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SUMMARY

Human behavior is one of the key facets of health. A major portion of healthcare spend-

ing in the US is attributed to chronic diseases, which are linked to behavioral risk factors

such as smoking, drinking, unhealthy eating. Mobile devices that are integrated into peo-

ple’s everyday lives make it possible for us to get a closer look into behavior. Two of

the most commonly used sensing modalities include Ecological Momentary Assessments

(EMAs): surveys about mental states, environment, and other factors, and wearable sen-

sors that are used to capture high frequency contextual and physiological signals. One of

the main visions of mobile health (mHealth) is sensor-based behavior modification. Con-

textual data collected from participants is typically used to train a risk prediction model

for adverse events such as smoking, which can then be used to inform intervention design.

However, there are several choices in an mHealth study such as the demographics of the

participants in the study, the type of sensors used, the questions included in the EMA. This

results in two technical challenges to using machine learning models effectively across

mHealth studies. The first is the problem of domain shift where the data distribution varies

across studies. This would result in models trained on one study to have sub-optimal per-

formance on a different study. Domain shift is common in wearable sensor data since there

are several sources of variability such as sensor design, the placement of the sensor on the

body, demographics of the users, etc. The second challenge is that of covariate-space shift

where the input-space changes across datasets. This is common across EMA datasets since

questions can vary based on the study. This thesis studies the problem of covariate-space

shift and domain shift in mHealth data. First, I study the problem of domain shift caused

by differences in the sensor type and placement in ECG and PPG signals. I propose a

self-supervised learning based domain adaptation method that captures the physiological

structure of these signals to improve transfer performance of predictive models. Second,

I present a method to find a common input representation irrespective of the fine-grained
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questions in EMA datasets to overcome the problem of covariate-space shift. The next

challenge to the deployment of ML models in health is explainability. I explore the prob-

lem of bridging the gap between explainability methods and domain experts and present a

method to generate plausible, relevant, and convincing explanations.
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CHAPTER 1

INTRODUCTION

Chronic conditions in the United States account for close to 75% of the total healthcare

spending and over 66% of the total deaths [1]. Chronic conditions such as heart failure and

diabetes are among the leading causes of death and healthcare costs. A chronic condition is

‘a physical or health condition that lasts more than a year and causes functional restrictions

or requires ongoing monitoring or treatment’ [2]. Patients who have been hospitalized for

certain conditions such as heart failure have a higher risk of rehospitalization and mortal-

ity [3]. Chronic diseases are particularly difficult to tackle since often multiple diseases

occur together and worsen the patient’s outcome [4], factors such as low socioeconomic

status [5], ethnicity and race [6] are associated with increased risk. This makes it critical to

identify risk factors, and manage chronic conditions.

In order to manage chronic conditions, appropriate medication, and patient monitoring

are essential. While clinical care makes up one aspect of health, human behavior is a

key facet of health conditions. Recent estimates attribute 10-20% of health outcomes to

medical care, 30% to genetics, 20% to the social and physical environment and a major

portion (40-50%) to behavior [7]. Modifiable behavioral risk factors such as tobacco, poor

diet, physical inactivity, and alcohol consumption are the leading causes of death in the

United States [8].

Sensor driven behavior modification is one of the main visions of mobile health (mHealth) [9].

mHealth technology makes it possible to continuously sense a person’s physical, physio-

logical, and psychological states [10]. These can be used to develop models that predict

the risk of an adverse event (such as smoking, drinking, etc.) [11, 12]. The predictive mod-

els can then inform the development of targeted interventions for behavior modification.

Interventions delivered through this technology can be used to target a variety of applica-
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tions such as smoking cessation [13], physical activity [14], stress management [15]. There

are currently over 300,000 mHealth applications on popular app stores, and this number is

expected to rise [16], with increased adoption driven by improved mobile computational

power and miniaturization of sensors and devices.

Two of the most commonly used sensing technologies in mHealth include Ecologi-

cal momentary assessments (EMAs), and physiological wearable sensors. In Ecological

Momentary Assessments (EMAs), users answer survey questions about their mental state,

behaviors, and other contextual factors by completing smartphone questionnaires, typically

multiple times per day [17]. EMAs enable the collection of rich contextual data in real-time

during the ecologically-valid settings of daily life and can inform the delivery of real-time

mobile interventions under field conditions. Wearable sensors on the other hand can be

used to monitor a user’s physiology. Two commonly measured physiological signals in-

clude ECG and PPG [18, 19, 20, 21]. The information from these sensors is utilized to

continuously sense a user’s psychological, environmental and physiological states. Ma-

chine learning techniques can be used to model and predict adverse outcomes using the

data collected by these sensors.

One characteristic of mHealth studies however is that they are conducted separately,

typically on small number of participants. There are several choices to be made by behav-

ioral scientists while designing the study such as the demographics of the study participants,

the different emotion items and questions included in the EMA, the type of sensor used for

the study, etc. This would result in independently collected datasets having different prop-

erties from each other. For example, a research goal while conducting a behavioral study

might be to study a different emotion item, that was not included in the previous study.

Or a research goal might be to conduct the study on a different demographic population.

Similarly, there are several choices while identifying the sensor used in a study - some-

times outside the control of the researchers designing the study. We might want to use a

new sensor that is more accurate, or we might have to use a different sensor because the
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previously used sensor is out of production, etc. Our goal is to support health researchers

to make these choices based on the study constraints while utilizing the different datasets

to develop machine learning models with good generalizability.

The differences in the context in which different mHealth datasets are collected re-

sults in two main shift issues that are problematic to machine learning practitioners: 1)

Covariate-space shift, 2) Domain shift. Covariate-space shift is a scenario when the input

space of two datasets are different, commonly occuring in EMA data. Each EMA study

design will often employ a unique set of EMA items in order to measure different con-

structs, with the result that few EMA datasets will share a common EMA dataspace. This

is a fundamental problem that hinders the use of a model trained on one study with data

from a different study. Further, we cannot pool data from multiple studies to benefit from

all the data available. This is also a substantial barrier to the use of standard domain adap-

tation methods [22], as they employ a shared encoder architecture to achieve alignment of

domains, which requires the input spaces to be identical (e.g. as with two different popu-

lations of RGB images). The second is the standard problem of domain shift or covariate

shift, where the data distribution of two studies might be different. For example physio-

logical data collected in two different studies using sensors which differ in their design,

location on the body they are used, etc. could result in data with different properties, which

leads to poor generalization of machine learning models across these datasets. It is critical

to address both, covariate-space shift and domain shift across mHealth datasets to develop

models with good transfer performance across these datasets.

The goal of our work is to develop methods to overcome covariate-space shift and co-

variate shift across mHealth datasets. Specifically, we want to develop a method to address

covariate-space shift across different EMA datasets. Further, we want to study the problem

of domain shift in pulsative physiological signals and develop a domain adaptation method

for ECG and PPG signals.

There is quite extensive prior work on survey data integration in the in the field of
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statistics. This corresponds to maximizing the information that can be obtained from sur-

vey data. This is a recent review paper [23]. The works studying combining samples

from different surveys are often considering that there is a common set of features in both

surveys. One of the two samples contains additional features. This is treated as a problem

where the additional feature is missing in one of the surveys and a model can be constructed

based on the survey with complete data [24, 25, 26, 27]. However, this is different from

our problem where the set of EMA questions (features) can be completely different across

the two datasets. Our aim is to find a common representation that can be used to train an

machine learning model on one dataset and use it on the other EMA dataset. To the best of

our knowledge, this is the first work to do this in the machine learning context of finding

a common input representation such that predictive models can be transferred across EMA

datasets.

There is some recent work on domain adaptation on ECG such as [28, 29, 30] however,

they do not study domain shift caused by real sources of variability such as sensor variation,

population, etc. The domains are obtained by randomly splitting one dataset. The work

on lab to field generalization of cocaine use prediction [31] is one work which studies

the performance of a predictive model across two datasets which are collected separately.

However, the main source of domain shift between these two datasets is prior shift or class

imbalance. Our work is one of the first to study domain shift in pulsative physiological

signals (ECG, PPG) where the sources of variation are due to differences in the sensor

type, and population.

While accounting for different sources of variability and developing generalizable mod-

els for mHealth is essential, the next step in the deployment of machine learning models for

health is addressing the black-box nature of models. Explainability is a key property that

machine learning solutions must possess if they are to be employed in clinical settings [32].

In this work, we perform the first exploration of utilizing counterfactuals for explanation

and the properties they must have to be useful for explaining predictive models in health.
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1.1 Thesis statement

Self-supervised tasks leveraging the physiological properties of pulsative signals are an

effective method to minimize domain shift.

1.2 Overview

In this thesis, we study the two problems of covariate-space shift and domain shift in

mHealth. We explore the topic of model explainability, which is essential for predictive

models in health to be implemented. The thesis is organized into three main topics: 1.

Studying covariate-space shift in EMA datasets with the task of non-response prediction

(chapter 2), 2. Domain adaptation through self-supervised tasks for pulsative physiological

signals (chapter 3), 3. Bridging the gap between predictive models and physicians through

counterfactuals (chapter 4).

1.2.1 Transformers for EMA non-response prediction under covariate-space shift

Ecological Momentary Assessments (EMAs) are surveys in which users answer questions

about their mental states, behavior, environment, and other contextual factors typically on

a smartphone [17]. EMAs provide rich contextual information about the user in real-time

and hence are used in a number of behavioral studies [33, 34, 35] and as a clinical research

tool [36, 37, 38, 39]. EMAs designed for different studies capture a different set of features.

The design of EMA questions depends on the research aim of the mHealth study. Behav-

ioral researchers who conduct these studies often tend to vary questions between different

studies to study the effect of different emotions and contextual factors. This is potentially

problematic for using machine learning models with all the available data since the feature

space is not constant across the studies. We cannot pool data from different studies to bene-

fit from all the EMA data availabale. Further, a model trained on one EMA study cannot be

directly used with data from a different study. A straightforward solution of collecting all
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features (super-set of the features in different studies) from the different study populations

would impose a substantial burden on the mHealth researchers and participants. Hence,

our aim is to support the flexibility of mHealth researchers to freely design EMA surveys,

while addressing the problem of covariate-space shift methodologically. In this chapter, we

use EMA data from two separately conducted smoking cessation studies: Breakfree, and

CARE. Breakfree is a smoking cessation study conducted on a population of 300 African

American smokers, and CARE is a smoking cessation study conducted on 400 African

Americal, Mexican American and White American smokers. To address covariate-space

shift, we require a common input representation across the datasets. We require a machine

learning task with which we evaluate the predictive performance of common input repre-

sentation as compared to using a different data representation for each dataset. We pre-

dict non-response to EMA prompts using the history of responses as the machine learning

task. Predicting non-response is an important task in EMAs since non-response is a ma-

jor challenge in EMA data collection. Prior work on predicting non-response has focused

on identifying predictors using classical machine learning methods. Given the variety of

factors that could affect non-response, a data-driven feature representation for prediction

could be attractive. The goal of this chapter is to develop a deep model for non-response

prediction that is transferrable to a new EMA dataset (e.g., a new study with a different set

of questions).

1.2.2 Domain adaptation through self-supervised learning for pulsative physiological signals

In addition to sensing psychological states with EMA, mHealth devices make it possible to

continuously sense users physiology through wearable sensors. This is particularly excit-

ing since complex health factors such as vital signs, and adverse events can be monitored

and predicted and this can be used to deliver timely interventions. For example, the fall

detection feature in Apple watch which can call emergency services is the beginning of the

many potential life-saving use cases of mHealth. One potential hurdle to the progress of
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machine learning research in utilizing physiological data is the variability across different

studies. For example, the mHealth study on stress detection in [35] used a sensor suite con-

sisting of ECG electrodes and an RIP sensor described [18]. Whereas, the study [21] used

a commercially available chest and wrist band to detect stress events. There are several

sources such as the population, the placement of the sensor on the body, individual differ-

ences, and sensor design that could result in differences in the properties of data collected

in different mHealth studies, known as domain shift. Domain shift is a phenomenon where

the distribution of the data used for training and testing are different [40]. The problem of

domain shift is extensively studied in the field of computer vision [41, 40, 42, 43], where

the sources of variability such as lighting, resolution, camera type are known to a certain

extent. On the other hand, there is far less prior work studying the problem on domain

shift in the case of pulsative physiological signals [28, 29, 30]. However, none of these

study domain shift in a scenario with a real source of variability. The goal of our work is to

study differences across domains of pulsative physiological signals and develop a method

for domain adaptation that utilizes the properties of these signals. We explore the prob-

lem of domain shift due to changing the position of the ECG electrode, which results in

a change in the direction of measurement of the electrical activity. Our ECG experiments

are performed on the PTBXL [44] 12-lead ECG dataset with arrhythmia classification from

ECG as the main machine learning task. In the case of PPG, we perform domain adapta-

tion across the MIMIC [45] and WESAD [21] PPG dataset. Here the sources of variation

are the demographics (ICU patients vs mHealth study participants), the sensor type and

location on the body (hospital grade fingertip PPG sensor vs wrist watch PPG sensor).

1.2.3 CFVAE: Counterfactual VAE for explainable ranking of patients for home hospital

care

Explainability is a key property that machine learning solutions must possess in order to be

employed in healthcare settings. Typically, machine learning research in healthcare aims to

7



assist domain experts (behavioral reserachers, physicians) with models to make decisions

such as the time to provide an mHealth intervention, discharge a patient, etc. These are

decisions that are usually made by domain experts however, machine learning models can

be helpful in reducing the burden on them and can be used to scale to a larger number of

patients. Explainability is critical for such a model since it has to be convincing to the

domain expert in order to be deployed. There is extensive prior work on exaplainability in

AI, comprehensive surveys on the topic include [46, 47, 48, 49]. In this chapter, we focus

on explainability via counterfactual (CF) generation [50, 51, 52], where the determining

features of the classification model are highlighted by comparison to a diverse set of other

similar (synthetic) patients to whom the classifier would assign an opposite label. It was

inspired by observing our medical collaborators express clinical judgement in terms of

hypothetical trends in vital signs, e.g., “This patient is a good candidate to be sent out of

ICU, but if their systolic blood pressure had been 110 and falling then they would have

needed a vasopressor.” We rank patients based on their suitability to be sent to home

hospital [53] for the machine learning decision making task. Home hospital is a program

in which medical capabilities that would usually be provided in a hospital are brought to

the patient’s home. It is attractive to both patients and healthcare providers, and is likely

to be more relevant as the demand for hospital beds continues to grow. Our goal in this

chapter is to develop a model to rank patients based on how suitable they are to be sent

to home hospital and explain the decision to a physician. Our approach to generating CFs

focuses on the CF being plausible and relevant to the healthcare task, not previously found

in prior CF generation approaches. We develop a counterfactual generation methodology

to explain the learned machine learning model. Our solution is a variational autoencoder

(VAE)-based approach where the latent space is trained to capture the decision boundary

of the machine learning model and sample from the counterfactual distribution.

