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SUMMARY 

The primary barrier to the production of better machined parts is machine tool 

error.  Present day applications are requiring closer machine part tolerances. The errors in 

dimensional part accuracy derive from the machine, in this case, a vertical two axis CNC 

lathe. A two axis vertical lathe can be utilized to produce a variety of parts ranging from 

cylindrical features to spherical features. A vertical lathe requires a spindle to rotate the 

work at speeds reaching 3000rpm, while simultaneously requiring the machine tool to be 

positioned in such a manner to remove material and produce an accurate part. For this to 

be possible, the machine tool must be precisely controlled in order to produce the correct 

contours on the part. There are many sources of errors to be considered in the two axis 

vertical lathe. Each axis of importance contains six degrees of freedom. The machine has 

linear displacement, angular, spindle thermal drift, straightness, parallelism, orthogonal, 

machine tool offset and roundness error. These error components must be measured in 

order to determine the resultant error.  

The characterization of the machine addresses thermal behavior and geometric 

errors. This thesis presents the approach of determining the machine tool errors and using 

these errors to transform the actual tool path closer to the nominal tool path via 

compensation schemes. One of these schemes uses a laser interferometer in conjunction 

with a homogenous transformation matrix to construct the compensated path for a 

circular arc, facing and turning. The other scheme uses a ball bar system to directly 

construct the compensated tool path for a circular arc. Test parts were created to verify 

the improvement of the part accuracy using the compensated tool paths. 
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CHAPTER I 

INTRODUCTION 

Problem Statement 

The primary barrier to the production of better machined parts is machine tool 

error.  Present day applications are requiring closer machine part tolerances. The errors in 

dimensional part accuracy derive from the machine, in this case, a vertical two axis CNC 

lathe. A two axis vertical lathe can be utilized to produce a variety of parts ranging from 

cylindrical features to spherical features. A vertical lathe requires a spindle to rotate the 

work at speeds reaching 3000rpm, while simultaneously requiring the machine tool to be 

positioned in such a manner to remove material and produce an accurate part.  The 

machine tool must be precisely controlled in order to produce the correct contours on the 

part. Of course the dynamics of the machine change the machine geometry. This change 

in machine geometry alters the tool path and creates an undesirable part.  There are many 

sources of errors to be considered in the two axis vertical lathe. This discussion will be 

limited to the errors of importance. Each axis of importance contains six degrees of 

freedom. The machine will have linear displacement, angular, spindle thermal drift, 

straightness, parallelism, orthogonal, machine tool offset and roundness error. These error 

components must be measured in order to determine the resultant error. The geometric 

errors of the lathe are dependent upon thermal and loading conditions. For example, the 

bearings in the spindle grow due to the thermal gradient caused by the machine’s use.  
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Objective of Thesis 

The goal of this project was to characterize a two axis vertical lathe to ensure it 

will produce a more accurate part. This research was divided into several sectors to 

achieve this goal. The first sector was known as error measurement, which involves a 

quantitative description of the machine behavior that affects the finished part. Sensitive 

aspects of the two axis machine must be measured for these errors. These errors included 

linear, straightness, and angular errors through movement of the tool, along with thermal 

behavior. A ball bar was also used to examine machine errors along a circular path, 

which proved useful for the circular profile of the test part. The next sector involved tool 

path correction with G Code compensation. Once these machine tool errors were 

determined, the next step was to correlate these errors to achieving a better part. A 

correctional G code algorithm was created using a developed homogenous transformation 

matrix (HTM) and then implemented into the two axis vertical lathe via software. Test 

parts that exposed the machine tool errors were applied to verify the characterization of 

the lathe. Test parts were created with and without the G Code compensation. The 

dimensional accuracies of the test parts will then be compared to determine the 

improvements with the G Code.  A Coordinate Measurement Machine (CMM) will be 

used to accurately determine the dimension of the test parts. 
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CHAPTER II 

BACKGROUND 

Overview 

The accuracy of a finished part is directly related to the accuracy of the machine 

tool. It is very costly to remove all the errors by machine design alterations. Therefore, 

instead of vainly attempting to eliminate all the errors, this study offers a process to 

predict the machine tool errors and compensate for them.  The area of machine error 

compensation has been extensively researched over the years.  Slocum (1992) suggests 

research in error compensation seeks to determine the difference between the desired and 

the actual tool path and then adjust the tool path. The deviation from the nominal tool 

path is a result of thermal errors and geometric errors. Thermal errors generally come 

from the thermal deformations of the machine elements caused by heat sources that exist 

in the machine structure, such as ball screws, spindle, etc (this genre of errors is discussed 

later). Geometric errors are caused by inaccurate motions of machine elements such as 

carriages, work tables, etc. Determining the geometric errors involves precision 

measurement equipment.  After an initial discussion of each piece of equipment, an 

investigation of the use of each and their results is presented through published papers. 

Measuring Instruments 

 A machine tool’s positioning accuracy can be enhanced by measuring the six 

degrees of freedom for each axis according to Ulmer (1997).  
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Figure 1-Six Degrees of Freedom (HP Manual) 

 

There are several types of interferometer sensors. A brief explanation of the fundamental 

physics of wave and light properties is needed to understand the usefulness of a laser 

interferometer. A laser interferometer is an instrument used to determine positioning 

accuracy.  Interferometers make measurements based on the concept of wave 

interference; it measures a relative change in tool path length by superimposing two wave 

forms. Perhaps it is easiest to picture two waves traveling parallel to each other with the 

same frequency, amplitude and velocity; however a phase angle causes a lag between the 

waves et al Slocum (1992). These two waves can be represented by the following 

equations:  

 1 sin( )Y A kx tω φ= − −  (2.1) 
 

 2 sin( )Y A kx tω= −  (2.2) 
. 
This means that at any time the waves are φ /k apart, where k is the inverse of the 

wavelength.  The superposition of these two waves is: 
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 2 cos( )sin( )
2 2

Y A kx tφ φω= − − . (2.3) 

 
If φ  is set to zero, meaning there is no phase angle, then the superposition of the wave is 

just twice the amplitude of the original waves.  This is call constructive interference; 

whilst destructive interference occurs when the phase angle is π causing the amplitude of 

the superimposed wave is to be zero.  

 

Figure 2 shows the beam path and set up used to determine the velocity of a 

moving target.   

 

 

Figure 2- A typical laser and photo detector setup (Slocum 1992) 

 

Several equations were developed to relate the displacement of the retroreflector to the 

change in phase.  It is assumed that the light source is fixed and the velocity of the 

mechanical components is very small compared to the speed of light (3 x 108 m/s). 

Therefore the distance traveled by the retroreflector is given by (2.4) 

 
4

x φλ
π

∆
∆ = , (2.4) 

 

where φ∆  is the phase change and λ is the wavelength of light. A photo detector is a 

device that measures the phase difference between the laser beam as it leaves the 
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interferometer and reflects back.  Thus, displacement measurements could be made in a 

machine tool if this retroreflector was attached to the moving element.  

For example, linear displacement measurements along an axis could be made 

using the set up in Figure 3 and the previously discussed theory.   

 

 

Figure 3- Laser interferometer Setup for linear displacements (Kurfess) 

 
 

The laser beam is split into a reference beam and a measurement beam as shown in 

Figure 3 (the optical setup depends upon the axis of interest and type of measurement). If 

the paths differ by any integer multiple of the wavelength or by half an integer number of 

wavelengths then constructive or destructive interference occurs respectively. A counter 

inside the interferometer counts the number of peaks and relates this to a relative position 

measurement to within half a wavelength of light. An HP 5529A laser interferometer was 

used to make the following measurements: linear displacement error (translational error 

movement of a machine element along its axis of motion), angular errors (rotational 
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errors caused by geometric inaccuracies of the slideways), straightness (translational 

error of a machine element in the two orthogonal directions not on its own axis of 

motion), parallelism (expressed as a small angle) and squareness (Slocum 1992).  

 The HP 5529A laser interferometer is used in conjunction with a set of standards 

to serve as a guideline. The HP 5529A software allows for several different standard 

outputs to use for analysis. One of these standards is ASME B5.57M, Methods for 

Performance Evaluation of Computer Numerically Controlled Lathes and Turning 

Centers (ASME 1997). This Standard establishes requirements and methods for 

specifying and testing the performance of CNC lathes. It also allows for performance 

comparison between machines by general machine classification and treatment of 

environmental effects. This guideline represents a minimum requirement to ensure 

conformance to accuracy and repeatability. More specifically criteria such as the default 

line of measurement for the laser interferometer experiments is in the work zone parallel 

to each machine linear axis direction, measuring intervals of no longer then 25.4 mm, and 

two complete back and forth cycles for each linear axis. The manual for the HP 

interferometer and Standards for Machine Performance coincide with each other and used 

in Chapter IV. Aforementioned was the several output types available for use in the 

analysis section of the laser interferometer. An example of the full data set for positioning 

deviations of an axis (bi-directional) for ASME B5.57M is shown in  
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Figure 4- Example of ASME B5.57M output for analysis 

 
 

The laser ball bar (LBB) was designed to measure volumetric errors of machine 

tools quickly by direct measurement of the spatial coordinates of the tool with respect to 

the machine table et al Ziegert (1994). It is important to mention that the experimental 

procedures for a laser ball bar and a ball bar using an LVDT (linear variable differential 

transformer) are very similar. An LVDT ball bar was used in the scope of this research 

however literature on the laser ball bar is readily available. LVDTs use the principle of 

electromagnetic induction to sense linear motion et al Slocum (1992). Procedures for the 

laser ball bar were more detailed and readily available; therefore they will be presented in 



 9   

this discussion.  A ball bar consists of two precision spheres connected by a telescoping 

rod that incases a LVDT as shown in Figure 5.  

 

Figure 5- Schematic of Ball Bar (Pahk 1997) 

 
 

One sphere is attached to the spindle while the other is attached to the tool holder. The 

tool holder is then commanded to move in a circular pattern. The LVDT can measure the 

relative displacement between the two spheres because the change in voltage is 

proportional to the change in length. The error is then determined by the difference of the 

commanded position and the actual position determined by the LVDT. Zeigert (1994) 

states this significantly reduces the measurement time because a rigid body kinematical 

error model was used to estimate the volume accuracy.  Furthermore, the ball bar can be 
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used to measure translational, axis alignment, tilt and spindle errors. Therefore, the ball 

bar has been proven to play a significant role in measuring machine tool error. Reference 

Bryan (1982) is an excellent source for a more detailed explanation of laser ball bars and 

other various kinds of ball bars (such as telescoping and fixed). 

Reversal Technique 

The reversal technique is a method to determine the misalignment between optical 

(such as mirror flatness errors) components of the laser interferometer setup for 

straightness measurements. The reversal technique provides a method to eliminate errors 

in the measurement set up.  An explanation of this technique was taken from Slocum 

(1992) where the author specifies how to find the straightness of the z-axis independent 

of the test arbor (the specific case explained here is for straightness along the z-axis; 

however this technique is adaptable to numerous measurements) Two sets of 

measurements are required to apply the reversal technique. A set of data is collected at 

the proper measuring interval for the z-axis. The optical pieces are then “reversed” or 

rotated by 180o and the data is collected in the same manner again. The first and second 

measurements are represented by equations (2.5) and (2.6) respectively: 

 1( ) ( ) ( )m z a z s z= −  (2.5) 
 
 2 ( ) ( ) ( )m z a z s z= +  (2.6) 
 
where m1 (z) and m2 (z) represents the data acquired at position 1 and 2 respectively, a (z) 

is the non-straightness of the optical pieces and s (z) is the straightness of the z axis. 

