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PREFACE

This thesis consists of two distinct components: (1) Spin-polarized electron transport

through aluminum array nanoparticles, (2) A single electric relaxation process in Barium

Strontium Titanate (BST) nanoparticles.

For the first component (chapters 2-5), we studied electron spin transport in nanome-

ter scale aluminum grains as embedded in a ferromagnet tunneling junction. We observed

tunnelling-magnetoresistance (TMR) and spin valve effects. From the TMR strong asym-

metry with bias voltage, we explored spin relaxation effects. Additionally we also obtained

the spin-coherence time on the order of nanoseconds by using the Hanle effect.

For the second component (chapters 6-9), we investigated the dielectric response of

BST and Barium Titanate (BTA) (high dielectric constant ferroelectrics) nanoparticles.

The results were found to be quite unusual when compared with the dielectric response of

film or bulk. The dielectric response is Debye relaxation with only a single relaxation time,

and the relaxation time exhibits the Arrhenius Law at temperatures below 200 Kelvin.
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CHAPTER I

INTRODUCTION

The subject of this thesis is nanoscale physics in magnetic and ferroelectric materials.

In small systems (e.g., on nanometer scale), the properties are often fundamentally different

from properties in bulk. Nanoscale physics is one of the most interesting areas of condensed

matter physics, because most of the things we know about bulk need to be reexamined at

this small length scales.

This thesis consists of two distinct components. The first component explores spin-

polarized electron transport through aluminum nanoparticle arrays. The second component

covers electric relaxation in Barium Strontium Titanate (BST) nanoparticles.

As we know, long spin relaxation times for polarized carriers are necessary for the

development of spintronic devices. In quantum dots, where electrons are confined in zero

dimensions, spin relaxation times are strongly enhanced compared to bulk. For this reason,

the spin of an electron confined in a quantum dot is a candidate quantum bit [1]. The

suppression of spin relaxation in quantum dots is caused by energy level quantization, which

drastically reduces the density of initial and final states involved in spin-flip transitions.

Unfortunately, the spin-coherence time T2, measured in a semiconducting quantum dot, is

only ∼ ns, despite the fact that the spin-relaxation time is extremely long, up to ∼ ms [2].

In metallic grains system, the electron spin-relaxation time T1 has not been documented.

In order to gain a better understanding of spin relaxation in metallic grains (which are also

quantum dots), we investigate the spin transport in metallic grains. In 1997, Agam, et

al. [3], predicted that the energy relaxation time in metallic nanoparticles is much longer

than that in metal film (he estimated Te is around 10 ns). This enhancement in relaxation

time is caused by the chaotic nature of the wave functions of the electrons confined in the

nanoparticle. By the same token, spin-relaxation time in a metallic nanoparticle is expected

to be much longer than in bulk, and electron spin in a metallic grain is also a candidate for
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a quantum bit.

In the first component of this thesis, we studied electron spin transport in nanometer

scale aluminum nanoparticles connected to ferromagnetic reservoirs via tunnelling junctions

at 4.2 K. We found strong asymmetric tunnelling magneto-resistance (TMR) effects. This

asymmetric TMR is explained by spin relaxation in aluminum grains and asymmetric elec-

tron dwell times. Then we made the estimate that spin-relaxation time T1 on aluminum

nanoparticles is extremely long, on the order of µs. This result is somewhat analogous to

the discovery of ms long spin-relaxation times in semiconducting quantum dots.

We also measured the Hanle effect from spin-precession in the perpendicular applied

magnetic field. The Hanle effect in the metellic grains has not been measured prior to our

work. Our main result is that the spin-coherence time (T ∗2 ) measured using the Hanle effect,

is on the order of ns. The dephasing time is extremely short compared to the anticipated

long spin relaxation time T1. Fast dephasing is attributed to electron spin-precession in

local magnetic fields, which is also known as inhomogeneous broadening. Interestingly,

this dephasing process does not destroy tunneling magneto-resistance, and spin transport

remains partially spin-coherent. This finding reveals that the T2, the spin-coherence time

in the absence of inhomogeneous broadening, in a single aluminum grain is much longer.

This finding is also a proof of principle that one can create, transfer, and manipulate the

quantum spin information in metallic grains instead of the semiconducting quantum dots.

Although technologically this goal would be too difficult to accomplish today, in principle it

increases our options for quantum computing, assuming that several other major challenges

can be resolved in the future.

We also demonstrated that the asymmetric tunneling magneto-resistance can be dom-

inated by controlling the structure of tunneling junction. Those behaviors make our tun-

nelling device work as a mesoscopic spin diode, i.e., the intrinsic spin relaxation time is

longer than the dwell time on aluminum grain in one side bias voltage direction, whereas,

the spin relaxation time is suppressed for the opposite one.