8



1.3 Contributions

This dissertation makes the following contributions:

Valence features to address covariate-space shift in EMA datasets:

• We develop a state-of-the-art transformer model for predicting EMA non-response

using the history of responses.

• We demonstrate the feasibility of constructing valence features to overcome covariate-

space shift, which are common across different EMA studies while preserving their

predictive power.

• The valence features enable the use of standard domain adaptation methods across

different EMA studies, which was not possible when each study had a different input

representation.

Domain adaptation through self-supervised learning for pulsative physiological sig-

nals:

• This is the first work to study the problem of domain shift with different sources of

variation such as population, sensor design, etc. on pulsative physiological signals

(ECG, PPG).

• This is the first work to use self-supervised learning for domain adaptation on phys-

iological signals. We design self-supervised tasks based on physiological properties

of the signal to capture invariance across domains.

• Our self-supervised method of domain adaptation outperform standard domain adap-

tation methods on ECG and PPG data.

• Our self-supervised method enables models to be adapted without access to data from

the target domain at training time.
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CFVAE: Counterfactual VAE for explainable ranking of patients for home hospital

care

• This is the first work to develop a model for ranking patients for home hospital care.

We frame this problem on the publicly available MIMIC dataset.

• We develop CFVAE: a VAE based feedforward method to produce plausible, relevant

and sparsely perturbed counterfactuals (CF) to explain a given prediction model.

• Our method outperformes prior CF generation methods based on a quantitative evalu-

ation of their plausibility outperforms prior methods based on a qualitative evaluation

of plausibility by a physician.
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CHAPTER 2

TRANSFORMERS FOR ECOLOGICAL MOMENTARY ASSESSMENT

NON-RESPONSE PREDICTION UNDER COVARIATE-SPACE SHIFT

2.1 Introduction

In this chapter we describe our approach to address covariate-space shift across EMA data

collected from different studies. This work is described in detail in [54].

Mobile health (mHealth) technology is a promising tool for health behavior change and

maintenance with a broad array of applications, including smoking cessation [13], phys-

ical activity [14], stress management [15] and medication adherence [55]. mHealth data

sources such as wearable sensors, self-reports, GPS, etc. provide key insights into the

contextual and behavioral factors that influence health outcomes, through the ability to col-

lect data from participants in real-time in the field environment. A particularly valuable

source of data comes from ecological momentary assessments (EMAs), in which partici-

pants answer questions about their mental state, behaviors, and other factors by completing

questionnaires, typically multiple times per day. EMA data provides unique insights which

are difficult to glean from other sensing modalities, and is widely-used as a result. It can

be used to assess the risk of adverse behaviors, trigger interventions, or estimate treatment

effects.

In addition, EMAs are a widely-used research tool in clinical psychology and psychi-

atry [36, 56, 57]. They have also been used in a diverse set of additional fields includ-

ing cardiology [37, 58, 38], diabetes [59, 60, 61], chronic pain [62, 63, 64], reproductive

health [39, 65], medication adherence [66, 55], and in mental health and neurological con-

ditions such as epilepsy [67, 68], schizophrenia [69, 70, 71], and depression [72, 73, 74].

A major challenge in EMA data collection is participant non-response, which arises
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when users fail to complete a survey when prompted. Non-response results in the loss of

EMA data, and is problematic for three reasons. First, it reduces the statistical power of

hypothesis testing based on EMA data. Second, if the non-response is systematic, then it is

likely to be missing not at random (MNAR), a form of bias which is difficult to correct for.

Third, missing EMA samples make it more challenging to assess time-varying contextual

variables such as emotions, environments, and behaviors. Note that EMA non-response

is related to the problems of medication non-compliance [55, 66] and non-response in

electronic patient-reported-outcomes (ePROs) as used in clinical trials [75, 76].1 Hence,

a capability for predicting EMA non-response can play a critical role in improving the

quality and effectiveness of EMA-based data collection in a broad range of clinical research

domains.

A model that takes as input a sequence of outcomes to past EMA prompts and predicts

the risk of non-response in real-time could be a powerful tool for improving the response

rate of a study. It could support the adaptation of EMA prompt times and enable the deliv-

ery of interventions to improve the response rate. However, this requires the solution to two

key challenges. The first is the standard problem of covariate shift [78, 22, 42]: Two study

populations responding to the same EMA items (questions) may have different distribu-

tions of answers based on demographics, study design, and other properties. Second, and

substantially more challenging, is the problem of covariate-space shift : Each EMA study

design will often employ a unique set of EMA items in order to measure different con-

structs, with the result that few EMA datasets will share a common EMA dataspace. This

is a substantial barrier to the use of standard domain adaptation methods such as DeepCO-

RAL [22], as they employ a shared encoder architecture to achieve alignment of domains,

which requires the input spaces to be identical (e.g. as with two different populations of

RGB images).

The goal of this work is to develop a deep model for non-response prediction which is

1Non-response is also related to the problem of patient dropout [77], but is different in that participants
remain engaged in the study, but fail to provide the full complement of data.
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transferrable to a novel EMA data domain (e.g. a new study with a different set of items)

without finetuning, thereby providing a generalizable solution to non-response prediction.

Such a capability could be used to design and trigger interventions to improve compliance.

Our solution has two components: 1) A novel valence feature construction approach which

exploits the unique properties of EMA data to address the covariate-space shift problem;

and 2) A transformer [79] architecture for non-response prediction, including an investi-

gation of the effectiveness of positional encoding for EMA data analysis. This is the first

comprehensive work to address EMA non-response prediction using deep learning with a

solution to covariate-space shift.

Prior work on predicting non-response [80, 81] has focused on identifying effective

predictors using classical machine learning methods. There are two main advantages of

using deep models: 1.) Deep models learn a data-driven feature representation and do

not rely on hand-crafted features. Given the variety of factors that can contribute to non-

response,, and the difficulty of engineering general-purpose features by hand, a data-driven

feature learning approach is attractive. 2.) Domain adaptation and transfer learning meth-

ods can be used to learn from multiple small datasets collected independently (typically

the case in mHealth studies). However, only a few prior works have used deep learning

(DL) for EMA data modeling [82, 83], in contrast to other mHealth data types such as ac-

celerometry [84, 85, 86, 87], and no prior works have used DL for non-response prediction.

Recently, transformers [79] have emerged as a powerful new class of tools for modeling

sequential observations. Following their initial success in NLP [88, 89], transformers have

proven effective in several other fields [90] [91] [92] [93]. Sequences of EMA observations

differ significantly from NLP in that the arrival times are irregularly-sampled and impor-

tant to model (e.g. EMA responses which are closer together in time are more likely to be

correlated).

The transformer architecture initially introduced for sequence modeling tasks in NLP [88]

forgoes recurrence and uses attention mechanism [79] to learn temporal pattern in the data.
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The scaled dot product form of attention involves computing pair-wise attention values via

matrix multiplication operations, which can be computed efficiently and easily interpreted.

We are motivated by the success of the transformer on a wide range of data types and

tasks [90, 91, 92, 93], as well as by its interpretability and scalability [79]. Transformers

can be pre-trained in an unsupervised manner to learn good data representations and then

be used for fine-tuning downstream tasks. This is particularly useful when we do not have

sufficient labeled data for our downstream task of interest. Transformer models have shown

state-of-the-art performance in several other fields such as computer vision [90] [91] [92],

speech [93], and multi-modal tasks. This is the first work to develop transformer models

for EMA data analysis in general, and non-response prediction in particular. Through this

work, we aim to show that there is potential for deep models (and specifically transform-

ers) to learn patterns in EMA data. With increasing number of mHealth datasets being

collected, we anticipate a growing increase in DL (and specifically transformer) tools for

EMA analysis.

Sequences of EMA observations differ significantly from natural language in that the

arrival times are irregularly-sampled and contain useful information (e.g., EMA responses

which are closer together in time are more likely to be correlated). In this work, we address

the following questions in EMA data modeling: 1) How can the irregular temporal structure

of EMA data be captured in a transformer model? 2) What pre-training tasks are the most

effective in reducing the need for extensive training data? 3) How are EMA responses

encoded in the learned feature representation?

2.2 Contributions

This chapter makes the following contributions:

• This is the first work to explore the utility of transformer models for sequences

of EMA response data. We present a transformer architecture for predicting non-

response to EMA prompts using the EMA response history and the design deci-
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sions that yield the most effective transformer architecture. The transformer model

achieves an AUC of 0.77 (for EMA sequence length = 15) for predicting future non-

response and is substantially more accurate than both classical ML models and DL

models based on the LSTM architecture (particularly for longer input sequences.)

• We visualize the learned self-attention weights and observe that the model learns

meaningful feature interactions that are consistent with findings in [94], which is a

behavioral study on the factors affecting EMA compliance among adolescent smok-

ers.

• We present the design decisions that yield the most effective transformers for EMA

sequence analysis.

• We design a self-supervised pre-training task and demonstrate that pre-training yields

a modest performance gain.

• We evaluate the transfer performance of our valence feature representation designed

to overcome covariate-space shift when models are trained and tested on different

EMA datasets, and demonstrate encouraging performance.

• The valence feature representation enables us to utilize domain adaptation techniques

across different EMA datasets. We evaluate the utility of DeepCORAL, a popular

domain adaptation method and find that it provides a boost in the generalization

performance of our transformer model. We will make the code and trained weights

of our model freely-available, enabling future research on EMA analysis to utilize

transformers and begin with an effective feature representation.

2.3 Related work

There are three bodies of prior work which are most closely-related to our work: 1) Anal-

ysis and prediction of EMA non-response, as well as the related topics of interruptability
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and availability; 2) Use of deep learning models to analyze EMA data; and 3) Transformer

models for electronic health record (EHR) data, which shares with our task the need to

model irregularly-sampled data. We discuss each of these topics in detail.

2.3.1 Analyzing and predicting EMA non-response

A significant body of prior work analyzes the factors that are related to non-response to

EMA prompts. [94, 95] identify the factors that have a significant effect on non-response

(which they term compliance, adherence, engagement). [96, 97] study EMA response

rates and determine the feasibility of using EMA as a research tool based on the response

rates. [96] further underscores the importance of differentiating between human factors and

factors related to technology in non-response while reporting response rates (which they

refer to as adherence level). Two recent review papers on EMA non-response, [98] and

[62], provide additional evidence for the importance of the problem. [62] reviews studies

involving patients with chronic pain, while [98] reviews studies related to substance abuse.

In contrast to the current study, these prior works do not address the development of a

predictive model for non-response to EMA.

Two recent works [81, 80] have focused on predicting participant non-response. Both

works use contextual factors (such as location, activity, etc.) in a predictive model. One

common factor among all these prior works is their use of classical machine learning mod-

els for analyzing and predicting EMA non-response. We share with these prior works an

investigation into the predictive power of various contextual factors and mental states (e.g.

emotions). At the same time, our work is uniquely-distinguished by its focus on developing

transformer models for non-response prediction in order to exploit the benefits of feature

learning in modeling complex sequential data.

The tasks of assessing interruptibility and availability in mHealth are related to our

problem of non-response prediction. A representative example of availability modeling is

Sarkar et. al. [99], which developed a classifier that combined mobile sensor data with past
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EMA responses to classify whether or not a participant is available at the current moment

in time. The topic of interruptibility has been widely-explored in the context of intelligent

notification systems [100, 101, 102, 103]. The goal of these works is to design a system that

delivers notifications at opportune moments based on contextual factors. The focus of [101]

is the optimization of the user experience. [103] presents a reinforcement learning based

method for scheduling notifications. This is similar to the study of receptivity to mHealth

interventions in [104, 105], where the goal is to determine opportune moments using con-

textual factors (such as activity, location, phone battery, etc.). The topics of availability,

receptivity, and interruptibility prediction are critically important for avoiding unnecessary

participant burden and considering external contextual factors in determining availability.

In contrast, our focus is on developing a predictive model for non-response based on fea-

ture learning derived from factors such as participant mental states and emotions, and their

history of EMA responses.

An additional related topic is participant disengagement, which manifests as a steady

decline over time in the participation of a user in a study or treatment program [106, 107],

often resulting in loss to follow-up [108]. The focus of these works is on longitudinal

analyses and long-term study outcomes. In contrast, our focus is on quantifying the short-

term risk for non-response at the EMA prompt level. Such a capability could inform the

design of interventions to maximize the utility of EMA as a measurement tool, which is

distinct from the important task of improving long-term participant engagement.

A final related topic is in the domain of ePROs (electronic patient-reported outcomes).

ePROs are patient-provided information about symptoms, side effects, drug timing and

other questions during a clinical trial [75]. ePROs generally lack the momentary, frequent

sampling found in our EMA dataset. The extension of our work to developing transformer

models for sequences of ePRO data is an interesting avenue for future work.
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2.3.2 Deep models for EMA data

There are two prior works that develop deep models for prediction tasks using EMA

data [82, 83]. In [82], the authors propose a recurrent neural network (RNN) for fore-

casting depressed mood using the history of EMA data. In [83], the focus is on predicting

short term mood developments from EMA data using an RNN. In addition, there are nu-

merous works that analyze EMA data using classical statistical and machine learning tools,

such as logistic regression and SVMs [109, 110, 111, 112, 113]. The current article differs

from these prior works in two ways. First, we address the problem of predicting whether

the next prompt will result in an EMA response, which is distinct from the task of pre-

dicting the responses themselves, as in the case of predicting self-reported mood. Second,

we develop a transformer model for EMA sequences and analyze its utility for predicting

EMA non-response. Transformer models have been shown to deliver state of the art results

in fields such as NLP [79][88] and computer vision. We extend this class of models to the

EMA setting.

We note that there has been significant work on using DL models to analyze clinical data

such as Electronic Health Records (EHR), a domain with some similarity to EMA analysis.

While EHR data is diverse, it includes categorical variables that capture clinical states,

which is analogous to EMA response data. Two representative works that use classical

sequential DL models for EHR analysis are [114, 115]. Both works use an attention layer

with a recurrent temporal model (an RNN) for EHR sequence analysis. In contrast, our

focus is on the exploration of transformer-style models for irregularly-sampled EMA data.

2.3.3 Transformers for Electronic Health Records Data

Based on the success of transformer models on NLP tasks [79][88][116], recent works have

explored their application to a broad range of other domains, including the analysis of EHR

data. EHR analysis includes several prediction tasks, such as length of stay, mortality, and

sepsis onset, which share our focus on predictive modeling from irregularly-sampled data.
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One representative work is [117], which applies transformer models to irregularly sampled

clinical data. In [118], a BERT-style model is developed using a pre-training task that is

appropriate for irregularly sampled diagnosis codes.

There are several significant differences between EHR and EMA analysis. First, EHR

datasets consist primarily of categorical observations (e.g. diagnostic codes) and real-

valued biomarker measurements, while EMA data consists primarily of ordinal vectors.

