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SUMMARY

This thesis is devoted to studies of initial-boundary value problems (IBVPs)

for systems of partial differential equations (PDEs) arising from fluid mechanics mod-

eling, especially for the compressible Euler equations with frictional damping, the

Boussinesq equations, the Cahn-Hilliard equations and the incompressible density-

dependent Navier-Stokes equations. The emphasis of this thesis is to understand the

influences to the qualitative behavior of solutions caused by boundary effects and

various dissipative mechanisms including damping, viscosity and heat diffusion. We

will present results concerning global existence and large-time asymptotic behavior

of solutions to miscellaneous initial-boundary value problems. The results obtained

consist of three parts.

The Part 1, containing Chapters II–III, is concerned with the study of compressible

Euler equations with frictional damping. In Chapter II, we first construct global L∞

entropy weak solutions to the IBVP for one-dimensional damped compressible Euler

equations on bounded domains with physical boundaries. Time asymptotically, the

density is conjectured to satisfy the porous medium equation (PME) and the momen-

tum obeys to the classical Darcy’s law. Based on entropy principle, we show that the

physical solution converges to steady states exponentially fast in time. We also prove

that the same is true for the related IBVP of porous medium equation provided that

the two systems carry the same initial mass and thus justify the validity of Darcy’s

law in large time. In Chapter III, we continue the study of damped compressible Euler

equations on bounded domains. We prove global existence and uniqueness of classical

solutions to the IBVP for three-dimensional damped compressible Euler equations on

bounded domains with the slip boundary condition when the initial data is near its
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equilibrium. Furthermore, based on energy estimate, we show that the classical so-

lution is captured by that of the porous medium equation exponentially fast as time

tends to infinity and justify Darcy’s law in large time.

In Part 2, we study the two-dimensional Boussinesq equations with partial viscos-

ity. In Chapter IV, we first prove global existence of smooth solutions to the IBVP

for the viscous non-heat-conductive Boussinesq equations on bounded domains with

arbitrary smooth initial data and the no-slip boundary condition. In addition, the

uniform bound of the kinetic energy is obtained as a by product. Then we study

the IBVP for another type of 2D Boussinesq equations with partial viscosity which

is inviscid and heat-conductive. We show that there exists a unique global smooth

solution to the IBVP for arbitrary smooth initial data and for physical boundary

conditions. Furthermore, due to dissipation and boundary effects, we prove that the

kinetic energy is uniformly bounded in time and the temperature converges expo-

nentially to a constant state which is the value of the temperature on the boundary

of the domain. The results obtained in this part suggest that the partial dissipative

mechanism is indeed strong enough to compensate the effects of gravitational force

and nonlinear convection in order to prevent the development of singularity in the

systems.

Part 3 is contributed to the mathematical analysis of multi-phase/mixing flows.

In Chapter V, we first study the IBVP for a system of PDEs obtained by coupling the

Cahn-Hilliard equation and the two-dimensional Boussinesq equations which stands

for a model of a multi-phase flow under shear and the influence of gravitational

force. Then we study a model of a two-component mixture, with a diffusive mass

exchange among the medium particles of various density accounted for, which is

closely related to the 2D incompressible density-dependent Navier-Stokes equations.

For both systems of equations, we prove global existence of smooth solutions to the

IBVPs with arbitrary smooth initial data and physical boundary conditions.
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CHAPTER I

INTRODUCTION

Mathematical analysis of fluid mechanics was initiated more than one century ago.

Although enormous efforts have been made on this subject since then, the resolution

of some basic issues is still missing. There are a number of fundamental problems

still remaining unsolved.

Mathematically speaking, most of the modeling equations in fluid mechanics can

be formulated into the general quasilinear systems of partial differential equations

taking the following form:

∂tU + divxF (U) = Qε(U, DU, D2U), x ∈ Rn, t ≥ 0, U ∈ Rm, (1.0.1)

where divx is the divergence operator, Ds stands for spatial derivatives, F (U) ∈ Rm×n

is a smooth vector-valued function, Qε ∈ Rm is related to dissipation, which may be

viscosity, heat diffusion, damping, relaxation and etc. Important examples include

Euler equations, Navier-Stokes equations, Boltzmann equations and Boussinesq equa-

tions for compressible and incompressible flows, the equations of magnetohydrody-

namics (MHD) for electrically conducting compressible fluids and the equations of

nonlinear thermoviscoelastic materials. Topics on (1.0.1) are physically important

and mathematically challenging. One major challenge in this field is the question

of global existence and large time asymptotic behavior of solutions to certain initial

value (Cauchy) problem or initial-boundary value problem (IBVP) for modeling equa-

tions. Definite answers to this question will undoubtedly shed light on understanding

of basic issues in fluid dynamics.

In real world, flows often move in bounded domains with constraints from bound-

aries, where initial-boundary value problems appear. Solutions of IBVPs usually
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exhibit different behaviors and much richer phenomena comparing with Cauchy prob-

lems. One major difference between IBVPs and Cauchy problems is the lack of infor-

mation of spatial derivatives of solutions on boundaries of domains, which makes the

analysis of IBVPs significantly different from that of Cauchy problems. Another fea-

ture is the availability of Poincaré’s inequality on bounded domains which, together

with dissipative mechanisms, usually leads to exponential decay of solutions to IB-

VPs, instead of algebraic decay of solutions to Cauchy problems. Therefore, when

problems are set on bounded domains, IBVPs distinguish themselves from Cauchy

problems significantly.

This thesis is contributed to studies of IBVPs for several systems of partial differen-

tial equations arising from fluid dynamics, including the compressible Euler equations

with frictional damping, the Boussinesq equations, the Cahn-Hilliard equations and

the incompressible density-dependent Navier-Stokes equations. The emphasis of this

thesis is to understand the influences to the qualitative behavior of solutions caused

by boundary effects and various dissipative mechanisms such as damping, viscosity

and heat diffusion. The background and main results obtained on these topics will

be presented in Sections 1.2–1.4.

1.1 Notations

Before introducing the background and main results, we list some notations which

will be used later.

Throughout this thesis, ‖ · ‖Lp , ‖ · ‖L∞ and ‖ · ‖W s,p denote the norms of the usual

Lebesgue measurable function spaces Lp (1 ≤ p < ∞), L∞ and the usual Sobolev

space W s,p respectively, i.e.,

‖f‖Lp ≡ ‖f‖Lp(Ω) =

(∫
Ω

|f |pdx
)1/p

, for f ∈ Lp(Ω), 1 ≤ p <∞,

‖f‖L∞ ≡ ‖f‖L∞(Ω) = ess sup
Ω
|f |, for f ∈ L∞(Ω),
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‖f‖W s,p ≡ ‖f‖W s,p(Ω) =

(∑
|α|≤s

∫
Ω

|Dαf |pdx
)1/p

, for f ∈ W s,p(Ω), 1 ≤ p <∞,

where α = (α1, α2, ..., αn) is any multi-index with order |α| = α1 + α2 + · · ·+ αn and

Dα = ∂α1
x1
∂α2
x2
· · · ∂αnxn . For p = 2, we denote the norm ‖ · ‖L2 by ‖ · ‖ and ‖ · ‖W s,2 by

‖ · ‖Hs respectively. For simplicity, we use the following notation:

‖(f1, f2, ..., fm)‖2
V ≡

m∑
i=1

‖fi‖2
V ,

where V denotes various function spaces.

We also need some function spaces of Hölder continuous functions. Cα(Ω) stands

for the Banach space of functions on Ω which are uniformly Hölder continuous with

exponent α, while Cα,α/2(ΩT ) denotes the Banach space of functions on ΩT = Ω×[0, T ]

which are uniformly Hölder continuous with exponent α in x and α/2 in t.

In the a priori estimates, the generic constant will be denoted by C.

There are also some other notations which we will explain later in specific chapters.

1.2 Damped Euler Equations

1.2.1 Background

Damping is the effect that tends to reduce the amplitude of oscillations of an oscil-

latory system. The phenomenon of damping is observed everywhere and in everyday

life. Typical examples include the mass-spring-damper, the RLC circuit and the

harmonic oscillator. There are lots of real world applications of damping such as gen-

eration of vibrations of specific frequencies, audio system measurements, active mass

damper, design of vehicle suspension and thrust damping in aerospace engineering.

In fluid mechanics, the damping effect is observed in mathematical modeling of

flow and transport through porous media which plays an important role in environ-

mental studies as well as in reservoir engineering. Applications include the spread

of pollutants from a landfill through the soil system and of oil spills in the subsur-

face, the intrusion of seawater in coastal aquifers, and new methods for enhanced oil

3



recovery and underground gas storage.

In the mathematical study of flow through porous media, one of the most com-

monly used modeling systems is the damped compressible Euler equations:
ρt +∇ · (ρU) = 0,

(ρU)t +∇ · (ρU ⊗ U) +∇P = −αρU, x ∈ Rn, t ≥ 0,

(1.2.1)

which occur in the modeling of compressible isentropic flow through a porous medium.

The medium induces a friction force, proportional to the linear momentum in the

opposite direction. Therefore, system (1.2.1) expresses the conservation of mass and

the momentum balance. Here ρ, U = (u1, u2, ..., un) and P denote the density,

velocity and pressure respectively; the constant α > 0 models friction. Assuming the

flow is a polytropic perfect gas, then P (ρ) = P0ρ
γ, with P0 a positive constant, and

γ > 1 the adiabatic gas exponent. Without loss of generality, we take P0 = 1
γ
, α = 1

throughout this thesis.

1.2.1.1 The 1D Model

When n = 1, system (1.2.1) turns out to be
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P (ρ))x = −αρu, x ∈ R, t ≥ 0,

(1.2.2)

which is hyperbolic with two characteristic speeds λ1 = u −
√
P ′(ρ) and λ2 = u +√

P ′(ρ). Furthermore, by definition, system (1.2.2) is strictly hyperbolic at the point

away from vacuum where ρ = 0.

In experiments, Darcy’s law is observed in the same process. Thus, we have

another model: 
ρt = P (ρ)xx,

m = −P (ρ)x,

(1.2.3)

where m stands for the momentum. The first equation is the well-known porous

medium equation (PME) and the second equation states Darcy’s law. So, it is natural
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to expect that system (1.2.2) and system (1.2.3) are equivalent in long time. Actually,

the following conjecture was proposed by Tai-ping Liu in [64]:

Conjecture. As t→∞, system(1.2.2) is equivalent to system (1.2.3).

Due to strong physical background and significant mathematical challenge, system

(1.2.2) and its time-asymptotic behavior have received considerable attentions, and

investigations have been carried on for decades since the pioneer work of Nishida [78].

In the case of small smooth solutions away from vacuum, system (1.2.2) can be

transformed to the p-system with damping by changing to Lagrangian coordinates

(c.f. [94]) and the problem has been well understood. Extensive literature is available

in this field. For Cauchy problem, the readers are referred to [42, 43, 44, 45, 46, 68,

74, 79, 80, 105]. For initial-boundary value problems, see [47, 48, 71, 81, 83]. For more

references on the p-system with damping, we refer to [25, 27, 49, 69, 72, 73, 83, 91, 108].

When the solution is large, rough and contains vacuum, the difficulty of the prob-

lem is significantly increased. The main difficulties come from the interaction of three

mechanisms: nonlinear convection, lower-order dissipation of damping and resonance

due to vacuum where two characteristics coincide. First of all, it has been shown in

[107] that when the initial data is large or rough, shock will develop in finite time for

system (1.2.2) due to nonlinearity. Second, although the damping prevents formation

of singularity if initial data is small and smooth, it breaks the self-similarity of the

system, which is crucial for large solutions; see [50, 51]. Third, when the solution con-

tains vacuum, it has been shown by Liu & Yang [65, 66] that local smooth solutions

of (1.2.2) blow up in finite time before shock formation due to resonance caused by

vacuum. Therefore, it is suitable to consider weak solutions in order to study global

existence and large time behavior of (1.2.2).

The phenomena mentioned above make both analytical and numerical studies for
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system (1.2.2) highly non-trivial problems. Indeed, the only global weak solutions to

(1.2.2) are constructed in L∞ space by using the method of compensated compactness

in the direction of Cauchy problem; see [29] for 1 < γ ≤ 5/3 and [55] for 1 ≤ γ < 3.

Concerning large time behavior of L∞ weak solutions to (1.2.2) for Cauchy problem,

some essential progress was made recently in [55], where the authors justified the

conjecture by using the rescaling argument in [91]. Later, in [53] and [54], the authors

developed some new technique based on the conservation of mass and entropy analysis

to attack the problem. They showed that L∞ weak solutions with vacuum converge,

strongly in Lp(R) with decay rates, to the similarity solution and the Barenblatt

solution of the porous medium equation.

However, when the problem is set on bounded domains, the story changes dra-

matically. The key approach used in [42]–[54] for Cauchy problem is to compare the

solution of (1.2.2) with that of (1.2.3) directly via energy estimates. Unfortunately,

this approach does not work for the initial-boundary value problem mainly due to the

boundary effects. Therefore, the global existence and large-time behavior of L∞ weak

solutions to initial-boundary value problem for damped compressible Euler equations

remains as an important open problem. This problem has particular interest since,

as we mentioned in the beginning of the Introduction, in real world, flows often move

in bounded domains with constraints from boundaries. We will give a definite answer

to this problem in this thesis.

1.2.1.2 The 3D Case

Now we turn our attention to the multi-dimensional case of (1.2.1). From the phys-

ical point of view, the multi-dimensional model describes more realistic phenomena.

Furthermore, besides the features and difficulties mentioned in the one-dimensional

case, the multi-dimensional model presents some unique features which are totally

absent in the 1D case. When the problem is set in multi-dimensional spaces, one of
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the most significant phenomena appears, which is the effect of vorticity. It is known

that the cumulation of vorticity determines the global existence/finite-time blow up of

smooth solutions for the 3D incompressible Euler or Navier-Stokes equations. Indeed,

Beale, Kato & Majda [8] proved that if a solution of the 3D Euler or Navier-Stokes

equations is initially smooth and loses its regularity at some later time, then the

maximum vorticity necessarily grows without bound as the critical time approaches;

equivalently, if the vorticity remains bounded, a smooth solution persists. There-

fore, due to strong physical background and significant mathematical challenge, the

multi-dimensional damped Euler equations is much less understood than its 1D com-

panion. For Cauchy problem, investigations were carried out among small smooth

solutions. In [93, 99], based on energy estimates, the authors proved global existence,

uniqueness and large-time behavior of smooth solutions to the Cauchy problem for

three-dimensional damped compressible Euler equations when the initial data is near

its equilibrium. Recently, by applying the combination of the Green function on

estimating the lower order derivatives and the energy method for the higher order

derivatives, Wang & Yang [100] proved global existence and L2 convergence rate of

solutions for 2D damped compressible Euler equations when the initial data is a

small perturbation of a planar diffusion wave. However, in the direction of the initial-

boundary value problem, even the global existence of small smooth solutions is still

an important open problem. In this thesis, we will give a definite answer to this

problem.
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1.2.2 Analysis of Damping Effect

1.2.2.1 The 1D Model

Let us consider the one-dimensional compressible Euler equation with frictional damp-

ing. After introducing the momentum m = ρu, we can rewrite (1.2.2) as follows:
ρt +mx = 0,

mt +
(m2

ρ
+ P (ρ)

)
x

= −m.
(1.2.4)

System (1.2.4) is supplemented by the following initial and boundary conditions:

ρ(x, 0) = ρ0(x), m(x, 0) = m0(x), 0 < x < 1,

m|x=0 = 0, m|x=1 = 0, t ≥ 0,∫ 1

0

ρ0(x) dx = ρ∗ > 0.

(1.2.5)

Where, the last condition is imposed to avoid the trivial case, ρ ≡ 0.

As mentioned above, time asymptotically, we expect that the solution to (1.2.4)–

(1.2.5) will be captured by that of the following problem:
ρt = P (ρ)xx,

ρ(x, 0) = ρ0(x), 0 < x < 1,

Px|x=0 = Px|x=1 = 0, t ≥ 0.

(1.2.6)

In this thesis, we continue the study of [47] and [48] on bounded domains with

typical physical boundary condition (1.2.5). We will study the global existence and

large time behavior of L∞ weak solutions. The following two theorems are the main

results of this part. For the global existence of L∞ weak solutions we have

Theorem 1.2.1. Suppose that the initial data (ρ0,m0) satisfy the conditions

0 ≤ ρ0(x) ≤M1, ρ0 6≡ 0, |m0(x)| ≤M2ρ0(x),

for some positive constants Mi(i = 1, 2). Then, for γ > 1, the initial-boundary

value problem (1.2.4)-(1.2.5) has a global weak solution (ρ(x, t),m(x, t)), as defined
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in Definition 2.2.1 which will be given in Section 2.2, satisfying the following estimates

and entropy condition:

0 ≤ ρ ≤ C, |m| ≤ Cρ a.e. for a constant C > 0 independent of t, and∫ T

0

∫ 1

0

(
η(ρ,m)ψ̃t + q(ρ,m)ψ̃x

)
dx dt−

∫ T

0

∫ 1

0

η(ρ,m)mψ̃ dx dt ≥ 0,
(1.2.7)

for all weak and convex entropy pairs (η, q) and for all nonnegative smooth functions

ψ̃ ∈ C1
0(IT ).

Concerning the large-time behavior of the solution obtained in the above theorem

we have

Theorem 1.2.2. Suppose

∫ 1

0

ρ0(x)dx = ρ∗. Let (ρ,m) be any L∞ entropy weak

solution of the initial-boundary problem (1.2.4)-(1.2.5) defined in Definition 2.2.1,

satisfying the estimates

0 ≤ ρ(x, t) ≤ Λ <∞, |m(x, t)| ≤M3ρ(x, t),

where M3,Λ are positive constants and let (ρ̃, m̃) be the weak solution of (1.2.6) with

mass ρ∗ and m̃ = −P (ρ̃)x. Then, there exist constants C, δ > 0 depending only on

γ, ρ∗,Λ and initial data such that

∥∥((ρ− ρ̃), (m− m̃)
)
(·, t)

∥∥2

L2([0,1])
≤ C exp{−δt}. (1.2.8)

The existence of entropy weak solutions will be achieved by means of Godunov

scheme [36] and the compensated compactness frameworks established by [29], [30],

[62], [63], [77] and [96]. The proof of Theorem 1.2.1 is in the spirit of [104] and [88].

For the large time behavior, we adopt the new framework introduced by [53] and [55]

based on entropy dissipation. The exponential decay rates are obtained in this case

on bounded domains.
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1.2.2.2 The 3D Case

Continuing the study of the damped compressible Euler equations, we consider the

3D model: 
ρt +∇ · (ρU) = 0,

(ρU)t +∇ · (ρU ⊗ U) +∇P = −ρU,
(1.2.9)

with the following initial and boundary conditions:
(ρ, U)(x, 0) = (ρ0, U0)(x), x = (x, y, z) ∈ Ω,

U · n|∂Ω = 0, t ≥ 0,∫
Ω

ρ0(x)dx = ρ̄ > 0,

(1.2.10)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, n is the unit outward

normal vector on the boundary of Ω. The boundary condition is the so-called slip

boundary condition.

Due to the dissipation in the momentum equations and the boundary effect, the

kinetic energy is expected to vanish as time tends to infinity while the potential energy

will converge to a constant. Furthermore, it is easy to see that∫
Ω

ρ(x, t)dx =

∫
Ω

ρ0(x)dx = ρ̄,

due to the conservation of total mass. This suggests that the asymptotic state of the

solution should be (ρ, U)|t→∞ = (ρ̄/|Ω|,0). In this thesis, we will prove, under the

assumption that the initial perturbation around the equilibrium state is small, there

exists a unique global classical solution to (1.2.9)–(1.2.10) and the solution converges

exponentially to the equilibrium state.

As in the preceding section, we will show that the classical solution of (1.2.9)–

(1.2.10) is captured by that of the decoupled system
ρ̃t = ∆P (ρ̃),

M̃ = −∇P (ρ̃)

(1.2.11)
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with the initial-boundary conditions
ρ̃(x, 0) = ρ̃0(x), x ∈ Ω,

∇P · n|∂Ω = 0, t ≥ 0,

(1.2.12)

exponentially in time provided that∫
Ω

ρ̃0(x)dx =

∫
Ω

ρ0(x)dx. (1.2.13)

The following theorem is our main result in this direction, which generalizes the

study of [93] and [99] on bounded domain with typical physical boundary condition

(1.2.10)2.

Theorem 1.2.3. Suppose that the initial data satisfy the compatibility condition, i.e.,

∂ltU(0) · n|∂Ω = 0, 0 ≤ l ≤ 2, where ∂ltU(0) is the lth time derivative at t = 0 of any

solution of (1.2.9)–(1.2.10), as calculated from (1.2.9) to yield an expression in terms

of ρ0 and U0. Then there exists a constant ε such that if (ρ0 − ρ̄/|Ω|, U0) ∈ H3(Ω)

and ‖(ρ0 − ρ̄/|Ω|, U0)‖H3 ≤ ε, then there exists a unique global solution (ρ, U) of

the initial-boundary value problem (1.2.9)–(1.2.10) in C1(Ω̄× [0,∞))∩X3([0,∞),Ω),

where the exact definition of X3([0,∞),Ω) will be given in Section 3.1. Moreover,

there exist positive constants C > 0, η > 0, which are independent of t, such that

|||(ρ− ρ̄/|Ω|)(·, t)|||+ |||U(·, t)||| ≤ C‖(ρ0 − ρ̄/|Ω|, U0)‖H3 exp{−ηt}. (1.2.14)

Concerning the relationship between the solutions of (1.2.9)–(1.2.10) and (1.2.11)–

(1.2.12), we have

Theorem 1.2.4. Let (ρ, U) be the unique global classical solution of (1.2.9)–(1.2.10)

and let M = ρU . Let (ρ̃, M̃) be the global solution of (1.2.11)–(1.2.12) with ρ̃0 ∈

L∞(Ω), and 0 ≤ ρ̃0 ≤ ρ∗ for some constant ρ∗ satisfying ρ̄/|Ω| < ρ∗ < ∞. Then,

there exist constants C, δ > 0 independent of t such that

‖(ρ− ρ̃)(·, t)‖H1 + ‖(M − M̃)(·, t)‖ ≤ C exp{−δt}, as t→∞. (1.2.15)
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Remark 1.2.1. The results obtained in above theorems suggest that damping effect

is strong enough to compensate nonlinear convection in order to prevent development

of singularity in the system, provided that the initial perturbation near the equilibrium

is small.

1.3 2D Boussinesq Equations

1.3.1 Background

For decades, the question of global existence/finite time blow-up of smooth solutions

for the three-dimensional incompressible Euler or Navier-Stokes equations has been

one of the most outstanding open problems for both engineers and mathematicians.

The answer to this question will undoubtedly play a key role in understanding core

problems in fluid dynamics such as the onset of turbulence. Enormous efforts have

been made on this challenging problem, but the resolution of some basic issues is still

missing. The main difficulty is to understand the vortex stretching effect in 3D flows,

which is absent in the two-dimensional case. There are a great amount of literatures

concerning partial answers to this question. We refer the reader to [22, 61, 97] and

the references therein for detailed discussions on this subject.

As part of the effort to understand the vortex stretching effect in 3D flows, various

simplified model equations have been proposed. Among these models, the 2D Boussi-

nesq system is known to be one of the most commonly used because it is analogous

to the 3D incompressible Euler or Navier-Stokes equations for axisymmetric swirling

flow, and it shares a similar vortex stretching effect as that in the 3D incompressible

flow. In fact, in cylindrical coordinates, the vortex formulation of the Euler equations

describing 3D incompressible axisymmetric swirling flow can be written as (c.f. [70]):

D

Dt

[
(rvα)2

]
= 0,

D

Dt

(
ωα

r

)
= − 1

r4

[
(rvα)2

]
x3
,

D

Dt
=

∂

∂t
+ vr

∂

∂r
+ v3 ∂

∂x3

,

(1.3.1)
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where (vr, vα, v3) are the velocity components with respect to the cylindrical coordi-

nates (r, α, x3); ωα = vrx3
− v3

r is the second component of the vorticity and D
Dt

stands

for the material derivative.

On the other hand, the vortex formulation of the 2D Boussinesq equations in

Cartesian coordinates reads: 

D

Dt
θ = 0,

D

Dt
ω = −θx,

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
,

(1.3.2)

where θ is the scalar temperature and ω = vx − uy is the 2D vorticity. Therefore, we

have the following correspondence between the two sets of equations in (1.3.1) and

(1.3.2):

x3 ←→ x, r ←→ y,

ωα ←→ ω, (rvα)2 ←→ θ,

vr ←→ v, v3 ←→ u.

With this correspondence, we see that (1.3.1) is formally identical to (1.3.2) pro-

vided that all external variable coefficients in (1.3.1) are evaluated at r = 1. Thus,

away from the axis of singularity r = 0 for swirling flows, the qualitative behavior of

solutions for the two systems of equations are expected to be identical. Better under-

standing of the 2D Boussinesq system will certainly shed light on the understanding

of 3D flows.

In this thesis, we consider the two-dimensional Boussinesq equations with dissi-

pations: 
Ut + U · ∇U +∇P = ν∆U + θe2, x ∈ R2, t ≥ 0,

θt + U · ∇θ = κ∆θ,

∇ · U = 0,

(1.3.3)

where U = (u, v) is the velocity vector field, P is the scalar pressure, θ is the scalar
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temperature, the constants ν ≥ 0, κ ≥ 0 model viscosity and thermal diffusion re-

spectively, and e2 = (0, 1)T.

System (1.3.3) is potentially relevant to the study of atmospheric and oceano-

graphic turbulence, as well as other astrophysical situations where rotation and strat-

ification play a dominant role (see e.g. [87]). In fluid mechanics, system (1.3.3) is used

in the field of buoyancy-driven flow. It describes the flow of a viscous incompressible

fluid subject to convective heat transfer under the influence of gravitational force (c.f.

[70]).

In recent years, the 2D Boussinesq equations (1.3.3) have attracted significant

attention. When Ω = R2, the Cauchy problem for (1.3.3) with full viscosity (i.e.,

ν > 0, κ > 0) has been well studied. In [13], Cannon & DiBenedetto studied the

Cauchy problem for the 2D Boussinesq equations with full viscosity. They found a

unique, global in time, weak solution. Furthermore, they improved the regularity

of the solution when initial data is smooth. Recently, the result of global existence

of smooth solutions to (1.3.3) is generalized to the cases of “partial viscosity” (i.e.,

either ν > 0, κ = 0, or ν = 0, κ > 0) by Hou-Li [41] and Chae [15] independently.

In [41], Hou & Li proved the global well-posedness of the Cauchy problem for the

viscous Boussinesq equations (i.e., ν > 0, κ = 0). They showed that solutions

with initial data in Hm (m ≥ 3) do not develop finite-time singularities. In [15],

Chae considered the Boussinesq system for incompressible fluid in R2 with either

zero diffusion (κ = 0) or zero viscosity(ν = 0). He proved global-in-time regularity in

both cases. The key approach used in the proof of the Cauchy problem is to combine

the vortex formulation of the equations with an inequality of logarithmic growth rate

which takes the following form:

‖f‖2
L∞ ≤ C0

(
‖∇f‖L2 + ‖f‖L2 + 1

)
log
(
‖∆f‖L2 + ‖f‖L2 + e

)
.

By combining this inequality with Gronwall’s inequality the authors in [41, 15] get the

estimate of the maximum gradient of the velocity which leads to the global regularity
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of the solution.

On the other hand, the global regularity/singularity question for the case of (1.3.3)

with zero viscosity and zero diffusion (i.e., ν = κ = 0) still remains as an outstanding

open problem in mathematical fluid mechanics due to nonlinear convection and lack

of dissipation. Previous investigations on this subject are primarily concerned with

numerical simulations. In [32], E & Shu systematically studied the nonlinear devel-

opment of potential singularities in the 2D Boussinesq equations with smooth initial

data and they found no evidence for singular solutions in their numerical solutions.

Although there is still no rigorous mathematical proof, this work of E & Shu provides

convincing evidence that 3D swirling flows do not become singular in finite time. We

refer the readers to [18], [19], [23], [95] for more studies in this direction.

When the problem is set on bounded domains, the case of ν > 0, κ > 0 has been

analyzed in great extent (see e.g. [67] and references therein). Recently, the local

existence and blow-up criterion of smooth solutions for the inviscid case (ν = κ = 0)

is established in [52], see also [16].

However, as mentioned in the Introduction, due to the lack of information of

spatial derivatives of the solution on the boundary of the domain, the key approach

used for the Cauchy problem does not apply to the initial-boundary value problem.

Furthermore, when either κ = 0 or ν = 0, the problem distinguishes itself significantly

from the one with full viscosity. The reasons are as follows: When κ = 0, the

Boussinesq system (1.3.3) turns out to be
Ut + U · ∇U +∇P = ν∆U + θe2,

θt + U · ∇θ = 0,

∇ · U = 0,

(1.3.4)

where the temperature equation is a pure transport equation. To establish the global

regularity of the temperature, one has to gain the smoothness of the particle path in

the first place, in other words, one has to achieve the smoothness of the velocity field
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before obtaining any regularity of the temperature. But, this is far from easy mainly

due to nonlinear convection and coupling between the equations for the velocity and

the temperature and gravitational force.

In the direction of ν = 0, the situation is more complicated comparing with (1.3.4).

In this case, (1.3.3) becomes
Ut + U · ∇U +∇P = θe2,

θt + U · ∇θ = κ∆θ,

∇ · U = 0,

(1.3.5)

in which the velocity equation becomes the 2D non-homogeneous Euler equations.

From standard results [57] we know that the regularity of the velocity can be built up

only after the C1 estimate of the non-homogeneous term (θe2 in this case) is achieved.

Again, it is highly non-trivial to establish the C1 estimate of the temperature due to

nonlinear convection and coupling between the equations.

Therefore, the questions of global regularity/finite time singularity for the initial-

boundary value problems for the 2D Boussinesq equations with partial viscosity still

remain as important open problems. We will give definite results to these problems

in this thesis.

1.3.2 Global Existence of Buoyancy Driven Flow

We study the 2D Boussinesq equations with partial viscosity on bounded domains.

1.3.2.1 Case ν > 0, κ = 0

In this case, we consider the following IBVP
(1.3.4),

(U, θ)(x, 0) = (U0, θ0)(x), x ∈ Ω,

U |∂Ω = 0,

(1.3.6)

where the boundary condition is the so-called no-slip boundary condition.
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In this thesis, we will generalize the study of [15] and [41] to bounded domains

with typical physical boundary condition (1.3.6)3. For global existence of smooth

solutions, we require the following compatibility conditions
∇ · U0 = 0, U0|∂Ω = 0,

ν∆U0 + θ0e2 −∇P0 = 0, x ∈ ∂Ω, t = 0,

(1.3.7)

where P0(x) = P (x, 0) is the solution to the Neumann boundary problem
∆P0 = ∇ · [θ0e2 − U0 · ∇U0], x ∈ Ω,

∇P0 · n|∂Ω = [ν∆U0 + θ0e2] · n|∂Ω,

(1.3.8)

with n the unit outward normal to ∂Ω.

Our main results are stated in the following theorem.

Theorem 1.3.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω. If

(θ0(x), U0(x)) ∈ H3(Ω) satisfies the compatibility conditions (1.3.7)–(1.3.8), then

there exists a unique solution (θ, U) of (1.3.6) globally in time such that θ(x, t) ∈

C([0, T );H3(Ω)) and U(x, t) ∈ C([0, T );H3(Ω)) ∩ L2([0, T );H4(Ω)) for any T > 0.

Moreover, there exists a constant C̄ > 0 independent of t such that

‖U(·, t)‖2
L2 ≤ max

{
‖U(·, 0)‖2

L2 ,
C̄2

ν2
‖θ(·, 0)‖2

L2

}
, ∀ t ≥ 0. (1.3.9)

1.3.2.2 ν = 0, κ > 0

In this case, the IBVP becomes
(1.3.5),

(U, θ)(x, 0) = (U0, θ0)(x), x ∈ Ω,

U · n|∂Ω = 0, θ|∂Ω = θ̄,

(1.3.10)

where θ̄ is a constant.

Due to the dissipation in the temperature equation and boundary effects, the

temperature is expected to converge to its boundary value. This suggests that the
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equilibrium state of the temperature should be θ̄. In this thesis, we will prove that

there exists a unique global smooth solution to (1.3.10) for smooth initial data. More-

over, we will show that the temperature converges exponentially to its boundary value

as time goes to infinity, and the velocity is uniformly bounded in time.

For the global existence of smooth solutions, the following compatibility conditions

are required:

U0 · n|∂Ω = 0, ∇ · U0 = 0,

θ0|∂Ω = θ̄, U0 · ∇θ0 − κ∆θ0|∂Ω = 0.

(1.3.11)

Our main result is stated in the following theorem.

Theorem 1.3.2. Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω. If

(U0(x), θ0(x)) ∈ H3(Ω) satisfies the compatibility conditions (1.3.11), then there exists

a unique solution (U, θ) of (1.3.10) globally in time such that U ∈ C([0, T );H3(Ω))

and θ ∈ C([0, T );H3(Ω)) ∩ L2([0, T );H4(Ω)) for any T > 0. Moreover, there exist

constants η > 0, C̄ > 0, C(p) > 0, C̃ > 0, which are independent of t such that for

any fixed p ∈ [2,∞),

‖(θ − θ̄)(·, t)‖H3 ≤ C̄ exp{−ηt}, ∀ t ≥ 0; (1.3.12)

‖U(·, t)‖W 1,p ≤ C(p), ‖ω(·, t)‖L∞ ≤ C̃, ∀ t ≥ 0, (1.3.13)

where ω = vx − uy is the 2D vorticity

Remark 1.3.1. The results obtained in Theorems 1.3.1–1.3.2 suggest that either the

viscous dissipation or the thermal diffusion is strong enough to compensate the effects

of gravitational force and nonlinear convection in order to prevent the development of

singularity of the system. It should be pointed out that, in the theorems obtained above,

no smallness restriction is put upon the initial data which is significantly different from

Theorem 1.2.3.
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1.4 Multi-phase/Mixing Flows

1.4.1 Background

This part of the thesis is devoted to the mathematical analysis of multi-phase flows

and mixing flows which are generalizations of studies of 2D Boussinesq equations.

We first study the system of partial differential equations obtained by coupling the

Cahn-Hilliard equation to the 2D Boussinesq equations, which stands for a model

of a two-phase flow under shear and the influence of gravitational force. Then, a

mathematical model of a two-component mixture with a diffusive mass exchange

among the medium particles of various density accounted for (c.f. [5]) is investigated.

1.4.1.1 Multi-Phase Flow

In fluid dynamics, two-phase flow occurs in a system containing, for example, gas

and liquid with a meniscus separating the two phases. Two-phase flow has been

commonly-studied in areas such as large-scale power systems, pump cavitation, cli-

mate systems and groundwater flow. Several features make two-phase flow an inter-

esting and challenging branch of fluid dynamics such as surface tension, significant

density difference and dramatic change in sound speed which introduces compressible

effects into the problem.

In the field of mathematical analysis of two-phase flow, the Cahn-Hilliard equation

φt = ∆
(
F ′(φ)− α∆φ

)
is commonly used, which describes the process of phase separation, by which the two

components of a binary fluid spontaneously separate and form domains pure in each

component. We refer the readers to [3, 10, 11, 12, 7, 28, 33, 76, 101, 102, 103] for

studies on the Cahn-Hilliard equation, and the coupling of Cahn-Hilliard equation

and Navier-Stokes equations.

