-range regions. According to [29] the important

contributions to the interaction potential between two alkali atoms can be written as

V = Vc + Vhf + VZ + Vd + Vso . (3.1)

The different terms are the following:

• Vc is the central potential. It dominates the interaction at small interatomic

distances.

In the regime (r . 20 a0) the overlap between the electronic clouds of the

two atoms is large and the system has to be treated by molecular concepts.

The interaction is dominated by the electronic spins (si = 1/2) which couple

to ~S = ~s1 + ~s2 and form either a singlet (S = 0) or triplet (S = 1) state.
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The triplet potential must have a higher energy, because the electrons have a

larger separation due to Pauli’s exclusion principle [25] which yields an effective

repulsion. As we concentrate on ground state collisions, i.e. l1 = l2 = 0, the

corresponding molecular states are 1Σ+
g and 3Σ+

u (see Appendix C).

At slightly larger distances, when the overlap between the clouds decreases,

the remaining spin-interaction can be written as the exchange term ±Eexch =

Aexr
γe−βr where the plus (minus) sign stands for the triplet (singlet) state. It

reflects the effective repulsion between these two states due to the spin coupling.

Furthermore the dispersion interaction becomes important in this regime, i.e.

van der Waals- and higher order terms∼ −C6/r
6−C8/r

8−..., which is due to the

interaction between temporary induced dipole moments (and higher multipoles).

The quantum numbers S,MS are good at small distances and therefore the

central potential can be written in terms of the singlet and triplet interaction

potentials and their projection operators: Vc(r) = P̂ (0)V (0)(r) + P̂ (1)V (1)(r).

• Vhf is the hyperfine interaction due to the coupling of the electronic and nuclear

spin for each atom. It can be written as

Vhf =
2∑

n=1
An~in · ~sn =

2∑
n=1

An
2

(
fn(fn + 1)− in(in + 1)− 3

4

)
. (3.2)

An is the hyperfine constant for each atom.

• VZ is the potential due to the Zeeman effect. This term is zero for a vanishing

magnetic field, but can be generally written as

VZ =
2∑

k=1

(
~µek · ~B + ~µnk · ~B

)
, (3.3)

where ~µek and ~µnk are the electron and nuclear magnetic moments. ~µek is for
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example

~µek = −gSµB
~sk
~

(3.4)

with gS ≈ 2 and the Bohr Magneton µB. The nuclear magnetic moment is

about a factor of mn/me smaller and therefore the second term in VZ can be

usually neglected.

• Vd is the interaction between the dipole moments of the electrons and nuclei

among each other. The nuclear contribution is generally much smaller and can

be neglected. If we work in atomic units, we get the following dipole-dipole

interaction (from [34])

Vd = −α2
(

3(R̂ee · ~s1)(R̂ee · ~s2)− ~s1 · ~s2

R3
ee

)
(3.5)

with the fine structure constant α. In our case the electron-electron separation
~Ree can be approximated by the internuclear distance ~r. This interaction is

diagonal in the basis (~S2, Sn = ~S · r̂) and we get for the energy shift

Vd = − α
2

2r3

(
3m2

S − S(S + 1)
)
, (3.6)

where we used ~s1 · ~s2 = (~S2 − ~s1
2 − ~s2

2)/2 and s1 = s2 = 1/2.

• Vso is the spin-orbit interaction due to coupling between orbital angular mo-

mentum and spin.

The last two terms are much smaller than the others and can therefore be neglected in

most cases. One exception occurs when one wants to calculate the inelastic collision

rate in a doubly spin-polarized mixture, in which exchange collisions are forbidden

(see section 3.4). In this case the dipole interaction is responsible for trap losses.

Figure 3.1 shows the interaction potential for Rb-Rb. One can see that at short-

range the spin quantum numbers S,mS (and I,mI , if we take into account the nuclear
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spin as well) are good. At long-range, where the central potential goes to zero and the

hyperfine interaction dominates, there are the good quantum numbers f1,mf1 , f2,mf2 .

Between those two regimes there are just F andmF as good quantum numbers, which

correspond to the overall angular momentum of the colliding system

~F = ~f1 + ~f2 = ~S + ~I . (3.7)

F and mF are always good quantum numbers for zero magnetic field. In case of a

non-vanishing ~B, the rotational symmetry is broken and just mF is conserved.

Figure 3.1: The singlet and triplet Rb2 potentials. The inset shows the tresholds
for the long-range part dominated by the hyperfine structure: a) 87Rb + 87Rb and
b) 85Rb + 87Rb. The hyperfine levels are denoted by each atom’s quantum numbers
f1 +f2 and the hyperfine splittings are ∆85 = 3.036 GHz and ∆87 = 6.835 GHz, which
is about 4 orders of magnitude less than the short-range interaction. (from [34])
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3.2 Connection between the scattering length and the

highest bound state

It is possible to determine the phase shift, i.e the scattering length, for s-wave scat-

tering from the long-range part of the potential (by which we mean the van der Waals

interaction −C6/r
6, because the hyperfine interaction just gives an overall shift of the

energies) and the knowledge of the energy of the highest bound state in the short-range

part. One way of determining the scattering length is by analyzing the short-range

potential spectroscopically to obtain the energy spectrum and the highest bound state

directly. Further details concerning the experimental realization, especially for KRb

potentials, have been described in [19].

Flambaum et al. [27] have given a derivation for a general long-range potential

which is proportional to −α/rn. Applied to the case of the van der Waals interaction

(n = 6, α = C6), the scattering length is given by

a = ā
(

1− tan
(

Φ− π

8

))
(3.8)

with the mean scattering length

ā =
Γ
(

3
4

)
2
√

2 · Γ
(

5
4

) (2µC6

~2

) 1
4
. (3.9)

One can rewrite eq. (3.8) in terms of the "vibrational quantum number at dissociation"

νD, which does not have to be an integer. The spacing between the bound states is in

first order determined by the long-range potential. The vibrational quantum number

is the number of an imaginary quasi-bound state at E = 0 (energy of dissociation).

An integer value of νD means that there is actually a quasi-bound state at zero energy.
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With this quantum number, the energy of the last bound state is given by [35]

Eν = − [(νD − ν)H6]3 (3.10)

with ν = IntegerPart(νD) and the constant

H6 = 2~
√

2π
µ

Γ
(

7
6

)
Γ
(

1
3

)
C

1/6
6

. (3.11)

When we look at eq. (3.8), we see that the scattering length goes to ±∞, if Φ− π
8 =

π
2 + Nπ (N=1,2,3,...). That corresponds to the moment when one new bound state

starts to appear (compare to the case of the rectangular well in section 2.1.3). With

this knowledge, it is natural to rewrite

Φ− π

8 ≡ π
(
νD + 1

2

)
(3.12)

and therefore get

a = ā
[
1− tan

(
π
(
νD + 1

2

))]
. (3.13)

With eq. (3.10) and the fact that (νD +n) and νD lead to the same scattering length

(if n integer) we can write

νD =
3
√
|Ehbs|
H6

, (3.14)

where Ehbs is the energy of the highest bound state.

In Figure 3.2 we show, how the scattering length changes with the vibrational

quantum number (compare this also to the case of the rectangular well in Figure

2.5). With increasing νD it diverges whenever a new bound state starts to appear.

This resonant behavior should be compared to the case of the rectangular well in

section 2.1.3. Looking at eq. (3.13) also shows that a positive scattering length is

three times more likely than a negative one. That means that the potential is on
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Figure 3.2: Scattering length for potentials with a long-range dependence ∝ − 1
r6 in

terms of the mean scattering length vs. vibrational quantum number (eq. (3.13))
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average repulsive.

3.3 Elastic scattering of sodium and rubidium

The motivation of this work was to experimentally study mixtures of ultracold sodi-

um-rubidium gases. We will compute the scattering lengths for Na-Rb collisions nu-

merically by solving the Schrödinger equation for the interaction potential of sodium-

rubidium. We take the potential data from ref. [18]. At the end of this section, we

also determine some bound state energies for the singlet potential of 23Na85Rb.

3.3.1 Singlet and triplet interaction potential for sodium-rubidium

Pashov et al. measured and calculated accurate potentials for Na-Rb [18]. We im-

ported the data points and characteristic constants from their paper and interpolated

the potentials with Mathematica (see Figure 3.3).

