THE INFLUENCE OF VISUAL PERCEPTION ON VEHICLE

RATES OF CLOSURE

A Thesis
Presented to
The Academic Faculty

by

Nicholas J. Kelling

In Partial Fulfillment
of the Requirements for the Degree
Masters of Science
School of Psychology

Georgia Institute of Technology
August, 2006



THE INFLUENCE OF VISUAL PERCEPTION ON VEHICLE

RATES OF CLOSURE

Approved by:

Dr. Gregory M. Corso, Advisor
School of Psychology
Georgia Institute of Technology

Dr. Arthur Fisk
School of Psychology
Georgia Institute of Technology

Dr. Lawrence James
School of Psychology
Georgia Institute of Technology

Date Approved: July 6, 2006



ACKNOWLEDGEMENTS

I would like to begin by thanking my wonderful wife, Angela, without whom I never
would be able to survive. She balances me just this side of sane, and for that I am
eternally thankful. Secondly, I would be remise if I did not show appreciation to my
parents and my brothers for years of growth gained from love, pain, and the occasional
wrestling match. I would also like to acknowledge the continuing support of the Swilley
family to whom I owe an incredible debt. I would like to thank my committee members
for their excellent guidance and I look forward to many years of great collaborative work
with all of them. Finally, to Dr. Gregory M. Corso for illuminating the shadowed evils of

the engineering way.

i1



TABLE OF CONTENTS

ACKNOWLEDGEMENTS
LIST OF TABLES
LIST OF FIGURES

SUMMARY

CHAPTER
1 Introduction
Changes in Perception
Luminance Effects
Simulation vs. Real Driving Scenarios
Speed Perception
Self-Motion
Perception of Lead Vehicle Movement
Brake Reaction Time
Useful Field of View
Effects of Personality
Applications for Knowledge
Statement of the Problem
2 Methods
Participants
Apparatus
Procedure

3 Results and Analysis

iv

Page
il
vi

vii

viii

10
10
12
14
15
15
15
15

18



4 Discussion
APPENDIX A: Analysis Results
APPENDIX B: Collected Data

REFERENCES

22

29

53

57



LIST OF TABLES

Page
Table 1: Paired T-test scores for the Interaction of Rate of Closure and Motion 21
Table 2:Correlations of UFOV and Test Anxiety 26

vi



Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

LIST OF FIGURES

Distribution of Test Anxiety Scores

Groupings of Test Anxiety Scores

Tau Times Collapsed on Rate of Closure

Tau Times Collapsed on Vehicle Motion Condition
Interaction between Rate of Closure and Motion
Speed Estimations for Day and Night

Constant Tau Braking Method

Constant Distance Braking Method

Interaction with Tau Times Transformed to Distance

vii

Page
18
19
19
20
20
21
22
23

24



SUMMARY

Given the high prevalence of automobile collisions in the United States, the need for
collision prevention research is evident. To understand the complete cause of these
incidents, it is critical to examine the driver’s perception of these situations. This study
involved simulations of multiple driving situations variant on luminance, rate of closure,
and vehicle motions. Findings suggest changes in brake onset times of younger drivers
based on roles of a lead vehicle. Multiple perceptually different rear end collisions
caused participants to alter their brake onset times. The brake onset times were used to
analyze braking models, including constant distance and constant tau. Additional
analysis included correlations of the effects Useful Field of View and Test Anxiety on
brake onset times. Effects identified not only aid in the general understanding of driving
behavior, but also facilitate the application of driver assistive systems, which are

currently being integrated into production vehicles.
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CHAPTER 1

INTRODUCTION

Over 43% of the 4.3 million multiple car accidents in 2003 can be attributed to
rear end collisions (Traffic Safety Facts, 2003). Traffic accidents in the year 2003
resulted in over 1.3 million injuries and fatalities. Since rear end collisions are the most
common types of vehicle accidents, attempts should be made to not only curtail such
events but also to understand processes that may be involved. If identified, these
processes may lead to better vehicle designs, driver training, and assistive technologies.
The difficulty in completely understanding traffic accidents is not the physics involved
nor the lack of physical data, instead it is the lack of complete knowledge of the human
components involved. The driver is arguably the most complex component in the
analysis of driving related crashes. Perception, cognition, and movement control can all
affect a driver’s effectiveness. Research on cognitive loads, decision making, and effects
during driving have been studied extensively (e.g. Engtrom, Johansson, and Ostlund,
2005; Lee, 1996; Walker, Fain, Fisk, and McGuire, 1997). The effects of motor control,
such as stimulus reaction time and the effects of substances such as alcohol, have also
been exhaustively studied over the years (e.g. Kelly, Darke, and Ross, 2004). However,
the combination of this knowledge does not necessarily encompass all the driving related
components.

Perceptual research involving driving was conducted as early as 1928 (Forster,
1928), but because of the large number of variables that may influence driving, we lack a

complete understanding of the perceptual effects that may influence driving. The driving



environment is highly variant in factors such as weather, road layout, and time of day.
Changes in weather can alter both visibility and road conditions, such as seen in icy or
foggy environments. Road layout may allow the driver to see miles down a straight road
or remove predictability on a curved mountain path. Time of day can deny the driver
information because of low light conditions or high glare. The driver’s attention may
also limit the amount of data received, especially in conditions when the driver is not
monitoring the road, perhaps focusing instead on changing the radio station or using a
cell phone.

The informational field of the driver can include other vehicles. Attributes such
as vehicle size, lights, and speed must have been perceived accurately to enable the driver
to obtain the maximal amount of information essential to driving decisions. In terms of
accidents involving two vehicles, one of the most important attributes is the rate of
closure or relative speed of the vehicles in question. The drivers must know at what
speed they are approaching the vehicle ahead to avoid a rear end collision. A calculation
must then be made involving this perceived closure speed and the distance to the vehicle.
This calculation conveys to the driver the amount of time remaining until both vehicles
collide. Based on this time, the driver must make a determination as to whether or not
the situation requires slowing the vehicle. The decision could result in the rate of closure
decreasing or reversing; hopefully reducing the risk of a collision.

Changes in Perception
Luminance Effects
The shift from driving in daylight to night conditions has a very powerful effect

on the driver’s perception. Low light causes change in both perceived and actual



environments. These changes include the introduction of head and tail lights as well as
less distance visibility. Castro, Martinez, Tornay, Fernandez, and Martos (2005)
examined the effect of vehicle headlights on night driving. More accurate distances were
reported with wider separation in the headlights as opposed to headlights that are closer
together. Castro, et al. (2005) attributed the perceptual difference to the use of depth-to-
relative size cues. Studies completed on brake lights produce a similar effect with larger
separations between vehicle brake lights having a more pronounced effect on the
perceptual system than those of smaller distances (Janssen, Michon, and Harvey, 1976).

The luminance of the head or tail-lights does not appear to have any effect on
distance estimation (Castro, et al. 2005). Brighter head or tail-lights seem to provide no
additional information to the driver regarding distance or speed estimations. Therefore,
the determination may be made that the majority of information on the speed of a lead
vehicle must be calculated via the brake lights of the lead vehicle. Any additional
perceptual changes during night driving probably are caused by an error in the judgment
of the speed of the lead vehicle using the brake lights or to the perceptual effect of
driving at night as opposed to a more comfortable and information rich situation of
daytime driving.
Simulation vs. Real Driving Scenarios

A large concern for any study involving simulations of real situations is how well
the simulated event represents the real event. Simulation is often the preferred method
when looking at some situations involving vehicles, especially for those involving
collisions. The risk of human life is too great for the facilitation of reenacting these

dangerous events. Simulation allows us to offset these risks, but questions arise about the



external validity of results when using an artificial environment. Even though this
possibility exists, driving simulators can lead to a greater understanding of human effects
on driving, especially when dealing with speeds faster than natural locomotion (Kemeny
and Panerai, 2003). Speed estimations appear to be only moderately affected when
created from simulations versus real motion. The correlation of speed estimations
increasing in both real and simulated environments as speed increases has been
previously shown (Castro, et al., 2005). McGehee, Mazzae, and Bladwin (2000)
determined a direct relation regarding the brake reaction times between simulated and
real events. This brake reaction time differential was 0.3 seconds faster for simulations,
but should not affect any correlated effects found when using a simulator as opposed to
trying to control real situations because of the consistency of such an effect.

The inclusion of peripheral vision cues is of some concern, especially in low
fidelity simulators where little or no peripheral information is presented. Hoffman and
Mortimer (1996) proposed that in situations where both the driver’s vehicle and the lead
vehicle are in motion, information gathered involving the relative motion of the two is
not affected by the lack of peripheral information. However, the removal of peripheral
information does hinder the driver from making accurate estimations of the absolute
speed of their own vehicle (Hoffman and Mortimer, 1996).

Speed Perception
Self Motion

In order for the human body to determine what objects in its field of vision are

moving, the person must determine if any self motion is occurring. The human

perceptual system must integrate data from the visual, vestibular, and proprioception



systems (Kemeny and Panerai, 2003). Although all of these systems are important for the
analysis of self motion, the visual system provides the most information about the
environment (Kemeny and Panerai, 2003). The exact function that the human uses to
accomplish this task is under debate. Optic flow and active gaze strategies have both
been shown to supply data toward self motion assessments (Kemeny and Panerai, 2003;
Lappe, Bremmer, and Van Den Berg, 1999). The larger question is how faster speeds,
such as those seen while driving, might affect the perception of self motion. The
perception of one’s speed while moving is generally underestimated by the visual system
(Durgin, Gigone, and Scott, 2005; Recarte and Nunes, 1996). Estimations do seem to
improve as speed increases (Recarte and Nunes, 1996).