Second, in EHR datasets only a subset of possible observations are available at any point

in time, whereas for EMA it tends to be all or nothing (participants either respond to the

prompt and answer all of the items or fail to respond at all). Third, EHR data contains

many more variables and data item types in comparison to EMA. Given these differences,

it is unlikely that findings from modeling EHR data will transfer in any significant way to

EMA data analysis.

2.4 Study protocol and dataset

Our primary dataset comes from a study that examines the influence of intrapersonal and

contextual factors on smoking lapse among African American smokers. Data was collected

from multiple modalities including EMA prompts, on body sensors, and location from

GPS. The study participants carried a smartphone provided to them with the study software

installed. The mobile app delivered EMA prompts and collected real time continuous data

in the participant’s natural environment from multiple sensors. Data was processed in real

time on the smartphone and machine learning algorithms were used to extract biomarkers

corresponding to specific behavioral and physiological indicators of smoking and stress. In

this analysis, we focus on the EMA data, as this provides a rich set of items that capture

aspects of contextual and mental state, and is also the most widely-collected datatype in

health applications.
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EMA collection process: The study participants carried a smartphone provided to them

with the study software installed to deliver EMA prompts. In order to begin and end trig-

gering EMAs for the day, participants had to press a button indicating start and end of

day. Participants were prompted by the phone app to complete three types of Ecological

Momentary Assessments (EMAs) on their smartphones during the study - random EMA,

stress triggered EMA, smoking triggered EMA. On each day, a participant was prompted

with an average of four random EMAs. After the day start button was pressed, the day

was divided into 4 equal blocks of time. In each block, the phone app checked for the

‘participant availability,’ determined by the battery level (being above 10%), whether the

participant was driving, and if the participant had enabled a ‘do not disturb’ option. The

‘do not disturb’ mode could be used by participants to stop receiving any EMA prompts

when they were unavailable. The data collected from the sensors was used to determine

smoking events and events of stress. In case of these events, the phone app checked for the

same conditions for firing an EMA and triggered a smoking EMA or stress EMA. In our

work, we are interested in predicting non-response to the random EMAs.

Figure Figure 2.1 shows the interface for an EMA notification and the UI while respond-

ing to some example survey questions. Once a notification was triggered, the participant

could either: 1. Accept the notification and begin answering the survey by clicking ‘OK’,

2. Dismiss the notification by clicking ‘Cancel’, 3. Snooze the notification and receive it

again after 10 minutes.

The dataset consists a total of 255 participants, after excluding participants who dropped

out of the study. The participants range between age 20 to 82 (mean 51 ± 12 years) and

we have a roughly balanced split between the male and female subjects. The data collec-

tion process spanned two contiguous weeks (4 days pre-smoking-cessation through 10 days

post-smoking-cessation). Over the course of the study a total of 9043 random EMAs were

triggered and 5636 of them were completed (average compliance rate of 62.8%).
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Figure 2.1: (a) EMA notification on the study phone (b) Survey question: angry (c) Survey
question: relaxed.

2.5 Methodology

2.5.1 Non-response problem framing

Consider a set of n participants indexed as i = 1, 2, · · ·, n. Each participant then has EMAs

(observations) indexed by j = 1, 2, · · ·, ni, where ni is the number of observations (EMAs)

for participant i. We design a model to use a sequence of T EMAs as input and predict if

the (T + 1)th EMA is completed.

We frame this as a binary classification problem where our label is

Yj =


1 if jth EMA is completed

0 if jth EMA is missed

The feature vector derived from the jth EMA is denoted as Xj . Section subsection 2.5.2

describes the process to create Xj from the EMA data. Here, we assume that Xj is a feature

vector consisting of K features.

We developed models under two scenarios. In the first, we used a sequence length of

one, meaning that for each EMA we predict the compliance for the next EMA prompt.

In the second scenario, we used a sliding window (of length T ) approach as shown in
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Figure 2.2 to compute the feature sequence and the corresponding binary label for classi-

fication. In this case, we use a transformer architecture to perform feature learning, and

predict next EMA compliance from a sequence of feature vectors. For our experiments, we

use a sequence length T = 5, 10, 15, and 25.

Figure 2.2: Sliding window approach used to create our feature vector sequence and clas-
sification label. EMAs are prompted irregularly in time, feature vectors from a sequence of
T EMAs are used to predict compliance to the (T + 1)th EMA.

2.5.2 Dataset specific feature construction:

We use a set of raw features derived directly from the EMA response along with meta-data

logged as part of the study (‘Features’ in Table 2.1). In addition to these, we construct

features to summarize the history of the raw features (‘Summary features’ in Table 2.1).

There are two types of summary features constructed, they are designed to: 1) Capture

the completion history summary (long term and short term); 2) Capture the variance in the

positive and negative affect, and completion pattern.

The long-term completion rate is the average number of EMAs completed by a partic-

ipant from the beginning of the study up to the current EMA and the short-term rate is the

average number of EMAs completed the previous day. The long-term and short-term com-

pletion rate features are designed to capture the ‘trait’ and ‘state’ aspects of the participant’s

behavior.
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Long-term completion rate (CR) =


∑j

i=1 Yi

j
if j ̸= 0

0 if j = 0

Short-term completion rate (CR) =


#EMA completed on day (d− 1)

nd−1
if nd−1 ̸= 0

0 if nd−1 = 0

where d is the day the current EMA is triggered, nd−1 is the total number of EMAs triggered

on day d− 1.

The variance feature is computed for the positive and negative affect and smoking urge.

The variance feature for each covariate for the jth EMA is computed as the variance of

the covariate until the jth EMA. For example, the variance of the positive affect ‘Happy’

computed for the jth EMA is the variance in response to the question ‘Happy’ for EMA 1

to EMA j.

Table 2.1: Features used in our analysis - we include both raw features and summary fea-
tures. The raw features directly obtained from the EMA response. We compute additional
summary features from the history of the raw features. We perform an ablation without
using ‘Summary features’ in Table Table 2.3 to assess the importance of history.

Type Raw features Value Summary features
Enthusiastic

Positive affect Happy Likert scale (1-5) Variance of each item
Relaxed (until current EMA)

Bored
Sad

Negative affect Angry Likert scale (1-5) Variance of each item
Restless (until current EMA)

Urge
Compliance Current EMA status Binary Long term CR

Short term CR
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2.5.3 Valence feature construction

To overcome the covariate-space shift between different EMA datasets, we need a common

feature representation that can be constructed irrespective of the fine-grained EMA ques-

tions. We design a feature representation that captures the average positive and negative

affect. The average of the responses to all positive emotion items in an EMA response

is computed as the average positive response and similarly, the average negative response

is computed. The raw features for each EMA prompt consists of the average positive re-

sponse, average negative response, and the compliance. Similar to the approach described

in the previous subsection, we construct summary features to capture completion history

summary and variance of positive and negative responses. We call this the valence feature

representation.

2.5.4 Transformer model

Background

The transformer is a sequence modeling architecture based entirely on attention proposed in

[79]. A self-attention mechanism is a mapping between pairs of words in a sentence/input

points in a sequence to the output. The scaled dot product attention mechanism introduced

in [79] is computed as

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V

where Q,K, V are the query, key, and value matrices computed as a projection of the

input sequence X into query, key and value spaces. Q = XWQ, K = XWK , V = XW V .

The matrix multiplication QK⊤ computes pairwise inner products between every query

and key vector pair. The value vector is weighted by this attention matrix.

Multihead attention performs the attention mechanism described above in h different

feature spaces, where h is the number of heads. The attention is computed on the key, query,
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value matrices projected with h different learned projections and concatenated together.

Multihead(Q,K, V ) = Concat(head1, head2, · · ·headh)W o

where headi = Attention(QWQ
i , KWK

i , V W V
i ) and W o projects the concatenated output

back to the original size.

Two initial operations are performed on a sentence prior to computing attention:

1. Input embedding: learned embeddings are used to convert words to vectors of di-

mension dmodel.

2. Positional encoding: since the transformer model does not contain any form of re-

currence, information about the position of different words is added to the input rep-

resentation. Sine and cosine embeddings are computed as shown below and added to

the input representation. Here pos corresponds to the position of a word in a sentence.

PE(pos,2i) = sin(pos/10002i/dmodel)

PE(pos,2i+1) = cos(pos/10002i/dmodel)

EMA Transformer

There are two main differences between a sequence of words and a sequence of EMA

responses: 1. EMA responses are ordinal and responses are already in a vector form, 2.

Continuous time associated with EMA responses: e.g., a sequence of 4 EMAs could have

been completed at 10 AM, 11.30 AM, 3 PM, 4 PM respectively. We account for these two

differences architecturally in this manner:

Input embedding: The feature vector computed for each EMA is used directly as the

input embedding. For a sequence of T EMAs, we represent the input embeddings as
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X1, X2, · · ·XT .

Positional/time encoding: Since transformer models do not contain recurrence, they do

not have a natural mechanism for representing the ordering of an input sequence. To ad-

dress this, positional information is injected into the input sequence through positional en-

coding. In sentence modeling tasks (NLP), only discrete positional information is encoded

and combined with the input embedding. The standard positional encoding technique is

to compute an embedding of the positions using the sine-cosine representation described

in [79] represented as PE(pos) which is then added to the input embedding. In the case

of EMAs, a sequence of T EMAs has a sequence of discrete positions (i.e., 1, 2, · · ·T )

and continuous times (i.e., t1, t2, · · ·tT ) associated with it. We evaluate the performance

of encoding the temporal vs positional information into the input embedding. Given a se-

quence of EMA input embeddings X , position pos, time t, positional/temporal encoding

function PE(·), we explore two ways to encode temporal/positional information into the

EMA input embeddings and compute the input to the attention mechanism.

1. Addition: The embeddings from the position/time values are computed using the sine

and cosine functions described in Section subsubsection 2.5.4. Given a sequence of

EMA input embeddings X , position pos, time t, the input to multihead attention

when encoding the discrete position and continuous time values respectively are:

Xpos
inp = X + PE(pos)

Xtime
inp = X + PE(t)

2. Concatenation: The embeddings from the position/time values are computed and

concatenated with the input embeddings. Given a sequence of EMA input embed-

dings X , position pos, time t, the input to multihead attention when encoding the
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discrete position and continuous time values respectively are:

Xpos
inp =

 X

PE(pos)


Xtime

inp =

 X

PE(t)



where

 X

PE(t)

 =

 X1

PE(t1)

 ,

 X2

PE(t2)

 , · · ·,

 XN

PE(tN)


Where Xinp is the input to multihead attention after encoding the continuous time em-

beddings.

The model architecture is the standard transformer [79] encoder architecture followed

by a linear layer for the classification output. See Figure Figure 2.3 for the model archi-

tecture. Our architecture consists of 6 encoder layers, 8 attention heads per encoder layer.

The dimension of the key, query and value vectors is 64.

2.5.5 Self-supervised pre-training of EMA transformer

The goal of pre-training a transformer model in a self-supervised manner is so that it can

learn the structure in the data, which can be useful for other downstream tasks. In EMA, we

might be interested in some particular prediction problem like predicting the probability of

a person drinking alcohol. Since we are limited by the amount of labeled data, pre-training

aims to leverage self-supervised learning from a large corpus of EMA data. If we have

a large EMA corpus, we can train a model that can learn the structure between different

EMA items and the temporal structure in the data. The model can then be fine-tuned for

the prediction task that we are interested in. In this work, we are evaluating the utility of

self-supervised pre-training of transformers with EMA data. Given the expense of data
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Figure 2.3: EMA Transformer model architecture. This includes a transformer encoder
followed by a linear layer.

labelling in healthcare and the findings in NLP from BERT [88], we envision that self-

supervised pre-training might be an attractive strategy.

Background

[88] introduced BERT, which is designed to pre-train bidirectional representations from a

large corpus of text in a self-supervised manner. This is done by first pre-training BERT (a

bidirectional transformer model) on two tasks: 1. Masked language modeling (MLM), 2.

Next sentence prediction (NSP). In the MLM task, some words in the input sentence are

replaced by a MASK token. The model is trained to impute these words correctly. In the

NSP task, a pair of sentences is provided as the input and the model is trained to recognize

if the second sentence is a valid ‘next sentence’. The exact description of the pre-training

can be found in [88].

The idea behind pre-training BERT in this manner is to learn the structure in language:

structure of words within a sentence (MLM) and structure at the sentence level (NSP)

without having any specialized labels. Once it has learned the structure, a pre-trained
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BERT can be used with an additional linear layer for other downstream tasks.

Pre-training: EMA transformer

Figure 2.4: Pre-training the EMA transformer model with an EMA imputation task. The
pre-trained model is then fine-tuned for the non-response prediction task. This pre-training
strategy is similar to BERT where the model is pre-trained in a self-supervised manner on
a large text corpus and the model is fine-tuned for downstream tasks.

We design a masked EMA imputation task, similar to the masked language modeling

(MLM) pre-training task in BERT. Given the EMA features of a T length EMA sequence

X1, X2, · · ·XT , a subset of features are masked at random time points. Note that the values

masked are always the response to emotion items. We do not mask out the compliance

history results for the masked imputation task. The number of emotion items masked is

pre-determined by us and the positions where the response is masked is chosen at random.

We mask out the emotion item(s) in 15% of the sequence, determined randomly. The goal

of the masked EMA imputation task is to mask out responses to some emotion items in the

sequence, and learn to reconstruct the response to these items. This will help the model

learn the structure between the different emotion items and their temporal pattern. Note

that the masked imputation task is for pre-training purposes only. The input sequence does

not contain mask tokens during a downstream fine-tuning task. To account for this, after a

particular position is chosen for masking, we replace the input with the mask token 80% of
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the time. The input value is retained as is 10% of the time and changed to a random value

10% of the time similar to MLM in [88].

Several pre-training tasks are possible, based on the choice of the emotion items that

we mask out. The choices range from (a) masking out a single emotion item to (b) masking

out all emotion items. These are illustrated schematically in Figure Figure 2.5. Once we

pre-train an EMA transformer model, we add a linear layer to it and fine-tune it for the

non-response prediction task.

Figure 2.5: Self-supervised EMA masked imputation tasks. Here we assume that there are
K emotion items in each EMA. The input sequence here is depicting only the responses to
emotion items. We do not mask out other features in the input sequence. (a) The first task
shown is to impute one emotion item at a time in 15% of the sequence positions that are
randomly masked. For example, the value of the emotion ‘Happy’ can be masked off in
some positions of the sequence and the task is to impute this value correctly. Note that we
explore imputing each emotion item one at a time as a pre-training task and evaluate the
downstream non-response prediction performance. There are intermediate tasks possible
such as masking out 3 emotion items, 4 emotion items, etc. (b) The second task is to impute
all emotion items in 15% of the sequence.
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2.5.6 Input representation for zero shot transfer to other EMA datasets

While zero shot transfer is a standard way to measure generalizability in domains like NLP,

it is challenging in EMA because different studies use different EMA items (questions),

resulting in different input feature spaces. We explore an approach to summarize diverse

EMA items based on their valence (positive or negative) as a means to create a novel and

generalizable feature representation. For example, In our main dataset, we can compute the

average response to Enthusiastic, Happy, Relaxed as positive affect and that of Bored, Sad,

Angry as negative affect. This provides a standard input representation that can be used

across different EMA studies.

