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In this paper, we study pricing situations where a firm provides a price quote in the presence of uncertainty in 

the competitive landscape and the preferences of the buyer. We review two possible customized-pricing bid-

response models used in practice which can be developed from the historical information available to the firm 

based on previous bidding opportunities. We show how these models may be used to exploit the differences 

in the market segments to generate optimal price quotes given the characteristics of the current bid 

opportunity. We also show how the models may be adjusted depending on the amount of historical bid 

information available to the user. Finally, we test the two methods on two industry datasets to compare their 

performance and estimate the percent improvement in expected profits that may be possible from their use.  
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1. Introduction 

While the majority of the previous literature in the price-optimization area focuses on the 

pricing of consumer goods or the optimal design of auctions, a large percentage of firms face 

pricing decisions in a business-to-business setting where a customer requests bids from a small 

set of competing firms and the firms vying for the customer’s business respond with a single price 

quote for the product or service.  When the total dollar amount of the customer does not justify a 

dedicated sales person on behalf of the firm responding to the bid, many firms use bid-response 

models to provide customized pricing recommendations on what price to offer for the business 

being bid upon.  Customized-pricing bid-response models (CPBRMs) provide a probability of 

winning for every possible price response, allowing a firm to balance a decreasing margin with an 

increasing win probability needed in a price optimization model. Examples of firms using 
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CPBRMs include United Parcel Service (UPS) when responding to bids for from their small to 

medium size customers (Kniple, 2006), banks replying to interest rate requests for personal and 

business loans (Phillips, 2005a), and BlueLinx, the largest building products distributor in the 

U.S, responding to requests for products from construction companies (Dudziak, 2006). The 

financial impact from using CPBRMs can be significant. UPS reported an increase in profits of 

over $100 million per year by optimizing their price offerings using CPBRMs (Boyd et al. 2005).      

In determining the winning bid probability, CPBRMs effectively determine the price 

segment the current bid falls in. Price segments are defined as sets of transactions, classified by 

customer, product, and transaction attributes, which exhibit similar relative pricing level and price 

sensitivity. Customer attributes may include customer location, size of the market the customer is 

in, type of business the customer is in, the way the customer uses the product, customer purchase 

frequency, customer size, and customer purchasing sophistication. Product attributes may include 

product type, lifecycle stage, and the degree of commoditization. Transaction attributes may 

include order size, other products on the order, channel, specific competitor, when the order is 

placed, and what the urgency is of the bidder. In addition, some models assume knowledge of the 

historical and current bid-price of competing firms participating in the bid. 

A common characteristic of situations where firms employ CPBRMs is when the bidder 

with the lowest price does not always win the bid.  Thus, markets are characterized by product 

differentiation where a given firm may command a positive price-premium over its competitors; 

dependent upon the particular customer offering the bid. Even assuming a firm collects enough 

historical data to perfectly derive its price premium for a given customer, there may still be some 

inherent amount of uncertainty in the bid winning probability due to the bid-requesting firm 

randomly allocating its business to different competitors to ensure a competitive market for future 

bids.  Therefore, a firm will never be able to remove all uncertainty from the bid-price response  

process and must work with probabilistic models. 
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Another common characteristic of situations where firms have used CPBRMs is when the 

size of the bid opportunities is not large enough to justify a dedicated sales person for each bid 

opportunity.  Thus, the most common alternatives to using CPBRMs is either to charge a fixed 

price to all customers or to have a sales agent respond to each separate bid opportunity with a 

customized price.  Charging a fixed price leads to missed opportunities to price discriminate 

between different customer segments, a practice that has been well publicized for significantly 

increasing a firm’s profit in many different industries.  The other alternative, relying on a sales 

agent to respond to multiple bid opportunities, is also problematic.  Theoretically, the sales agent 

should have knowledge of the market, based on a history of former bid-responses with the 

customer requesting the bid, allowing the sales agent to respond with a customized price that 

optimizes this inherent trade-off between decreasing margins, due to lowering the price, and 

increasing probabilities of winning the bid.  In reality, sales agents often do not make good trade-

offs in these situations, either because of lack of historical knowledge, the inability to process this 

historical knowledge into probability distributions, or mis-aligned incentives (Garrow et al., 

2006).  The judicious use of CPBRMs allows firms to capture historical bid information, process 

it, and present non-biased price recommendations to bidding opportunities.  If there is additional 

information available regarding the bidding opportunity that can not be captured in the CPBRMs, 

the CPBRM’s recommended price may serve as one of possibly many inputs to the person 

responsible for making the bid-response decision.  

To summarize, CPBRMs apply to situations where a firm selling a non-commodity 

product must respond to frequent request for small to medium sized bids from a number of 

different customers where the bid-winning criteria is not always the lowest price. To use a 

CPBRM, a firm must have access to their historical bid history that includes, as a minimum, the 

price the firm bid at each opportunity and the corresponding bid result (win or loss). Other useful 

historical information used in developing CPBRMs is, for each historical bid opportunity, the 

customer, the length of the relationship with the customer, the size of the order, delivery date 
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requirements, competitors’ bids, and any other pertinent information useful for market 

segmentation. When CPBRMs are used as an input to a price optimization model, there is also the 

implicit assumption the actions of the competitors can be determined probabilistically and 

independently of the decision maker’s action. If all competitors have similar analytic capabilities 

and jointly optimize against each other, competitive response modeling techniques such as game 

theory must be used.       