Substituting equations (2.5) and (2.6) and solving for s (z) yields: 

 1 2( ) ( )( )
2

m z m zs z − +
=  (2.7) 
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Equation (2.7) provides the straightness of the z-axis without the error associated with the 

test arbor.  The reversal technique can be applied to most test cases such as parallelism; 

however these cases can be more difficult because there are several errors involved in 

such an error measurement.  

Thermal Errors 

Machine tool error is not solely dependent upon geometric errors.  The thermal 

behavior of the machine is also extremely important to understand. This behavior can be 

partially described in terms of the time constant (the amount of time it takes the machine 

to reach thermal steady state).  The thermal time constant is a quantity that broadly 

describes the machine tool as a system. Slocum suggests a method to determine the 

temperature profile of machine elements from which the thermal behavior of the machine 

can be determined. Essentially, displacement errors were taken as the machine warmed 

up, then a single variable nonlinear least squares curve fitting technique was used 

(specifically, z-axis) as shown in (2.8) 

 2 3 4
0 1 2 3 4( )z z a a T a T a T a Tδ = + + + + . (2.8) 

 
This equation describes the behavior of machine tool error under thermal variance.  This 

reference also provided useful insight for temperature acquisition, such as the optimum 

position to measure temperature.  

A more detailed examination of thermal errors is required. Yun (1999) provides a 

method for estimating the machine tool error cause by thermal errors of a feed drive 

system.  The feed drive is divided into two thermally changing elements: the ball screw 

and the guideway. The thermal behavior for both elements are developed separately, a 

modified lumped capacitance method and genius education algorithm was used to 
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develop the thermal model of the ball screw, while the finite element method is used for 

the guideway. The thermal expansion of the ball screw and guideway is then added 

together to predict the linear positioning error of the cutting point in the machine. These 

estimated thermal errors are then compared to the experimental errors of the CNC lathe. 

The accuracy of the proposed models (through experiments) was 3.79 µm. Another 

important conclusion is that the guideway accounted for 22.7% of the total thermal error. 

Yun explains in detail how to find and compensate for the thermal errors of the guideway 

and ball screw.  

There are many other subsystems in the machine tool besides the ball screw and 

guideway. Another such subsystem of primary importance is the machine’s spindle.  

Yang determines the thermal effects on the spindle. This paper proposes a “novel method 

for completely measuring and analyzing the thermal errors of a 3-axis machine tool using 

only one ball bar system” et al Yang (2004).  A hemispherical ball bar test is applied to a 

synthesized volumetric model via a helix trajectory.  The thermal errors can be measured 

by means of the change in ball bar measurements before and after thermal distortion.  A 

capacitance sensor system is used to measure thermal errors and spindle drift errors in 

order to verify the accuracy of the ball bar measurements.  Spindle drift is a motion 

through a nominal axis of rotation of the spindle caused by thermal deformations of the 

spindle components and support structure. The thermal errors measured by the ball bar 

system were almost identical to the spindle drift errors measured by the capacitance 

system (the difference was within 6 µm). Thus a novel idea was devised by accurately 

measuring the thermal errors of a spindle in a 3 axis machine with a ball bar system.  
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Furthermore, there has been extensive research on evaluating both thermal and geometric 

errors in spindle error motion, error model development and error compensation thereof.  

Choi (2003) examined the spindle motion errors (along with geometric and thermally 

induced errors) and concluded that an error model with spindle errors shows a better 

agreement between simulated and experimented roundness data. This was achieved 

through the implementation of a homogenous transfer matrix (a more detailed 

explanation of an HTM will be provided later) and a spindle error measurement system as 

shown in Figure 6: 

 

 

Figure 6- Spindle Error Measurement System (Choi 2003) 

 
 

Simulated part profiles using the HTM were created and compared to cut parts that were 

measured on a roundness tester. The simulation results based on the error model without 

the spindle errors underestimates the error values when compared to the measured values. 

Another paper that evaluates geometric errors due to thermal rise from the spindle 

can be found et al Tseng (2002).  Instead of an HTM, a multivariable regression was used 
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to formulate the thermal errors from the spindle. This paper also describes the proper 

locations for temperature acquisition. Other phenomenon that affects the nominal 

position of the tool tip is tool wear, cutting forces and vibrations. 

Tool Wear 

Tool wear changes the functional point (the point at which the tool interacts with 

the work piece to provide material removal). The tool wear is a function of its material 

make, the material to be cut and the cutting parameters. Zhou (2001) describes the affect 

tool wear has upon the profile accuracy of the work piece. The cutting point moves about 

the edge of the cutting tool when contouring the profile (in our case, a circular profile 

will create the sphere).  Tool wear causes the loss of the original profile accuracy of the 

cutting edge. To complicate matters even more, the tool wear is usually non-uniform due 

to several phenomena. Most of the factors are based upon the physical and mechanical 

properties gradients of the tool material. This paper suggests the implementation of a 

rotary table to the two axis lathe for tool normalcy as a solution to the uneven tool wear. 

The relationship among tool offset and machined form accuracy was also studied.  The 

tool offset is the horizontal component of tool decentration with respect to the spindle 

axis. The tool height error is the vertical component. Essentially, several test parts were 

machined with varying tool offsets. The results demonstrate that the tool offset can 

influence the form accuracy (on the order of 40 µm), while the tool height offset 

influences the form accuracy a great deal less.   
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Fixturing 

According to Lee (2004), the machining of a chucked cylindrical workpiece 

involves degradation in machining accuracy, such as out-of-roundness. This decrease in 

machine tool accuracy is inevitable due to deviation in the radial compliance of the chuck 

caused by the position of jaws with respect to the direction of the applied force. The 

illustration of out of roundness is shown in Figure 7. 

 

 

Figure 7- Cutting of cylindrical workpiece with 3 jaw chuck and out of roundness due to the chuck 

 
 

Lee (2002) proposed using a high-speed tool drive with a linear motor to compensate for 

machining errors that derived from the chuck. This method is applied to improve 

workpiece roundness. A relation between roundness and chucking conditions were 

examined. This relationship was then used to predict the cutting depth variation and the 

roundness profile. A compensated path was constructed once the predicted path was 

determined. The roundness was improved by 50% after the compensation was applied. 
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Tool Setting Station 

Tool set up error is present if the cutting tool in not coincident with the work 

piece’s rotational axis at the vertex of the generated curve et al Zhou (2001).  In this 

paper, the effects of tool setup accuracy on surface distortion were investigated. This 

paper investigates the affect of tool offset on profile accuracy for diamond turned non- 

ferrous components. The affect of tool offset is shown in Figure 8. 

 

 

Figure 8- The effect of tool offset on convex spherical surfaces (Zhou 2001) 

 
 

Cutting tests were performed on a two-axis diamond turning machine. Spherical mirrors 

were turned with varying preset tool offsets.   The relationship among machined form 

accuracy, tool offset, and tool height was determined based on experimental and 
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analytical results. The analytical results of the paper can be described through Figure 9 

and equation(2.9):  

 

 

Figure 9- Cutting Geometry with tool offset error (Zhou 2001) 
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, (2.9) 

 
 

where ρ is a point on the part surface, ∆x and ∆y are the tool offset and tool height error 

respectively, and r is the radius of curvature of the surface. Equation(2.9) shows that the 

dominant factor of form accuracy is the tool offset ∆x. This relationship was also verified 

through the aforementioned cutting tests. These results are shown in Figure 10. 
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Figure 10-Variation of form accuracy, z, with tool offset (Zhou 2001) 

 

Therefore a tool set station is implemented to determine the tool offset error and account 

for it. The tool-setting station is mounted to provide a reference point.  The reference 

point is determined by permanently mounting a gage bar to one of the tool stations on the 

turret.  An LVDT (linear variable differential transformer) is used to measure the position 

of the tool in the X and Z direction with respect to this reference point. 

Cutting Forces and Vibrations 

The vibrations involved in a machining process can play a major role on the work 

piece, mainly with respect to its surface finish. These vibrations are primarily caused by 

structural vibrations and friction.  The structural vibration is dependent on the cutting 

process. Much research has been conducted to determine the vibrations associated in the 

machine tool due to cutting force.  Thomas (2003) provides detailed methods in 

determining the amplitude of these vibrations through the means of an accelerometer and 

FFT. The cutting force analysis includes the steady state forces, random cutting forces, 

and harmonic cutting forces. The cutting tool was provided with strain gages and a tri-
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axial accelerometer to measure accelerations in feed, cutting directions, and in the thrust 

directions. 

Homogeneous Transformation Matrix (HTM) 

A homogeneous transformation matrix (HTM) must be created to transform the 

actual tool path to the desired tool path.  Slocum provides a detailed method in defining 

the spatial relationship between the tool point and the work piece through the use of a 

HTM. It is easiest to first present the HTM and then explain it:  
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 (2.10) 

 
The first three columns represent the orientation of the rigid body’s Xn, Yn, Zn axes with 

respect to the reference.  The last column represents the rigid body’s coordinate system’s 

origin with respect to the reference frame. The subscripts can be explained as follows: the 

first represents the desired reference frame while the second represents the original 

reference frame.  The case for simultaneous motions in the work space can be represented 

as a combinational method. The HTM’s of the translations and rotations of the coordinate 

system along each principal axis are multiplied in series with the error terms of each axis. 

For brevity purposes, only the results will be shown, the derivation can be found on pages 

62 to 66 of reference Slocum (1992). The resultant error in position with respect to the 

desired position will be:  
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This error is with respect to a reference frame at the origin. Therefore the actual HTM for 

linear motion is n nRT E :  
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Where a, b, c are offsets in the x, y, and z direction respectively. Using the same 

methodology, the axis of rotation errors will be: 
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The previous derivations assumed that the second order effects were negligible. This will 

be the case for the scope of this research because we do not seek nanometer performance 

levels. Therefore an HTM of similar appearance will be developed for the machine tool 

used in this research. 

Tool Path Correction 

There has been extensive research in tool path correction via error compensation 

NC code.  A number of methods for the prediction and compensation of the desired tool 

path have been proposed.  The common objective of each method is defining the error in 

the nominal relationship between the tool and the work piece.  Kiridena and Ferriera 

(1994) developed a method for a three-axis machining center using a rigid body 

kinematic model. They developed a quasi-static error model that is a function of the error 

component of each axis.  Anjanappa (1988) developed two methods for error 
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compensation of cutting force under the rigid body assumption. This paper addressed the 

development and experimental validation of a cutting force-independent tool path error 

correction methodology.   

One method involves the machine controller altering the machine code based 

upon compensation, while the other describes how to tilt and translate a magnetic bearing 

spindle for real-time correction. Of more relevance is Wang, Liu, and Kang’s (2002) 

error compensation model. Since the nominal cutting path is given in a form of NC code, 

the compensation software identifies the coordinates of the cutting trajectory and uses 

them as inputs for error predictions. It is assumed at this point that the causes of error at 

the tool tip are found (including geometric errors of the axis, deflections caused by static 

and dynamic cutting forces and thermally induced deformations).  

A finite element model is implemented to provide the error at points within a 

defined workspace.  This work space is divided into smaller three dimensional elements. 

The error and stiffness at arbitrary positions in every element can be interpolated once the 

local nodal points of these elements have been defined for errors and stiffness.  This 

transition is accomplished through the use of shape functions and interpolation methods. 