For intermediate internuclear distances (r > R0), the potential goes like

V (r > R0) = Uinf −
C6

r6 −
C8

r8 −
C10

r10 ± Eexch (3.15)

with the exchange term

Eexch = Aexr
γe−βr , (3.16)

which is repulsive for the triplet state (plus sign) and attractive for the singlet poten-

tial (minus sign) (see section 3.1). We interpolated the data points from [18] between

Rmin and R0 and extrapolated this function at short-range with

V (r < Rmin) = A+ B

r4 . (3.17)

The overall result is shown in Figure 3.4.
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Figure 3.3: Import of the potential data from ref. [18]
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Figure 3.4: Interpolated singlet and triplet potentials for Na-Rb (data from [18])
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In order to get a solution for the radial Schrödinger equation

d2u(r)
dr2 + 2µ

~2 (E − V (r))u(r) = 0 (3.18)

we calculated the factor 2µ
~2 for 23Na85Rb and 23Na87Rb, respectively. Note that the

dimensions of energy and length are cm−1 and Å, respectively. The dimension of

reciprocal centimeter for energies corresponds to the inverse wavelength, i.e.

1 cm−1 ≡ hc

1 cm = 1.99 · 10−23 J = 1.24 · 10−4 eV . (3.19)

Using a program from R.J. LeRoy which includes exact atomic masses [20] allowed

us to get a high accuracy. The results are shown in Table 3.2. This program would

also be able to solve the problem of determining the scattering length, bound state

levels and even more characteristic properties of the potentials. But as it needs a

special form for the input data, we decided instead to solve the Schrödinger equation

numerically with Mathematica.

Table 3.2: Characteristic constants
23Na85Rb 23Na87Rb

2µ/~2
[
cm/Å2] 1.073194412 1.078475399

To provide a check of our numerical results we used two methods, a procedure

which uses Numerov’s method (Figure 3.5), explained in the Appendix D, and the

built-in Mathematica function NDSolve for comparison (Figure 3.6). Although the

Mathematica procedure is faster, it cannot be used for determining bound state en-

ergies as we will see in section 3.3.3. The source code is given in Figures 3.5, 3.6 and

3.7.

In order to verify that the Numerov code, which is not adaptive (i.e. the stepsize

must be fixed as an input parameter), returns the correct results, we compared it with

the Mathematica function NDSolve in several ways. In doing so we found out that
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(a)

Figure 3.5: Program to integrate the Schrödinger equation with Numerov’s method
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(b)

Figure 3.5: Continued
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Figure 3.6: Procedure to integrate the Schrödinger equation with NDSolve
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Figure 3.7: Additional procedures PlotSolution1 and MakeList, which help to plot
the numerical solution and to export it into another program by making a list of data
points.
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using a sufficiently small stepsize in the recursive method leads to the same solution.

Lowering the stepsize is especially important when one is integrating the Schrödinger

equation over a larger interval. That can be seen in Figure 3.8. A stepsize of 0.01 Å,

which is usually sufficient when one integrates up to 30 Å, leads still to significant

differences between the two methods. However, the results achieved with a stepsize

of 0.0005 Å cannot be distinguished from the Mathematica NDSolve method.

0 3 0 6 0 9 0 1 2 0
0
1
2
3
4
5
6
7

u 0 ( r )  /  V ( r )  [ 1 0 0 0  c m - 1 ]

 

 s i n g l e t  p o t e n t i a l
s - w a v e  r a d i a l  s o l u t i o n :

 s t e p w i d t h = 0 . 0 1  � 
 s t e p w i d t h = 0 . 0 0 8  �
 s t e p w i d t h = 0 . 0 0 0 5  �
 N D S o l v e

r  [ �]
Figure 3.8: This figure shows that the wave function obtained with our procedure,
which uses Numerov’s method (see Figure 3.5), converges to the Mathematica solution
(a smaller stepsize becomes especially important for a large integration interval).
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3.3.2 Scattering lengths for sodium-rubidium

Now we would like to present the results for the scattering lengths for Na-Rb. The

basic idea is to integrate the Schrödinger equation at the asymptotic potential energy,

i.e. in the limit of k = 0, and then read off the scattering length as the last root of the

asymptotic wave function (see section 2.1.2). For one initial condition we computed

the inner turning point and from there we went 1 Å back "into" the potential and set

the wave function to zero, which is valid as long as the potential falls off very steeply.

The second condition is that the wave function one stepwidth further is unequal zero

(its magnitude just determines a normalization factor which can be changed later).

Both methods (Numerov and NDSolve) basically lead to the same solution with those

initial conditions (see Figure 3.8).

While writing these procedures, it also became obvious how sensitive this method

is to slight changes in the atomic masses (which determine the constants given in

Table 3.2) and to different interpolations of the potential data points. Although we

used the data from [18], we did not obtain exactly the same scattering lengths, which

are shown in Table 3.3.

Table 3.3: Scattering lengths determined by Pashov et al. [18]

Isotope Singlet a(0) [a0] Triplet a(1) [a0]
23Na85Rb 396 81
23Na87Rb 109 70

The radial s-wave solutions for singlet and triplet potential for each case are given

in Figure 3.9 and 3.10. We got the following results (using a0 ' 0.53 Å) (see Table

3.4).

By comparing to Table 3.3 one finds a good overall agreement. There is only

one noticeable difference in the singlet scattering length for 23Na85Rb. That can be

explained by the fact that the scattering length gets generally more uncertain the

larger it is, because slight changes in the short-range potential add up to significant
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Table 3.4: Scattering lengths as multiples of a0 determined with Numerov code (com-
pare to Table 3.3)

Isotope Singlet a(0) [a0] Triplet a(1) [a0]
23Na85Rb 267 86
23Na87Rb 105 79

errors in the long-range wavefunction.

In conclusion we find that our simple numerical method leads to comparable

results to the sophisticated programs which are used in most cases.
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 s i n g l e t  p o t e n t i a l
s - w a v e  r a d i a l  s o l u t i o n  f o r :

 2 3 N a 8 5 R b
 2 3 N a 8 7 R b

Figure 3.9: Determination of the singlet scattering length for Na-Rb; we read off
a(0)(23Na85Rb) = 141.4 Å and a(0)(23Na87Rb) = 55.9 Å

3.3.3 Bound state energies and wave functions

Although it is relatively simple to integrate the Schrödinger equation for a given

energy in the continuum, it turns out that finding bound states energies and wave
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Figure 3.10: Determination of the triplet scattering length for Na-Rb; we read off
a(1)(23Na85Rb) = 45.7 Å and a(1)(23Na87Rb) = 41.9 Å
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functions is much more challenging, because one has to simultaneously determine the

eigenvalues and eigenfunctions of the Hamiltonian. The basic idea is to integrate

forwards and backwards and then trying to match the two solutions together (Figure

3.11). Wang et al. have presented a very efficient method in their paper [36]. The

reason why we did not use their program is that it needs an analytic function for the

potential, which is almost impossible to obtain for our case. Nevertheless we adapted

the main idea and applied it to the Na-Rb interaction.

3 . 0 3 . 2 3 . 4 3 . 6 3 . 8 4 . 0
0

5 0 0

1 0 0 0

1 5 0 0  s i n g l e t  p o t .
 E = 1 0  c m - 1

 E = 5 4 . 4  c m - 1

 E = 1 0 0  c m - 1

r  [ �]

u 0 ( r )  /  V ( r )  [ 1 0 0 0  c m - 1 ]

f o r w a r d b a c k w a r d

m a t c h p o i n t

Figure 3.11: This figure sketches the basic idea of matching the two solutions together
by varying the energy and therefore finding the bound state.

The great advantage of Numerov’s method is, that it is easy to perform the re-

cursion in the other direction. Therefore we developed the two main procedures

wavefunctionstart (Figure 3.12) and wavefunctionend (Figure 3.13), which provide

the short-range and long-range solution. The initial conditions are once again deter-

mined by the fact that the wave function falls off very rapidly inside the potential.
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Because the slope on the right side is not so steep, we set the solution to zero at 20 Å,

which is far outside the outer turning point for the usual binding energies. Note that

it might be necessary to change this parameter if one is looking for binding energies

near the continuum.