In this thesis, we consider the coupling of the Cahn-Hilliard and the 2D Boussinesq
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equations: 

φt + U · ∇φ = ∆µ,

µ = −α∆φ+ F ′(φ),

Ut + U · ∇U +∇P = ν∆U + µ∇φ+ θ−→e2 ,

θt + U · ∇θ = 0,

∇ · U = 0,

(1.4.1)

where φ is the order parameter and µ is a chemical potential derived from a coarse-

grained study of the free energy of the fluid (c.f. [37]). System (1.4.1) stands for a

model of a two-phase flow under shear and the influence of gravitational force.

We are interested in the global existence and large-time behavior of smooth solu-

tions to the initial-boundary value problem of (1.4.1). As mentioned in the preceding

section that the main difficulty encountered in the analysis of the Boussinesq equa-

tions is the regularity of the velocity field priori to the regularity of the temperature.

Therefore, when the Cahn-Hilliard equation is coupled to the Boussinesq equations,

the complexity of the problem will significantly increase. More detailed analysis, com-

paring with the IBVP for Boussinesq equations, is required in order to answer the

question of global existence and large time behavior of smooth solutions to (1.4.1).

The study of this part of the thesis is a generalization of the result obtained in [10] in

the sense that we take additionally the effect of gravitational force into consideration.

1.4.1.2 Mixing Flow

The last part of this thesis is concerned with the study of the following system of

equations: 

(ρU)t +∇ · (ρU ⊗ U) +∇P = ∇
(
∇ · (λρU)

)
+ ρ~f+

∇ ·
(
µ∇U − λρ[(∇U) + (∇U)T] +∇(λρU)

)
,

ρt +∇ · (ρU) = λ∆ρ,

∇ · U = 0,

(MF )

20



which describes the motion of a two-component mixture, with a diffusive mass ex-

change among the medium particles of various density accounted for (c.f. [5, 56, 58]).

Here, U is the mean velocity, ρ is the mixture density, µ > 0 is the viscosity and

λ > 0 is the diffusive coefficient.

For smooth solutions, system (MF ) can be simplified by using the density equation

as: 
ρ(Ut + U · ∇U) +∇P = λ

[
∇ρ · ∇U + U · ∇(∇ρ)

]
+ µ∆U + ρ~f,

ρt + U · ∇ρ = λ∆ρ,

∇ · U = 0,

(1.4.2)

System (1.4.2) is immediately transformed to the incompressible density-dependent

Navier-Stokes equations by setting λ = 0:
ρ(Ut + U · ∇U) +∇P = µ∆U + ρ~f,

ρt + U · ∇ρ = 0,

∇ · U = 0,

(1.4.3)

which generalizes the standard incompressible Navier-Stokes equations for a homoge-

neous fluid to the case of a non-homogeneous fluid. System (1.4.3) is used in applied

fields of fluid dynamics such as oceanology and hydrology and has been well-studied;

see [5, 61].

Concerning (1.4.2), previous investigations were carried out for weak solutions

when the problem is set on a bounded domain Ω ⊂ R2 with physical boundary

conditions; see [5]. In this thesis, our goal is to improve the regularity of the global

weak solution constructed in [5] via the method of energy estimate.

1.4.2 Summary of Main Results

The results obtained in this chapter are as follows.
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1.4.2.1 Multi-phase Flow

For the IBVP of multi-phase flow:
(1.4.1),

(φ, µ, θ, U)(x, 0) = (φ0, µ0, θ0, U0)(x);

∇φ · n|∂Ω = ∇µ · n|∂Ω = 0, U |∂Ω = 0,

(1.4.4)

we require the following compatibility conditions in order to study smooth solutions:
∇ · U0 = 0, ∇φ0 · n|∂Ω = ∇µ0 · n|∂Ω = U0|∂Ω = 0,

ν∆U0 + µ0∇φ0 + θ0e2 −∇P0 = 0, x ∈ ∂Ω,

µ0 = −α∆φ0 + F ′(φ0),

(1.4.5)

where P0(x) = P (x, 0) is the solution to the Neumann boundary problem
∆P0 = ∇ · [θ0e2 + µ0∇φ0 − U0 · ∇U0],

∇P0 · n|∂Ω = [ν∆U0 + θ0e2] · n|∂Ω.

(1.4.6)

Our main results are stated in the following theorem.

Theorem 1.4.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary and suppose

that F (·) satisfies the following conditions:

(H1) F is of C5 class and F ≥ 0.;

(H2) There exist constants C1, C2 > 0 such that |F (n)(φ)| ≤ C1|φ|p−n + C2,

n = 1, · · · , 5, ∀ 5 ≤ p <∞ and φ ∈ R;

(H3) There exists a constant F1 > 0 such that F ′′ ≥ −F1.

If φ0(x) ∈ H4(Ω), µ0(x) ∈ H2(Ω), (θ0(x), U0(x)) ∈ H3(Ω) satisfy the compatibility

conditions (1.4.5)–(1.4.6), then there exists a unique solution (φ, µ, θ, U) of (1.4.4)

globally in time such that φ(x, t) ∈ C([0, T );H4(Ω)) ∩ L2([0, T );H6(Ω)), µ(x, t) ∈

C([0, T );H2(Ω)) ∩ L2([0, T );H4(Ω)), U(x, t) ∈ C([0, T );H3(Ω)) ∩ L2([0, T );H4(Ω)),

and θ(x, t) ∈ C([0, T );H3(Ω)) for any T > 0.
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Remark 1.4.1. The results obtained in Theorem 1.4.1 can be generalized to the case

of parameter dependent viscosity. In other words, we can replace ∆µ by ∇· (β(φ)∇µ)

and ν∆U by ∇ · (ν(φ)∇U) respectively. In this case, the modeling equations describe

more realistic phenomena comparing with (1.4.1). By imposing appropriate conditions

on β(φ) and ν(φ) we can study the global existence of smooth solutions to the more

complicated system. However, the proof will be in the same spirit of that for Theorem

1.4.1. Therefore, to illustrate the main ideas, we only present the simple case in this

thesis. In the theorem obtained above, no smallness assumption is put upon the initial

data.

1.4.2.2 Mixing Flow

In the direction of mixing flow, we consider the IBVP
(1.4.2),

(U, ρ)(x, 0) = (U0, ρ0)(x), m ≤ ρ0(x) ≤M ;

U |∂Ω = 0, ∇ρ · n|∂Ω = 0.

(1.4.7)

In order to build up the regularity constructed in [5], we need the following compat-

ibility conditions:
∇ · U0 = 0, U0|∂Ω = 0, ∇ρ0 · n|∂Ω = 0,

λ∇ρ0 · ∇U0 + µ∆U0 + ~f0ρ0 −∇P0 = 0, x ∈ ∂Ω,

(1.4.8)

where P0(x) is the solution to the Neumann boundary problem
∇ ·
(
∇P0

ρ0

)
= ∇ ·

(
λ

ρ0

(
∇ρ0 · ∇U0 + U0 · ∇(∇ρ0)

)
− U0 · ∇U0 +

µ

ρ0

∆U0 + ~f0

)
,

∇P0 · n|∂Ω = [λ∇ρ0 · ∇U0 + µ∆U0 + ~f0ρ0] · n|∂Ω.

(1.4.9)

Our main results are stated in the following theorem.

Theorem 1.4.2. Let Ω ⊂ R2 be a bounded domain with smooth boundary and suppose

that the constant µ1 = 2µ − λ(M − m) > 0. If (ρ0(x), U0(x)) ∈ H3(Ω) satisfy the
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compatibility conditions (1.4.8)–(1.4.9), then there exists a unique solution (ρ, U) of

(1.4.7) globally in time such that (ρ, U)(x, t) ∈ C([0, T );H3(Ω)) ∩ L2([0, T );H4(Ω))

for any T > 0.

Remark 1.4.2. The condition 2µ − λ(M −m) > 0 can be roughly seen through the

stress tensor in the momentum equation in (MF ), where competition between viscous

dissipation and mass exchange happens. Therefore, the rate of mass exchange must

not exceed a threshold in order to guarantee the exsitence of global solutions. Still, in

the theorem obtained above, no smallness assumption is put upon the initial data.

Concluding Remark. Theorems 1.2.1–1.2.2 are taken from [85]. Theorems 1.3.1–

1.3.2 come from [86] and the results on Boussinesq system can be found in [60] and

[106] respectively.
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CHAPTER II

1D COMPRESSIBLE EULER EQUATIONS WITH

DAMPING

2.1 Introduction

In this chapter, we consider the one-dimensional compressible Euler equations with

frictional damping: 
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P (ρ))x = −αρu.
(2.1.1)

Such a system occurs in the mathematical modeling of compressible flow through

a porous medium. Here ρ, u, and P denote the density, velocity and pressure re-

spectively; the constant α > 0 models friction. Assuming the flow is a polytropic

perfect gas, then P (ρ) = P0ρ
γ, with P0 a positive constant, and γ > 1 the adiabatic

gas exponent. Without loss of generality, we take P0 = 1
γ
, α = 1 throughout this

chapter.

After introducing the momentum m = ρu, we can rewrite (2.1.1) as follows:
ρt +mx = 0,

mt +
(m2

ρ
+ P (ρ)

)
x

= −m.
(2.1.2)

System (2.1.2) is supplemented by the following initial value and boundary conditions:

ρ(x, 0) = ρ0(x), m(x, 0) = m0(x), 0 < x < 1,

m|x=0 = 0, m|x=1 = 0, t ≥ 0,∫ 1

0

ρ0(x) dx = ρ∗ > 0.

(2.1.3)

Where, the last condition is imposed to avoid the trivial case, ρ ≡ 0.
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For large time, it is conjectured that Darcy’s law is valid and (2.1.2) is well ap-

proximated by the decoupled system
ρ̃t = P (ρ̃)xx,

m̃ = −P (ρ̃)x.

(2.1.4)

Where, the first equation is the well-known porous medium equation while the second

equation states Darcy’s law. The initial boundary conditions turn into
ρ̃(x, 0) = ρ̃0(x), 0 < x < 1,

Px|x=0 = 0, Px|x=1 = 0, t ≥ 0.

(2.1.5)

When the initial data is small smooth and is away from vacuum, the global ex-

istence and large time behavior of the solutions to (2.1.2)–(2.1.3) were established

in [47] and [48]. However, when initial data is large or rough, shock will develop in

finite time [107], and one has to consider weak entropy solutions. One of the main

difficulties is that the weak solution may contain the vacuum state, where the sys-

tem (2.1.2) experiences resonance since two family of characteristics coincide, [64],

[65] and [66]. In this chapter, we will first construct L∞ weak entropy solutions to

(2.1.2)–(2.1.3) for physical initial data, and then prove that any L∞ entropy weak so-

lution of (2.1.2)–(2.1.3) converges exponentially to equilibrium state. We then prove

that the solutions of the related diffusion problem (2.1.4)–(2.1.5) tend to the same

equilibrium state exponentially fast in time provided that∫ 1

0

ρ̃0(x)dx =

∫ 1

0

ρ0(x)dx. (2.1.6)

We thus justified the validity of Darcy’s law in large time.

Notation 2.1.1. Unless specified, throughout this chapter, C and Ci will denote

generic constants which are independent of ρ,m and t.

2.2 Preliminaries and Main Results

We first introduce some basic facts about system (2.1.2) and the homogeneous com-

pressible Euler equations. For more details, see [26] and [94]. It is convenient to use
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vector form of the system. Set

v = (ρ,m)T , f(v) =
(
m,

m2

ρ
+
ργ

γ

)T
, g(v) = (0,−m)T , (2.2.1)

we rewrite (2.1.2)–(2.1.3) as
vt + f(v)x = g(v),

v(x, 0) = v0(x), x ∈ (0, 1),

m(0, t) = m(1, t) = 0.

(2.2.2)

Clearly, the Jacobian matrix of flux f is

∇f =

 0 1

−m2

ρ2
+ ργ−1 2m

ρ

 , (2.2.3)

which has eigenvalues

λ1 =
m

ρ
− ρθ, λ2 =

m

ρ
+ ρθ, (2.2.4)

and the so-called Riemann invariants are

w =
m

ρ
+
ρθ

θ
, z =

m

ρ
− ρθ

θ
, (2.2.5)

where θ = γ−1
2

.

We now give the definition of weak solution to (2.1.2)–(2.1.3).

Definition 2.2.1. For every T > 0, we define a weak solution of (2.1.2)–(2.1.3) to

be a pair of bounded measurable functions v(x, t) =
(
ρ(x, t),m(x, t)

)
satisfying the

following pair of integral identities:∫ T

0

∫ 1

0

(ρψt +mψx) dx dt+

∫
t=0

ρ0ψ dx = 0, (2.2.6)∫ T

0

∫ 1

0

(
mψt+

(m2

ρ
+P (ρ)

)
ψx

)
dx dt−

∫ T

0

∫ 1

0

mψ dx dt+

∫
t=0

m0ψ dx = 0, (2.2.7)

for all ψ ∈ C∞0 (IT ) satisfying ψ(x, T ) = 0 for 0 ≤ x ≤ 1 and ψ(0, t) = ψ(1, t) = 0 for

t ≥ 0, where IT = (0, 1)×(0, T ), and m
ρ

vanishes when ρ = 0. Moreover, (ρ,m) satisfy

the initial boundary conditions (2.1.3) in the sense of trace, defined in (2.4.8)–(2.4.9)

below.
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An interesting feature of nonlinear hyperbolic balance laws is that when weak

solution is concerned, the uniqueness is lost. In order to select the physical relevant

solutions, one often imposes entropy admissible conditions. We now define the entropy

and entropy flux pairs.

Definition 2.2.2. A pair of mappings η : R2 → R and q : R2 → R is called an

entropy-entropy flux pair if it satisfies the following equation

∇q = ∇η∇f.

Let η̃(ρ,m/ρ) = η(ρ,m). If η̃(0, u) = 0, then η is called a weak entropy.

Among all entropies, the most natural entropy is the mechanical energy

ηe(ρ,m) =
m2

2ρ
+

ργ

γ(γ − 1)
, (2.2.8)

which plays a very important role in estimates for entropy dissipation measures. It is

easy to check that ηe is a weak and convex entropy.

Definition 2.2.3. The weak solution v(x, t) =
(
ρ(x, t),m(x, t)

)
defined in Definition

2.2.1 is said to be entropy admissible if for any convex entropy η and associated

entropy flux q, the following entropy inequality holds

ηt + qx + ηmm ≤ 0, (2.2.9)

in the sense of distribution.

Typically, in order to construct approximate solutions to non-homogeneous hy-

perbolic systems, fractional step scheme (operator splitting) is applied. In each time

step, one first solves the associated homogeneous system, then apply the ODE cor-

rection ignoring fluxes. In this chapter, we will use many results of the homogeneous

compressible Euler equations:


ρt +mx = 0,

mt +
(m2

ρ
+ P (ρ)

)
x

= 0,
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or equivalently,

vt + f(v)x = 0. (2.2.10)

One of the building blocks is the Riemann problem
(2.2.10), t > 0, x ∈ R,

(ρ,m)|t=0 =


(ρl,ml), x < 0,

(ρr,mr), x > 0,

(2.2.11)

where ρl, ρr, ml, and mr are constants satisfying 0 ≤ ρl, ρr, |ml/ρl|, |mr/ρr| <∞.

There are two distinct types of rarefaction waves and shock waves, called elementary

waves , which are labeled 1-rarefaction or 2-rarefaction waves and 1-shock or 2-shock

waves, respectively.

Lemma 2.2.1. There exists a global weak entropy solution of (2.2.11) which is piece-

wise smooth function satisfying

w(x, t) = w(
x

t
) ≤ max{w(ρl,ml), w(ρr,mr)},

z(x, t) = z(
x

t
) ≥ min{z(ρl,ml), z(ρr,mr)},

w(x, t)− z(x, t) ≥ 0.

It follows that the region Λ = {(ρ,m) : w ≤ w0, z ≥ z0, w − z ≥ 0} is an

invariant region for the Riemann problem (2.2.11). More precisely, if the Riemann

data lies in Λ, then the solution of (2.2.11) lies in Λ, too.

Lemma 2.2.2. If {(ρ,m) : a ≤ x ≤ b} ⊂ Λ, then(
1

b− a

∫ b

a

ρ dx,
1

b− a

∫ b

a

m dx

)
∈ Λ. (2.2.12)

Concerning the IBVP, the boundary Riemann solver is applied.

Lemma 2.2.3. For the mixed problem
(2.2.10), t > 0, x > 0,

(ρ,m)|t=0 = (ρ0,m0), x > 0,

m|x=0 = 0, t ≥ 0,

(2.2.13)
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where (ρ0,m0) are constants, there exists a weak entropy solution in the region
{

(x, t) :

x ≥ 0, t ≥ 0
}

satisfying the following estimates

w(x, t) ≤ max{w(ρ0,m0),−z(ρ0,m0)},

z(x, t) ≥ z(ρ0,m0), and w(x, t)− z(x, t) ≥ 0.

The term −z(ρ0,m0) is new to the mixed problem because of the shock waves

reflecting off or coming out at the boundary x = 0. Similar to (2.2.13), we can solve

the following mixed problem in the region
{

(x, t) : x ≤ 1, t ≥ 0
}

:
(2.2.10), t > 0, x < 1,

(ρ,m)|t=0 = (ρ0,m0), x < 1,

m|x=1 = 0, t ≥ 0,

(2.2.14)

The weak entropy solution of (2.2.14) satisfies the following estimates:

z(x, t) ≥ min{z(ρ0,m0),−w(ρ0,m0)},

w(x, t) ≤ w(ρ0,m0), and w(x, t)− z(x, t) ≥ 0.

Lemma 2.2.4. Suppose that
(
ρ(x, t),m(x, t)

)
is a solution of (2.2.11) or (2.2.13)

and or (2.2.14). Then, the jump strength of m(x, t) across an elementary wave can

be dominated by that of (ρ(x, t)) across the same elementary wave, i.e.,

across a shock wave : |mr −ml| ≤ C|ρr − ρl|,

across a rarefaction wave : |m−ml| ≤ C|ρ− ρl| ≤ C|ρr − ρl|,

where C depends only on the bounds of ρ and |m|.

Lemma 2.2.5. For any ε > 0, there exist constants h > 0 and k > 0 such that the

solution of (2.2.11) in the region
{

(x, t) : |x| < h, 0 ≤ t < k
}

satisfies∫ h

−h
|ρ(x, t)− ρ(x, 0)| dx ≤ Chε, 0 ≤ t ≤ k, (2.2.15)

where C depends only on the bounds of ρ and |m|, and the mesh lengths h and k

satisfy maxi=1,2 sup |λi(ρ,m)| < h
2k

.
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The following two theorems are the main results of this chapter.

Theorem 2.2.1. Suppose that the initial data (ρ0,m0) satisfy the conditions

0 ≤ ρ0(x) ≤M1, ρ0 6≡ 0, |m0(x)| ≤M2ρ0(x),

for some positive constants Mi(i = 1, 2). Then, for γ > 1, the IBVP (2.1.2)–(2.1.3)

has a global weak solution (ρ(x, t),m(x, t)), as defined in Definition 2.2.1, satisfying

the following estimates and entropy condition:

0 ≤ ρ ≤ C, |m| ≤ Cρ a.e. for a constant C > 0 independent of t, and∫ T

0

∫ 1

0

(
η(ρ,m)ψ̃t + q(ρ,m)ψ̃x

)
dx dt−

∫ T

0

∫ 1

0

η(ρ,m)mψ̃ dx dt ≥ 0,
(2.2.16)

for all weak and convex entropy pairs (η, q) for (2.1.2)–(2.1.3) and for all nonnegative

smooth functions ψ̃ ∈ C1
0(IT ).

Theorem 2.2.2. Suppose

∫ 1

0

ρ0(x)dx = ρ∗. Let (ρ,m) be any L∞ entropy weak

solution of (2.1.2)–(2.1.3) defined in Definition 2.2.1, satisfying the estimates

0 ≤ ρ(x, t) ≤ Λ <∞, |m(x, t)| ≤M1ρ(x, t),

where M1,Λ are positive constants and let (ρ̃, m̃) be the weak solution of (2.1.4)–

(2.1.5) with mass ρ∗ and m̃ = −P (ρ̃)x. Then, there exist constants C, δ > 0 depend-

ing on γ, ρ∗,Λ, and initial data such that

∥∥(ρ− ρ̃,m− m̃)(·, t)
∥∥2

L2([0,1])
≤ Ce−δt. (2.2.17)

The proof of Theorem 2.2.1 is in the spirit of [104] and [88]. We construct the

approximate solutions vh derived by the Godunov scheme [36]. The L∞ norm of

approximate solutions is established. The compensated compactness framework is

then applied to the sequence of approximate solutions to obtain a global weak entropy

solution. The boundary conditions are verified in the sense of trace.

We then prove the exponential decay rate of the L2-norm of the difference between

solutions of (2.1.2)–(2.1.3) and (2.1.4)–(2.1.5). The proof involves the introduction
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of an antiderivative through mass conservation law, accurate estimation on the dissi-

pation of entropy and and the application of the theory of divergence-measure fields

[21] and Poincaré’s inequality. We will see that an easy lemma plays an important

role in the control of singularity near vacuum. It should be pointed out that the

key approach used for Cauchy problem is to compare the solution of (2.1.2)–(2.1.3)

with the similarity solution of (2.1.4)–(2.1.5) via energy estimates. Unfortunately,

the exponential decay rate cannot be achieved by this approach, due to the boundary

effects. Instead of comparing two solutions directly, we first show that the large time

asymptotic state for both solutions is a constant state (ρ∗, 0) and both solutions tend

to the constant state exponentially fast. Hence by the triangular inequality we can

see that the solution of (2.1.2)–(2.1.3) tends to that of (2.1.4)–(2.1.5) exponentially

fast as time goes to infinity.

2.3 Approximate Solutions

The approximate solutions will be constructed by Godunov scheme [36] with operator

splitting. We choose the space mesh length h = 1
N

, where N is a positive integer. The

time mesh length k = k(h) will be chosen later so that the Courant-Friedrich-Levy

condition

max
i=1,2

(sup |λi(v)|) < h

2k
(2.3.1)

holds for a given T > 0. We partition the interval [0, 1] into cells, with the jth cell

centered at xj = jh, j = 1, · · · , N − 1. Set x0 = 0 and xN = 1. We now use the

Godunov scheme to construct a sequence of approximate solutions of (2.2.2). Namely,

we solve the Riemann problems (2.2.11) in the region R1
j ≡

{
(x, t) : xj− 1

2
≤ x <

xj+ 1
2
, 0 ≤ t < k

}
:

∂

∂t
vh +

∂

∂x
f(vh) = 0,

vh|t=0 =


(ρ0
j ,m

0
j), x < xj,

(ρ0
j+1,m

0
j+1), x > xj, j = 1, · · · , N − 1,
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where

ρ0
j =

1

h

∫ xj

xj−1

ρ0(x) dx, m0
j =

1

h

∫ xj

xj−1

m0(x) dx, for j = 1, · · · , N.

We also solve the mixed problems (2.2.13) and (2.2.14) with (ρ0
1,m

0
1) and (ρ0

N ,m
0
N),

in regions
{

(x, t) : 0 ≤ x < x 1
2
, 0 ≤ t < k

}
and

{
(x, t) : xN− 1

2
≤ x < 1, 0 ≤ t < k

}
,

respectively. Then we set

vh(x, t) = vh(x, t) + V (vh(x, t))t, 0 ≤ x ≤ 1, 0 ≤ t < k, (2.3.2)

where V (v) =
(
V1(v), V2(v)

)
≡ (0,−m), and

v1
j =

1

h

∫ xj

xj−1

vh(x, t1 − 0) dx, j = 1, · · · , N. (2.3.3)

Suppose that we have defined approximate solutions vh(x, t) for 0 ≤ t < ti. We

then define

vh(x, t) = vh(x, t) + V (vh(x, t))(t− ti), ti ≤ t < ti+1, (2.3.4)

where vh(x, t) are piecewise smooth functions defined as solutions of the Riemann

problems in the region Ri
j

{
(x, t) : xj− 1

2
≤ x < xj+ 1

2
, ti ≤ t < ti+1

}


(2.2.10),

vh(x, t)|t=ti =


vij, x < xj,

vij+1, x > xj, j = 1, · · · , N − 1,

(2.3.5)
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and as solutions of mixed problems in the two regions Ri
0 and Ri

N :

Ri
0 = {(x, t) : 0 ≤ x < x 1

2
, ti ≤ t < ti+1},

(2.2.10), x > 0, t > ti,

vh(x, t)|t=ti = vi1, x > 0,

mh|x=0 = 0.

Ri
N = {(x, t) : xN− 1

2
≤ x < 1, ti ≤ t < ti+1},

(2.2.10), x < 1, t > ti,

vh(x, t)|t=ti = vi1, x < 1,

mh|x=1 = 0.

(2.3.6)

Next, we set

vi+1
j =

1

h

∫ xj

xj−1

vh(x, ti+1 − 0)dx, 1 ≤ j ≤ N. (2.3.7)

Therefore, inductively, the approximate solutions vh = (ρh,mh) ≡ (ρ
h
,mh) are

well-defined, since ρ
h
≥ 0. We summarize the above process as follows:

vi+1 = Ah ◦R ◦ Ek(·, vi), (2.3.8)

where Ah is the cell-averaging operator (2.3.7), Ek(x, v
i) is the Riemann solver (3.5)

(or boundary Riemann solver (2.3.6)), and R is the reconstruction step (2.3.4).

For ti ≤ t < ti+1, we set

wh(x, t) = wh(x, t)−
wh(x, t) + zh(x, t)

2
(t− ti), (2.3.9)

zh(x, t) = zh(x, t)−
wh(x, t) + zh(x, t)

2
(t− ti), (2.3.10)

where wh and zh are Riemann invariants corresponding to the Riemann solutions vh.

With the help of wh(x, t) and zh(x, t) defined by (2.3.9) and (2.3.10), we prove the

following uniform bound for the approximate solutions.
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Theorem 2.3.1. Suppose that the initial data (ρ0,m0) satisfy the following condi-

tions:

0 ≤ ρ0(x) ≤M1, ρ0(x) 6≡ 0, |m0(x)| ≤M2ρ0(x). (2.3.11)

Then, the approximate solutions (ρh,mh) derived by the Godunov scheme are uni-

formly bounded in the region IT ≡
{

(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T
}

for any T > 0;

that is, there is a constant C > 0 independent of t such that

0 ≤ ρh(x, t) ≤ C, |mh(x, t)| ≤ Cρh(x, t). (2.3.12)

Proof. Assume that 0 < k < 1. For ti ≤ t < ti+1 (i ≥ 0 integers), the Riemann

invariant properties imply that

wh(x, t) = wh(x, t)
(

1− t− ti
2

)
− zh(x, t)

t− ti
2

≤ sup
x
wh(x, ti + 0)

(
1− t− ti

2

)
− inf

x
zh(x, ti + 0)

t− ti
2

,

zh(x, t) = zh(x, t)
(

1− t− ti
2

)
− wh(x, t)

2
(t− ti)

≥ inf
x
zh(x, ti + 0)

(
1− t− ti

2

)
− sup

x
wh(x, ti + 0)

t− ti
2

.

In particular, we obtain

sup
x
wh(x, ti+1 − 0) ≤ sup

x
wh(x, ti + 0)

(
1− k

2

)
− inf

x
zh(x, ti + 0)

k

2
,

inf
x
zh(x, ti+1 − 0) ≥ inf

x
zh(x, ti + 0)

(
1− k

2

)
− sup

x
wh(x, ti + 0)

k

2
.

Let αi = max
{

supxwh(x, ti + 0), − infx zh(x, ti + 0)
}

. Then

max
{

sup
x
wh(x, ti+1 − 0), − inf

x
zh(x, ti+1 − 0)

}
≤ αi. (2.3.13)

By (2.3.7) we know that

sup
x
wh(x, ti+1 + 0) ≤ sup

x
wh(x, ti+1 − 0),

inf
x
zh(x, ti+1 + 0) ≥ inf

x
zh(x, ti+1 − 0).

(2.3.14)

Therefore

αi+1 ≤ αi, and αi ≤ α0, 0 ≤ i ≤ n, (2.3.15)
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where α0 = max
{

supxw0(x), − infx z0(x)
}

. Then, from (2.3.15) and Lemma 2.2.1

and Lemma 2.2.3 we have

wh(x, t) ≤ α0, zh(x, t) ≥ −α0, and

wh(x, t)− zh(x, t) ≥ 0.

Then there is a constant C > 0 independent of h, k and t such that

0 ≤ ρh(x, t) ≤ C, |mh(x, t)| ≤ Cρh(x, t).

This completes the proof the Theorem 2.3.1.

Now, we can choose the time mesh length k = k(h). Let

λ = max
i=1,2

{
sup

0≤ρ≤C, |m|≤Cρ
|λi(ρ,m)|

}
,

then we take

k =
T

n
, where n = max

{[
4λT

h

]
+ 1,

[
T

2

]
+ 1

}
. (2.3.16)

For this k, both the CFL condition and 0 < k < 1 hold.

2.4 Global Existence of Weak Solutions

With the uniform L∞ estimates given in Theorem 2.3.1, and the specific structure of

system (2.1.2), now it is standard to apply the compensated compactness framework

([29], [30], [62], [63]) to the approximate solution {vh}, to conclude that there exists

a convergent subsequence {vhj}∞j=1 such that hj → 0 as j →∞ and

(
ρhj(x, t),mhj(x, t)

)
→
(
ρ(x, t),m(x, t)

)
a.e. (2.4.1)

Furthermore, such a limit (ρ,m)(x, t) satisfies (2.2.6) and (2.2.7) for any test function

ψ(x, t) ∈ C∞0 (IT ) for any T > 0. Also, the entropy inequality holds in the sense of

distribution. The proof is in the same spirit of [88] and [104], we omit the details

here. Clearly, there is a constant C > 0 such that

0 ≤ ρ(x, t) ≤ C, |m(x, t)| ≤ Cρ(x, t) a.e.. (2.4.2)
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Now we turn to the initial and boundary conditions of weak solutions. First, we

need to determine the traces of weak solutions whose exact meaning will be stated

below. Let v = (ρ,m) be a weak solution of (2.1.2) obtained in (2.4.1). We introduce

the generalized function A : C1
0(R2) −→ R2 as follows: for ψ ∈ C1

0(R2),

A(ψ) = −
∫ T

0

∫ 1

0

(
vψt + f(v)ψx + g(v)ψ

)
dxdt. (2.4.3)

We take smooth ζ0(t), ζT (t), ξ0(x), ξ1(x) with

ζ0(0) = 1, ζ0(T ) = 0; ζT (0) = 0, ζT (T ) = 1;

ξ0(0) = 1, ξ0(1) = 0; ξ1(0) = 0, ξ1(1) = 1.

(2.4.4)

For any χ(x), we define the generalized functions:

v?(·, 0)(χ) = A(χ · ζ0)− χ(0)A(ξ0 · ζ0)− χ(1)A(ξ1 · ζ0),

v?(·, T )(χ) = −A(χ · ζT ) + χ(0)A(ξ0 · ζT ) + χ(1)A(ξ1 · ζT ),

f ?(v)(0, ·)(χ) = A(ξ0 · χ),

f ?(v)(1, ·)(χ) = −A(ξ1 · χ),

(2.4.5)

where (χ · ζ0)(x, t) = χ(x)ζ0(t) and so on mean the tensor product.

Then we can define the trace of v along the segments (0, 1)×{0} and (0, 1)×{T},

and the trace of f(v) along the segments {0} × (0, T ) and {1} × (0, T ) respectively

as v?(·, 0), v?(·, T ), f ?(v)(0, ·) and f ?(v)(1, ·). Similarly, for any t ∈ (0, T ), we can

also define v?(·, t) as the trace of v along the segment (0, 1)×{t}. For any x ∈ (0, 1),

define f ?(v)(x, ·) as the trace of f(v) along the segment {x} × (0, T ).

Similar to [39], we have

Lemma 2.4.1. Let v satisfy (2.1.2) in distributional sense, then,

v?(·, 0)|(0,1), v?(·, T )|(0,1) ∈ L∞loc(0, 1);

f ?(v)(0, ·)|(0,T ), f ?(v)(1, ·)|(0,T ) ∈ L∞loc(0, T ),

(2.4.6)
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and for any ψ ∈ C1
0(R2),∫ T

0

∫ 1

0

(
vψt + f(v)ψx + g(v)ψ

)
dxdt

=

∫ 1

0

v?(x, T )ψ(x, T )dx−
∫ 1

0

v?(x, 0)ψ(x, 0)dx

+

∫ T

0

f ?(v)(1, t)ψ(1, t)dt−
∫ T

0

f ?(v)(0, t)ψ(0, t)dt.

(2.4.7)

Theorem 2.4.1. Let vhj = (ρhj ,mhj) be the convergent sequence of approximate so-

lutions of (2.1.2)–(2.1.3) constructed in Section 3 and v = (ρ,m) is the limit function

obtained in (2.4.1). Then v(x, t) satisfies the initial-boundary conditions:

m?(0, t) = m?(1, t) = 0, t ∈ (0, T ); (2.4.8)

v?(x, 0) = v0(x), x ∈ (0, 1). (2.4.9)

Proof. From (2.2.6)–(2.2.7), it is easy to see, for any ψ ∈ C1
0(R2), that

lim
j→+∞

[ ∫ T

0

∫ 1

0

(vhjψt + f(vhj)ψx + g(vhj)ψ)dxdt+

∫
t=0

vhjψdx−
∫
t=T

vhjψdx

]
= 0,

(2.4.10)

which implies∫ T

0

∫ 1

0

(vψt + f(v)ψx + g(v)ψ)dxdt+ lim
j→+∞

[

∫
t=0

vhjψdx−
∫
t=T

vhjψdx] = 0. (2.4.11)

Therefore, (2.4.7) and (2.4.11) give

lim
j→+∞

(

∫
t=T

vhjψdx−
∫
t=0

vhjψdx)

=

∫ 1

0

v?(x, T )ψ(x, T )dx−
∫ 1

0

v?(x, 0)ψ(x, 0)dx

+

∫ T

0

f ?(v)(1, t)ψ(1, t)dt−
∫ T

0

f ?(v)(0, t)ψ(0, t)dt.

(2.4.12)

The first component of (2.4.12) reads∫ 1

0

ρ?(x, T )ψ(x, T )dx−
∫ 1

0

ρ?(x, 0)ψ(x, 0)dx+

∫ T

0

m?(1, t)ψ(1, t)dt

−
∫ T

0

m?(0, t)ψ(0, t)dt− (

∫
t=T

ρψdx−
∫
t=0

ρψ dx) = 0.

(2.4.13)
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Taking ψ(x, t) = ζ(x)χ(t) ∈ C1
0(R2) with ζ, χ ∈ C1

0(R), and χ(0) = 1, χ(T ) = 0,

ζ(1) = ζ(0) = 0 in (2.4.13), we get∫ 1

0

ρ?(x, 0)ζ(x)dx =

∫ 1

0

ρ0(x)ζ(x)dx,

which implies ρ?(x, 0) = ρ0(x) on (0, 1).

Taking ψ(x, t) = ζ(x)χ(t) ∈ C1
0(R2) with ζ, χ ∈ C1

0(R), and χ(0) = χ(T ) = 0,

ζ(1) = 0, ζ(0) = 1 in (2.4.13), we get∫ T

0

m?(0, t)χ(t)dx = 0.