It is noted that if the errors are compensated once, the tool will not reach the desired 

position, therefore the software must be recursive. These iterations are performed until 

the actual and desired positions are very close (defined by a predetermined tolerance on 

the position error). The following equations correspond to this iterative process:  
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 ( ) ( )d aI U U Iδ = − . (2.16) 
 
Where δ (I) is the difference between the actual and desired position, Uc is the 

compensated position, and Ua is the actual position.  Figure 11 provides the software 

scenario 

 

 

Figure 11- Software compensation schematic (Anjanappa 1998) 

 
The NC program provided the desired positions of the cutter by interpolation of the cutter 

trajectory. A C++ identifying and rewriting system was used to develop and extract the 

nominal positions of the cutter for error prediction and correction. When this was 

determined, the software updates the NC program with the error-compensated position. 

Experiments of practical cutting with and without the software were performed to 

verify the software. It was shown the machining accuracy in the ∆ x path was improved 

from 254.4 µm to 22 µm and from 159.6µm to 22.7µm in the ∆ y direction.  This paper 

also noted that the resolution of the workspace is an important parameter. Increasing the 

amount of sampled points increases the prediction accuracy, but causes a larger 
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computation time. Therefore the number of sampled points should be based on accuracy 

requirements. 
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CHAPTER III 

EQUIPMENT 

Okuma Howa Vertical Lathe 

A CNC vertical lathe requires a spindle to rotate the work at speeds reaching 

3000rpm, while simultaneously requiring the machine tool to be positioned in such a 

manner to remove material and produce an accurate part.  This researched used the 

Okuma Howa Vertical Lathe (shown in Figure 12).  

 

 

Figure 12- Okuma Howa V40R 
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The work volume specifications of this machine are presented in Table 1. It is quite 

obvious that this lathe is vertical due to the configuration of the spindle and tool turret. 

The specifications of the spindle are provided in Table 1. 

 

Table 1- Specifications of the Okuma Howa Lathe (Okuma Website) 

MAIN Spindle Direction  Vertical  
X-axis Travel 10.43’’ 264.92 mm 
Z-axis Travel 17.72’’ 450.08 mm 
X-axis Thrust Force 1,257 lbs  
Z-axis Thrust Force 2,698 lbs  
X-axis Ballscrew Diameter/Pitch 1.57’’/0.47’’ 39.88/11.94 mm 
Z-axis Ballscrew Diameter/Pitch 1.97’’/0.47’’ 50.04/11.94 mm 
X-axis Positioning 0.0006’’/3.94’’ 0.0152/100.08 mm
X-axis Repeatability 0.0001’’ ±0.00254 mm 
Z-axis Positioning 0.0009’’/11.81’’ 0.02286/299.9mm
Z-axis Repeatability ±0.0002’’ ±0.00508 mm 
Minimum Input Increment 0.0001’’ 0.00254 mm 

 

Laser Interferometer 

A laser interferometer was required to determine the linear and angular errors of 

the axes of the vertical lathe. An HP5529A laser interferometer was used to determine 

these errors. Figure 13 shows the laser interferometer system mounted on a tripod.  The 

specifications of the laser interferometer are displayed in Table 2. 
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Figure 13- Laser Interferometer on tripod 
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Table 2- Laser Interferometer Specifications (HP) 

Characteristic 
 

Specification 
 

Type 
 

helium-neon with automatically tuned 
Zeeman-split two-frequency output 

Warm-up time 
 

less than 10 minutes (typically 4 minutes) 
 

Operating temperature 
 

0° to 40° C (32° to 104° F) 
 

Power requirements—laser 
head 

100 to 120 Vac, 48 to 66 Hz and 400 Hz; 220 to 
240 Vac, 48 to 66 Hz; 50 W during warm-up, 

Vacuum wavelength 
Wavelength accuracy 

632.991354 nm 
± 0.1 ppm 

Short-term (1 hour) 
wavelength stability 

± 0.002 ppm typical 
 

Long-term (lifetime) 
wavelength stability 

± 0.02 ppm typical 
 

Maximum output power 
 

1 mW 
 

Beam diameter 
 

6 mm (0.24 in) 
 

Beam centerline spacing 
 

11.0 mm (0.43 in) input to output aperture 
 

Safety classification 
 

Class II laser product conforming to U.S. 
National Center for Devices and Radiological 
Health Regulations 21 CFR 1040.10 and 
1040.11 

 

Renishaw QC10 Ball Bar 

Resolution 0.1 µm (4 µin) 

Ballbar Sensor Accuracy ± 0.5 µm (at 20 °C) ± 20 µin (at 68 °F) 

Maximum Sample Rate 250 values per second 

Extension Bars Available 50, 150, 300 mm (1.97, 5.9, 11.8 in) 

Operating Range 0-40 °C (32-104 °F) 
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Coordinate Measurement Machine 

 A coordinate measurement machine (CMM) was used to inspect the test 

parts. A CMM is a metrology apparatus that uses a touch-trigger probe to acquire data 

about the part. The Brown & Sharp MicroVal Pfx CMM (Figure 14) is a vertical bridge 

type machine which was operated in direct computer control. The specifications of the 

machine are presented in Table 3 (Brown & Sharpe 1991). 

 
 

 

Figure 14- Coordinate Measurement Machine (CMM) 
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Table 3- Specifications of the Brown & Sharpe Microval PFx CMM 

Specifications Metric 
Repeatability B89 5.3.3.1 Band 0.003 mm 
Volumetric Accuracy B89 5.5.2 Band 0.010 mm 
Linear Accuracy B89 5.4.3 Band 0.005 mm 
VDI/VDE U1 3+3L/1000 
VDI/VDE U2 3+3L/1000 
VDI/VDE U3 3+4L/1000 
Resolution 0.001 mm 
Display Range ± 9999.999 mm 
Throughput 40 hits/minute 
Tunnel Diameter 0.3 mm 
Range XYZ** 457 x 508 x 406 mm 
Length 1093 mm 
Width 940 mm 
Height on Base 2388 mm 
Weight (complete system) 727 kg 
Weight (machine only) 205 kg 
Weight (granite work table) 114 kg 
Weight (machine stand) 341 kg 
Weight (computer) 68 kg 
Shipping weight (2 boxes) 841 kg 
Part weight capacity 227 kg 
Part size capability (Y,X,Z) 750 x 559 x 452 mm 
** Machine range when using 76.2 mm long probe 
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CHAPTER IV 

METROLOGY PROCEDURES 

 The previously described equipment requires specific procedures and guidelines 

in order to obtain proper results. The purpose of this section is to provide a condensed 

version of these procedures for each of these metrology tools. 

Interferometer 

Basic Guidelines 

The HP 5529 heterodyne interferometer was used under specific procedures to 

ensure correct measurements were made. There are a set of guidelines that should be 

adhered to before making a new measurement; they are as follows (HP Manual). 

• Determine the travel limits for each axis you will make measurements on. 

• Determine the start position for each axis. Also, determine which direction 

is positive and which is negative. 

• Determine if the controller requires incremental or absolute errors 

• Determine the machine’s least programmable resolution unit. 

• Determine which format the Agilent 10747A Metrology Software should 

use for its output. 

• In determining the measurement interval, choose an interval that is not a 

multiple of the pitch of the lead screw. This is so periodic errors are 

accounted for. 
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These guidelines were applied to the software setup that accompanied the interferometer. 

These guidelines were applicable to each of the measurement types, both linear and 

angular. The basic principles remained constant while only the optical set up changed. 

Measurements were only made in the sensitive directions of the machine and with in the 

appropriate work volume. 

Interferometer Software and Sensor Setup 

The HP5529A used the provided software package to acquire data.  There are 

several parameters that require the users input. The environmental conditions affected the 

accuracy of the laser interferometer. These environmental conditions consisted of air 

temperature, air pressure, and relative humidity. These conditions were compensated for 

by inputting the value of each parameter into the software package via a dialogue box, 

“Set Up Environmental Conditions”. These values can be entered in manually by the 

operator or acquired continuously through the optional air and material sensors. These 

sensors were placed according to strict guidelines to ensure that the software 

compensation can accurately adjust the measurement values for each experiment: 

• Place the air sensor as close to the path of the actual measurement as 

possible. The sensor must not be placed directly below the laser beam 

because it will act like a heat source and distort the measurement. 

• The humidity switch should be placed to the closest relative humidity of 

the room enclosing the machine tool. 

• Place the material sensors in positions corresponding to technical 

calibration codes such as ANSI B-5 (refer to Figure 15 for example). 
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Figure 15-Example of proper sensor placement (HP) 

 

Mounting and Aligning Optics 

 The origin of the laser beam is the laser interferometer, therefore the laser head 

should be close to the same height as the optics. The placement of the optics followed 

these two guidelines: 

• Mount one optic on the tool turret and the other optic on the spindle. The 

interferometer assembly must be between the retroreflector and the laser 

head. 

• For measurements along an axis perpendicular to the laser beam (with 

respect to the original beam path), mount the interferometer assembly on a 

stationary part of the machine. 

• An interferometer assembly consists of the combination of an 

interferometer and a retrorefelctor (these optical components are shown in 

Figure 18). A retroreflector was placed upon an interferometer such that 
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one of the arrows on the interferometer label pointed toward the 

retroreflector (as shown in Figure 16). 

 

Figure 16- Interferometer assembly (HP manual) 

 

This assembly was then mounted on the machine using posts, bases, and height adjusters 

such that the arrow that does not point to the retroreflector pointed away from the laser 

head. The optics was mounted according to their specific optical configuration (these 

configurations are shown in the following sections because they are dependent on the 

measurement of interest).  

The next crucial step (and also most time consuming) was to align the optics. The 

alignment process requires the laser heads upper port to be set to the small aperture (as 

shown in Figure 17). 
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Figure 17- Front view of the laser head (HP manual) 

 

The lower port should be rotated such that the target is showing and the laser head’s 

turret ring should be set to other. The laser head unit itself should be adjusted so that the 

laser beam enters the lens of the interferometer and the return beam is near the laser head. 

The goal of this alignment was achieved when the exiting laser beam and the entering 

laser beam are coincident. This was achieved by moving the laser head or moving the 

optical components (specifically, the interferometer assembly). The returning laser beam 

appeared as a dot on the front of the laser interferometer. Sometimes the optics was 

initially misaligned enough that returning beam will not even appear on the front. It was 

helpful to take a sheet of white paper and impose it over the front of the laser 

interferometer with the surface of the paper perpendicular to the return path. Of course a 

hole of proper size was cut so the exiting laser beam can travel through the optical set up.  

The retroreflector was moved as close to the interferometer as possible (this will 

be the start position). The retroreflector was adjusted so that the return beam was 

centered on the target covering the laser head’s return port. The scope of this procedure 
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was for short range measurements (less then 355.6 mm) because the work volume of 

importance never exceeded this value in any dimension.  

Displacement Measurements 

There are two main classes of measurements: displacement and angular. The 

previous section that consisted of optical alignment and initial guidelines was 

accommodated to displacement measurements; however it will be sufficient for angular 

measurements. The displacement measurements included straightness and linear 

measurements. Each measurement required a specific set of optical components and 

proper configuration of these components. For example, linear measurements required a 

linear retroreflector and a linear interferometer. The linear and optical components are 

shown in Figure 18 and Figure 19.  

 

 

Figure 18-Required hardware for linear measurements (HP manual) 
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Figure 19-Required hardware for straightness measurements (HP manual) 

 
 
An appropriate optical configuration must be implemented once the proper components 

have been determined. Figure 20 shows a generic arrangement of the optical components 

for a typical beam path in displacement error measurements. 
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Figure 20- Optical configuration for displacement measurements (Donmez 1985) 

 
 

Generally speaking, it is now easy to visualize how displacement measurements are 

made. For example, picture the retroreflector in the right of Figure 20 mounted to the end 

of a vertical tool turret. The tool turret was moved along the x-axis and data determined 

by the interferometer and software set up was collected. A schematic for straightness 

measurements is shown in Figure 21. 
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Figure 21- Schematic of beam path in straightness measurements (Kurfess) 

 
 

 

Figure 22- Straightness measurement (Kurfess) 

 

Angular Measurements 

Angular measurements contained similar protocols that were used for 

displacement measurements. The difference between displacement and angular error 

measurement is that different optical components are mounted on the spindle and tool 
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turret. An angular retroreflector was mounted on the tool turret. The typical beam path for 

angular error measurements is shown in Figure 23. 