(a)

Figure 3.12: The procedure wavefunctionstart

As the matching point we chose the radial coordinate of the potential’s minimum.

Because we have already made sure that both solutions are normalized in the sense
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(b)

Figure 3.12: Continued
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Figure 3.13: wavefunctionend, which uses the reversed Numerov method
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that at the matching point both functions take the same value, we just have to match

the first derivative. Therefore we have written the procedure Matchingcondition (Fig-

ure 3.14), which just outputs the difference between the left and right solution in the

first derivative at the matching point for a given energy. The program FindEnergy

(Figure 3.15) then uses this module and looks for roots in the Matchingcondition in

a given energy range. PlotMatch is used to plot the achieved solution.

Figure 3.14: The procedure Matchingcondition

In order to demonstrate the functionality of our program, we determined the

ground state energy and wave function as well as one intermediate binding energy for

the 23Na85Rb singlet potential (See Figure 3.16).

A good way of verifying our method is to approximate the potential as a harmonic

oscillator, determine its ground state energy and then comparing this to our result.

It can be seen in Figure 3.16, that the ground state wave function has already the
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Figure 3.15: The procedures PlotMatch and FindEnergy
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Figure 3.16: Bound states for 23Na85Rb singlet potential
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right Gaussian shape. We can write the Hamiltonian as

Ĥ = p̂2

2µ + µω2

2 (R−R0)2 . (3.20)

From the quadratic fit (Figure 3.17) we obtain µω2 = 6019 cm−1/Å2. Therefore we

get for the ground state energy of 23Na85Rb (with 2µ/~2 = 1.073 cm/Å2 from Table

3.2)

E0 = ~ω
2 = 1

2

√
~22µω2

2µ =
√

6019
2 · 1.073 cm−1 ' 53 cm−1 . (3.21)

That agrees perfectly with the result derived with the numerical method in Figure

3.16.
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Figure 3.17: Parabolic fit of the minimum of the singlet potential for 23Na85Rb:
V (r) = 1

2 · 6019 · (r − 3.644 Å)2 cm−1/Å2
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3.4 Inelastic collisions for alkali atoms

Here we would like to give some information about inelastic collisions in ultracold

alkali gases. It can be seen from the example in Appendix B that it is rather difficult

to calculate inelastic cross sections even when the potentials are known as analytical

functions. We discussed in section 3.1 that alkali potentials are complicated and

generally not known analytically. Furthermore, many channels are coupled in general,

which requires variational calculations in order to obtain the scattering matrix. The

treatment of those numerical methods goes beyond the extent of this work. The

interested reader is referred to e.g. J.P. Burke’s PhD thesis, which deals with Rb-

Rb collisions [34]. Nevertheless we can make some general statements about those

inelastic processes.

As we discussed in 3.1, the quantum numbers F and mF are good over the whole

range of r as long as we have a negligible external magnetic field (due to the total

rotational symmetry). Because there is no set of good quantum numbers at all dis-

tances which specifies all information about the angular momenta, the interaction

potential matrix elements 〈i|V |j〉 cannot be diagonal over the whole range (see sec-

tion 2.2.2). That implies that many channels are coupled together and means that

if the entrance channel is |f1,mf1 , f2,mf2〉, there are generally different possible exit

channels. For example, for the collision of two 23Na atoms entering in the channel

|2, 0, 2, 0〉 possible collisions are:

|2, 0, 2, 2〉 → |2, 0, 2, 2〉 or |2, 0, 2, 2〉 → |1, 1, 1, 1〉 or |2, 0, 2, 2〉 → |1, 0, 2, 2〉 . (3.22)

All those collisions are allowed because they have non-zero overlap with the state

|F,mF 〉 = |2, 2〉. The latter two cases are called exchange collisions and are inelastic

processes because the energy of the separated atoms after the scattering process

(t → ∞) is not the same as it was before due to the hyperfine interaction. Note
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that inelastic collisions are just called exchange collisions, when the process happens

due to spin-coupling. That is why dipolar transitions are not exchange collisions.

For s-wave collisions these exchange collision rates lead to a constant as the energy

(temperature) approaches zero. Typical values are around 10−11 cm3/s (see [29]), i.e.

at a particle density n (in cm−3), there are n · 10−11 collisions per second.

A good schematic illustration can be seen in Figure 3.18. It shows the details,

which are important for a discussion of the properties of those collisions. It shows the

scattering process of two incoming atoms with f1 = 2 and f2 = 3. At large distances

the hyperfine interaction determines the energy of the system. In the recoupling region

of the potential, the spins get projected onto triplet and singlet states, which leads

to different phase shifts in the region r < R0 where the central potential is nonzero.

As long as the atoms undergo the recoupling region fast (so that the intermediate

range, where neither coupling scheme is valid, can be neglected), the projection can

simply be calculated with Clebsch-Gordan coefficients and higher Racah coefficients

[30]. After those phase shifts the system goes again through the recoupling region and

gets projected on all possible hyperfine states. Two criteria determine if a transition

is possible or not. Firstly the conservation of the good quantum numbers (angular

momentum) and secondly the conservation of energy.

In BEC experiments exchange collisions lead to the creation of Zeeman states

which are magnetically repelled from the trap. Therefore one attempts to put atoms

in those trapped states where exchange collisions are suppressed. Generally there are

two possibilities. Both atoms can be in the state f = i + 1/2 and mf = ±f (doubly

spin-polarized). In that case the overall spin F = 2f and MF = ±F . Therefore the

only allowed state at short-range is the triplet state, which would lead to a certain

phase shift and, after collision is completed, the final state will be the same as the

initial state with just a shifted wave function. Alternitavely, when both atoms have

f = i − 1/2 and mf = ±f exchange collisions are suppressed, because both spins

64



Figure 3.18: Sketch of an exchange collision for 23Na2. The system is entering the
scattering region in the channel |f1 = 2, f2 = 3〉 and exits in |f1 = 2, f2 = 3〉 and
|f1 = 2, f2 = 2〉. The conservation of energy can be seen at the long-range part of
the diagram. (from [29])
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couple to MF = ±2f and the transition into higher hyperfine states with f = i+ 1/2

is energetically forbidden for sufficiently low temperatures. Nevertheless inelastic

collisions can also occur in spin-polarized mixtures due to the dipole interaction (see

section 3.1), but the cross sections are much smaller than for directly (i.e. due to

spin-coupling) overlapping states, where exchange collisions are allowed.

3.5 Examples for scattering lengths in the two-channel

elastic approximation at low temperature

As we have just seen there are certain cases, e.g. doubly spin-polarized mixtures

of alkali atoms, where exchange collisions are suppressed. If that is true, one can

calculate the scattering length to a first approximation according to eq. (2.60). In

order to illustrate the discussion given in section 2.2.1, we will also compute the

"combined" scattering lengths for states for which exchange collisions are a priori not

suppressed. Whether this approximation is useful or not depends on the case, but we

will see that it often gives a rough estimate.

We consider both cases 23Na85Rb and 23Na87Rb. We calculated the singlet and

triplet scattering lengths in section 3.3.2, but we will use the values presented by

Pashov et al. (See Table 3.3). 23Na and 87Rb have a nuclear spin of 3
2 ,

85Rb has
5
2 (see Table 3.1). With this information we can calculate the scattering lengths for

different combinations of f1,mf1 , f2,mf2 . We have given some selected examples in

Table 3.5 and 3.6. The computations in the examples involved finding the appropriate

combinations of P (0), P (1) (with eq. (A.4)), i.e. all possibly different scattering lengths

corresponding to eq. (2.60). The index 1 stands for the Na-atom and 2 for the

corresponding Rb-atom. The collisions, where exchange collisions are suppressed (see

above), are marked boldface.