Perception of Lead Vehicle Movement

One of the major perceptual considerations involved in collisions is the perception
of direction of an object’s motion in depth and the time to collision/contact/catch, also
known as tau or TTC (Regan and Gray, 2000). TTC is the metric by which the
perceptual system calculates the time, distance, and placement of any form of contact.
The time to contact could be between a lead vehicle and a driver or between a pitched
baseball and a batter’s swing of a bat.

The determination of how this calculation is made is under some debate. The two
major processes that could be involved in this calculation involve the use of monocular
and binocular cues. Regan and Gray (2000) concluded that although TTC estimates were
more accurate when binocular and monocular information were both available, binocular
cues provide the greater amount of information to the system. In Regan and Gray’s

model, monocular cues only affect the perceived distance between objects. Equation 1,



derived by Regan and Gray (2000), allows the calculation of TTC using a majority of
binocular cues.

co_
D(ds/dt)

when (1)

D>>1

where

I is the interpupillary distance
D is the current distance between moving objects
do/dt is the rate of change of relative disparity
Bootsma’s (1991) view on the calculation of tau differs. Bootsma (1991)

suggests binocular information does not aid performance when attempting to catch balls
of various sizes. Regan and Gray (2000) account for the discrepancy in that binocular
involvement in TTC is more dominant for small objects for which little to no monocular
cues are available. The dominant aspect of binocular cues would be more relevant to
driving considering the speeds and distances of the objects involved especially when
highway speeds are achieved (Hancock and Manser, 1997; Regan and Gray, 2000).
However, the determination of TTC may not be this simplistic. Hancock and Manser
(1997) suggest that other factors may affect the estimation of tau. Greater accuracy was
reported when approaching vehicles were occluded versus disappearing vehicles. Age
affects estimation, with younger participants producing more accurate and less biased
estimations of tau as compared to older participants. Sex differences have also been
observed, but are correlated to the perceived tau and durations must be greater than three
seconds to have any significant effects.

The second perceptual aspect of collisions is the ability to detect and compute the

direction of an object’s motion. The directional component can be determined using two



phenomena, changes in binocular depth cues and the change in apparent size of the
tracked object (Herstein and Walker, 1993). Directionality of motion can be established
by the change in disparity on the retina in a binocular setting (Regan and Gray, 2000), but
this phenomenon creates errors by inducing the illusion that an approaching vehicle is
perceived to be farther away than its actual distance. An additional input is needed to
resolve this estimation error (Herstein and Walker, 1993). The principal of looming, or
the increase or decrease in apparent size of a lead object, provides an additional cue.
Apparent size does invoke its own limitations because of its nonlinear aspects at closer
distances. Objects tend to increase in apparent size very rapidly at closer distances,
whereas at farther distances such a change is not as pronounced. The change in apparent
size also provides no assistance in determining the speed of an approaching vehicle. Li
and Milgram (2005) correlated optical looming manipulations to changes in the control of
braking. Interestingly, participants who could not accurately calculate TTC could
determine if one could safely cross an intersection (Herstein and Walker, 1993).
Hoffman and Mortimer (1996) infer that the change in the lead objects motion, or
change in headway, can be determined using the perceptual changes of the spacing
between the two vehicles and changes in the angular velocity. This change is limited in
that the just noticeable difference must be exceeded. The introduction of perceptual
spacing prompts “dead zones” in which the visual system is unable to determine if
spacing changes exist. This phenomenon is most evident at greater distances where a
change in vehicle spacing may be perceptually small, but may have actually resulted in a

larger distance traveled.



Brake Reaction Time

Brake reaction times for investigating driver’s behaviors have been used
extensively over the years (see Green, 2000). This attempt has resulted in information
ranging from direct reaction of stimuli to foot speed and dynamics when moving from
accelerator to brake. Over the years a great effort has been made to determine a
canonical or generic acceptable brake RT. Because of these efforts, brake reaction
standards have been created in both the United States, 2.5 sec, and in Europe, 2.0 sec
(Green, 2000), and investigations still continue supporting the use of such methods. The
difficulty in pursuing this methodology is in the variance of the driving and personal
environment. Canonical brake reaction times can vary by as much as a factor of four
over different experimental methods (Green, 2000). Averaging reaction times over many
varieties of driver samples and conditions may not be the most beneficial approach. A
more developed and detailed model must be created that accounts for individual as well
as situational variance (Summala, 2000). Although Green (2000) attempted to create
variable reaction times based on situations, Summala (2000) rejected this method by
stating that Green is merely repackaging canonical reaction times.

To understand how brake reaction time can vary dependant on the situation, it is
crucial to understand the factors that are involved. Green (2000) divided the factors into
device response time, movement time, and mental processing time. Device response time
is an attribute of the vehicle and unaffected by any perceptual changes, but may be
affected by physical conditions of the environment. Movement time is related to the
physical movement the driver produces, such as initiating the muscles of the leg to

depress the brake. Again, this component is not directly affected by any changes in the



perceptual environment. The final component, mental processing time, can be divided
into three types of timed processes, detection, processing, and response selection.
Detection relates to the time required to physically sense an object. Changes in the
driving situation could affect this component. Night versus day conditions could create a
disparity in the detection of the lead vehicle. Processing is the duration of time that is
necessary to interpret the information from the senses. Response selection is the choice
of action by the driver. This choice is not limited to braking, but may also include
steering to avoid a potential collision. In this study, mental processing time provides the
most explanation of any changes in brake reaction times. Detection may be affected by
the ability to sense the lead vehicle. Processing is the sub-component responsible for any
calculations related to the absolute speeds and rates of closure, and thus may be greatly
affected by any manipulations.

Schweitzer, Apter, Den-David, Liebermann, and Parush (1995) examined the
effects of vehicle speeds on minimum braking times. Sixty and eighty kilometers per
hour were used, but there was no effect on total braking time. However, a problem is
apparent in the situation Schweitzer, et al. used. The relative speeds of the two vehicles
remained zero until the lead vehicle braked at either 6 meters or 12 meters. At these
distances, the response becomes more of an emergency reaction than a perception of the
speed difference. Liebermann, Ben-David, Schweitzer, Apter, and Parush (1995) later
stated that the effect of closure distances may be related to the time available for
perception.

The effect of gender on brake reaction times continues to be under some debate

(Green, 2000). Some research portrays men as having a faster response than women, as



supported in research relating to tau effects (see Green, 2000). Other research, such as
Schweitzer, et al. (1995), finds no differences in the genders. Interestingly, no studies
have found faster reaction times of women over men (Green, 2000).
Useful Field of View

A crucial portion of braking behavior is the visual ability of the driver. If the
driver has difficulties focusing, processing, or attending to the lead vehicle, any
calculations required to assist the driver in braking can become severely hindered and
may influence the time to brake. The UFOV® Visual Attention Analyzer has three sub
tests, which include the measuring of the speed of visual processing, divided attention,
and selective attention. An individual’s range in reduction of the Useful Field of View
can be between 0 and 90% where more than a 40% reduction classifies an individual as a
high risk driver (Myers, Ball, Kalina, Roth, and Goode, 2000). Empirical research has
shown that Useful Field of View directly correlates to higher incidents of crash incidents
of older adults (Ball, Roenker, Bruni, Owsley, Sloane, Ball, and O’Connor, 1991; Myers,
et al., 2000; Ball and Rebok, 1994). This relationship becomes even more salient when
difficult scenarios arise, such as seen in driving during the rain, interstate driving, rush
hour driving, or left hand turns (McGwin, Chapman, and Owsley, 2000). Based on
findings like these, the use of Useful Field of View tests have been suggested as a method
to screen for at-risk drivers (Myers, et al., 2000).

Effects of Personality

Human behavior reflects more than reaction times and visual processing. In

driving an additional factor may be integrated into the final braking actions, this factor is

the driver’s own personality. Scales, such as the Zuckerman-Kulman Sensation Seeking
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Scale, attempt to quantify the risk taking behavior of an individual (Zuckerman and
Kuhlman, 2000). High sensation seekers view risk with a decreased assessment over
those with lower sensation seeking values (Zuckerman and Kuhlman, 2000) and tend to
identify their environment as less threatening when compared to low sensation seekers
(Rosenbloom, 2003). Correlates have included gambling, sexual activity, and financial
risks (Jonah, 1997). Sensation seeking behavior, ranked by this scale, has also been
applied successfully to risky driving across drivers in multiple countries (Jonah, 1997).
High sensation seeking drivers become comfortable violating road laws without previous
unwanted costs (Rosenbloom, 2003), while gaining a higher proficiency in driving skill
(Jonah, 1997). The increase in proficiency can be explained by greater efficiency in
processing of road information and driving stress (Rosenbloom, 2003). Although
connections have been accomplished, Whissell and Bigelow (2003) stated that, “Driving
literature currently lacks contextual clarity in the identification of connections between
negative driving attitudes and unsafe driving” (pg. 812). Direct applications involving
scores on the sensation seeking scale and specific driving circumstances could create a
better understanding of the contextual affect of risk seeking in driving. Heino, van der
Molen, and Wilde (1992) studied the distances sensation seekers choose in car following
situations. They found that those with higher sensation seeking attitudes preferred
shorter distances than those participants who scored lower on the sensation seeking scale.
Expressions of these behaviors should be evident in the data gathered throughout this
experiment. Those participants with higher sensation seeking scores should prefer

smaller brake initiated distances as demonstrated in experiments by Heino, et al (1992).
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Another technique entails the use of an inverse approach. Fairclough, Tattersall,
and Houston (2006) successfully examined the use of measures of anxiety towards
driving tests finding increased anxiety in participants of driving tests over the same
participants in known mock tests. “A person who perceives a situation as dangerous or
threatening will experience an increase in anxiety” (Spielberger, Gonzalez, Taylor,
Algaze, and Anton, 1978, pg. 171). Such anxiety could alter one’s behavior. The study
examined the use of the Sarason’s (1978) 23 item Test Anxiety Scale as a method of
examining how one’s anxiety of fear of failure may affect braking behavior. The Test
Anxiety Scale has been viewed as a standard for ascertaining Fear of Failure (James,
1998). High Fear of Failure individuals reason decisions that create self protective
behaviors (James, 1998). Such self protective behaviors could include braking effects,
and therefore, necessitating the need to assess Fear of Failure in this study.