 

 

Figure 23-Optical configuration for angular measurements (Kurfess) 

 

Ball Bar 

The ball bar was a much simpler metrology tool to operate then the laser 

interferometer. The ball bar system used was the Renishaw QC10 ballbar system which is 

shown in Figure 24. 
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Figure 24-Ball Bar system setup 

 
 

The Renishaw QC 10 ball bar system was designed for a horizontal lathe, thus a vertical 

lathe adaptor was required in order for implementation in the machine tool. Essentially 

(as previously discussed) the machine tool moved in a desired arc with nominal radius set 

to the length of the ball bar. The ball bar then recorded deviations from the nominal while 

the ball bar rotated around a fixed sphere. This sphere was the center of the radius of the 

path the machine tool followed. Therefore the tool offsets programmed into the machine 

tool are equal to the center of this sphere. To accomplish this, the end of the lathe adaptor 

is brought to close proximity of the sphere.  There is a mechanical element that interfaces 

Lathe Adaptor 

Joint 
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the lathe adaptor to the sphere called the joint.  The joint can be screwed into the lathe 

adaptor to touch the sphere and then unscrewed to allow for the machine tool to travel 

without disturbing the position of the sphere.  Thus the lathe adaptor was connected to the 

sphere and the tool offsets are recorded. The interfacial element was then unscrewed and 

the lathe adaptor was brought to the feed in position. This was the position shown in 

Figure 24. The ball bar was first calibrated then attached on one end to the sphere and the 

other end to the interfacial element. The data collection program was then executed and 

the machine tool moved in a radius of 100mm at a feed rate of 39.37 mm/min. The 

collected data and plots are shown in the results section. 
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CHAPTER V 

THERMAL ANALYSIS 

 This chapter outlines the ever so important thermal study of the machine.  

Thermal errors from temperature rise can contribute 40-70% of the precision errors in a 

turning center et al Tseng (2001). The thermal time constant of a machine presents 

crucial information on when the machine has reach thermal steady state. Thermal 

deformation of the machine is negligible once this state has been achieved. This analysis 

provides insight as to when experiments should be executed. For example, if machine 

tool errors are to be compared between a cold and hot state, then experiments will need to 

be run when thermal steady state has been achieved. The term cold refers to the initial 

thermal state of the machine tool; while hot refers to the thermal steady state of the 

machine tool. 

 The thermal behavior is of a first order model et al Palm (1999).  The 

temperature for the warming up period can be described by the following equation: 

 (1 )w
t

warm atmT T e Tτ−
= − +  (5.1) 

 
where T is the system gain, τw is the time constant and Tatm is the offset temperature. The 

time constant represents the amount of the time system requires to achieve 62.5% of 

thermal steady state. Similarly, the temperature for the cooling down period can be 

described by the following equation with T (0) in this case being the steady state 

temperature and τc is the amount of time required to reach 62.5% of steady state: 

 (0) c
t

cool atmT T e Tτ−
= +  (5.2) 
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 Intuitively speaking, one may think that the thermal time constants for the 

warming up period and cooling down period should be the same. In this situation 

different thermal behaviors were exhibited during heating then cooling.  Figure 25 and 

Figure 26 show a simplified schematic of the mechanical system (i.e. spindle or axis 

slide) during heating and cooling respectively. 

 

 

Figure 25- Schematic of system for heating 

 

 

Figure 26-Schematic of system for cooling 
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M represents the lumped system that contains the temperature of interest (spindle or 

slide), Q represents the heat into the mechanical system and Q* the heat out of the 

mechanical system. T represents the heat that does not make it to the mass because of the 

environment and T* represents the heat into the environment after it is transferred into 

the lumped system M. The heating process includes a heat source that sheds some heat 

into the environment before it reaches the lumped mass. The heat that is conducted into 

the mass is then transferred to the environment. The cooling process involves the heat 

source Q to terminate and thus the “stored” heat in the lumped mass M dissipates into the 

environment. So in the first case there is a heat source that transferred some of its heat to 

the lumped mass, M while in the second case Q is equal to 0 and the heat stored in the 

mass is dissipated into the environment. This explains why bw will differ from bc. 

The experimental setup basically involved placing a thermal couple in locations 

of interest around the machine. More specifically, a T type thermal couple was connected 

to a DAQ board, which in turn was connected to a computer where LabView ™ was used 

to collect temperature data. This data was then stored in a personal computer file. A 

temperature reading was recorded every second while the machine was warmed up then 

cooled down at the termination of the warm up period. The locations of interested are 

shown in the following figures. These locations were chosen because they develop the 

thermal behavior of the machine most accurately. These locations also contributed the 

most to the thermal change of the machine. 
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Figure 27- Thermocouple placed on the spindle housing 

 
 

Of course the thermocouple could not be placed on rotating portions of the spindle. 

Therefore, it was placed as close as possible to the rotating elements of the spindle 

(reference Figure 27). The experimental spindle speed was chosen to be 1000 rpm.  Also, 

the spindle speed does not influence the thermal time constant (the time constant 

represents the amount of time it takes a system to reach a certain percentage of a final 

value). Varying the spindle speed varies the temperature range; however it does not vary 



 46   

the time to reach a percentage of its final value. Temperature data was collected while the 

spindle was at a speed of 1000 rpm for four hours. The spindle was then stopped, 

commencing the cooling period and cooling data was then collected. This experiment 

was repeated several times and the average of the values were plotted in Matlab™. The 

program cftool was used to fit a curve to the data. This program required a type of fit to 

use with the data.   

Due to the nature of the experiment, the sampling rate chosen was 1 Hz. The 

actual temperature would not fluctuate significantly between data points at this sampling 

rate. Unfortunately there was a large amount of noise in the system.  An oscilloscope was 

used to determine the source of the noise. When the thermocouple was hooked directly to 

the oscilloscope the reading was a clean tight signal that did not fluctuate as significantly 

as the signal in Labview™. Thus, the electrical noise must be located in the A/D card. 

The oscilloscope was used to verify this.  

Temperature data were acquired for the spindle using a low pass filter. The 

following figure shows warm up and cool down data with the respective curve fits for 

1000rpm spindle speed. 
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Figure 28- Warm up and cool down data of the spindle for 1000 rpm 

 
 

 
(5.3) and (5.4) represent the warm up and cool down temperature versus time for the 

spindle respectively: 

 54.599.913 1 67.64
t

warmT e
− 

= − + 
 

 (5.3) 

 

 81.979.91 68.05
t

coolT e
−

= +  (5.4) 
 
 

Therefore, it takes the machine 54.29 minutes to achieve 62.5% of thermal steady 

state and 81.97 minutes to achieve 62.5% of the steady state temperature on cool down.  



 48   

 The previous text described the thermal behavior of the spindle. The following 

text will conclude the thermal analysis of the machine tool with results of temperature 

data collected from the z and x axis slides. These are two very important points of 

thermal interest because they dominate the thermal behavior of the machine tool. Figure 

29 shows the location of the thermal couple for the z axis.  

 

 

Figure 29- Location of thermocouple for the z-axis 

 
 
The data collection scheme followed the same process as that for the spindle temperature 

data collection. Of course in this case the feedrate was varied, which is synonymous to 
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the spindle speed in the spindle temperature data collection.  The following figure shows 

the thermal behavior of the z-axis for a feedrate of 2.54 m/min (100 in/min). 

 

 

Figure 30-Warm up and Cool down behavior for the z-axis (f=2.54 m/min) 

 
 

(5.5) and (5.6) represent the warm up and cool down temperature versus time for the z 

axis slide respectively:  

 92.596.12 1 64.53
t

warmT e
− 

= − + 
 

 (5.5) 

 

 95.245.01 65.28
t

coolT e
−

= +  (5.6) 
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The time constants for warm up and cool down are 92.59 minutes and 95.24 minutes 

respectively. 

 The cross slide was much more difficult to locate a point of thermal interest that 

was accessible. The ball screw and bearing for the x-slide were in a location that 

prohibited a thermal couple to be properly mounted.  
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CHAPTER VI 

BALL BAR RESULTS 

Experimental Results-Ball Bar 

The ball bar system was used according to the aforementioned protocols.  The 

part program used in conjunction with the ball bar system caused the ball bar to rotate 

two complete revolutions at a federate of 39.37 mm/min in two directions. Thus, the ball 

bar was feed in from an initial position and then rotated counterclockwise for two 

rotations. The ball bar was then feed out and feed in again for a clockwise rotation to 

occur for two revolutions. Figure 31 and Figure 32 show the results of the ball bar 

experimental tests via Renishaw’s software application. The cold state means the ball bar 

was used a significant amount of time after the most recent use of the machine tool. 

 

 

Figure 31- Ball Bar Errors for cold state 5µm/div 
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The term hot state means that the machine tool was warmed up so that it achieved 

thermal steady state. The manner in which the machine tool was warmed up is that the 

spindle was turned on for 2 hours at a speed of 1000 rpm (which corresponds to the 

thermal analysis that suggest thermal steady state will be achieved at this point). Figure 

32 shows the results of the ball bar for thermal state. 

 

 

 

Figure 32- Ball Bar errors for hot state (5 µm/div) 

 

 

Ball Bar Compensation Case Study 

A case study was conducted during this research.  A question was raised to 

suggest that the ball bar data could be used solely to correct for an arc made by the 
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machine tool from 0 o to 90o. More generally speaking, could the error measurement from 

the ball bar significantly compensate the actual tool path to the desired tool path? Thus, 

the errors from the ball bar results in Figure 31 were obtained. This data were used to 

create offsets at each sample point. This would ideally cancel out the error at each point 

however the ball bar results are not absolutely repeatable. The following schematic in 

Figure 33 shows the hypothetical tool paths. 

 

Figure 33 Schematic of tool paths 

 

The desired tool path is known along with a good approximation of the actual tool path 

(from the ball bar system); therefore a compensated path was constructed. The following 

equation describes this construction at each point P along the tool paths. 

 Compensated desired ActualP P P= −  (5.7) 
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Each data point was properly offset to created compensated data. The data was then fit to 

a new circle using MetroloGT and used to create a new Gcode using the alter radius and 

center.  

 

 

Figure 34- MetroloGT circle fit for 0 o to 90 o 

 

Essentially, the center point of the arc was shifted to the center of circle fit in MetroloGT 

and the new radius was altered in the Gcode. The ball bar system was used again with the 

compensated code. The polar plot of the nominal, original and corrected tool path is 

shown in Figure 35. 
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Figure 35- Results of Case Study for the first quadrant 0.05mm/div (CW direction) 

 
 

Figure 35 clearly demonstrates that the compensated tool path marginally corrects the 

machine tool errors. The root of the sum of the squares of the errors for the original data 

and corrected data were also taken to shown the improvement in machine tool errors.  
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The magnitude of the error for the original data from 0 o to 90 o was 1.6658 mm and for 

the compensated data 0.284 mm. 
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A series of ball bar tests were conducted with the uncompensated part program to 

verify the repeatability of the test.  The four tool paths are plotted with the nominal tool 

path in Figure 36. 

 

 

Figure 36- Repeatability of ball bar tests 

  

The next step was to try to compensate the tool path for a complete circle. Again, 

the data from the original ball bar test was used to construct a compensated tool path. 