Thus m?(0, t) = 0 on (0, T ). It is similar to show that m?(1, t) = 0 on (0, T ). Using

the second component of (2.4.12), it is easy to show m?(x, 0) = m0(x) on (0, 1). This

completes the proof of Theorem 2.4.1.

Collecting all results obtained above, we thus conclude the proof of Theorem 2.3.1.

However, we remark that Theorem 2.4.1 might not apply to all weak solutions which

satisfy (2.2.6)–(2.2.7). However, in the same spirit, one could show that the weak

solutions obtained as vanishing viscosity limit with the same boundary condition

(2.1.3) verifies (2.4.8) and (2.4.9). This explains the last line in Definition 2.2.1.

2.5 Large Time Behavior of Weak Solution

Now we investigate the large time asymptotic behavior of any entropy weak solution

of (2.1.2)–(2.1.3), including the one obtained in the preceding section.

Theorem 2.5.1. Let (ρ,m) be any L∞ entropy weak solution of the initial boundary

problem (2.1.2)–(2.1.3), satisfying

∫ 1

0

ρ0(x)dx = ρ∗ and

0 ≤ ρ(x, t) ≤ Λ <∞, |m(x, t)| ≤M1ρ(x, t), (2.5.1)

where M1,Λ are positive constants. Then, there exist constants C, δ > 0 depending

on γ, ρ∗,Λ, and initial data such that∥∥(ρ− ρ∗, m)(·, t)∥∥2

L2([0,1])
≤ Ce−δt. (2.5.2)
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To prove Theorem 2.5.1, we first give a lemma which will play an important role

in controlling the singularity near vacuum.

Lemma 2.5.1. Let 0 ≤ ρ ≤ Λ <∞. There is a positive constant C1 such that

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

]
≤ C1

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗). (2.5.3)

Proof. Consider

Γ(ρ) =
γ

ρ∗
(P (ρ)− P (ρ∗))(ρ− ρ∗)−

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

]
. (2.5.4)

Clearly, Γ(ρ) is continuous for ρ ≥ 0. Since

Γ(0) = P (ρ∗) > 0, (2.5.5)

there exists d ∈ (0, ρ∗) such that

Γ(ρ) >
1

2
P (ρ∗) > 0, for ρ ∈ [0, d]. (2.5.6)

For ρ > d > 0, we can see that

P ′(d)(ρ− ρ∗)2 ≤
[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗), (2.5.7)

and

P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗) ≤


P ′′(d)

2
(ρ− ρ∗)2, 1 < γ ≤ 2,

P ′′(Λ)

2
(ρ− ρ∗)2, γ > 2.

(2.5.8)

Choosing

C1 = max{ γ
ρ∗
,
P ′′(d)

2P ′(d)
,
P (Λ)

2P ′(d)
}, (2.5.9)

we thus have

P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗) ≤ C1

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗). (2.5.10)

This completes the proof of Lemma 2.5.1.
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We then set

w = ρ− ρ∗, z = m, (2.5.11)

which satisfy 
wt + zx = 0

zt +
(m2

ρ

)
x

+
[
P (ρ)− P (ρ∗)

]
x

+ z = 0,
(2.5.12)

and ∫ 1

0

w(x, t)dx = 0. (2.5.13)

Define

y = −
∫ x

0

w(σ, t)dσ. (2.5.14)

which implies that

yx = −w = ρ∗ − ρ, yt = z. (2.5.15)

Since ∫ 1

0

ρ(x, t)dx =

∫ 1

0

ρ0(x)dx = ρ∗,

we have

y(0) = y(1) = 0. (2.5.16)

Therefore the second equation of (2.5.12) turns into

ytt +
(m2

ρ

)
x

+
[
P (ρ)− P (ρ∗)

]
x

+ yt = 0. (2.5.17)

Multiplying y with (2.5.17) and integrating over [0, 1] using the theory of divergence-

measure fields [21], we have

d

dt

∫ 1

0

(
yty +

1

2
y2
)
dx−

∫ 1

0

y2
t dx+

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx =

∫ 1

0

m2

ρ
yxdx.

(2.5.18)

Since ρ, u = m/ρ,m = yt ∈ L∞[0, 1], we get

d

dt

∫ 1

0

(
yty+

1

2
y2
)
dx−

∫ 1

0

y2
t dx+

∫ 1

0

[
P (ρ)−P (ρ∗)

]
(ρ−ρ∗)dx =

∫ 1

0

ρ∗
ρ
y2
t dx−

∫ 1

0

y2
t dx,

(2.5.19)
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i.e.

d

dt

∫ 1

0

(
yty +

1

2
y2
)
dx+

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx =

∫ 1

0

y2
t

ρ∗
ρ
dx. (2.5.20)

In order to deal with the nonlinearity, we now use the entropy inequality, rather

than the usual energy method. Let

ηe =
m2

2ρ
+
P (ρ)

γ − 1
, qe =

m3

2ρ2
+
ργ−1m

γ − 1

be the mechanical energy and related flux. We define

η∗ = ηe −
1

γ − 1
P ′(ρ∗)(ρ− ρ∗)−

1

γ − 1
P (ρ∗). (2.5.21)

Thus, by the definition of weak entropy solution, the following entropy inequality

holds in the sense of distribution:

η∗t +
1

γ − 1
[P ′(ρ∗)(ρ− ρ∗)]t + qex +

m2

ρ
≤ 0. (2.5.22)

Since ρ∗ is a constant, we get

η∗t +
P ′(ρ∗)

γ − 1
(ρ− ρ∗)t + qex +

m2

ρ
≤ 0. (2.5.23)

By the conservation of mass and theory of divergence-measure fields [21], we have

d

dt

∫ 1

0

η∗dx+

∫ 1

0

m2

ρ
dx ≤ 0,

i.e.,

d

dt

∫ 1

0

η∗dx+

∫ 1

0

y2
t

ρ
dx ≤ 0. (2.5.24)

Choosing K = max{2, 2Λ + ρ∗}, we add (2.5.20) to (2.5.24)×K,

d

dt

∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx+

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx+

∫ 1

0

K − ρ∗
ρ

y2
t dx ≤ 0,

(2.5.25)

Using the expression of η∗ we get

d

dt

∫ 1

0

(K
2ρ
y2
t + yyt +

1

2
y2 +

K

γ − 1

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

])
dx

+

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx+

∫ 1

0

K − ρ∗
ρ

y2
t dx ≤ 0.

(2.5.26)

42



Clearly, Lemma 2.5.1 implies∫ 1

0

K

γ − 1

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

]
dx ≤ C1K

γ − 1

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx.

(2.5.27)

On the other hand, since P is a convex function, the Lemma 4.1 of [55] and

Poincaré’s inequality imply that there are positive constants C2 and C3 such that∫ 1

0

(K
2ρ
y2
t + yyt +

1

2
y2
)
dx ≤

∫ 1

0

(K
2ρ
y2
t +

1

2
y2
t + y2

)
dx

≤ C2

∫ 1

0

K − ρ∗
ρ

y2
t dx+

∫ 1

0

y2dx

≤ C2

∫ 1

0

K − ρ∗
ρ

y2
t dx+

∫ 1

0

y2
xdx

≤ C2

∫ 1

0

K − ρ∗
ρ

y2
t dx+ C3

∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx.

(2.5.28)

Therefore, for C4 = max{C2, C3}, it holds∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx ≤ C4

(∫ 1

0

[
P (ρ)− P (ρ∗)

]
(ρ− ρ∗)dx+

∫ 1

0

K − ρ∗
ρ

y2
t dx
)
.

(2.5.29)

Therefore, from (2.5.26)–(2.5.29), we conclude that there is a positive constant C5

such that

d

dt

∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx+ C5

∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx ≤ 0. (2.5.30)

Furthermore, since K > 2Λ ≥ 2ρ, we know that

Kη∗ + yyt +
1

2
y2

≥ 2y2
t + yyt +

1

2
y2 +

K

γ − 1

[
P (ρ)− P (ρ∗)− P ′(ρ∗)(ρ− ρ∗)

]
≥ y2

t + C6(ρ− ρ∗)2,

(2.5.31)

where C6 is a positive constant. Hence, (2.5.30) implies that∫ 1

0

(
Kη∗ + yyt +

1

2
y2
)
dx ≤ C7 exp{−C5t}, (2.5.32)
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and ∫ 1

0

y2
t + (ρ− ρ∗)2dx ≤ C8 exp{−C5t}. (2.5.33)

This completes the proof of Theorem 2.5.1.

As indicated in introduction, we also expect that (2.1.2)–(2.1.3) is captured by

(2.1.4)–(2.1.5) time asymptotically if∫ 1

0

ρ̃0(x) dx = ρ∗. (2.5.34)

In view of Theorem 2.5.1, we will show that the large time asymptotic state of (2.1.4)–

(2.1.5) is also the constant state (ρ∗, 0). Then by applying the triangle inequality we

can prove Theorem 2.2.2.

Consider 
ρ̃t − P̃xx = 0,

ρ̃(x, 0) = ρ̃0(x), 0 ≤ x ≤ 1,

P̃x(0, t) = P̃x(1, t) = 0, t ≥ 0,

(2.5.35)

where P̃ = P (ρ̃), and P̃ ′0(0) = P̃ ′0(1) = 0, for P̃0(x) = P (ρ̃0(x)). The initial data ρ̃0

satisfies

0 ≤ ρ̃0(x) ≤ Λ, and

∫ 1

0

ρ̃0(x)dx =

∫ 1

0

ρ0(x)dx = ρ∗. (2.5.36)

The global existence and large time behavior of weak solutions of (2.5.35) has been

established in [4], see also [98]. Here, we give a proof in different version including

the decay of momentum.

Theorem 2.5.2. Let ρ̃0(x) satisfy (2.5.36). Then for the global weak solution ρ̃(x, t)

of (2.5.35) and m̃ = −P̃x, there exist positive constants c1 and δ1 > 0 such that∫ 1

0

(
(ρ̃− ρ∗)2 + m̃2

)
dx ≤ c1 exp{−δ1t}, as t→ +∞. (2.5.37)

Proof. First, we note that 0 ≤ ρ̃(x, t) ≤ Λ due to the comparison principle [98].

Second, there is a T > 0 such that ρ(x, t) > 0 is a classical solution for t > T , see [4].
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Then, for t > T , we consider the equation

(ρ̃− ρ∗)t = (P̃ − P∗)xx, (2.5.38)

which is equivalent to (2.5.35)1, where P̃ = P (ρ̃), P∗ = P (ρ∗). Let

ψ(x, t) = ρ̃(x, t)− ρ∗, (2.5.39)

and

φ =

∫ x

0

ψ(r, t) dr, (2.5.40)

then

φx = ψ = ρ̃− ρ∗. (2.5.41)

Due to the conservation of mass we have

φ(0) = φ(1) = 0. (2.5.42)

Integrating (2.5.38) over [0, x] and use the boundary condition we get

φt = (P̃ − P∗)x. (2.5.43)

Multiplying (2.5.43) by φ and integrating over [0, 1] we get

d

dt

∫ 1

0

1

2
φ2dx+

∫ 1

0

(P̃ − P∗)(ρ̃− ρ∗)dx = 0. (2.5.44)

Multiplying (2.5.38) by ρ̃− ρ∗ and integrating over [0, 1] we get

d

dt

∫ 1

0

1

2
(ρ̃− ρ∗)2dx+

∫ 1

0

(P̃ − P∗)x(ρ− ρ∗)xdx = 0. (2.5.45)

Since (P̃ − P∗)x = P̃x = P ′(ρ̃)ρ̃x = P ′(ρ̃)(ρ̃− ρ∗)x, one has

d

dt

∫ 1

0

1

2
(ρ̃− ρ∗)2dx+

∫ 1

0

P ′(ρ̃)(ρ̃− ρ∗)x(ρ̃− ρ∗)xdx = 0,

i.e.

d

dt

∫ 1

0

1

2
(ρ̃− ρ∗)2dx+

∫ 1

0

P ′(ρ̃)[(ρ̃− ρ∗)x]2dx = 0. (2.5.46)
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Multiplying (2.5.38) by (P̃ − P∗) and integrating over [0, 1] we get∫ 1

0

[P (ρ̃)− P (ρ∗)](ρ̃− ρ∗)tdx+

∫ 1

0

[(P̃ − P∗)x]2dx = 0. (2.5.47)

Now, we define

F (ρ̃− ρ∗) =

∫ ρ̃−ρ∗

0

[P (ρ∗ + ξ)− P (ρ∗)]dξ, (2.5.48)

then we have

Ft = [P (ρ̃)− P (ρ∗)](ρ̃− ρ∗)t.

So (2.5.47) turns out to be

d

dt

∫ 1

0

Fdx+

∫ 1

0

[(P̃ − P∗)x]2dx = 0. (2.5.49)

From the definition of F , we know

F =

∫ ρ̃−ρ∗

0

P ′(ζ)ξdξ,

where ζ is between ρ̃ and ρ∗. Since 0 ≤ ρ̃, ρ∗ ≤ Λ we know that

0 ≤ F ≤ P ′(Λ)

2
(ρ̃− ρ∗)2. (2.5.50)

Since P (ρ̃) = ρ̃γ/γ, then ρ̃ = (γP̃ )
1
γ , and so ρ̃t = (γP̃ )

1
γ
−1P̃t. Then we consider

the equation of P̃

P̃t = (γP̃ )1− 1
γ P̃xx,

i.e.

(P̃ − P∗)t = (γP̃ )1− 1
γ (P̃ − P∗)xx. (2.5.51)

Multiplying (2.5.51) by (P̃ − P∗)xx and integrating over [0, 1] we get

d

dt

∫ 1

0

1

2
[(P̃ − P∗)x]2dx+

∫ 1

0

(γP̃ )1− 1
γ [(P̃ − P∗)xx]2dx = 0. (2.5.52)

Coupling (2.5.45), (2.5.46), and (2.5.52), adding the results to (2.5.49), and notice

that P ′(ρ̃) ≥ 0 and (γP̃ )1− 1
γ ≥ 0, we arrive at

d

dt

∫ 1

0

{
φ2+(ρ̃−ρ∗)2+F+[(P̃−P∗)x]2

}
dx+

∫ 1

0

{
(P̃−P∗)(ρ̃−ρ∗)+[(P̃−P∗)x]2

}
dx ≤ 0,

(2.5.53)
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where we have thrown some non-negative terms (in the second part of the LHS) away.

Since φx = ρ̃− ρ∗, by Poincaré’s inequality and (2.5.50) we obtain∫ 1

0

{
φ2+(ρ̃−ρ∗)2+F+[(P̃−P∗)x]2

}
dx ≤

∫ 1

0

{(
2+

P ′(Λ)

2

)
(ρ̃−ρ∗)2+[(P̃−P∗)x]2

}
dx.

(2.5.54)

Now, from Lemma 4.1 in [55], we know that

C9(ρ̃− ρ∗)2 ≤ (P̃ − P∗)(ρ̃− ρ∗), (2.5.55)

where C9 is a constant. Combining (2.5.54) and (2.5.55) we obtain∫ 1

0

{
φ2+(ρ̃−ρ∗)2+F+[(P̃−P∗)x]2

}
dx ≤

∫ 1

0

{
C10(P̃−P∗)(ρ̃−ρ∗)+[(P̃−P∗)x]2

}
dx,

(2.5.56)

where C10 =
(

2 + P ′(Λ)
2

)
/C9. Therefore, (2.5.56) implies that∫ 1

0

{
φ2+(ρ̃−ρ∗)2+F+[(P̃−P∗)x]2

}
dx ≤ C11

∫ 1

0

{
(P̃−P∗)(ρ̃−ρ∗)+[(P̃−P∗)x]2

}
dx,

(2.5.57)

where C11 = max{C10, 1}. Combining (2.5.53) and (2.5.57) we get

d

dt

∫ 1

0

{
φ2+(ρ̃−ρ∗)2+F+[(P̃−P∗)x]2

}
dx+

1

C11

∫ 1

0

{
φ2+(ρ̃−ρ∗)2+F+[(P̃−P∗)x]2

}
dx ≤ 0,

which implies that∫ 1

0

{
φ2 + (ρ̃− ρ∗)2 + F + [(P̃ − P∗)x]2

}
dx ≤ C12 exp

{
− t

C11

}
, (2.5.58)

where C12 is a constant depending on the initial data.

Since F ≥ 0, we obtain∫ 1

0

{
φ2 + (ρ̃− ρ∗)2 + [(P̃ − P∗)x]2

}
dx ≤ C12 exp

{
− t

C11

}
, (2.5.59)

i.e. ∫ 1

0

{
φ2 + (ρ̃− ρ∗)2 + m̃2

}
dx ≤ C12 exp

{
− t

C11

}
. (2.5.60)

This completes the proof of Theorem 2.5.2.

Theorem 2.2.2 is a immediate consequence of Theorem 2.5.1 and Theorem 2.5.2.
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CHAPTER III

3D DAMPED COMPRESSIBLE EULER EQUATIONS

3.1 Introduction

In this chapter we continue the study of the damped compressible Euler equations on

bounded domains. We consider the 3D compressible Euler equations with frictional

damping: 
ρt +∇ · (ρU) = 0

(ρU)t +∇ · (ρU ⊗ U) +∇P = −ρU,
(3.1.1)

where ρ, U , M = ρU and P denote the density, velocity, momentum and pressure

respectively; the constant α > 0 models friction and P (ρ) = 1
γ
ργ, 1 < γ. System

(3.1.1) is supplemented by the following initial and boundary conditions:
(ρ, U)(x, 0) = (ρ0, U0)(x), x = (x, y, z) ∈ Ω,

U · n|∂Ω = 0, t ≥ 0,∫
Ω

ρ0dx = ρ̄ > 0,

(3.1.2)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, n is the unit outward

normal vector on the boundary of Ω.

Due to the dissipation in the momentum equations and the boundary effect, the

kinetic energy is expected to vanish as time tends to infinity while the potential energy

will converge to a constant. Furthermore, it is easy to see that∫
Ω

ρ(x, t)dx =

∫
Ω

ρ0(x)dx = ρ̄

due to the conservation of total mass. This suggests that the asymptotic state of the

solution should be (ρ, U)|t→∞ = (ρ̄/|Ω|,0). In this chapter, we will prove, under the

assumption that the initial perturbation around the equilibrium state is small, there

48



exists a unique global classical solution to (3.1.1)–(3.1.2) and the solution converges

exponentially to the equilibrium state. We also prove the same is true for the solution

of the decoupled system 
ρ̃t = ∆P (ρ̃),

M̃ = −∇P (ρ̃),

(3.1.3)

with the initial and boundary conditions
ρ̃(x, 0) = ρ̃0(x), x ∈ Ω,

(∇P (ρ̃)) · n|∂Ω = 0, t ≥ 0,

(3.1.4)

provided that ∫
Ω

ρ̃0dx =

∫
Ω

ρ0dx. (3.1.5)

Notation 3.1.1. Throughout this chapter, the energy space under consideration is:

X3([0, T ],Ω) ≡
{
F : Ω×[0, T ]→ R3(or R)

∣∣ ∂ltF ∈ L∞([0, T ];H3−l(Ω)), l = 0, 1, 2, 3
}
,

equipped with norm

‖F‖3,T ≡ ess sup
0≤t≤T

|||F (·, t)||| ≡ ess sup
0≤t≤T

[ 3∑
l=0

‖∂ltF (·, t)‖2
H3−l

]1/2

,

for any F ∈ X3([0, T ],Ω). Unless specified, throughout this chapter, C and Ci will

denote generic constants which are independent of ρ, U and t. The values of the

constants are different from those in previous chapter.

In this chapter, we generalize the study of [93] on bounded domains with the

slip boundary condition (3.1.2)2. For the global existence and large time behavior of

classical solutions, we have the following

Theorem 3.1.1. Suppose that the initial data satisfy the compatibility condition, i.e.,

∂ltU(0) · n|∂Ω = 0, 0 ≤ l ≤ 2, where ∂ltU(0) is the lth time derivative at t = 0 of any

solution of (3.1.1)–(3.1.2), as calculated from (3.1.1) to yield an expression in terms

of ρ0 and U0. Then there exists a constant ε such that if (ρ0 − ρ̄/|Ω|, U0) ∈ H3(Ω)
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and ‖(ρ0 − ρ̄/|Ω|, U0)‖H3 ≤ ε, then there exists a unique global solution (ρ, U) of

the initial-boundary value problem (3.1.1)–(3.1.2) in C1(Ω̄× [0,∞))∩X3([0,∞),Ω).

Moreover, there exist positive constants C > 0, η > 0, which are independent of t,

such that

|||(ρ− ρ̄/|Ω|)(·, t)|||+ |||U(·, t)||| ≤ C‖(ρ0 − ρ̄/|Ω|, U0)‖H3 exp{−ηt}. (3.1.6)

Concerning the relationship between the solutions of (3.1.1)–(3.1.2) and (3.1.3)–

(3.1.5), we have

Theorem 3.1.2. Let (ρ, U) be the unique global classical solution of (3.1.1)–(3.1.2)

and define M = ρU . Let (ρ̃, M̃) be the global solution of (3.1.3)–(3.1.5) with ρ̃0 ∈

L∞(Ω), and 0 ≤ ρ̃0 ≤ ρ∗ for some constant ρ∗ satisfying ρ̄/|Ω| < ρ∗ < ∞. Then,

there exist constants C, δ > 0 independent of t such that

‖(ρ− ρ̃)(·, t)‖H1 + ‖(M − M̃)(·, t)‖ ≤ C exp{−δt}, as t→∞. (3.1.7)

We prove Theorem 3.1.1 by showing the global existence and large time behavior

of classical solutions to the IBVP for the perturbation (ρ− ρ̄/|Ω|, U − 0). Due to the

slip boundary condition, the classical energy estimates can not be applied directly

to spatial derivatives. The proof of Theorem 3.1.1 is based on some special energy

estimates which strongly depend on the estimate of ∇U by ∇ × U and ∇ · U , see

Lemma 3.3.2 below. Using the special structure of (3.1.1) together with an induction

on the number of spatial derivatives, the estimate of total energy is reduced to those

for the vorticity and temporal derivatives. And the proof is completed by showing

that (3.1.6) is true for the vorticity and temporal derivatives. Compared with the

classical energy estimate for 3D initial-boundary value problems, which requires the

localization of ∂Ω, see for example [75, 90], our approach is short and neat. This idea

has also been used for the incompressible Euler equations in a free boundary problem,

see [24].
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Theorem 3.1.2 is proved in a similar fashion as Theorem 2.2.2. We prove that

both solutions of (3.1.1)–(3.1.2) and (3.1.3)–(3.1.5) tend to the same equilibrium

state exponentially fast. Thus, Theorem 3.1.2 is an easy consequence of the triangle

inequality. Moreover, the proof of the asymptotic behavior of the solution of (3.1.3)–

(3.1.5), see Theorem 3.4.1 below, requires neither smoothness nor smallness condition

on the initial data, i.e., the initial perturbation around the asymptotic state could

be rough and large, which is a significant difference from the proof of Theorem 3.1.1.

The argument is somewhat delicate mainly due to the nonlinearity in the diffusion. It

should be pointed out that, the global existence and large time behavior of solutions

of (3.1.3)–(3.1.5) have been studied in [4] based on dynamical system approach, see

also [98]. In this chapter, we give a different proof on the asymptotic behavior of the

solution based on the method of energy estimate. The decay in momentum is also

achieved.

3.2 Reformulation and Local Existence

In order to carry out standard energy estimate, we first reformulate the IBVP (3.1.1)–

(3.1.2). Without any loss of generality, we assume ρ̄/|Ω| = 1. First we reformulate

(3.1.1) to get a symmetric hyperbolic system. Introducing the nonlinear transforma-

tion σ̃ = ρθ/θ with θ = (γ − 1)/2 (ρθ is called sound speed) we get from the original

system that 
σ̃t + U · ∇σ̃ + θσ̃∇ · U = 0,

Ut + U · ∇U + θσ̃∇σ̃ = −U.

Since the equilibrium density is conjectured to be ρ̄/|Ω| = 1, we let σ = σ̃ − 1/θ and

get the desired symmetric system for the perturbation
σt + U · ∇σ + θσ∇ · U +∇ · U = 0,

Ut + U · ∇U + θσ∇σ +∇σ = −U.
(3.2.1)
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The initial and boundary conditions become
(σ, U)(x, 0) = (σ0, U0)(x),

U · n|∂Ω = 0, t ≥ 0,

(3.2.2)

with

σ0 =
ρθ0
θ
− 1

θ
.

The following lemmas are consequences of regularity and could be proved using the

same idea in [93].

Lemma 3.2.1. For any T > 0, if (ρ, U) ∈ C1(Ω̄× [0, T ]) is a solution of (3.1.1) with

ρ > 0, then (σ, U) ∈ C1(Ω̄× [0, T ]) is a solution of (3.2.1) with ((γ − 1)/2)σ+ 1 > 0.

Conversely, if (σ, U) ∈ C1(Ω̄× [0, T ]) is a solution of (3.2.1) with ((γ−1)/2)σ+1 > 0

and ρ = (((γ− 1)/2)σ+ 1)2/(γ−1), then (ρ, U) ∈ C1(Ω̄× [0, T ]) is a solution of (3.1.1)

with ρ > 0.

Lemma 3.2.2. If (ρ, U) ∈ C1(Ω̄× [0, T ]) is a uniformly bounded solution of (3.1.1)

with ρ(x, 0) > 0, then ρ(x, t) > 0 on Ω̄×[0, T ]. If (σ, U) ∈ C1(Ω̄×[0, T ]) is a uniformly

bounded solution of (3.2.1) with ((γ−1)/2)σ(x, 0)+1 > 0, then ((γ−1)/2)σ(x, t)+1 >

0 on Ω̄× [0, T ].

The following local existence result can be established using the arguments in [90].

Lemma 3.2.3. If (σ0, U0) ∈ H3(Ω) and satisfy the compatibility condition, i.e.,

∂ltU(0) · n|∂Ω = 0, 0 ≤ l ≤ 2, then there exists a unique local solution (σ, U) of

the initial-boundary value problem (3.2.1)–(3.2.2) in C1(Ω̄× [0, T ])∩X3([0, T ],Ω) for

some finite T > 0. Moreover, there exist positive constants ε0, C0(T ) such that if

‖σ(·, 0)‖H3 + ‖U(·, 0)‖H3 ≤ ε0, then ‖σ‖3,T + ‖U‖3,T ≤ C0

(
‖σ(·, 0)‖H3 + ‖U(·, 0)‖H3

)
.
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3.3 Global Existence and Large Time Behavior

We now prove the global existence and the large time behavior of the solution of

(3.2.1)–(3.2.2). For convenience, we let

W (t) ≡ |||σ(t)|||2 + |||U(t)|||2 =
3∑
l=0

(
‖∂ltσ(t)‖2

H3−l + ‖∂ltU(t)‖2
H3−l

)
. (3.3.1)

Theorem 3.3.1. There exists ε > 0 such that if W (0) ≤ ε2, then there is a unique

global classical solution of (3.2.1)–(3.2.2) such that there exist positive constants C >

0, η > 0, which are independent of t, such that

W (t) ≤ CW (0)e−ηt. (3.3.2)

The proof of Theorem 3.3.1 is based on several steps of careful energy estimates

which are stated as a sequence of lemmas. First we recall some inequalities of Sobolev

type (c.f. [97]).

Lemma 3.3.1. Let Ω be any bounded domain in R3 with smooth boundary. Then

(i) ‖f‖L∞(Ω) ≤ C‖f‖H2(Ω),

(ii) ‖f‖Lp(Ω) ≤ C‖f‖H1(Ω), 2 ≤ p ≤ 6,

for some constant C > 0 depending only on Ω.

Due to the slip boundary condition, the spatial derivatives are unknown on the

boundary. Following the standard procedure, see for example [75, 90], one can es-

tablish the energy estimates for the spatial derivatives by using cutoff functions and

localizations of ∂Ω, and Theorem 3.3.1 could be established in this fashion. However,

we notice that the proof is long and tedious. Here we give another version of the proof

which is short and neat. The proof will strongly depend on the following lemma (see

[9]), which gives the estimate of ∇U by ∇ · U and ∇× U .

Lemma 3.3.2. Let U ∈ Hs(Ω) be a vector-valued function satisfying U · n|∂Ω = 0,

where n is the unit outer normal of ∂Ω. Then

‖U‖Hs ≤ C(‖∇ × U‖Hs−1 + ‖∇ · U‖Hs−1 + ‖U‖Hs−1), (3.3.3)
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for s ≥ 1, and the constant C depends only on s and Ω.

The next lemma is an application of Lemma 3.3.2, which plays an important role

in the proof of Theorem 3.3.1. Indeed, the lemma states that the spatial derivatives

are bounded by the temporal derivatives and the vorticity. Let ω = ∇×U and define

E(t) ≡
3∑
l=0

(
‖∂ltσ‖2 + ‖∂ltU‖2

)
, and V (t) ≡

2∑
l=0

‖∂ltω‖2
H2−l , (3.3.4)

Lemma 3.3.3. Let (σ, U) be the solution of (3.2.1)–(3.2.2). There is a small constant

δ̄ such that if W (t) ≤ δ̄, then there exists a constant C1 > 0 such that

W (t) ≤ C1

(
V (t) + E(t)

)
.

Proof. From the velocity equation (3.2.1)2 we have

∇σ = − 1

θσ + 1
(U + Ut + U · ∇U). (3.3.5)

Taking the L2 inner product of (3.3.5) with ∇σ, we get

‖∇σ‖2 =

∫
Ω

− 1

θσ + 1
(U + Ut + U · ∇U) · ∇σ dx,

using the smallness of W (t), Lemma 3.3.1 (i), and Cauchy-Schwartz inequality, we

easily get

‖∇σ‖2 ≤ C
(
‖U‖2 + ‖Ut‖2

)
+ C‖U‖2

L∞‖∇U‖2

≤ C
(
‖U‖2 + ‖Ut‖2

)
+ CW (t)

3
2 .

(3.3.6)

The continuity equation (3.2.1)1 implies

∇ · U = − 1

θσ + 1
(σt + U · ∇σ). (3.3.7)

Therefore, we obtain

‖∇ · U‖2 ≤ C
(
‖σt‖2 +W (t)

3
2

)
. (3.3.8)

Using Lemma 3.3.2 with s = 1 and (3.3.8) we have

‖U‖2
1 ≤ C(‖ω‖2 + ‖∇ · U‖2 + ‖U‖2)

≤ C(‖ω‖2 + ‖σt‖2 + ‖U‖2 +W (t)
3
2 ).

(3.3.9)
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Next, we take time derivatives of (3.3.5) and (3.3.7). It is clear that every time

derivative up to order two of ∇σ and ∇ · U is again bounded by E(t). Furthermore,

together with an induction on the number of spatial derivatives, the same is true for

any derivative up to order two of ∇σ and ∇ · U . By applying Lemma 3.3.2 with

s = 1, 2, 3 respectively we finally deduce the lemma. This completes the proof of

Lemma 3.3.3.

Lemma 3.3.3 reduced the estimate of W (t) to those for E(t) and V (t). Our next

goal is to deal with the estimates of E(t) and V (t).

Lemma 3.3.4. There is a constant C > 0 such that

d

dt
E(t) + 2

3∑
l=0

‖∂ltU‖2 ≤ CW (t)
3
2 . (3.3.10)

Proof. Zero order estimate: We calculate σ(3.2.1)1 + U · (3.2.1)2 and get

1

2

d

dt
(σ2+|U |2)+|U |2 = −(1+θ)σ(U ·∇σ)−θσ2(∇·U)−U ·(U ·∇U)−∇·(σU). (3.3.11)

Integrating (3.3.11) over Ω using the Divergence Theorem and the boundary condition

we get

1

2

d

dt

(
‖σ‖2 + ‖U‖2

)
+ ‖U‖2 ≤ C

(
‖∇σ‖L∞ + ‖∇U)‖L∞

)(
‖σ‖2 + ‖U‖2

)
. (3.3.12)

Applying Lemma 3.3.1 (i) to (3.3.12) we get

d

dt

(
‖σ‖2 + ‖U‖2

)
+ 2‖U‖2 ≤ CW (t)

3
2 . (3.3.13)

First order estimate: Differentiating (3.2.1) with respect to t, multiplying the

resulting equations by σt, Ut respectively, we get

1

2

d

dt
(σ2

t + |Ut|2) + |Ut|2

=(1/2− θ)σ2
t (∇ · U)− σt(Ut · ∇σ)− Ut · (Ut · ∇U)− 1

2
|Ut|2(∇ · U)

−∇ ·
(

(σ2
t + |Ut|2)

2
U + (θσ + 1)σtUt

)
.
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Integrating the above equation over Ω using the boundary conditions U · n|∂Ω = 0

and Ut · n|∂Ω = 0 we get

d

dt

(
‖σt‖2 + ‖Ut‖2

)
+ 2‖Ut‖2 ≤ C

(
‖∇σ‖L∞ + ‖∇ · U‖L∞ + ‖∇U‖L∞

)
W (t), (3.3.14)

for some constant C > 0. From Lemma 3.3.1 (i) we get

d

dt

(
‖σt‖2 + ‖Ut‖2

)
+ 2‖Ut‖2 ≤ CW (t)

3
2 . (3.3.15)

Second order estimate: Repeating the above procedure again for 2nd order time

derivatives we get the following

d

dt

(
‖σtt‖2 + ‖Utt‖2

)
+ 2‖Utt‖2 ≤ CW (t)

3
2 . (3.3.16)

Third order estimate: If we repeat the above procedure to the 3rd order estimates,

we find that the 4th order estimates will be needed due to the Sobolev inequality in

Lemma 3.3.1 (i). However, this issue could be resolved by Lemma 3.3.1 (ii). We

calculate ∂3
t σ∂

3
t (3.2.1)1 + ∂3

tU · ∂3
t (3.2.1)2 and get

1

2

d

dt
(σ2

ttt + |Uttt|2) + |Uttt|2 =
[1

2
(∇ · U)(|Uttt|2) + (

1

2
− θ)(∇ · U)σ2

ttt−

(Uttt · ∇σ + 3Ut · ∇σtt + 3θσt∇ · Utt)σttt−

(Uttt · ∇U + 3Ut · ∇Utt + 3θσt∇σtt) · Uttt
]
−{

3(Utt · ∇σt + θσtt∇ · Ut)σttt+

3(Utt · ∇Ut + θσtt∇σt) · Uttt
}
−

∇ ·
(σ2

ttt

2
U +

|Uttt|2

2
U + (θσ)σtttUttt

)
.

Integrating the above equation over Ω, applying Lemma 3.3.1 (i) to the terms inside

the [ ] we get

1

2

d

dt
(‖σttt‖2 + ‖Uttt‖2) + ‖Uttt‖2 ≤ CW (t)

3
2 + 3

∣∣∣ ∫
Ω

σttt(Utt · ∇σt + θσtt · ∇Ut)dx
∣∣∣

+ 3
∣∣∣ ∫

Ω

Uttt · (Utt · ∇Ut + θσtt∇σt)dx
∣∣∣.
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Using Hölder’s inequality, Lemma 3.3.1 (ii), and Cauchy-Schwartz inequality we can

estimate the second term on the RHS above as follows:∣∣∣ ∫
Ω

σttt(Utt · ∇σt + θσtt · ∇Ut)dx
∣∣∣

≤ ‖σttt‖L2

(
‖Utt‖L4‖Dσt‖L4 + θ‖σtt‖L4‖DUt‖L4

)
≤ C‖σttt‖L2

(
‖Utt‖H1‖Dσt‖H1 + θ‖σtt‖H1‖DUt‖H1

)
≤ C‖σttt‖L2

(
‖Utt‖2

H1 + ‖Dσt‖2
H1 + ‖σtt‖2

H1 + ‖DUt‖2
H1

)
≤ CW (t)

3
2 .