Applications for Knowledge

Many major car manufacturers are currently, or planning on, installing driver
assist systems. Such systems include adaptive cruise control systems and automatic
braking systems. Combinations of technologies exist to aid manufacturers in their
design. The technologies include radar, infrared, laser, and optic systems. All of these
technologies allow the sensor suite to accurately measure the distance between the
driver’s vehicle and the lead vehicle. Once onboard computer systems analyze all the
available data, two different modes are available to the automated system. The system
may be designed to alert the drive, hoping to illicit an action, actually perform the needed
action, including the reduction of speed or application of brakes, or a combination of

both. The difficulty arises when attempting to decide when the driver should be alerted
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or informed of the action required. A great deal of research has been completed
involving such alarm and notification issues. The use of auditory alerts (Graham, 1999;
Wiese, and Lee, 2004; Green, 2000) has been evaluated and generic warning times have
been proposed (Lee, McGehee, Brown, and Reyes, 2002). In addition, the effects of trust
have been appraised (Parasuraman, Hancock, and Olofinboba, 1997; Ben-Yaacov, Maltz,
and Shinar, 2002; Bliss and Acton, 2003).

The key to enabling great success in these types of systems is an understanding of
the perception of situations, such as time to contact (Kemeny, et al., 2003). Much debate
exists about how vehicles enabled with these assistive systems should maintain control by
either using a distance or a time based algorithm. The issues involved with such a
decision include time or distance available for the driver to react, overall traffic flow, and
user acceptance (Wang and Rajamani, 2004). User acceptance not only determines the
overall success of such a marketing adventure but also whether the system is used by the
driver. If spacing between vehicles is too large, vehicles may be able to cut into the
available space. If too small, drivers may be uncomfortable with the short time to
collision related to the distance. Although companies are hesitant to detail any workings
of their systems, several European manufacturers seem to be using time based algorithms
(Touran, Brackstone, and McDonald, 1999). Touran, et al. (1999) details a prototype
system that used a 1.4 s target headway, which exerted a mild control of acceleration and
a limited ability to brake. If the braking rate needed is over -3 m/s, an alarm will warn
the driver to apply additional braking power. The time based system is not the only
system with advocates. Research, such as work performed by Wang and Rajamani

(2004), does exist to support distance based systems.
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Statement of the Problem

The proposed research seeks to answer the question: how are brake onset times
altered by modifying the perceptual qualities of the motion of a lead vehicle in a rear end
collision situation? As previously stated, the driving environment is quite variable. Time
or distance modifications could exist for changes in the perception of motion, day/night
changes, and driver speed. Comprehending these effects would increase our knowledge
of how drivers monitor the vehicle situations. This knowledge may aid in the design of
driver assistive systems by understanding the monitoring task the driver has in
determining when such a system fails (Stanton, Young, and McCaulder, 1997). If the
system reacts just before the driver would normally react, the driver’s determination of
the functioning of the system could become less difficult. In order to design systems
using such information, the determination of how drivers judge the necessity and timing
of vehicle braking must be investigated. This information could also provide insight in
accident reconstruction attempts. Through a better understanding of the driver, a more

accurate representation of the actual events can be made.
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CHAPTER 2

METHODS

Participants
Fifty-five Georgia Institute of Technology undergraduate students participated in
this experiment. Participants were males and females between the ages of 18 to 25. All
participants were licensed drivers with at least two years driving experience. Vision
conditions were accepted if corrected by glasses or contacts. The participants were
treated in accordance to the procedures and guidelines established by the ICH/GCP. Five
participants were removed from later analysis. Two early participants were removed
because of a modification of the number of trials presented. An additional two were
excluded for failure to follow instructions. The final excluded participant displayed
unusual behavior, failure to recall own birthday.
Apparatus
Participants were placed in one of ten individual testing stations. Each station
consisted of a desktop computer with a 17 inch CRT monitor. Available to the
participant was a brake pedal. Each testing station was separated on both sides by cubicle
walls. Because no sound was used in the simulation, a group testing environment was
used. All animations used were created using the Carrara™ 4 software package
(Eovia™, 2005). The experimental program was created and executed using Inquisit
2.0™ desktop software (Millisecond™, 2005).
Procedure

After consenting to this study, the participant was seated at the testing computer

15



and given a brief introduction to the study and the system. The goal for the participants
was to depress the brake pedal whenever they believe it was necessary to begin to stop
safely and prevent the vehicles from colliding. From this point forward, the participant
was given the ability to halt the displayed vehicle’s motion by depressing the brake pedal.
Any other inputs from the apparatus were disregarded.

Eighteen trial types were produced by the combination of luminance (2) and vehicle
rates of closure (3) and vehicle motion conditions (3). Six additional catch trial types
were included consisting of the rates of closure (3) and luminance (2) combinations but
with a vehicle that prevented a collision by altering speeds to match that of the driver’s
car. This condition was used to prevent the participants from braking as soon as the
target was present. Luminance conditions consisted of either day or night driving. The
lighting condition of the testing area mirrored the relevant luminance condition. Vehicle
motion conditions were: a) driver advancing toward stopped vehicle, b) driver advancing
toward a slower vehicle, and c) lead vehicle reversing toward stopped driver. Three
constant closure speeds were used throughout the experiment; 20 (32.2), 40 (64.4), and
60 (96.6) miles per hour (km/h). Each trial type was presented ten times in a random
order within the day and night conditions. The order of the day/night conditions was
counter-balanced between subjects. For each trial the total duration remained constant at
ten seconds, while the start distances varied dependent on rate of closure and vehicle
motion condition. The distance between the driver and the lead vehicle when the
participant depresses the brake pedal was recorded for later analysis.

After the participant completed the 240 trials, the participants were shown six no-

car animations, consisting of night and day conditions at 20, 40, and 60 mph, and asked
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to estimate the speed. Participants then completed Sarason’s (1978) Test Anxiety Scale
Survey. Once completed, the participants were given the Useful Field of View' (UFOV)
Task (Visual Resources, 1998). Finally, upon completion of the procedure, a full
explanation of the study was presented to the participants and any questions were

answered.

! Used with Author’s Permission
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CHAPTER 3

RESULTS AND ANALYSIS

Collected brake onset times for each participant were transformed to tau times
based on the known collision time. Times were aggregated based on participant means
and medians for each condition type, but with no significant differences found between

the two, means were used throughout the rest of this analysis. A mixed-model ANOVA
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Figure 1. Distribution of Test Anxiety Scores

was used to analyze the tau means. This analysis resulted from a 3 (Fear of Failure) by 2
(Luminance) by 3 (Driving Condition) by 3 (Rate of Closure). Fear of Failure was a
grouping factor where the raw scores were categorized into three groupings based on the
mean, (X = 66), and standard deviation, (std dev = 15). The mean was near the neutral
response of the survey, 69. The full distribution of scores appear close to a normal
distribution, see Figure 1, as well as the three groupings, see Figure 2. Because there was

a lack of variance in the category scores of the participants, the Useful Field of View
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Figure 2. Groupings of Test Anxiety Scores

Score was not used in the omnibus ANOVA analysis. This analysis resulted in three

statistically significant findings, two main effects and a single interaction. Rate of

Closure (F(1.098, 51.625) = 97.694, p < .01) and Condition (F(1.441, 67.716) = 10.333,

p <.01) were found to be significant as was the interaction of Rate of Closure by

Condition (F(3.607, 169.545) = 4.327, p < .01).

Additional analysis included the examination of these three effects. Results

between the three rates of closure were determined through the use of paired T-tests using

a Bonferroni correction. The analysis determined that all points when collapsed on the
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Figure 3. Tau Times Collapsed on Rate of Closure
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three rates of closure, see Figure 3, are statistically significant from each other; 20 mph —
40 mph (1(49) = 13.841, p <.01), 20 mph - 60 mph (1(49) = 14.829, p <.01), 40 mph —
60 mph (t(49) = 14.873, p <.01). A negative slope was also apparent. When tau means
are collapsed on Condition, see Figure 4, similar results were found using the same
procedure; stopped — slower vehicles (1(49) =-5.942, p <.01), stopped — reversing
vehicles (1(49) = 3.672, p <.01), slower — reversing vehicles (t(49) =5.977, p <.01). A
closer examination of the interaction between Rate of Closure and Condition can be seen
in Figure 5. Similar patterns can be seen for the 40 mph and 60 mph rates of closure,
while the 20 mph was unique. Table 1 depicts the statistical significance, using the same

procedure outlined previously, of each comparison. Only three comparisons did not
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Figure 5. Interaction between Rate of Closure and Vehicle Motion Condition
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result in statistically significant findings; stopped — reversing vehicle at 20 mph rate of

closure, and stopped — slower vehicle at 40 mph and 60 mph rates of closure. The results

Table 1. Paired T-test scores for the Interaction of Rate of Closure and Vehicle Motion

Pair t score Sig (2-tailed)
Parked 20 - Slower 20 -6.927 .000*
Parked 20 - Reversing 20 1.720 .092
Slower 20 - Reversing 20 5.669 .000*
Parked 40 - Slower 40 -0.775 442
Parked 40 - Reversing 40 4.201 .000*
Slower 40 - Reversing 40 4.079 .000*
Parked 60 - Slower 60 -2.397 .02
Parked 60 - Reversing 60 4.154 .000*
Slower 60 - Reversing 60 5.134 .000*
* denotes significant findings

of the speed estimations are shown in Figure 6. No statistical differences were found
between day and night estimations. Accuracy was found to be worse with increased

speeds.