This time the tool path was constructed via different modes. These modes consisted of 

fitting the compensated tool path to a circle; to two half circles; and finally four quarters 

of a circle. These modes are discussed in sequential order. The x and z components of the 
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compensated tool path was imported into MetroloGT. A circle was fit to this data and the 

ball bar was manipulated to move with the new origin and radius. These results are 

shown in Figure 37. 

 

 

Figure 37- Results for circle fit (.1mm/div) 

 
 
This plot shows that the compensated path follows the nominal much closer then the 

original actual tool path. The actual tool path is off center and of an incorrect radius. In 

reference to Figure 31, it is evident that the first and second quadrants of the graph 

contain mostly negative errors while the third and fourth quadrant contains mostly 

positive errors. Therefore, it would be more accurate to fit two half circles (or 180o arcs) 
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to the data in MetroloGT and use the result to construct the compensated tool path. The 

results of this are shown in Figure 38. 

 

 

Figure 38- Results for two semi-circular fit (.1mm/div) 

 
 
The final mode consisted of taken the original data for each quadrant and “piecing” 

together a compensated tool path from each quadrant into a circle. For example, the 

errors from the first quadrant were used to fit a 90o arc which was pieced together with a 

fit of a 90o arc in the second quadrant and so on. The results are displayed in 

 



 59   

 

Figure 39-Results for 90 degree arc fit (.1mm/div) 

 

 

The results of the fitted data from MetroloGT are displayed in Table 5. 

Table 4- Coordinates of results of curve fit modes 

Mode Quadrant X (mm) Z (mm) R (mm)
Original 0 0 100

1 0.0291 0.0865 100.0080
2 0.0057 0.0815 100.0110
3 0.0104 0.1100 100.0200
4 0.0215 0.1000 100.0100

1 and 2 0.0175 0.0733 100.0240
3 and 4 0.0131 0.1100 100.0220

Circle 1,2,3,4 0.0153 0.0930 100.0110

90 degree arcs

180 degree arcs
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The previous figures display the compensated, actual, and desired tool path for each data 

fitting mode, however a quantitative assessment was required. The root of the sum of 

squares of the error provided this assessment.  Table 5 shows the root of the sum of the 

squares of the errors for each fitting mode along with the errors for the original 360 

degree data. 

 

Table 5- Results of different compensation modes 

Root of Sum of 
Squares (mm) 

Percent Improvement 

Original Errors 2.70 - 
Circle 0.35 86.86 
Hemi 0.22 91.78 
Quad 0.28 89.49 

 

Table 5 concludes that the best way to construct the compensated tool path was with two 

semicircles.   

The robustness of the software compensation was required to verify the results. In 

other words, the machine was manipulated to reach thermal steady state (using results 

from the thermal section of this text), and then the same compensation scheme was 

applied. The spindle was run at 1000 rpm for two hours and a ball bar test was conducted 

with the compensated coordinates. Figure 40 shows the consequences of the first 

quadrant after steady state is achieved. 
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Figure 40 Results of compensated quadrant 1 for robustness CW (.05mm/div) 

 
 

Thus, the compensated tool path was more accurate then the actual tool path even when 

the machine is at thermal steady state. Furthermore, the root of the sum of the squares of 

the errors for the compensated tool path (0.233mm) is nearly 5 times smaller then the 

actual tool path (1.139 mm). In order to verify the robustness of the other quadrants a 

compensated tool path using the semi-circular fits were used.  Figure 41 shows the results 

of using the ball bar compensated tool path at a warmed up machine tool state. 
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Figure 41-Results of semi-circular fit for robustness 

 

Finally, the root of the sum of the squares of the errors for the actual tool path and 

compensated tool both was 1.998 mm and 0.732 mm respectively.  

The results from this case study were then applied to the test part. The original 

ball bar program used for the previous section required a radius of 100mm. The test part 

required a radius of 31.75 mm (1.25) inch to be cut, while the ball bar followed a radius 

of 100 mm (3.937 inches).  Therefore a ratio of the radii was used to construct a 

compensated tool path for the test part.  Essentially, the original ball bar program 

measures the machine tool error over a 100 mm range for each slide. Thus, the x-slide 

travels 100 mm and the z-slide 100 mm. A 31.75 mm circular profile requires each slide 
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to travel over a range of 31.75 mm. Therefore, the ratio of the distance the slides moved 

in the original ball bar test to the distance the slides move in the test part will be used. 

Figure 42 demonstrates the concept of this ratio.  

 

 

Figure 42- Demonstration of Ratio from Ball Bar test program to test part 

 

A circular profile was cut with the original tool path for one part, while the other 

part was cut with the compensated tool path. A CMM was used to verify the results 

which are discussed in Chapter VIIII. 
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CHAPTER VII 

INTERFEROMETER RESULTS 

Linear Results 

 
The accuracy of a machine tool is generally defined by the errors involved in the 

movement of the positioning axes.  An HP5529A laser interferometer was used to collect 

data for linear displacement along the x and z-axis. The optical setup used for the z axis 

linear measurement is shown in Figure 43. 
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Figure 43- Optical setup used for Z-axis linear measurements 

 

An explanation of the coordinate reference frame is required. When the tool turret 

moves down and moves left in Figure 43 it moves in the negative z direction and negative 

x direction respectively. This is the convention used when relating the experimental 

results to the coordinates of the work volume.  Also for z linear measurements, (for the 

sake of this section) the turret always starts at an aforementioned initial position on both 

axis and then undergoes motion away from the spindle as shown in Figure 44.   
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Figure 44- Initial Position location of laser interferometer measurements 

 
 

The linear results consisted of a long range and short range test. The short range had a 

higher resolution closer to the potential workpiece volume while the long range had less 

resolution, but over a longer range.  The long range provided a trend over a greater 

distance, while the short range provided a more accurate description near the potential 

work volume.  The tool was moved in along the z axis in 6.35 mm (0.25 inch) increments 

over a distance of 177.8 mm (7 inches) for 3 cycles. The results for each run are shown in 

Figure 45.  
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Figure 45- Results of linear Z-axis measurements for 177.8 mm (7 inch) travel 

 

A short range measurement along the positive z-axis was made consisting of 12.7 mm 

(0.1 inch) increments over 50.8 mm (2 inches) of travel. The initial position of the tool 

turret was at    -127 mm (-5 inches) which corresponds to 0 on the plot in Figure 46. 
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Figure 46- Results for linear Z-axis 50.8mm (2 inch) travel 

 
 

The same method was used for x axis linear measurements. The starting position of the 

tool turret was at 0 then moved under diametric notation to -228.6 mm (-9 inches)  (thus 

from right to left for 114.6 mm (4.5 inches)).  
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Figure 47- Results for linear X-axis 114.6mm (4.5 inch) travel 

 
Figure 48- Results for linear X-axis 50.8mm (2 inch) travel 
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Figure 45 and Figure 46 showed the z linear positioning error while Figure 47 and 

Figure 48 showed the linear positioning error of the x-axis. The magnitude of the z-axis 

linear errors is on the order of .01 mm while the order of the x-linear positioning errors is 

on the order of .05 mm for a travel of 25.4 mm.  This relative magnitude of the z linear 

errors being twice as large as the x linear errors is in correlation with the machine tool 

specifications. These linear plots also suggest that the machine tool does not reach the 

desired position when the travel of the tool is in the direction to the spindle. There is also 

a sinusoidal behavior in the previously mentioned plots. The phenomena behind this are 

owed to the ball screw pitch of 11.93 mm. The pitch is the amount of linear motion 

traveled by the lead screw for ever rotation of the ball screw. Thus, the period of the plots 

is equal to the pitch of the ball screw. This phenomena is evident for each error 

measurement, therefore the following figure is provided to show this behavior 

graphically.  

 

 

Figure 49- Illustration of ball screw pitch affect on linear motion (Slocum, 1992) 

 

The actual displacement of the nut relative to the screw shaft is the actual travel and e is 

the maximum width of variation due to the pitch of the ball screw.  
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Straightness Results 

The next set of experiments yield straightness results for the x and z axis which is 

the ability of the machine to move along an axis of interest, in this case the x and z axis. 

Straightness is the deviation from true straight-line motion. Just to re-iterate, the machine 

of interest is a 2-axis lathe, therefore straightness in the x and z direction with respect to y 

is neglected because the y-axis can not be compensated for and thus is considered 

insensitive. Figure 50 shows the optical setup for vertical straightness along the x axis. 

 

 

Figure 50- Optical Setup for X-straightness in the vertical direction 

 

Unfortunately, the optical setup shown in Figure 50 allowed for machine vibration to 

drastically affect the results of the measurement. In this configuration the reflecting 
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mirror is mounted on a thin wall that is susceptible to vibration. There for the optical 

configuration in Figure 54. 

 

Figure 51- Optical Configuration for vertical X-axis straightness 

 

Figure 52 shows the results of the vertical straightness along the x axis. The initial 

position translates to the machine tool origin and a positive error corresponds to motion 

of the x-axis along the positive z-axis.  
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Figure 52- Vertical X straightness Results for 76.2 mm (3 inch) travel 

 

There is sinusoidal behavior in the plot in Figure 52 due to the periodicity of the ball 

screw. The pitch of the ball screw is 11.94 mm (0.47 inches). Figure 53 shows the 

vertical X straightness results for 25.4 mm (1 inch) of travel. 
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Figure 53-Vertical X straightness results for 25.4 mm (1 inch) travel 

 

Similarly, the optical setup for the horizontal straightness along the Z-axis and the 

results are illustrated in Figure 54 and respectively. A positive error corresponds to the 

positive x-axis. 
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Figure 54- Optical configuration for horizontal straightness along the Z-axis 
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Figure 55- Results of horizontal straightness along the Z- axis 50.4 mm (2 inches) 

 

The magnitude of the z straightness errors is about 0.0005 mm and for x straightness 

errors of about 0.0006 mm for the same range. Referring back to the linear displacement 

errors, the straightness errors are about 10 times smaller in magnitude. The straightness 

errors are also smaller then the minimum input increment of the controller (0.0254 mm). 

Therefore the straightness errors will not play a significant role in the HTM error 

compensation. 

 

 

 
 

Angular Results 

 Finally, the laser interferometer and proper optical configurations were used to 

measure the yaw along the Z axis and the pitch along the X axis. Once again, a short 
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range and long range test were conducted for the same reasons as the linear 

measurements.  The configuration for the pitch along the X axis is shown in Figure 56 

(the same configuration for yaw along the Z is used, however rotated 90o). 

 

 

Figure 56- Optical configuration for pitch along the X-axis 

 

 

The results for the pitch along the x axis for short range (50.4 mm (2 inches) starting at -

203.2mm (-8 inches) to -304.2 mm (-12 inches) in terms of the machines co-ordinates) 
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and long range (152.4mm (6 inches) diametrically from 0 to 304.2 mm (-12 inches)) are 

shown in Figure 57 and Figure 58 respectively. The x-axis of the plot corresponds to the 

x-axis of the machine tool and a positive error corresponds to a counterclockwise rotation 

in the xz plane.  

 

Figure 57- Results of pitch along the X axis for 50.4 mm (2 inch) range 
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Figure 58- Results of pitch along the X axis for 152.4mm (6 inch) range 

 
 

The magnitude of the X-axis pitch errors is on the order of 0.01 degrees with 0.04 

degrees being the maximum. The largest travel for the angular measurement was about 

160 mm.  The amount of travel for 25.4 mm will provide an angular error of about 0.005 

degrees. A quick calculation to determine the severity of these errors is as follows: 

 *sin( ) 25.4*sin(0.005) 0.0022l mmδ θ= = =   
 
The minimum input increment is 0.00254 mm; therefore the angular errors are on the 

order of being negligible by the HTM compensation program. The same deduction 

follows for the Z-axis yaw. 