(3.3.17)

The third term can be estimated in the same way. Then we get the 3rd order estimate:

d

dt

(
‖σttt‖2 + ‖Uttt‖2

)
+ 2‖Uttt‖2 ≤ CW (t)

3
2 . (3.3.18)

Therefore, (3.3.10) follows from (3.3.13), (3.3.15)–(3.3.16) and (3.3.18). This com-

pletes the proof of Lemma 3.3.4.

Lemma 3.3.4 contains the dissipation in velocity. In the next lemma we are going

to explore the dissipation in density due to nonlinearity.

Lemma 3.3.5. There exist constants c0, C > 0 such that

d

dt

( 3∑
l=1

∫
Ω

(
− ∂l−1

t σ∂ltσ
)
dx

)
+

3∑
l=0

‖∂ltσ‖2 ≤ CW (t)
3
2 + c0

3∑
l=0

‖∂ltU‖2. (3.3.19)

Proof. First of all, due to the conservation of total mass we know
∫

Ω
(ρ− 1)dx = 0,

where ρ is the solution of (3.1.1) and 1 = ρ̄/|Ω| is the equilibrium state of ρ. Letting

ρ̂ = ρ − 1, then Poincaré’s inequality (c.f. [34]) implies that ‖ρ̂‖2 ≤ C‖∇ρ̂‖2. By

definition, σ = (τ ρ̂ + 1)ρ̂ for some τ ∈ [0, 1] and ∇σ = (ρ̂ + 1)θ−1∇ρ̂. So that for

W (t) small, ‖σ‖2 ≤ C‖∇σ‖2. Using (3.3.6) we obtain

‖σ‖2 ≤ C
(
W (t)

3
2 + ‖U‖2 + ‖Ut‖2

)
. (3.3.20)

Calculating ∂t(3.2.1)1 − (θσ + 1)∇ · (3.2.1)2 we get

σtt + (U · ∇σ)t + θσt(∇ ·U)− (θσ + 1)∇ ·
[
U · ∇U + (θσ + 1)∇σ +U

]
= 0. (3.3.21)
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Multiplying (3.3.21) by σ we obtain

σttσ + (U · ∇σ)tσ + θσt(∇ · U)σ − (θσ + 1)∇ ·
[
U · ∇U + (θσ + 1)∇σ + U

]
σ

=(σσt)t − σ2
t + (U · ∇σ)tσ + θσσt(∇ · U) + (θσ + 1)σ∇ · Ut

=(σσt)t − σ2
t + (Ut · ∇σ)σ + (U · ∇σt)σ + θσσt(∇ · U)+

∇ ·
[
(θσ2 + σ)Ut

]
− Ut · ∇(θσ2 + σ)

=(σσt)t − σ2
t + (Ut · ∇σ)σ +∇ · (σσtU)− σσt(∇ · U)− σt(U · ∇σ) + θσσt(∇ · U)+

∇ ·
[
(θσ2 + σ)Ut

]
− Ut · ∇(θσ2 + σ)

=(σσt)t − σ2
t + (Ut · ∇σ)σ + (θ − 1)σσt(∇ · U)− σt(U · ∇σ)− 2θσUt · ∇σ−

Ut · ∇σ +∇ ·
[
(θσ2 + σ)Ut + σσtU

]
=0,

(3.3.22)

where we used the equation U · ∇U + (θσ + 1)∇σ + U = −Ut. Integrating (3.3.22)

over Ω and using Cauchy-Schwartz inequality we get

− d

dt

(∫
Ω

σσtdx
)

+ ‖σt‖2 ≤ C
(
W (t)

3
2 + ‖∇σ‖2 + ‖U‖2

)
, (3.3.23)

which together with (3.3.6) gives

− d

dt

(∫
Ω

σσtdx
)

+ ‖σt‖2 ≤ C
(
W (t)

3
2 + ‖U‖2 + ‖Ut‖2

)
. (3.3.24)

Next, we take time derivatives of (3.3.21). Similar derivations show that

− d

dt

(∫
Ω

σtσttdx
)

+ ‖σtt‖2 ≤ C
(
W (t)

3
2 + ‖Ut‖2 + ‖Utt‖2

)
,

− d

dt

(∫
Ω

σttσtttdx
)

+ ‖σttt‖2 ≤ C
(
W (t)

3
2 + ‖Utt‖2 + ‖Uttt‖2

)
,

which together with (3.3.20) and (3.3.24) deduce (3.3.19). This completes the proof

of Lemma 3.3.5.

Now, we are ready to combine Lemma 3.3.4 and 3.3.5 to characterize the total
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dissipation. For this purpose, we let C2 ≡ max{2, c0}, and define

E1(t) ≡ C2E(t)−
3∑
l=1

∫
Ω

(
∂l−1
t σ∂ltσ

)
dx

= C2

3∑
l=0

(
‖∂ltσ‖2 + ‖∂ltU‖2

)
−

3∑
l=1

∫
Ω

(
∂l−1
t σ∂ltσ

)
dx.

(3.3.25)

It is easy to see that E1(t) ≥ 0 for any t ≥ 0. Then we have

Lemma 3.3.6. There exist constants C3, C > 0 such that

d

dt
E1(t) + C3E(t) ≤ CW (t)

3
2 . (3.3.26)

Proof. C2 × (3.3.10) + (3.3.19) yields

d

dt
E1(t) + c0

3∑
l=0

‖∂ltU‖2 +
3∑
l=0

‖∂ltσ‖2 ≤ CW (t)
3
2 . (3.3.27)

Let C3 = min{c0, 1}, then (3.3.26) follows directly from (3.3.27).

The next lemma is contributed to the estimate of V (t) defined in Lemma 3.3.3.

Lemma 3.3.7. For V (t) defined in Lemma 3.3.3, there exists a constant C > 0 such

that

d

dt
V (t) + 2V (t) ≤ CW (t)

3
2 . (3.3.28)

Proof. Taking the curl of the velocity equation of (3.2.1) we get

ωt + ω = −U · ∇ω + ω · ∇U − ω(∇ · U).

Let ∂ denote any mixed time and spatial derivative of order 0 ≤ |∂| ≤ 2, then by

taking any mixed derivative of the above equation, we get

∂ωt + ∂ω = ∂{−U · ∇ω + ω · ∇U − ω(∇ · U)}.

Multiplying the above equation by ∂ω and integrating the resulting equation by using

the boundary condition, together with the standard energy estimate used in deriving

(3.3.17), we get

1

2

d

dt
‖∂ω(t)‖2 + ‖∂ω(t)‖2 ≤ CW (t)

3
2 .
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Finally, we deduce the lemma by summing up the above inequality for all 0 ≤ |∂| ≤ 2.

This completes the proof of Lemma 3.3.7.

Proof of Theorem 3.3.1. From (3.3.3), (3.3.25), and the definition of C2 we can

easily see that E(t) and E1(t) are equivalent, i.e., there exist constants c1, c2 > 0 such

that

c1E1(t) ≤ E(t) ≤ c2E1(t). (3.3.29)

Then, by (3.3.26) and (3.3.29) we have

d

dt
E1(t) + c1C3E1(t) ≤ CW (t)

3
2 . (3.3.30)

Combining (3.3.28) and (3.3.30) we get

d

dt

(
V (t) + E1(t)

)
+
(

2V (t) + c1C3E1(t)
)
≤ CW (t)

3
2 . (3.3.31)

Let C4 ≡ min{2, c1C3}, then we get from (3.3.31) that

d

dt

(
V (t) + E1(t)

)
+ C4

(
V (t) + E1(t)

)
≤ CW (t)

3
2 . (3.3.32)

On the other hand, from (3.3.4) and (3.3.29) we see that

W (t) ≤ C1

(
V (t) + c2E1(t)

)
. (3.3.33)

Let C5 ≡ max{C1, c2C1}, then we get

W (t) ≤ C5

(
V (t) + E1(t)

)
. (3.3.34)

For W (t) sufficiently small, (3.3.32) and (3.3.34) yield

d

dt

(
V (t) + E1(t)

)
+ C4

(
V (t) + E1(t)

)
≤ C4

2

(
V (t) + E1(t)

)
. (3.3.35)

Thus, we get

d

dt

(
V (t) + E1(t)

)
+
C4

2

(
V (t) + E1(t)

)
≤ 0, (3.3.36)

which yields the exponential decaying of V (t) +E1(t). Finally, the exponential decay

of W (t) follows from (3.3.34). This completes the proof of Theorem 3.3.1.

60



3.4 Asymptotic Behavior and Porous Medium Equation.

We turn to the investigation of the large time behavior of classical solutions of (3.1.3)–

(3.1.4). As indicated in the introduction, we expect that (3.1.1)–(3.1.2) is captured

by (3.1.3)–(3.1.4) time asymptotically if∫
Ω

ρ̃0dx =

∫
Ω

ρ0dx = ρ̄.

In view of Theorem 3.3.1, we will show that the large time asymptotic state of (3.1.3)–

(3.1.4) is also the constant state (ρ̄/|Ω|,0). Then, by applying the triangle inequality

we can prove Theorem 3.1.2. Without loss of generality, we assume ρ̄/|Ω| = 1.

Consider 
ρ̃t = ∆P (ρ̃),

ρ̃(x, 0) = ρ̃0(x), x ∈ Ω,

(∇P (ρ̃)) · n|∂Ω = 0, t ≥ 0,

(3.4.1)

where the initial data satisfy
∫

Ω

ρ̃0dx = ρ̄, ρ̃0(x) ∈ L∞(Ω),

0 ≤ ρ̃0(x) ≤ ρ∗ for some constant 1 < ρ∗ <∞.
(3.4.2)

The global existence of solutions to (3.4.1)–(3.4.2) has been established in [4], see

also [98]. It is also shown in there that ‖(ρ̃ − 1)‖L∞ tends to zero exponentially as

time goes to infinity. Here, we give a different proof based on the method of energy

estimate including the decay in momentum.

Theorem 3.4.1. Let ρ̃ be the global solution of (3.4.1)–(3.4.2) with M̃ = −∇P (ρ̃).

Then, there exist positive constants C > 0, η > 0 independent of t such that

‖(ρ̃− 1)‖H1 + ‖M̃(·, t)‖ ≤ Ce−ηt, as t→∞.

Proof. First, we observe that due to the comparison principle (c.f. [98]),

0 ≤ ρ̃(x, t) ≤ ρ∗, ∀ (x, t) ∈ Ω̄× [0,∞). (3.4.3)
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Second, there is a T > 0 such that ρ̃(x, t) is a classical solution and ρ̃(x, t) > 1
2

for

t > T and x ∈ Ω̄, see [98]. Then, for t > T , we consider the equation

(ρ̃− 1)t = ∆(P (ρ̃)− P (1)). (3.4.4)

Taking L2 inner product of (3.4.4) with (ρ̃− 1) we obtain, after integration by parts

1

2

d

dt
‖(ρ̃− 1)‖2 −

∫
Ω

∆[P (ρ̃)− P (1)](ρ̃− 1)dx

=
1

2

d

dt
‖(ρ̃− 1)‖2 +

∫
Ω

|∇(P (ρ̃)− P (1))|2

P ′(ρ̃)
dx

=0.

(3.4.5)

Using (3.4.3) we get from (3.4.5) that

1

2

d

dt
‖(ρ̃− 1)‖2 +

1

P ′(ρ∗)
‖∇(P (ρ̃)− P (1))‖2 ≤ 0. (3.4.6)

Since ρ̃ = γ1/γP̃ 1/γ, for smooth solutions, (3.4.1)1 is equivalent to

P̃t − γ1−1/γP̃ 1−1/γ∆P̃ = 0, (3.4.7)

where P̃ = P (ρ̃). Now, we define

Φ ≡ P̃ − P̄ = P (ρ̃)− P (1),

then we get

Φt − aP̃ 1−1/γ(∆Φ) = 0, (3.4.8)

where a = γ1−1/γ. Taking L2 inner product of (3.4.8) with ∆Φ we obtain

1

2

d

dt
‖∇Φ‖2 + aP (1/2)1−1/γ‖∆Φ‖2 ≤ 0. (3.4.9)

Combining (3.4.6) and (3.4.9) we deduce

1

2

d

dt

(
‖(ρ̃− 1)‖2 + ‖∇Φ‖2

)
+ C1

(
‖∇Φ‖2 + ‖∆Φ‖2

)
≤ 0, (3.4.10)

for C6 = min{1/P ′(ρ∗), aP (1/2)1−1/γ}.
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To explore the secret of (3.4.10), we observe that since

Φ = P (ρ̃)− P (1) = P ′(%)(ρ̃− 1)

for some % ∈ [1/2, ρ∗], then

‖Φ‖2 ≤ P ′(ρ∗)2‖(ρ̃− 1)‖2,

‖∇Φ‖2 ≥ P ′(1/2)2‖∇(ρ̃− 1)‖2.

(3.4.11)

Due to the conservation of total mass, i.e.

∫
Ω

(ρ̃− 1)dx = 0, and Poincaré’s inequality

we get

‖Φ‖2 ≤ P ′(ρ∗)2‖(ρ̃− 1)‖2

≤ CP ′(ρ∗)2‖∇(ρ̃− 1)‖2

≤ C

(
P ′(ρ∗)

P ′(1/2)

)2

‖∇Φ‖2.

(3.4.12)

Combining (3.4.10)–(3.4.12) we obtain

1

2

d

dt

(
‖(ρ̃− 1)‖2 + ‖∇Φ‖2

)
+ C7

(
‖(ρ̃− 1)‖2 + ‖∇Φ‖2 + ‖∆Φ‖2

)
≤ 0, (3.4.13)

for some constant C7 > 0 depending on ρ∗. Finally, we deduce the theorem by

(3.4.11), (3.4.13) and noticing that M̃ = −∇Φ. This completes the proof of Theorem

3.4.1.

Theorem 3.1.2 in Section 1 is an immediate consequence of Theorem 3.3.1 and

Theorem 3.4.1.
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CHAPTER IV

2D BOUSSINESQ EQUATIONS

4.1 Introduction

In this chapter we consider the 2D viscous Boussinesq equations
Ut + U · ∇U +∇P = ν∆U + θe2,

θt + U · ∇θ = κ∆θ,

∇ · U = 0,

(4.1.1)

where U = (u, v) is the velocity vector field, P is the scalar pressure, θ is the scalar

density, the constant ν, κ > 0 model viscous dissipation and heat diffusion respec-

tively, and e2 = (0, 1)T. In this chapter, we consider (4.1.1) in a bounded domain

Ω ⊂ R2 with smooth boundary ∂Ω and with partial viscosity (i.e., either ν > 0, κ = 0

or ν = 0, κ > 0). The system is supplemented by the following initial and boundary

conditions:

For ν > 0, κ = 0: 
(U, θ)(x, 0) = (U0, θ0)(x), x ∈ Ω;

U |∂Ω = 0.

(4.1.2)

For ν = 0, κ > 0: 
(U, θ)(x, 0) = (U0, θ0)(x), x ∈ Ω;

U · n|∂Ω = 0, θ|∂Ω = θ̄,

(4.1.3)

where θ̄ is a constant and n is the unit outward normal to ∂Ω..

Notation 4.1.1. Throughout this chapter, the function spaces under consideration

are:

C([0, T ];H3(Ω)) and L2([0, T ];H4(Ω)),
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equipped with norms

sup
0≤t≤T

‖Ψ(·, t)‖H3 , for Ψ ∈ C([0, T ];H3(Ω)),(∫ T

0

‖Ψ(·, τ)‖2
H4dτ

)1/2

, for Ψ ∈ L2([0, T ];H4(Ω)).

Unless specified, throughout this chapter, C will denote various generic constants

which are independent of U and θ, but may depend on the time T . Moreover, the

values of the constants are different from those in previous chapters.

In this chapter, we will generalize the study of [15] and [41] to bounded domains

with typical physical boundary conditions. For the global existence of smooth solu-

tions, we require the following compatibility conditions:

For ν > 0, κ = 0:
∇ · U0 = 0, U0|∂Ω = 0,

ν∆U0 + θ0e2 −∇P0 = 0, x ∈ ∂Ω, t = 0,

(4.1.4)

where P0(x) = P (x, 0) is the solution to the Neumann boundary problem
∆P0 = ∇ · [θ0e2 − U0 · ∇U0], x ∈ Ω,

∇P0 · n|∂Ω = [ν∆U0 + θ0e2] · n|∂Ω.

(4.1.5)

For ν = 0, κ > 0: 
U0 · n|∂Ω = 0, ∇ · U0 = 0,

θ0|∂Ω = θ̄, U0 · ∇θ0 − κ∆θ0|∂Ω = 0.

(4.1.6)

Our main results are stated in the following theorems.

Theorem 4.1.1 (For ν > 0, κ = 0). Let Ω ⊂ R2 be a bounded domain with smooth

boundary. If (θ0(x), U0(x)) ∈ H3(Ω) satisfies the compatibility conditions (4.1.4)–

(4.1.5), then there exists a unique solution (θ, U) of (4.1.1)–(4.1.2) globally in time

such that θ(x, t) ∈ C([0, T );H3(Ω)) and U(x, t) ∈ C([0, T );H3(Ω))∩L2([0, T );H4(Ω))

for any T > 0. Moreover, there exists a constant C̄ > 0 independent of t such that

‖U(·, t)‖2
L2 ≤ max

{
‖U(·, 0)‖2

L2 ,
C̄2

ν2
‖θ(·, 0)‖2

L2

}
, ∀ t ≥ 0. (4.1.7)
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Theorem 4.1.2 (For ν = 0, κ > 0). Let Ω ⊂ R2 be a bounded domain with smooth

boundary ∂Ω. If (U0(x), θ0(x)) ∈ H3(Ω) satisfies the compatibility conditions (4.1.6),

then there exists a unique solution (U, θ) of (4.1.1) and (4.1.3) globally in time such

that U ∈ C([0, T );H3(Ω)) and θ ∈ C([0, T );H3(Ω))∩L2([0, T );H4(Ω)) for any T > 0.

Moreover, there exist constants η > 0, C̄ > 0, C(p) > 0, which are independent of t

such that for any fixed p ∈ [2,∞),

‖(θ − θ̄)(·, t)‖H3 ≤ C̄ exp{−ηt}, ‖U(·, t)‖W 1,p ≤ C(p), ∀ t ≥ 0. (4.1.8)

The proofs of the above theorems mainly consist of two parts. First, we show the

global existence of weak solutions, i.e., solutions satisfying the following definitions:

Definition 4.1.1. (θ, U) is said to be a global weak solution of (4.1.1)–(4.1.2), if for

any T > 0, U ∈ C([0, T );L2(Ω)) ∩ L2([0, T );H1
0 (Ω)), θ ∈ C([0, T );Lp(Ω)),∀ 1 ≤ p <

∞, and it holds that∫
Ω

U0 · Φ(x, 0)dx +

∫ T

0

∫
Ω

(
U · Φt + U · (U · ∇Φ) + θφ2

− ν∇φ1 · ∇u− ν∇φ2 · ∇v
)
dxdt = 0,∫

Ω

θ0ψ(x, 0)dx +

∫ T

0

∫
Ω

(
θψt + θU · ∇ψ

)
dxdt = 0,

for any Φ = (φ1, φ2) ∈ C∞0 (Ω× [0, T ])2 satisfying Φ(x, T ) = 0 and ∇ ·Φ = 0, and for

any ψ ∈ C∞0 (Ω× [0, T ]) satisfying ψ(x, T ) = 0.

Definition 4.1.2. (U, θ) is said to be a global weak solution of (4.1.1) and (4.1.3), if

for any T > 0, U ∈ C([0, T );H1(Ω)), θ ∈ C([0, T );L2(Ω))∩L2([0, T );H1(Ω)), and it

holds that∫
Ω

U0 · Φ(x, 0)dx +

∫ T

0

∫
Ω

(
U · Φt + U · (U · ∇Φ) + θe2 · Φ

)
dxdt = 0,∫

Ω

θ0ψ(x, 0)dx +

∫ T

0

∫
Ω

(
θψt + θU · ∇ψ −∇θ · ∇ψ

)
dxdt = 0,

for any Φ = (φ1, φ2) ∈ C∞(Ω × [0, T ])2 satisfying Φ(x, T ) = 0, ∇ · Φ = 0 and

Φ · n|∂Ω = 0, and for any ψ ∈ C∞0 (Ω× [0, T ]) satisfying ψ(x, T ) = 0.
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We then build up the regularity of the solution by energy estimate under the ini-

tial and boundary conditions. The energy estimate is somewhat delicate mainly due

to the coupling between the velocity and density equations by convection and grav-

itational force and the boundary effects. Great efforts have been made to simplify

the proof. Current proof involves intensive applications of Sobolev embeddings and

we will see that the Ladyzhenskaya’s inequalities play a crucial role in the estima-

tion of the solutions. The results on Stokes equations by Temam [97] and classical

results on elliptic equations [2] are important in our energy framework. These are

mainly due to the problem is set on the bounded domain, distinguishing itself from

the Cauchy problem in [41] and [15]. Roughly speaking, because of the lack of the

spatial derivatives of the solution at the boundary, our energy framework proceed as

follows: We first apply the standard energy estimate on the solution and the temporal

derivatives of the solution. We then apply the Temam’s results on Stokes equation

and the results on elliptic equations to obtain the spatial derivatives. Such a process

will be repeated up to third order, and then the carefully coupled estimates will be

composed into a desired estimate leading to global regularity, large-time behavior and

uniqueness of the solutions. These results suggest that either the viscous dissipation

or the heat diffusion is strong enough to compensate the effects of gravitational force

and nonlinear convection in order to prevent the development of singularity of the

system. It should be pointed out that in the theorems obtained above, no smallness

restriction is put upon the initial data which is a major difference from Theorem

3.1.1.

4.2 Preliminaries and Weak Solutions

We first list several facts which will be used in the proofs of Theorems 4.1.1 and 4.1.2.

Then we prove the global existence of weak solutions. First we recall some Sobolev

and Ladyzhenskaya type inequalities which are well-known and standard (c.f. [97]).
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Lemma 4.2.1. Let Ω ⊂ R2 be any bounded domain with C1 smooth boundary. Then

the following embeddings and inequalities hold:

(i) H1(Ω) ↪→ Lp(Ω), ∀ 1 < p <∞;

(ii) W 1,p(Ω) ↪→ L∞(Ω), ∀ 2 < p <∞;

(iii) ‖f‖2
L4 ≤ 2‖f‖‖∇f‖, ∀ f : Ω→ R and f ∈ H1

0 (Ω);

(iv) ‖f‖2
L4 ≤ C

(
‖f‖‖∇f‖+ ‖f‖2

)
, ∀ f : Ω→ R and f ∈ H1(Ω);

(v) ‖f‖2
L8 ≤ C

(
‖f‖‖∇f‖L4 + ‖f‖2

)
, ∀ f : Ω→ R and f ∈ W 1,4(Ω).

We then recall some useful results from [97] on Stokes equations which will be

used in the proof of Theorem 4.1.1.

Lemma 4.2.2. Let Ω be any open bounded domain in R2 with smooth boundary ∂Ω.

Consider the Stokes problem
− ν∆U +∇P = f in Ω

∇ · U = 0 in Ω

U = 0 on ∂Ω.

If f ∈ Wm,p, then U ∈ Wm+2,p, P ∈ Wm+1,p and there exists a constant c0 =

c0(p, ν,m,Ω) such that

‖U‖Wm+2,p + ‖P‖Wm+1,p ≤ c0‖f‖Wm,p

for any p ∈ (1,∞) and the integer m ≥ −1.

Now we collect several facts which will be used in the proof of Theorem 4.1.2.

First, we recall some classical result on elliptic equations (c.f. [2]).

Lemma 4.2.3. Let Ω ⊂ R2 be any bounded domain with smooth boundary ∂Ω. Con-

sider the Dirichlet problem: 
κ∆Θ = f in Ω,

Θ = 0 on ∂Ω.
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If f ∈ Wm,p, then Θ ∈ Wm+2,p and there exists a constant C = C(p, κ,m,Ω) such

that

‖Θ‖Wm+2,p ≤ C‖f‖Wm,p

for any p ∈ (1,∞) and the integer m ≥ −1.

The next three lemmas are useful in the estimation of the velocity field.

Lemma 4.2.4. Let Ω ⊂ R2 be any bounded domain with smooth boundary ∂Ω, and let

U ∈ W s,p(Ω) be a vector-valued function satisfying ∇ ·U = 0 and U ·n|∂Ω = 0, where

n is the unit outward normal to ∂Ω. Then there exists a constant C = C(s, p,Ω) such

that

‖U‖W s,p ≤ C(‖∇ × U‖W s−1,p + ‖U‖Lp)

for any s ≥ 1 and p ∈ (1,∞).

The following lemma is standard and can be found in [70].

Lemma 4.2.5. Let Ω ⊂ R2 be any open bounded domain with smooth boundary ∂Ω.

Then for any multiindex β with order |β| ≥ 3 and any functions f ∈ H |β|(Ω), g ∈

H |β|−1(Ω), it holds that

‖Dβ(fg)− fDβg‖ ≤ C
(
‖∇f‖L∞‖g‖H|β|−1 + ‖f‖H|β|‖g‖L∞

)
, (4.2.1)

for some constant C = C(|β|,Ω).

Concerning the 2D incompressible Euler equations, the following lemma can be

found in [57] and [61].

Lemma 4.2.6. Let Ω ⊂ R2 be any bounded domain with smooth boundary ∂Ω. Con-

sider the initial-boundary value problem:
Ut + U · ∇U +∇P = G,

∇ · U = 0,

U(x, 0) = U0(x), U · n|∂Ω = 0,

(4.2.2)
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where n is the unit outward normal to ∂Ω. For any fixed T > 0, let U0(x) ∈

C1+γ(Ω̄), ∇·U0(x) = 0, U0 ·n|∂Ω = 0, and let G ∈ C([0, T ];C1+γ(Ω̄)), where 0 < γ <

1. Then there exists a solution (U, P ) to (4.2.2) such that (U, P ) ∈ C1(Ω̄× [0, T ]).

Now, we establish the global existence of weak solutions of (4.1.1)–(4.1.2) and

(4.1.1) and (4.1.3). Indeed, we have

Lemma 4.2.7. Under the assumptions in Theorem 4.1.1, there exists a global weak

solution (U, θ) of (4.1.1)–(4.1.2) such that, for any T > 0, U ∈ C([0, T );L2(Ω)) ∩

L2([0, T );H1
0 (Ω)), and θ ∈ C([0, T );Lp(Ω)),∀ 1 ≤ p <∞.

Lemma 4.2.8. Under the assumptions of Theorem 4.1.2, there exists a global weak

solution (U,Θ) of (4.1.1) and (4.1.3) such that, for any T > 0, U ∈ C([0, T );H1(Ω)),

and Θ ∈ C([0, T );L2(Ω)) ∩ L2([0, T );H1
0 (Ω)).

We prove the above lemmas by a fixed point argument and the method of energy

estimate. To explain the heart of the matter, we only give the proof of Lemma 4.2.7.

Lemma 4.2.8 can be proved in a similar fashion.

Proof of Lemma 4.2.7. Following [61], we prove the lemma by a fixed point

argument. To do so, we fix any T ∈ [0,∞) and consider the problem (4.1.1)–(4.1.2)

in Ω × [0, T ]. Let B be the closed convex set in C([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω))

defined by

B =
{
V = (v1, v2) ∈ C([0, T ];L2(Ω)) ∩ L2([0, T ];H1

0 (Ω))
∣∣

∇ · V = 0, a.e. on Ω× (0, T ), ‖V ‖2
C([0,T ];L2(Ω)) + ‖V ‖2

L2([0,T ];H1
0 (Ω)) ≤ R0

}
,

(4.2.3)

where R0 will be determined later. For fixed ε ∈ (0, 1) and any V ∈ B, we first

mollify V using the standard procedure (c.f. [61]) to get

Vε = V ε ∗ ηε/2,

where V ε is the truncation of V in Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε} (extended by 0 to
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Ω), and ηε/2 is the standard mollifier. Then Vε satisfies

Vε ∈ C([0, T ];C∞0 (Ω̄)), ∇ · Vε = 0,

‖Vε‖C([0,T ];L2(Ω)) ≤ C‖V ‖C([0,T ];L2(Ω)),

‖Vε‖L2([0,T ];H1
0 (Ω)) ≤ C‖V ‖L2([0,T ];H1

0 (Ω)),

(4.2.4)

for some constant C > 0 which is independent of ε. Similarly, we regularize the

initial data to obtain the smooth approximation θε0(x) for θ0(x) and U ε
0 (x) for U0(x)

respectively, such that

θε0(x) ∈ C∞0 (Ω̄), ‖θε0(x)− θ0(x)‖H1(Ω) < ε,

U ε
0 (x) ∈ C∞0 (Ω̄), ∇ · U ε

0 (x) = 0 and ‖U ε
0 (x)− U0(x)‖H1(Ω) < ε.

Then we solve the transport equation with smooth initial data
θt + Vε · ∇θ = 0,

θ(x, 0) = θε0(x),

(4.2.5)

and we denote the solution by θε. Next, we solve the nonhomogeneous (linearized)

Navier-Stokes equation with smooth initial data
∇ · U = 0

Ut + Vε · ∇U +∇P = ν∆U + θεe2,

U |∂Ω = 0, U(x, 0) = U ε
0 (x),

(4.2.6)

and denote the solution by U ε and the corresponding pressure by P ε. Then we define

the mapping Fε(V ) = U ε. The solvabilities of (4.2.5) and (4.2.6) follow easily from

[61]. Next, we prove that Fε satisfies the conditions of Schauder fixed point theorem,

i.e., Fε : B → B is continuous and compact. These will be achieved by the method

of energy estimate.

We start from (4.2.5). For any 2 ≤ p < ∞, multiplying (4.2.5)1 by θ|θ|p−2 and

integrating the resulting equation over Ω by parts, we get

‖θ(·, t)‖Lp = ‖θε0‖Lp ≤ ‖θ0‖Lp + εc(Ω, p), ∀ 0 ≤ t ≤ T, ∀ 0 < ε < 1,
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i.e.,

‖θε(·, t)‖Lp = ‖θε0‖Lp ≤ ‖θ0‖Lp + εc(Ω, p), ∀ 0 ≤ t ≤ T, ∀ 0 < ε < 1, (4.2.7)

where c(Ω, p) is a constant depending only on Ω and p. We then estimate ‖U ε‖2
L2([0,T ];H1

0 (Ω))
.

Taking L2 inner product of (4.2.6)2 with U , after integrating by parts and using

Young’s inequality, we have

1

2

d

dt
‖U‖2 + ν‖∇U‖2 ≤ C(δ)‖θε‖2 + δ‖U‖2, (4.2.8)

where δ is a constant to be determined. Since U satisfies the no-slip boundary condi-

tion, Poincaré’s inequality implies that ‖U‖ ≤ C‖∇U‖ for some constant C depending

only on Ω. Choosing δ = ν/2C in (12) we obtain

1

2

d

dt
‖U‖2 +

ν

2
‖∇U‖2 ≤ C‖θε‖2, (4.2.9)

which together with (4.2.7) yields, after integration over [0, T ], that

‖U‖2
C([0,T ];L2(Ω)) + ν‖∇U‖2

L2([0,T ];L2(Ω)) ≤ CT (‖θ0‖2 + ε) + (‖U0‖2 + ε).

Since 0 < ε < 1, we have

‖U‖2
C([0,T ];L2(Ω)) + ‖U‖2

L2([0,T ];H1
0 (Ω)) ≤ C(T, θ0, U0, ν,Ω),

i.e.,

‖U ε‖2
C([0,T ];L2(Ω)) + ‖U ε‖2

L2([0,T ];H1
0 (Ω)) ≤ C(T, θ0, U0, ν,Ω). (4.2.10)

Choosing R0 such that R0 ≥ C(T, θ0, U0, ν,Ω) we see that Fε maps B into B for any

0 < ε < 1. We remark that the constant C(T, θ0, U0, ν,Ω) in (4.2.10) does not depend

on ε.

Next we prove the compactness of Fε. For this purpose, we continue to find

estimates of ‖∇U ε‖2
C([0,T ];L2(Ω)) and ‖U ε

t ‖2
L2([0,T ];L2(Ω)). Taking L2 inner product of
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(4.2.6)2 with Ut, one has

ν

2

d

dt
‖∇U‖2 + ‖Ut‖2 ≤

∫
Ω

|Vε||Ut||∇U |dx +

∫
Ω

θe2 · Utdx

≤ 1

4
‖Ut‖2 + ‖Vε∇U‖2 +

1

4
‖Ut‖2 + ‖θ‖2

≤ 1

2
‖Ut‖2 + ‖Vε‖2

L∞‖∇U‖2 + C

which implies that

ν

2

d

dt
‖∇U‖2 +

1

2
‖Ut‖2 ≤ ‖Vε‖2

L∞‖∇U‖2 + C. (4.2.11)

Applying Gronwall’s inequality to (4.2.11) and using (4.2.4) we have

‖∇U‖2
C([0,T ];L2(Ω)) + ‖Ut‖2

L2([0,T ];L2(Ω)) ≤ C. (4.2.12)

By Lemma 4.2.2 we know that

‖U‖H2 ≤ C
(
‖Ut‖+ ‖θ‖+ ‖Vε · ∇U‖

)
≤ C

(
‖Ut‖+ C + C‖Vε‖L∞‖∇U‖

)
,

(4.2.13)

which together with (4.2.12) yields

‖U ε‖2
L2([0,T ];H2(Ω)) ≤ C. (4.2.14)

From (4.2.12) and (4.2.14) we know that Fε is compact by Sobolev embedding theo-

rem.

Now we prove the continuity of Fε. Let Fε(Vi) = U ε
i , by definition we know

θεit + Viε · ∇θεi = 0,

U ε
it + Viε · ∇U ε

i +∇P ε
i = ν∆U ε

i + θεi e2,

∇ · U ε
i = 0, U ε

i |∂Ω = 0,

(θεi , U
ε
i )(x, 0) = (θε0, U

ε
0 )(x), i = 1, 2.
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Subtracting the equation for i = 2 from the one for i = 1 we have

%εt + V1ε · ∇%ε +Wε · ∇θε2 = 0,

χεt + V1ε · ∇χε +Wε · ∇U ε
2 +∇Qε = ν∆χε + %εe2,

∇ · χε = 0, χε|∂Ω = 0,

(%ε, χε)(x, 0) = 0,

(4.2.15)

where %ε = θε1 − θε2, Wε = V1ε − V2ε, χ
ε = U ε

1 − U ε
2 , and Qε = P ε

1 − P ε
2 . Taking the

L2 inner products of (4.2.15)1 with %ε and (4.2.15)2 with χε we obtain

1

2

d

dt
‖%ε‖2 = −

∫
Ω

(Wε · ∇θε2)%εdx,

1

2

d

dt
‖χε‖2 + ν‖∇χε‖2 = −

∫
Ω

(Wε · ∇U ε
2 )χεdx +

∫
Ω

%εe2 · χεdx.
(4.2.16)

Since θε2 ∈ C([0, T ];C∞(Ω̄)), we get from (4.2.16)1 that

1

2

d

dt
‖%ε‖2 ≤ ‖∇θε2‖L∞‖Wε‖‖%ε‖

≤ C(‖Wε‖2 + ‖%ε‖2),

from which we get

‖%ε‖2 ≤ eCT
∫ T

0

‖Wε‖2dτ

≤ C‖Wε‖2
C([0,T ];L2(Ω)).