DAY

* — —NIGHT
/
25 /

20 40 60
Speed (mph)

Figure 6. Speed Estimations for Day and Night
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CHAPTER 4

DISCUSSION

Based on the results found in this study, the use of a canonical brake time may be
unsuitable. Even the creation of a brake time algorithm based solely on speed or rate of
closure, such as a constant distance or constant tau, also seems unable to explain the
results found in this study. The only effective method of explaining braking behavior is
the cataloging of all the different braking conditions. At first examination, this goal
seems akin to an infinite task, but with the examination of studies similar to this one, the
number of conditions could be finite. The three vehicle conditions denoted in this study
could be argued to encompass all direct rear end collision scenarios.

The significance of the rate of closure is not surprising. Braking times are
expected to directly vary with the speed at which the collision might occur. The exact
relationship is of interest. When collapsed onto rate of closure, the braking model of
constant tau does not become evident, see Figure 7. Figure 8 depicts the same data with

tau transformed to distance based on the rate of closure. A braking model of constant
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Figure 7. Constant Tau Braking Method
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Figure 8. Constant Distance Braking Method

distance does not emerge. Neither method seems to explain the data collected in this
study.

The focal point of this study is the determination that lead vehicle condition has a
direct effect on braking behavior. When exploring the partial eta squares of the rate of
closure, .675, and condition effects, .180, it is interesting to note that more than a quarter
as much variance is explained with condition as rate of closure. This result makes it
impossible to create a canonical brake reaction nor a simple algorithm based on speeds.
This finding is not a surprising result, but the logic behind the resulting data is
interesting. The parked vehicle tau is statistically smaller than that found for the slower
vehicle condition. This result depicts participants braking farther away for a vehicle that
will move away from the driver. If the driver were to slam on the brake, the total
distance to the slower vehicle would be larger than the parked vehicle because the slower
vehicle continued to move away. This result may be better explained through the
interaction of the rates of closure and vehicle motion condition. Another interesting
result can be seen in the comparisons between the parked or slower vehicle conditions
versus the reversing vehicle. In this situation, the concept of locus of control infers that

brake times should be larger for reversing vehicles than for conditions where the driver’s
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vehicle is moving (e.g. Hammond and Horswill, 2002). When the driver is not in direct
control of the other vehicle, one could expect that the driver would want the reversing
vehicle to stop farther away as compared to when the driver has direct control and is
advancing toward the vehicle. On the contrary, it seems that the opposite is more likely.
Participants acted as if the driver of the lead vehicle would stop on their own volition and
only depressed the brake as a last resort. Although this may be true, additional research
is needed to determine whether the true threat of injury, as one would expect in a real
collision, has an effect on this result.

Although these main effects exist, a greater understanding may be gained be
examining the logic of the interaction between rate of closure and condition. Figure 8
depicts the same information as Figure 5 but the tau times have been transformed to
distances. It seems that the braking behavior observed changed as rates of closure

increased. At the 20 mph rate of closure, the parked and reversing conditions are

—e—stopped
—8— slower

Figure 9. Interaction with Tau Times Transformed to Distance

separate from the slower moving vehicle but not from each other. In this situation, the
drivers are viewing the slower moving vehicle as the larger collision threat. During the

40 mph and 60 mph condition, a change occurs. The slower and parked conditions are
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statistically different from the reversing condition, but not themselves. The similarity of
the parked and slower vehicle conditions denotes that participant drivers were unable to
distinguish between these conditions or at the very least treated each condition as
equivalent. This result does become concerning. The driving environment leads us to
believe that the vehicle in front of us is normally moving. This scenario is the situation
we encounter every day when driving. This flaw can become very dangerous for the
driver in question. If the driver believes that the lead vehicle is moving, the adaptation
used in their braking behavior would be very incorrect. This error would result in a
larger braking pressure being required to prevent a collision. As denoted earlier, this
effect is a change from the 20 mph rate of closure condition where the distinction
between the parked and slower moving seems to be perceptually salient. Across the
speeds, a noticeable differential exists with the braking distances of the reversing vehicle
condition. These distances suggest that a different technique is being used during these
scenarios. Interestingly, one might expect that the distances of the reversing conditions
to be larger as the issue of locus of control arises. Although this logic may be solid, the
result found during this study is not surprising based on a possible belief by the
participant that the driver of the lead vehicle will initiate their brake.

The participants’ speed estimations can be seen in Figure 6. The findings of the
underestimations of speeds from Durgin, et. al. (2005) and Recarte and Nunes (1996) are
reiterated here. The additional findings of Recarte and Nunes (1996) that estimations
become more accurate as speeds are increase are not supported by the findings of this
study. The overestimation of the 20 mph speed can be attributed to the generalization of

the overestimations. At slower speeds, it is possible that the estimation range may fall
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above and below the actual speed. This would allow the same approximate error seen at
higher speeds, to encompass both over- and underestimations for 20 mph.

The Useful Field of View data were not used in the omnibus ANOVA analysis.
The removal of this variable was because almost no variance was found on the
categorical scores each participant received. This result is congruent with studies
suggesting limited application to young drivers. An additional analysis was performed
using the raw scores of the divided and selective attention tasks contained in the UFOV.
The speed of visual processing task was not used because scores had little or no variance
across the younger subjects. A correlation matrix (see Table 2) was created using the
mean tau times collapsed on brake conditions, an additional set or times collapsed on
rates of closure, selective and divided attention scores, and Text Anxiety Scores. No

correlations relevant to Useful Field of View were found to be statistically significant.

Table 2. Correlations for UFOV and Test Anxiety

20 40 60
stopped | slower | reversing mph mpg mph Div At | Sel At FoF

Divided Pearson Correlation -0.033 | -0.008 -0.01 -0.04 0.007 0.002 1 0.039 0.121
Attention Sig (2-tailed) 0.819 0.955 0.946 0.785 0.961 0.988 0.788 0.403

N 50 50 50 50 50 50 50 50 50
Selective Pearson Correlation -0.128 -0.13 -0.06 0.108 -0.08 0.138 0.039 1 0.042
Attention Sig (2-tailed) 0.377 0.368 0.679 0.454 0.583 0.34 0.788 0.772

N 50 50 50 50 50 50 50 50 50
Fear of
Failure Pearson Correlation 0.073 0.087 -0.049 0.045 0.04 0.018 0.121 0.042 1
Score Sig (2-tailed) 0.613 0.548 0.734 0.754 0.783 0.903 0.403 0.772

N 50 50 50 50 50 50 50 50 50

These data should not be viewed as an attack on the validity regarding Useful Field of
View relation to driving, but simply that its usefulness in this study was restricted
because of the limited population used. More extensive research should be conducted
using Useful Field of View to aid in the determination of how effects determined in this

study might unfold over a more unrestricted population including older adults.
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The variable relating to Test Anxiety did not seem to be statistically relevant in
either the omnibus ANOVA or the correlation matrix. This result is not to imply that
such a survey does not provide usefulness in predicting driving behavior. More likely,
the effect of Fear of Failure or Sensation Seeking may better correlate with active driving
behavior and other collision avoidance behaviors, such as steering to evade a collision.
Additional research is needed to differentiate which behaviors fear of failure may aid in
predicting.

Human behavior in any form is highly complex even when limited to a small area
as vehicle braking. Even so, significant discoveries have been made over the years
including those involving braking behavior. Such research attempts to explain behavior
parsimoniously resulting in constant distance or constant tau theories. Although the
findings of this study provide evidence against such theories, the expectation of a
parsimonious or algorithm based explanation is not unattainable. Future research would
allow comparisons of what driving scenarios might correlate. It is possible that scenarios
where the lead vehicle is rotated 90 degrees, creating a side view, may or may not alter
brake times in the same fashion as found here. By creating studies that include such a
wide range of scenarios, the possibility of limiting the braking environment into a
manageable collection of scenarios. These scenarios could then be used actively in
prediction of braking behaviors.

The issue of understanding driver’s behavior has expanded beyond psychological
interest. Currently, some production vehicles already include automatic braking systems,
adaptive cruise control systems, or driver assist systems. This research method is critical

for the engineering groups designing such systems. Although life-saving technologies
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are always useful when the technology is created, careful consideration must be made
when integrating such technologies before an acceptable knowledge of braking behavior
exists. Any incorrect assumptions, such as an unacceptable braking model, made at the
design stage of these systems could cause injury to a driver who trusts in such a system.
In such a case, the system has the potential to cause more harm than good.