2.6 Experimental results

We present findings in three areas. The first relates to the choice of input representation.

While some applications benefit from pre-trained embeddings (e.g. word embeddings in

the case of NLP), we find that the fixed length EMA response vector itself is an effective

input representation. This has the advantage that the self-attention weights can be easily

interpreted as weights on the individual EMA items. Our visualizations of the learned trans-

former representation suggest that it encodes structure in the EMA response data which is

meaningful for non-response prediction. The second finding relates to positional encod-

ing [79], which adds a vector to each input embedding that provides a global encoding of

the position of each token in the input sequence. We find that positional encoding improves

performance, but concatenating the temporal information is more effective than adding it.

The third finding has to do with pre-training. The BERT architecture for NLP tasks [88]

demonstrated the effectiveness of pre-training a transformer-based model on a large unla-

beled corpus prior to fine-tuning it with labels on a smaller task-specific training dataset.

We designed a self-supervised pre-training task based on EMA imputation. We found that

pre-training produced a small performance benefit which was not statistically-significant.
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We hypothesize that this approach may be more effective in the future as larger EMA

datasets become available. We present visualizations of the learned transformer represen-

tation that suggest that it encodes structure in the EMA response data which is meaningful

for non-response prediction.

We consider two non temporal models - Logistic regression, Support Vector Machine

(SVM) to compare the performance of deep models (LSTM and transformers) against the

methods used in prior work for predicting EMA non-response [80] [81]. Both these prior

works use SVM as the prediction model. We also compare the performance of our trans-

former model to two LSTM based architectures (vanilla LSTM and attention LSTM pro-

posed in [115]). All the results reported are 5 fold cross-subject validation where we use

one set of subjects for training and a held-out set of subjects for validation.

2.6.1 Predicting non-response to the next EMA using the current EMA response

We evaluate the prediction performance of non-temporal models when the sequence length

T = 1. We present results under two scenarios: 1. using only the raw features, 2. including

the summary features. The results presented in Table Table 2.3 indicate that capturing the

summary of previous EMA responses significantly improves the prediction performance.

2.6.2 Predicting non-response to the next EMA using a sequence of EMA responses

We explore the utility of learning representations to summarize the EMA history with deep

temporal models such as Transformers and LSTMs. We perform prediction using a se-

quence of T EMAs where sequence length T = 5, 10, 15, 25. The performance of different

models is reported in Table Table 2.4. We see that the deep models show an improve-

ment over logistic regression. The transformer model (with self-supervised pre-training)

performs the best and particularly shows an improvement over LSTM in modeling long

sequences (T = 15, 25). Note: here we show results from the pre-training task of imputing

one emotion item that performs the best. We show results from different pre-training tasks

32



in Table Table 2.2. We see that the performance is similar across different pre-training

tasks. We discuss this more in Section section 2.7.

Table 2.2: Cross validation AUC for predicting non-response to next EMA prompt using
a sequence of T = 15 EMAs with different pre-training tasks. The different pre-training
tasks here are: 1. Imputing one emotion item at a time, 2. Imputing all the emotion items,
3. Imputing five emotion items. We do not see a large change in performance with a change
in the pre-training task.

Pre-training task T = 15
One item 0.76± 0.01
All items 0.75± 0.02

Imputing 5 items 0.76± 0.02
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Table 2.3: Average 5 fold cross validation AUC for predicting next EMA response using features from the current EMA (sequence length
T = 1). We use two sets of features: 1) raw features only, 2) raw features and summary features. Using summary features improves
performance significantly, indicating that history is important in predicting response.

Dataset Model Raw features only Raw features & summary features
Logistic regression 0.63± 0.02 0.71± 0.02

Dataset A SVM (RBF kernel) 0.64± 0.02 0.71± 0.02

Logistic regression 0.63± 0.01 0.70± 0.02
Dataset B SVM (RBF kernel) 0.63± 0.02 0.68± 0.02
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Table 2.4: Average 5 fold cross validation AUC for predicting non-response to next EMA using a sequence of T EMAs. The deep models
LSTM and Transformer perform significantly better than Logistic regression. Among the deep models, the EMA transformer with pre-
training performs the best. The transformer performance is significantly better than LSTM when using longer sequences (T = 15, 25).
All of these results are 5 fold cross validation results on the main dataset. Note that here we use dataset specific features for prediction.

Dataset Model T = 5 T = 10 T = 15 T = 25
Logistic regression 0.70± 0.03 0.66± 0.02 0.65± 0.02 0.58± 0.02

Vanilla LSTM 0.73± 0.02 0.73± 0.02 0.72± 0.02 0.71± 0.01
Dataset A EMA transfomer 0.75 ± 0.02 0.76± 0.01 0.76± 0.01 0.75 ± 0.01

EMA transformer
(with S-S pre-training) 0.75 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.75 ± 0.02

Logistic regression 0.66± 0.02 0.62± 0.02 0.63± 0.01 0.58± 0.04
Vanilla LSTM 0.74± 0.03 0.74± 0.03 0.72± 0.04 0.73± 0.03

Dataset B EMA transfomer 0.77± 0.02 0.75± 0.01 0.76± 0.02 0.73 ± 0.02
EMA transformer

(with S-S pre-training) 0.78 ± 0.02 0.78 ± 0.02 0.77 ± 0.03 0.72± 0.02
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2.6.3 Role of temporal/positional encoding:

We explored two kinds of incorporating positional information with the standard sine-

cosine function for encoding: 1. Addition, 2. Concatenation. We evaluate the performance

of EMA transformer when performing temporal/positional encoding in these two ways.

Figure Figure 2.6 (a) shows the error of the masked prediction task with the 4 different

strategies (lower is better) (b) shows the AUC of the downstream non-response prediction

task with a sequence of T EMAs. In all of these cases, we see that concatenation results

in better performance than the standard addition. We discuss this in more detail in Section

section 2.7.

Figure 2.6: Performance of transformer with different temporal/positional encoding (a)
On the pre-training task of imputing EMA responses (here we impute the features one at
a time); (b) On the downstream response prediction task with sequence length T = 15.
The box plot shows performance across different cross-validation folds. Concatenation
performs the best in all these cases and temporal concatenation performs the best in the
prediction task.

2.6.4 Predictive performance of valence features

We construct valence features as described in the previous section to overcome the covariance-

shift problem across different EMA datasets. We evaluate the predictive performance using
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the valence features and compare them to using the entire set of features in the rows ‘using

valence features’ and ‘using dataset specific features’ in Table Table 2.5. The performance

using valence features is slightly lower than the performance with the full set of emotion

items (dataset specific features). Hence, the valence feature representation serves as a

common feature representation that can be computed across any EMA dataset with only a

slight performance degradation.

2.6.5 Generalization to other EMA studies

We evaluate the performance of the EMA transformer model trained one dataset and eval-

uate its performance on the other dataset. Note that we are able to use the model trained

on dataset A at test time on dataset B using the valence feature representation. We report

results in Table Table 2.5 in the row ‘Transfer performance’. We see that while the per-

formance is slightly lower than what is obtained when trained on the main dataset, these

results show that the model learns representations that generalize to new datasets without

additional fine-tuning. The transfer performance is evaluated by training the dataset on one

dataset (e.g., dataset A) and testing it on the other dataset (e.g., dataset B). Note that there

are several variations across these datasets such as difference in population, context of the

study, etc. which could result in domain shift. We utilize a popular domain adaptation

technique (DeepCORAL [22]) to align the learned representations across the two datasets.

We see that domain adaptation provides a boost in transfer performance without the need

for additional fine-tuning on the target dataset.
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Table 2.5: Average 5 fold cross validation AUC for predicting non-response to next EMA using a sequence of T EMAs in the following
settings: a) Using all the emotion items in each dataset, b) Using the valence feature representation, c) Transfer performance (e.g., model
trained on dataset B and tested on dataset A), d) Transfer performance after performing domain adaptation using DeepCoral [22]. We
see that using the valence features results in a slight degradation in performance. However, valence features give us the ability to use the
trained model on other datasets. We see that domain adaptation provides a gain in the transfer performance.

Dataset Experiment T = 5 T = 10 T = 15 T = 25
Using dataset specific features 0.75± 0.02 0.76± 0.01 0.76± 0.01 0.75± 0.01

Using valence features 0.76± 0.02 0.70± 0.02 0.73± 0.03 0.72± 0.04
Dataset A Transfer performance 0.73± 0.01 0.70± 0.04 0.71± 0.04 0.66± 0.1

Transfer performance
(with domain adaptation ) 0.73± 0.02 0.70± 0.02 0.72± 0.03 0.66± 0.02

Using dataset specific features 0.77± 0.02 0.75± 0.01 0.76± 0.02 0.73± 0.02
Using valence features 0.76± 0.02 0.74± 0.03 0.73± 0.03 0.70± 0.04

Dataset B Transfer performance 0.64± 0.02 0.60± 0.04 0.58± 0.01 0.55± 0.1
Transfer performance

(with domain adaptation) 0.64± 0.01 0.65± 0.02 0.64± 0.01 0.60± 0.02
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Figure 2.7: Feature ablation study: the performance of EMA transformer is evaluated in
4 settings: 1. using all features, 2. removing positive emotions, 3. removing negative
emotions, 4. removing non-EMA features. We see the largest drop in performance when
the positive emotion items are removed, indicating that the positive emotions have the most
predictive power.

2.6.6 Feature ablation results

We perform a feature ablation study removing the positive, negative, and non-EMA re-

sponse items and train an EMA transformer (See Figure Figure 2.7) . We see that the

largest degradation in performance occurs when we remove the positive emotion items.

This indicates that the positive emotions have the most predictive power. Analyzing the

responses to EMA, we observe that participants generally report higher values (higher

agreement) to positive questions and lower values to negative questions (see Figure Fig-

ure 2.8). One hypothesis for why positive emotions have higher predictive value is that if

someone is strongly feeling a negative emotion, they might not respond and the emotion is

not recorded. We see this in the data where negative emotions are generally not reported

with high likert scale values.
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Figure 2.8: Distribution of responses to positive and negative questions. Notice that neg-
ative questions usually have a lower value response and positive questions have a higher
value response.

2.7 Discussion

2.7.1 Importance of temporal history in non-response prediction

We evaluate the performance of classical statistical and machine learning models such as

logistic regression and SVM (RBF kernel) for predicting next EMA compliance (compli-

ance to (T + 1)th EMA) using a single EMA (sequence length T = 1). Our feature vector

summarizes the EMA history by using average completion and affect variance. We perform

an experiment to remove all summary features computed from the EMA items. In this set-

ting, we use only the information contained in one EMA response to predict next EMA

compliance. This reduces performance substantially, as shown in Table Table 2.3 column

‘Raw features only’. These findings suggest that the EMA history summary is important

for predicting next EMA compliance. Next, we explicitly incorporate the history of EMAs

into the prediction model by using a fixed sequence of EMAs (sequence of T EMAs) to

predict next EMA ((T + 1)th EMA) compliance. We develop a transformer based model

for the task of forecasting using the sequence of EMA features. We see in table Table 2.4
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that using a sequence of EMAs improves performance (in LR and SVM when compared

to using T = 1). We see in table Table 2.4 that for the task of predicting compliance using

T EMAs, the deep temporal models perform significantly better than the classical base-

line. Among the models predicting compliance from the sequence of EMAs, the EMA

transformer performs the best. Hence, explicitly modeling the history of EMA responses is

important for predicting compliance.

2.7.2 Temporal/positional encoding for EMA input to transformers

We explore two ways to incorporate temporal (or positional) information into the trans-

former model: 1. Adding ; 2. Concatenating the positional embeddings. In the case of

EMAs, data items are sampled at continuous time points, corresponding to the time when

each EMA is triggered. Encoding the continuous time values into the input would provide

a higher resolution of information than just the positions of each EMA. In the standard NLP

literature [88], positional information is incorporated by adding sine and cosine functions

of the position to the input. We believe that the additive positional encoding strategy (used

in NLP) is sub-optimal for EMA (See Fig.Figure 2.6) data where we have much smaller

datasets. The idea here being that adding temporal/positional information changes the in-

put values and the model has to learn to differentiate the effect of position/time and the

actual input variation. In the case of NLP where datasets are larger, we hypothesize that

the model can learn this distinction better.

2.7.3 Self-supervised pre-training of EMA transformer

Pre-training transformer models in a self-suppervised manner has been shown to be ben-

eficial in other domains such as NLP. The BERT model is pre-trained on a large corpus

of text to learn structure in sentences. This model is then fine-tuned for new tasks where

labeled datasets are of smaller sizes. Such a capability would be beneficial in fields such

as healthcare where labeled datasets are difficult to collect. We see an improvement when
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using pre-training (‘EMA transformer with S-S pre-training’) over the results without pre-

training (‘EMA transformer’) in Table Table 2.4. However, this isn’t a statistically signifi-

cant improvement. We hypothesize that this is due to the small size of our datasets. Table

Table 2.2 presents the best non-response prediction task performance when the model is

pre-trained with three different tasks: imputing one feature at a time, inputing all features,

imputing a subset (5) features. We see that the performance is similar across the three

pre-training tasks. One hypothesis is that the emotion items are related in some ways (e.g.,

if you are happy, you might also be feeling relaxed, etc.) and hence the representation

to predict one feature might be useful for predicting multiple of them. The question of the

utility pre-training with EMA sequences as in the NLP setting remains a question for future

work. However, the preliminary results that we obtain show that pre-training might have

the potential to result in significant improvements with larger datasets.

2.7.4 Interpreting the learned attention weights

The transformer self-attention matrix produces a weighted average of all the positions and

features in the EMA sequence. Figure Figure 2.9 visualizes the attention weights across

the EMA positions and features. Figure Figure 2.9(a) is a box plot of the attention across

the EMA positions within a sequence (in the different transformer encoder layers). In this

case, we are predicting EMA response with sequence length T = 5. We denote the EMA

position for which response is being predicted as lag 0. The EMAs in the input sequence are

denoted by lag 5 - lag 1. So lag 1 is the EMA immediately before the one being predicted.

We see that lag 1 has the highest weight across all of the encoder layers. This is intuitive, as

the most recent EMA is likely to be most closely-related to the participant’s current mental

state. We see an interesting pattern in the attention weights corresponding to the other

lags. The mean of the lag 2, 3, and 4 weights are similar, but the weight corresponding

to lag 5 is higher. One possible explanation for this trend is that since there are 4 EMAs

on average per day, an EMA at lag 5 would correspond to the same time window as the

42



current prediction task, but on the previous day. This may be capturing periodic behavior in

the participant’s daily routine that is relevant to their response or non-response. Explicitly

handling periodicity in the model is an interesting topic for future work.