In this paper, we evaluate two CPBRMs, namely the Logit and Power functions, which 

model the response of the buyer subject to the segmentation criteria described above. Based on 

numerical comparisons using two industry datasets, we provide observations on where each 

function is preferred. We find the Logit function is preferred when there is less historical bid data 

available or little data about each bid is available for determining customer segmentations. When 

detailed information is available about each former bidding opportunity such as the competitors’ 

prices and the size of the order, the Power function outperforms the Logit on our test datasets. We 

demonstrate how to modify the functions to incorporate various degrees of segmentation data 

available to the firm. We then test both functions using the data available from the two industry 

datasets to analyze the relation between the nature of information available to the firm and the 

improvements generated by our approach. As expected, we find the percent improvement in 

expected profits increases in the amount of historical bid data available and in the amount of 

information recorded from each bid opportunity. Yet, even under the worst case conditions of 

little historical data, we continue to see significant improvements in expected profits over the un-

optimized strategies the companies were following before using CPBRMs.  

The rest of the paper is organized as follows.  In §2 we review the academic literature and 

industry practices related to the modeling of bid-price responses. In §3 we present two CPBRMs 

that are used in practice and show how they can be modified to use under three different levels of 

availability of historical and competitive information. In §4 we present the results from applying 

the two CPBRMs to two industry datasets where we measure the percent improvement in 
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expected profits under different information levels.  In §5 we summarize our observations from 

the numerical comparison and conclude with some limitations and managerial implications of 

using CPBRM’s.  

2. Literature Review 

In this section, we discuss the academic literature on bid-price response models and how 

CPBRMs are unique. We also discuss the motivation from industry practices related to such 

competitive pricing settings. 

 Several papers develop bid-price response models where price is the only attribute of the 

model. Friedman (1956) and Gates (1967) both develop models which use the historical bid 

information available. Morin and Clough (1969) build on their work by identifying key 

competitors and capturing temporal sensitivity to changes in strategy by giving recent data more 

importance. However, these models consider price as the sole criterion for winning a bid and only 

consider the objective of maximizing profits. Chapter 4 in Lilien et al. (1992) provides an 

overview of competition oriented pricing where the firm makes a trade-off between margin and 

probability of winning the bid.  This is the same trade-off the firm makes in our models, the 

difference, however, occurs in the estimation of the winning probabilities. In their model, the 

lowest bid always wins so the probabilities are based on the number of competitors and each 

competitor’s estimated bid-to-cost ratio.  King and Mercer (1991) discuss estimation methods for 

determining the distributions for these ratios.  The models we review are more general; they 

include non-price factors such as order size and continue to hold when factors other than just 

price are included in the buyer’s decision.  In addition, price optimization using CPBRMs can 

accommodate several strategic firm objectives such as increasing or maintaining market share.   

Papaioannou and Cassaigne (2000) provide a detailed review of bid-price response 

models and develop a “ServPrice” model which, like CPBRMs, accommodates several firm 

objectives and accounts for both price and non-price attributes. However, their model relies only 
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on sales or pricing agents to make tradeoffs and analyze historical information. On the other 

hand, CPBRMs help the firm obtain a non-biased input to the bid-response decision by 

processing the relevant historical information statistically.  Lawrence (2003) develops a 

prescriptive model for quotes with high potential revenues, which predicts the outcome of a bid as 

a function of its attributes. His model requires more extensive bid history than a typical CPBRM 

and uses a machine-learning approach. It also only uses the outcomes of known transactions and 

doesn’t exploit any additional information that is available to the firm.  CPBRM’s can exploit 

much more extensive information, if available, pertinent to a particular market segment. We also 

study the difference in improvements when CPBRMs are used with different levels of 

information knowledge.   

 This paper is most closely related to the work presented in Chapter 11 of Phillips (2005b) 

and the U.S. patent of Boyd et al. (2005), who discuss the use of CPBRMs in industry and 

develop models using a Logit function as a bid-response function. These models capture the 

inherent preference uncertainty and non-price factors which play a critical role in winning a bid.  

The contributions of our work over the methods suggested by Phillips and Boyd et al. are as 

follows:  We extend the Logit bid-response function to include the competitor’s price which helps 

to capture the competitive dynamics. We also present another CPBRM, the Power function 

(sometimes found in practice) which includes a parameter of the ratio of the bidder’s price to the 

expected bid price of the bidder’s competitor(s). We numerically test both models on two 

industry data sets representing best and worst case scenarios of where CPBRMs may be applied.  

Based on the performance of each model on the data-sets, we give observations on when each 

model may be preferred. To our knowledge, this is the first academic paper to present CPBRMs 

and test them on actual industry data. 
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3.  Customized-Price Bid-Response Models  

In this section we describe what CPBRMs are, present two CPBRMs used in practice, 

and discuss how they may be used in a price optimization model. CPBRMs calculate the 

probability of winning a bid opportunity for each possible price response given the market 

characteristics and competitive dynamics for a particular customer segment. The parameter values 

for these models are statistically estimated from historical bid information and include, at a 

minimum, the bidding firm’s historical bids and the outcome from each bidding opportunity (win 

or loss). Intuitively, if the price quoted by a firm is very low compared to its competitor’s price, 

the probability of winning the bid should be close to 100%.  If it is very high by comparison, the 

probability of winning should be close to zero. This probability of “winning the bid” should 

monotonically decrease with an increase in price (or price ratio). Also, the slope of the response 

curve should be steeper for prices close to the competitor’s price as compared to prices far higher 

or lower than the competitor’s price. Hence, the bid response curve is generally S-shaped in 

nature. In a single competitor setting with no price premium enjoyed by either firm, pricing equal 

to the competitor’s price should result in a 50% chance of winning the bid opportunity. In 

practice, however, one of the firms usually enjoys some price-premium over the other. 