In the second component of this thesis, we investigated the physical properties of

nanoparticles made from ferroelectric materials, such as Barium-Titanate (BaTiO3 or BTA)
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and Barium-Strontium-Titanate (Ba(1−x)SrxTiO3 or BST).

There seems to be no general theory of phenomena describing ferroelectric properties in

nm-scale particles. By contrast, properties of individual nm-scale ferromagnetic particles

and molecular magnets have been studied extensively, both experimentally and theoretically.

Nano-structure ferroelectric device has already made waves in ultrahigh density and

high speed recording. In an article by Auicello [4], et al. in Physics Today, the connection

between physics and applications of ferroelectric films was described. The applications of

ferroelectricity include sensors, infrared detector, piezoelectric actuators, and microwave

phase filters, and high-Q resonators. The most attractive application for ferroelectric mate-

rials is ferroelectric random access memories (FRAM) [4, 5, 6] because of their high dielectric

constant. BST is one of the leading materials because its ferroelectric phase transition can

be operated at the room temperature by setting the appropriate composition. Also BST is

an innoxious ferroelectric (contains no heavy metals, such as lead).

The properties of nanometer scale ferroelectrics are also expected to be fundamentally

different from those in bulk because of the small number of degrees of freedom. For example,

bulk BTA is ferroelectric, while BTA nanoparticles lose ferroelectric properties when the

nanoparticle diameter is below about 20 nm [7].

Recent advances in science and nanotechnology of nanoscale ferroelectric structures

make it possible to investigate and understand those new physical phenomena in nanome-

ter scale range. In addition, a better understanding of their dielectric and ferroelectric

properties is essential before they may be successfully integrated in commercial devices.

Since future trends in microelectronics will be fast and high density, microelectronic

cell will be made ultra small. Hence, an important question is - below a certain size, what

kinds of behaviors will occur in ferroelectric polarization? Since the concept of permanent

(nonvolatile) memory is that memory does not forget the information stored in it, the

regime in small particles could set the ultimate limit of size below which no permanent

memories can be created. If electric polarization does occur, the important questions are:

Will nanoparticles in this regime still exhibit enhanced dielectric properties? Will the

dielectric constant of these nano-particles exhibit strong frequency dependence?
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In this second component, we investigated the dielectric response of Barium Titanate

(BTA) and BST (high dielectric constant ferroelectrics) nanoparticles. We discovered that

the dielectric properties are very unusual when compared with the dielectric response of

film or bulk. In particular, at low temperatures, where electric dipoles are expected to

be frozen in by the ferroelectric order, we find that there remains a significant fraction of

electric dipoles that are responsive to external fields. The polarizability due to these dipoles

is quite strong and comparable to the peak polarizability of large particles at the Currie

temperature. Somehow, reduction in the particle size creates a frustration effect which

prevents locking of the dipoles into the ferroelectric configuration.

Although there is no understanding of this frustration at present and more theoretical

work is necessary, recent some theories predict that the nature of the ferroelectric state

below certain diameter is fundamentally altered from the bulk ferroelectricity, and there is

no real ferroelectricity anymore. Hence, it is not surprising to observe a significant fraction

of unlocked dipoles below certain particle diameter.

The dielectric response of these unlocked (frustrated) dipoles is Debye relaxation with

only one relaxation time. The relaxation time exhibits the Arrhenius Law at temperatures

below 200 Kelvin. Intriguingly, the energy barrier for the frustrated dipoles is independent

of samples, showing that this frustration mechanism should be calculable from the first

principle calculations. Thus, we expect that this finding will stimulate further theoretical

research and discover fundamental new physics for ferroelectric nanoparticles.

From a practical standpoint, the frustration of the ferroelectric state shows that there

exists a fundamental limit to how small a ferroelectric memory cell can be made. Our

smallest nanoparticles are on the order of 5 nm, showing that this fundamental limit occurs

above 5 nm diameter.
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CHAPTER II

THEORETICAL BACKGROUND

In this chapter, we will provide some important background and context about spintron-

ics that needed to understand electron spin transport in metallic grains. We will also talk

about motivation and principles of our case that metallic grains connected to ferromagnetic

reservoirs via tunnelling junctions.