The results for yaw along the z axis for short range (50.4 mm from -127 mm to -

177.8 mm) and long range (177.8 mm from 0 to -177.8) are shown in  
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Figure 59- Yaw along the Z-axis for 50.4 mm (2 inches) 

 

 
Figure 60- Yaw along the Z-axis for 177.8mm (7 inches) 
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Discussion of Interferometer Data 

The interferometer data exhibit certain behavior. For example, the 3 trials were 

conducted away from the spindle and 3 trials towards the spindle. A systematic error was 

present in the error measurement results. This hystersis was highly reproducible and has a 

sign depending on the direction of approach. It is clear that backlash is causing the offset 

between the trials away from the spindle and the trials toward the spindle. Backlash is 

evident at the contact surface of the ball screws that have a pre-load. Thus the direction of 

the measurements affects the interferometer data.  It is important to notice the magnitude 

of each individual machine tool error.  The linear displacement errors dominate the 

machine tool errors. The z linear displacement errors cause the largest machine tool 

inaccuracies. This can be compared to the specifications of the machine which are 0.0153 

mm (0.0006 inches) and  0.0229 mm (0.0009) inches in the x and z axis positioning 

respectively. The repeatability of the x-axis and z- axis is ±0.00255 mm (±0.0001 inches) 

and ±0.0051 mm (±0.0002 inches) respectively. The machine tool is less accurate in the 

z-direction due to the design of the machine. The z-axis holds the tool turret and the x-

slide. The z-slide (50.04mm) also has a different ball screw diameters then the x-slide 

(39.89mm) causing the differences in positioning accuracy. The straightness and angular 

errors are on the order of being neglected by the HTM compensation because the 

minimum input increment of 0.00254 mm is close to the magnitude of these errors. There 

was also sinusoidal behavior due to the ball screw pitch as previously explained. 
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CHAPTER VIII 

ERROR COMPENSATION  

Homogenous Transformation Matrix 

The machine tool errors measured in the previous section were implemented into 

an error compensation scheme.  A homogenous transformation matrix (HTM) et al 

Donmez (1986) provides a coordinate transformation to between two coordinate systems. 

Donmez provided a generalized approach to develop this HTM.  This paper developed 

the error model for a two-axis turning center. In this case, a homogenous transformation 

transformed the actual tool path to the desired tool path using the machine tool errors. 

(8.1) shows the generic form of such a matrix. 
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y y y y
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 
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 (8.1) 

 
The first three columns represent the orientation of a coordinate frame with 

respect to a reference frame. The last column corresponds to the position of a coordinate 

frame with respect to the coordinate reference frame. Ps is a scale factor which was set to 

unity for this research.  A general homogenous transformation matrix is of the following 

form. 
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(8.2) describes the relative rotation and translation between two coordinate frames. An 

appealing feature of the HTM is that it can be applied in series with respect to several 

different coordinate reference frames to achieve a resultant HTM. 

The HTM is applied to the machine slides of the two axis vertical lathe. The 

following figure describes the axis of the machine tool of interest. 

 

Figure 61- Coordinate frame nomenclature for machine tool (Courtesy of Donmez) 
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The carriage translates along the z-axis and the cross slide translates along the x-axis; 

therefore, an error matrix is generated for each (then applied in series to get a resultant 

transformation matrix).  

 
 

  
 

 

Figure 62- Roll, Pitch and Yaw associated with the x axis (Courtesy of Donmez) 

 
 

Figure 62 demonstrates the rotational and translational errors of the carriage slide 

traveling along the z-axis. The total error motion of a slide is a combination of a rotation 

and a translation.  The rotational error has three components about the three orthogonal 
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axes.  These are known as roll, pitch and yaw. The general form of the rotational error 

matrix with assumption of small angular errors is 

 

1 0
1 0

1 0
0 0 0 1

z z

z x
rot

y x

T

ε ε
ε ε
ε ε

− 
 − =
 −
 
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 (8.3) 

 

where xε the rotational error about the x-axis is, yε  is the rotational error about the y-axis 

and zε  is the rotational error about the z-axis.  

The translational error along the x axis in the z- direction is shown in Figure 63 

 

 

Figure 63- Schematic of straightness motion along each axis (Kurfess) 

 
 
and described by (8.4) 
 ' ( )x Zx zδ δ=  (8.4) 
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where ' ( )Zx zδ  is the straightness along the z-axis. This straightness error is a function of z 

as it changes when the slide moves along the z-axis. The translational error of the 

carriage along the z-axis is z∆ . (8.5) represents the translation error matrix for the 

carriage.  
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 (8.5) 

 
 
The carriage contains a rotational error known as the z axis yaw, xε .  Yaw is the 

rotational error of the slide around the axis perpendicular to the plane in motion. Setting 

all the other rotation errors in (8.3) to zero and multiplying in series with (8.5) yields 
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The actual position of the carriage is: 
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 (8.7) 

 
 

The actual position of the cross slide was constructed using the errors along the x-axis. 

The cross slide is restricted to motion along the x-axis. The same manner that was used 
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for the carriage was used for the cross slide. The translational error along the z axis is a 

function of the x-axis position and is presented in (8.8) 

 

 ' ( )z Xz xδ δ=  (8.8) 
 
 

where ' ( )Xz xδ  is the z straightness along the x-axis. The x-axis pitch, zε  was substituted 

into (8.1). (8.9) represents the error matrix of the cross slides. 
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Using (8.9) the actual position is 
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The actual position of each slide has been found. The total error matrix can also be found 

be multiplying in series (8.6) and (8.9) 
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Implementation of the HTM 

A Matlab™ program was created to transform each point of the actual tool path to 

the desired tool path using (8.7) and (8.10). The desired parameter is the coordinates of 

the compensated tool path. The coordinates of the actual tool path can be found using 

(8.11) 
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 (8.12) 

 
 

where the xd and zd are the desired coordinates of the tool path respectively. The 

compensated tool path coordinates can be found. 

 

 compensated desired actualP P P= −  (8.13) 
 
 

Once the compensated tool path is known, an expression can be created to represent this 

data and then finally implemented into the machine tool. This expression for the 
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compensated path was divided into three segments. Each of the three segments contained 

a different machining operation: a turn, a face, and a circular profile. A test part was 

created to evaluate the compensated tool path for each of these tool paths (which are 

discussed in the next chapter).  The profile of all three segments in combination is shown 

in Figure 64. 

 

 

Figure 64- Nominal tool path of test part 

 
 

 

 A more detailed explanation of incorporating the errors found using the laser 

interferometer into the error matrix. The laser interferometer was used to take samples at 



 90   

an interval of 2.54 mm (for short range). These errors must be accurately correlated to the 

points along the circular arc, as shown in Figure 65.  

 

Figure 65- Mesh overlay of circular profile 

 

The errors were measured parallel to the x axis for x measurements and z-axis for z 

measurements. For example, the errors at x= 2.54 mm (0.1inch) and z= 2.54 mm (0.1 

inch) (the first increment) can not be directly used to transform the first point of the 

circular arc. Likewise, the errors at point A are known, however the errors of point B are 

required. Thus the Cartesian coordinates of the errors found using the laser interferometer 

must be transformed to polar coordinates of the circle. Table 6 presents the errors along 

the 25.4mm (1 inch) arc.  This data was converted to appropriate coordinates along the 

circular arc. Linear interpolation was used to find the errors in .254 mm increments. This 
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generated more points that were used for shape fitting and the errors more accurately 

match the coordinates of the circular arc.  

Table 6 Machine error results from interferometer test 

 

 

These errors were then implemented into (8.11) at each increment along the arc using 

Matlab™. The coordinates of the compensated path were then determined using  (8.13).  
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Figure 66- Actual and Corrected tool path for circular profile of  25.4 mm (1 inch) radius 

 
 

Figure 66 shows the actual and compensated tool paths using the calculated coordinates 

from the Matlab™ program and aforementioned equations. The tool paths were 

magnified ten times in order to show the differences between the respective tool paths. 

The coordinates from the compensated tool path were used in MetroloGT to fit a circle. 

This Matlab™ program used a non-linear least squares fit.  This type of fit minimizes the 

normal distance of the point cloud points to the fit. The results of the circle fit using 

MetroloGT is in the first column of Table 7. 
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Table 7- Results of Circle Fit 

 

Interferometer Ball Bar
X (mm) 0.0051 0.0074
Z (mm) 0.0057 0.0220
R (mm) 25.3958 25.4021  

 
The results from the circle fit were then implemented via G-code. The results for the 

HTM were then converted (using the aforementioned ration in Chapter V) in order to use 

the ball bar system to validate the trajectory of the compensated test part. 

 

Figure 67- Comparison of Ball Bar compensation path and HTM compensation path (0.05mm/div) 
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Figure 67 compares the compensated tool path for the ball bar and HTM.  The root of the 

sum of the squares error for the actual, HTM compensated and Ball Bar compensated tool 

path is 2.7 mm, 0.508 mm, and 0.285 mm respectively.  The ball bar compensated tool 

path is more accurate then the HTM compensated tool path. This was expected because 

the ball bar system directly measures the machine tool’s accuracy in following a circular 

tool path. The ball bar compensated program used the ball bar system data. The HTM 

compensated tool path is less accurate because estimation was used to correlate the 

interferometer increments to a circular profile. In addition, the HTM compensated tool 

path is more accurate then the actual tool path.  This concludes the compensated tool path 

construction for the arc.  

The other two machining operations consisted of facing off and turning by 25.4 

mm (1 inch). The short range errors closest to the work volume were used for the error 

matrix, E. The actual tool path and corrected tool path for the facing is shown Figure 68. 
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Figure 68- Actual and Corrected tool path of 25.4 mm (1 inch) face 

 
 

The corrected tool path coordinates are presented in Table 8. 

Table 8- Coordinates of actual and compensated tool path for facing and turning 

X Comp 
(mm) 

Z Comp 
(mm) 

X actual 
(mm) 

Z actual 
(mm) 

0 0 0 0 
0.0008 2.537 -0.0008 2.543 
0.0005 5.0767 -0.0005 5.0833 
-0.0005 7.6165 0.0005 7.6235 
-0.0013 10.1562 0.0013 10.1638 
-0.0015 12.6957 0.0015 12.7043 
-0.001 15.2357 0.001 15.2443 
-0.0015 17.776 0.0015 17.7841 
-0.0025 20.3158 0.0025 20.3243 
-0.0036 22.8558 0.0036 22.8643 
-0.0033 25.3948 0.0033 25.4053 
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The compensated initial position and final position of each corrected tool path will be 

implemented into the G-code to create a more accurate facing. Similarly, the 25.4 mm 

turn is shown in Figure 69.  