Determining what this price-premium is for each customer segment is one of the uses of 

CPBRMs.  
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Bid-Response Curve
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Figure 1 

Figure 1 shows a CPBRM curve applied to one of our test case datasets. The price ratio 

on the x-axis is the ratio of the firm’s price relative to its competitor’s price. For the particular 

firm corresponding to this bid-response curve, a price equal to its competitors price (price ratio = 

1) results in a probability of winning the bid of 40.91% (a price ratio = .98 equates to a 50% win 

probability for this firm).  Thus, this firm has a negative price-premium and must price below its 

competitor’s price for an equal opportunity of winning the business of the firm offering the bid. 

Before presenting the two CPBRM functions reviewed in this paper, we first introduce some 

notation.   

Table 1: Notation  
 ip  Unit price quoted by the firm for bid opportunity i (our decision variable) 

( )ipρ  Bid-Response Function, i.e. probability of winning bid opportunity i given a price of ip  

i Index for bid opportunities, i = 1, 2…  

ja , jα  Parameters related to non-price factors for a segment j 

jb , jγ  Parameters related to price factors for a segment j 

j Index for segments, j = 1, 2…  

cc  Parameter for the price quote of the competitor 

,c ip  Unit price quoted by the competitor(s) for bid opportunity i 
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qc  Parameter for the order size  

iQ   Order size for bid opportunity i 

r( ip ) Price ratio ,i c ip p=   

jx  Indicator variable for segment j (binary) 

( )ipε  Elasticity of the bid- response function 

pc  Marginal costs for the firm 

iW  Win/Loss indicator variable for a bid opportunity i ( binary)  

 

3.1 Two Common CPBRMs 

In this section we describe the two CPBRMs (both commonly used in practice) compared 

in this paper and discuss how they can be adjusted to include segmentation and competitive 

pricing information.  The inclusion of segmentation and competitive price parameters has been 

conjectured to significantly enhance the predictive power of a CPBRM.  Bid-responses may differ 

based on customers, channels, or product attributes such as warranty or payment terms.  We 

capture these possible aspects in our models through a single counting variable j, where j = 1, 

2,… represents the number of distinct, discrete customer segments.  Other factors such as the size 

of the order or the competitive price can often be modeled (depending on the CPBRM) on a 

continuous scale and may sometimes be treated separately.    

Logit Bid-Response Function  

Philips (2005b) & Boyd et al. (2005) both present the Logit function as their 

representation of a CPBRM.  As discussed in Philips (2005b, pg. 289), for a dataset with j distinct 

segments, the general form for the Logit function is: 

1( )
1

j j i
j j

i a b p
p

e
ρ

+
= ∑ ∑

+
. 



Agrawal & Ferguson: Optimal Customized Pricing in Competitive Settings  

One of the main advantages of the Logit function is the ease of adding additional segmentation 

factors such as the size of the order, iQ  and the competitor’s price quote, ,c ip . If the segmenting 

variables can be used as continuous variables, the model may be adjusted to include these 

segmentations by adding the parameters qc to measure the effect of order quantity 

segmentation and cc  to measure the effect of the competitor’s price segmentation.  These 

parameters are multiplied by iQ  and ,c ip  respectively:   

,
,

1( | , )
1

j j i q i c c i
j j

i i c i a b p c Q c p
p Q p

e
ρ

+ + +
= ∑ ∑

+
. 

Note that a relative price ratio may also be used in the Logit function by replacing ,c c ic p  with 

,( / )ic c ipc p  in the equation above.  In our performance test, we found little difference 

between these two representations so we present the simpler form with just the 

competitor’s price for the remainder of this paper. Using the simplest form of the Logit 

function:
1( )

1 a bpp
e

ρ +=
+

, the slope ( )pρ′  and elasticity ( )pε  of the Logit function is (Philips 

2005b pg. 284): 

( ) ( )(1 ( ))p b p pρ ρ ρ′ = − −  and ( ) (1 ( ))p bp pε ρ= − . 

 Power Bid-Response Function  

An alternate CPBRM sometimes used in practice is the Power function, defined in its 

general form as: ( )
( ) j

j
i

j i

p
r p γ

α
ρ

α
=

+
. The main advantage of the Power function is that, 

compared to the Logit function, competitive price dynamics are explicitly captured. The main 

disadvantage is that it is more cumbersome to adjust the model for non-price, continuous variable 

attributes.  Segmentation parameters can be added to the Power function but only through a 

discrete characterization.  Thus, a variable such as order size must be broken into discrete 
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intervals and captured through the parameter jγ , where the subscript j now represents the discrete 

intervals of the order size.  Using the simplest form of the power model with no segmentation, 

( )
( )

p
r p γ

αρ
α

=
+

, the slope and elasticity of the Power function is 

( ) ( )(1 ( ))p p p
p
γρ ρ ρ′ = − −  and ( ) (1 ( ))p pε γ ρ= − . 