We do the same calculation for sodium-sodium collisions. Those collisions have
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Table 3.5: Selected examples for scattering lengths for 23Na85Rb, this work.
(For the rows in boldface exchange collisions are forbidden in the low energy limit.)

f1 mf1 f2 mf2 P (0) P (1) a [a0]
1 ±1 2 ±2 1/6 5/6 133.5
1 0 2 -2 1/4 3/4 159.8
1 1 2 -2 1/3 2/3 186
1 -1 2 -1 5/24 19/24 146.6
1 1 2 -1 7/24 17/24 172.9
1 -1 3 -3 3/8 5/8 199.1
1 1 3 -3 1/8 7/8 120.4
2 ±2 3 ±3 0 1 81
2 2 3 -3 1/2 1/2 238.5
2 -2 3 -2 1/12 11/12 107.3
2 2 3 -2 5/12 7/12 212.3

Table 3.6: Selected examples for scattering lengths for 23Na87Rb, this work.
(For the rows in boldface exchange collisions are forbidden in the low energy limit.)

f1 mf1 f2 mf2 P (0) P (1) a [a0]
1 ±1 1 ±1 3/16 13/16 77.3
1 -1 1 0 1/4 3/4 79.8
1 0 1 0 5/16 11/16 82.2
1 -1 2 -2 3/8 5/8 84.6
1 -1 2 2 1/8 7/8 74.9
2 ±2 2 ±2 0 1 70
2 -2 2 2 1/2 1/2 89.5
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been studied among others by P.D. Lett [37]. Scattering lengths have been determined

by F.A. van Abeelen and B.J. Verhaar [38] from analysis of bound-state photoasso-

ciation and Feshbach resonance field data (see section 4.2). We took their results for

the singlet and triplet scattering length (as = (19.1± 2.1)a0 and at = (65.3± 0.9)a0)

for our calculation and compared those results (see Table 3.7) to theirs for all com-

binations of hyperfine states in the f1 = f2 = 1 manifold (see in Figure 3.19). The

results agree with each other within the error bars, not just for the boldface cases,

where exchanges collisions are suppressed. Therefore our simple way of calculating

the combined scattering length (eq. (2.60)) is a good approximation, even in cases

where exchange collisions are not suppressed. That cannot be generalized though.

Table 3.7: Scattering length for 23Na23Na collisions with f1 = f2 = 1 computed with
our simple approximation given by eq. (2.60) from the singlet and triplet scattering
lengths determined by Verhaar [38].
(For the rows in boldface exchange collisions are forbidden in the low energy limit.)

f1 mf1 f2 mf2 a [a0]
1 1 1 1 56,6± 0,8
1 1 1 0 53,8±0,9
1 1 1 -1 50,9±1,8
1 0 1 0 53,8±0,9
1 0 1 -1 53,8±0,9
1 -1 1 -1 56,6±0,8
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| 1 , - 1 ; 1 , - 1 >| 1 , 0 ; 1 , - 1 >| 1 , 0 ; 1 , 0 >| 1 , 1 ; 1 , - 1 >| 1 , 1 ; 1 , 1 > | 1 , 1 ; 1 , 0 >
Figure 3.19: Comparison of results by Abeelen and Verhaar [38] (black squares) with
corresponding errors and our calculation (red dots) (Table 3.7).
The entrance channels in the figure are given in the form of |f1,mf1 ; f2,mf2〉.
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CHAPTER 4

APPLICATION AND EXPERIMENTAL METHODS

In this chapter we will discuss how the presented atomic collision data influence BEC

experiments and ultracold atomic gas physics. Furthermore we will give an overview

of how scattering lengths can be determined experimentally.

4.1 Influence of low energy collisions on BEC experiments

Bose-Einstein condensation in dilute gases can be described in mean-field theory by

the Gross-Pitaevskii equation [39]. A helpful tool for approximately solving this equa-

tion is the Thomas-Fermi approximation, which is valid when collisional interaction

dominates over kinetic energy. This approximation fails at the edge of the conden-

sate, because the kinetic energy is proportional to the curvature of the wave function,

which gets large at the surface of the cloud.

For translationally invariant (homogeneous) systems BEC in a trap requires re-

pulsive interactions, i.e. a positive scattering length a > 0; for a < 0 attractive

interactions cause instability. The limiting condition for a harmonic trap is given by

[40]

2Na
√

2mωt
~

> −1.62 , (4.1)

where ωt is the (isotropic) angular trap frequency of the confining trap potential

Vt = 1
2mω

2
t r

2, N is the number of atoms in the condensate and a is the scattering

length. Condensates with negative scattering lengths have been achieved, for example,

with Lithium by Hulet et al. [41].
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In the first part of this section we derive the Gross-Pitaevskii equations for two-

species BEC (TBEC) and we will find a condition for the miscibility of two conden-

sates following ref. [39], [42]. In the second part we discuss the relation between trap

losses and inelastic collisions. At the end we will discuss the specific applications of

the calculated scattering lengths in Na-Rb experiments.

4.1.1 Two-species Bose-Einstein condensates

Shortly after the realization of single-species BEC, efforts were made to create mix-

tures of different Bose-Einstein condensates. On the one hand condensates with atoms

occupying different hyperfine states have been realized (for example with 87Rb [43]).

On the other hand experiments were carried out to achieve BEC mixtures of differ-

ent atoms, e.g. Na-Rb [44]. The phase diagram of such multi-species condensates

depends mainly on the scattering lengths, as we will show.

The following discussion is for example given in [39] or [42]. The interaction

energy, which stands for interactions between atoms of the same species and amongst

each other, is given by

E = 1
2U1

N1(N1 − 1)
V

+ 1
2U2

N2(N2 − 1)
V

+ U12
N1N2

V

≈ 1
2U1

N2
1
V

+ 1
2U2

N2
2
V

+ U12
N1N2

V
.

(4.2)

The constants U1, U2 and U12 are directly related to the corresponding scattering

lengths in the following way:

U1,2 = 4π~2a1,2

m1,2
and U12 = 4π~2a12

µ
, (4.3)

where a1 and a2 are the scattering lengths for scattering of pairs of atom 1 or pairs of

atom 2, respectively. a12 is the scattering length, which corresponds to the scattering

of atom 1 at atom 2 (e.g. the scattering length of Na-Rb calculated in chapter 3).
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µ = m1m2/(m1 +m2) is the reduced mass.

Given the single particle ground state wave functions φ1,2, we can define the

condensate wave functions Ψ1,2 =
√
N1,2 φ1,2. Therefore we find that n1,2 = |Ψ1,2|2

and the total energy functional can be written as

E =
∫
d3r

{
~2

2m1
|∇Ψ1|2 + V1(r)n1 + ~2

2m2
|∇Ψ2|2 + V2(r)n2

+1
2U1n

2
1 + 1

2U2n
2
2 + U12n1n2

}
.

(4.4)

Minimizing this energy functional subject to the constraint that the particle numbers

of each species remain constant, i.e. the wave functions remain normalized, leads

directly to the coupled time-independent Gross-Pitaevskii equations (the Lagrange

multipliers turn out to be the chemical potentials µ1,2)

[
− ~2

2m1
∇2 + V1(r) + U1 |Ψ1|2 + U12 |Ψ2|2

]
Ψ1 = µ1Ψ1 (4.5)[

− ~2

2m2
∇2 + V2(r) + U2 |Ψ2|2 + U12 |Ψ1|2

]
Ψ2 = µ2Ψ2 . (4.6)

A condition for multi-species BEC can be easily derived by minimizing the inter-

action energy (eq. (4.2)) per unit volume

E

V
= 1

2U1n
2
1 + 1

2U2n
2
2 + U12n1n2 (4.7)

with respect to the particle densities n1,2. The condition for the existence of a min-

imum is equivalent to the positive definiteness of the Hessian matrix, which leads

to

U1 > 0 and U1U2 − U2
12 > 0 , (4.8)

or if we assume the single-species scattering lengths a1,2 to be positive, the requirement
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for an overlapping mixture of BEC can be written as

− aC ≡ −
√
m1m2

m1 +m2

√
a1a2 < a12 <

√
m1m2

m1 +m2

√
a1a2 ≡ aC . (4.9)

For a12 < −aC , the attraction between atoms of type 1 and 2 is too big and the

condensate collapses. For a12 > aC on the other hand, the repulsion between the two

species is so large that the two condensates separate in space. A very good simulation

of the phase diagram of Na-Rb dependent on the interspecies scattering length a12 is

given in the paper of Ejnisman et al. [44] available at [45].

4.1.2 Inelastic collisions and trap losses

The big problem of realizing BEC was to cool an appropriate number of atoms down

to sufficiently low temperatures (below µK) while keeping them in the gaseous phase.