 

 

Figure 69-Actual and Corrected tool path for 25.4 mm (1 inch) turn 

 

The compensated tool path shown in Figure 69 was implemented into the part program to 

correct the actual tool path. Simple G01 commands (linear travel) were used on a point to 

point basis every 2.54mm to generate the compensated tool path. 
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CHAPTER VIIII 

VERIFICATION 

Coordinate Measurement Machine (CMM) Results of Test Parts 

Several test parts were cut to verify the performance of the compensated tool path 

for both the laser interferometer and ball bar respectively. These test parts consist of a 

31.75 mm (1.25 inch) circular profile, a 25.4 mm (1 inch) turn and 25.4 mm (1 inch) 

facing separately. The CMM was used to determine the accuracy of the machined parts to 

an ideal CAD model. The volumetric accuracy of the CMM is 0.01 mm and the diameter 

of the probe used is 2mm (.0787 inches).  A calculation was done to compare the surface 

roughness of the part to the diameter of the ball on the CMM. The purpose of this is to 

show that the probe of the CMM is not detecting the surface roughness which would 

cause an inaccuracy in the test part measurement. From Liang (2004) the peak to valley 

surface roughness of a part produced by a single point cutting tool with a finite-radius 

nose cutter is  

 

 ' ' ' 3 ' 2 4 '(1 cos( )) sin( )cos( ) 2 sin ( ) sin ( )t r r r r rR K R f K K fR K f K= − + − −  (9.1) 
 

where '
rK the minor cutting edge angle and f is the feed. The radius of the nose of the tool 

is 0.792 mm (0.0312 inches) with a 5o minor cutting edge angle and the federate used was 

0.2032 mm (0.008 inches). Thus the peak to valley surface roughness is 



 98   

 
3 2 4(1 cos(5 ))*.0312 .008*sin(5 )cos(5 ) 2*.008*.0312*sin (5 ) .008 *sin (5 )o o o o o

tR = − + − −
  

0.00615 0.000242tR mm in= = . 
 

this is less then 1mm. Therefore it is expected that the CMM will not detect the surface 

roughness of the part. Furthermore, Figure 70 displays the comparison of the touch probe 

ball of the CMM to the surface finish of the part. 

 

 

Figure 70- Schematic of surface roughness (not to scale) 

 
 

The concern is that if ∆R is smaller the Rt, the CMM will detect the surface finish of the 

part.  For example, the desire of the CMM measurement is to give equal values for point 

A and point B. The CMM will not detect the surface finish if ∆R is much bigger then Rt. 

A 

B 
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The radius R of the touch probe sphere is 1mm. The feed f is 0.2032 mm and Rt from 

(9.1) is 0.00615 mm.(9.2) determines the value of Y: 

  

 
2 2

2 2 .2051 0.9788
2 2
fY R mm   = − = − =   

   
 (9.2) 

 
 

∆R is  

 1 .9788 0.0212R R Y mm∆ = − = − =  (9.3) 
 
which is about 3.5 times larger then the peak to valley surface finish Rt. Thus, ∆R is 

much larger then Rt. Therefore the spread in the CMM data is not from the surface finish 

of the part.  The source of this spread was proved in Figure 74. 

Figure 71 shows the geometry of the first test part, a 31.75 mm (1.25 inch) 

circular profile. 
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Figure 71- Ideal geometry of test part, radius is 31.75 mm (1.25inches) 

 

The requirement of the test part was to exploit the errors in the machine tool when 

creating a 90 degree arc. The radius needed to be large enough for the compensated part 

program to be significant (the results from the 25.4 mm radius were proportioned to a 

31.75mm). A radius of 25.4 mm was initially used, however the difference between 

compensated and uncompensated parts were not significant. The controller only has a 

resolution of 0.00254 mm (0.0001 inches), thus a radius of 31.75mm was selected. The 

“clearance” on the side of the part provides a datum for the CMM to reference the cut 

parts to. Three parts were cut on the machine tool using the geometry shown in Figure 71. 

The first part represents the original part program without any compensation. The other 

two parts used different coordinates and radius for the arc determined from HTM 

compensated data and ball bar compensated data respectively. Once the parts were cut 

Clearance for 
CMM 
measurements 
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they were inspected using the CMM. The CAD part was imported into the CMM 

software to provide an ideal value at each increment (which was 0.254 mm). The radial 

errors are plotted versus the angle at which data were taken. The convention of the angle 

is shown in Figure 72. 

 

Figure 72- Angle Convention for CMM plots 



 102   

 

 
Figure 73- CMM results for test parts (0.01 in increments) 

 

 

The results from the CMM inspection for each mode are shown in Figure 73. The CMM 

results show that the ball bar and HTM compensated tool path produced a more accurate 

part then the uncompensated part program. This was expected since the ball bar 

measurement system was used to verify the actual trajectory of each part program. The 

compensated part programs have positive errors from the first 45 degrees of the circular 

profile, and then switch to negative errors (smaller radius) for the last 45 degrees of the 

circular profile. The magnitude of the error for uncompensated part exceeds 0.04 mm, 

while the magnitude of the error for the compensated parts is on the order of 0.05mm.  
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There is some spread in the data of each of the plots in Figure 73.  The calculation 

made in (9.1) rules out that the surface roughness of the part could cause this spread. 

Another possibility for the spread in the CMM results is due to the resolution of the 

CMM. Therefore a test was conducted on the CMM involving a precision sphere of 

radius 9.52 mm. The CMM probe was brought into contact of the sphere and data was 

taken at 0.0254mm increments from 0 to 90 degrees. The results of this test are shown in 

Figure 74. 

 

Figure 74- Test using precision sphere to verify accuracy of CMM 

 

Figure 74 shows the errors of the precision sphere. The error band is about 0.005 mm 

over this volume. Therefore the results of the CMM data for the test parts are to within ± 

0.005 mm. 

The ball bar tests provided an accurate measurement of the trajectory of the tool 

path.  The CMM provided an accurate measurement of the cut test parts. These two 



 104   

elements were used to compare results for uncompensated, HTM compensated and ball 

bar compensated test parts. The nomenclature in the following text can get confusing. 

There is a ball bar system that determined the trajectory of the tool path for each part 

program. There is also a ball bar compensated test part. This means that the compensated 

part was derived from the ball bar error results initially found. The machine tool errors 

found from the ball bar test was compared to the CMM results of the uncompensated test 

part. 

 

Figure 75- Comparison of errors found from ball bar test to CMM results for uncompensated part 

 

The ball bar and CMM results differ due to several factors. The main factor is that the 

ball bar measured a trajectory of the tool path for a radius of 100mm. The ball bar test 

rules out any tool offset error and only determined errors in the machine slides (thus 
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spindle errors or cutting errors are not taken into account). The results of this ball bar test 

were scaled down from 100mm to 31.75mm (the ratio was used) and compared to the 

CMM results. The CMM measures the actual cut part that can absorb tool offset error and 

spindle errors.  

The tool offset error derives from the initial set up of the work piece in the 

machine tool. An estimate is used to tell the machine where the tool tip is in relation to 

the center of the spindle. The workpiece is rotated while the machine tool tip is brought 

into the workpiece in the x-direction. The material is removed until a proper surface is 

created along the z-axis with constant x distance. A Vernier caliper is then used to 

measure the diameter of the workpiece. The caliper measurement could cause deviations 

in the true x-offset. The reason is that the caliper may not find the correct “sweet” spot on 

the workpiece. This position is the maximum diameter of the workpiece and is then input 

into the machine tool. The measured workpiece diameter (twice ∆x) in conjunction to the 

x position of the tool along the edge of the workpiece is the x-offset. 

 The following figure illustrated this process. 
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Figure 76- Illustration of x-offset 

 
 

The CMM data is less stable then the ball bar data due to the nature of the 

different metrology measuring instruments. The ball bar uses an LVDT with a resolution 

of 0.1mm and accuracy of 0.5 µm, while the CMM has a resolution of 0.01mm and 

accuracy of 0.001 mm.   

Like wise the machine tool errors found from the ball bar test was compared to 

the CMM results when the ball bar compensated part program was used. 
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Figure 77- Comparison of errors found from ball bar test to CMM results for ball bar compensated 
part 

 

 

Of course, ideally the CMM results and Ball Bar Results in Figure 77 should overlap; 

however, they are in close proximity to each other. The results differ for the same reasons 

explained in the uncompensated test part.  Finally, the ball bar test results were compare 

to the HTM compensated part program. The result of this test was compared to the results 

of the CMM. 
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Figure 78- Comparison of errors found from ball bar test to CMM results for HTM compensated 
part 

 
The offset between the ball bar test results and CMM results are due to machining errors. 

The part may have been inaccurately cut due to the x tool offset. The root of the sum of 

the squares of the errors were taken for each case and presented in Table 9. 

 

Table 9- Root of sum of squares of the errors for each case 

Type Root of Sum of Squares of Errors (mm) Percent Improvement
Uncompensated 0.3909 -
HTM Compensation 0.0554 85.82
Ball Bar Compensation 0.0617 84.20  

 

The ball bar and HTM compensated tool paths improved the accuracy of the test part as 

expected from the results of the ball bar system.  The HTM compensated tool path is 



 109   

slightly different from the Ball bar compensated tool path.  The HTM uses highly 

accurate laser interferometer measurements over a range that most closely resembled the 

workpiece volume.  The ball bar measured the errors of the machine 100 mm away from 

the work volume. Therefore, errors that were present at 100 mm away were applied to the 

workpiece (even though these errors were scaled down by the ratio of radii).  

Furthermore, the ball bar compensated tool trajectory is more accurate then the HTM for 

a 100mm radius, however this may not be the case for the 31.75mm. 

 Figure 67 shows the tool path trajectory of the HTM compensated path using the 

ball bar system. This HTM compensate trajectory is less accurate then the ball bar 

compensated trajectory. Therefore it is intuitive to think that the ball bar compensated test 

part is more accurate then the HTM compensated test part. The trajectories are both 

scaled down (using the ratio of the radii) and compared to the CMM results in the 

previous figures. The ball bar system collected data farther away from the workpiece 

volume then the interferometer. Therefore the interferometer had more accurate work 

volume machine tool error assessment then the ball bar.  

 The CMM was also used to inspect the test parts for the turn and facing operation. 

The test part in Figure 79 shows a 25.4mm turn and a 25.4mm facing. 
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Figure 79- Test Part for facing and turning operation 

 
 
The initial and final positions of the turning and facing operations that were determined 

by the HTM were implemented into the controller using G-code. An uncompensated test 

part was first created to verify machine tool errors. Data was collected over a 17.78 mm 

(0.7 inch) range to get rid of end effectors. The shortened range from 25.4 mm was also a 

result of the geometry of the probe. As the CMM path nears the center of the part, the 

probe is able to crash into the work piece. The CMM results of the uncompensated test 

part for facing are presented in Figure 80. 
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Figure 80- CMM results for uncompensated facing 

 

This plot shows the errors for the uncompensated test part and the HTM compensated test 

part over a 17.78mm range. Once again, the spread in the data is from the resolution of 

the CMM. The HTM marginally shifts the errors in the correct direction. Essentially the 

HTM predicted that the machine tool would face a part off -0.008 mm from the nominal 

in the z direction as shown in Figure 81.  
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Figure 81- Comparison of CMM results for uncompensated test part and HTM prediction 

 

Figure 81 shows that the HTM can estimate the actual tool path of the machine tool. This 

was expected because of the z-linear errors determined by the interferometer. The z linear 

position error of the machine tool causes the face to be below nominal. The root of the 

sum of the squares of the errors for the uncompensated and compensated test parts was 

conducted for a quantitative assessment. 

 

Table 10- Results of Facing 

 SSQ (mm) Percent Improvement 
Uncompensated  0.060 - 
HTM Compensated 0.047 21.14 
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Thus the HTM improved the accuracy of the facing process by 21.14%. The facing 

process has the potential of error correction due to the magnitude of the z linear errors. 

The facing test part relies heavily on the accuracy of the z-axis positioning, which is 

0.02286 mm according to the machine specifications. The z-linear errors are the largest 

genre in the work volume, therefore facing is susceptible to larger errors.  