 For a CPBRM to be a strictly decreasing function in p, the price dependent parameters 

must be strictly greater than zero. More specifically, for the Power function: γ >0. The 

parameter γ  is a measure of the price sensitivity of the buyer with higher values implying greater 

price sensitivity.  The effect of the parameter γ  on the probability of winning is shown in Figure 

2.  
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Figure 2 

The parameter α  is a measure of the price premium the firm enjoys, with a higher value 

implying a higher premium on the market.  Thus, an increasing value ofα  allows the firm to 

charge a higher price for the same probability of winning. The effect of the parameter α  on the 

probability of winning is shown in Figure 3.   
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Figure 3 

3.2 Estimation of Parameter Values  

The parameter values of a CPBRM can be estimated statistically by fitting a curve to the 

available bid-history data based on minimizing the squared errors or using maximum-likelihood 

estimates.  We briefly describe each method below, using the Power function as the CPBRM of 

reference.  (Philips 2005b, pg. 285) describes how each method is applied to the Logit function. 

Estimation by Minimizing the Squared Errors 

The first method for estimating parameter values is by minimizing the squares of the 

error terms from the curve of the CPBRM to the actual wins and losses of each historical bid 

opportunity.  The procedure is as follows.  Start by assigning the indicator variables iW  =1 if the 

bid was won and iW  = 0 if the bid was lost for each historical bid opportunity. Remember that a 

CPBRM provides a probability of winning a bid for a given price.  Thus, to determine the best 

estimates of the parameter values for a CPBRM, we want the bid-response to be as close to iW  as 

possible. This can be achieved by solving the unconstrained optimization problem 

2

,
[ ( | , ) ]i i

i
Minimize p W

α γ
ρ α γ −∑ . 
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Maximum-Likelihood Estimation  

The second method for estimating the parameter values is to choose parameter values that 

mimic, as close as possible, the same pattern of wins and losses as the actual outcomes.  

Assuming all bids are independent, the probability of realizing the actual outcome for a particular 

bid i is ( , ) ( | , ) [1 ( | , )](1 )i i i i iL p W p Wα γ ρ α γ ρ α γ= + − − . Therefore, the parameters can be 

chosen in such a way that they maximize the probability of realizing the actual outcomes over all 

observations. This can be achieved by solving 

,
[ ( | , ) [1 ( | , )](1 )]i i i i

i

Maximize p W p W
α γ

ρ α γ ρ α γ+ − −∏ . 

A drawback of the method above, however, is when the amount of historical bid data is small, the 

likelihood of even a good predictor is also very small.  Working with the product of very small 

numbers often creates computational problems.  To avoid this problem, we instead maximize the 

natural logarithms of the likelihood.  Since the logarithm is also an increasing function of the 

probability, the parameter values that maximize the original problem will also maximize the 

natural logarithm expressed by  

,
ln[ ( | , ) [1 ( | , )](1 )]i i i i

i
Maximize p W p W

α γ
ρ α γ ρ α γ+ − −∑ . 

 The number of bid attributes (segments) that can be accurately estimated depends on the 

amount of historical bid-information available.  If extensive information is available, greater 

degrees of segmentation can be achieved without compromising the accuracy and robustness of 

the statistical estimation of the parameter values.  After estimating the parameter values of a 

CPBRM using historical bid data, the CPBRM can now be used to determine the optimal bid-

response price for an upcoming bid opportunity.  This process is described in the next section. 

3.3 Use of a CPBRM in Price Optimization  

We now look at how CPBRM curves can be used in price optimization. For the following 

discussion, we use the objective of maximizing expected profits. However, other strategic or 
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operational objectives can be easily accommodated such as increasing market shares or including 

constraints on capacity, inventory, price or margin.  The price optimization problem for bid 

opportunity i is  

( ) ) ( )
i

i i i p ip
Max imize p p p c Qπ ρ= ( × − × . 

Note, the margin ( )i pp c−  is strictly increasing in price (Figure 4) but the probability of winning 

the bid is strictly decreasing in price (Figure 5). Therefore, the expected profit is a unimodal 

function as shown in Figure 6.  
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Figure 6 
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Determining the optimal price involves finding a global maxima for the expected profit which is 

unimodal in nature. The profit-maximizing price occurs where the elasticity of the expected profit 

function is equal to the inverse of the marginal contribution ratio,  

*

*( )
p

pp
p c

ε =
−

. 

The derivation is available from the authors by request.  

 We have described two CPBRMs and explained how they can be used to find an optimal 

price response for a specific bid opportunity.  In the next section we demonstrate how to apply the 

CPBRMs to historical bid data and test them on two industry datasets corresponding to two 

extremes of information available to the user.  

4. Numerical Comparisons of CPBRMs on Industry Data  

In this section, we compare the performance of the two CPBRMs described in the 

previous section using two bid-history industry datasets. The first dataset contains a single-

competitor setting where extensive bid history is available including the competitor’s price at 

each bid opportunity. This dataset represents a very favorable setting for applying CPBRMs. The 

second dataset contains a multi-competitor setting where very limited bid history is available, 

representing a more challenging environment to implement CPBRMs. Such disparate datasets 

allow us to contrast the improvements achieved from using CPBRMs at the extremes of their 

suitability and compare the effectiveness of the two competing models under different 

environments.  

4.1 Test Case Scenarios 

We test the two CPBRMs under a wide set of scenarios pertaining to: 1) the amount of 

historical bid data available, 2) the amount of knowledge of the competitors’ price response to the 

current bid request, and 3) the amount of segmentation included in the models based on the size 

of the order in each bid opportunity.  We capture sensitivity to the amount of historical bid data 
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by testing the models on two industry datasets, one with a large amount of historical bid data 

(Dataset 1) and the other with a small amount (Dataset 2).  We describe the two datasets below.  