(4.2.17)

Since U ε
2 ∈ L2([0, T ];H2(Ω)), we derive from (4.2.16)2:

1

2

d

dt
‖χε‖2 + ν‖∇χε‖2 ≤ ‖Wε‖‖∇U ε

2‖L4‖χε‖L4 + ‖%ε‖‖χε‖

≤ C‖Wε‖‖U ε
2‖H2‖χε‖H1 + ‖%ε‖‖χε‖

≤ C‖Wε‖‖U ε
2‖H2‖∇χε‖+ ‖%ε‖‖χε‖

≤ C‖Wε‖2‖U ε
2‖2

H2 +
ν

2
‖∇χε‖2 +

1

2
‖%ε‖2 +

1

2
‖χε‖2

≤ C(t)‖Wε‖2
C([0,T ];L2(Ω)) +

ν

2
‖∇χε‖2 +

1

2
‖χε‖2,

(4.2.18)

where
∫ T

0
C(τ)dτ ≤ C and we have used (4.2.17). From (4.2.18) we get

1

2

d

dt
‖χε‖2 +

ν

2
‖∇χε‖2 ≤ C(t)‖Wε‖2

C([0,T ];L2(Ω)) +
1

2
‖χε‖2, (4.2.19)
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which implies, after applying Gronwall’s inequality, that

‖χε‖2 ≤ C‖Wε‖2
C([0,T ];L2(Ω)). (4.2.20)

Integrating (4.2.19) over [0, T ] using (4.2.20) we have∫ T

0

‖∇χε‖2dτ ≤ C‖Wε‖2
C([0,T ];L2(Ω)). (4.2.21)

Combining (4.2.20) and (4.2.21) we get

‖χε‖2
C([0,T ];L2(Ω)) + ‖χε‖2

L2([0,T ];H1
0 (Ω)) ≤ C‖V1 − V2‖2

C([0,T ];L2(Ω)),

i.e.,

‖U ε
1 − U ε

2‖2
B ≤ C‖V1 − V2‖2

B,

where ‖ · ‖2
B = ‖ · ‖2

C([0,T ];L2(Ω)) + ‖ · ‖2
L2([0,T ];H1

0 (Ω))
. By definition we know

‖Fε(V1)− Fε(V2)‖2
B ≤ C‖V1 − V2‖2

B,

which implies that Fε : B → B is continuous.

Therefore, Schauder theorem implies that for any fixed ε ∈ (0, 1), there exists

U ε ∈ B such that Fε(U
ε) = U ε, namely,

θε + Uε · ∇θε = 0

U ε
t + Uε · ∇U ε +∇P ε = ν∆U ε + θεe2,

∇ · U ε = 0,

U ε|∂Ω = 0, (θε, U ε)(x, 0) = (θε0, U
ε
0 )(x),

where Uε is the regularization of U ε. By a bootstrap argument (c.f. [61]) we know

that (θε, U ε) ∈ C∞(Ω̄ × [0, T ]). Then it is obvious that (θε, U ε) satisfy the integral

identities, i.e.,

0 =

∫
Ω

U ε
0 · Φ(x, 0)dx

+

∫ T

0

∫
Ω

(
U ε · Φt + Uε · (U ε · ∇Φ) + θεe2 · Φ− ν∇φ1 · ∇uε − ν∇φ2 · ∇vε

)
dxdt,

0 =

∫
Ω

θε0ψ(x, 0)dx +

∫ T

0

∫
Ω

(
θεψt + θεUε · ∇ψ

)
dxdt,

(4.2.22)
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for any ε > 0, Φ = (φ1, φ2) ∈ C∞0 (Ω̄ × [0, T ])2 satisfying Φ(x, T ) = 0 and ∇ · Φ = 0,

and for any ψ ∈ C∞(Ω̄× [0, T ]) satisfying ψ(x, T ) = 0.

In view of (4.2.7), (4.2.10) and from the definition of Uε we know that there exist

functions U ∈ B and θ ∈ C([0, T ];Lp(Ω)), ∀ 2 ≤ p <∞ such that as ε→ 0,

Uε ⇀ U weakly in C([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω)),

U ε ⇀ U weakly in C([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω)),

θε ⇀ θ weakly in C([0, T ];Lp(Ω)), ∀ 2 ≤ p <∞,

and

‖U‖2
C([0,T ];L2(Ω)) + ‖U‖2

L2([0,T ];H1
0 (Ω)) ≤ C(T, θ0, U0, ν,Ω),

‖θ‖C([0,T ];Lp(Ω) ≤ ‖θ0‖C([0,T ];Lp(Ω), ∀ 2 ≤ p <∞.
(4.2.23)

Since

U · ∇ψ ∈ C([0, T ];L2(Ω)),

we have∣∣∣∣ ∫ T

0

∫
Ω

(θεU ε · ∇ψ − θU · ∇ψ) dxdt

∣∣∣∣
≤C‖θε‖L2([0,T ];L2(Ω))‖U ε − U‖L2([0,T ];L2(Ω)) +

∣∣∣∣ ∫ T

0

∫
Ω

(θεU · ∇ψ − θU · ∇ψ) dxdt

∣∣∣∣
≤C‖U ε − U‖L2([0,T ];L2(Ω)) +

∣∣∣∣ ∫ T

0

∫
Ω

(θε − θ)U · ∇ψdxdt
∣∣∣∣

→ 0, as ε→ 0.

Moreover, since∣∣∣∣ ∫ T

0

∫
Ω

[Uε · (U ε · ∇Φ)− U · (U · ∇Φ)] dxdt

∣∣∣∣
=

∣∣∣∣ ∫ T

0

∫
Ω

[Uε · (U ε · ∇Φ)− Uε · (U · ∇Φ) + Uε · (U · ∇Φ)− U · (U · ∇Φ)] dxdt

∣∣∣∣
≤C

∫ T

0

∫
Ω

(|Uε||U ε − U |+ |U ||Uε − U |) dxdt

≤C
(
‖Uε‖L2([0,T ];L2(Ω))‖Uε − U‖L2([0,T ];L2(Ω)) + ‖U‖L2([0,T ];L2(Ω))‖Uε − U‖L2([0,T ];L2(Ω))

)
≤C‖Uε − U‖L2([0,T ];L2(Ω)) → 0, as ε→ 0,
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letting ε→ 0 in (4.2.22) we verified that (θ, U) is a weak solution to (4.1.1)–(4.1.2) in

Ω× [0, T ]. We conclude the argument by noticing that T is arbitrary. This combining

with (4.2.23) completes the proof of Lemma 4.2.7.

4.3 Viscous Boussinesq Equations

Now we build up the regularity and uniqueness of the solution obtained in Lemma

4.2.7, and therefore give proof of Theorems 4.1.1. The following theorem gives the

key estimates.

Theorem 4.3.1. Under the assumption of Theorem 4.1.1, the solution obtained in

Lemma 4.2.7 satisfies the following estimates:

‖U‖C([0,T );H3(Ω)) + ‖U‖L2([0,T );H4(Ω)) + ‖θ‖C([0,T );H3(Ω)) ≤ C,

for any T > 0. Moreover, there exists a constant C̄ > 0 independent of t such that

‖U(·, t)‖2 ≤ max
{
‖U(·, 0)‖2 ,

C̄2

ν2
‖θ(·, 0)‖2

}
, ∀ t ≥ 0. (4.3.1)

Remark 4.3.1. The constant C̄ in the theorem is actually the constant of Poincaré’s

inequality on the domain Ω. Therefore, it depends only on Ω. See the proof of Lemma

4.3.9 below for details.

The proof of Theorem 4.3.1 is based on several steps of careful energy estimates

which are stated as a sequence of lemmas. First, we observe that the same method

used to derive (4.2.7) can be applied to (4.1.1)2 if Vε is replaced by U in (4.2.5).

Therefore, we have the conservation of Lp norm for θ, i.e., for any p ∈ [2,∞), it holds

that

‖θ(·, t)‖Lp = ‖θ0‖Lp , ∀ t ≥ 0.

Furthermore, by letting p→∞ in the above estimate, one has

‖θ(·, t)‖L∞ = ‖θ0‖L∞ , ∀ t ≥ 0.
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Fix any T > 0. In the rest part of this section, the time is restricted to be

within the interval [0, T ] until specified otherwise. Then we start with estimates of

‖U‖2
C([0,T ];L2(Ω)) and ‖∇U‖2

L2([0,T ];L2(Ω)).

Lemma 4.3.1. Under the assumptions of Theorem 4.1.1, it holds that

‖U‖2
C([0,T ];L2(Ω)) ≤ C and ‖∇U‖2

L2([0,T ];L2(Ω)) ≤ C. (4.3.2)

Proof. Taking L2 inner product of (4.1.1)1 with U , we obtain, after integration by

parts, that

1

2

d

dt
‖U‖2 + ν‖∇U‖2 = −

∫
Ω

(U · ∇U) · Udx +

∫
Ω

θe2 · Udx

= −1

2

∫
Ω

U · ∇(|U |2)dx +

∫
Ω

θe2 · Udx

= −1

2

∫
Ω

∇ · (U |U |2)dx +

∫
Ω

θe2 · Udx

=

∫
Ω

θe2 · Udx.

Applying Cauchy-Schwartz inequality to the RHS of the above equality, we get

1

2

d

dt
‖U‖2 + ν‖∇U‖2 ≤ 1

2
‖θ‖2 +

1

2
‖U‖2. (4.3.3)

By dropping ν‖∇U‖2 from (4.3.3) and then applying Gronwall’s inequality to the

resulting inequality, we find that

‖U(·, t)‖2 ≤ et
(
‖U0‖2 +

∫ t

0

‖θ0‖2dτ
)

≤ eT
(
‖U0‖2 + T‖θ0‖2

)
≤ C, ∀ t ∈ [0, T ],

which also implies, after integrating (4.3.3) over [0, T ], that

ν

∫ T

0

‖∇U(·, τ)‖2dτ ≤ C.

This completes the proof of Lemma 4.3.1.

The next Lemma is dealing with ‖∇U‖2
C([0,T ];L2(Ω)) and ‖Ut‖2

L2([0,T ];L2(Ω)).
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Lemma 4.3.2. Under the assumptions of Theorem 4.1.1, it holds that

‖∇U‖2
C([0,T ];L2(Ω)) ≤ C and ‖Ut‖2

L2([0,T ];L2(Ω)) ≤ C.

Proof. Taking L2 inner product of (4.1.1)1 with Ut, integrating the resulting equa-

tions over Ω by parts, we get

ν

2

d

dt
‖∇U‖2 + ‖Ut‖2 ≤

∫
Ω

|U ||Ut||∇U | dx +

∫
Ω

θvt dx

≤ C‖U‖2
L4‖∇U‖2

L4 +
1

4
‖Ut‖2 + C‖θ0‖2,

(4.3.4)

where we have used Hölder’s inequality and Cauchy-Schwartz inequality as follows:∫
Ω

|U ||Ut||∇U | dx ≤ C‖U‖2
L4‖∇U‖2

L4 +
1

8
‖Ut‖2,

and ∫
Ω

θvt dx ≤
1

8
‖Ut‖2 + C‖θ0‖2.

We now apply the Ladyzhenskaya’s inequality to estimate ‖U‖2
L4‖∇U‖2

L4 . Applying

Lemma 4.2.1 (iii) on U and (iv) on ∇U , we have

‖U‖2
L4‖∇U‖2

L4 ≤ C(‖U‖‖∇U‖)
(
‖∇U‖‖∇2U‖+ ‖∇U‖2

)
≤ C‖∇U‖2‖∇2U‖+ C‖∇U‖3

≤ C(δ)‖∇U‖4 + C‖∇U‖3 + δ‖U‖2
H2 ,

(4.3.5)

where we have used Lemma 4.3.1 and δ > 0 is a small number to be determined.

Therefore, we update (4.3.4) as

ν

2

d

dt
‖∇U‖2 +

3

4
‖Ut‖2 ≤ C + C(δ)‖∇U‖4 + C‖∇U‖3 + δ‖U‖2

H2 , (4.3.6)

We now rewrite the equation (4.1.1)1 as

−ν∆U +∇P = −Ut − U · ∇U + θe2.

Lemma 4.2.2 with m = 0 and p = 2 implies that

‖U‖2
H2 ≤ C

(
‖Ut‖2 + ‖θ‖2 + ‖U · ∇U‖2

)
≤ C

(
‖Ut‖2 + C

)
+ C‖U‖2

L4‖∇U‖2
L4

≤ C̃
(
C + ‖Ut‖2 + ‖∇U‖4 + ‖∇U‖3

)
,

(4.3.7)
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where we have used (4.3.5). Now, choosing δ = 1/(4C̃) and combining (4.3.6) and

(4.3.7), we get

ν

2

d

dt
‖∇U‖2 +

1

2
‖Ut‖2 ≤ C

(
‖∇U‖4 + ‖∇U‖3

)
+ C.

Therefore, Young’s inequality yields

ν

2

d

dt
‖∇U‖2 +

1

2
‖Ut‖2 ≤ C‖∇U‖2‖∇U‖2 + C. (4.3.8)

By dropping 1
2
‖Ut‖2 from (4.3.8) we obtain

ν

2

d

dt
‖∇U‖2 ≤ C

(
‖∇U‖2‖∇U‖2 + C

)
. (4.3.9)

Then using Lemma 4.3.1, Gronwall’s inequality implies that

‖∇U(·, t)‖2 ≤ C, ∀ t ∈ [0, T ]. (4.3.10)

Using (4.3.10), after integrating (4.3.8) over [0, T ] we obtain∫ T

0

‖Ut(·, τ)‖2dτ ≤ C, (4.3.11)

which completes the proof of Lemma 4.3.2.

Next, we estimate ‖Ut‖2
C([0,T ];L2(Ω)) and ‖∇Ut‖2

L2([0,T ];L2(Ω)).

Lemma 4.3.3. Under the assumptions of Theorem 4.1.1, it holds that

‖Ut‖2
C([0,T ];L2(Ω)) ≤ C and ‖∇Ut‖2

L2([0,T ];L2(Ω)) ≤ C. (4.3.12)

Proof. We take the temporal derivative of (4.1.1)1 to get

Utt + Ut · ∇U + U · ∇Ut +∇Pt = ν∆Ut + θt~e2. (4.3.13)

Taking L2 inner product of (4.3.13) with Ut we have

1

2

d

dt
‖Ut‖2 + ν‖∇Ut‖2 = −

∫
Ω

(Ut · ∇U) · Utdx +

∫
Ω

θtvtdx

= −
∫

Ω

(Ut · ∇U) · Utdx−
∫

Ω

(U · ∇θ)vtdx

≤ ‖Ut‖2
L4‖∇U‖+

∫
Ω

θ(U · ∇vt)dx.

(4.3.14)
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With the help of Lemma 4.3.1 and 4.3.2, and Lemma 4.2.1 (iii) on Ut, we note that

‖Ut‖2
L4‖∇U‖ ≤ C‖Ut‖2

L4

≤ C‖Ut‖‖∇Ut‖

≤ ν

4
‖∇Ut‖2 + C‖Ut‖2.

(4.3.15)

On the other hand, we have∫
Ω

θ(U · ∇vt)dx ≤ ‖θ‖L∞‖U‖‖∇Ut‖

≤ ν

4
‖∇Ut‖2 + C.

(4.3.16)

Therefore, combining (4.3.14)–(4.3.16), we arrive at

1

2

d

dt
‖Ut‖2 +

ν

2
‖∇Ut‖2 ≤ C(‖Ut‖2 + 1). (4.3.17)

Using Gronwall’s inequality, and Lemma 4.3.2, we obtain (4.3.12). This completes

the proof of Lemma 4.3.3.

As an immediate consequence of Lemma 4.3.3 and Lemma 4.2.1 (i), one has

Lemma 4.3.4. Under the assumptions of Theorem 4.1.1, it holds that∫ T

0

‖Ut(·, τ)‖2
Lpdτ ≤ C, ∀ 1 ≤ p <∞. (4.3.18)

This lemma will play an important role on the estimations of the maximum norms

of U and ∇U in the following Lemma.

Lemma 4.3.5. Under the assumptions of Theorem 4.1.1, it holds that

‖U‖2
C([0,T ];L∞(Ω)) ≤ C and ‖∇U‖2

L2([0,T ];L∞(Ω)) ≤ C. (4.3.19)

Proof. We see that ‖Ut‖ and ‖∇U‖ are bounded by Lemmas 4.3.2 and 4.3.3. There-

fore, one reads from (4.3.7) that

‖U‖2
H2 ≤ C

(
‖Ut‖2 + ‖∇U‖3 + ‖∇U‖4 + C

)
≤ C, (4.3.20)
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which implies, by Sobolev embedding,

‖U(·, t)‖2
L∞ ≤ C, ∀ t ∈ [0, T ]. (4.3.21)

As an immediate consequence of (4.3.20)–(4.3.21) we see that

‖U · ∇U‖2
H1 ≤ C

(
‖U‖2

L∞ + ‖U‖2
H2

)
‖U‖2

H2 ≤ C, ∀ t ∈ [0, T ], (4.3.22)

which implies by Lemma 4.2.1 (i) that

‖U · ∇U‖2
Lp ≤ C, ∀ 1 ≤ p <∞, ∀ t ∈ [0, T ] (4.3.23)

Therefore, using Lemma 4.2.2, (4.3.18) and (4.3.23) we obtain∫ T

0

‖U‖2
W 2,p dτ ≤ C

∫ T

0

(‖Ut‖2
Lp + ‖U · ∇U‖2

Lp + ‖θ‖2
Lp) dτ

≤ C, ∀ 1 ≤ p <∞.
(4.3.24)

Applying Lemma 4.2.1 (ii) to ∇U we get the second half of (4.3.19) from (4.3.24)

immediately. This completes the proof of Lemma 4.3.5.

In order to improve the regularity of U , the problem will involve the spatial deriva-

tives of θ. We now establish the following lemma to estimate ∇θ.

Lemma 4.3.6. Under the assumptions of Theorem 4.1.1, it holds that

‖∇θ(·, t)‖L∞ ≤ C, ∀ t ∈ [0, T ]. (4.3.25)

Proof. For any p ≥ 2, taking ∇ of (4.1.1)2, dot multiplying the resulting equation

with |∇θ|p−2∇θ, after integration by parts we get

1

p

d

dt

(
‖∇θ‖pLp

)
≤ ‖∇U‖L∞‖∇θ‖pLp , (4.3.26)

which yields

d

dt

(
‖∇θ‖Lp

)
≤ ‖∇U‖L∞‖∇θ‖Lp . (4.3.27)
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Gronwall’s inequality yields

‖∇θ(·, t)‖Lp ≤ ‖∇θ0‖Lp exp
{∫ T

0

‖∇U‖L∞dτ
}

≤ C, ∀ p ≥ 2, and ∀ t ∈ [0, T ].

(4.3.28)

Letting p→∞ we obtain (4.3.25). This completes the proof of Lemma 4.3.6.

The estimates of ‖∇Ut‖2
C([0,T ];L2(Ω)) and ‖Utt‖2

L2([0,T ];L2(Ω)) will be given in the next

lemma, based on which we will establish the desired regularity stated in Theorem

4.3.1.

Lemma 4.3.7. Under the assumptions of Theorem 4.1.1, it holds that

‖∇Ut‖2
C([0,T ];L2(Ω)) ≤ C, and ‖Utt‖2

L2([0,T ];L2(Ω)) ≤ C. (4.3.29)

Proof. Taking L2 inner product of (4.3.13) with Utt we get

ν

2

d

dt
‖∇Ut‖2 + ‖Utt‖2 ≤

∫
Ω

(|Utt||Ut||∇U |+ |Utt||U ||∇Ut|+ θtvtt) dx. (4.3.30)

We now estimate the RHS term by term. First of all, we apply the Hölder inequality

and Lemma 4.3.3 to obtain∫
Ω

|Utt||Ut||∇U | dx ≤
1

6
‖Utt‖2 + C‖∇U‖2

L∞‖Ut‖2

≤ 1

6
‖Utt‖2 + C‖∇U‖2

L∞ , ∀ t ∈ [0, T ].

(4.3.31)

Similarly, using Hölder inequality and Lemmas 4.3.5 and 4.3.6, we have the following

estimates ∫
Ω

|Utt||U ||∇Ut| dx ≤
1

6
‖Utt‖2 + C‖U‖2

L∞‖∇Ut‖2

≤ 1

6
‖Utt‖2 + C‖∇Ut‖2, ∀ t ∈ [0, T ],

(4.3.32)

and ∫
Ω

|θtvtt| dx ≤
1

6
‖Utt‖2 + C‖θt‖2

≤ 1

6
‖Utt‖2 + C‖U · ∇θ‖2

≤ 1

6
‖Utt‖2 + C‖∇θ‖2

L∞‖U‖2

≤ 1

6
‖Utt‖2 + C, ∀ t ∈ [0, T ].

(4.3.33)
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Substituting (4.3.31)–(4.3.33) into (4.3.30), one has

ν

2

d

dt
‖∇Ut‖2 +

1

2
‖Utt‖2 ≤ C + C‖∇U‖2

L∞ + C‖∇Ut‖2. (4.3.34)

We note that all the terms on the RHS of (4.3.34) are integrable in time due to

Lemmas 4.3.3 and 4.3.5. Therefore, we integrate (4.3.34) in time over [0, T ] to obtain

the estimates in (4.3.29). This completes the proof of Lemma 4.3.7.

We are now ready to complete the regularity stated in Theorem 4.3.1.

Lemma 4.3.8. Under the assumptions of Theorem 4.1.1, it holds that

‖(θ, U)‖2
C([0,T ];H3(Ω)) ≤ C, and ‖U‖2

L2([0,T ];H4(Ω)) ≤ C. (4.3.35)

Proof. Based on (4.3.22), (4.3.28) and (4.3.29), we see from Lemma 4.2.2 that,

‖U(·, t)‖2
H3 ≤ C(‖θ‖2

H1 + ‖U · ∇U‖2
H1 + ‖Ut‖2

H1) ≤ C, ∀ t ∈ [0, T ], (4.3.36)

which implies by Sobolev inequality that

‖U(·, t)‖2
W 2,p ≤ C‖U(·, t)‖2

H3 ≤ C, ∀ t ∈ [0, T ], ∀ 1 ≤ p <∞, (4.3.37)

and thus

‖∇U(·, t)‖L∞ ≤ C, ∀ t ∈ [0, T ]. (4.3.38)

Furthermore, for t ∈ [0, T ], it is easy to see that

‖Ut · ∇U‖2 ≤ ‖Ut‖2‖∇U‖2
L∞ ≤ C,

‖U · ∇Ut‖2 ≤ ‖U‖2
L∞‖∇Ut‖2 ≤ C,

‖θt‖2 = ‖U · ∇θ‖2 ≤ ‖U‖2
L∞‖∇θ‖2 ≤ C.

(4.3.39)

From (4.3.13) and Lemma 4.2.2, we know∫ T

0

‖Ut‖2
H2dτ ≤ C

∫ T

0

(
‖Utt‖2 + ‖Ut · ∇U‖2 + ‖U · ∇Ut‖2 + ‖θt‖2

)
dτ, (4.3.40)

which, together with (4.3.29) and (4.3.39), gives∫ T

0

‖Ut(·, τ)‖2
H2dτ ≤ C. (4.3.41)
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In addition, Sobolev inequality and (4.3.36) yield

‖U · ∇U‖2
H2 ≤ C

(
‖U‖2

L∞‖U‖2
H3 + ‖∇U‖2

L∞‖U‖2
H2

)
≤ C‖U‖2

H2‖U‖2
H3 ≤ C, ∀ t ∈ [0, T ].

(4.3.42)

Now, it is clear that one needs higher order estimate on θ to complete the proof

of this lemma. For this purpose, taking ∂xx of (4.1.1)2, we get

θxxt + uxxθx + 2uxθxx + vxxθy + 2vxθxy + U · ∇θxx = 0. (4.3.43)

For any p ≥ 2, multiplying (4.3.43) by |θxx|p−2θxx, integrating over Ω, and using

Hölder’s inequality, we obtain

1

p

d

dt

∫
Ω

|θxx|pdx = −
∫

Ω

(
uxxθx + vxxθy + 2uxθxx + 2vxθxy

)
|θxx|p−2θxxdx

≤ ‖∇θ‖L∞‖∇2U‖Lp‖∇2θ‖p−1
Lp + 2‖∇U‖L∞‖∇2θ‖pLp

≤ C
(
‖∇2θ‖p−1

Lp + ‖∇2θ‖pLp
)
,

(4.3.44)

where we have used (4.3.25), (4.3.37) and (4.3.38). Similarly, one can show

1

p

d

dt

∫
Ω

|θxy|pdx ≤ C
(
‖∇2θ‖p−1

Lp + ‖∇2θ‖pLp
)
, (4.3.45)

1

p

d

dt

∫
Ω

|θyy|pdx ≤ C
(
‖∇2θ‖p−1

Lp + ‖∇2θ‖pLp
)
. (4.3.46)

Summing (4.3.44)–(4.3.46) together, we obtain

1

p

d

dt

(
‖∇2θ‖pLp

)
≤ C

(
‖∇2θ‖p−1

Lp + ‖∇2θ‖pLp
)
. (4.3.47)

It follows that

d

dt

(
‖∇2θ‖Lp

)
≤ C

(
1 + ‖∇2θ‖Lp

)
, (4.3.48)

Applying Gronwall’s inequality to (4.3.48), one has

‖∇2θ(·, t)‖Lp ≤ C, ∀ 2 ≤ p <∞, ∀ t ∈ [0, T ]. (4.3.49)
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In a quite similar manner as in the derivation of (4.3.49), further estimates show that

d

dt
‖∇3θ‖2 ≤ C

(
‖∇U‖L∞‖∇3θ‖2 + ‖∇θ‖L∞‖∇3U‖‖∇3θ‖+ ‖∇2U‖L4‖∇2θ‖L4‖∇3θ‖

)
≤ C(‖∇3θ‖2 + ‖∇3θ‖)

≤ C(‖∇3θ‖2 + 1),

(4.3.50)

which implies

‖θ(·, t)‖2
H3 ≤ C, ∀ t ∈ [0, T ]. (4.3.51)

Now, by Lemma 4.2.2, combining (4.3.41), (4.3.42) and (4.3.51), one has∫ T

0

‖U(·, τ)‖2
H4 dτ ≤ C

∫ T

0

(
‖Ut‖2

H2 + ‖U · ∇U‖2
H2 + ‖θ‖2

H2

)
dτ ≤ C,

which completes the proof of Lemma 4.3.8.

For the proof of Theorem 4.3.1, it remains to prove the uniform bound of the

kinetic energy (4.3.1).

Lemma 4.3.9. Under the assumptions of Theorem 4.1.1, there is a uniform constant

C̄ independent of t, such that

‖U(·, t)‖2 ≤ max
{
‖U(·, 0)‖2 ,

C̄2

ν2
‖θ(·, 0)‖2

}
, ∀ t ≥ 0. (4.3.52)

Proof. From the proof of Lemma 4.3.1, we observe that

1

2

d

dt
‖U‖2 + ν‖∇U‖2 =

∫
Ω

θe2 · U dx

≤ 1

2δν
‖θ‖2 + δ

ν

2
‖U‖2,

(4.3.53)

for any positive δ. Poincaré’s inequality says that there is a constant C̄ = C̄(Ω) such

that

‖U‖ ≤ C̄‖∇U‖.

Choosing δ = 1
C̄

, we know from (4.3.53) that

d

dt
‖U‖2 +

ν

C̄
‖U‖2 ≤ C̄

ν
‖θ‖2. (4.3.54)
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Solving the above differential inequality we get

exp
{ ν
C̄
t
}
‖U(·, t)‖2 − ‖U(·, 0)‖2 ≤ C̄2

ν2
‖θ0‖2

(
exp

{ ν
C̄
t
}
− 1
)
, (4.3.55)

which implies

‖U(·, t)‖2 ≤ exp
{
− ν

C̄
t
}(
‖U(·, 0)‖2 − C̄2

ν2
‖θ0‖2

)
+
C̄2

ν2
‖θ0‖2, ∀ t > 0. (4.3.56)

Therefore, (4.3.52) follows immediately from (4.3.56). This completes the proof of

Lemma 4.3.9.

Lemmas 4.3.8–4.3.9 conclude Theorem 4.3.1. With the global regularity estab-

lished in Lemmas 4.3.1–4.3.8, we are able to prove the uniqueness of the solution.

Theorem 4.3.2. Under the assumptions of Theorem 1.1, the solution of (4.1.1)–

(4.1.2) is unique.

Proof. Suppose there are two solutions (θ1, U1, P1) and (θ2, U2, P2) to (4.1.1)–(4.1.2).

Setting θ̃ = θ1 − θ2, Ũ = U1 − U2, and P̃ = P1 − P2, then (θ̃, Ũ , P̃ ) satisfy

Ũt + U1 · ∇Ũ + Ũ · ∇U2 +∇P̃ = ν∆Ũ + θ̃e2

θ̃t + U1 · ∇θ̃ + Ũ · ∇θ2 = 0,

∇ · Ũ = 0

Ũ |∂Ω = 0,

Ũ(x, 0) = 0, θ̃(x, 0) = 0, x ∈ Ω.

(4.3.57)

Since ∇ ·U1 = 0 and U1|∂Ω = 0, taking the L2 inner products of (4.3.57)1 with Ũ and

(4.3.57)2 with θ̃, one has

1

2

d

dt

(
‖θ̃‖2 + ‖Ũ‖2

)
+ ν‖∇Ũ‖2 = −

∫
Ω

θ̃(Ũ · ∇θ2)dx−
∫

Ω

Ũ · (Ũ · ∇U2)dx +

∫
Ω

θ̃ṽdx,

where ṽ is the second component of Ũ . Using the estimates for θ2 and U2, standard
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calculations give that

1

2

d

dt

(
‖θ̃‖2 + ‖Ũ‖2

)
+ ν‖∇Ũ‖2

≤ ‖∇θ2‖L∞(‖θ̃‖2 + ‖Ũ‖2) + ‖∇U2‖L∞‖Ũ‖2 + (‖θ̃‖2 + ‖Ũ‖2)

≤ C(‖θ̃‖2 + ‖Ũ‖2),

which implies that

e−2Ct(‖θ‖2 + ‖U‖2) ≤ ‖θ(0)‖2 + ‖U(0)‖2 = 0,

for any t ≥ 0. So the solution of (4.1.1)–(4.1.2) is unique. This completes the proof

of Theorem 4.3.2.

This theorem and Theorem 4.3.1 implies our main result, Theorem 4.1.1.

4.4 Inviscid Heat-Conductive Boussinesq Equations

To prove theorem 4.1.2, we first reformulate the IBVP (4.1.1) and (4.1.3). Let P̄ =

P − θ̄y and Θ = θ − θ̄, then we get from the original system that
Ut + U · ∇U +∇P̄ = Θe2,

Θt + U · ∇Θ = κ∆Θ,

∇ · U = 0.

(4.4.1)

The initial and boundary conditions become
(U,Θ)(x, 0) = (U0,Θ0)(x),

U · n|∂Ω = 0, Θ|∂Ω = 0,

(4.4.2)

where Θ0 = θ0− θ̄. It is clear that, for smooth solutions, (4.4.1)–(4.4.2) are equivalent

to (4.1.1) and (4.1.3). By definition, the same is true for weak solutions. Hence, for the

rest part of this subsection, we shall work on (4.4.1)–(4.4.2). The following theorem

gives the key estimates.

Theorem 4.4.1. Under the assumptions of Theorem 4.1.2, the solution obtained in

Lemma 4.2.8 satisfies U ∈ C([0, T );H3(Ω)),Θ ∈ C([0, T );H3(Ω))∩L2([0, T );H4(Ω))
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for any T > 0. Moreover, there exist constants η > 0, C̄ > 0, C(p) > 0, C̃ > 0

independent of t such that for any fixed p ∈ [2,∞),

‖Θ(·, t)‖H3 ≤ C̄ exp{−ηt}, ∀ t ≥ 0,

‖U(·, t)‖W 1,p ≤ C(p), and ‖ω(·, t)‖L∞ ≤ C̃, ∀ t ≥ 0.

(4.4.3)

Notation 4.4.1. Unless specified, throughout this section, C and Ci will denote

generic constants which are independent of θ, U and T . In addition, the values of

the constants are different from those in previous chapters.

The proof of Theorem 4.4.1 is divided into several steps of energy estimates which

are stated as a sequence of lemmas. As mentioned in the Introduction, the decay rate

will be achieved through careful coupling of weighted energy estimates. First, we give

the decay estimate of ‖Θ‖. Indeed, we have

Lemma 4.4.1. Under the assumptions of Theorem 4.1.2,, there exist constants α0 >

0, β0 > 0 independent of t such that

‖Θ(·, t)‖2 ≤ ‖Θ0‖2 exp{−2β0t}, and∫ t

0

exp{β0τ}‖∇Θ(·, τ)‖2dτ ≤ α0‖Θ0‖2, ∀ t ≥ 0.
(4.4.4)

Proof. First of all, by taking L2 inner product of (4.4.1)2 with Θ we get

1

2

d

dt
‖Θ‖2 + κ‖∇Θ‖2 = 0. (4.4.5)

Since Θ|∂Ω = 0, Poincaré’s inequality implies that

‖Θ‖2 ≤ C0‖∇Θ‖2, (4.4.6)

for some constant C0 depending only on Ω. Combining (4.4.5) and (4.4.6) we get

d

dt
‖Θ‖2 +

2κ

C0

‖Θ‖2 ≤ 0,

which yields immediately that

‖Θ(·, t)‖2 ≤ ‖Θ0‖2 exp{−2β0t}, (4.4.7)
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where β0 = κ/C0.

Multiplying (4.4.5) by exp{β0t} we have

d

dt

(
exp{β0t}‖Θ‖2

)
+ 2κ exp{β0t}‖∇Θ‖2 = β0 exp{β0t}‖Θ‖2. (4.4.8)

Combining (4.4.7) and (4.4.8) we have

d

dt

(
exp{β0t}‖Θ‖2

)
+ 2κ exp{β0t}‖∇Θ‖2 ≤ β0 exp{−β0t}‖Θ0‖2. (4.4.9)

For any t ≥ 0, integrating (4.4.9) in time over [0, t] we obtain

exp{β0t}‖Θ(·, t)‖2 − ‖Θ0‖2 + 2κ

∫ t

0

exp{β0τ}‖∇Θ(·, τ)‖2dτ

≤
(
1− exp{−β0t}

)
‖Θ0‖2,

which implies that∫ t

0

exp{β0τ}‖∇Θ(·, τ)‖2dτ ≤ 1

2κ

(
2− exp{−β0t}

)
‖Θ0‖2

≤ α0‖Θ0‖2, ∀ t ≥ 0,

(4.4.10)

where α0 = 1/κ. This completes the proof of Lemma 4.4.1.

To improve the decay estimate of Θ to higher order norms, we proceed to find the

uniform estimate of ‖U‖H1 . With the help of Lemma 4.4.1, we have

Lemma 4.4.2. Under the assumptions of Theorem 4.1.2, there exists a constant

d1 > 0 independent of t such that

‖U(·, t)‖2
H1 ≤ d1, ∀ t ≥ 0. (4.4.11)

Proof. By taking L2 inner product of (4.4.1)1 with U we get

d

dt
‖U‖2 = 2

∫
Ω

Θe2 · Udx.