 The last test part required the use of a 25.4mm turning process. The test part was 

turned on the machine tool and placed on a CMM for measurement over a 22.86 mm 

range.  The range was limited from 25.4 mm to 22.86 mm due to the geometry of the 

probe.  The HTM compensated tool path was implemented into the machine tool on a 

point to point basis. The coordinates of each 2.54 mm increment were added into the 

program (as shown in appendix A) with a G01 command. This command was used for 

linear motion.  The CMM results of the HTM compensated test part was compared to the 

uncompensated test parts as shown in Figure 82. 
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Figure 82- CMM results of uncompensated and HTM compensated turned parts 

 

The HTM compensated program provided an improvement of 5.33%. This result was 

expected due to the magnitude of the x-axis errors. According to the specifications of the 

machine tool, the x-axis has a positioning error of 0.01524mm. The HTM predicted a 

maximum tool path error of 0.00254 mm.  Therefore, the compensated path would only 

change the tool trajectory by at most 0.00254 mm. The CMM results of the 

uncompensated test parts were then compared to the actual HTM predicted tool path (as 

shown in Figure 83).  
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Figure 83- Comparison of HTM predicted tool path to CMM results of uncompensated test part 

 
 

The HTM did not closely predict the actual machine tool path. In defense of the HTM 

compensated tool path, it did predict the direction of the offset. Essentially, the HTM 

predicted that the tool would travel too far towards the center of the spindle. Figure 84 

shows the nominal turning occurs at x= 0.5 inches for the test part. A negative error 

means the tool did not move away from the origin far enough.  



 116   

 

Figure 84- Schematic of turning 

 

Unfortunately, the HTM did not closely predict the magnitude of this error. This could be 

attributed to inaccurate correlation of the interferometer data to the work volume. Recall 

the optical configuration made it impossible to measure displacement and angular errors 

in the work volume. This could also be due to a tool offset error. 

 

Discussion of Sources of Error 

 This chapter consisted of cutting test parts to verify the improvement of 

the machine tool using a compensated tool path. These test parts were then measured on 

the CMM to quantify this improvement. There were several sources of error present in 

these steps. The machining process contains errors that are not accounted for in the 
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compensated tool paths. The compensated tool path is dependent upon the kinematic 

errors of the slide. As previously discussed the x-axis tool offset error was a major error 

source. A micrometer was used to estimate this offset. The measurement was made using 

two points along the circle, however three points are required to define a circle. Therefore 

the inaccurate measurement of the tool offset affected the machining process. The tool 

wear of the machine tool also contributed to the change in the x-axis tool offset. The 

functional point of the tool tip changes as the part is machined, thus changing this offset. 

There are also inherent cutting forces and vibrations that provoke error during the 

machining process. These errors were discussed in greater detailed in the literature 

survey. Previous sections of this text outlined the affect of thermal errors on machine tool 

accuracy, however thermal distortion of the workpiece itself is present. This thermal 

distortion is a result of the cutting fluid used during the machining process. Another 

source of error in the cutting process was chucking the workpiece. Precision practices 

were not used in fixturing the workpiece. More specifically, the jaws of the chuck were 

bored out using the machine tool. Variation in the roundness of the jaw translates to 

variation in radial compliance of the chuck and workpiece. This out of roundness of the 

workpiece contributes to inaccurate machining. Furthermore, a collet chuck was not used 

to correct for the out of roundness. In conclusion, the machining process of the test parts 

contained error that was no accounted for because this genre of errors was outside the 

scope of the research. 
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CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The main scope of this research was to characterize a two axis vertical lathe in a 

manner that allowed for error correction.  The manner of this characterization involved 

the following. The geometric errors of importance were determined and applied in a 

manner to compensate for variations in the ideal tool path.  This compensation was 

implemented via two main vehicles. An HTM was developed and applied in conjunction 

with the laser interferometer measurements.  The other vehicle involved the direct use of 

the ball bar measurements. The results were verified through the use of the CMM.  

The thermal behavior of the machine was identified even though tool errors 

affected by thermal variance were not measured.  The thermal time constant for the 

spindle and z axis were determined. This provided an indication of when the machine 

would reach thermal steady state. Thermal steady state of the machine tool implies 

invariable thermal errors. Thus, once the machine achieves this state, geometric error is 

the dominant factor in ideal tool path deviance. The thermal time constants for warming 

and cooling of the spindle are 54.50 and 81.97 minutes respectively.  The thermal time 

constants of the z slide for cooling and warming are 92.59 and 95.42 minutes.  

A case study was conducted involving the ball bar system. The ball bar was used 

to measure the geometric errors of the slides. A compensated tool path was constructed 

using these errors. The compensated tool path was then fit to a circle in order to 
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communicate this compensation to the machine tool. The uncompensated tool path 

contained a root of the sum of the squares of 2.7 mm, while the compensated ball bar had 

an SSQ of 0.284 mm. The improvement for a circular arc was 89.49 %. The 

compensation was also tested for robustness. The machine was manipulated to achieve 

thermal steady state and the compensated program was used again with the ball bar 

system. The improvement from uncompensated (SSQ of 1.998mm) to compensated (SSQ 

of .732 mm) was 63.63%. 

The determination of geometric errors was the major effort in this research. A 

laser interferometer was used to measure respective deviations of the machine tool slides 

from the nominal, while a ball bar was used to determined tool path deviations from a 

31.75 mm circular arc.  A homogeneous transformation matrix was developed and 

implemented with the proper interferometer measurement results. This allowed for the 

determination of the actual tool path which in turn provided the compensated tool path. A 

compensated tool path for the circular arc was also directly determined using the ball bar. 

A linear interpolation scheme was used in order to correlate the linear interferometer 

results to the coordinates of the circular profile. An efficient method of implementing the 

circular compensated tool path into the machine tool was selected. The compensated tool 

path was fit to a circle, and then applied to the controller by altering the radius and 

shifting the center of the circle.  A test part was used to allow for verification of the 

success of the compensation modes on a CMM. The root of the sum of the squares (SSQ) 

for the uncompensated circular profile was 0.3909 mm while the SSQ of the HTM and 

ball bar compensated part program was 0.0554 mm and 0.0617 mm respectively. The ball 

bar provided an 85.82% improvement on achieving the ideal radius, while the HTM 
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improved 84.20%. The HTM was slightly more accurate then the ball bar compensated 

tool path. Intuitively, one would think that the ball bar would be more effective because it 

measures the accuracy of the machines ability to travel in a circle. The ball bar collected 

measurements farther away from the work volume and thus could introduce errors that 

were found at 100 mm away from the center, but not 37.15 mm away from the center. 

The accuracy of the ball bar is 0.5 micrometers while the interferometer is 0.36 

micrometers. Therefore the interferometer made more accurate measurements that were 

closer to the work volume and over a range closer to the range of the workpiece. 

Furthermore, the ball bar compensated program is more accurate the HTM compensated 

for a circular profile of 100mm, but may not be for a circular profile of 31.75mm.  

The ball bar test results were compared to the CMM results of the test parts. The 

behaviors of the results coincide, but are not exact. The ball bar only predicts the 

measurement of the machine tool slides. The spindle and cutting forces are not included 

in the ball bar tests. The finished part experiences errors in the spindle, cutting forces, 

vibrations, improper tool offsets etc.  For example, the workpiece was not perfectly round 

and flat when chucked in the machine tool. Therefore, these aforementioned variables are 

responsible for the difference in ball bar test results and CMM results of the test parts. 

This can also be said of the HTM compensated test parts. 

A compensation method was also applied to a turning and facing process. Of 

course the ball bar tests could not be correlated to compensate for a facing or turning. The 

sole compensation vehicle used the HTM and a test piece consisting of a 25.4 mm facing. 

The uncompensated test part exhibited a SSQ of 0.060 mm, while the compensated 

program improved the SSQ to 0.047 mm. This was a 21.14% improvement. The facing 
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process had the potential for compensation because the z-axis linear errors were the 

greatest in magnitude. The facing process is most sensitive to the z-linear position errors 

(or z-axis errors in general). Equivocally, the same process was used for a 25.4 mm 

turning. The HTM compensated tool path for the turning process improved the part 

accuracy by 5.33 %.  Such a small improvement was made because the x-axis errors were 

so small.  Although the ball bar was a much faster and accurate compensation vehicle, it 

was inadequate for compensating a face or turn. A laser interferometer in conjunction 

with an HTM needed to be used to compensate for the face and turn.  

This research provided a start to a complete methodology for producing a more 

accurate hemisphere. This methodology included a detailed explanation in determining 

the geometric errors of the machine tool via a ball bar system and interferometer. It is 

important to mention that only the geometric errors of the machine tool slides were 

determined (the spindle was not compensated for). A process involving the development 

of an HTM was then explained and implemented via test parts. These test parts were then 

inspected on a CMM.  The HTM was much more time consuming but improved the 

circular profile more then the ball bar. The HTM compensation was the only means in 

improving the turning and facing accuracy of the test part. 

Recommendations 

The circular profile has the potential for further improvement. The errors of the 

circular profile were calculated using a ball bar in one case and an HTM with 

interferometer measurements in the other. The compensated tool path was constructed 

from this data. The potential for improvement of the accuracy of the circular profile is 

translating this compensated tool path to the machine tool. This researched used a circle 
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fit to describe the compensated tool path. This circle was then applied to the machine tool 

using G-code. Several arc segments could be constructed to more accurately describe the 

compensated tool path to the controller. Furthermore, the data points of the compensated 

tool path could be implemented causing the machine tool to move point to point along the 

corrected arc). This point to point construction was used for the turning and facing. 

 There were inherent errors in cutting the test parts. These errors included 

out of round workpieces and inaccurate estimates of the x axis tool offset. A tool set 

station could be used to accurately determine this x-offset and cut a more accurate part. 

The spindle is also a source of machine tool errors. The radial errors of the spindle could 

be determined and implemented into the HTM to create a more accurate part. 
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APPENDIX A-  

PART PROGRAMS 

The following part program was used to implement compensation of the circular 

profile in the machine tool: 

 
O2005(Arc) 
N1M26 
M05 
G0G28U0 
G28W0 
G00T0405  
G96S750M03  
G00X3.1Z.1/M08  
G1Z0F.01  
X-.025F.008 
Z.1 
Z0X3.0F.08  
G71U.075R.010 
G71P20Q40U.005W.005F.008  
N20G0X0 
G1Z0F.008 
G3X2.5Z-1.25R1.2498F.008  
G1X2.5Z-1.5 
G1X3.0  
N40G1X3.0 
G70P20Q40 
T0404 
G00X3.5 
Z.2 
G42G01Z0X0F.015 
G03X2.5Z-1.25R1.2498F.008 
G1X2.5Z-1.5 
G01X3.0 
G40X3.2 
G00G28U0  
G28W0M9 
M5  
M27 
M30 
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The following part program was used for implementing the turning and facing 
compensation: 
 
O2012(Turn/Face)N1 
M26 
M05 
G0G28U0 
G28W0 
G50S1800  
G00T0404  
G96S750M03  
G00X3.1Z.1/M08  
G1Z0F.01  
X-.025F.008 
G1X3.0Z0  
G71U.075R.01  
G71P20Q40U.005W.005F.008  
N20G0X1.0 
G01Z-1.0  
X2.0  
N40Z-1.0  
G00X3.1Z1.0 
M01 
T0404 
G00X3.5Z1.0 
G42G01X1.0006 Z0F.015 
G1 X1.0002 Z-.1 F.008  
G1 X1.0002 Z-.2 
G1 X1.0002 Z-.3 
G1 X1.0004 Z-.4 
G1 X1.0004 Z-.5 
G1 X1.0004 Z-.6 
G1 X1.0004 Z-.7 
G1 X1.0006 Z-.8 
G1 X1.0006 Z-.9 
G1 X1.0004 Z-1.0 
G1X2.0  
G1X4.0  
G0Z1.0  
G40X3.0 
G00G28U0  
G28W0 
M9  
M5  
M27 
M30 
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