In Figure 2.9(b), we visualize the attention weights on the different features in the first

encoder layer. This corresponds to the relative importance of different types of features in

predicting non-response, averaged over an input sequence of length 5. We see that time is

an important feature in predicting non-response. This is also aligned with our finding that

the way we encode time in the input affects the performance of the transformer model. We

also find that the emotion features Enthusiastic, Angry, and Bored have higher attention

weights in comparison to other emotion items. This makes sense, as these are examples of

strongly positive and negative emotions, which could influence response behavior, as well

as the feeling of boredom which may correlate with a lack of engagement. These findings

are consistent with those in [94], a behavioral study that finds that “higher mean negative

affect” is a predictor of compliance in a study among adolescent smokers. The completion

feature captures the detailed pattern of completion to each EMA in the sequence, while

CR long and short are the average completion rate features that capture a summary of

the pattern of completion. We see in Figure Figure 2.9(b) that the feature ‘Completion’

(capturing the detailed pattern of completion) is more useful in predicting non-response

when compared to the long and short summaries of completion. This suggests that the

model gets significant benefit from modeling the more detailed patterns in the response

history. Collectively, these visualizations provide qualitative evidence that the transformer

model is capable of learning meaningful structure from the sequence of EMA responses.

The ability to identify and visualize the feature interactions learned by the transformer

can be a potentially useful capability for domain scientists who are interested in designing

related interventions.
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2.7.5 Generalization to other EMA datasets

A critical challenge in utilizing predictive models developed on EMA studies is the prob-

lem of changing input-space due to the difference in the EMA questions. In this work,

we provide a first solution by summarizing responses into positive/negative valence fea-

tures. This enables us to use predictive models across EMA datasets (with a slight decrease

in performance). We see that our transformer model performance is encouraging when

tested on a different EMA dataset. Accounting for covariate shift across the datasets using

DeepCORAL further improves the model performance. Developing a domain adaptation

method that utilizes the structure of EMA data is an interesting future direction.

Figure 2.9: (a)Attention weight across the positions in an EMA sequence of length T = 5.
Here the EMA positions in the sequence are denoted as Lag 5 - Lag 1 and the EMA for
which response is being predicted is Lag 0. So Lag 1 is the EMA immediately before the
one being predicted. (b)Attention weights on the different features in the input layer (first
encoder layer) averaged across the time window. This visualizes the weighting performed
by self-attention matrix on the input features.

2.8 Conclusion

In this work, we present a transformer architecture for modeling EMA sequences to pre-

dict non-response to future EMA prompts. Existing work on analyzing and predicting

non-response have used classical machine learning models for this task. We are the first
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to explore the use of transformers for modeling sequences of irregularly sampled EMA

responses and predicting non-response to future EMA prompts. We address three issues

in this work: 1. Choice of the input representation for EMA sequences, 2. Designing a

feature representation that can be used acros different EMA datasets irrespective of the

fine-grained questions, 3. encoding the temporal information into the input, 4. analyz-

ing the utility of self-supervised pre-training on EMA data for improving the non-response

prediction task, 5. Utility of domain adaptation in improving the generalization perfor-

mance of our non-response prediction model across different EMA datasets. We find that

the transformer model achieves a classification AUC of 0.77 and outperforms both classical

ML and LSTM based DL models. We find that the design choice for positional/temporal

encoding affects the performance of the model and concatenating the temporal information

leads to better performance when compared to the standard practice of adding the positional

embedding. We design a self-supervised pre-training task on EMA sequences and find that

it leads to an improvement (but not statistically significant). We present visualizations of

the learned attention weights that illustrate the ability of the transformer to learn meaning-

ful representations. An important future step will be using these prompt level compliance

forecasts to inform the timing of compliance interventions.
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CHAPTER 3

DOMAIN ADAPTATION THROUGH SELF-SUPERVISED LEARNING FOR

PULSATIVE PHYSIOLOGICAL SIGNALS

3.1 Introduction

In the previous chapter, we developed a method to address the first challenge of covariate-

space shift in the context of EMA non-response prediction. In this chapter, we study the

second challenge, domain shift in the context of pulsative physiological signals collected

in different studies.

The field of healthcare is ripe with opportunity for leveraging data-driven modeling.

The complexity of tasks, various number of factors that could contribute to a prediction

and the importance of accurate predictions makes deep feature learning desirable. Some

works have shown promising results, achieving physician level performance [119, 120,

121] when trained in a supervised manner with large high quality labeled datasets. How-

ever, the utility of predictive models in health comes with their ability to transfer to other

datasets and populations. Furthermore, large scale healthcare datasets are inaccessible due

to privacy concerns (e.g., hospital data), participant burden (e.g., running long mHealth

studies), cost of labeling datasets, etc. and typically we have access to small individually

collected datasets.

Different datasets in mhealth are collected in different experimental contexts such as

different sensors, different demographics, etc. This could result in a difference in the statis-

tics of the data, called domain shift. Domain shift results in poor performance of models

trained on one domain and tested on a different domain [40]. This results in two main

challenges: 1) Utilizing multiple small datasets collected separately to train a model, 2)

Generalization of a model trained on one mHealth dataset to the real world. Hence, it is
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critical to account for the domain shift across mHealth datasets to realize the potential in

making predictions and delivering interventions.

One of the main sources of variability across mHealth studies is the hardware used. For

example, the mHealth study on stress detection in [35] used a sensor suite consisting of

ECG electrodes and an RIP sensor described [18]. Whereas, the study [21] used a com-

mercially available chest and wrist band to detect stress events. In addition to this, there

are differences in population, location of the study, etc. which could result in a domain

shift across studies. Among the different sensors and data modalities used in mHealth [17,

122, 123, 18], high frequency pulsative physiological signals (such as the ECG and PPG)

enable measurement of different kinds of health states through wearable sensors. The ECG

records the electrical activity in the heart using electrodes placed on the body. The standard

ECG measurement consists of 12 leads where each lead views the heart in a different direc-

tion [124]. As a result, the ECG signal recorded at each of these leads differs in structure

from the other. See Figure 3.1 for an illustration of the ECG signal recorded at two leads on

the chest. Notice that the structure of the ECG signal recorded changes substantially with

a change in the sensor location. Similarly, the PPG signal records cardiac activity and is

commonly used to estimate heart rate and oxygen saturation. The location of the PPG sen-

sor on the body (Fingertip, wrist, etc.) has an effect on the signal. Similarly, the wavelength

of light used in the PPG sensor determines the statistics of the data collected. Given that

there are several kinds of wearable physiological sensors available commercially [125] and

used in research [18], and the difficulty associated with obtaining labels for each individ-

ually collected dataset for training, it is critical to use domain adaptation methods across

physiological datasets and develop transferrable predictive models.

The problem of domain adaptation has been extensively studied in computer vision [40,

41, 43, 42, 126, 127] where the different sources of variability across domains can be

listed to some extent as differences in lighting, resolution, camera design, etc. The domain

adaptation methods can be grouped intro three major categories: 1) minimizing a measure
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Figure 3.1: Standard 12 lead ECG set up. Each lead records the cardiac depolarization in
a different direction. The signal recorded at two leads on the chest - V3, V5 are illustrated.
Notice that the structure of the signal recorded at each lead is different.

of distributional discrepancy [41, 22], 2) adversarial training using a discriminator to align

domains [42, 43], and 3) through self-supervised tasks [126, 127]. Domain adaptation

through self-supervised learning has an advantage over the other two classes of methods

that it can be used for improving model generalizability even without access to data from

the target domain at training time [127].

Compared to this, there have been only a few prior works on domain adaptation on

pulsative physiological signals such as [28, 29, 30, 128]. However, these works do not

study domain shift caused by a real source of variation such as sensor design, etc. The

domains in all these cases are obtained by randomly splitting one dataset. Additionally,

these works use methods from the first and second category (metric based and adversarial

training) for domain adaptation. The work on lab to field generalization of cocaine use

prediction [31] is one work which studies the performance of a predictive model across

two datasets which are collected separately. However, the main source of domain shift

between these two datasets is prior shift or class imbalance. Our aim is to use study domain
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shift caused by variations in the sensor location, design, population, etc. on ECG and PPG

signals. Additionally, we aim to propose self-supervised tasks for ECG and PPG signals

that help with domain adaptation since these tasks can be used as a regularizer without

requiring target domain data at training time.

The goal of this work is to study domain shift in pulsative physiological signals (ECG,PPG)

caused by factors such as variation of population, sensor design, etc. and present a method

for domain adaptation using self-supervised tasks. To study domain shift in ECG, we use

the PTB-XL dataset [44] which is publicly available on Physionet [129]. PTB-XL is a

clinical 12 lead ECG dataset. The leads capture ECG recorded in different directions from

different positions on the body. We treat each lead as a separate ECG sensor (domain) and

study domain shift across the different leads using arrhythmia classification as the main

task. To study domain adaptation in PPG, our main task is estimation respiration rate (RR)

from PPG data. We use data from the MIMIC III waveform database [45], and from an

mHealth study WESAD [21]. MIMIC III is an ICU dataset where PPG data is collected

from a hospital-grade fingertip PPG sensor and WESAD is an mHealth dataset where PPG

data is collected using a commercially available wrist watch.

3.2 Contributions

In summary, this chapter makes the following contributions:

• This is the first work to study the problem of domain shift across pulsative physio-

logical signals (ECG,PPG).

• This is the first work to use self-supervised learning for domain adaptation on physi-

ological signals.

• Our self-supervised tasks result in a better transfer performance as compared to stan-

dard domain adaptation methods.
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• Our method enables the use of self-supervised tasks for adaptation without access to

target data during training time.

3.3 Related work

The problem of domain adaptation has been extensively studied in the field of vision, de-

scribed in this review article [130]. Comparatively, domain adaptation in physiological

signals is not well-studied. Recent prior work in ECG domain adaptation [28, 29, 30]

exists. However, in all of these papers, the two domains are obtained by randomly split-

ting the MIT-BIH ECG dataset [131]. Hence these prior works are not studying domain

shift caused due to changes that we would expect across different mHealth studies such as

change in sensor design, placement of sensor, etc. Our work in this chapter studies domains

shift in ECG caused due to change in the placement of ECG leads on the body, and domain

shift in PPG caused by changing the sensor design (hospital grade fingertip sensor vs wrist

worn sensor). Ours is the first work to study domain shift in pulsative physiological signals

(ECG, PPG) across datasets collected in different contexts. A second difference is that the

prior work on ECG domain adaptation [28, 29, 30] is based on adversarial domain adapta-

tion methods. Domain adaptation has also been studied in the related area of accelerometry

data [132, 133, 134]. Accelerometers are commonly used for action recognition and ac-

tivity monitoring in mHealth studies. However, similar to the prior work in ECG, these

methods apply standard domain adaptation methods to accelerometry data. In this chapter,

we propose to use self-supervised tasks to learn domain agnostic representations which is

superior since it does not involve a minimax optimization, and can be trained without ac-

cess to target domain data [126, 127]. To the best of our knowledge, this is the first work to

perform domain adaptation for self-supervised learning on time series data in general and

pulsative physiological signals specifically.
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3.4 Methods

To study domain shift across two datasets, we need a predictive model for our main task of

interest. We then train the model on one dataset (source) and evaluate its performance on

the other dataset (target). In this work we demonstrate our domain adaptation method on

two pulsative physiological signals - ECG and PPG. In this section, we describe the main

predictive task and the architecture used for each of these signals, followed by our method

of self-supervised learning for domain adaptation.

3.4.1 Arrhythmia classification from ECG

We perform binary arrhythmia classification as the main predictive task on ECG. Given

an 10second ECG signal, we perform classification where the two classes are normal and

arrhythmia. The architecture used for arrhythmia classification from ECG consists of an

LSTM encoder follower by fully connected layers illustrated in Figure 3.2. The model is

trained using the crossentropy loss.

Figure 3.2: Architecture used for arrhythmia classification from ECG. This is our main
predictive task on ECG signals to study domain shift across different leads. We train an
arrhythmia classification model with this architecture on one domain and evaluate its per-
formance on a different domain.

51



3.4.2 Respiration rate detection from PPG

Our main downstream task is respiration rate regression from PPG signals. The task is to

detect respiration rate given a 60second length PPG signal. The architecture we use for this

task is shown in Figure 3.3. The model is trained using the mean squared error loss.

Note that the architecture we use for both, the ECG arrhythmia task (Figure 3.2) and

the PPG respiration rate task (Figure 3.3) consist of an encoder followed by a task head

that consists of a fully-connected layer. The encoder/task-head structure is an important

notation that we will refer to while describing our domain adaptation method.

Figure 3.3: Architecture of the respiration rate detection model. This is our main predictive
task on PPG signals to study domain shift. We train a respiration rate regression model on
one domain and evaluate its performance on a different domain.

3.4.3 Domain adaptation through self-supervised tasks

The goal of domain adaptation is to align the source and target representations while main-

taining task-specific discriminability. As described earlier, the architecture we use for the

ECG/PPG tasks can be represented as an encoder followed by a task head. We utilize

self-supervised tasks to perform domain alignment where the representations extracted by

the encoder for the source and target domains are aligned. The idea is to simultaneously
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train the model to perform auxiliary self-supervised tasks on the source and target domain.

Hence the tasks are parameterized by the same network for both the domains, aligning the

representations.

General self-supervised tasks

We utilize three self-supervised tasks for the time series signals. For each of the source and

target dataset, we create an augmented dataset for these three tasks.

1. Flip left-right: We randomly select 50% of the input signals and flip them along the

horizontal direction. See!Figure 3.4 for an example of this operation performed on

an ECG lead 1 signal. The auxiliary task is a binary classification problem to detect

input signals that have been flipped.

Figure 3.4: Example of flipping operation performed to create an augmented dataset for the
self-supervised task. Here we show the original signal which is a Lead 1 ECG signal, and
the flipped signal on the right. The auxiliary self-supervised task is to detect signals that
have been flipped.

2. Mean shifting: We randomly select 50% of the input signals that are to be modified.

For each of these, we add a random constant value over the entire time series to

shift the mean. The auxiliary task is to detect inputs that have been mean shifted.

See Figure 3.5 for an example of this operation performed on an ECG lead 1 signal.

3. Jumble segments: We select 50% of the input signals that will be jumbled along the

time axis. For a given time series signal that is to be jumbled, we segment it into

N segments (the number of segments is determined by randomly picking a number

53



Figure 3.5: Example of mean shifting operation performed to create an augmented dataset
for the self-supervised task of mean shifting prediction. The red dotted line indicates the
mean of the original signal.

Figure 3.6: Example of jumbling operation performed to create a dataset for the auxiliary
self-supervised task of detecting jumbled signals. Here we show the original signal which
is randomly segmented into 10 segments. The segments are then permuted and combined
to obtain the jumbled signal. Each segment is denoted by a unique symbol in this figure.
Notice that the segments are ordered randomly on the right to result in the jumbled signal
which no longer has the structure of a typical ECG signal.

between 30 - 40). The segments are then shuffled and the resulting time series is the

‘jumbled signal’. The auxiliary task is a binary classification to detect input signals

that have been jumbled.