2.1 Spintronics Devices

Spintronics is a neology for “spin-based electronics”, a rapidly emerging technology that

exploits the quantum spin states of electrons, as well as the conventional electronics which

are based on the charge of the electron [1, 8, 9]. To make use of electron spin, the primary

requirement is to make a device that can generate the spin polarized electron current, which

has a nonequilibrium state for spin-up and spin-down electrons. There are many methods

to generate the spin polarized current, and the most natural way is to inject the current

through a ferromagnetic material. Another requirement is this device that can detect the

spin information of the electrons. In addition, the steady spin current is necessary during

the electron transit time though the device. In other words, the spin relaxation time must

be longer than the time it takes to inject, measure, and manipulate spin information in

investigation of spin transport.

There are some well known examples of spintronics devices. Devices like giant magneto-

resistance (GMR) and magnetic tunnel junctions (MTJs) spin valves (each which can store

an “1/0” state that can be read by a current pulse) are about to challenge the silicon in the

lucrative area of random access memory as well. Following, we will discuss them in detail.

2.1.1 Giant Magneto-Resistance

The first example of spintronics is the giant magneto-resistance. The basic structure in

GMR device is a spacer layer of non-magnetic conducting metal between two ferromagnetic
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layers (Figure 2.1). Those thin ferromagnetic layers tend to be aligned in the one direction

when an external magnetic field is applied, whereas the magnetizations of the ferromagnetic

layers are antiparallel when there is a lack of the magnetic field. Thus, there are two kinds

of configurations for those two magnetic layers, i.e. parallel and antiparallel configurations

that is illustrated schematically in the Figure 2.1.

In the parallel (or P) configuration, spin-up electrons can pass easily through the device

whereas spin-down electrons are scattered in both two magnetic layers. Reversing the

magnetization orientation of one of the magnetic layers yields the anti-parallel (or AP)

configuration. In the AP case, all the spin electrons are scattered strongly within one of

those magnetic layers, because the electron’s spin direction is antiparallel to one of the

magnetization directions wherever those electron spins are spin-up or spin-down. Hence, in

the AP configuration, the total resistivity of the device is higher than the P case.

(A) (B)

Figure 2.1: (A) GMR with low resistance in parallel magnetization configuration, (B)GMR
with a high resistance is in antiparallel magnetization configuration.

From the above description, the GMR effect is then the difference of the conductiv-

ities for the P and the AP configurations. Prototypical examples comprise for example

cobalt/copper and ferrum/chromium systems. The applied magnetic field is used to change

6



the magnetic orientation if one layer is magnetically hard and the other is soft. Note that

the GMR could be as high as 80 %. Today, the commercial application of GMR effect is

used in the data storage industry, such as read heads of modern computer hard disks and

magnetic memory chips.

2.1.2 Tunneling Magneto-Resistance and Jullière’s Model

The second example of spintronics is tunneling magneto-resistance (TMR) of magnetic

tunnel junctions (MTJs). TMR is an effect of spin-dependent tunnelling. In the first part

of this thesis, we will focus on the TMR effect.

The main structure of MTJ is illustrated schematically in Figure 2.2. This device consists

of two ferromagnetic electrodes (F1 and F2), and they are separated by a thin insulating

barrier layer (e.g. thin aluminum oxide layer), in contrast to the GMR which utilizes a

conducting non-magnetic layer. When a bias voltage is applied between ferromagnetic elec-

trodes (F1 and F2), the electrons will tunnel through the insulating barrier. Similarly, the

TMR is also the change of the resistivity when turning from the P to the AP configura-

tion. Most experiments on TMR are performed by measuring the electric current in MTJs.

The external applied magnetic field is used again to switch the magnetic orientation of the

magnetic parts of the system.

The discovery of TMR retrospect to 1970’s, Tedrow and Meservey did a series of the pi-

oneering experiments [10, 11, 12] using superconducting layers as detectors. They measured

the spin polarization of the tunnelling current from different ferromagnetic electrodes.

To explain the TMR effect, Jullière [13] proposed a simple model (called as Jullière

model). The key of this model is the density of states (DOS) in the ferromagnetic electrodes.

The DOS is the number of electronic states per energy (interval). For a normal metal like

copper, the DOS for spin-up electrons is equal to that of spin-down electrons. But for a

ferromagnetic material like cobalt, the DOS is spin dependent. In fact, the spin-up DOS

can be viewed as shifted down in energy with respect to the spin-down DOS that appears to

be shifted upward in energy. Furthermore, the spin-up DOS is typically less than the spin-

down DOS at the Fermi energy (in cobalt) (see Figure 2.3). In this figure, the distinction
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Figure 2.2: Jullière experimental setup (parallel and antiparallel states), spin polarized
electrons are tunnelling from Fe to Co, which is either parallel or antiparallel magnetization
configuration.

between up and down spin relies on the orientation of the magnetic moments. As we will see

later, both orientations can be the majority or the minority spin orientation. The spin-up

refers to the majority spin and spin-down to the minority spin. Here, we are concerned in

the following with 4 partial DOS configurations, either up or down for the two electrode

Left (L) and Right (R) (see Figure 2.4).