This study, in conjunction with current research, continues to bridge engineering
design with psychology’s desire to explain human behavior. Strengthening this
interaction will supply trustworthy, more effective, and safer driving technologies. These
technologies can then be ubiquitously integrated into our society with confidence that the

designs integrate crucial knowledge of human behavior.
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APPENDIX A

ANALYSIS RESULTS

General Linear Model

Within-Subjects Factors

Measure: tau
Dependent
day speed cond ‘Variable
1 1 1 Dcar20_
MEAN
2 Dcatch20_
MEAN
3 Drev20_
MEAN
2 1 Dcard0_
MEAN
2 Dcatch40_
MEAN
3 Dreva40_
MEAN
3 1 Dcar60_
MEAN
2 Dcatch60_
MEAN
3 Drev60_
MEAN
2 1 1 Near20_
MEAN
2 Ncatch20_
MEAN
3 Nrev20_
MEAN
2 1 Near40_
MEAN
2 Ncatch40_
MEAN
3 Nrev40_
MEAN
3 1 Ncar60_
MEAN
2 Ncatch60_
MEAN
3 Nrev60_
MEAN

Between-Subjects Factors

N
FF 1.00 [
2.00 38
3.00 5

Descriptive Statistics

FF Mean Std. Deviation N
Dcar20_MEAN 1.00 2597.8458 1624.29157 6

2.00 3058.0724 1348.85084 39

3.00 2880.4400 836.50424 5
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Descriptive Statistics

FF Mean Std. Deviation
Dcar20_MEAN Total 3021.0820 1319.94980 50
Dcatch20_MEAN  1.00 3229.5167 1606.54685 5]
2.00 3396 9453 1289.86744 39
3.00 3174.0800 883.36793 5
Total 3354.5673 1274.36153 50
Drev20_MEAN 1.00 3019.0500 1691.64398 6
2.00 2865.3963 1201.97573 39
3.00 26308200 976.25698 5
Total 2860.3771 1224.21545 50
Dcard0_MEAN 1.00 2162 0500 795.06822 6
2.00 2205 3164 743.93335 39
3.00 2086.3000 565.54281 5
Total 21882228 721.93149 50
Dcatch40_MEAN  1.00 2024 9148 1005.63747 6
2.00 2230.2916 832.60894 39
3.00 2060 9400 698.60007 5
Total 2188.7113 828.83941 50
Drev40_MEAN 1.00 1965 4509 957.07067 6
2.00 2021.0429 778.19770 39
3.00 1920.9800 788.38133 5
Total 2004.3655 784.19702 50
Dcar60_MEAN 1.00 1611.3704 669.73022 [
2.00 1624.0533 606.36889 39
3.00 1606.5000 427 97578 5
Total 1620.7760 588.13572 50
Dcatch60_MEAN  1.00 1554 6444 620.22018 &
2.00 1667.6248 605.53134 39
3.00 1619.3400 496.11888 5
Total 1649.2387 587.49963 50
Drev60_MEAN 1.00 1601.7500 630.57357 6
2.00 1498.8098 523.53794 39
3.00 1433.8822 514.02733 6
Total 1504.6699 525.73462 50
Ncar20_MEAN 1.00 2987.3888 1738.90234 6
2.00 2854 4618 111496342 39
3.00 3593.7125 247946043 ]
Total 2444.3381 1350.61469 50
Ncatch20_MEAN  1.00 3229.5222 1771.81895 6
2.00 3161.7195 1125.00060 39
3.00 3742.2900 2204 90600 5
Total 3227.9129 1314.99041 50
Nrev20_MEAN 1.00 2996.0000 1666.23467 6
2.00 2798.0587 1254.19742 39
3.00 33551891 2573.42379 5
Total 2877.5247 1440.07843 50
Ncar40_MEAN 1.00 2192.5556 1058.81264 6
2.00 2067.7125 703.05007 39
3.00 2507.9967 1642.02888 5
Total 2126.7220 857 87745 50
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Descriptive Statistics

FF Mean Std. Deviation
Ncatch40_MEAN  1.00 2261.4333 1191.07253 6
2.00 2117.8944 841.56209 39
3.00 2530.0215 1559.77681 5
Total 2176.3318 953.40013 50
Nrev40_MEAN 1.00 2058.1444 865.28674 6
2.00 1911.6291 801.18438 39
3.00 2143.8600 1644.48247 5
Total 1952 4341 894 22336 50
Ncar60_MEAN 1.00 1672.5500 699.75416 6
2.00 1625.2373 651.46712 39
3.00 1941.1509 1407 56524 5
Total 1662.5062 741.53435 50
Ncatch60_MEAN  1.00 1584 0056 680.00963 6
2.00 1746.0325 710.30578 39
3.00 2020.4382 1334.00107 5
Total 1755.2298 770.81378 50
NrevB0_MEAN 1.00 1657.8352 832.84586 6
2.00 1466.5797 590.76698 39
3.00 1545.0800 1007.68578 5
Total 1497.3804 654 57490 50
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Multivariate Tests®

Effect Value F Hypothesis df Error df Sig.
day Pillai's Trace 031 1.519P 1.000 47.000 224
Wilks' Lambda 969 1.519° 1.000 47.000 224
Hotelling's Trace 032 1.519° 1.000 47.000 224
Roy's Largest Root .032 1.519° 1.000 47.000 224
day * FF Pillai's Trace 088 22540 2.000 47.000 118
Wilks' Lambda 912 2.254° 2.000 47.000 16
Hotelling's Trace 096 2.254° 2.000 47.000 116
Roy's Largest Root .096 2.254° 2.000 47.000 116
speed Pillai's Trace 693 51.839° 2.000 46.000 .000
Wilks' Lambda 307 51.839° 2.000 46.000 000
Hotelling's Trace 2.254 51.839° 2.000 46.000 .000
Roy's Largest Root 2.254 51.839° 2.000 46.000 000
speed * FF Pillai's Trace 004 043 4.000 94.000 .996
Wilks' Lambda 996 0420 4.000 92.000 997
Hotelling's Trace 004 042 4.000 90.000 .997
Roy's Largest Root .004 .086° 2.000 47.000 918
cond Pillar's Trace 243 7.403° 2.000 46.000 .002
Wilks' Lambda 757 7.403° 2.000 46.000 .002
Hotelling's Trace 322 7.403° 2.000 46.000 .002
Roy's Largest Root 322 7.403° 2.000 46.000 002
cond * FF Pillai's Trace 077 939 4.000 94.000 445
Wilks’ Lambda 925 9200 4.000 92.000 456
Hotelling's Trace 080 900 4.000 90.000 467
Roy's Largest Root 048 1.128¢ 2.000 47.000 332
day " speed Pillai's Trace .006 141° 2.000 46.000 869
Wilks' Lambda 994 1410 2.000 46.000 869
Hotelling's Trace 006 1410 2.000 46.000 869
Roy's Largest Root 006 1410 2.000 46.000 869
day * speed * FF Pillai's Trace 77 2280 4.000 94.000 .066
Wilks' Lambda 829 2.267° 4.000 92.000 068
Hotelling's Trace 200 2253 4.000 90.000 070
Roy's Largest Root 159 3.726° 2.000 47.000 031
day * cond Pillai's Trace 022 5140 2.000 46.000 601
Wilks' Lambda 978 514° 2.000 46.000 601
Hotelling's Trace 022 5140 2.000 46.000 601
Roy's Largest Root 022 514° 2.000 46.000 601
day " cond * FF Pillai's Trace 040 481 4.000 94.000 750
Wilks' Lambda 960 4759 4.000 92.000 754
Hotelling's Trace 042 469 4.000 90.000 758
Roy's Largest Root 041 .963¢ 2.000 47.000 389
speed " cond Pillai's Trace 261 3.893° 4.000 44.000 .009
Wilks' Lambda 739 3.893° 4,000 44.000 .009
Hotelling's Trace .354 3.893° 4.000 44.000 .009
Roy's Largest Root 354 3.893° 4.000 44.000 009
speed * cond * FF Pillai's Trace 076 444 8.000 90.000 .892
Wilks' Lambda 524 4410 8.000 88.000 .893
Hotelling's Trace 082 438 8.000 86.000 895
Roy's Largest Root 078 B78¢ 4.000 45.000 485
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Multivariate Tests®

Effect Value Hypothesis df Error df Sig.

day * speed * cond Pillai's Trace ‘068 7990 4.000 44000 532
Wilks' Lambda 932 7990 4.000 44.000 532
Hotelling's Trace 073 7990 4.000 44000 532
Roy's Largest Root 073 7990 4.000 44.000 532

day " speed * cond * FF  Pillai's Trace 054 312 8.000 90.000 960
Wilks' Lambda 947 3070 8.000 88.000 962
Hotelling's Trace 056 301 8.000 86.000 964
Roy's Largest Root .042 472¢ 4.000 45.000 756
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Multivariate Tests®