Cauchy-Schwartz inequality then implies that

d

dt
‖U‖2 ≤ exp{−β0t}‖U‖2 + exp{β0t}‖Θ‖2

≤ exp{−β0t}‖U‖2 + exp{−β0t}‖Θ0‖2,

(4.4.12)
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where we have used Lemma 4.4.1. Applying Gronwall’s inequality to (4.4.12) we find

‖U(·, t)‖2 ≤ exp

{∫ t

0

exp{−β0τ}dτ
}(
‖U0‖2 +

∫ t

0

exp{−β0τ}‖Θ0‖2dτ

)
= exp

{
1

β0

(
1− exp{−β0t}

)}(
‖U0‖2 +

‖Θ0‖2

β0

(
1− exp{−β0t}

)
≤ exp{1/β0}

(
‖U0‖2 +

‖Θ0‖2

β0

)
, ∀ t ≥ 0.

(4.4.13)

To get the estimation of ∇U , we take the curl of (4.4.1)1 to obtain

ωt + U · ∇ω = Θx, (4.4.14)

where ω = vx − uy is the 2D vorticity. Taking the L2 inner product of (4.4.14) with

ω and using Cauchy-Schwartz inequality we get

d

dt
‖ω‖2 ≤ 2‖ω‖‖∇Θ‖

≤ exp{−β0t}‖ω‖2 + exp{β0t}‖∇Θ‖2.

(4.4.15)

Applying Gronwall’s inequality to (4.4.15) and using the second part of (4.4.4) we

obtain

‖ω(·, t)‖2 ≤ exp

{∫ t

0

exp{−β0τ}dτ
}(
‖ω0‖2 +

∫ t

0

exp
{
β0τ
}
‖∇Θ(·, τ)‖2dτ

)
≤ exp

{
1

β0

(
1− exp{−β0t}

)}(
‖ω0‖2 + α0‖Θ0‖2

)
≤ exp{1/β0}

(
‖ω0‖2 + α0‖Θ0‖2

)
, ∀ t ≥ 0,

which, together with (4.4.13) and Lemma 4.2.4 with s = 1, p = 2, implies that

‖U(·, t)‖2
H1 ≤ C(‖U(·, t)‖2 + ‖ω(·, t)‖2)

≤ C exp{1/β0}
(
‖U0‖2 + ‖ω0‖2 + (α0 + 1/β0)‖Θ0‖2

)
≡ d1, ∀ t ≥ 0.

This completes the proof of Lemma 4.4.2.

Now we prove the key lemma of this section, which gives the exponential decay of

the H1 norm of Θ and is a consequence of Lemma 4.4.2. The important role played

by the uniform bound of ‖U‖2
H1 will be revealed in the proof.
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Lemma 4.4.3. Under the assumptions of Theorem 4.1.2, there exist constants α1 >

0, β1 > 0 independent of t such that

‖Θ(·, t)‖2
H1 ≤ α1‖Θ0‖2

H1 exp{−β1t}, ∀ t ≥ 0.

Proof. Taking L2 inner product of (4.4.1)2 with Θt we find

κ

2

d

dt
‖∇Θ‖2 + ‖Θt‖2 = −

∫
Ω

(U · ∇Θ)Θtdx. (4.4.16)

We estimate the RHS of (4.4.16) as follows: First, using Cauchy-Schwartz inequality

we get

−
∫

Ω

(U · ∇Θ)Θtdx ≤ ‖U · ∇Θ‖2 +
1

4
‖Θt‖2.

Using Lemmas 4.2.1 and 4.4.2 we have

‖U · ∇Θ‖2 ≤ ‖U‖2
L4‖∇Θ‖2

L4

≤ C1‖U‖2
H1‖∇Θ‖2

L4

≤ C1d1‖∇Θ‖2
L4 .

Letting C2 = C1d1 we update (4.4.16) as

κ

2

d

dt
‖∇Θ‖2 +

3

4
‖Θt‖2 ≤ C2‖∇Θ‖2

L4 . (4.4.17)

For the RHS of (4.4.17), applying Ladyzhenskaya’s inequality to ∇Θ we get

‖∇Θ‖2
L4 ≤ C3

(
‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

)
≤ C(δ)‖∇Θ‖2 + δ‖D2Θ‖2,

(4.4.18)

where δ is a number to be determined. Now, using (4.4.1)2 and Lemma 4.2.3 with

m = 0 and p = 2 we have

‖Θ‖2
H2 ≤ C4

(
‖Θt‖2 + ‖U · ∇Θ‖2

)
. (4.4.19)

For the second term on the RHS of (4.4.19), we use (4.4.18) to get

‖U · ∇Θ‖2 ≤ C5

(
‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

)
,
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where C5 = C1d1C3. Then, using Cauchy-Schwartz inequality we update (4.4.19) as

‖Θ‖2
H2 ≤ C4

(
‖Θt‖2 + C5

(
‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

))
≤ C6

(
‖Θt‖2 + ‖∇Θ‖2

)
+

1

2
‖Θ‖2

H2 .

So we have

‖Θ‖2
H2 ≤ C7

(
‖Θt‖2 + ‖∇Θ‖2

)
, (4.4.20)

where C7 = 2C6. By choosing δ = 1/(4C2C7) in (4.4.18), and by coupling the resulting

inequality with (4.4.20) we obtain

‖∇Θ‖2
L4 ≤ C8‖∇Θ‖2 +

1

4C2

‖Θt‖2. (4.4.21)

Combining (4.4.17) with (4.4.21) we get

κ

2

d

dt
‖∇Θ‖2 +

1

2
‖Θt‖2 ≤ C9‖∇Θ‖2. (4.4.22)

To explore the diffusive mechanism in the temperature equation, we multiply

(4.4.5) by 2C9/κ and add the resulting equation to (4.4.22) to get

d

dt

(C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+ C9‖∇Θ‖2 +

1

2
‖Θt‖2 ≤ 0. (4.4.23)

Let β1 =
(
C0

κ
+ κ

2C9

)−1
. Then, with the help of Poincaré’s inequality we have

β1

(C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
≤ C9‖∇Θ‖2. (4.4.24)

Combining (4.4.23) with (4.4.24) we obtain

d

dt

(C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+ β1

(C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+

1

2
‖Θt‖2 ≤ 0, (4.4.25)

which implies that (where we dropped a positive term from the LHS)(C9

κ
‖Θ(·, t)‖2 +

κ

2
‖∇Θ(·, t)‖2

)
≤
(C9

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
exp{−β1t}. (4.4.26)

Therefore,

‖Θ(·, t)‖2
H1 ≤ α1‖Θ0‖2

H1 exp{−β1t}, ∀ t ≥ 0, (4.4.27)
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where

α1 = max

{
C9

κ
,
κ

2

}/
min

{
C9

κ
,
κ

2

}
.

This completes the proof of Lemma 4.4.3.

Remark 4.4.1. The energy estimates coupling used in the proof of Lemma 4.4.3 will

be repeated twice in Lemmas 4.4.5–4.4.6 to establish the exponential decay of ‖Θ‖H2

and ‖Θ‖H3.

Before we proceed to improve the decay of Θ, we establish higher order uniform

estimate of U . For this purpose, we have

Lemma 4.4.4. Under the assumptions of Theorem 4.1.2, for any fixed p ∈ [2,∞),

there exists a constant d2 = d2(p) > 0 independent of t such that

‖U(·, t)‖W 1,p ≤ d2, ∀ t ≥ 0. (4.4.28)

Proof. First, we establish an estimate similar to (4.4.10) for ‖Θ‖H2 . Multiplying

(4.4.23) by eβ1t/2 we get

d

dt

[
eβ1t/2

(C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)]
+ eβ1t/2

(
C9‖∇Θ‖2 +

1

2
‖Θt‖2

)
≤ β1

2
eβ1t/2

(C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
.

(4.4.29)

Applying (4.4.26) to (4.4.29) we obtain

d

dt

[
eβ1t/2

(C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)]
+ eβ1t/2

(
C9‖∇Θ‖2 +

1

2
‖Θt‖2

)
≤ β1

2
e−β1t/2

(C9

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
.

(4.4.30)

Integrating (4.4.30) in time over [0, t] we get

eβ1t/2
(C9

κ
‖Θ(·, t)‖2 +

κ

2
‖∇Θ(·, t)‖2

)
+

∫ t

0

eβ1τ/2
(
C9‖∇Θ(·, τ)‖2 +

1

2
‖Θt(·, τ)‖2

)
dτ

≤ 2
(C9

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
,

(4.4.31)
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which yields∫ t

0

eβ1τ/2
(
C9‖∇Θ(·, τ)‖2 +

1

2
‖Θt(·, τ)‖2

)
dτ ≤ 2

(C9

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
. (4.4.32)

Letting C10 = 2
(

min{C9, 1/2}
)−1

we get from (4.4.32) that∫ t

0

eβ1τ/2
(
‖∇Θ(·, τ)‖2 + ‖Θt(·, τ)‖2

)
dτ ≤ C10

(C9

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
. (4.4.33)

Using (4.4.20) and (4.4.33) we obtain the following estimate on ‖Θ‖H2 :∫ t

0

eβ1τ/2‖Θ(·, τ)‖2
H2dτ ≤ C11, ∀ t ≥ 0, (4.4.34)

where C11 = C7C10(C9

κ
‖Θ0‖2 + κ

2
‖∇Θ0‖2).

Now, for any fixed p ∈ [2,∞), multiplying the vorticity equation (4.4.14) by

|ω|p−2ω and then integrating the resulting equation over Ω, we find, after integration

by parts, that

1

p

d

dt
‖ω‖pLp = −

∫
Ω

Θx|ω|p−2ωdx, ∀ p ∈ [2,∞). (4.4.35)

Using Hölder’s inequality, we estimate the RHS of (4.4.35) as

−
∫

Ω

Θx|ω|p−2ωdx ≤ ‖∇Θ‖Lp‖ω‖p−1
Lp . (4.4.36)

Combining (4.4.35) with (4.4.36) and using Sobolev embedding we get

d

dt
‖ω‖Lp ≤ ‖∇Θ‖Lp ≤ C12(p)‖Θ‖H2 ,

which implies, after integrating in time and using Hölder’s inequality and (4.4.34),

that

‖ω(·, t)‖Lp ≤ ‖ω(·, 0)‖Lp + C12

∫ t

0

‖Θ(·, τ)‖H2dτ

≤ ‖ω(·, 0)‖Lp + C12

(∫ t

0

eβ1τ/2‖Θ(·, τ)‖2
H2dτ

) 1
2
(∫ t

0

e−β1τ/2dτ

) 1
2

≤ ‖ω(·, 0)‖Lp + C12

√
C11

√
2/β2 ≡ C13, ∀ t ≥ 0.

(4.4.37)
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Therefore, Lemmas 4.2.1, 4.2.4, 4.4.2 and (4.4.37) imply that for any fixed p ∈ [2,∞),

‖U(·, t)‖W 1,p ≤ C
(
‖ω(·, t)‖Lp + ‖U(·, t)‖Lp

)
≤ C

(
‖ω(·, t)‖Lp + C(p)‖U(·, t)‖H1

)
≤ C

(
C13 + C(p)

√
d1

)
≡ d2.

(4.4.38)

This completes the proof of Lemma 4.4.4.

With the help of Lemma 4.4.4 we are now ready to show the exponential decay

of ‖Θ‖H2 . Indeed, we have

Lemma 4.4.5. Under the assumptions of Theorem 4.1.2, there exist constants α2 >

0, β2 > 0 independent of t such that

‖Θ(·, t)‖2
H2 ≤ α2 exp{−β2t}, ∀ t ≥ 0. (4.4.39)

Proof. First, by taking L2 inner product of (4.4.1)1 with Ut we get

‖Ut‖2 = −
∫

Ω

Ut · (U · ∇U)dx +

∫
Ω

Θvtdx, (4.4.40)

from which we deduce, using Lemmas 4.4.2, 4.4.4 and (4.4.7), that

‖Ut‖2 ≤ 1

4
‖Ut‖2 + ‖U · ∇U‖2 + ‖Θ‖2 +

1

4
‖Ut‖2

≤ 1

2
‖Ut‖2 + ‖U‖2

L∞‖∇U‖2 + ‖Θ‖2

≤ 1

2
‖Ut‖2 + C‖U‖2

W 1,4‖∇U‖2 + ‖Θ‖2

≤ 1

2
‖Ut‖2 + Cd2d1 + ‖Θ0‖2.

(4.4.41)

Hence,

‖Ut‖2 ≤ 2(Cd2d1 + ‖Θ0‖2) ≡ C14. (4.4.42)

Taking temporal derivative of (4.4.1)2 we have

Θtt + Ut · ∇Θ + U · ∇Θt = κ∆Θt. (4.4.43)
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Taking the L2 inner product of (4.4.43) with Θt, we obtain, after integration by parts,

that
1

2

d

dt
‖Θt‖2 + κ‖∇Θt‖2 = −

∫
Ω

(Ut · ∇Θ)Θtdx

=

∫
Ω

Θ(Ut · ∇Θt)dx.

(4.4.44)

Using Cauchy-Schwartz inequality, (4.4.42) and Sobolev embedding we estimate the

RHS of (4.4.44) as:∫
Ω

Θ(Ut · ∇Θt)dx ≤
1

2κ
‖ΘUt‖2 +

κ

2
‖∇Θt‖2

≤ 1

2κ
‖Θ‖2

L∞‖Ut‖2 +
κ

2
‖∇Θt‖2

≤ C14

2κ
‖Θ‖2

L∞ +
κ

2
‖∇Θt‖2

≤ C15‖Θ‖2
H2 +

κ

2
‖∇Θt‖2.

So we update (4.4.44) as

d

dt
‖Θt‖2 + κ‖∇Θt‖2 ≤ C16‖Θ‖2

H2 . (4.4.45)

Coupling (4.4.45) with (4.4.20) we get

d

dt
‖Θt‖2 + κ‖∇Θt‖2 ≤ C17

(
‖∇Θ‖2 + ‖Θt‖2

)
. (4.4.46)

Now, letting C18 = min{C9, 1/2} we get from (4.4.23) that

d

dt

(C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+ C18

(
‖∇Θ‖2 + ‖Θt‖2

)
≤ 0.

Multiplying the above inequality by 2C17/C18, then adding the resulting inequality

to (4.4.46) we obtain

d

dt

(
E(t)

)
+ C17

(
‖∇Θ‖2 + ‖Θt‖2

)
+ κ‖∇Θt‖2 ≤ 0, (4.4.47)

where

E(t) =
2C17

C18

(
C9

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+ ‖Θt‖2.
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With the help of Poincaré’s inequality we can easily see that there exists a constant

β2 > 0 independent of t such that

β2E(t) ≤ C17

(
‖∇Θ‖2 + ‖Θt‖2

)
.

Hence, we update (4.4.47) as

d

dt

(
E(t)

)
+ β2E(t) + κ‖∇Θt‖2 ≤ 0,

which implies that

E(t) ≤ E(0) exp{−β2t}. (4.4.48)

In view of (4.4.20) we see that there exists a constant C19 independent of t such that

‖Θ(·, t)‖2
H2 ≤ C19E(t), ∀ t ≥ 0,

which, together with (4.4.48), yields (4.4.39). This completes the proof of Lemma

4.4.5.

The next lemma is concerned with the decay of ‖∇Θt‖2, based on which we can

prove the decay of ‖Θ‖2
H3 . For this purpose, we have

Lemma 4.4.6. Under the assumptions of Theorem 4.1.2, there exist constants α3 >

0, β3 > 0 independent of t such that

‖Θ(·, t)‖2
H1 + ‖Θt(·, t)‖2

H1 ≤ α3 exp{−β3t}, ∀ t ≥ 0. (4.4.49)

Proof. Taking L2 inner product of (4.4.43) with Θtt we obtain

κ

2

d

dt
‖∇Θt‖2 + ‖Θtt‖2 = −

∫
Ω

Θtt

(
Ut · ∇Θ

)
dx−

∫
Ω

Θtt

(
U · ∇Θt

)
dx. (4.4.50)

Using (4.4.42), Lemmas 4.2.1 and 4.2.3, we estimate the first term on the RHS of

(4.4.50) as:

−
∫

Ω

Θtt(Ut · ∇Θ)dx ≤ 1

4
‖Θtt‖2 + ‖Ut‖2‖∇Θ‖2

L∞

≤ 1

4
‖Θtt‖2 + C‖Θ‖2

W 2,3

≤ 1

4
‖Θtt‖2 + C

(
‖Θt‖2

L3 + ‖U · ∇Θ‖2
L3

)
≤ 1

4
‖Θtt‖2 + C

(
‖Θt‖2

H1 + ‖U · ∇Θ‖2
L3

)
.

(4.4.51)
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From Lemma 4.4.4, Sobolev embedding and (4.4.20) we know

‖U · ∇Θ‖2
L3 ≤ ‖U‖2

L∞‖∇Θ‖2
L3

≤ C‖Θ‖2
H2

≤ C
(
‖Θt‖2 + ‖∇Θ‖2

)
.

Therefore, (4.4.51) becomes

−
∫

Ω

Θtt(Ut · ∇Θ)dx ≤ 1

4
‖Θtt‖2 + C

(
‖Θt‖2

H1 + ‖∇Θ‖2
)
. (4.4.52)

For the second term on the RHS of (4.4.50), we have

−
∫

Ω

Θtt(U · ∇Θt)dx ≤
1

4
‖Θtt‖2 + ‖U‖2

L∞‖∇Θt‖2

≤ 1

4
‖Θtt‖2 + C‖∇Θt‖2.

(4.4.53)

Combining (4.4.50) with (4.4.52)–(4.4.53) we get

κ
d

dt
‖∇Θt‖2 + ‖Θtt‖2 ≤ Ĉ

(
‖∇Θ‖2 + ‖Θt‖2 + ‖∇Θt‖2

)
,

for some constant Ĉ > 0 independent of t. By applying the same idea used in the

proof of Lemma 4.4.5, we absorb the RHS of the above inequality into the LHS of

(4.4.47). Then it is straightforward to show that there exists a constant β3 > 0

independent of t such that

d

dt

(
F (t)

)
+ β3F (t) + ‖Θtt‖2 ≤ 0, (4.4.54)

where the quantity F (t) is equivalent to ‖Θ(·, t)‖2
H1 +‖Θt(·, t)‖2

H1 . By dropping ‖Θtt‖2

we get

d

dt

(
F (t)

)
+ β3F (t) ≤ 0,

which yields (4.4.49). This completes the proof of Lemma 4.4.6.

With the helps of Lemmas 4.4.2–4.4.6, we are now ready to prove the exponential

decay of ‖Θ‖2
H3 .
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Lemma 4.4.7. Under the assumptions of Theorem 4.1.2, there exist constants α4 >

0, β4 > 0 independent of t such that

‖Θ(·, t)‖2
H3 ≤ α4 exp{−β4t}, ∀ t ≥ 0. (4.4.55)

Proof. First, since Θ|∂Ω = 0, using Lemma 4.2.3 with m = 1 and p = 2 we have

‖Θ‖2
H3 ≤ C

(
‖Θt‖2

H1 + ‖U · ∇Θ‖2
H1

)
. (4.4.56)

By virtue of Lemma 4.4.6, it suffices to estimate ‖U · ∇Θ‖2
H1 in order to prove the

lemma. For this purpose, we observe, by Lemma 4.4.4 and Lemma 4.2.1 (ii), that

‖(U · ∇Θ)(·, t)‖2
H1 ≤ ‖U‖2

L∞‖Θ‖2
H2 + ‖∇U‖2‖∇Θ‖2

L∞

≤ C
(
‖Θ‖2

H2 + ‖Θ‖2
W 2,3

)
.

(4.4.57)

From the derivations in (4.4.51) we have

‖Θ‖2
W 2,3 ≤ C

(
‖Θt‖2

H1 + ‖∇Θ‖2
)
. (4.4.58)

Substituting (4.4.58) into (4.4.57) we have

‖(U · ∇Θ)(·, t)‖2
H1 ≤ C

(
‖Θt‖2

H1 + ‖Θ‖2
H2

)
, (4.4.59)

Plugging (4.4.59) into (4.4.56) we have

‖Θ‖2
H3 ≤ C

(
‖Θ‖2

H2 + ‖Θt‖2
H1

)
, (4.4.60)

which, together with Lemmas 4.4.5 and 4.4.6, implies (4.4.55). This completes the

proof of Lemma 4.4.7.

As a consequence of Lemma 4.4.7, we show the uniform estimate of ‖ω‖L∞ .

Lemma 4.4.8. Under the assumptions of Theorem 4.1.2, there exists a constant

C̃ > 0 independent of t such that

‖ω(·, t)‖L∞ ≤ C̃, ∀ t ≥ 0.
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Proof. We note from (4.4.35) that for any p ≥ 2, it holds that

d

dt
‖ω‖Lp ≤ ‖∇Θ‖Lp ≤ ‖∇Θ‖L∞|Ω|1/p ≤ ‖∇Θ‖L∞ max{1, |Ω|}. (4.4.61)

By Sobolev embedding and Lemma 4.4.7 we have

‖∇Θ‖L∞ ≤ C‖Θ‖H3 ≤ C exp{−β4t}. (4.4.62)

Plugging (4.4.62) into (4.4.61) we have

d

dt
‖ω‖Lp ≤ C exp{−β4t}. (4.4.63)

Upon integrating (4.4.63) in time we have

‖ω(·, t)‖Lp ≤ ‖ω(·, 0)‖Lp + C/β4 ≤ ‖ω(·, 0)‖L∞ max{1, |Ω|}+ C/β4. (4.4.64)

We note that the RHS of (4.4.64) is independent of t and p ≥ 2. Therefore, letting

p→∞ in (4.4.64) we complete the proof of Lemma 4.4.8.

Now we turn to the regularity of the velocity field. With the help of Lemma 4.4.7

we have

Lemma 4.4.9. Under the assumptions of Theorem 4.1.2, for any T > 0, there exists

a constant M = M(T ) > 0 such that

‖U‖2
C([0,T ];H3(Ω)) ≤M. (4.4.65)

Proof. We note, due to (4.4.55) and Sobolev embedding, that

‖Θ‖2
C([0,T ];C1+γ(Ω̄)) ≤ C exp{−β4t},

for some γ ∈ (0, 1). Therefore, (4.4.1)1 and Lemma 4.2.6 with G = Θe2 imply that

for any fixed T > 0,

‖U‖2
C([0,T ];C1(Ω̄)) ≤ C(T ) <∞. (4.4.66)
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To estimate ‖U‖H3 , we consider the vorticity equation (4.4.14). For any mixed spatial

derivative Dα with 0 ≤ |α| ≤ 2, taking the L2 inner product of Dα(4.4.14) with Dαω

we get

1

2

d

dt
‖Dαω‖2 = −

∫
Ω

Dα(U · ∇ω)Dαω dx−
∫

Ω

DαΘxD
αω dx. (4.4.67)

Since ∇ ·U = 0 and U · n|∂Ω = 0, we rewrite the first term on the RHS of (4.4.67) as

−
∫

Ω

Dα(U · ∇ω)Dαω dx = −
∫

Ω

Dα∇ · (Uω)Dαω dx

= −
∫

Ω

(
Dα∇ · (Uω)− U · ∇Dαω

)
Dαω dx.

(4.4.68)

Combining (4.4.67) and (4.4.68), and using Cauchy-Schwartz inequality we get

1

2

d

dt
‖Dαω‖2 ≤ 1

2
‖(Dα∇ · (Uω)− U · ∇Dαω)‖2 +

1

2
‖DαΘx‖2 + ‖Dαω‖2. (4.4.69)

Now, it is easy to see that

‖(Dα∇ · (Uω)− U · ∇Dαω)‖2 ≤ ‖∇U‖2
L∞‖ω‖2, for |α| = 0, (4.4.70)

and

‖(Dα∇ · (Uω)− U · ∇Dαω)‖2 = ‖Dα(∇ · U)ω + (∇ · U)Dαω +DαU · ∇ω‖2

≤ ‖U‖2
H2‖ω‖2

L∞ + 2‖∇U‖2
L∞‖ω‖2

H1 , for |α| = 1.

(4.4.71)

For |α| = 2, with the help of Lemma 4.2.5 with f = U, g = ω and |β| = 3 we obtain

‖(Dα∇ · (Uω)− U · ∇Dαω)‖2 ≤ C(‖∇U‖2
L∞‖ω‖2

H2 + ‖U‖2
H3‖ω‖2

L∞). (4.4.72)

Combining (4.4.70)–(4.4.72) we see that for any multiindex α with 0 ≤ |α| ≤ 2 it

holds that

‖(Dα∇ · (Uω)− U · ∇Dαω)‖2 ≤ C(‖∇U‖2
L∞‖ω‖2

H2 + ‖U‖2
H3‖ω‖2

L∞). (4.4.73)

Plugging (4.4.73) into (4.4.69) and using Lemma 4.2.4 with s = 3, p = 2 we get

1

2

d

dt
‖Dαω‖2 ≤ C

(
‖∇U‖2

L∞‖ω‖2
H2 + ‖U‖2

H3‖ω‖2
L∞

)
+ ‖Dαω‖2 +

1

2
‖DαΘx‖2

≤ C‖∇U‖2
L∞(‖ω‖2

H2 + ‖U‖2) + ‖Dαω‖2 +
1

2
‖DαΘx‖2.

(4.4.74)
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Summing (4.4.74) over all α with 0 ≤ |α| ≤ 2 and using (4.4.55) and (4.4.66) we

obtain

d

dt
‖ω‖2

H2 ≤ C‖∇U‖2
L∞(‖ω‖2

H2 + ‖U‖2) + 2‖ω‖2
H2 + ‖Θ‖2

H3

=
(
C‖∇U‖L∞ + 2

)
‖ω‖2

H2 + C‖∇U‖2
L∞‖U‖2 + ‖Θ‖2

H3

≤ C(T )‖ω‖2
H2 + C(T ).

(4.4.75)

Then Gronwall’s inequality implies that

‖ω(·, t)‖2
H2 ≤ eCT

(
‖ω(·, 0)‖2

H2 +

∫ T

0

Cdτ
)

≤ C(T ), ∀ 0 ≤ t ≤ T,

(4.4.76)

which, together with Lemmas 4.2.4 and 4.4.2, implies (4.4.65). This completes the

proof of Lemma 4.4.9.

To complete the regularity stated in Theorem 4.4.1, it remains to estimate ‖Θ‖2
H4(Ω).

Using the results obtained in previous lemmas, we can easily prove the following

Lemma 4.4.10. Under the assumptions of Theorem 4.1.2, for any T > 0, there

exists a constant N = N(T ) > 0 such that

‖Θ‖2
L2([0,T ];H4(Ω)) ≤ N. (4.4.77)

Proof. First, we rewrite the equation (4.4.43) in terms of Θt as:

κ∆(Θt) = Θtt + Ut · ∇Θ + U · ∇Θt.

Since Θt|∂Ω = 0, applying Lemma 4.2.3 to the above equation we get

‖Θt‖2
H2 ≤ C(‖Θtt‖2 + ‖Ut · ∇Θ‖2 + ‖U · ∇Θt‖2). (4.4.78)

Using previous results we estimate the RHS of (4.4.78) as follows:

C(‖Θtt‖2 + ‖Ut · ∇Θ‖2 + ‖U · ∇Θt‖2)

≤ C(‖Θtt‖2 + ‖Ut‖2‖∇Θ‖2
L∞ + ‖U‖2

L∞‖∇Θt‖2)

≤ C(‖Θtt‖2 + ‖Ut‖2‖Θ‖2
H3 + ‖U‖2

H2‖∇Θt‖2)

≤ C(‖Θtt‖2 + 1).

(4.4.79)
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So that, (4.4.78) is updated as

‖Θt‖2
H2 ≤ C(‖Θtt‖2 + 1). (4.4.80)

Now, for any T > 0, we integrate (4.4.54) in time over [0, T ] to get

F (T ) + β3

∫ T

0

F (t)dt+

∫ T

0

‖Θtt‖2dt ≤ F (0), (4.4.81)

which, together with (4.4.76), implies that

‖Θt‖2
L2([0,T ];H2(Ω)) ≤ C(‖Θtt‖2

L2([0,T ];L2(Ω)) + T )

≤ C(T ).

(4.4.82)

For the H4 norm of Θ, Lemma 4.2.3 with m = 2, p = 2 and previous estimates

indicate that

‖Θ‖2
H4 ≤ C

(
‖Θt‖2

H2 + ‖U · ∇Θ‖2
H2

)
≤ C

(
‖Θt‖2

H2 + ‖U‖2
L∞‖Θ‖2

H3 + ‖∇U‖2
L∞‖Θ‖2

H2 + ‖U‖2
H2‖∇Θ‖2

L∞

)
≤ C

(
‖Θt‖2

H2 + C(T )
)
.

(4.4.83)

Therefore, (4.4.77) follows from (4.4.82)–(4.4.83). This completes the proof of Lemma

4.4.10.

Lemmas 4.4.4, 4.4.7–4.4.10 conclude Theorem 4.4.1. Now we prove the uniqueness

of the solution.

Theorem 4.4.2. Under the assumptions of Theorem 4.1.2, the solution of (4.4.1)–

(4.4.2) is unique.

Proof. For any fixed T > 0, suppose there are two solutions (Θ1, U1, P̄1), (Θ2, U2, P̄2)

to (4.4.1)–(4.4.2). Setting Θ̃ = Θ1 − Θ2, Ũ = U1 − U2, P̃ = P̄1 − P̄2, then (Θ̃, Ũ , P̃ )
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satisfy 

Ũt + U1 · ∇Ũ + Ũ · ∇U2 +∇P̃ = Θ̃(0, 1)T ,

Θ̃t + U1 · ∇Θ̃ + Ũ · ∇Θ2 = κ∆Θ̃,

∇ · Ũ = 0,

Ũ(x, 0) = 0, Θ̃(x, 0) = 0, x ∈ Ω,

Ũ · n|∂Ω = 0, Θ̃|∂Ω = 0.

(4.4.84)

Taking the L2 inner products of (4.4.84)1 with Ũ and (4.4.84)2 with Θ̃ respectively

we get

1

2

d

dt

(
‖Θ̃‖2 +‖Ũ‖2

)
+κ‖∇Θ̃‖2 = −

∫
Ω

Θ̃(Ũ ·∇Θ2)dx−
∫

Ω

Ũ · (Ũ ·∇U2)dx+

∫
Ω

Θ̃ṽdx.

(4.4.85)

Using the estimates for Θ2 and U2, it follows from (4.4.85) that

1

2

d

dt

(
‖Θ̃‖2 + ‖Ũ‖2

)
+ κ‖∇Θ̃‖2

≤ ‖∇Θ2‖L∞(‖Θ̃‖2 + ‖Ũ‖2) + ‖∇U2‖L∞‖Ũ‖2 +
1

2
(‖Θ̃‖2 + ‖Ũ‖2)

≤ C(T )(‖Θ̃‖2 + ‖Ũ‖2), ∀ t ∈ [0, T ],

(4.4.86)

which implies that(
‖Θ̃‖2 + ‖Ũ‖2

)
≤ e−2C(T )t

(
‖Θ̃(0)‖2 + ‖Ũ(0)‖2

)
= 0,

for any t ∈ [0, T ]. We conclude the theorem by noticing that T > 0 is arbitrary.

This theorem and Theorem 4.4.1 imply our main result, Theorem 4.1.2.

Remark 4.4.2. The ideas applied in the proof of Theorem 4.1.2 can be adopted to

study the initial-boundary value problem for (4.1.1) with ν = 0, κ > 0 and the Neu-

mann boundary condition on θ (i.e., ∂θ
∂n

∣∣
∂Ω

= 0). In this case, due to the conservation

of total mass, the asymptotic state of θ is θ̂ = 1
|Ω|

∫
Ω
θ0dx. Similar results as in

Theorem 4.1.2 hold for this case. We omit the details here.

Remark 4.4.3. It is interesting to study the 2D Boussinesq equations over bounded

domains with non-smooth boundary, e.g., any polygonal domain. In that case, we
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have to introduce a weak solution. Similar to Navier-Stokes equations, one could

use several formulations, e.g., velocity and pressure formulation, vorticity and stream

function formulation or stream function formulation. In particular, the regularity of

the solutions is an interesting problem when the domain is a polygon. We leave the

study in the future.
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CHAPTER V

MATHEMATICAL STUDY OF MULTI-PHASE/MIXING

FLOWS

5.1 Introduction

In this chapter we generalize the study of the 2D Boussinesq equations in the direction

of multi-phase/mixing flows.

We consider the following initial-boundary value problem for a model of a two-

phase flow under shear and the influence of gravitational force:

φt + U · ∇φ = ∆µ,

µ = −α∆φ+ F ′(φ),

Ut + U · ∇U +∇P = ν∆U + µ∇φ+ θ−→e2 ,

θt + U · ∇θ = 0,

∇ · U = 0;

(φ, µ, U, θ)(x, 0) = (φ0, µ0, U0, θ0)(x),

∇φ · n|∂Ω = ∇µ · n|∂Ω = 0, U |∂Ω = 0,

(5.1.1)

where Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω and n is the unit

outward normal to ∂Ω. Here, φ is the order parameter and µ is a chemical potential

derived from a coarse-grained study of the free energy of the fluid (c.f. [37]), U denotes

the velocity and θ is the temperature. The constant ν > 0 models viscosity.

We also study the IBVP for a simplified model of a two-component mixture, with

a diffusive mass exchange among the medium particles of various density accounted
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for: 

ρ(Ut + U · ∇U) +∇P = λ
(
∇ρ · ∇U + U · ∇(∇ρ)

)
+ µ∆U + ~fρ,

ρt + U · ∇ρ = λ∆ρ,

∇ · U = 0;

(U, ρ)(x, 0) = (U0, ρ0)(x), m ≤ ρ0(x) ≤M ;

U |∂Ω = 0, ∇ρ · n|∂Ω = 0,

(5.1.2)

where ρ, U denote the density and velocity respectively, µ > 0 is the coefficient of

viscosity and λ > 0 models diffusion, and m,M > 0 are constants.

In this chapter, for the modeling equations of multi-phase flows, we generalize

the study of [10] by considering additionally the effect of gravitational force in the

motion of fluid. In the direction of mixing flows, we build up the regularity of the

weak solution obtained in [5]. For both cases, we study global existence of smooth

solutions to the initial-boundary value problems. For the global existence of smooth

solutions, we require the following compatibility conditions:

For multi-phase flow model (5.1.1):
∇ · U0 = 0, ∇φ0 · n|∂Ω = ∇µ0 · n|∂Ω = U0|∂Ω = 0,

ν∆U0 + µ0∇φ0 + θ0e2 −∇P0 = 0, x ∈ ∂Ω, t = 0,

µ0 = −α∆φ0 + F ′(φ0),

(5.1.3)

where P0(x) = P (x, 0) is the solution to the Neumann boundary problem
∆P0 = ∇ · [θ0e2 + µ0∇φ0 − U0 · ∇U0], x ∈ Ω,

∇P0 · n|∂Ω = [ν∆U0 + θ0e2] · n|∂Ω.

(5.1.4)

For mixing flow model (5.1.2):
∇ · U0 = 0, U0|∂Ω = 0, ∇ρ0 · n|∂Ω = 0,

λ∇ρ0 · ∇U0 + µ∆U0 + ~f0ρ0 −∇P0 = 0, x ∈ ∂Ω,

(5.1.5)
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where P0(x) is the solution to the Neumann boundary problem
∇ ·
(
∇P0

ρ0

)
= ∇ ·

(
λ

ρ0

(
∇ρ0 · ∇U0 + U0 · ∇(∇ρ0)

)
− U0 · ∇U0 +

µ

ρ0

∆U0 + ~f0

)
,

∇P0 · n|∂Ω = [λ∇ρ0 · ∇U0 + µ∆U0 + ~f0ρ0] · n|∂Ω.