Bid History Datasets 

Dataset 1: Single Competitor and Extensive Historical Data  

The firm providing our first dataset manufactures and sells medical testing equipment to 

laboratories at hospitals, clinics, and universities across North America. One of their popular 

products is a gas chromatograph refill cartridge that has a list price of $11.85. The marginal cost 

associated with each unit is $6.00. The refill cartridges are ordered in batches ranging in size from 

100 to over 1000. Orders for fewer than 200 units are handled through the company’s website or 

through resellers with no associated discount from the list price. At the other extreme, the 

company receives about 100 orders per year for more than 1000 units. These large deals are 

negotiated by a national account manager, usually as part of a much larger sale. Orders for 200-

1000 units are handled by regional sales staff that has considerable leeway with regard to 

discounting.  We only look at this middle-size segment to apply the CPBRMs. The requested size 

of the order for each bid opportunity is also recorded, allowing us to test both segmented and 

unsegmented versions of the CPBRMs. Because of the specialized nature of the product, the firm 

has only one significant competitor and they are able to capture their competitor’s price after each 

bid opportunity. Their bid history information is exhaustive, with approximately 2400 records of 

previous bid opportunities.  A snapshot of this dataset is shown in Table 2.  

Table 2: Bid History for a Medical Device Company 

Bid Number Win Firm’s Bid Competitor’s Bid Order Size 

1 Y $8.44 $10.92 353 

2 N $11.88 $9.99 773 

3 N $11.29 $10.59 974 

4 Y $9.78 $11.52 857 

5 Y $9.28 $11.47 283 
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For this application, the probability of winning the bid at a price equal to the competitor’s 

price (i.e. price ratio is one) is 51% (Figure 7). This percentage implies the firm doesn’t enjoy any 

significant positive or negative price premium compared to its competitor.  
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Figure 7:  Bid-response Curve for Dataset 1 

Dataset 2: Several Competitors and Limited Historical Data  

Our second application is historical bid data from a federal agency (Foreign Food 

Assistance Program) accepting bids from food mills to provide bulk food commodity items such 

as wheat, soybeans, and vegetable oil. Unlike the dataset from the medical device company, the 

amount of historical bid data available to us was very limited (approximately 50 historical bid 

opportunities). For our test, we choose one of the food mills that participated in the majority of 

the bid opportunities.  

Unlike in the first dataset, in this dataset there were multiple bids from competing food 

mills for each bid opportunity. Thus, we used an average of the competitors’ bids to represent the 

competitive bid parameter in our CPBRMs. We chose an average of the competitors’ bids rather 

than a minimum or the winning bid because this bidding situation is truly a case where the lowest 

bid does not always win. Delivering food supplies to foreign nations involves both purchasing the 
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food from the mills and transporting the food to the nation in need. While the food mills can 

control the price they respond to the bid request, they have no control over the bids the 

transportation companies also respond with for delivering the food from the mill to the foreign 

country. Thus, there is an inherent degree of randomness in these bid opportunities.  We assumed 

a marginal per-unit cost (cost of providing 1000 pounds) of $200.00 for our test mill. A snapshot 

of the data (after substituting in the average competitors’ bid) is provided in Table 3.  

Table 3: Bid History for Bulk Food Providers 

Bid Number Win Firm’s  Bid Average of Competitors’ Bids 
Order Size 
(000) lbs 

1 N $246.85 $238.34 110 

2 N $258.26 $258.49 720 

3 Y $228.55 $234.27 1060 

4 N $321.59 $313.93 1300 

5 Y $217.09 $222.20 2130 

In both datasets, the competitors’ prices were recorded for each bid opportunity.  Thus, 

the data available is how the competitors priced on past bid opportunities. The Power function 

(and the Logit function with a competitors’ price segmentation parameter) requires an input of the 

competitors’ price for the current bid opportunity. In some cases, firms may have very limited 

knowledge of how their competitors will price in an upcoming bid opportunity while, in other 

cases, firms may have substantial knowledge. We describe how we capture these differing 

knowledge levels below. 

Knowledge Level of Competitors’ Pricing  

We tested the two CPBRMs under three different levels of knowledge a firm may posses 

regarding its competitors’ pricing, i.e. worst, medium, and best cases. Historical competitive bid-

price information is often available in many B2B applications through either formal or informal 

channels, depending on the relationship the bidder shares with the buyer. UPS, for example, 
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obtains competitors’ bids in approximately 40% of the parcel shipping bid opportunities they 

participate in (Kniple, 2006). In some business-to-business scenarios, a firm may even be 

provided with the competitors’ bids and asked to respond with a quote of their own (note that for 

reasons explained earlier, providing the lowest bid does not always guarantee a win in these 

situations). In many business-to-consumer markets such as loan and insurance quotes, 

information about the competitor’s price may be available from a simple web-page search.  

Worst Case: No Price Information Case: In this case, the firm has no historical price 

information on its competitors, nor does it have any information about how its competitors will 

price for the current bid opportunity. This scenario is rare in practice but, for our analysis, serves 

as a lower bound on the knowledge of competitors’ pricing.  With no competitor price 

information, the Logit function is the only CPBRM available, as the Power function requires an 

estimate of the competitor’s price in the current period (via the price ratio).  