Partial Eta Noncent. Observed
Effect Squared Parameter Power®
day Pillai's Trace 031 1.519 227
Wilks' Lambda .031 1.519 227
Hotelling's Trace 031 1.519 227
Roy's Largest Root 031 1.519 227
day * FF Pillai's Trace .088 4508 436
Wilks' Lambda 088 4508 436
Hotelling's Trace .088 4.508 436
Roy's Largest Root 088 4.508 436
speed Pillai's Trace 693 103.677 1.000
Wilks' Lambda 693 103.677 1.000
Hotelling's Trace 693 103.677 1.000
Roy's Largest Root 693 103.677 1.000
speed * FF Pillai's Trace Q02 173 058
Wilks' Lambda 002 170 058
Hotelling's Trace .002 166 .058
Roy's Largest Root 004 172 062
cond Pillai's Trace 243 14.806 .925
Wilks' Lambda 243 14 806 .825
Hotelling's Trace 243 14.806 925
Roy's Largest Root 243 14.806 .925
cond " FF Pillai's Trace .038 3.755 287
Wilks' Lambda 038 3678 282
Hotelling's Trace .038 3.601 276
Roy's Largest Root 046 2.255 237
day * speed Pillai's Trace .006 282 070
Wilks' Lambda .006 282 070
Hotelling's Trace 006 .282 070
Roy's Largest Root .006 .282 070
day * speed * FF Pillai's Trace .088 9.121 645
Wilks' Lambda Q90 9.068 642
Hotelling's Trace 091 9.012 638
Roy's Largest Root 137 7.451 655
day * cond Pillai's Trace 022 1.028 129
Wilks' Lambda 022 1.028 129
Hotelling's Trace 022 1.028 129
Roy's Largest Root 022 1.028 129
day * cond * FF Pillai's Trace .020 1.922 160
Wilks' Lambda .020 1.899 158
Hotelling's Trace .020 1.876 156
Roy's Largest Root .039 1.926 207
speed * cond Pillai's Trace .261 15.571 .866
Wilks' Lambda .261 16.571 .866
Hotelling's Trace .261 15.571 .866
Roy's Largest Root 261 15.571 866
speed * cond * FF Pillai's Trace .038 3.548 .196
Wilks' Lambda .039 3.528 195
Hotelling's Trace 039 3.506 193
Roy's Largest Root 072 3.513 257
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Multivariate Tests®

Partial Eta Noncent. Observed

Effect Squared Parameter Power®
day * speed * cond Pillai's Trace 068 3.196 235
Wilks' Lambda 068 3.196 235
Hotelling's Trace 068 3196 235
Roy's Largest Root 068 3.196 235
?ay *speed * cond *FF  Pillai's Trace 027 2,499 146
Wilks' Lambda .027 2.452 143
Hotelling's Trace 027 2.405 A4
Roy's Largest Root 040 1888 151

. Computed using alpha = .05

. Exact statistic

a
b
¢. The statistic is an upper bound on F that yields a lower bound on the significance level.
d

‘ Design: Intercept+FF
Within Subjects Design: day+speed+cond+day*speed+day*cond+speed*cond +day*speed cond

Measure: tau

Mauchly's Test of Sphericity®

Approx

Within Subjects Effect | Mauchly's W Chi-Square df Sig

day 1.000 000 Q E
speed .094 108.658 2 .000
cond 524 29.704 2 .000
day * speed 418 40.171 2 000
day " cond 811 9.655 2 .008
speed * cond 563 26.064 9 002
day * speed * cond .526 29.140 9 .001

Tests the null hypothesis that the error covariance matrix ol

proportional to an identity matrix

the orthonormalized transformed dependent variables is
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Mauchly's Test of Sphericity?

WMeasure: tau

Epsiton®
Greenhouse
Within Subjecls Effect -Geisser Huynh-Feldt | Lower-bound
day 1.000 1.000 1.000
speed 525 549 500
cond 678 720 500
day * speed 632 669 500
day * cond 841 .906 500
speed * cond .800 902 250
day * speed * cond .823 930 250

Tests the null hypothesis that the error covariance matrix of the orthonormalized Iransiormed dependent variables is
proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in
the Tests of Within-Subjects Effects table.

b.
Design: Intercept+FF
Within Subjects Design: day+speed+cond+day*speed+day*cond+speed*cond+day*speed’cond
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Measure: tau

Tests of Within-Subjects Effects

Type lll Sum
Source of Squares df Mean Square F
day Sphericity Assumed 1971368.528 1 1971368.528 1519
Greenhouse-Geisser 1971368.528 1.000 1971368.528 1.519
Huynh-Feldt 1971368.528 1.000 1971368.528 1.519
Lower-bound 1971368.528 1.000 1971368.528 1.519
day " FF Sphericity Assumed 5852200617 2 2926100.308 2.254
Greenhouse-Geisser 5852200617 2.000 2926100.308 2.254
Huynh-Feldt 5852200617 2.000 | 2826100.308 2.254
Lower-bound 5852200617 2.000 2926100.308 2.254
Error(day) Sphericity Assumed - |61010187.485 47 1298089.095
Greenhouse-Geisser (61010187 485 47.000 1298089.095
Huynh-Feldt 61010187.485 47.000 1298089.095
Lower-bound 51010187.485 47.000 1298089.095
speed Sphericity Assumed 152883743 4 2 | 76441871.704 97 694
Greenhouse-Geisser 152883743.4 1.049 | 145681373.92 97.694
Huynh-Feldt 152883743 .4 1.098 | 139188052.14 97 654
Lower-bound 152883743.4 1.000 | 152883743.41 97.694
spead * FF Sphericity Assumed 204390498 4 51097 625 065
Greenhouse-Geisser 204390.498 2.099 97380.820 065
Huynh-Feldt 204390498 2197 93040.354 065
Lower-hound 204390.498 2.000 102195.249 065
Errar(speed) Sphericity Assumed 73551235.716 94 782459.954
Greenhouse-Geisser  |73551235.716 49.324 1491196.365
Huynh-Feldt 73551235.718 51.625 1424730.642
Lower-bound 73551235.716 47.000 1564919.909
cond Sphericity Assumed 4305416.773 2 2152708.387 10.333
Greenhouse-Geisser 4305416.773 1.355 3176814.275 10.333
Huynh-Feldt 4305416.773 1.441 2988295.368 10.333
Lower-bound 4305416.773 1.000 4305416.773 10.333
cond * FF Sphericity Assumed 834896.617 4 208724.154 1.002
Greenhouse-Geisser 834896.617 2711 308020.295 1.002
Huynh-Feldt 834896 617 2882 289741717 1.002
Low:er-bound 834856 617 2.000 417448 309 1.002
Erroi{cond) Sphericity Assumed | 19582996523 94 208329.750
Greenhouse-Geisser  |19582996.523 63.697 307438.262
Huynh-Feldt 19582996.523 67.716 288194.222
Lower-bound 19582996.523 47.000 416659.500
day * speed Sphericity Assumed 67116.423 2 33558.212 243
Greenhouse-Geisser 67116.423 1.264 53103.167 243
Huynh-Feldt 67116.423 1.338 50162201 243
Lower-bound 67116.423 1.000 67116.423 243
day * speed * FF Sphericity Assumed 1224609 627 4 306152.407 2.219
Greenhouse-Geisser 1224609.627 2.528 484461.523 2.219
Huynh-Feldt 1224609.627 2,676 457631.019 2.219
Lower-bound 1224609.627 2.000 612304.814 2.219
Error(day*speed) Sphericity Assumed 12971891.146 94 137998.842
Greenhouse-Ceisser  |[12971891.146 59.403 218372.051
Huynh-Feldt 12971891.146 62.885 206278.146
Lower-bound 12971891 146 47.000 275997 684
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Measure: tau

Tests of Within-Subjects Effects

Type lll Sum |

Source of Squares df Mean Square F
day * cond Sphericity Assumed 49767 868 2 24883934 382
Greenhouse-GCeisser 49767.868 1.682 29594.943 382
Huynh-Feldt 49767.868 1.811 27477.479 382
Lower-bound 49767.868 1.000 49767.868 382
day * cond * FF Sphericity Assumed 135147 347 4 33786.837 519
Greenhouse-Geisser 135147347 3.363 40183.338 519
Huynh-Feldt 135147.347 3.622 37308.293 519
Lower-bound 135147.347 2.000 67573.674 519
Error(day*cond) Sphericity Assumed 6121934 .472 94 £65126.962
Greenhouse-Geisser 6121934 .472 79.037 77456.755
Huynh-Feldt 6121934.472 85.128 71914.866
Lower-bound 6121934.472 47.000 130253.925
speed * cond Sphericity Assumed 1198396.135 4 299599.034 4.327
Greenhouse-Geisser 1188396.135 3.200 374495.549 4.327
Huynh-Feldt 1198396.135 3.607 332210.488 4327
Lower-bound 1198396.135 1.000 1198396.135 4.327
speed * cond * FF Sphericity Assumed 195664.174 8 24458.022 .353
Greenhouse-Geisser 195664.174 6.400 30572.262 .353
Huynh-Feldt 195664.174 7.215 27120.286 353
Lower-bound 195664.174 2.000 97832.087 .353
Error(speed*cond) Sphericity Assumed 13018195.833 188 69245.723
Greenhouse-Geisser  |13018195.833 150.401 86556.403
Huynh-Feldt 13018195.833 169.545 78783.142
Lower-bound 13018195.833 47.000 276982.890
_day * speed * cond Sphericity Assumed 219002.037 4 54750.508 1.037
Greenhouse-Geisser 219002.037 3.292 66531.917 1.037
Huynh-Feldt 219002.037 3.720 58875.405 1.037
Lower-bound 219002.037 1.000 219002.037 1.037
day * speed * cond * FF Sphericity Assumed 175987.512 8 21998.439 417
Greenhouse-Geisser 175987.512 5.583 26732141 417
Huynh-Feldt 175987.512 7.440 23655.798 417
Lower-bound 175987.512 2.000 87993.756 417
-Error(day‘speed'cond) Sphericity Assumed 9923531612 188 52784743
Greenhouse-Geisser 9923531.612 154.709 64143.149
Huynh-Feldt 9923531.612 174 828 56761.538
Lower-bound 9923531.612 47.000 211138.970