Once we have the auxiliary datasets for the self-supervised tasks for both the source

and target domain, we train the model as shown in Figure 3.7. We use the task labels

(arrhythmia labels in the case of ECG and respiration rate in the case of PPG) from the

source domain to extract task-relevant representations.

Physiologically inspired self-supervised task

We design a self-supervised task of peak detection. In the case of ECG signals, the task is

to detect R-peaks and in PPG signals, the task is to detect the main peak in the PPG wave.
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Figure 3.7: Domain adaptation through general self-supervised tasks. The goal here is to
align source and target representations through auxiliary tasks while preserving the task-
specific discriminability of the representations. We simultaneously train the network to
perform three self-supervised tasks on the source and target domain. In addition, we train
the task head using source domain labels. The three SS tasks we use are detecting: 1) Flip
left-right, 2) jumbled segments, 3) mean shifted signals.

The peaks in physiological signals represent certain physiological events. For example, the

R-peak in the ECG signal corresponds to ventricular depolarization. Different leads of the

ECG record the same cardiac activity from different angles. Similarly, different types of

PPG sensors are measuring the same activity. Hence the auxiliary task would be to detect

the a physiological event given different kinds of measurements of the physiological signal.

See Figure 3.8 for the overall training pipeline.

The ground-truth R-peaks for the source and target ECG inputs are obtained using a

differentiation based peak detector in the neurokit toolbox. The ground truth PPG peaks

are obtained using a differentiation based peak detector.
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3.4.4 Finding an invariant input-representation

Pulsative signals are observing periodic cardiac activity in the body. In our case, the dif-

ferent ECG leads measure the electrical activity of the heart from different directions. The

PPG datasets we consider measure the cardiac activity from two different locations on the

body using different types of sensors. Finding an invariant input-representation across do-

mains would help improve generalizability of predictive models across different domains.

Since pulsative signals are measuring periodic cardiac activity in the body, the frequency

domain would be able to capture this information. In our work, we include the short time

fourier transform (STFT) of the input signal (ECG/PPG).

Figure 3.8: Domain adaptation through physiologically-inspired self-supervised task. Here
the goal is to align source and target representations at the encoder while preserving task-
specific discriminability. We simultaneously train the model to perform the main task with
source labels and the auxiliary self-supervised task on the source and target domains. The
auxiliary self-supervised task used is peak detection (R-peak in the case of ECG).

3.5 Experiments and results

3.5.1 Classification results without domain adaptation

We perform the binary arrhythmia classification task on data from Lead 1 - 6 in the PTB-

XL datatset. We treat each lead as a different domain, which results in 36 scenarios where

an arrhythmia classification model is trained on a lead which we call source lead and tested
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Figure 3.9: Root mean squared error (RMSE - lower is better) of the respiration rate
(RR) detection from PPG. This figure denotes the error when the RR regression model is
trained on the source (WESAD/MIMIC) dataset and tested on the target (WESAD/MIMIC)
dataset. Notice that the performance is best when the source and target dataset are the same,
depicted by the lower error values in the diagonal entries.

on a lead which we will call the target lead. The test AUROC score is shown in Figure 3.10.

Notice that the diagonal elements are the highest for every lead (along the row and column),

which is the scenario when there is no domain shift. We see that the performance drops

substantially when the target leads are lead 3 and 4. These leads measure electrical activity

in opposite directions as compared to the other leads and hence have the highest domain

shift.

Similarly, we train a RR estimation model using PPG data from the two datasets MIMIC

and WESAD and test it on data from each of these datasets. The root mean squared error

(RMSE) of RR estimation is illustrated in Figure 3.9 where a lower value indicates bet-

ter performance. We see that the diagonal elements where the source and target domain

are the same, indicating no domain shift have the best performance. The error increases

substantially in the off-diagonal elements where there is domain shift.

3.5.2 Using domain adaptation on ECG and PPG

We compare the performance of domain adaptation methods DeepCORAL [22], Adversar-

ial discriminative domain adaptation (ADDA) [42] with our two self-supervised learning

based methods: 1) general self-supervised tasks (SSDA) and 2) physiologically-inspired

self-supervised tasks (Physiological SSDA).
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Figure 3.10: AUROC (higher is better) value for arrhythmia classification from ECG. Here
we present the performance when the model is trained and tested on different leads (Lead
1-6 in PTBXL). There is no domain shift when the source and the target leads are the same.
This corresponds to the high AUROC values observed in the diagonal elements. Notice
that the performance is poor when the model is tested on Leads 3 and 4. These are the
leads with the largest domain shift when compared to the other leads.
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Figure 3.11: Difference in arrhythmia classification (from ECG) performance to supervised
learning (lower is better) when both, the time and frequency domain is used. The supervised
performance for each target lead is the corresponding diagonal entry in Figure 3.10. The
results shown here reflect the average performance when all other leads are used as the
source for a given target lead. Notice that using the frequency domain (even without any
domain adaptation) yields an improvement over time domain. We see that physiological
self-supervised domain adaptation (SSDA) performs the best

The performance of these different methods for ECG lead to lead domain adaptation

are illustrated in Figure 3.11 (frequency and time domain data) and Figure 3.12 (only time

domain data). Here, the bar plot for each target lead indicates the difference to supervised

learning performance without any domain shift (corresponding diagonal element in Fig-

ure 3.10) averaged over all other leads as the source. Since we want to reach a performance

on the target domain closer to the performance without domain shift, a lower value is better.

We see here that the two self-supervised tasks outperform the other two domain adaptation

methods particularly in the case of Figure 3.11 (using frequency and time domain data).

The performance of the different domain adaptation methods on PPG across the two

domains is illustrated in Figure 3.14 (frequency and time domain data) and Figure 3.13

(only time domain data). The bar plot indicates the RMSE when a RR estimation model is

trained on the other dataset and tested on the dataset indicated as target domain. We see that

the performance of the self-supervised based methods is better than the other two domain

adaptation methods in both these figures.
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Figure 3.12: Difference in arrhythmia classification (from ECG) performance to super-
vised learning (lower is better) when the methods are applied to the time domain signal.
The supervised performance for each target lead is the corresponding diagonal entry in Fig-
ure 3.10. The results shown here reflect the average performance when all other leads are
used as the source for a given target lead. We see that physiological self-supervised domain
adaptation (SSDA) performs the best.

Figure 3.13: RMSE of RR detection from PPG when using the time domain signal. Lower
is better.
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Figure 3.14: RMSE of RR detection from PPG when using both time and frequency do-
main. Lower is better.

3.6 Discussion

3.6.1 Invariant input representation

Both the ECG and PPG signals are recording periodic cardiac activity within the body

and are pulsative in nature. In the case of the different ECG leads, each lead is observing

the same cardiac electrical activity from different directions. Similarly, the PPG signal

is measuring cardiac activity from different location on the body. The frequency domain

should be able to capture this information which is invariant across the domains. We see

that including the frequency domain information improves generalization to target domain,

both in the case of ECG and PPG signals. Notice that particularly in the case of ECG

(Figure 3.11), the performance without any domain adaptation improves substantially when

the frequency domain information is included.

3.6.2 Performance of self-supervised domain adaptation when trained on source data only

One of the main advantages of using self-supervised tasks for domain adaptation is that

the tasks can be used as a regularizer during training on the source domain only (without

using target domain data at training time), which cannot be performed with metric based or

adversarial domain adaptation methods. This is useful since target data is often real-world
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Figure 3.15: Difference in arrhythmia classification (from ECG) performance to supervised
learning when using the self-supervised task on source domain only (No target domain data
is used during training). We see that self-supervised tasks act as a regularizer and improve
target domain generalization.

Figure 3.16: RMSE of RR detection from PPG when using the self-supervised task on the
source domain only.
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data that is not available for adaptation at training time. We evaluate the performance on the

ECG and PPG target domains using self-supervised tasks on only the source domain data

during training. Figure 3.15 illustrates the performance on each target lead (averaged across

all source leads). The result indicated here is the difference to supervised performance,

lower is better. We see that both the self-supervised methods result in an improvement in

target domain performance when compared to the performance without any domain adap-

tation. Similarly, Figure 3.16 illustrated the performance of using self-supervised domain

adaptation methods with the source domain data only during training. We see that both the

tasks help improve target domain performance when compared to performance without do-

main adaptation. The physiologically-inspired self-supervised task performs better among

the two methods.
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CHAPTER 4

EXPLAINABLE PATIENT RANKING FOR HOME HOSPITAL CARE

4.1 Introduction

In the previous two chapters we address the shift problems that get reflected in the proper-

ties of the data as a result of the choices made while designing the study. An important next

challenge to the deployment of ML models in health is bridging the gap between ML mod-

els and domain-experts. A predictive model that is used for a decision making task must

be convincing for it to be deployed in an mHealth study or hospital. We study this prob-

lem of model explainability in the context of a health decision making problem: selecting

candidate patients for home hospital.

Hospitals are evolving their model of patient care with newly created ‘home-hospital’

programs, in which patients are sent home to receive care they otherwise would have re-

ceived in the hospital [53]. The program is made possible by advances in remote sensor

monitoring, home-administered interventions, and also in-home internist/nurse visits. The

fluctuating availability of hospital beds and fears of hospital-acquired infection inspires in-

terest in home hospital programs both within and outside of the US [135]. Such programs

are attractive to both patients and hospitals. Patients are motivated by the benefits including

improved sleep, home-cooked food, etc. and hospitals are motivated to send less-critical

patients home to expand bed capacity for more-critical patients. Past studies show that

home hospital care tends to be substantially less expensive than in-hospital – one study

suggests 52% cheaper [53]. Moreover, early studies [53, 136] suggest that home hospital

care enjoys similar to slightly better outcomes.

Selecting the right patients to be sent for home care is vital for the success of this

program, e.g., patients who might require acute interventions (those that can only be per-
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formed in a hospital) must not be sent home. The current process of assigning a patient to

home hospital relies on manual workflows of physicians constantly reviewing data, which

is laborious and not scalable. Machine learning algorithms can be used to learn effective

representations from large datasets containing patient records to identify and rank candi-

dates based on their suitability for home hospital care. Our goal is to frame the home

hospital task as a patient ranking problem based on the predicted likelihood of an acute in-

tervention. Constructing a high-quality ranking allows the physician to direct their limited

resources to those patients most likely to qualify and assess them for suitability and take

the final decision to send a patient to home care.

The machine learning community has actively worked on clinical outcomes such as

sepsis detection [115], mortality prediction [137], intervention prediction [138, 139], 30-

day rehospitalization probability [140], disease progression modeling [141]. The home-

hospital problem we introduce in this work differs from prior works in its focus on produc-

ing a ranking of patients based on predictions of their risk for needing an acute in-hospital

intervention within the next 24 hours. We demonstrate that this task can be addressed us-

ing the open source MIMIC III dataset, and our annotations and baseline models will be

freely available to encourage more progress on this new clinical prediction task of pressing

importance.

Explainabilty is a key property that machine learning solutions must possess if they

are to be employed in clinical settings [32]. We develop an approach to explain the home

hospital decision of a given black-box model by generating counterfactual [142] patient

histories comprised of vital sign trajectories. It was inspired by observing our medical

collaborators express clinical judgement in terms of hypothetical trends in vital signs, e.g.,

“This patient is a good candidate for home hospital, but if their systolic blood pressure had

been 110 and falling then they would have needed a vasopressor.”

In order to be effective in explaining home hospital recommendations to physicians,

we must be able to generate counterfactuals which are plausible, relevant and sparsely

65



perturbed. Plausibility means that each counterfactual (CF) is consistent with the patient

population and does not contain time series data which is unlikely or impossible (e.g.,

diastolic blood pressure exceeding systolic). Relevant means that counterfactuals reflect

the key dimensions that are relevant to an intervention prediction task e.g., generated CFs

for predicting the use of a ventilator would differ in SpO2 and respiration rate trajectories

(and not for example in their bilirubin level). Sparsity in the perturbation means that the

CF alters a minimal number of features to change the prediction and hence the explanation

focuses on those factors important for the model’s decision.

In this work, we introduce the counterfactual variational autoencoder (CF VAE), a vari-

ant of the classic variational autoencoder (VAE) [143] where we modify the latent space to

capture the decision boundary of the ML model. The CF VAE is trained to generate CFs at

test time through a feed-forward mapping. The key idea behind CF VAE is to sample from

the distribution of plausible counterfactuals and generate reconstructions that are relevant

to intervention prediction. Our method has two main advantages: 1. We produce plausible

counterfactuals by sampling from the VAE latent space, and 2. The latent space is trained

to capture the black-box model and thus learns relevant representations for the task. We

train a multi-head self-attention [79] based CF VAE to produce plausible time series coun-

terfactuals. For the home hospital task, we present results for pair-wise ranking based on

the time to next acute intervention with an attention-based pair-wise ranking model. We

use this as the black-box model and generate counterfactuals from the CF VAE.

In this work, we introduce the counterfactual variational autoencoder (CF VAE). Tra-

ditionally, VAEs [143] are used to generate realistic synthetic data. We show how the

traditional VAE loss function (first two terms in Figure Figure 4.1) can be modified to gen-

erate compelling CFs. The CF must be close to the original patient’s data (first term), be of

the opposite class (third term) and yet not change too many features (fourth term). By in-

cluding additional terms in the loss function we are able to use stochastic gradient descent

to train a VAE that will generate desirable CFs. Our method has two main advantages:
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1. We produce plausible counterfactuals by sampling from the VAE latent space, and 2.

The latent space is trained to capture the binary prediction model and thus learns relevant

representations for the task. We train a multi-head self-attention [79] based CF VAE to pro-

duce plausible time series counterfactuals. For the home hospital task, we present results

for pairwise ranking based on the time to next acute intervention with an attention-based

pairwise ranking model. We use this as the binary prediction model and generate counter-

factuals from the CF VAE.

4.2 Contributions

This chapter makes the following contributions:

• We introduce the home-hospital ranking problem and frame it on the open source

MIMIC dataset.

• We present results from a ranking model and achieve over 90% accuracy based on

two acute interventions: ventilator and vasopressor.

• We develop CF VAE: A VAE based feed-forward method to produce plausible, rele-

vant, and sparsely perturbed counterfactuals.

• We present a quantitative evaluation of the counterfactuals produced by our method

and prior works and note that a higher fraction of our counterfactals are plausible.

• We present results from a qualitative analysis of the counterfactuals produced: coun-

terfactuals generated by our method receive a plausibility score of 75% when com-

pared to 30% for a prior method.

4.3 Related work

While clinical prediction tasks have been widely-studied, we are not aware of past work that

defines and tackles the home hospital problem via machine learning methods that leverage
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Figure 4.1: Our proposed approach: learn a VAE latent space that embeds input data points
onto regions of the latent space whose labels are opposite those of the points. This can be
used to generate counterfactuals for any binary prediction (BP) model.

the large, publicly available MIMIC III dataset. Previously, clinical sites have developed

their home hospital programs and protocols around datasets that are not broadly-available

to the ML research community [136, 53], and were therefore difficult for the community to

iterate and innovative upon.