(5.1.6)

Notation 5.1.1. Unless specified, throughout this chapter, C and Ci will denote

generic constants which are independent of the unknown function. In addition, the

values of the constants are different from those in previous chapters.

The following theorems are the main results of this chapter.

Theorem 5.1.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary and suppose

that F (·) satisfies the following conditions:

(H1) F is of C5 class and F ≥ 0.;

(H2) There exist constants C1, C2 > 0 such that |F n(φ)| ≤ C1|φ|p−n + C2,

n = 1, · · · , 5, ∀ 5 ≤ p <∞ and φ ∈ R;

(H3) There exists a constant F1 > 0 such that F ′′ ≥ −F1.

If (φ0(x) ∈ H4(Ω), µ0(x) ∈ H2(Ω), (θ0(x), U0(x)) ∈ H3(Ω) satisfy the compati-

bility conditions (5.1.3)–(5.1.4), then there exists a unique solution (φ, µ, θ, U) of

(5.1.1) globally in time such that φ ∈ C([0, T );H4(Ω)) ∩ L2([0, T );H6(Ω)), µ ∈

C([0, T );H2(Ω))∩L2([0, T );H4(Ω)), θ ∈ C([0, T );H3(Ω)) and U ∈ C([0, T );H3(Ω))∩

L2([0, T );H4(Ω)) for any T > 0.

Theorem 5.1.2. Let Ω ⊂ R2 be a bounded domain with smooth boundary and suppose

that the constant µ1 = 2µ − λ(M −m) > 0. If (ρ0(x), U0(x)) ∈ H3(Ω) satisfies the

compatibility conditions (5.1.5)–(5.1.6) and ~f ∈ C([0, T );H1(Ω))∩L2([0, T );H2(Ω)),

~ft ∈ L2([0, T );L2(Ω)), then there exists a unique solution (ρ, U) of (5.1.2) globally in

time such that (ρ, U)(x, t) ∈ C([0, T );H3(Ω)) ∩ L2([0, T );H4(Ω)) for any T > 0.
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Remark 5.1.1. The assumptions (H1) − (H3) in Theorem 5.1.1 are satisfied for a

number of applications such as F (x) = (1−x2)2; see [10] and references therein. The

condition 2µ − λ(M − m) > 0 in the statement of Theorem 5.1.2 suggests that, to

ensure the global existence of smooth solution to (5.1.2), the rate of mass exchange

between the two components can not exceed the threshold which is determined by the

viscosity and the lower-upper bounds of the density. From the proof of Theorem 5.1.2

we will see that the number M−m
2

is optimal. It is not clear whether the condition can

be removed till the date this thesis is written. The investigation is still underway.

The proofs of the above theorems are in the spirit of the proof of Theorem 4.1.1.

Still, there will be intensive applications of Sobolev and Ladyzhenskaya type inequal-

ities. The standard results on Stokes equations still play an important role in the

analysis. However, life is not that easy. For (5.1.1), due to the coupling of Cahn-

Hilliard equation and Boussinesq equations, the nonlinear term µ∇φ brings us a big

challenge in the analysis. The regularity of U is much more difficult to build up

than the one in the Boussinesq equations. More detailed applications of Sobolev type

inequalities will be involved in the proof. We also observe that there are great dif-

ferences between the Boussinesq equations and system (5.1.2). An obvious one is the

appearance of the density in (5.1.2) which makes the complexity of analysis signifi-

cantly increase. The reason is that, as the density is coupled with the velocity, when

dealing with higher order estimates, more nonlinear terms will appear after taking

derivatives in the velocity equations. Plus the second order derivative U · ∇(∇)ρ

standing in the velocity equations, the regularity of U is an substantial barrier to

pass.

Since the global existence of weak solutions can be proved in similar fashion as in

Chapter 4, we will focus our attention on the energy estimates which are essential for

the global existence of smooth solutions. These will be done in the next section.
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5.2 Multi-Phase Flow

In this section, we will prove Theorem 5.1.1. We first give the following lemma which

can be proved using the arguments in [10] and Chapter 4.

Lemma 5.2.1. Under the assumptions in Theorem 5.1.1, there exists a global weak

solution (U, θ) of such that, for any T > 0, φ ∈ C
(
[0, T ];H1(Ω)

)
∩L2

(
[0, T ];H3(Ω)

)
,

µ ∈ L2([0, T ];H1(Ω)), U ∈ C([0, T );L2(Ω))∩L2([0, T );H1
0 (Ω)) and θ ∈ C([0, T );Lp(Ω))

for ∀ 1 ≤ p ≤ ∞.

Now we establish the regularity and uniqueness of the solution obtained in Lemma

5.2.1. The following theorem gives the key estimates.

Theorem 5.2.1. Under the assumptions of Theorem 5.1.1, the solution obtained in

Lemma 5.2.1 satisfies the following estimates:

‖φ‖2
C([0,T );H4(Ω)) + ‖φ‖2

L2([0,T ];H6(Ω)) + ‖µ‖2
C([0,T );H2(Ω)) + ‖µ‖2

L2([0,T ];H4(Ω)) ≤ C;

‖U‖C([0,T );H3(Ω)) + ‖U‖L2([0,T );H4(Ω)) + ‖θ‖C([0,T );H3(Ω)) ≤ C,

(5.2.1)

for any T > 0.

First, due to the conservation of total mass, we have

Lemma 5.2.2. Under the assumptions of Theorem 5.1.1, it holds that

‖θ‖Lp = ‖θ0‖Lp , 1 ≤ p ≤ ∞. (5.2.2)

Next, we give some basic estimate of the solution.

Lemma 5.2.3. Under the assumptions of Theorem 5.1.1, it holds that

φ ∈ C
(
[0, T ];H1(Ω)

)
∩ L2

(
[0, T ];H3(Ω)

)
U ∈ C

(
[0, T ];L2(Ω)

)
∩ L2

(
[0, T ];H1(Ω)

)
.

(5.2.3)
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Proof. Taking L2 inner product of (5.1.1)3 with U we have

1

2

d

dt
‖U‖2 + ν‖∇U‖2 =

∫
Ω

µ(∇φ · U)dx +

∫
Ω

θvdx. (5.2.4)

Taking L2 inner product of (5.1.1)1 with φ we have

1

2

d

dt
‖φ‖2 =

∫
Ω

φ∆µx

= −
∫

Ω

∇µ · ∇φdx

= −α‖∆φ‖2 −
∫

Ω

F ′′(φ)|∇φ|2dx,

which yields

1

2

d

dt
‖φ‖2 + α‖∆φ‖2 = −

∫
Ω

F ′′(φ)|∇φ|2dx. (5.2.5)

Taking L2 inner product of (5.1.1)1 with µ we have

d

dt

(
α

2
‖∇φ‖2 +

∫
Ω

F (φ)dx

)
+ ‖∇µ‖2 = −

∫
Ω

µ(∇φ · U)dx. (5.2.6)

Adding (5.2.4) and (5.2.6) we get

d

dt

(
1

2
‖U‖2 +

α

2
‖∇φ‖2 +

∫
Ω

F (φ)dx

)
+ ν‖∇U‖2 + ‖∇µ‖2 =

∫
Ω

θvdx. (5.2.7)

Applying Cauchy-Schwartz inequality to the RHS of (5.2.7) and using (5.2.2) we

obtain

d

dt

(
1

2
‖U‖2 +

α

2
‖∇φ‖2 +

∫
Ω

F (φ)dx

)
+ ν‖∇U‖2 + ‖∇µ‖2 ≤ C‖θ0‖2 +

ν

2
‖∇U‖2,

where we have used Poincaré’s inequality to U . The preceding estimate implies that

d

dt

(
1

2
‖U‖2 +

α

2
‖∇φ‖2 +

∫
Ω

F (φ)dx

)
+
ν

2
‖∇U‖2 + ‖∇µ‖2 ≤ C. (5.2.8)

Adding (5.2.5) and (5.2.8), using (H2) we see that

d

dt

(
1

2
‖φ‖2 +

1

2
‖U‖2 +

α

2
‖∇φ‖2 +

∫
Ω

F (φ)dx

)
+ α‖∆φ‖2 +

ν

2
‖∇U‖2 + ‖∇µ‖2

≤ C −
∫

Ω

F ′′(φ)|∇φ|2dx

≤ C + F1‖∇φ‖2.

(5.2.9)

112



Letting

E1(t) ≡ 1

2
‖φ‖2 +

1

2
‖U‖2 +

α

2
‖∇φ‖2 +

∫
Ω

F (φ)dx, (5.2.10)

since F ≥ 0, we know from (5.2.9) that

d

dt
E1(t) + α‖∆φ‖2 +

ν

2
‖∇U‖2 + ‖∇µ‖2 ≤ C +

2F1

α
E1(t), (5.2.11)

which implies, after applying Gronwall’s inequality, that

E1(t) ≤ C, ∀ 0 ≤ t ≤ T and

∫ T

0

(
α‖∆φ‖2+

ν

2
‖∇U‖2+‖∇µ‖2

)
dτ ≤ C. (5.2.12)

Applying Lemma 4.2.4 to F = ∇φ and using (5.1.1)2 and (H2) we see that

‖∇φ‖2
H2 ≤ C

(
‖∆φ‖2

H1 + ‖∇φ‖2
)

≤ C
(
‖∆φ‖2 + ‖∇φ‖2 + ‖∇µ‖2 + ‖F ′′(φ)∇φ‖2

)
≤ C

(
‖∆φ‖2 + ‖∇φ‖2 + ‖∇µ‖2 + ‖φ‖2(p−2)

L4(p−2)‖∇φ‖2
L4 + ‖∇φ‖2

)
.

Since

‖φ‖2(p−2)

L4(p−2)‖∇φ‖2
L4 ≤ C‖φ‖2(p−2)

H1 ‖∇φ‖2
H1

≤ C‖φ‖2(p−2)

H1

(
‖∆φ‖2 + ‖∇φ‖2

)
,

we know that

‖∇φ‖2
H2 ≤ C

(
‖∆φ‖2 + ‖∇φ‖2 + ‖∇µ‖2 + ‖φ‖2(p−2)

H1

(
‖∆φ‖2 + ‖∇φ‖2

))
,

which implies that

‖φ‖2
H3 ≤ C

(
‖∆φ‖2 + ‖∇φ‖2 + ‖φ‖2 + ‖∇µ‖2 + ‖φ‖2(p−2)

H1

(
‖∆φ‖2 + ‖∇φ‖2

))
.

Therefore, (5.2.10) and (5.2.12) yield (5.2.3). This completes the proof of Lemma

5.2.3.

The next lemma is the corner stone of this section which gives the estimate of

‖φ‖2
C([0,T ];H2(Ω)).

Lemma 5.2.4. Under the assumptions of Theorem 5.1.1, it holds that

‖φ‖2
C([0,T ];H2(Ω)) ≤ C. (5.2.13)
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Proof. Taking L2 inner product of (5.1.1)1 with φt we have

‖φt‖2 +

∫
Ω

φt(U · ∇φ)dx =

∫
Ω

φt∆µdx. (5.2.14)

Using the boundary condition we calculate the RHS of (5.2.14) as follows:∫
Ω

φt∆µdx =

∫
Ω

µ∆φtdx

= − d

dt

(
α

2
‖∆φ‖2

)
+

∫
Ω

F ′(φ)∆φtdx

= − d

dt

(
α

2
‖∆φ‖2 +

1

2

∫
Ω

F ′′(φ)|∇φ|2dx
)

+
1

2

∫
Ω

F ′′′(φ)φt|∇φ|2dx

(5.2.15)

Plugging (5.2.15) into (5.2.14) we get

d

dt

(
α

2
‖∆φ‖2+

1

2

∫
Ω

F ′′(φ)|∇φ|2dx
)

+‖φt‖2 =
1

2

∫
Ω

F ′′′(φ)φt|∇φ|2dx−
∫

Ω

φt(U ·∇φ)dx.

(5.2.16)

Using Cauchy-Schwartz inequality, Lemma 4.2.1, (H2) and (5.2.3) we estimate the

first term on the RHS of (5.2.16) as follows:

1

2

∫
Ω

F ′′′(φ)φt|∇φ|2dx ≤
1

4
‖φt‖2 +

1

4

∫
Ω

|F ′′′(φ)|2|∇φ|4dx

≤ 1

4
‖φt‖2 + C

∫
Ω

(
|φ|2(p−3) + C

)
|∇φ|4dx

≤ 1

4
‖φt‖2 + C‖∇φ‖4

L4 + C‖φ‖2(p−3)

L4(p−3)‖∇φ‖4
L8

≤ 1

4
‖φt‖2 + C‖∇φ‖4

L4 + C‖φ‖2(p−3)

H1

(
‖D2φ‖2

L4‖∇φ‖2 + ‖∇φ‖4
)

≤ 1

4
‖φt‖2 + C‖φ‖2

H3 + C

(5.2.17)

The second term on the RHS of (5.2.16) is estimated as

−
∫

Ω

φt(U · ∇φ)dx ≤ 1

4
‖φt‖2 + ‖U · ∇φ‖2

≤ 1

4
‖φt‖2 + C‖U‖‖∇U‖

(
‖∇φ‖‖D2φ‖+ ‖∇φ‖2

)
≤ 1

4
‖φt‖2 + C‖∇U‖2 + C‖φ‖2

H2 + C.

(5.2.18)

Combining (5.2.16)–(5.2.18) we see that

d

dt

(
α

2
‖∆φ‖2 +

1

2

∫
Ω

F ′′(φ)|∇φ|2dx
)

+
1

2
‖φt‖2 ≤ C1(t), (5.2.19)
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where C1(t) = C‖φ‖2
H3 +C‖∇U‖2 +C satisfying

∫ T

0

C1(τ)dτ ≤ C(T ) due to (5.2.3).

Multiplying (5.2.9) by 2F1

α
then adding the result to (5.2.19) we have

d

dt
E2(t) +

2F1

α

(
α‖∆φ‖2 +

ν

2
‖∇U‖2 + ‖∇µ‖2

)
+

1

2
‖φt‖2 ≤ C2(t), (5.2.20)

where

E2(t) ≡ F1

α
‖φ‖2+

F1

α
‖U‖2+

2F1

α

∫
Ω

F (φ)dx+
α

2
‖∆φ‖2+F1‖∇φ‖2+

1

2

∫
Ω

F ′′(φ)|∇φ|2dx,

and

C2(t) =
2CF1

α
+

2F 2
1

α
‖∇φ‖2 + C1(t), satisfying

∫ T

0

C2(τ)dτ ≤ C.

It is clear, since F ′′ ≥ −F1, that

E2(t) ≥ F1

α
‖φ‖2 +

F1

α
‖U‖2 +

2F1

α

∫
Ω

F (φ)dx +
α

2
‖∆φ‖2 +

F1

2
‖∇φ‖2. (5.2.21)

Integrating (5.2.20) over [0, T ] we get

E2(t) ≤ C, ∀ 0 ≤ t ≤ T and

∫ T

0

‖φt‖2dτ ≤ C, (5.2.22)

which implies, in view of (5.2.21), that

φ ∈ C
(
[0, T ];H2(Ω)

)
. (5.2.23)

This completes the proof of Lemma 5.2.4.

With the help of Lemma 5.2.4 we are now ready to improve the regularity of U

and build up higher order regularity of φ.

Lemma 5.2.5. Under the assumptions of Theorem 5.1.1, it holds that

‖U‖2
C([0,T ];H1(Ω)) + ‖U‖2

L2([0,T ];H2(Ω)) ≤ C;

‖µ‖2
L2([0,T ];H2(Ω)) + ‖φ‖2

L2([0,T ];H4(Ω)) ≤ C.

(5.2.24)

Proof. Taking L2 inner product of (5.1.1)3 with Ut we have

ν

2

d

dt
‖∇U‖2 + ‖Ut‖2 = −

∫
Ω

Ut · (U · ∇U)dx +

∫
Ω

θvtdx +

∫
Ω

µ(∇φ · Ut)dx

≤ 1

4
‖Ut‖2 + 3‖θ0‖2 + 3‖U · ∇U‖2 + 3‖µ∇φ‖2,

(5.2.25)
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where we have used Cauchy-Schwartz inequality. Similar arguments as in Chapter 4

yields

‖U · ∇U‖2 ≤ C
(
‖∇U‖2‖∇U‖2 + C

)
+

1

12
‖Ut‖2. (5.2.26)

Similarly, by Lemma 5.2.4 we estimate the last term on the RHS of (5.2.25) as

‖µ∇φ‖2 ≤ C + C‖∇µ‖2. (5.2.27)

So we update (5.2.25) as

ν
d

dt
‖∇U‖2 + ‖Ut‖2 ≤ C‖∇U‖2‖∇U‖2 + C‖∇µ‖2 + C. (5.2.28)

Applying Gronwall’s inequality to (5.2.28) and using (5.2.3) we see that

U ∈ C
(
[0, T ];H1(Ω)

)
and Ut ∈ L2

(
[0, T ];L2(Ω)

)
, (5.2.29)

which together with Lemma 4.2.2 and (5.2.27) implies that

U ∈ L2
(
[0, T ];H2(Ω)

)
. (5.2.30)

It is easy to see from (5.1.1))1 and Lemma 5.2.4 that

‖∇µ‖H1 ≤ C
(
‖∆µ‖+ ‖∇µ‖

)
≤ C

(
‖φt‖+ ‖U · ∇φ‖+ ‖∇µ‖

)
≤ C

(
‖φt‖+ 1 + ‖∇µ‖

)
.

(5.2.31)

Then we see from (5.2.12) and (5.2.22) that

µ ∈ L2
(
[0, T ];H2(Ω)

)
. (5.2.32)

116



Using Lemma 4.2.4, (H2) and (5.2.23) we see that

‖φ‖2
H4 ≤ C

(
‖∆φ‖2

H2 + ‖φ‖2
H3

)
≤ C

(
‖µ‖2

H2 + ‖φ‖2
H3 + ‖F ′(φ)‖2

H2

)
≤ C

(
‖µ‖2

H2 + ‖φ‖2
H3 + ‖φ‖2(p−1)

L2(p−1) + C + ‖φ‖2(p−2)

L4(p−2)‖∇φ‖2
L4 + ‖∇φ‖2+

‖φ‖2(p−2)

L4(p−2)‖D2φ‖2
L4 + ‖D2φ‖2 + ‖φ‖(p−3)

L2(p−3)‖∇φ‖4
L8 + ‖∇φ‖4

L4

)
≤ C

(
‖µ‖2

H2 + ‖φ‖2
H3 + ‖φ‖4

H2 + C
)

≤ C
(
‖µ‖2

H2 + ‖φ‖2
H3 + C

)
,

(5.2.33)

which together with (5.2.3) and (5.2.32) implies that

φ ∈ L2
(
[0, T ];H4(Ω)

)
.

This completes the proof of Lemma 5.2.5.

Now we improve the regularity of µ and φ.

Lemma 5.2.6. Under the assumptions of Theorem 5.1.1, it holds that

‖µ‖2
C([0,T ];H2(Ω)) + ‖φ‖2

C([0,T ];H4(Ω)) ≤ C. (5.2.34)

Proof. Taking L2 inner product of (5.1.1)1 with µt we have

1

2

d

dt
‖∇µ‖2 + α‖∇φt‖2 = −

∫
Ω

F ′′(φ)φ2
tdx−

∫
Ω

µt(U · ∇φ)dx

≤ F1‖φt‖2 + C‖U · ∇φ‖2 + ε‖µt‖2

≤ F1‖φt‖2 + C + εα2‖∆φt‖2 + ε‖F ′′(φ)φt‖2

≤ C‖φt‖2 + C + εα2‖∆φt‖2,

(5.2.35)

where we have used (H3) and ε is a number to be determined. Differentiating (5.1.1)1

with respect to t, multiplying the resulting equation by φt then integrating over Ω
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yields

1

2

d

dt
‖φt‖2 + α‖∆φt‖2 =

∫
Ω

F ′(φ)t∆φtdx−
∫

Ω

φt(Ut · ∇φ)dx

=

∫
Ω

F ′(φ)t∆φtdx +

∫
Ω

φ(Ut · ∇φt)dx

≤ α

4
‖∆φt‖2 + C‖F ′′(φ)φt‖2 + C(ε1)‖φUt‖2 + ε1‖∇φt‖2

≤ α

4
‖∆φt‖2 + C‖φt‖2 + C(ε1)‖Ut‖2 + ε1‖∇φt‖2,

(5.2.36)

where ε1 is a number to be determined. Choosing ε = 1
4α

and ε1 = α
2
, then combining

(5.2.35) and (5.2.36) we get

1

2

d

dt

(
‖∇µ‖2 + ‖φt‖2

)
+
α

2

(
‖∇φt‖2 + ‖∆φt‖2

)
≤ C‖φt‖2 + C‖Ut‖2 + C. (5.2.37)

Since φt, Ut ∈ L2
(
[0, T ];L2(Ω)

)
, integrating (5.2.37) over [0, T ] yields

∇µ, φt ∈ C
(
[0, T ];L2(Ω)

)
and ∇φt,∆φt ∈ L2

(
[0, T ];L2(Ω)

)
, (5.2.38)

which together with (5.2.31) and (5.2.33) implies that

µ ∈ C
(
[0, T ];H2(Ω)

)
and φ ∈ C

(
[0, T ];H4(Ω)

)
.

This completes the proof of Lemma 5.2.6.

As a consequence of Lemmas 5.2.4 and 5.2.6 and (5.2.38), we can show that

Lemma 5.2.7. Under the assumptions of Theorem, it holds that

‖µ‖2
L2([0,T ];H4(Ω)) + ‖φ‖2

L2([0,T ];H6(Ω)) ≤ C. (5.2.39)

The proof of Lemma 5.2.7 is straightforward, we omit the details. The next lemma

is essential for improving the regularity of θ.

Lemma 5.2.8. Under the assumptions of Theorem 5.1.1, it holds that

‖U‖2
C([0,T ];H2(Ω)) + ‖U‖2

L2([0,T ];W 2,p(Ω)) ≤ C, ∀ 1 ≤ p <∞. (5.2.40)
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Proof. Differentiating (5.1.1)3 with respect to t, then taking L2 inner product of the

resulting equation with Ut we have

1

2

d

dt
‖Ut‖2 + ν‖∇Ut‖2

=

∫
Ω

[
− (Ut · ∇U) · Ut + θtvt + µt(∇φ · Ut)dx + µ(∇φt · Ut)

]
dx

=

∫
Ω

[
− (Ut · ∇U) · Ut + θU · ∇vt + µt(∇φ · Ut) + µ(∇φt · Ut)

]
dx

≡I1 + I2 + I3 + I4

(5.2.41)

Using previous results we estimate Ii in (5.2.41) as follows:

I1 ≤ ‖∇U‖‖Ut‖2
L4 ≤ C‖Ut‖2 +

ν

4
‖∇Ut‖;

I2 ≤ ‖θU‖2 +
ν

4
‖∇Ut‖2 ≤ C +

ν

4
‖∇Ut‖2;

I3 ≤ ‖µt∇φ‖2 + ‖Ut‖2 ≤ C
(
‖∆φt‖2 + C‖φt‖2

)
+ ‖Ut‖2;

I4 ≤ ‖µ∇φt‖2 + ‖Ut‖2 ≤ C‖∇φt‖2 + ‖Ut‖2.

(5.2.42)

Combining (5.2.41)–(5.2.42) we obtain

1

2

d

dt
‖Ut‖2 +

ν

2
‖∇Ut‖2 ≤ C

(
‖Ut‖2 + ‖φt‖2 + ‖∇φt‖2 + ‖∆φt‖2

)
+ C. (5.2.43)

Integrating (5.2.43) over [0, T ] using (5.2.29) and (5.2.38) we see that

Ut ∈ C
(
[0, T ];L2(Ω)

)
∩ L2

(
[0, T ];H1(Ω)

)
, (5.2.44)

which together with (5.2.26) implies that

U ∈ C
(
[0, T ];H2(Ω)

)
. (5.2.45)

As consequences of previous estimates we have the following:

Ut ∈ L2
(
[0, T ];Lp(Ω)

)
, (U · ∇U) ∈ C

(
[0, T ];Lp(Ω)

)
, θ ∈ C

(
[0, T ];Lp(Ω)

)
;

µ∇φ ∈ C
(
[0, T ];Lp(Ω)

)
, ∀ 1 < p ≤ ∞,

which imply that

U ∈ C
(
[0, T ];H2(Ω)

)
∩ L2

(
[0, T ];W 2,p(Ω)

)
, ∀ 1 ≤ p <∞. (5.2.46)
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Recalling Lemma 4.2.1 we see from (5.2.26) that

U ∈ C
(
[0, T ];C0(Ω̄)

)
∩ L2

(
[0, T ];C1(Ω̄)

)
. (5.2.47)

This completes the proof of Lemma 5.2.8.

With the help of Lemma 5.2.8, similar to Lemma 4.3.6, we have

Lemma 5.2.9. Under the assumptions of Theorem 5.1.1, it holds that

‖∇θ‖L∞ ≤ C. (5.2.48)

Using similar arguments as in the proof of Lemmas 4.3.7–4.3.8 and with the help

of Lemmas 5.2.6–5.2.8 we can easily obtain the desired estimate of U :

Lemma 5.2.10. Under the assumptions of Theorem 5.1.1, it holds that

‖U‖2
C([0,T ];H3(Ω)) + ‖Ut‖2

L2([0,T ];H2(Ω)) ≤ C;

‖θ‖2
C([0,T ];H3(Ω)) + ‖U‖2

L2([0,T ];H4(Ω)) ≤ C.

(5.2.49)

This lemma and Lemmas 5.2.6–5.2.7 conclude the regularity stated in Theorem

5.1.1. Now we prove the uniqueness of the solution.

Theorem 5.2.2. Under the assumptions of Theorem 5.1.1, the solution is unique.

Proof. Suppose one has two solutions (φ1, θ1, U1, P1), (φ2, θ2, U2, P2), setting φ̃ =

φ1 − φ2, θ̃ = θ1 − θ2, Ũ = U1 − U2, P̃ = P1 − P2, then (φ̃, θ̃, Ũ , P̃ ) satisfy

φ̃t + U1 · ∇φ̃+ Ũ · ∇φ2 = ∆µ̃

µ̃ = µ1 − µ2 = −α∆φ̃+ F ′(φ1)− F ′(φ2)

Ũt + U1 · ∇Ũ + Ũ · ∇U2 +∇P̃ = ν∆Ũ + µ1∇φ̃− µ̃∇φ2 + θ̃(0, 1)T

θ̃t + U1 · ∇θ̃ + Ũ · ∇θ2 = 0

∇ · Ũ = 0;

∇Φ · n|∂Ω = ∇µ · n|∂Ω = 0, Ũ |∂Ω = 0,

φ̃(x, 0) = 0, Ũ(x, 0) = 0, θ̃(x, 0) = 0, x ∈ Ω.

(5.2.50)
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Using the incompressibility and boundary conditions for the solutions, after taking

L2 inner products and integrating by parts, we find

1

2

d

dt
‖φ̃‖2 + α‖∆φ̃‖2 ≤ ‖∇φ2‖L∞

(
‖Ũ‖2 + ‖φ̃‖2

)
+
α

4
‖∆φ̃‖2 + ‖F ′′(φ̄)‖2

L∞‖φ̃‖2,

and

1

2

d

dt

(
‖θ̃‖2 + ‖Ũ‖2

)
+ ν‖∇Ũ‖2

≤ α

4
‖∆φ̃‖2 + C‖F ′′(φ̄)‖2

L∞‖φ̃‖2 + C‖∇φ2‖2
L∞‖Ũ‖2 +

1

2
(‖θ̃‖2 + ‖Ũ‖2),

where ‖F ′′(φ̄)‖2
L∞ ≤ ‖F ′′(φ1)‖2

L∞+‖F ′′(φ2)‖2
L∞ . Using estimates of (φi, θi, Ui), i = 1, 2

we get

1

2

d

dt
‖φ̃‖2 + α‖∆φ̃‖2 ≤ C

(
‖Ũ‖2 + ‖φ̃‖2

)
+
α

4
‖∆φ̃‖2, (5.2.51)

and

1

2

d

dt

(
‖θ̃‖2 +‖Ũ‖2

)
+ν‖∇Ũ‖2 ≤ C

(
‖θ̃‖2 +‖Ũ‖2

)
+‖∇µ1‖L∞

(
‖φ̃‖2 +‖Ũ‖2

)
+
α

4
‖∆φ̃‖2.

(5.2.52)

It is clear, by (5.2.39), that µ ∈ L2
(
[0, T ];H3(Ω)

)
, which implies that

∇µ ∈ L2
(
[0, T ];L∞(Ω)

)
. (5.2.53)

Adding (5.2.51) and (5.2.52) we obtain

1

2

d

dt

(
‖φ̃‖2+‖θ̃‖2+‖Ũ‖2

)
+ν‖∇Ũ‖2+

α

2
‖∆φ̃‖2 ≤ C(t)

(
‖φ̃‖2+‖θ̃‖2+‖Ũ‖2

)
, (5.2.54)

where C(t) satisfies

∫ T

0

C(τ)dτ ≤ C(T ) for any 0 ≤ T <∞. In particular, we have

1

2

d

dt

(
‖φ̃‖2 + ‖θ̃‖2 + ‖Ũ‖2

)
≤ C(t)

(
‖φ̃‖2 + ‖θ̃‖2 + ‖Ũ‖2

)
,

which implies that

(
‖φ̃(t)‖2 + ‖θ̃(t)‖2 + ‖Ũ(t)‖2

)
≤ e2

∫ T
0 C(τ)dτ

(
‖φ̃(0)‖2 + ‖θ̃(0)‖2 + ‖Ũ(0)‖2

)
= 0,

for any 0 ≤ T < ∞ and 0 ≤ t ≤ T . So, the solution is unique. This completes the

proof of Theorem 5.2.2.
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5.3 Mixing Flow

In this section we will improve the regularity of the global weak solution established

in [5]. First, we recall the system of equations:
ρ(Ut + U · ∇U) +∇P = λ

(
∇ρ · ∇U + U · ∇(∇ρ)

)
+ µ∆U + ~fρ,

ρt + U · ∇ρ = λ∆ρ,

∇ · U = 0,

(5.3.1)

and the initial and boundary conditions:
(U, ρ)(x, 0) = (U0, ρ0)(x), m ≤ ρ0(x) ≤M ;

U |∂Ω = 0, ∇ρ · n|∂Ω = 0,

(5.3.2)

where m,M > 0 are constants.

The first lemma gives the lower-upper bounds of the density.

Lemma 5.3.1. Under the assumptions of Theorem 5.1.2, it holds that m ≤ ρ(x, t) ≤

M , for all x ∈ Ω and t ≥ 0.

Proof. For any p ≥ 1, Taking L2 inner product of (5.3.1)2 with |ρ|p−2ρ we have

1

p

d

dt
‖ρ‖pLp = λ

∫
Ω

∆ρ|ρ|p−2ρdx

= −λ(p− 1)

∫
Ω

|ρ|p−2|∇ρ|2dx ≤ 0,

which implies that

‖ρ‖pLp ≤ ‖ρ0‖pLp , ∀p ≥ 1. (5.3.3)

Letting p→∞ in (5.3.3) we have

‖ρ‖L∞ ≤ ‖ρ0‖L∞ ≤M. (5.3.4)

To find the lower bound of ‖ρ‖L∞ , we consider the following initial-boundary value
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problem 

Rt + U · ∇R = λ∆R− 2λ

R
|∇R|2,

∇ · U = 0;

R(x, 0) = R0(x =
1

ρ0

(x) ≤ 1

m
,

∇R · n|∂Ω = 0,

(5.3.5)

where R = 1
ρ
. For any p ≥ 1, Taking L2 inner product of (5.3.5)1 with |R|p−2R we

have Ω we get

1

p

d

dt
‖R‖pLp = −λ(p+ 1)

∫
Ω

|R|p−2|∇R|2dx ≤ 0,

which implies that

‖R‖pLp ≤ ‖R0‖pLp , ∀p ≥ 1. (5.3.6)

Letting p→∞ in (5.3.6) we have

‖R‖L∞ ≤ ‖R0‖L∞ ≤
1

m
. (5.3.7)

Therefore,

‖ρ‖L∞ ≥ m, (5.3.8)

this together with (5.3.4) concludes the proof of Lemma 5.3.1.

With the lower-upper bounds established in Lemma 5.3.1 we now deal with some

lower order estimate of U .

Lemma 5.3.2. Under the assumptions of Theorem 5.1.2, it holds that

‖U‖2
C([0,T ];L2(Ω)) + ‖U‖2

L2([0,T ];H1
0 (Ω)) ≤ C.

Proof. Taking L2 inner product of (1)1 with U we get∫
Ω

ρ

(
|U |2

2

)
t

dx +

∫
Ω

ρU · ∇
(
|U |2

2

)
dx + µ

∫
Ω

|∇U |2dx

=λ

∫
Ω

∇ρ · ∇
(
|U |2

2

)
dx + λ

∫
Ω

(
U · ∇(∇ρ)

)
· Udx +

∫
Ω

ρ~f · Udx.
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After integrating by parts we find

1

2

d

dt

∫
Ω

ρ|U |2dx− 1

2

∫
Ω

ρt|U |2dx +
1

2

∫
Ω

ρU · ∇|U |2dx +
λ

2

∫
Ω

∆ρ|U |2dx

=λ

∫
Ω

(
U · ∇(∇ρ)

)
· Udx +

∫
Ω

ρ~f · Udx− µ
∫

Ω

|∇U |2dx.

Using (5.3.1)2 and (5.3.1)3 we get from the above equation that

1

2

d

dt

∫
Ω

ρ|U |2dx +
1

2

∫
Ω

∇(ρU)|U |2dx +
1

2

∫
Ω

ρU · ∇|U |2dx + µ

∫
Ω

|∇U |2dx

=λ

∫
Ω

(
U · ∇(∇ρ)

)
· Udx +

∫
Ω

ρ~f · Udx,

which implies that

1

2

d

dt

∫
Ω

ρ|U |2dx + µ

∫
Ω

|∇U |2dx = λ

∫
Ω

[
U · ∇(∇ρ)

]
· Udx +

∫
Ω

ρ~f · Udx. (5.3.9)

For the first term on the RHS of (5.3.9), using (5.3.1)3, after simple calculations

we have

[
U · ∇(∇ρ)

]
· U = ∇ ·

[
U(U · ∇ρ)− (ρU · ∇U)

]
+ ρ(u2

x + 2uyvx + v2
y). (5.3.10)

Integrating (5.3.10) over Ω using the boundary condition we get∫
Ω

[
U · ∇(∇ρ)

]
· Udx =

∫
Ω

ρ(u2
x + 2uyvx + v2

y)dx.

Using this equality we update (5.3.9) as

1

2

d

dt
‖√ρU‖2 + µ‖∇U‖2 = λ

∫
Ω

ρ(u2
x + 2uyvx + v2

y)dx +

∫
Ω

ρ~f · Udx. (5.3.11)

Since

u2
x + 2uyvx + v2

y = ∇ · (U · ∇U)− U · ∇(∇ · U),

we have ∫
Ω

(u2
x + 2uyvx + v2

y)dx = 0.