Therefore a variety of cooling mechanism have been developed (see section 1). In-

teractions between the atoms are especially important in evaporative cooling, which

is usually the last step. The process is similar to the cooling of a cup of tea, where

hot molecules take away kinetic energy by diffusing into the environment and there-

fore lowering the mean kinetic energy (i.e. temperature) of the remaining tea (which

rethermalizes through elastic processes). In cold atomic experiments there are inter-

actions between the trapped atoms and background atoms and among each other.

Once the loading is turned off, inelastic collisions will lead to trap losses. The reason

for the trap losses is the fact that one can usually just trap atoms in one particular

hyperfine state and exchange collisions lead to untrapped states. However, energy

may also be released in inelastic processes and hot atoms can exit from the trap. It

follows that the atomic density will decay according to a rate equation of the form

dn

dt
= −Γn−Kn2 − Ln3 , (4.10)
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where the first term stands for the losses due to collisions with background atoms and

the second and third term account for two-body and three-body inelastic collisions

with rate coefficients K and L, respectively. n is the density of the trapped atoms.

Elastic collisions lead to rethermalization of the cloud. More details about BEC

theory and atomic trapping is for example given in [46] and [47].

From the derivation in section 2.2.2 one can theoretically obtain the S-Matrix (eq.

(2.78)) and the related transition matrix Tαβ = δαβ−Sαβ for a scattering process with

incoming channel α and outgoing channel β (see for example in [34]). The average

rate for inelastic collisions from a state α = ij (where i and j stand for the state of

each atom before the interaction) to β = pq is then given by [29]

Kij→pq =
〈
π~
µk

∑
l,ml,l′,m

′
l

∣∣∣∣T l,ml,l′,m′lij,pq

∣∣∣∣
〉
, (4.11)

where we sum over all partial waves l, l′ and thermal average 〈...〉 over the collision

energies. The two-body collision term for the trap loss in eq. (4.10) is then given by

dni
dt

= −
∑
j

∑
pq 6=ij

(1 + δij)Kij→pqninj , (4.12)

where we assumed that all inelastic collisions contribute to the trap loss.

Cold atomic interactions are not only important for the evaporative cooling pro-

cess. They are generally important for answering the question whether BEC is possi-

ble or not. The atoms have to remain in the metastable state of a dilute gas down to

very low temperatures. In magnetic traps one uses spin-polarized mixtures, i.e. only

the triplet potential plays a role. The aim is to prevent the formation of molecules,

which would lead to condensation to the liquid or solid phase. For alkali atoms bound

states in the triplet potential just occur in three-body collisions which are suppressed

at sufficiently low densities. The only chance for the atoms to leave the trap are

therefore dipolar collisions which flip the spin and hence lead to untrapped states
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(see section 1 and 3.1).

4.1.3 Two-species BEC for sodium-rubidium

In this section we would like to show how the results of this work can be used to

determine the properties of Na-Rb mixtures. Previous calculations for Na-Rb have

been done by Weiss et al. [17] and Pashov et al. [18]. Pashov’s potential data

provided the basis of this work. They did a close-coupling calculation in order to

obtain very accurate potentials. As we have adapted those accurate functions for

our calculation and obtained comparable scattering lengths (in section 3.3.2), we can

similarly discuss the consequences for Na-Rb experiments.

As seen above, it is important for cooling purposes to achieve a sufficiently high

ratio of elastic to inelastic collision rates. Therefore the discussion from chapter 2 can

be applied. First of all we can estimate the elastic scattering length as the weighted

average of the computed singlet and triplet scattering lengths (section 3.3) according

to eq. (2.60). The elastic cross section is then given by (eq.(2.41)) σ = 4πa2. The

inelastic cross section due to spin-flip collisions has been derived in section 2.2.1

and is of the order of
(
a(1) − a(0)

)2
. Therefore the difference of the singlet and triplet

scattering lengths has to be smaller than the elastic scattering length. From this point

of view 23Na87Rb seems to be the better choice to achieve two-species condensation

(compare to Table 3.4).

But the condition for overlapping two-species BEC, which has been derived in

4.1.1, is not satisfied by 23Na87Rb, because a > aC for all possible combinations

of hyperfine states and therefore the condensates separate. The most stable con-

figuration is formed by a Rb-core with a Na-shell, because aRb/mRb < aNa/mNa

and therefore the repulsion between the sodium atoms pushes them apart [44]. For
23Na85Rb, two-species condensates do not seem to be feasible either because a > aC .

However, there might be a chance to realize overlapping condensates with sodium
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and rubidium by applying an external magnetic field. Pashov et al. included the

Zeeman shift in their calculation and therefore determined scattering lengths depen-

dent on the external field [18]. They have found Feshbach resonance at experimen-

tally achievable fields and hence the scattering lengths might be tuned into a regime

where miscible condensates for Na-Rb are possible. The phase diagram for the Na-

Rb condensate dependent on the scattering length was presented by Ejnisman et al.

([44],[45]). That motivates further studies of ultracold sodium-rubidium vapors.

4.2 Experimental methods to obtain the scattering

parameters for alkali atoms

Theoretical considerations show that the knowledge of the singlet and triplet scat-

tering lengths, and accurate data about the long-range part of the potentials are

sufficient for computing all scattering parameters. That can be understood by the

fact that the singlet and triplet scattering lengths contain all information about the

phase shifts of the radial wave function at short-range (r < R0). The outside behav-

ior of the potentials is well-known and therefore the Schrödinger equation can be in

principle integrated.

There are a lot of different methods to identify the scattering lengths. For hy-

drogen the potentials are well-known and therefore a can be determined through

numerical integration. Potentials for alkali atoms heavier than Li on the other hand

are not known accurate enough from theoretical considerations for determining the

scattering lengths directly. Therefore molecular spectroscopy becomes important.

For Li and Na conventional methods lead to results which are acceptable in their

accuracy. For higher alkalis though, conventional molecular spectroscopy yields an

uncertainty in the vibrational quantum number νD greater than 1, which leaves the

scattering lengths undetermined (see section 3.2). That’s why more accurate meth-

76



ods like photoassociation and direct cross section measurements have been developed,

about which we would like to give an overview in the following.

4.2.1 Cold atom photoassociation

This method has been firstly experimentally realized by the Heinzen group at the

University of Texas in 1993 [16]. The basic idea is to excite two colliding spin-

polarized ground-state atoms into a molecular bound state by a laser field ωL. A

schematic illustration is given in Figure 4.1. As the atoms are spin-polarized, the

potentials of interest will be the triplets. The ground-state potential behaves like

r−6 at long-range due to the van-der-Waals interaction. The excited state, though,

corresponds to a mixture of one atom in its s-state (l = 0) and the other one in

its p-state (l = 1), which has a non-vanishing dipole moment that induces a dipole

moment in the s-state atom. Therefore the long-range behavior is proportional to

r−3. That’s why there are bound states at larger distances than for the ground-state

mixture.

Because the two atoms collide at a very low temperature, the thermal width in

the energy spectrum is very low (∆f(T = 0.5 mK) ' 10 MHz), which allows very

accurate spectroscopy. The laser field ωL can be tuned over a certain range. At those

points where its energy corrsponds exactly to a ro-vibrational bound state of the

excited potential an absorption line can be measured. The absorption rate will vary

according to the Franck-Condon factor (overlap between the ground-state and excited

bound-state wave function). As it can be seen in Figure 4.1, there are clearly points

where the ground-state wave function vanishes. Because of the different long-range

behavior of the potentials, it is possible to excite the molecule at ranges where the

ground-state potential is basically zero. That’s why one can study the long-range

behavior of the ground-state wave function, which finally yields the scattering length.

Because the upper potential is very deep, the wave function can be approximated to be
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Figure 4.1: Schematic diagram of the cold atom photoassociation process. The poten-
tial of the excited molecular state goes as r−3 at large distances (dipole interaction),
whereas the ground-state behaves like r−6 (van-der-Waals potential). ωL is the fre-
quency of the laser field, ωbb and ωbf are the frequencies of the emitted photons in
bound-state → bound-state and bound-state → free-state transitions. |u(r)|2 is the
square of the radial wave function of the ground state.
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located around the classical turning point, where transitions will therefore preferably

occur.

The excited state might absorb another photon which could ionize the molecule.