A second contribution of this work is a VAE-based deep architecture for the home hos-

pital problem. Our approach addresses the three main tasks of counterfactual generation,

intervention prediction, and patient ranking. We discuss related work for each of these

tasks below.
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Table 4.1: Comparison of different counterfactual generation methods: CEM [144], REVISE [51],
DICE [52], NG-CF [145], CF VAE - this work.

CEM REVISE DICE NG-CF CF VAE (ours)
Learned representation ✓ ✓ X ✓ ✓
Plausibility X ✓ X X ✓
Time series X X X ✓ ✓
Relevance X X X X ✓
Feed-forward approach X X X X ✓
Sparse perturbations ✓ X ✓ X ✓

4.3.1 Explainability via Counterfactual Generation

Explainable machine learning is a heavily studied field too vast to adequately summarize

in this section. Comprehensive surveys on the topic include [46, 47, 48, 49]. We focus

on explainability via counterfactual (CF) generation [50, 51, 52], where the determining

features of the classification model are highlighted by comparison to a diverse set of other

similar (synthetic) patients to whom the classifier would assign an opposite label.

Our approach to generating CFs possesses six key features not previously found in

combination among prior CF approaches, as illustrated in Table 4.1. (1) We generate time-

series CFs, a relatively understudied topic with some recent work [145, 146, 147] . (2)

Our CFs are usually biologically plausible, meaning that we avoid reporting SpO2 values

of 105% or diastolic blood pressures exceeding systolic. This contrasts with methods that

look for nearby CFs under the Euclidean metric [146, 147], which are prone to sampling

from outside the true data manifold. Nearest unlike neighbor approaches as in [145] par-

tially avoid this issue, but can produce unrealistic time-series of vital signs when the past

history of the patient in question is stitched together with the time series data of its “un-

likely neighbor”. We describe this in more detail along with results in Sec ??. [51] use a

standard variational autoencoder with reconstruction loss to generate a patient embedding

that encourages plausibility. (3) In contrast, our CF VAE incorporates a loss which captures

relevance to the prediction task, encouraging CFs that are both plausible and relevant. (4)

Our approach is feed-forward only, meaning that we do not require test-time optimization
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to generate CFs as in [145, 52, 144, 51]. (5) Our approach leverages a learned represen-

tation, which induces a probability distribution over patients and gives us a good distance

metric for use in other applications on the same dataset. (6) Our approach produces sparse

perturbations which can be interpreted as the factors important for the model outcome.

We achieve sparse perturbations through an ℓ1 regularization on the perturbation, similar

to [144]. [52] achieves sparsity in perturbations through post-processing of the CF.

Note that model interpretability is a related and widely studied research area. Some

representative papers include [148, 46]. However, the focus of this work is to only explain

the model outcome and not feature representations learned.

4.3.2 Patient ranking

The closest work to this is [149], in which pneumonia patients are ranked according to their

mortality risk. The lowest ranked patients are evaluated as candidates for home treatment.

The model is further trained on a secondary task to predict lab outcomes to learn better

representations for the ranking task. However, subsequent work [150] identified concerns

with using this intervention-oblivious model to assess risk. Similarly, [151] attempts to

prioritize patients according to the probability that a quick intervention can prevent their

death. [152, 153] rank patients based on their likelihood of being discharged from the

hospital, and [154, 155, 156] all attempt to predict length of stay in the ICU unit or in home

hospital care. In contrast, we rank patients based on their predicted time to requiring an

acute intervention. This is a different task than ranking based on the risk of mortality or the

expected total duration of care.

4.3.3 Predicting Time to Intervention

Other prior work focuses on predicting when an ICU patient will need their next inter-

vention (regression), or whether they will need an intervention within the next x hours

(classification). For example, [139, 138] train autoregressive state space models to predict
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if interventions such as vasopressor or ventilator are needed in the next 6-8 hours. [157]

benchmark a number of different classical ML and deep learning models on predicting the

onset of interventions, among many other similar tasks. While the focus of this work is not

to develop a model for predicting time to intervention per se, it is an auxillary task that is

relevant to patient ranking. In particular, while we use the time to next acute intervention

as a means to determine the ground truth ranking of patients, only the relative ordering is

important to us.

4.4 Methods

Our solution approach for home hospital is designed to meet two requirements: 1) Given

a population of patients, rank them by the likelihood that they will require an acute inter-

vention; and 2) Given any target patient of interest, generate a counterfactual patient for

visualization with the attendant clinician, as a means to explain why the target patient was

selected (or not) for home hospital. Our solution architecture has three components: 1) A

novel Counterfactual VAE (CF VAE) module (Fig. Figure 4.1), which provides a general,

feed-forward approach to synthesizing counterfactuals for time series classification prob-

lems (and is used in home hospital to map target patients to their counterfactuals); 2) A

Multitask Model (Fig. Figure 4.3) which learns a patient embedding from raw time series

measurement data, and produces acute intervention prediction and patient ranking outputs;

and 3) A Training Procedure (Fig. Figure 4.4) for learning to rank patients and generate

counterfactuals.

4.4.1 CF VAE: Counterfactual Variational Autoencoder

In this section we describe our novel and general CF VAE architecture for counterfactual

generation, illustrated in Figure 4.1. In subsection 4.4.2, we describe how this module

is incorporated into the overall home hospital solution. The key idea is to train a VAE to

generate counterfactuals via a feed-forward mapping. In contrast, prior methods perform
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optimization at test time to identify counterfactual samples, as exemplified by DICE [52]

and REVISE [51], which optimize in input and latent spaces, respectively. In our approach,

sampling from the counterfactual distribution only requires one feed-forward pass, as op-

posed to making multiple calls to an optimization module.

Our approach has two main advantages. First, we can learn a patient embedding that

jointly optimizes for plausibility (samples respect the data distribution), validity (samples

flip the outcome of the classifier) and sparsity (minimal feature change). Since CFs provide

a means for a clinician to interrogate and understand the assessments performed by a deep

model, generating realistic CFs is critical in order to establish trust. We show experimen-

tally in Sec. section 4.5 that our joint training method produces more realistic CFs than

prior methods. A related benefit of joint training is improved sample efficiency in using

the training data. In contrast, the generation of one successful sample via optimization

does not make it any easier to generate the next one, because the optimizations are done

independently at test time.

A second benefit of CF VAE is that the learned patient embedding encodes the proper-

ties of the patient trajectories that are relevant to the intervention prediction task, facilitating

the generation of relevant CFs.

In particular, generated CF patients will be clustered around a given input patient, but

differ in their feature trajectories in ways that are consistent with the acute intervention

prediction. For example, suppose a 10% drop in SpO2 over time triggered an acute inter-

vention like ventilator for an input patient. We would like the CF patients to be similar

on the vitals that are irrelevant to the treatment (e.g. blood pressure), but differ in their

SpO2 trajectory in intuitive ways (e.g. a 5% drop or perhaps a slight rise). It is difficult to

achieve this type of relevance in the case of prior methods that do not utilize a task-specific

representation during CF generation. An example of an irrelevant CF produced by DICE

is shown in Figure 4.5. Additionally, CFs that deviate minimally from the input (say only

in the blood pressure) are easier to interpret by a physician. We include a constraint in
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our algorithm, similar to [144] to have sparse perturbations while still being plausible. In

comparison, [52] adapts a post-processing approach that might result in sparse CFs that are

not plausible.

We finally note that by incorporating multihead self-attention [79] blocks in the encoder

and decoder, the VAE can handle time series measurements as inputs, and synthesize coun-

terfactual time series as outputs, thereby achieving the goals in Table Table 4.1. We now

describe our solution architecture, beginning with a brief overview of a vanilla VAE [143].

VAE background: The VAE approximation takes the form of a standard encoder-decoder

pair where the encoder, Q, and the decoder, P , are each parameterized by neural networks.

The encoder and decoder networks are trained by maximizing the objective:

EX∼D[Ez∼Q[logP (X|z)]−D(Q(z|X)||P (z))] (4.1)

Where X is a data point sampled from the dataset D, the encoder Q produces a distri-

bution N (µX ,ΣX) over the latent representation z, and D is the KL divergence between

the latent multivariate Gaussian distribution and the prior distribution P (z). The two terms

in the objective function correspond to the reconstruction error and latent space normaliza-

tion, respectively.

When both the prior P (z) and output distributions P (X|z) are assumed to be spherical

Gaussians, maximizing Equation (4.1) can be shown to be equivalent to minimizing

EX∼D[||X −X ′||22 +KL(N (µX ,ΣX)|N (0, 1))], (4.2)

where X ′ = P (Q(X)) is the network’s reconstruction of X . We therefore use Equa-

tion (4.2) as a starting point for defining a loss function for training our VAE. See [158] for

a more complete derivation of this objective.

73



CF VAE objective: To produce realistic counterfactuals, we must generate samples with

high probability under the data distribution that flip the output of a target classification

model. In the context of home hospital, the target is a multitask model that maps a patient

representation into a score that can be used for ranking, along with a binary prediction

of whether the patient will receive an acute intervention. We use the acute intervention

prediction as the output for the purpose of counterfactual generation. Note however that

our CF VAE approach can be used for any binary prediction model. We denote the binary

classification output of the target model as y = BP(X) and the output of the CF VAE as

Xcf .

We modify the VAE objective so that its output (Xcf ) is penalized by a term propor-

tional to the cross entropy of yprobcf and 1− y (where yprobcf is the class probability output of

BP(Xcf )) in addition to the standard regularization and reconstruction loss on X and Xcf .

Introducing this extra loss term allows the VAE to learn about the target model’s decision

boundary and incentivizes it to synthesize a counterfactual sample Xcf whose output ycf

is of the opposite class. Intuitively, as diagrammed in Fig. Figure 4.5(b), this teaches the

VAE to encode the classifier boundary in its latent space, and to map a given X to a latent

point of the opposite class. Another consideration is to have minimal changes to the input

to produce a CF. We achieve this through a sparsity constraint on the perturbation. Thus,

our modified loss function takes on the form

EX∼D[||X −Xcf ||22 +KL(N (µX ,ΣX)|N (0, 1))

+ λcfCrossEntropy(yprobcf , 1− y) + λS||X −Xcf ||1] (4.3)

where Xcf is the decoder output and λS , λcf act as Lagrange multipliers for sparsity

and for the “soft constraint” that CF class ycf and y must differ, respectively. Note that

Eq. Equation 4.3 differs from the standard VAE loss only in the cross-entropy and ℓ1 norm

term. Adjusting λcf allows us to tune the VAEs attention between focusing on its re-
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Figure 4.2: TSNE plot of the latent space of a vanilla VAE and CF VAE with varying
λcf . We visualize the two classes each point belongs to: requires intervention, or doesn’t
require intervention. We see that the CF VAE captures the classifier boundary and learns to
separate the two classes in the latent space as λcf increases.

construction/regularization objectives and on its counterfactual objective. Fig. Figure 4.2

visualizes the latent space using TSNE with varying λcf – as we increase λcf , we see more

separation between the classes in the latent space. We choose the λS value proportional to

the magnitude of the different loss terms on the training set. See Sec. ?? for examples of

CFs generated with and without the sparsity term.

A strength of our approach is that the CF VAE can be trained in the same way as a

Vanilla VAE, using stochastic gradient descent, allowing us to leverage the VAE optimiza-

tion literature. Note that the parameters of the binary prediction model are held fixed while

training the CF VAE.

The version of CF VAE described above represents each patient as a time series with

an N × T data matrix, where T is the number of time samples and N is the number of

measurements (e.g. vital signs). We have also explored an alternative temporal represen-

tation based on linear trends, where each vital measurement is modeling as trending (e.g.

up or down) with a specific slope and intercept over the measurement window. We present

results for both patient representations in the subsequent sections.

4.4.2 Multitask learning of ranking and acute intervention prediction

We require an ordering of patients in the hospital based on who is most suitable for home

care. Patients being sent home should not require an acute intervention within the next day.

We frame this as a pair-wise ranking task: given patients A and B, we rank them based
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on who will first require a critical intervention. Let A require an acute intervention in TA

hours and B require an acute intervention in TB hours. The ground truth ranking is A > B

if TA > TB or vice versa. We model the ranking function using a neural network, as

proposed in [159]. Given two patients A and B, the ranking network computes scores RA

and RB, and produces the output Sigmoid(RA−RB). We learn the network weights using

the binary crossentropy loss where the binary targets correspond to A > B or A < B. To

obtain a ranking order for all patients, we can compute pair-wise rankings selecting two

patients at a time and produce an overall ordering. Since the computed scores define a total

ordering on patients, we obtain consistent pair-wise rankings: if A > B and B > C, A will

be greater than C when we perform a pair-wise comparison of A and C.

We train a multitask model to perform two tasks: (1) produce a ranking score, and (2)

predict if an acute intervention is required in the next 24 hours. We believe that adding

the second task would not hurt the ranking performance (which is the main focus of home

hospital) since the two tasks are related. The architecture of the multitask model consists

of a multi-head self attention module to model the time series input as shown in Fig. Fig-

ure 4.3 and it is trained as in Fig. Figure 4.4 using the ranking loss and prediction loss

combined. As mentioned in the previous section, we explore another approach to represent

the patient time series, by summarizing it in the form of a slope and intercept. When the

data is represented in the slope-intercept form, the self-attention blocks in the CF VAE and

multitask model architecture are replaced with an MLP with ReLU activation. We use the

multi-task model with acute intervention prediction output as the binary prediction model

while training the CF VAE to explain the multi-task model.

4.5 Experiments and Results

The two main objectives of our experiments are to show that: 1) We can reliably rank

patients in the order of the time to intervention, and 2) Our CF VAE method produces

realistic counterfactuals as explanations.
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Figure 4.3: Model architecture for producing ranking and acute intervention prediction out-
put. The architecture consists of a transformer encoder for modeling the temporal sequence
of patient data.

Figure 4.4: Training pipeline for the ranking and predicting intervention. The multitask
model shown here is the MLP (for slope-intercept form) and transformer model (for tem-
poral sequence form).
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4.5.1 Dataset and pre-processing

We use the vitals, interventions, and other events recorded from patients in the publicly

available MIMIC III dataset [45] in our experiments. MIMIC III consists of deidentified

data from 53,000 patients admitted to the Beth Israel Deaconess Medical Center in Boston.

We use the data pre-processing pipeline in [157] to transform the MIMIC III raw vital signs

and interventions into hourly time series. The temporal patient data is segmented into 48

hour windows, where each window is a data point. For each 48 hour patient window, we

have an associated time to next acute intervention (tintv) and a binary label of whether they

receive an acute intervention within the next 24 hours (intv24). Given the 48 hour window

of features for patient A and B, the multitask model produces 3 outputs: 1) pairwise ranking

of A, B; 2) prediction that A receives an acute intervention within 24 hours; 3) prediction

that B receives an acute intervention within 24 hours. We perform a patient-wise split of

70%-15%-15% for training, validation, and testing. We use features corresponding to vital

signs (heart rate, systolic blood pressure, diastolic blood pressure, oxygen saturation, res-

piratory rate, temperature), interventions (ventilator, vasopressor, adenosine, dobutamine,

dopamine, epinephrine, isuprel, milrinone, norepinephrine, phenylephrine, vasopressin,

colloid bolus, crystalloid bolus), and demographics (age, gender) for the prediction and

ranking task.