38




Measure: tau

Tests of Within-Subjects Effects

Partial Eta Noncent. Observed
Source Sig Squared Parameter Power”
day Sphericity Assumed 224 031 1.519 227
Greenhouse-Geisser 224 031 1.519 227
Huynh-Feldt 224 031 1.519 227
Lower-bound 224 1031 1.519 .227
day * FF Sphericity Assumed 116 .088 4.508 436
Greenhouse-Geisser 116 .088 4.508 436
Huynh-Feldt 116 .088 4.508 436
Lower-bound 116 .088 4.508 436
Error(day) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
speed Sphericity Assumed .000 675 195.389 1.000
Greenhouse-Geisser 000 675 102.524 1.000
Huynh-Feldt .000 675 107.307 1.000
Lower-bound 000 675 97694 1.000
speed * FF Sphericity Assumed 992 .003 .261 083
Greenhouse-Geisser 943 003 137 060
Huynh-Feldt 949 003 143 .060
Lower-bound 937 003 131 059
Error(speed) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
cond Sphericity Assumed .000 180 20.666 .985
Greenhouse-Geisser .001 180 14.004 943
Huynh-Feldt 001 180 14.888 852
Lower-bound 002 180 10.333 .883
cond * FF Sphericity Assumed 411 041 4.008 .306
Greenhouse-Geisser 392 .041 2.716 248
Huynh-Feldt 395 041 2.887 256
Lower-bound 375 041 2.004 214
Error(cond) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
day * speed Sphericity Assumed 785 .005 486 .087
Greenhouse-Geisser 680 005 307 .080
Huynh-Feldt 693 .005 325 081
Lower-bound 624 .005 .243 077
day * speed * FF Sphericity Assumed 073 .086 8.874 631
Greenhouse-Geisser 105 .086 5.608 491
Huynh-Feldt 101 .086 5.937 507
Lower-bound 120 086 4.437 430
Error(day*speed) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
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Measure: tau

Tests of Within-Subjects Effects

Partial Eta Noncent Observed
Source Sig Squared Parameter Power”
day * cond Sphericity Assumed 683 .008 754 110
Greenhouse-Geisser 647 .oos 643 105
Huynh-Feldt 663 .008 692 107
Lower-bound 539 .008 .382 .093
day * cond * FF Sphericity Assumed 722 .022 2.075 A70
Greenhouse-Geisser 651 .022 1.745 .158
Huynh-Feldt 704 2022 1.879 163
Lower-hound 599 .022 1.038 130
Errer(day*cond) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
speed * cond Sphericity Assumed 002 084 17.306 927
Greenhouse-Geisser 005 084 13.845 877
Huynh-Feldt 003 084 15.608 905
Lower-bound 043 084 4.327 531
speed * cond * FF Sphericity Assumed 943 015 2.826 167
Greenhouse-Geisser 916 015 2.261 152
Huynh-Feldt 932 015 2.548 159
Lower-bound 704 .015 706 103
Error(speed-cond) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
day * speed * cond Sphericity Assumed .389 022 4.149 324
Greenhouse-Geisser 382 022 3414 291
Huynh-Feldt 387 .022 3.858 311
Lower-bound 314 022 1.037 170
day * speed * cond * FF Sphericity Assumed 910 017 3.334 193
Greenhouse-Geisser .82 017 2.744 176
Huynh-Feldt 900 017 3.100 186
Lower-bound 662 017 .834 114

Error(day*speed’cond)

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

a. Computed using alpha = .05
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Tests of Within-Subjects Contrasts

Measure: tau

Type !l Sum
Source day speed cond of Squares df Mean Square
day Linear 1971368.528 1 1971368.528
day * FF Linear 5852200.617 2 | 2926100.308
Error(day) Linear 61010187.485 47 1298089.095
spe&d Linear 147863458.3 1| 14786345831
o Quadratic 5020285.103 1 5020285.103
speed * FF Linear 185826.032 2 92913.016
Quadratic 18564.467 2 9262.233
Error(speed) Linear 58423481.769 47 | 1455818761
Quadratic 5127753.948 47 109101.148
cond Linear 1531549.247 1 1531549.247
Quadratic 2773867.526 1 2773867.526
cond * FF Linear 421445775 2 210722.887
Quadratic 413450.842 2 206725.421
Error(cond) Linear 10955111.923 47 233087.488
Quadratic 8627884.600 47 183572.013
day * speed Linear  Linear 56391.571 1 56391.571
Quadratic 10724.852 1 10724.852
day * speed * FF Linear Linear 1114802.329 2 557401.165
Quadratic 109807.298 2 54803 649
Error(day*speed) Linear  Linear 10416007.486 47 221617.181
Quadratic 2555883.661 47 54380503
day " cond Linear Linear 23927.481 1 23827.481
Quadratic 25840.387 1 25840.387
day * cond * FF Linear Linear 115449.009 2 57724.504
Quadratic 19698.338 2 9849.169
Error(day cond) Linear Linear 4358505 576 47 92734 181
Quadratic 1763428.896 47 37519.764
speed * cond Linear Linear 23145016 1 23145016
Quadratic 840035.073 1 840035.073
Quadratic  Linear 89371511 1 89371.511
Quadratic 245844 .535 1 245844 535
speed " cond * FF Linear Linear 9755.504 2 4877.752
Quadratic 47825015 2 23912 508
Quadratic Linear 92995.697 2 46497848
Quadratic 45087.958 2 22543 979
Error{speed*cond) Linear Linear 4609510.875 47 98074.699
Quadratic 3380355.819 47 71622 464
Quadratic  Linear 1883232 654 47 40068.780
Quadratic 3145096.485 47 66916.946
day " speed * cond Linear Linear Linear 28056.296 1 28056.296
Quadratic 122252.870 1 122252.870
Quadratic Linear 11.286 1 11.286
Quadratic 68681.586 1 68681 586
day ~ speed “ cond " FF  Linear Linear Linear 55772 464 2 27886.232
Quadratic 46966.454 2 23483.227
Quadratic  Linear 23931.050 2 11965.525
Quadratic 49317.545 2 24658.772
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Tests of Within-Subjects Contrasts
Measure: tau

Type Il Sum
Source day speed cond of Squares df Mean Square
Error(day*speed cond) Linear  Linear Linear 2551316.614 47 54283.332
Quadratic 3141147.789 47 66832.932
Quadratic ~ Linear 1924278.746 47 40942.101
Quadratic 2306788.463 47 49080.606
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Tests of Within-Subjects Contrasts

Measure: tau

Partial Eta
Source day speed cond F Sig. Squared
day Linear 1.519 224 031
day * FF Linear 2.254 116 .088
Error(day) Linear
speed Linear 101.567 000 684
Quadratic 46.015 000 485
speed * FF Linear .064 938 003
Quadratic .085 .919 004
Error(speed) Linear
Quadratic
cond Linear 8.571 014 123
Quadratic 15.111 000 243
cond * FF Linear 904 412 037
Quadratic 1.126 333 .046
Error(cond) Linear
Quadratic
day * speed Linear Linear 254 616 005
Quadratic 197 659 004
day " speed * FF Linear Linear 2.515 092 097
Quadratic 1.010 372 041
ﬁﬁday*speed) Linear  Linear
Quadratic
day " cond Linear Linear .258 814 .005
Quadratic 689 411 014
day " cond " FF Linear Linear 622 541 026
Quadratic .263 770 011
Error{day*cond) Linear Linear
o Quadratic
speed * cond Linear Linear 236 629 005
Quadratic 11.680 001 199
Quadratic  Linear 2.230 142 045
Quadratic 3.674 .061 073
speed " cond * FF Linear Linear .050 952 .002
Quadratic 332 719 014
Quadratic  Linear 1.160 322 047
Quadratic 337 716 014
Error(speed*cond) Linear Linear
Quadratic
Quadratic Linear
Quadratic
day * speed * cond Linear  Linear Linear 517 476 011
Quadratic 1.829 183 .037
Quadratic  Linear Q00 987 000
Quadratic 1.399 243 029
day * speed *cond * FF  Linear Linear Linear 514 602 021
Quadratic 351 706 .015
Quadratic Linear 292 748 .012
Quadratic 502 508 .021
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Tests of Within-Subjects Contrasts
Measure: tau

Partial Eta
Source day speed cond F Sig Squared
Error(day*speed*cond) Linear Linear Linear
Quadratic
Quadratic  Linear
Quadratic
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Tests of Within-Subjects Contrasts

Measure: tau
Noncent Observed
Source day speed cond Parameter Power”
day Linear 1.519 227
day * FF Linear 4.508 436
Error{day) Linear
speed Linear 101.567 1.000
Quadratic 46.015 1.000
speed * FF Linear 128 .059
Quadratic 170 .062
Error(speed) Linear
Quadratic
cond Linear 6.571 709
Quadratic 15.111 .968
cond * FF Linear 1.808 197
Quadratic 2.252 236
Error(cond) Linear
Quadratic
day " speed Linear Linear .254 .078
Quadratic 197 072
day " speed * FF Linear Linear 5.030 480
Quadratic 2.019 216
Error(day*speed) Linear Linear
Quadratic
day * cond Linear Linear .258 .079
Quadratic 689 128
day *cond * FF Linear Linear 1.245 148
Quadratic 525 089
Error(day*cond) Linear Linear
Quadratic
speed * cond Linear Linear 236 .076
Quadratic 11.680 917
Quadratic  Linear 2.230 310
Quadratic 3.674 467
speed * cond * FF Linear Linear .099 057
Quadratic 665 100
Quadratic  Linear 2.321 243
Quadratic 674 101
Error(speed*cond) Linear Linear
Quadratic
Quadratic  Linear
Quadratic
day “ speed * cond Linear  Linear Linear 517 .108
Quadratic 1.829 263
Quadratic  Linear .000 .050
Quadratic 1.399 212
day “speed *cond * FF Linear  Linear Linear 1.027 130
Quadratic .703 .103
Quadratic  Linear 585 094
Quadratic 1.005 128
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Measure: tau