Other possibilities are the decay into a free state (ωbf ) (most likely hotter than the

other atoms in the trap) or into a vibrational bound state of the ground-state potential

(ωbb). An advanced technique of photoassociation is the two-color method. Here, one

fixes the frequency ωL at an appropriate value where transitions occur. A second laser

field with higher frequency is tuned and induces transitions from the excited bound

state to a bound ground state per stimulated emission. Therefore one can analyze

the spectrum of the ground-state potential.

On top of each vibrational level, there are rotational levels with much smaller

spacing. Nevertheless those levels can be resolved due to the high resolution of the

photoassociation method, which just depends on the temperature of the trapped

atoms [29].

4.2.2 Cold collision experiments

The easiest way of determining the magnitude of the scattering length is simply

measuring the elastic cross section, which is 8πa2 for identical bosons (see section

2.1.2). Such measurements can be done in rethermalization experiments, i.e. one

perturbes the trapped atoms by suddenly switching on a magnetic field and measures

the time until equilibrium is reached again.

In an atomic fountain clock, one measures the transition between two hyperfine

states. Contrary to conventional atomic clocks which operate at room temperature,

fountain clocks use ultracold atomic gases. Clairon et al. have first built a fountain

clock (with 133Cs) [48], which is much more accurate than conventional atomic clocks

due to the low thermal width of the velocity distribution of the atoms. Despite the

high accuracy, it turns out that elastic collsions between the atoms produce a shift in
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the measured frequency, which is related to the scattering length [49]. Those clock

shifts can be measured and therefore lead to conclusions about elastic scattering

properties.

Another very helpful tool are Feshbach resonances. Those occur when the quasi-

bound state energy of a closed channel coincides with the incident energy of the atoms

in the ground state. At those points the scattering length diverges. The potentials can

be tuned around these resonances by a magnetic field due to the Zeeman interaction.

Careful analysis of trap loss measurements around Feshbach resonances (or combining

the tunable magnetic field with the photoassociation method) gives information on

the scattering length [29].
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CHAPTER 5

CONCLUSION

In this thesis, we have given an overview of the basic ideas of quantum mechani-

cal scattering theory at low energy. We have tried to support the derivations with

illustrative examples.

Afterwards we have dealt specifically with the case of alkali collisions, which is

probably the most important application of those concepts. We started off by dis-

cussing the properties of the alkali interaction potentials. The numerical calculation

of the scattering lengths for Na-Rb and its bound state energies can be seen as the

main result of this thesis. It was shown how the one-dimensional Schrödinger equation

can be solved for a potential which is not given as an analytical function.

At the end of our work, we have presented the connection between theory and

experiment. We make no claim that this part is complete and refer the reader to

contemporary papers about experiments in ultracold gases and BEC. We have specif-

ically shown how our results for the scattering lengths can be applied to Na-Rb BEC

mixtures. We conclude (similar to previous calculations [17]) that the sodium and

rubidium condensates will separate in space and overlapping mixtures do not seem

to be feasible. However, miscibility may possibly be achieved by tuning the collision

parameters with an external magnetic field.

The treatment of inelastic collisions in Na-Rb gases could be the focus of further

studies, which would require accurate knowledge of the interaction potentials. As

presented in [34], very sophisticated numerical and variational methods are needed

to describe these processes.
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APPENDIX A

PROJECTION OF THE SINGLET AND TRIPLET STATE

ON THE HYPERFINE STATE

We would like to derive the probability amplitudes A, which were used in section

2.2.1. Therefore we need to project the state |f1,mf1 ; f2,mf2〉 on the singlet (S=0)

and triplet (S=1) states. While there are the good quantum numbers f1,mf1 , f2,mf2

for a large distance between the atoms, the spins recouple when the atoms get closer

and we have the good quantum numbers S,mS, I,mI . Therefore we start writing our

state in terms of those states |S,ms; I,mI〉:

|f1,mf1 ; f2,mf2〉 =
∑
F,mF

|(s1, i1)f1, (s2, i2)f2;F,mF 〉 〈f1, f2;F,mF |f1,mf1 ; f2,mf2〉

=
∑
F,mF

〈f1,mf1 ; f2,mf2|f1, f2;F,mF 〉
∑
S,I

|(s1, s1)S, (i1, i2)I;F,mF 〉

× 〈(s1, s2)S, (i1, i2)I;F,mF |(s1, i1)f1, (s2, i2)f2;F,mF 〉

=
∑

F,mF ,S,I

〈f1,mf1 ; f2,mf2|f1, f2;F,mF 〉

× 〈(s1, s2)S, (i1, i2)I;F |(s1, i1)f1, (s2, i2)f2;F 〉

×
∑

mS ,mI

|S,ms; I,mI〉 〈S,ms; I,mI |S, I;F,mF 〉 .

(A.1)

In the second step above we used that the Clebsch-Gordan coefficients are real, so

that 〈f1, f2;F,mF |f1,mf1 ; f2,mf2〉 = 〈f1,mf1 ; f2,mf2|f1, f2;F,mF 〉. Remember that
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mF = mf1 +mf2 = mS +mI due to angular momentum conservation. We obtain the

coefficients

A
f1,mf1 ,f2,mf2
S,ms,I,mI

= 〈S,ms; I,mI |f1,mf1 ; f2,mf2〉

=
∑
F

〈f1,mf1 ; f2,mf2|f1, f2;F,mF 〉〈S,ms; I,mI |S, I;F,mF 〉

× 〈(s1, s2)S, (i1, i2)I;F |(s1, i1)f1, (s2, i2)f2;F 〉 .

(A.2)

In this equation we have two Clebsch-Gordan coefficients and we make use of the

Wigner-9j-symbol [50] (which is independent of mF ):

〈(s1, s2)S, (i1, i2)I;F |(s1, i1)f1, (s2, i2)f2;F 〉

=
√

(2S + 1)(2I + 1)(2f1 + 1)(2f2 + 1)


s1 s2 S

i1 i2 I

f1 f2 F


.

(A.3)

Now we can compute the projection probabilities for the singlet and triplet state,

respectively. The only additionally required parameters are the nuclear spins i1, i2

(see Table 3.1). The final result is given by

P
(S=0)
i1,i2 (f1,mf1 , f2,mf2) =

∑
I,mI

∣∣∣Af1,mf1 ,f2,mf2
S=0,ms=0,I,mI

∣∣∣2
P

(S=1)
i1,i2 (f1,mf1 , f2,mf2) =

∑
I,mI ,ms

∣∣∣Af1,mf1 ,f2,mf2
S=1,ms,I,mI

∣∣∣2 .

(A.4)

The presented calculation can be easily done with Mathematica (see Figure A.1 and

A.2).

In order to calculate the elastic spin-flip cross section, we need to determine the
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Figure A.1: The Mathematica source code for calculating the singlet and triplet
coefficients according to eq. (A.2); the coefficient A is labeled with c.
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Figure A.2: Computing the singlet and triplet probabilities with Mathematica
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scattering amplitude (eq. (2.58))

f (f1→f ′1) =
∑
S

 ∑
mS ,I,mI

A
f1,mf1 ,f2,mf2
S,ms,I,mI

A
f ′1,mf1 ,f2,mf2
S,ms,I,mI

 f (S) ≡
∑
S

B(S)f (S) . (A.5)

Using identities about Racah coefficients (Wigner-9j-symbols) and Clebsch-Gordan

coefficients, one can show that [31]

B(0) = −B(1) ≡
√
MSF

2 . (A.6)

In Table A.1 we just want to give 3 examples which illustrate this relation. For our

calculation we used the Mathematica procedure which is shown in Figure A.3.

Eq. (2.61) follows directly when we use the relation between the scattering length

and scattering amplitude (eq. (2.56)).

Table A.1: Examples for projection coefficients B in order to illustrate eq. (A.6)

f1 mf1 f ′1 f2 mf2 i1 i2 B(0) B(1)

1 -1 2 1 -1 3/2 3/2 -0.11 0.11
2 1 1 3 1 3/2 5/2 -0.07 0.07
2 1 3 2 1 5/2 3/2 -0.12 0.12
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Figure A.3: Module to compute the coefficients B defined in eq. (A.5)
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APPENDIX B

EXAMPLE FOR THE SOLUTION OF THE TWO-STATE

CLOSE-COUPLING EQUATION

In order to refer to the solution of the close-coupling equation (eq. (2.72)), we would

like to present a very simple model for the 1s-2s excitation of hydrogen by electron

impact. We will be able to determine the elastic and inelastic cross sections for this

problem according to eq. (2.76). This calculation is for illustrative purposes only and

is not related to alkali collisions by any means.