Medium Case:  Naïve Price Estimation Case:  In this medium case of competitive 

pricing knowledge, the firm has no information about how its competitors will price in the current 

period except for the price history of its competitors on past bidding opportunities. Thus, the firm 

can estimate its competitors’ prices for the current period through some type of forecasting or 

regression model. In our analysis we use a simple 10-period moving average to predict the 

competitors’ prices in the current period. While a moving average of the historical prices is most 

likely not the best forecasting method for this application, it was chosen because it represents a 

technique that is common in practice. We experimented with moving averages of different 

numbers of periods but found the 10-period moving average resulted in the most accurate and 

least biased estimates for the future competitor’s bid. Now that we have an estimate for the 

competitor’s price, we can test both the Logit and Power functions as we now have an estimate 

for the price ratio required to use the Power function.  

Best Case: Perfect Competitive Price Knowledge:  In this best case of competitive 

pricing knowledge, the firm knows exactly what its competitors’ bids will be in the current 
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period. This can be considered an upper bound on the firm’s forecasting capabilities. It also 

applies to cases where the buyer provides competitors’ bids before requesting a bid from the firm 

or in applications where a firm can check its competitors’ prices (possibly via their web pages) 

before responding with its own price quote. 

The chart below summarizes which knowledge levels were tested for each CPBRM.  

 Logit Power 
Worst Case D U 

Medium Case D D 
Best Case D D 

 

The next section describes the procedure we used to test the two CPBRMs on the datasets and 

scenarios described above. 

4.2 Procedure for Testing CPBRMs 

The approach we used for both datasets is as follows:  

1. We divided the datasets into two distinct sets; the first for estimation of the model 

parameter values and the second for performance evaluation (similar to a holdout sample 

commonly used in forecast method evaluations). We used the first 90% of the historical 

bid records as our estimation data and the remaining 10% as our performance test data.  

While the choice of 10% for the performance test may seem arbitrary, it is a common 

choice for holdout samples in forecast methods evaluations.  Sensitivity test with 

different percentages of the historical data used for measuring performance were also 

performed.  The changes in the parameter estimates and performance results on dataset 1 

were insignificant when tested over a range of 10% - 20% for the performance test 

dataset.  The same was not true for the second dataset however, due to the small sample 

of historical bids available.  Thus, we decided to stay with the 10% sample to provide the 

best opportunity for obtaining good parameter value estimates.    
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2. Using the estimation data, we calculated the parameter values for both the Logit and 

Power functions using ordinary least squares and maximum likelihood estimators.  We 

found little difference in the fit of the models between the two estimation methods so we 

present the values found using maximum likelihood estimators for the remainder of this 

procedure. The parameter values from the un-segmented analysis of Dataset 1 are:  

 Logit Model Power Model  

 a B cc  α  γ  
Worst Case -8.272 0.825 NA NA NA 

Medium Case -0.299 1.0784 -1.05 1.03 10.55 
Best Case -0.299 1.0784 -1.05 1.03 10.55 

and the parameter values from the un-segmented analysis of Dataset 2 are: 

 Logit Model Power Model  

 a B cc  α  γ  
Worst Case -1.375 0.0051 NA NA NA 

Medium Case -0.293 1.0784 -1.0516 0.6924 20.665 
Best Case -0.293 1.0784 -1.0516 0.6924 20.665 

Because the Power function requires an estimate of the competitors’ price, it can not be 

used under the Worst information case.  The reason the parameter values are the same for 

the Medium and Best information cases is because past bid opportunities are used for 

estimating the parameter values when the competitors’ price is known with certainty 

(note the information cases pertain to knowledge of the competitors’ price in the current 

period; the past prices are assumed to be known with certainty).  In the next section, we 

describe how we also used the order size as a segmentation variable.  

3. After estimating the parameter values for each model, we used the CPBRMs to optimize 

the bid-prices for all the bids in the performance test data subset.  It is important to test 

the models on a different set of data than was used to build the models; else the fit of the 

models will be misleadingly high.   
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4. Finally, we computed the percent improvements over expected profits and over actual 

profits as explained in section 4.3. This provided us with two metrics of performance for 

each of our cases.  

The incorporation of competitors’ prices is only one possible input to CPBRMs (although 

for the Power function it is a required input). Another common input is the size of the order 

request. It is reasonable to assume the price sensitivity of customers only ordering a few units will 

differ significantly from customers ordering large quantities. Thus, we describe how we 

incorporated different levels of order size segmentation below.  

Segmentation Based on Order Size  

In Dataset 1, order quantities range between 200 and 1000. For segmentation based on 

the order size using the Logit function, we used the order size as a continuous variable and 

estimated a statistical constant dependent on the order size Q as follows:  

1( | , )
1 i q c ci c a bp c Q c pp Q p

e
ρ + + +=

+
 

For discrete segmentation, a separate parameter must be estimated for each segment but for a 

continuous variable, the estimation of only one parameter is required.  Therefore, it is easier to 

use a continuous variable if the model allows it.  For segmenting based on the order size using the 

Power model however, we had to use a discrete approach.  We chose the eight segments below. 