Tests of Within-Subjects Contrasts

Noncent. Observed
Source day speed cond Parameter Power”
Error{day*speed*cond) Linear Linear Linear
Quadratic
Quadratic  Linear
Quadratic
a. Computed using alpha = .05
Tests of Between-Subjects Effects
Measure: tau
Transformed Variable: Average
Type Il Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
Intercept 2171320091 1 | 2171320091.0 159.115 .000 772
FF 1513664.902 2 756832.451 055 .946 002
Error 641373242.8 47 | 13646239.208
Tests of Between-Subjects Effects
Measure: tau
Transformed Variable: Average
Noncent. Qbserved
Source Parameter Power”
Intercept 159.115 1.000
FF 111 058
Error

a. Computed using alpha = .05
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T-Test

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean

Pair average20 3047 8337 50 1212.63672 | 171.49273
1 average40 2106.1313 50 780.26906 | 110.34671
Pair average20 3047 6337 50 1212.63672 | 171.49273
2 average60 1614.9668 50 598.54158 84.64656
Pair average40 2106.1313 50 780.26906 | 110.34671
3 average60 1614.9668 50 598.54158 84.64656
Pair caraverage 2260.6078 50 844.16056 | 119.38233
4 calchaverage | 23519986 50 89342617 | 126.34854
Pair caraverage 2260.6078 50 844.16056 | 119.38233
E revaverage 2116.1253 50 863.31998 | 122.09188
Pair calchaverage 2391.9986 50 893.42617 | 126.34954
6 revaverage 2116.1253 50 863.31998 | 122.09188

- . Paired Samples Correlations

N Correlation Sig.

Pair 1 average20 & average40 50 977 000
Pair2  average20 & average60 50 938 .000
Pair 3 average40 & average60 50 977 000
Pair 4  caraverage &

catchaverage 50 -985 oy
Pair5  caraverage & revaverage 50 947 .000
Pair6  calchaverage &

revaverage 2y EEn Y

Paired Samples Test
Paired Differences
95% Confidence Interval
Std. Error of the Difference
Mean Std. Deviation Mean Lower Upper t

Pair 1 average20 - average40 941.50243 480.98432 68.02146 | 804.80819 | 1078.1967 13.841
Pair 2 average20 - average60 1432.6669 683.17639 96.61573 | 1238.5103 | 1626.8234 14.829
Pair 3  average40 - averages0 491.16443 233.52200 33.02500 | 424.79821 557.53065 14.873
Pair4  caraverage -

catchaverage -131.39078 156.36634 22.11354 |-175.82960 | -86.95195 -5.942
Pair 5 caraverage - revaverage | 144.48257 278.19337 39.34248 65.42088 | 223.54425 3.672
Pair 6 catchaverage -

revaverage 275.87335 326.34930 46.15276 | 183.12590 | 368.62079 5977
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Paired Samples Test

df Sig. (2-tailed)
Par 1 averageZ0 - average40 49 000
Pair2  average20 - average60 49 .000
Pair 3 average40 - average60 49 .000
Pair4 caraverage -
catchaverage 48 oy
Pair 5 caraverage - revaverage 49 001
Pair6 catchaverage -
revaverage . —
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T-Test

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair car20av 2982.7100 50 1222.28018 | 172.85793
1 catch20av | 3291 2401 50 1233.55247 | 174.45066
Pair car20av 2982.7100 50 1222.29018 | 172.85793
2 rev20av 2868.9509 50 1262 63176 | 178.56310
Pair catch20av 3291.2401 50 1233.55247 | 174.45066
3 rev20av 2868.9509 50 1262.63176 | 178.56310
Pair cardQav 21574724 50 735.49142 | 104.01419
4 catch4Qav 2182.5215 50 854 89672 | 120.90085
Pair catch40av 21825215 50 854 89672 | 120.90065
5 rev40av 1978.3998 50 802.54588 | 113.49713
Pair car40av 2157.4724 50 735.49142 | 104.01419
6 reva0av 1978.3998 50 802.54588 | 113.49713
Pair car60av 1641.6411 50 627.03750 88.67649
7 catch60av | 1702.2343 50 641.71999 90.75291
Pair catchB0av 1702.2343 50 641.71999 90.75291
8 revB0av 1501.0251 50 570.19264 80.63742
Pair car60av 1641.6411 50 627.03750 88.67649
9 revB0av 1501.0251 50 570.19264 80.63742
Paired Samples Correlations
N Correlation Sig.
Pair 1 car20av & caich20av 50 967 000
Pair2  car20av & rev20ayv 50 930 000
Pair 3 catch20av & rev20av 50 911 000
Pair4  card40av & catch40av 50 970 000
Pair & catch40av & rev40av 50 911 000
Pair& card40av & revdQay 50 927 000
Pair 7 car60av & catch60av 50 961 000
Pair8 catch60av & rev60av 50 902 000
Pair 9 car60av & revB0av 50 924 000
Paired Samples Test
Paired Differences
95% Confidence Interval
Std. Error of the Difference
Mean Std. Deviation Mean Lower Upper t
Pair 1 car20av - catch20av [-308.53004 314.93980 4453921 |-398.03494 |(-219.02514 -6.927
Pair2  car20av - rev20av 113.75913 467.59750 66.12827 -19.13061 | 246.64887 1.720
Pair 3  catch20av - rev20av | 422.28917 526 71336 7448852 | 272.69889 | 571.97945 5.669
Pair4  car40av - catchd0av | -25.04911 228.43535 32.30564 | -89.96971 39.87150 -775
Pair§  catch40av - revd0av | 204.12173 353.86659 50.04429 | 103.55396 | 304.68950 4.079
Pair6  car40av - rev40av 179.07262 301.40541 4262516 93.41415 | 264.73109 4.201
Pair7  car60av - catch60av -60.59318 178.76052 25.28056 |-111.39635 -9.79000 -2.397
Pair8 catch60av - rev60av | 201.20914 277.11594 39.19011 122.45366 | 279.96462 5.134
Pair 9  car60av - rev60av 140.61596 239.34062 33.84788 7259611 | 208.63581 4.154
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Paired Samples Test

df Sig. (2-tailed)
Pair 1 car20av - catch20av 49 000
Pair2  car20av - rev20av 49 092
Pair3  catch20av - rev20av 49 .000
Pair4  car40av - catch40av 49 442
Pair5  catch40av - rev40av 49 .000
Pair6  card0av - rev40av 49 000
Pair7  car60av - catch60av 49 020
Pair8 catch60av - revB0av 49 .000
Pair9 carB0av - rev60av 49 .000
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Correlations

Correlations

caraverage | catchaverage | revaverage | average20 | averaged0
caraverage Pearson Correlation 1 985" 947 .986™ 987"
Sig. (2-tailed) .000 000 000 .000
N 50 50 50 50 50
catchaverage  Pearson Correlation .985* 1 9321 .978* 984"
Sig. (2-tailed) .000 .000 .000 .000
N 50 50 50 50 50
revaverage Pearson Correlation 9477 932 1 962 970
Sig. (2-tailed) 000 000 .000 .000
N 50 50 50 50 50
average20 Pearson Correlation .986*1 .978* .962* 1 977
Sig. (2-tailed) 000 000 .000 .000
N 50 50 50 50 50
average40 Pearson Correlation 9871 9847 970" 9771 1
Sig. (2-tailed) 000 000 000 000
N 50 50 50 50 50
average60 Pearson Correlation 963 963* .956™ .938* 977
Sig (2-tailed) 000 000 .000 .000 000
N 50 50 50 50 50
FF Pearson Correlation 047 054 - 016 030 027
Sig. (2-tailed) 747 709 EXR 838 .854
N 50 50 50 50 50
DivAt Pearson Correlation -.033 -.008 -.010 -.040 .007
Sig. (2-tailed) .819 .955 946 785 .961
N 50 50 50 50 50
SelAt Pearson Correlation - 128 - 130 -.060 -.108 -.080
Sig. (2-tailed) 37T 368 679 454 583
N 50 50 50 50 50
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Correlations

average60 | FF DivAt SelAt

caraverage Pearson Correlation 963 047 -033 -128

Sig. (2-tailed) .000 747 819 377

N 50 50 50 50

catchaverage  Pearson Correlation 963 .054 -.008 -130

Sig. (2-tailed) 000 709 955 368

N 50 50 50 50

revaverage Pearson Correlation 956" -.016 -.010 -.060

Sig (2-tailed) 000 911 946 679

N 50 50 50 50

average20 Pearson Correlation 938" .030 -.040 -.108

Sig. (2-tailed) 000 838 785 454

N 50 50 50 50

average40 Pearson Correlation 9771 .027 .007 -.080

Sig. (2-tailed) 000 .854 .961 583

N 50 50 50 50

average60 Pearson Correlation 1 .028 -.002 -.138

" Sig. (2-tailed) 845 988 340

N 50 50 50 50

FF Pearson Correlation 028 1 159 036

Sig. (2-tailed) 845 269 804

N 50 50 50 50

DivAt Pearson Correlation -.002 159 1 039

Sig. (2-tailed) 988 269 788

N 50 50 50 50

SelAt Pearson Correlation -.138 .036 039 1
Sig. 