This example has been presented by B.H. Bransden and J.S.C. McKee ([51],[52]).

We consider the hydrogen atom as a two-state system (1s-2s) and neglect all higher

orbitals. Furthermore we are concentrating on s-wave scattering. Therefore we can

write the overall wave function of the system as a product of the hydrogenic wave

function (φi) and the s-wave function of the free electron (Gi) (which has no angular

dependence, as l = 0)

Ψ(~r, ~x) = φ0(x)G0(r)
k0r

+ φ1(x)G1(r)
k0r

, (B.1)

where the indices 0 and 1 correspond to the 1s-state and the 2s-state in order to make

the notation conform with the previous discussion. The according wave functions are

φ0(x) = 1√
π

( 1
a0

) 3
2
e
− x
a0 (B.2)

φ1(x) = 1
4
√

2π

( 1
a0

) 3
2
(

2− x

a0

)
e
− x

2a0 (B.3)
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with the energies

ε0 = −13.6 eV and ε1 = − 1
22 · 13.6 eV . (B.4)

The simplest approximation to the potential is given by

V (~r, ~x) = Ke2
(

1
|~r − ~x|

− 1
r

)
(B.5)

with K = 1
4πε0 . ~r and ~x represent the relative coordinate between the proton and the

bound and free electron, respectively (see Figure B.1).

Figure B.1: Sketch of the scattering process of a free electron by a hydrogen atom.
The distance between the proton and the free electron is denoted by ~r. ~x indicates
the the distance between the proton and the valence electron.

We are neglecting the possibility of electron exchange. That’s why this model is

not very realistic, but illustrates the previous discussion. A more careful treatment

of this problem has been presented, for example, by Massey and Moiseiwitsch [53] or

Marriott [54].

In the following we will work in atomic units. All lengths are given in units of

a0 and all energies as multiples of Bohr’s ground state energy 13.6 eV or as wave

numbers in units 1/a2
0, respectively. With a0 = ~2

meKe2 and µ ≈ me, we get for the

close-coupling equations (eq. (2.72))

(
d2

dr2 + k2
0 − 2V00(r)

)
G0(r) = 2V01(r)G1(r)(

d2

dr2 + k2
1 − 2V11(r)

)
G1(r) = 2V10(r)G0(r)

(B.6)
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with k2
1 = k2

0 − (ε1 − ε0) = k2
0 − 3/4 (in units 1/a2

0), as 2me
~2 · 13.6 eV = 2me

~2 · Ke
2

2a0
= 1

a2
0
.

Furthermore, we get for the matrix elements Vij(r)

Vij(r) =
∫
d3xφi(x)φj(x)V (~r, ~x)

=
∫ 2π

0
dφ
∫ 1

−1
d cos θ

∫ ∞
0

dx x2φi(x)φj(x)
(

1√
r2 + x2 − 2rx cos θ

− 1
r

)
.
(B.7)

That yields

V00(r) = −
(

1 + 1
r

)
e−2r (B.8)

V11(r) = −
(1
r

+ 3
4 + 1

4r + 1
8r

2
)
e−r (B.9)

V01(r) = V10(r) =
√

8
27 (2 + 3r) e− 3

2 r . (B.10)

As it can be seen in Figure B.2 the range of the potentials is about 10 a0. For larger

distances we expect sinusoidal solutions and therefore we require them to satisfy the

conditions given in eq. (2.73). If we choose

α00 = a

1− ia (B.11)

and

α01 = d , (B.12)

we can rewrite the boundary conditions as

G0(0) = G1(0) = 0

G0(r � 0) ' sin k0r + a cos k0r

G1(r � 0) ' deik1r .

(B.13)

Note that there is actually a factor of 1
1−ia , which does not change the solution as it

is just a scaling factor for Gi(r). Nevertheless it shows up in the total cross sections
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2 4 6 8 1 0

- 0 . 3

- 0 . 2

- 0 . 1

0 . 0

0 . 1

0 . 2

 V 0 0
 V 1 1
 V 0 1

r  [ a 0 ]

V ( r )  [ a 0
- 2 ]

Figure B.2: Interaction potential for our simple model of the 1s-2s excitation; the
range of the potentials is about 10 a0.
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(compare to eq. (2.76)), which are

σ00 = 4π
k2

0

∣∣∣∣ a

1− ia

∣∣∣∣2 and σ01 = 4πk1

k3
0

∣∣∣∣∣ d

1− ia

∣∣∣∣∣
2

. (B.14)

The non-trivial part of solving this problem is to find two independent pairs of solu-

tions F j
0 (r), F j

1 (r) (j = 1, 2) for eq. (B.6), which satisfy the boundary conditions

F j
0 (0) = F j

1 (0) = 0

F j
0 (r � 1) ' Aj sin k0r +Bj cos k0r

F j
1 (r � 1) ' Cj sin k0r +Dj cos k0r

(B.15)

with real coefficients Aj, Bj, Cj, Dj. Once we have found those solutions, we can write

Gi(r) as a linear combination

G0(r) = λF 1
0 (r) + µF 2

0 (r)

G1(r) = λF 1
1 (r) + µF 2

1 (r)
(B.16)

with complex coefficients λ and µ. By comparing eq. (B.15) to eq. (B.13) we find the

following set of 8 linear equations (4 for real and imaginary part), which determine

the scattering parameters a and d:

λ



A1

B1

C1

D1


+ µ



A2

B2

C2

D2


=



1

a

id

d


(B.17)

Similarly we can find a solution for the cross sections σ10 and σ11, if we start in the
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2s-state. In this case we would have to choose different boundary conditions

G0(0) = G1(0) = 0

G0(r � 0) ' geik0r

G1(r � 0) ' sin k1r + h cos k1r .

(B.18)

We can again write this solution as a superposition of our independent solutions (eq.

(B.15)) and therefore get a similar set of linear equations

η



A1

B1

C1

D1


+ ν



A2

B2

C2

D2


=



ig

g

1

h


(B.19)

The cross sections are then given by

σ11 = 4π
k2

1

∣∣∣∣∣ h

1− ih

∣∣∣∣∣
2

and σ10 = 4πk0

k3
1

∣∣∣∣ g

1− ih

∣∣∣∣2 . (B.20)

In order to obtain the two independent solutions for F j
0 (r), F j

1 (r) (j = 1, 2), we

integrated eq. (B.6) numerically with Mathematica. We used the built-in procedure

NDSolve. As initial conditions for the numerical solution, we chose

F j
0 (0) = F j

1 (0) = 0 j = 1, 2

F 1
1
′(0) = F 2

0
′(0) = 1

F 1
0
′(0) = x

F 2
1
′(0) = y ,

(B.21)

where x and y can be varied. x = y = 0.0001 turned out to be a good choice in

order to make the two solutions independent. One solution for E = 20 eV is shown in
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Figure B.3. We analyzed the long-range part of those solution and fitted a sinosoidal

5 1 0 1 5

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

r  [ a 0 ]

 F 0 ( r )
 F 1 ( r )

F i ( r )

Figure B.3: Numerical solution for E = 20 eV (k2
0 = 1.47 a−2

0 ), for r > 10 a0 it has a
sinusoidal shape.

function of the form

Fi(r) ' Ãi sin (kir + δi) . (B.22)

From the coefficients Ãi, δi we can compute the coefficients A,B,C,D using the fol-

lowing identity

C1 sinωt+ C2 cosωt = C sin(ωt+ ϕ) (B.23)

with C =
√
C2

1 + C2
2 and tanϕ = C2

C1
. The source code for the procedure to obtain

the independent solutions is given in Figure B.4. The according cross sections are

calculated with the program crosssection (Figure B.5).