Order Size Between 200-299 300-399 400-499 500-599 600-699 700-799 800-899 900-999
Segment 2 3 4 5 6 7 8 9 

To estimate the parameter value for each segment, we used a binary indicator variable jx , j = 2, 

3, ..9, which was assigned a value of one for the order size segment a specific bid fell under.  This 

classification scheme is demonstrated in the table below:  

Bid Win Firm's Competitor's Order Indicator Variables for Order Size Segments
Number  Bid Bid Size 2 3 4 5 6 7 8 9 

1 1 $8.44 $10.92 353 0 1 0 0 0 0 0 0 
2 0 $11.88 $9.99 773 0 0 0 0 0 1 0 0 
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The bid response for the Power function was calculated by estimating a different value of jγ (our 

estimates for α  did not change so we held it constant) for each order size segment q as follows:  

( | )
( ) j ji x

i

p q
r p γ

αρ
α

=
+

. 

Based on our maximum likelihood fits, the estimated parameter values for the segmented analysis 

of Dataset 1 are:       

Knowledge of 
Comp Price     

 Logit function 

 a b cc  qc  

Worst Case -8.436 0.828 NA 0.0003
Medium Case -0.498 1.0802 -1.05 0.0003

Best Case -0.498 1.0802 -1.05 0.0003
 Power function 

 α  iγ  

  2 3 4 5 6 7 8 9 
Medium Case 1.02 9.46 9.10 9.45 7.51 7.35 15.33 19.26 15.35 

Best Case 1.02 9.46 9.10 9.45 7.51 7.35 15.33 19.26 15.35 

The amount of historical bid data available in Dataset 2 was insufficient to segment the data 

based on the order size.  Therefore, we did not perform a segmented analysis on this dataset.   

In summary, we compared the performance of the Logit and Power CPBRMs using two 

industry datasets, three levels of knowledge of the competitors’ prices, two levels of segmentation 

on the order size, and using two performance measures. Thus, we had a total of 24 scenarios to 

base our observations.  Table 4 summarizes the various scenarios.  

Table 4: Summary of Test Scenarios 

Historical Bid Data 
Available 

Knowledge of 
Competitors’ Price 

Segmentation on 
Order Size 

Performance 
Measure 

Large (Dataset 1) Worst Case Segmented Actual Profits 
Small (Dataset 2) Medium Case Unsegmented Expected Profits 

 Best Case   

In the next section we describe how we measured the performance of the two CPBRMs. 
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4.3 Measures of Performance  

To test the impact of using CPBRMs on the industry datasets, we used two performance 

metrics: percent improvement in profits over un-optimized actual profits and percent 

improvement in profits over un-optimized expected profits.  To understand the difference 

between the two performance metrics, consider the following numerical example from Dataset 1: 

Bid Win Order Size Original Bid Optimal Bid Probability of Win Probability of Win 
     at Original Bid at Optimized Bid 
1 Y 353 $ 8.44 $ 9.35 0.79 0.64 

 

Applying the unsegmented, worst information case, Logit CPBRM with the parameter values 

obtained through the procedure outlined in section 4.2 we get:  8.272 .825

1( )
1 pp

e
ρ − +=

+
.  

Substituting in the original bid price of $8.44, we calculate the probability of winning for the un-

optimized bid = 8.271 0.825*$8.441/(1 )e− ++ =0.79.  Applying the optimization procedure described in 

section 3.3, we calculate the optimal bid price for this bid opportunity should have been $9.35.  

Substituting in this price results in a probability of winning for the optimized bid = 

8.271 0.825*$9.351/(1 )e− ++ = 0.64.   

The actual profit from this bid opportunity is = (Original Unit Price- Marginal Cost)* 

Order Size* Win/Loss Indicator Variable = $(8.44-6)*353*1 = $ 861.32.  If the original bid had 

resulted in a loss, the actual profit would be zero.  The original bid expected profit = (Original 

Unit Price-Marginal Cost)* Order Size * Probability of Win at the Original Bid Price = $(8.44-

6)*353*0.79 = $ 680.44.  Note the expected profit is always smaller than the actual profit when 

the bid was won and is always larger when the bid was lost.  The optimized bid expected profit = 

(Optimized Price- Marginal Cost)*Order Size* Probability of Win at the Optimized Bid Price = $ 

(9.35-6)*353*0.64= $ 756.83. 

We now compare the percent improvement of the latter case over the first two:  
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• Percent Improvement in Optimized Bid Expected Profits over Un-Optimized Bid Actual 

Profits = ($ 756.83-$861.32)/$861.32 = -0.121 = -12.1 % 

• Percent Improvement in Optimized Bid Expected Profits over Un-Optimized Bid 

Expected Profits = ($756.83-$680.44)/$680.44 = 0.112 = 11.20%. 

The calculations above were performed for every bid opportunity in the performance test data 

subset and the average of each measure (over each bid opportunity in the performance test data 

subset) was used as the performance metrics presented in the next section. 

4.4 Results from Numerical Comparisons  

Performance on Dataset 1 

For Dataset 1, the un-optimized bid actual and expected profits over the performance test 

subset of our dataset were exactly the same. Therefore, we only present one comparison of the 

percent improvements in expected profits for each scenario (segmented versus unsegmented, 

three levels of information, and two CPBRMs).  Figure 8 presents the comparison of the models 

when the models were not adjusted for order size segmentation. For this comparison, the Logit 

function outperforms the Power function in the absence of segmentation.  

Performance on Dataset 1 ( Unsegmented)
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Figure 8: Percent Improvement in Expected Profits (Unsegmented) 



Agrawal & Ferguson: Optimal Customized Pricing in Competitive Settings  

Figure 9 presents the comparison with an adjustment for order size segmentation.  In the 

presence of order size segmentation, the Power function outperforms the Logit function.  