Then we have from (5.3.11) that

1

2

d

dt
‖√ρU‖2 + µ‖∇U‖2 = λ

∫
Ω

(
ρ− M +m

2

)
(u2

x + 2uyvx + v2
y)dx +

∫
Ω

ρ~f · Udx.

(5.3.12)
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Using Lemma 5.3.1 we estimate the RHS of (5.3.12) as follows:∣∣∣∣λ∫
Ω

(
ρ− M +m

2

)
(u2

x + 2uyvx + v2
y)dx +

∫
Ω

ρ~f · Udx
∣∣∣∣

≤λM −m
2
‖∇U‖2 +

1

2
‖√ρU‖2 +

M

2
‖~f‖2.

So we update (5.3.12) as

d

dt
‖√ρU‖2 +

[
2µ− λ(M −m)

]
‖∇U‖2 ≤ ‖√ρU‖2 +M‖~f‖2. (5.3.13)

Applying Gronwall’s inequality to (5.3.13) and using conditions on ~f in Theorem

5.1.2 we conclude that

‖√ρU‖2 ≤ C, and ‖∇U‖2 ≤ C. (5.3.14)

Since ‖ρ‖L∞ ≥ m, we conclude the proof of the lemma immediately by (5.3.14).

As a consequence of Lemma 5.3.2 we have

Lemma 5.3.3. Under the assumptions of Theorem 5.1.2, it holds that

‖ρ‖2
C([0,T ];H1(Ω)) + ‖ρ‖2

L2([0,T ];H2(Ω)) ≤ C.

Proof. Taking L2 inner product of (5.3.1)2 with ∆ρ we have

1

2

d

dt
‖∇ρ‖2 + λ‖∆ρ‖2 =

∫
Ω

(U · ∇ρ)∆ρdx. (5.3.15)

Using Cauchy-Schwartz inequality and Lemmas 5.3.1–5.3.2 we estimate the RHS of

(5.3.15) as follows:∫
Ω

(U · ∇ρ)∆ρdx ≤ C‖U · ∇ρ‖2 +
λ

4
‖∆ρ‖2

≤ C‖U‖2
L4‖∇ρ‖2

L4 +
λ

4
‖∆ρ‖2

≤ C‖∇U‖‖∇ρ‖‖D2ρ‖+ C‖∇U‖‖∇ρ‖2 +
λ

4
‖∆ρ‖2.

(5.3.16)

From Lemma 4.2.4 we know that

‖D2ρ‖ ≤ C
(
‖∆ρ‖+ ‖∇ρ‖

)
.
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So we update the first term on the RHS of (5.3.16) as

C‖∇U‖‖∇ρ‖‖D2ρ‖ ≤ C‖∇U‖‖∇ρ‖
(
‖∆ρ‖+ ‖∇ρ‖

)
≤ C‖∇U‖2‖∇ρ‖2 +

λ

4
‖∆ρ‖2 + C‖∇U‖‖∇ρ‖2

≤ C
(
1 + ‖∇U‖2

)
‖∇ρ‖2 +

λ

4
‖∆ρ‖2,

(5.3.17)

where we have used Cauchy-Schwartz inequality. Combining (5.3.15)–(5.3.17) we

have

d

dt
‖∇ρ‖2 + λ‖∆ρ‖2 ≤ C

(
1 + ‖∇U‖2

)
‖∇ρ‖2.

Applying Gronwall’s inequality and using Lemma 5.3.2 we have

‖∇ρ‖2 ≤ C, and

∫ T

0

‖∆ρ‖2dτ ≤ C,

which concludes the proof of the lemma 5.3.3.

The following estimate of ‖ρt‖2
L2([0,T ];L2(Ω)) is a direct consequence of Lemma 5.3.3.

Lemma 5.3.4. Under the assumptions of Theorem 5.1.2, it holds that

‖ρt‖2
L2([0,T ];L2(Ω)) ≤ C.

Proof. We observe that similar derivations used in (5.3.16)–(5.3.17) imply that

‖U · ∇ρ‖2 ≤ C
(
1 + ‖∇U‖2

)
‖∇ρ‖2 + C‖∆ρ‖2. (5.3.18)

Using Lemmas 5.3.2–5.3.3, (5.3.1)2 and (5.3.18) we have

‖ρt‖2
L2([0,T ];L2(Ω)) ≤ λ2‖∆ρ‖2

L2([0,T ];L2(Ω)) + ‖U · ∇ρ‖2
L2([0,T ];L2(Ω))

≤ C‖∆ρ‖2
L2([0,T ];L2(Ω)) + C

∫ T

0

(
1 + ‖∇U‖2

)
dτ

≤ C.

This completes the proof of Lemma 5.3.4.

The next lemma is crucial for this section and is essential for building up the

regularity of U .
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Lemma 5.3.5. Under the assumptions of Theorem 5.1.2, it holds that

‖U‖2
H2 ≤ C̃

(
‖√ρUt‖2 + ‖∇U‖4 + ‖D2ρ‖2‖∇U‖2 + ‖∇ρt‖2 + ‖D2ρ‖2 + ‖~f‖2 + 1

)
.

Proof. We rewrite the velocity equation (5.3.1)1 as the nonhomogeneous Stokes

equations:

−µ∆U +∇P = ~F ,

where
~F = −ρUt − ρU · ∇U + λ∇ρ · ∇U + λU · ∇(∇ρ) + ~fρ

≡
5∑
i=1

Fi.

From Lemma 4.2.2 we know that

‖U‖2
H2 ≤ C‖~F‖2 ≤ C

5∑
i=1

‖Fi‖2. (5.3.19)

Now we estimate Fi as follows:

Using Lemma 5.3.1, it is easy to see that

‖F1‖2 = ‖ρUt‖2 ≤M‖√ρUt‖2. (5.3.20)

Similarly, we have

‖F2‖2 = ‖ρU · ∇U‖2

≤ C‖U‖‖∇U‖
(
‖∇U‖‖D2U‖+ ‖∇U‖2

)
≤ 1

6
‖U‖2

H2 + C
(
‖∇U‖4 + 1

)
,

(5.3.21)

where we have used Cauchy-Schwartz inequality.

Since ρ ∈ C([0, T ];H1(Ω)), using the same idea we have

‖F3‖2 = λ2‖∇ρ · ∇U‖2

≤ C
(
‖∇ρ‖‖D2ρ‖+ ‖∇ρ‖2

)(
‖∇U‖‖D2U‖+ ‖∇U‖2

)
= C

(
‖D2ρ‖+ 1

)
‖∇U‖‖D2U‖+ C

(
‖D2ρ‖+ 1

)
‖∇U‖2

≤ 1

6
‖U‖2

H2 + C
(
‖D2ρ‖2 + 1

)
‖∇U‖2.

(5.3.22)
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For the estimate of F4, we have

‖F4‖2 = λ2‖U · ∇(∇ρ)‖2

≤ C‖∇U‖
(
‖D2ρ‖‖D3ρ‖+ ‖D2ρ‖2

)
.

(5.3.23)

For the estimate of ‖D3ρ‖, from (5.3.1)2 we have

‖D3ρ‖ ≤ C
(
‖∆ρ‖H1 + ‖∇ρ‖

)
= C

(
‖∇ρt‖+ ‖∇(U · ∇ρ)‖+ ‖∆ρ‖+ ‖∇ρ‖

)
= C

(
‖∇ρt‖+ ‖∇U · (∇ρ)T‖+ ‖U · ∇(∇ρ)‖+ ‖∆ρ‖+ 1

)
.

(5.3.24)

Plugging (5.3.24) into (5.3.23) we have

λ2‖U · ∇(∇ρ)‖2 ≤ C‖∇U‖‖D2ρ‖
[
‖∇ρt‖+ ‖∇U · (∇ρ)T‖+ ‖∆ρ‖+ 1

]
+

C‖∇U‖‖D2ρ‖2 + C‖∇U‖‖D2ρ‖‖U · ∇(∇ρ)‖.
(5.3.25)

Since

C‖∇U‖‖D2ρ‖‖U · ∇(∇ρ)‖ ≤ C‖∇U‖2‖D2ρ‖2 +
λ2

2
‖U · ∇(∇ρ)‖2,

we have

λ2‖U · ∇(∇ρ)‖2 ≤ C‖∇U‖‖D2ρ‖
[
‖∇ρt‖+ ‖∇U · (∇ρ)T‖+ ‖∆ρ‖+ 1

]
+

C(‖∇U‖+ ‖∇U‖2)‖D2ρ‖2

≤ C(‖∇U‖2 + 1)‖D2ρ‖2 + C(‖∇ρt‖2 + ‖∇U‖2 + ‖∇U · (∇ρ)T‖2),

(5.3.26)

where we have used Cauchy-Schwartz inequality. Similar to (5.3.22) we have

‖∇U · (∇ρ)T‖2 ≤ C
(
‖D2ρ‖+ 1

)
‖∇U‖‖D2U‖+ C

(
‖D2ρ‖+ 1

)
‖∇U‖2,

which together with (5.3.26) yields

‖F4‖2 ≤ C‖∇ρt‖2 + C(‖∇U‖2 + 1)‖D2ρ‖2 + C(1 + ‖∇U‖4) +
1

6
‖D2U‖2, (5.3.27)

where we have used Lemma 5.3.3 and Cauchy-Schwartz inequality.
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Finally, using Lemma 5.3.1 we easily see that

‖F5‖2 = ‖~fρ‖2 ≤M2‖~f‖2. (5.3.28)

Collecting the above estimates of Fi(i = 1, ..., 5) we have

‖U‖2
H2 ≤C‖∇ρt‖2 + C(‖∇U‖2 + 1)‖D2ρ‖2 + C(1 + ‖∇U‖4)+

1

2
‖D2U‖2 +M‖√ρUt‖2 +M2‖~f‖2,

which implies that

‖U‖2
H2 ≤ C̃

(
‖√ρUt‖2 + ‖∇U‖4 + ‖D2ρ‖2‖∇U‖2 + ‖∇ρt‖2 + ‖D2ρ‖2 + ‖~f‖2 + 1

)
.

This completes the proof of Lemma 5.3.5.

With the help of Lemma 5.3.5 we are able to improve the regularity of U and ρt.

Lemma 5.3.6. Under the assumptions of Theorem 5.1.2, it holds that

‖U‖2
C([0,T ];H1(Ω)) + ‖Ut‖2

L2([0,T ];L2(Ω)) ≤ C;

‖ρt‖2
C([0,T ];L2(Ω)) + ‖ρt‖2

L2([0,T ];H1(Ω)) ≤ C.

Proof. Taking L2 inner product of (5.3.1)1 with Ut we have

µ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx =−
∫

Ω

ρ(U · ∇U)Utdx+

λ

∫
Ω

[
∇ρ · ∇U + U · ∇(∇ρ)

]
Utdx +

∫
Ω

ρ~f · Utdx.

(5.3.29)

We estimate the RHS of (5.3.29) as follows:

Since ‖ρ‖L∞ ≥ m, by Cauchy-Schwartz inequality we have

−
∫

Ω

ρ(U · ∇U)Utdx + λ

∫
Ω

[
∇ρ · ∇U + U · ∇(∇ρ)

]
Utdx +

∫
Ω

ρ~f · Utdx

≤1

8
‖√ρUt‖2 + C

∥∥∥[ρU · ∇U + λ∇ρ · ∇U + λU · ∇(∇ρ) + ~fρ
]∥∥∥2

.

(5.3.30)

From the proof of Lemma 5.3.5 we know that the RHS of (5.3.30) is bounded by∑5
i=2 ‖Fi‖2. Therefore, similar arguments as in (5.3.21), (5.3.22) and (5.3.27) imply
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that ∥∥∥[ρU · ∇U + λ∇ρ · ∇U + λU · ∇(∇ρ) + ~fρ
]∥∥∥2

≤Ĉ(η, ξ)
(
‖∇U‖4 + ‖D2ρ‖2‖∇U‖2 + ‖D2ρ‖2 + ‖~f‖2 + 1

)
+ η‖∇ρt‖2 + ξ‖U‖2

H2 ,

where η, ξ > 0 are constants to be determined. So we update (5.3.29) as

µ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx ≤Ĉ(η, ξ)
(
‖∇U‖4 + ‖D2ρ‖2‖∇U‖2 + ‖D2ρ‖2

+ ‖~f‖2 + 1
)

+
1

8
‖√ρUt‖2 + η‖∇ρt‖2 + ξ‖U‖2

H2 ,

Choosing η = λ/8 and ξ = min{1/(8C̃), λ/(8C̃)}, from Lemma 5.3.5 we have

µ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx ≤Ĉ
(
‖∇U‖4 + ‖D2ρ‖2‖∇U‖2 + ‖D2ρ‖2

+ ‖~f‖2 + 1
)

+
1

4
‖√ρUt‖2 +

λ

4
‖∇ρt‖2.

(5.3.31)

Next, we take the temporal derivative of (5.3.1)2 to get

ρtt + Ut · ∇ρ+ U · ∇ρt = λ∆ρt. (5.3.32)

Taking the L2 inner product of (5.3.32) with ρt we have

1

2

d

dt
‖ρt‖2 + λ‖∇ρt‖2 = −

∫
Ω

(Ut · ∇ρ)ρtdx. (5.3.33)

Using Lemma 5.3.1 and Cauchy-Schwartz inequality we have∣∣∣∣− ∫
Ω

(Ut · ∇ρ)ρtdx

∣∣∣∣ ≤ 1

4
‖√ρUt‖2 + C‖(∇ρ)ρt‖2

≤ 1

4
‖√ρUt‖2 + C‖∇ρ‖2

L4‖ρt‖2
L4 .

(5.3.34)

From (5.3.22) we know that

C‖∇ρ‖2
L4‖ρt‖2

L4 ≤ C(‖D2ρ‖+ 1)(‖ρt‖‖∇ρt‖+ ‖ρt‖2)

≤ λ

4
‖∇ρt‖2 + C(‖D2ρ‖2 + 1)‖ρt‖2,

(5.3.35)

where we have used Cauchy-Schwartz inequality. Combining (5.3.33)–(5.3.35) we

have

1

2

d

dt
‖ρt‖2 +

3

4
λ‖∇ρt‖2 ≤ 1

4
‖√ρUt‖2 + C(‖D2ρ‖2 + 1)‖ρt‖2. (5.3.36)
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Coupling (5.3.31) to (5.3.36) we have

d

dt
(µ‖∇U‖2 + ‖ρt‖2) + ‖√ρUt‖2 + λ‖∇ρt‖2

≤ Ĉ
(
‖∇U‖4 + ‖D2ρ‖2‖∇U‖2 + ‖D2ρ‖2 + ‖~f‖2 + 1

)
+ C(‖D2ρ‖2 + 1)‖ρt‖2

≤ C(‖D2ρ‖2 + 1)(µ‖∇U‖2 + ‖ρt‖2) + C‖∇U‖4 + C(‖D2ρ‖2 + ‖~f‖2 + 1)

≤ C(‖D2ρ‖2 + ‖∇U‖2 + 1)(µ‖∇U‖2 + ‖ρt‖2) + C(‖D2ρ‖2 + ‖~f‖2 + 1)

≡ A(t)(µ‖∇U‖2 + ‖ρt‖2) +B(t).

(5.3.37)

According to Lemmas 5.3.2–5.3.3 we know that A(t), B(t) are time integrable. There-

fore, applying Gronwall’s inequality to (5.3.37) we conclude that

µ‖∇U‖2 + ‖ρt‖2 ≤ C, ∀ t ∈ [0, T ], and

∫ T

0

(‖√ρUt‖2 + λ‖∇ρt‖2)dτ ≤ C,

which together with Lemma 5.3.1 implies the lemma.

Using previous lemmas we improve the regularity of the solution to higher orders.

Lemma 5.3.7. Under the assumptions of Theorem 5.1.2, it holds that

‖ρ‖2
C([0,T ];H2(Ω)) + ‖ρ‖2

L2([0,T ];H3(Ω)) ≤ C;

‖U‖2
L2([0,T ];H2(Ω)) ≤ C.

Proof. Using (5.3.1)2 we have

‖∇ρ‖2
H1 ≤ C(‖∆ρ‖2 + ‖∇ρ‖2)

= C(‖ρt‖2 + ‖U · ∇ρ‖2 + ‖∇ρ‖2)

≤ C(‖ρt‖2 + ‖U‖2
L4‖∇ρ‖2

L4 + ‖∇ρ‖2)

≤ C
(
‖ρt‖2 + ‖U‖2

H1(‖∇ρ‖‖D2ρ‖+ ‖∇ρ‖2) + ‖∇ρ‖2
)
.

From Lemmas 5.3.3 and 5.3.6 we know that each term, except ‖D2ρ‖, is bounded by

some constant. Therefore, we have

‖∇ρ‖2
H1 ≤ C(‖D2ρ‖+ 1),
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which implies that, by Cauchy-Schwartz inequality

‖∇ρ‖2
H1 ≤ C. (5.3.38)

As a consequence of (5.3.38) and Lemmas 5.3.5–5.3.6 we have

‖U‖2
H2 ≤ C̃

(
‖√ρUt‖2 + ‖∇U‖4 + ‖D2ρ‖2‖∇U‖2 + ‖∇ρt‖2 + ‖D2ρ‖2 + ‖~f‖2 + 1

)
≤ C(‖Ut‖2 + ‖∇ρt‖2 + ‖~f‖2 + 1),

which yields

‖U‖2
L2([0,T ];H2(Ω)) ≤ C(‖(Ut,∇ρt, ~f)‖2

L2([0,T ];L2(Ω)) + 1) ≤ C.

Similarly, we have

‖∇ρ‖2
H2 ≤ C(‖∆ρ‖2

H1 + ‖∇ρ‖2)

≤ C(‖∇ρt‖2 + ‖∇(U · ∇ρ)‖2 + ‖∇ρ‖2)

≤ C(‖∇ρt‖2 + ‖U‖2
H2 + ‖∇ρ‖H2 + 1)

≤ C(‖∇ρt‖2 + ‖U‖2
H2 + 1) +

1

2
‖∇ρ‖2

H2 ,

which means

‖∇ρ‖2
H2 ≤ C(‖∇ρt‖2 + ‖U‖2

H2 + 1). (5.3.39)

Thus, (5.3.39) implies that

‖∇ρ‖2
C([0,T ];H2(Ω)) ≤ C(‖∇ρt‖2

C([0,T ];L2(Ω)) + ‖U‖2
C([0,T ];H2(Ω)) + 1) ≤ C.

This completes the proof of Lemma 5.3.7.

Next we will work on temporal derivatives of the solution and improve the regu-

larity of the solution to C([0, T ];Hs(Ω)).

Lemma 5.3.8. Under the assumptions of Theorem 5.1.2, it holds that

‖ρ‖2
C([0,T ];H3(Ω)) ≤ C;

‖U‖2
C([0,T ];H2(Ω)) ≤ C.
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Proof. Taking the temporal derivative of (5.3.1)1 we have

ρt(Ut + U · ∇U) + ρ(Utt + Ut · ∇U + U · ∇Ut) +∇Pt

=µ∆Ut + λ
(
∇ρt · ∇U +∇ρ · ∇Ut + Ut · ∇(∇ρ) + U · ∇(∇ρt)

)
+ ~fρt + ~ftρ.

(5.3.40)

Taking L2 inner product of (5.3.40) with Ut we have, after integration by parts, that

1

2

d

dt
‖√ρUt‖2 + µ‖∇Ut‖2 +

1

2

∫
Ω

(ρt − U · ∇ρ)|Ut|2dx =
7∑
i=1

Ri + λ

∫
Ω

(∇ρ · ∇Ut) · Utdx,

where

R1 = −
∫

Ω

(ρtU · ∇U) · Utdx, R2 = −
∫

Ω

(ρUt · ∇U) · Utdx;

R3 = λ

∫
Ω

(∇ρt · ∇U) · Utdx, R4 = λ

∫
Ω

(Ut · ∇(∇ρ)) · Utdx,

R5 = −λ
∫

Ω

∇ρt · (U · ∇Ut)dx;

R6 = λ

∫
Ω

ρt ~f · Utdx, R7 = λ

∫
Ω

ρ~ft · Utdx.

Using the boundary condition and (5.3.1)3 we have

λ

∫
Ω

(∇ρ · ∇Ut) · Utdx = −λ
2

∫
Ω

∆ρ|Ut|2dx.

Moreover, since ρt = λ∆ρ− U · ∇ρ, we have

1

2

d

dt
‖√ρUt‖2 + µ‖∇Ut‖2 =

9∑
i=1

Ri, (5.3.41)

where

R8 =

∫
Ω

(U · ∇ρ)|Ut|2dx, R9 = −λ
∫

Ω

∆ρ|Ut|2dx.

By Lemma and previous results we have:

R1 ≤ ‖ρt‖L4‖U‖L4‖∇U‖L4‖Ut‖L4

≤ C
(
‖∇ρt‖1/2 + 1

)(
‖D2U‖1/2 + 1

)(
‖∇Ut‖+ ‖Ut‖

)
≤ C(‖∇ρt‖2 + ‖U‖2

H2 + ‖√ρUt‖2 + 1) + ε‖∇Ut‖2,

(5.3.42)
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where ε > 0 is a constant to be determined. Similarly, we have

R2 ≤ C‖√ρUt‖2 + ε‖∇Ut‖2,

R3 ≤ C(‖U‖2
H2 + 1)‖√ρUt‖2 + C‖∇ρt‖2 + ε‖∇Ut‖2,

R4 ≤ C‖ρ‖2
H2‖
√
ρUt‖2 + ε‖∇Ut‖2,

R5 ≤ C‖U‖2
H2‖∇ρt‖2 + ε‖∇Ut‖2,

R6 ≤ C‖√ρUt‖2(‖∇ρt‖2 + 1) + ‖~f‖2 + ε‖∇Ut‖2,

R7 ≤ C(‖√ρUt‖2 + ‖~ft‖2) + ε‖∇Ut‖2,

R8 ≤ C‖√ρUt‖2 + ε‖∇Ut‖2,

R9 ≤ C(‖ρ‖2
H2 + 1)‖√ρUt‖2 + ε‖∇Ut‖2.

(5.3.43)

Collecting the results in (5.3.41)–(5.3.43) we have

1

2

d

dt
‖√ρUt‖2 + µ‖∇Ut‖2 ≤ 9ε‖∇Ut‖2 +D(t)(‖√ρUt‖2 + ‖∇ρt‖2) + E(t), (5.3.44)

where

D(t) = C
(
‖U‖2

H2 + ‖ρ‖2
H2 + ‖Ut‖2 + 1

)
,

E(t) = C
(
‖U‖2

H2 + ‖~f‖2 + ‖~ft‖2 + 1
)
.

According to Lemmas 5.3.6–5.3.7 we know D(t), E(t) are time integrable.

Next, taking L2 inner product of (5.3.32) with ∆ρt we have

1

2

d

dt
‖∇ρt‖2 + λ‖∆ρt‖2 =

∫
Ω

(Ut · ∇ρ+ U · ∇ρt)∆ρtdx

≤ λ

2
‖∆ρt‖2 + C(‖Ut · ∇ρ‖2 + ‖U · ∇ρt‖2)

≤ λ

2
‖∆ρt‖2 + ε‖∇Ut‖2 + C(‖U‖2

H2‖∇ρt‖2 + ‖Ut‖2).

(5.3.45)

Combining (5.3.44) and (5.3.45) we have

1

2

d

dt
(‖√ρUt‖2 + ‖∇ρt‖2) + µ‖∇Ut‖2 +

λ

2
‖∆ρt‖2

≤ 10ε‖∇Ut‖2 +D(t)(‖√ρUt‖2 + ‖∇ρt‖2) + E(t).

(5.3.46)
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Choosing ε = µ/20 we update (5.3.46) as

d

dt
(‖√ρUt‖2 + ‖∇ρt‖2) + µ‖∇Ut‖2 + λ‖∆ρt‖2 ≤ D(t)(‖√ρUt‖2 + ‖∇ρt‖2) + E(t).

(5.3.47)

Applying Gronwall’s inequality to (5.3.47) we get that

Ut ∈ C([0, T ];L2(Ω)) ∩ L2([0, T ];H1(Ω)),

ρt ∈ C([0, T ];H1(Ω)) ∩ L2([0, T ];H2(Ω)).

(5.3.48)

Then it is easy to see from Lemmas 5.3.5–5.3.7 and (5.3.48) that

‖U‖2
H2 ≤ C,

which together with (5.3.39) yields

‖ρ‖2
H3 ≤ C.

This completes the proof of Lemma 5.3.8.

The next lemma gives the estimate of ‖Ut‖2
C([0,T ];H1(Ω)) and ‖Utt‖2

L2([0,T ];L2(Ω)) based

on which we can get the desired estimate indicated in Theorem 5.1.2.

Lemma 5.3.9. Under the assumptions of Theorem 5.1.2, it holds that

‖Ut‖2
C([0,T ];H1(Ω)) + ‖Utt‖2

L2([0,T ];L2(Ω)) ≤ C.

Proof. Taking L2 inner product of (5.3.40) with Utt we have

µ

2

d

dt
‖∇Ut‖2 + ‖√ρUtt‖2

=

∫
Ω

[
− ρt(Ut + U · ∇U)− ρ(Ut · ∇U + U · ∇Ut)

+λ
(
∇ρt · ∇U +∇ρ · ∇Ut + Ut · ∇(∇ρ) + U · ∇(∇ρt)

)
+ ~fρt + ~ftρ

]
· Uttdx.

(5.3.49)

Cauchy-Schwartz inequality then implies that

µ
d

dt
‖∇Ut‖2 + ‖√ρUtt‖2 ≤ C

10∑
j=1

Ij.
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Using previous estimates, we have

I1 = ‖ρtUt‖2 ≤ C‖ρt‖2
H1‖Ut‖2

H1 ≤ C‖∇Ut‖2;

I2 = ‖ρtU · ∇U‖2 ≤ C‖U‖2
L∞‖ρt‖2

H1‖U‖2
H2 ≤ C‖U‖2

H2‖ρt‖2
H1‖U‖2

H2 ≤ C;

I3 = ‖ρUt · ∇U‖2 ≤ C‖Ut‖2
H1‖U‖2

H2 ≤ C‖∇Ut‖2;

I4 = ‖ρU · ∇Ut‖2 ≤ C‖ρ‖2
L∞‖U‖2

L∞‖∇Ut‖2 ≤ C‖∇Ut‖2;

I5 = λ2‖∇ρt · ∇U‖2 ≤ C‖ρt‖2
H2‖U‖2

H2 ≤ C‖ρt‖2
H2 ;

I6 = λ2‖∇ρ · ∇Ut‖2 ≤ C‖∇ρ‖2
L∞‖∇Ut‖2 ≤ C‖ρ‖2

H3‖∇Ut‖2 ≤ C‖∇Ut‖2;

I7 = λ2‖Ut · ∇(∇ρ)‖2 ≤ C‖Ut‖2
H1‖ρ‖2

H3 ≤ C‖∇Ut‖2;

I8 = λ2‖U · ∇(∇ρt)‖2 ≤ C‖U‖2
L∞‖ρt‖2

H2 ≤ C‖ρt‖2
H2 ;

I9 = ‖~fρt‖2 ≤ C‖~f‖2
L4‖ρt‖2

H1 ≤ C‖~f‖2
L4 ;

I10 = ‖~ftρ‖2 ≤ ‖~ft‖2‖ρ‖2
L∞ ≤ C‖~ft‖2.

Collecting the above results we get

µ
d

dt
‖∇Ut‖2 + ‖√ρUtt‖2 ≤ C‖∇Ut‖2 + C(‖ρt‖2

H2 + ‖~f‖2
L4 + ‖~ft‖2). (5.3.50)

Integrating (5.3.50) over time from 0 to T and using (5.3.48) we have

‖∇Ut‖2 ≤ C, and

∫ T

0

‖Utt‖2dx ≤ C.

This completes the proof of Lemma 5.3.9.

With the help of Lemma 5.3.9 we can easily prove the desired regularity. The

proof is straightforward and we omit the details.

Lemma 5.3.10. Under the assumptions of Theorem, it holds that

U ∈ C([0, T ];H3(Ω)) ∩ L2([0, T ];H4(Ω));

Ut ∈ L2([0, T ];H2(Ω)); ρ ∈ L2([0, T ];H4(Ω)).

Finally, we show the uniqueness of the solution.

Theorem 5.3.1. Under the assumptions of Theorem 5.1.2, the solution is unique.
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Proof. Suppose there are two solutions (ρ1, U1, P1) and (ρ2, U2, P2). Let ρ̃ = ρ1 −

ρ2, Ũ = U1 − U2, P̃ = P1 − P2. then the difference functions satisfy the following

initial-boundary value problem:

ρ̃(U1t + U1 · ∇U1) + ρ2(Ũt + U1 · ∇Ũ + Ũ · ∇U2) +∇P̃ =

µ∆Ũ + λ
[
∇ρ̃ · ∇U1 +∇ρ2 · ∇Ũ + U1 · ∇(∇ρ̃) + Ũ · ∇(∇ρ2)

]
+ ~fρ̃,

ρ̃t + U1 · ∇ρ̃+ Ũ · ∇ρ2 = λ∆ρ̃,

∇ · Ũ = 0;

(ρ̃, Ũ)(x, 0) = 0;

Ũ |∂Ω = 0, ∇ρ̃ · n|∂Ω = 0.

(5.3.51)

Taking L2 inner product of (5.3.51)2 with ρ̃ we have

1

2

d

dt
‖ρ̃‖2 + λ‖∇ρ̃‖2 = −

∫
Ω

(Ũ · ∇ρ2)ρ̃dx.

Since ρ2 ∈ C([0, T ];H3(Ω)) for any T ≥ 0, from Sobolev embedding we know ∇ρ2 ∈

C([0, T ];L∞(Ω)). Therefore,

d

dt
‖ρ̃‖2 + 2λ‖∇ρ̃‖2 ≤ 2‖Ũ‖‖∇ρ2‖L∞‖ρ̃‖

≤ C(‖ρ̃‖2 + ‖Ũ‖2).

(5.3.52)

Now, taking L2 inner product of (5.3.51)1 with Ũ and using Cauchy-Schwartz in-

equality we have

1

2

d

dt
‖√ρ2Ũ‖2 + µ‖∇Ũ‖2 ≤(‖U1t‖L∞ + ‖U1 · ∇U1‖L∞ + λ‖∇U1‖L∞ + ‖~f‖L∞)‖ρ̃‖‖Ũ‖

+(‖ρ2U1‖L∞ + λ‖∇ρ2‖L∞)‖∇Ũ‖‖Ũ‖

+(‖ρ2t‖L∞ + ‖ρ2∇U2‖L∞ + λ‖D2ρ2‖L∞)‖Ũ‖2

+λ‖U1‖L∞‖∇ρ̃‖‖∇Ũ‖.

In view of (5.3.48) and Lemma 5.3.10, by Cauchy-Schwartz inequality we have

1

2

d

dt
‖√ρ2Ũ‖2 + µ‖∇Ũ‖2 ≤ G(t)(‖ρ̃‖2 + ‖Ũ‖2) +

µ

4
‖∇Ũ‖2 + λC̄‖∇ρ̃‖‖∇Ũ‖

≤ G(t)(‖ρ̃‖2 + ‖Ũ‖2) +
µ

2
‖∇Ũ‖2 +

λ2C̄2

µ
‖∇ρ̃‖2,

(5.3.53)
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where G(t) ≥ 0 satisfies

∫ T

0

G(τ)dτ ≤ C(T ) <∞ for any T ≥ 0. Multiplying (5.3.52)

by λC̄2

µ
and coupling the resulting inequality to (5.3.53) we have

d

dt

(
λC̄2

µ
‖ρ̃‖2 +

1

2
‖√ρ2Ũ‖2

)
+
λ2C̄2

µ
‖∇ρ̃‖2 +

µ

2
‖∇Ũ‖2 ≤ (G(t) + C)(‖ρ̃‖2 + ‖Ũ‖2),

which gives

d

dt

(
λC̄2

µ
‖ρ̃‖2 +

1

2
‖√ρ2Ũ‖2

)
≤ (G(t) + C)(‖ρ̃‖2 + ‖Ũ‖2).

Since ρ2 ≥ m, it is straightforward to show that

‖ρ̃‖2 + ‖Ũ‖2 ≤ α

(
λC̄2

µ
‖ρ̃‖2 +

1

2
‖√ρ2Ũ‖2

)
,

where α = (min{λC̄2

µ
, m

2
})−1. Therefore we have

d

dt

(
λC̄2

µ
‖ρ̃‖2 +

1

2
‖√ρ2Ũ‖2

)
≤ α(G(t) + C)

(
λC̄2

µ
‖ρ̃‖2 +

1

2
‖√ρ2Ũ‖2

)
.

Gronwall’s inequality then yields

λC̄2

µ
‖ρ̃(t)‖2 +

1

2
‖√ρ2Ũ(t)‖2 ≤ 0, ∀ t ≥ 0.

where we take into account of the temporal integrability of G(t) and the zero initial

condition. Thus, the solution is unique.
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CHAPTER VI

CONCLUSION

The results obtained in this thesis indicate that when the systems of nonlinear partial

differential equations under consideration are set on bounded domains, the dissipative

mechanisms usually produce global solution to the initial-boundary value problems,

and the boundary effects force some of the solutions decay exponentially to equilib-

rium states which are normally constant states.

By a closer look at the results obtained in Chapters 2–3 we observe that the damp-

ing effect usually presents weak dissipation which can not prevent the development

of singularity in the system for large data. But, it does prevent singularity for small

smooth data.

The results in Chapters 4–5 suggest that, at least for 2D problems, viscosity and

heat diffusion are strong enough to compensate the effects of large data, nonlinear

convection, coupling and/or gravitational force in order to prevent the development

of singularity.
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[102] J. Wei and M. Winter, On the stationary Cahn-Hilliard equation: interior spike
solutions, J. Differential Equations 148 (1998), no. 2, 231–267.

[103] J. Wei and M. Winter, On the stationary Cahn-Hilliard equation: bubble solu-
tions, SIAM J. Math. Anal. 29 (1998), no. 6, 1492–1518.

[104] B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional
hydrodynamic model for semiconductor devices, Comm. Math. Phys. 157 (1993),
1–22.

[105] H. J. Zhao, Convergence to strong nonlinear diffusion waves for solutions of
p-system with damping, J. Differential Equations 174 ( 2001), 200–236.

[106] K. Zhao, 2D Inviscid Heat Conductive Boussinesq Equations on a Bounded
Domain, Michigan Math. J. (2009), to appear.

146



[107] Y. S. Zheng, Global smooth solutions to the adiabatic gas dynamics system
with dissipation terms, Chinese Ann. Math. 17A (1996), 155–162.

[108] C. J. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy
solutions to p-system with damping, Science in China, Ser. A 46 (2003), 562–
575.

147



VITA

Kun Zhao was born in Tianjin, China on October 13, 1978. At age 18, he went to the

University of Science and Technology of China (USTC) in Hefei, China and graduated

with a Bachelor of Science in mathematics in June of 2001. In July of that year,

he began working in Theory of Elliptic Partial Differential Equations with Professor

Zuchi Chen in the Department of Mathematics at USTC and graduated with a Master

of Science in mathematics in June of 2004. In July of 2004, he went to Atlanta

and joined the Georgia Institute of Technology to work in Theory of Hyperbolic

Conservation Laws with Professor Ronghua Pan in the School of Mathematics.

On July 18, 2004, in Tianjin, Kun married Ying Pan, who later joined the Savan-

nah College of Art and Design to pursue a Master of Art in Interior Design.

148