The final results for the cross sections are shown in Figure B.6, B.7 and B.8. In

Table B.1 and B.2 we compare our results to those calculated by Bransden and McKee

in [51] and find a very good agreement.
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(a)

Figure B.4: Procedure to obtain two independent solutions for eq. (B.6) and the
coefficients Aj, Bj, Cj, Dj

95



(b)

Figure B.4: Continued
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(c)

Figure B.4: Continued
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(a)

Figure B.5: Procedure to compute the total cross sections given in eq. (B.14) and
(B.20)
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(b)

Figure B.5: Continued
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Because we did a close-coupling calculation, our results have to obey the particle

conservation theorem which implies the following connection between σ01 and σ10

[22]:

k2
0σ

01 = k2
1σ

10 . (B.24)

That this relation is indeed satisfied can be seen in Figure B.6.

It can be seen in Figure B.8 and Table B.2 that the description in the low energy

regime is not very accurate. Firstly we observe that the numerical calculation is not

very stable when k1 ' 0. Another even more crucial point is that electron exchange

becomes more likely in this regime as the incident electron has a very low energy

and therefore the effective time of interaction is longer. Our derivation neglects this

possibility completely and can therefore not be used for an accurate description in

this energy range.

Table B.1: Comparison of our results with those given in [51] when starting in the
groundstate.

Energy E0 [eV] σ00 [πa2
0] σ01 [πa2

0]
this work [51] this work [51]

11.5 2.539 2.52 0.290 0.286
13.5 2.147 2.12 0.203 0.204
19.4 1.433 1.42 0.104 0.102
30.4 0.835 0.828 0.0456 0.0450
54.0 0.398 0.394 0.0157 0.0155

In summary we have seen how to numerically solve a coupled differential equation

of the type of eq. (2.72). Next to the presented numerical solution, there are also

several variational methods, which can be used as an approximation. For the given

problem such methods are for example presented in [52].
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Table B.2: Comparison of our results for σ11 with [51], the energy is given relative
to the 2s-level. The overall agreement is very good except for the lowest energy. It
can be also seen in Figure B.8 that there occur numerical errors in this regime. The
reason for that is mainly that k1 ' 0. A more careful analysis of the low-energy
regime is given in the text.

Energy E1 [eV] σ11 [πa2
0]

this work [51]
1.35 0.216 2.05
3.38 1.953 1.97
9.32 3.394 3.40
20.30 2.400 2.39
43.90 1.178 1.17

1 0 2 0 3 0 4 0 5 0
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4
 σ0 1

 σ1 0

 k 2
0 / k 2

1  σ0 1

σ [ πa 2
0 ]

E  [ e V ]
Figure B.6: Cross sections for transitions 1s ↔ 2s. It is shown that the solutions
satisfy eq. (B.24)
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1 0 2 0 3 0 4 0 5 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

E  [ e V ]

σ [ πa 2
0 ]

Figure B.7: Cross section for elastic scattering by the ground state σ00
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1 0 2 0 3 0 4 0
0

1

2

3

4

E 1  [ e V ]

σ [ πa 2
0 ]

Figure B.8: Cross section for elastic scattering by the excited state σ11(E1) (E1 =
E − 10.2 eV is the energy relative to the 2s-level). Because k1 ' 0, there occur
numerical errors in the low energy regime, where our model does not describe the
process very accurately anyway. A more careful discussion is given in the text.
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APPENDIX C

MOLECULAR TERM SYMBOLS

We would like to explain the meaning of molecular term symbols of the general form

2S+1Λ±Ω,g/u . (C.1)

First of all we assume linear diatomic molecules. Similarly to the LS-coupling scheme

known from single atoms, we can define the total electronic orbital angular momentum

and spin

~L =
∑
i

~li and ~S =
∑
i

~si . (C.2)

There is no overall rotational symmetry in a diatomic molecule, which implies that

L is not a good quantum number. But there is a rotational symmetry about the

interatomic axis (which we choose to be our quantization axis) and therefore ML

is a good quantum number. The motion of the electrons in an electrostatic field is

invariant under motion (time-) reversal. (That is not true for magnetic fields!) Due

to this symmetry states with +ML and −ML are degenerate (as those two quantum

numbers refer to counterwise rotations around the internuclear axis about the same

angle). That allows us to define the good quantum number

Λ = |ML| (Λ = 0, 1, 2, 3, ..., L ⇒ Σ,Π,∆,Φ, ...) , (C.3)
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where the Σ-state is non-degenerate and all states with Λ ≥ 1 are doubly degenerate

(±ML).

The total spin is always conserved as long as there are no external fields. Hence S

is a good quantum number. The spin is unaffected by the electrostatic field between

the nulei and the electrons, but for Λ > 0 the motion of the electrons causes an

internal magnetic field, which forces the total spin to precess around the internuclear

axis. That’s why we haveMS as another good quantum number, which is not defined

for Σ-states (Λ = 0). Note: In the literature MS is sometimes also labeled with Σ,

which could lead to confusion with the Λ = 0-state.

Similarly to atoms where ~L and ~S couple to ~J , we can define an overall electronic

angular momentum along the internuclear axis which is denoted by Ω. Again, positive

and negative values of Ω are degenerated due to time-reversal symmetry. Therefore

one defines

Ω = |Λ +MS| . (C.4)

As for Σ-states MS is not defined, the index Ω can be omitted. The remaining two

indices in the term symbol (eq. (C.1)) denote symmetry properties.

The reflection through a plane, which contains the internuclear axis, is a symmetry

operation for any diatomic molecule. For Σ-states the reflection through such a plane

either keeps the electronic eigenfunction unchanged (+) or changes its sign (-). As

Σ-states are non-degenerate, this specification is important in that case. For Λ ≥ 1-

states, which are doubly degenerate, eigenfunctions to this symmetry operation can

always be constructed, but because of the degeneracy this specification is irrelevant.

Another symmetry operation is the inversion of the electron position at the mid-

point of the internuclear axis for diatomic molecules with nuclei of the same charge

(e.g. 85Rb2 or 85Rb87Rb, but not NaRb or CO). This inversion is equivalent to the

nuclear interchange with the electron positions held fixed. If the electron eigenfunc-

tions remain unchanged under such an operation, the state is labeled with g (which
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stands for gerade - German for even). Otherwise the wave function changes sign,

which is denoted by u (ungerade - German for odd).

The preceding discussion is for example given in [55].
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APPENDIX D

NUMEROV’S METHOD

Numerov’s method was devoloped by the Russian astronomer and geophysicist Boris

V. Numerov in the 1920s ([56],[57] and [58]). It is a numerical method to solve

differential equations of the following form:

y′′(x) + f(x)y(x) = 0 . (D.1)

Hence it can be used to solve the one-dimensional Schrödinger equation.

Starting with two consecutive initial values for y(x) (y(x0) = y0 and y(x1) = y1),

Numerov’s method provides a solution according to the following recursion:

yn+1 =

(
2− 5h2

6 fn
)
yn −

(
1 + h2

12fn−1
)
yn−1

1 + h2

12fn+1
, (D.2)

where fn = f(xn) and yn = y(xn) and the stepwidth h = xn+1 − xn.

Proof:

Firstly we Taylor expand yn±1:

yn+1 = y(xn + h) = yn + hy′n + h2

2! y
′′
n + h3

3! y
′′′
n + h4

4! y
(4)
n + h5

5! y
(5)
n +O(h6) (D.3)

yn−1 = y(xn − h) = yn − hy′n + h2

2! y
′′
n −

h3

3! y
′′′
n + h4

4! y
(4)
n −

h5

5! y
(5)
n +O(h6) . (D.4)

Adding those two equations together yields

yn+1 + yn−1 = 2yn + h2y′′n + h4

12y
(4)
n +O(h6) . (D.5)
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Now we substitute y′′n from eq. (D.1) and get

yn+1 + yn−1 = 2yn − h2fnyn + h4

12y
(4)
n +O(h6) . (D.6)

We can also express the fourth derivative by the differential equation

y(4)(x) = − d2

dx2 [f(x)y(x)] . (D.7)

Using the difference quotient yields

y(4)
n = −

fn+1yn+1−fnyn
h

− fnyn−fn−1yn−1
h

h
= −fn+1yn+1 − 2fnyn + fn−1yn−1

h2 . (D.8)

Hence

fnyn = 1
h2

(
2yn − yn+1 − yn−1 −

h4

12
fn+1yn+1 − 2fnyn + fn−1yn−1

h2

)
+O(h4) . (D.9)

Rearranging and neglecting of terms of O(h4) yields eq. (D.2).

�

In section 3.3.3 we reverse this recursion by simply solving for yn−1.
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