4.5.2 Baseline methods for generating counterfactuals

The space of prior CF methods can be roughly partitioned into three approaches: (1)

Optimization-based approaches in the input space [144, 52], (2) Optimization-based ap-

proaches in the latent space of a generative model [51], and (3) Input perturbation-based

approaches [145]. The third category is not suitable for us since substituting a part of a

patient’s vital signs with vital signs from another patient could be unrealistic. In our ex-

periments, we compare to DICE [52] and REVISE [51] to represent the two optimization

categories.
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4.5.3 Multitask learning of ranking and acute intervention prediction

A pair of 48 hour patient windows A and B are input to the model and the model pro-

duces a ranking order based on who requires acute intervention I first. For the purpose of

our experiments, we show results on two acute interventions I separately: ventilator and

vasopressor.

The pairwise ranking and acute intervention prediction performance are shown in Ta-

ble Table 4.2. We see that the model achieves over 90% accuracy for both tasks. We also

notice that using the entire temporal sequence in the 48 hour window improves the perfor-

mance of the ranking and prediction task as compared to the slope-intercept representation,

indicating that the hourly pattern of the temporal data helps us rank and predict acute inter-

vention more accurately. For some interventions, such as ventilators, the presence of past

interventions is very predictive of similar interventions being required in the near future. To

test this, we perform an ablation study excluding information about the history of the target

intervention. We find that while there is a reduction in ranking and prediction accuracy, the

model still learns a good representation from only the vitals and other interventions.
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Table 4.2: Multitask model results from three experiments: 1. Ranking and acute intervention prediction using history of vitals, interventions and
demographics, 2. Results without using the history of the target intervention as an input feature (to rule out any data leakage), 3. Results when we
perform ranking only on the patients who require acute intervention within the next 24 hours. Error bars generated by running the experiment with
10 random seeds. Here, ACC = Accuracy, AUC = Area under ROC curve, Intv = intervention.

Experiment Slope-intercept input Temporal input
Vaso Vent Vaso Vent

All features &
Ranking

ACC 0.88± 0.01 0.93± 0.01 0.96± 0.00 0.94± 0.00
AUC 0.95± 0.01 0.98± 0.00 0.99± 0.00 0.98± 0.00

Intv pred
ACC 0.83± 0.01 0.83± 0.12 0.90± 0.01 0.91± 0.01

all patients AUC 0.88± 0.02 0.91± 0.01 0.96± 0.00 0.92± 0.01

Ablation study:
Ranking

ACC 0.89± 0.00 0.86± 0.00 0.96± 0.00 0.88± 0.00
w/o history of AUC 0.96± 0.00 0.93± 0.00 0.99± 0.01 0.94± 0.01
target intv

Intv pred
ACC 0.84± 0.01 0.79± 0.01 0.91± 0.00 0.83± 0.01

as feature AUC 0.89± 0.00 0.83± 0.00 0.96± 0.00 0.86± 0.00

Only patients
Ranking

ACC 0.72± 0.08 0.95± 0.00 0.94± 0.01 0.97± 0.00
who need AUC 0.80± 0.00 0.99± 0.00 0.97± 0.00 0.99± 0.00
intervention
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4.5.4 Visualization of counterfactuals

The counterfactuals produced in the case of the vasopressor intervention are visualized in

Figure 4.5 using the method of DICE and CF VAE. with the slope-intercept and time-series

representation of the patient data respectively. In these figures, the patient (blue dotted)

originally did not require a vasopressor in the next 24 hours. The CF VAE produced

a counterfactual (orange line) in which case the patient would require a vasopressor in

the next 24 hours. In both cases, we see that the counterfactual reduces the systolic blood

pressure - which is a key trigger for providing vasopressors. The counterfactual indicates

that the binary prediction model has learned patterns between decreasing systolic blood

pressure, increasing heart rate, and the need for vasopressors. These patterns can then be

evaluated by a physician to understand the model decision.
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Figure 4.5: Counterfactual (CF) generated using DICE and CF VAE. The original patient (blue dotted) requires a vasopressor within 24
hours. The orange line shows the generated CF. The CF generated using DICE neither looks plausible nor relevant. Vasopressors are
provided when the blood pressure drops - the DICE CF changes oxygen saturation and respiration rate
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4.5.5 Evaluation of counterfactuals

We generate counterfactuals for 100 data points in the test set using three methods: 1.

DICE [52], 2. REVISE [51], 3. CF VAE (ours). Table Table ?? compares the different

methods based on three aspects:

Log likelihood score under a KDE model: We compute the log likelihood score

of a generated counterfactual under the kernel density estimator (with Gaussian kernel)

fit to the training data to quantify its plausibility. A higher log-likelihood score implies

that the counterfactual is plausible and similar to a real patient in the training data. The

column %lmethod > lCFV AE in Table Table ?? is the ratio of test samples for which the

likelihood score of counterfactuals generated by DICE and REVISE were greater than that

of counterfactuals generated by CF VAE. We see that DICE compares poorly with our

method on the likelihood scores, while REVISE performs comparably to us.

Validity of counterfactuals generated: Out of the total set of test points, Table Ta-

ble ?? presents the number of generated points that have the opposite outcome with respect

to the binary prediction model (i.e. the true counterfactual). Note that REVISE has a very

low % validity because the optimization did not converge to a counterfactual.

Train and test time: The training and test time for each method is listed in the table.

The train time is a one-time cost, while the test time listed is the average time for generating

a counterfactual for one test point. Since DICE and REVISE are optimization-based ap-

proaches, they incur a higher cost at test time. However, the cost of CF VAE is a one-time

training cost. Generating a counterfactual with CF VAE involves performing a forward

pass though the trained model, which is 100x faster than DICE and REVISE.

We see that DICE produces a valid CF 100% of the time since the method involves op-

timizing in the Euclidean space for a counterfactual. This could result in generating outputs

that might not be plausible but flip the outcome of the binary prediction model (e.g., Fig

Figure 4.5 where the respiration rate and oxygen saturation look unrealistic and not relevant

to the prediction task). Whereas, REVISE is a method which performs optimization in the
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latent space to and hence produces plausible counterfactuals.

Counterfactual evaluation by an expert We presented the CFs generated by DICE and

our method to an emergency medical physician to score based on plausibility and relevance.

The physician was blinded to whether the CF came from DICE vs. our method. A plausible

and relevant CF is one which convinces the physician that “if the patient looked as in the

CF, their acute intervention outcome would be reversed”. We provided 10 CFs each for

the vasopressor prediction and ventilator prediction task (5 in each of the binary class).

The physician marked 80% and 60% CF VAE CFs as plausible and relevant and 20%

and 40% DICE CFs for the vasopressor and ventilator prediction tasks respectively Table

Table ??. We exclude REVISE from this evaluation due to its poor convergence rate(it fails

to produce a counterfactual 75% of the time).

Compared to the two baselines, our method generates highly valid counterfactuals that

are more plausible, relevant (based on the small sample of expert evaluation), and in less

time. Additionally, we evaluate the proximity of CFs generated at test time.

4.5.6 Impact of the sparsity term on the counterfactuals

By sparsity in perturbation, we mean that a minimal number of features should be changed.

This is an important consideration as it reduces the cognitive load on a physician. We

include a soft constraint to encourage counterfactuals that alter a minimal number of di-

mensions with the λs||X −Xcf ||1 term in Eq.Equation 4.3. Figure 4.8 illustrates examples

with and without sparsity in the CF VAE loss function. We see that without sparsity, the

CF VAE produces a counterfactual that changes multiple input dimensions - systolic blood

pressure, temperature and respiratory rate. However, adding the sparsity constraint results

in a counterfactual that makes large changes only in the systolic blood pressure. Note that

a vasopressor is administered to increase a patient’s blood pressure up to normal levels.

The CF VAE with sparsity is correctly identifying the key feature relevant to the target
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Figure 4.6: Confusion matrix of the 24-hour intervention prediction task. The model falsely
recommends 12% (resp., 8%) of patients who actually needed a ventilator (resp., vasopres-
sor) for the home hospital program although they should remain in-hospital.

intervention.

4.6 Conclusion and future work

The ranking and intervention prediction performance of our model demonstrates the effec-

tiveness of our solution to the home hospital problem. We are able to reliably rank patients,

predict interventions, and generate high quality counterfactuals to explain the ML model’s

decision. In this section, we discuss the limitations of our model and some of the ample

opportunities to improve upon it.

Figure 4.6 shows the confusion matrix for the acute intervention prediction task. In

practice, false negatives are more severe than false positives. We find that 12% (8%) of

patients who needed a ventilator (vasopressor) would have been recommended for home

hospital. Cost-sensitive approaches that account for this imbalance deserve exploration.

We analyze the errors on the pairwise ranking task and observe that the majority of such

mistakes are made when the time difference between the pairs is small which is a harder

problem (e.g., ranking patients who might need intervention 5hr vs 7hr into the future).

Figure Figure 4.7 quantifies the error. For the home hospital ranking problem, the most

important case is being able to distinguish between patients who require acute-intervention
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> 24 hours apart - and our error is low in these cases.

In our experiments, we focused on a single intervention such as a vasopressor as an

example of an acute intervention. This helped us understand whether vasopressor-related

counterfactuals were meaningful. However, ideally, we would predict whether any acute

intervention is needed. One complexity that arises is that future acute interventions are

influenced by earlier sub-acute interventions. If a condition is caught early enough, then

future acute interventions may not be necessary. Hence a home hospital algorithm when

implemented should account for the complex relationship across all interventions.

Figure 4.7: Pair-wise ranking error rate based on the difference in time to intervention
between the pairs. In the top figure, the error rate is lower when one of the patients requires
an intervention in > 24 hours. This is important since we want to identify such candidates
for home hospital. The bottom shows ranking performance when evaluated only on pairs
where an acute intervention was required within 24 hours - we see a larger error rate when
the two patients are < 5 hours apart.

We chose MIMIC-III for our experiments because it is publicly available and facilitates

replication. In reality, ICU patients are not candidates for home hospital care. Hence, our

model will have to be trained on a data set representing patients more likely to be admitted

to home hospital. Methods and analysis from this work can be directly transferred to an-
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other dataset. Another limitation of MIMIC is the data is collected from a hospital system

in Boston, MA. This implies that the training data is skewed to the Boston demographic. If

a group is under-represented in the training data, it may perform poorly on that same group

in the test data resulting in more erroneous home hospital decisions for these groups. Prior

to deploying any such model, accuracy should be evaluated across all groups.

[52] argue that diversity of CF is an important characteristic of a CF generation method.

Diverse CFs alter different feature dimensions to reverse the classifier outcome. A potential

weakness of our method is that sampling from a smooth latent space may reduce diversity.

This is a very interesting avenue for future work.

Finally, while our approach is able to identify realistic CFs in the sense that CF patients

are likely to exist, we do not consider whether there is a realistic path from a patient’s

present state to the CF state. We leave this as an interesting challenge for future work.
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Figure 4.8: Example 1: Counterfactual produced with and without the sparsity term. Notice how only the systolic blood pressure changes
when we include the sparsity constraint.
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Figure 4.9: Example 2: Counterfactual produced with and without the sparsity term.
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Table 4.3: Comparison of [52, 51] and CF VAE. lmethod > lCFV AE is the fraction of test points where the log likelihood of a CF from prior work
exceeded that of our own. We see that in the case of Ventilator, only 2% of the test CF from DICE had a higher likelihood score than our CF. The
physician evaluated our counterfactual for plausibility and relevance. The physician’s score is the fraction of CF that were deemed both plausible and
relevant. Note that we don’t have physician score for REVISE because of its poor validity percentage.

Ventilator Vasopressor
Method % lmethod % CF Physician % lmethod % CF Physician Time (s) Time (s)

≥ lCFV AE validity score ≥ lCFV AE validity score (train) (test)
DICE 2% 100% 40% 2% 100% 20% 0 0.37
REVISE 16% 25% - 12% 19% - 10 0.38
CF VAE - 90% 60% - 85% 80% 180 0.001
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis investigated two main shift problems that are a barrier to effectively utilizing

machine learning in mHealth: Covariate-space shift and domain shift and presents methods

to methodologically address them while providing health researchers with the flexibility to

change different aspects of the study. As a first step in addressing the next challenge, this

thesis explored bridging the gap between explainability techniques and domain experts.

Specifically, solutions to three problems were presented. First I presented a method

to find a common input representation across EMA datasets to overcome covariate-space

shift. This is done in the context of predicting non-response to EMAs. Second, I present

a domain adaptation method based on self-supervised representation learning that captures

the physiological aspects of ECG and PPG signals belonging to different domains. Third,

I presented a feed-forward VAE based counterfactual generation model to explain the de-

cision of a given binary classification model. The model generates counterfactuals that are

plausible, relevant and convincing as evaluated by a physician.

Through these works, I have demonstrated that it is possible to predict EMA non-

response using the history of a participant’s mental states and response pattern. Valence

features can be constructed as a common input-representation across EMA datasets, while

preserving their predictive utility. Self-supervised tasks are helpful in learning aligned rep-

resentations across domains of ECG and PPG data. Additionally, these tasks are useful as

regularizers to help improve predictive model generalization without using target data at

training time.

This thesis explored the feasibility of addressing the two covariate shift challenges in

the context of EMA non-response prediction, arrhythmia classification from ECG, and res-

piration rate estimation from PPG. There is enormous potential for ML models for sensor

91



based behavior modification, and there is scope for exploring covariate-space and domain

shift in the context of predicting adverse or impulsive behavior.

In this thesis, we considered the problem of covariate-space shift in EMA data collected

in different studies. A related challenge arises when different sensor modalities are used in

different studies. For example, an mHealth study collecting ECG from participants while

another study collecting PPG. Unlike EMA which measures similar mental states through

differently phrased questions, ECG and PPG are capturing related but very different phys-

iological measures of the patient. It would be a very challenging and exciting problem

if we could develop predictive models that transfer without additional fine-tuning across

these modalities. Such a method would be useful in practice since ECG is typically hard to

collect with challenges ranging from difficulty of correctly placing electrodes to participant

discomfort while wearing the chest band/electrode setup. However, ECG has the advan-

tage of capturing detailed cardiac activity, which can be used along with clinical labels to

develop predictive models of health conditions. In comparison to ECG, PPG has a lower

barrier in terms of burden on the participants. It can be passively collected through a wrist

band, fingertip sensor, ring, phone, or other wearable device. In addition, PPG sensors are

cheaper, which makes it easier to deploy in the field. Hence a predictive model trained on

ECG transferred to PPG can help improve the reach of predictive models to more people.
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