Performance on Dataset 1 (Segmented)
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Figure 9: Percent Improvement in Expected Profits (Segmented)  

In both the unsegmented and segmented comparisons, the ability to perfectly forecast 

information about the competitors’ pricing results in the largest improvements.  Having access to 

historical data on competitors’ bids can sometimes make a company worse off however, as 

evidenced by the worst information case (no historical competitors’ price data) outperforming the 

medium information case (10 period moving average of competitors’ prices).   A quick check of 

our 10-period moving average forecast which we used to provide the competitor’s price 

estimate showed the forecast was unbiased but had a large variance in the forecast error.  

Thus, for this dataset, the past historical competitor’s bids were poor indicators of how 

the competitor will bid in the future.  The use of these poor estimates led to worse 

performance using the CPBRMs than if no estimate of the competitor’s price was used at 

all.  
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Performance on Dataset 2  

For this application, the probability of winning the business at a price equal to the 

average competitors’ price (i.e. a price ratio of one) was 40.91% (Figure 1 provides the actual 

bid-response curve for the Power function).  Due to the small number of historical bid records 

available to us in this dataset, we performed our analysis for the un-segmented scenario only.  

The percent improvements from using the optimized price from the CPBRMs on the performance 

test part of the datasets are shown in Figures 10 and 11 compared against actual and expected 

profits respectively.  Similar to our comparisons in the first dataset, the case of perfect 

competitors’ price information results in the largest improvements for both models and the Logit 

function outperforms the Power function in all information cases.  Unlike in the previous dataset 

however, there were differences in actual and expected profits using the un-optimized price and 

the medium information case resulted in larger improvements than the worst information case.  

Performance on Dataset 2 (Actual Profits)
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Figure 10: Percent Improvement in Actual Profits (Unsegmented) 
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 Performance on Dataset 2 (Expected Profits)
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Figure 11: Percent Improvement in Expected Profits (Unsegmented) 

Figure 10 shows the improvements when compared to the actual profits are negative for 

the two lower cases of information on the competitors’ price.  We suspect this is the result of 

insufficient data available for the performance test data as improvements over expected profits 

were positive for all three information cases as shown in Figure 11.   

5.  Observations from Numerical Comparisons and Conclusions 

In this section, we summarize our observations based on our numerical comparisons and 

attempt to answer the question: “Given a particular set of conditions, which CPBRM should a 

firm use to optimize prices?” We then summarize our work and provide areas for future research. 

Our observations come with the following caveats; they are based purely on the performance of 

the models on our two available datasets and may not be generalizable to applications different 

than the ones tested.  Thus, a firm should rigorously test the models using their own bid history 

data before drawing conclusions on the suitability of a particular model for their specific 

application.  Our primary purpose is to describe a testing procedure for firms who wish to do so. 

Based on the performance on our two industry datasets, we provide three main observations:  
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Observation 1. If enough historical bid data is available to segment based on the order size, 

the Power function, adjusted for each discrete customer segment, outperforms the Logit 

function.  

This observation is evident in Figure 9 which compares the models developed with a 

large amount of historical bid data and segmented based on the order size.  If the firm has no 

knowledge about the competitors’ prices for the current bid opportunity however, the Power 

function can not be used.   

Observation 2. If sufficient historical bid data is not available to a firm or the firm does not 

segment based on the order size, the Logit function outperforms the Power function.  

This observation is evident in Figures 8, 10, and 11.  Figure 8 compares the models 

developed with a large amount of historical bid data but not segmented based on the order size.  

Figures 10 and 11 compare the models developed using the much smaller dataset where order 

size segmentation is not an option.   

Observation 3.  Incorporating historical competitor prices into a CPBRM does not ensure 

better performance. 

This observation is evident in Figures 8 and 9 which compare the models developed with 

a large amount of historical bid data.  For both the unsegmented and segmented versions of the 

model, the worst case of competitor pricing information (estimated competitors’ prices are not 

included in the model) outperforms the medium case (competitors’ prices estimated through a 10 

period moving average).  Thus, firms who have access to historical competitors’ bid prices but 

are not proficient in using this data to forecast future prices may be better off leaving this variable 

out of their CPBRMs.    

A firm adopting CPBRMs for price optimization needs to be aware of their limitations. 

CPBRMs assume the bid opportunities are exogenous and are not affected by the bid responses 

suggested through the optimization model.  In reality, a firm’s pricing strategy may have a 

significant impact on customer retention, especially if the optimization model recommends 
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consistently pricing higher than the competition for a particular customer class.  Also, CPBRMs, 

and their corresponding optimization models, do not assume any response from the firm’s 

competitors.  Instead, they assume the actions of competitors can be determined probabilistically 

and independently of the decision maker’s actions.  In reality, competitors may react to a firm’s 

new pricing strategy causing the historical bid opportunity data to be unrepresentative of future 

bid price responses.  To help detect these possibilities, mechanisms should be put in place to 

monitor and evaluate the performance of the CPBRMs over time.  If competitors change their 

bid-pricing behavior due to the implementation of a CPBRM, more involved models using 

concepts from game theory should be employed.  

In summary, we present two CPBRMs used in practice and explain how they may be 

used to calculate optimal bid-response prices and discuss how they may be adjusted to 

accommodate segmentation based on the different levels of information available. We present a 

numerical analysis on two industry datasets and, based on these results, offer a set of 

recommendations about the type of CPBRM a firm should use depending on the availability of 

past information and the level of competitive knowledge available to a firm.   
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