The idea of Jullière model is to relate the probability of tunneling between the electrodes

to the DOS. This is quite plausible because the probability will be zero if there are no

electronic states to tunnel from or to tunnel into. With zero bias voltage, one has to

consider only the states at the Fermi energies of the ferromagnetic electrodes.

For the P configuration, the conductance is then proportional to the DOS product of

the left and the right ferromagnetic electrodes. We have to sum over both spin channels

(or spin orientations), since without spin-orbit coupling, the spin-flip processes do not take

place.

In the AP configuration, one reverses the orientation of the magnetization in the right
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(A) (B)

Figure 2.3: (A) DOS of a normal metal (i.e., Cu), is symmetry at the Fermi energy.(B) DOS
of a ferromagnetic metal (i.e., Co), is asymmetry at the Fermi energy. Note that although
the total number of spins for spin-up (majority spins) is larger than that of spin-down
(minority spins), the density of states at the Fermi energy has the opposite distribution
- more states of the minority-spin than the majority spin. For simplicity, the bands of a
ferromagnet are often approximated with semi-elliptic bands (shown in the bottom). This
simple picture exemplifies the complicated band structure of ferromagnets. See reference
[13].

ferromagnetic electrode. Therefore, the orientation of majority- and minority-spin electrons

reverses. The DOS of the former spin-up electrons becomes that of the now spin-down

electrons, and vice versa. Hence, the conductance is given now by the spin-mixed DOS

products.

As we have seen for cobalt, the DOS for down electrons is rather large compared to that

of the up electrons. Hence, G(P) is governed by the down-down DOS product, giving a

large conductance. In the AP configuration, we have to multiply the small up DOS by the

larger down DOS, resulting in a medium conductance. Therefore, the conductance for the
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(A) (B)

Figure 2.4: (A) Tunelling junction in parallel configuration with low resistance, the re-
sistance reduced because the DOS product reduced (B) Tunelling junction in antiparallel
configuration with high resistance, because the DOS product is larger than that of parallel
configuration.

parallel and antiparallel alignment, GP and GAP , can be written as follows:

G(P ) ∝ N↑
LN↑

R + N↓
LN↓

R (2.1)

and

G(AP ) ∝ N↓
LN↑

R + N↑
LN↓

R (2.2)

Normally, G(P) is typically larger than G(AP), where N↑
i and N↓

i are the tunnelling

DOS of the ferromagnetic electrodes (designated by index i = L, R) for the majority- and

minority-spin electrons.
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Then, the TMR is given by the difference of the conductances. Introducing the spin

polarization as the asymmetry of the spin-resolved DOS, the TMR equals the product of

the two ferromagnetic electrode spin polarizations. Hence, the TMR is independent of the

spacer in Jullière model. If one of the electrodes is a normal metal (P = 0), that is, non-

magnetic, the TMR vanishes, as it should. PL and PR are the spin polarizations of the two

ferromagnetic electrodes.

It follows from equations 2.1 and 2.2 that the parallel and antiparallel-magnetized MTJs

have different conductances, which implies a non-zero TMR. The TMR is defined as the

conductance difference between parallel and antiparallel magnetizations, normalized by the

antiparallel conductance, i.e.,

TMR =
G(P )−G(AP )

G(AP )
=

I· − I↑↓
I↑↓

(2.3)

where I· and I↑↓ are the currents in the parallel and the antiparallel magnetization con-

figurations, respectively. Using equations 2.1 and 2.2, we arrive then at Jullière’s formula:

TMR =
2PLPR

1− PLPR
. (2.4)

Then the TMR is expressed in terms of the effective spin polarization of the two ferro-

magnetic electrodes:

Pi =
N↑

i −N↓
i

N↑
i + N↓

i

. (2.5)

The Jullière’s model can be used to interpret a number of experiments on TMR. Later,

Slonczewski developed a simple quantitative model (Slonczewski model), that was the first

accurate theoretical consideration of TMR. He treated the insulator layer as a rectangular

potential barrier, and two ferromagnetic electrodes are described by two parabolic bands.

Then, the Schrodinger equation was solved to determine transmissivity, which is given by

the current expression for the total wave function. The potential between the electrodes

is constant but differs for up and down electrons. Hence, one can obtain the conductance,
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which is a function of the relative magnetization alignment of the two ferromagnetic elec-

trodes. From this, one can also obtain the TMR that can be written as in Jullière’s model

as a product of two spin polarizations and a transmission factor.

2.1.3 Spin Valve

The third example of spintronics is the spin valve effect, which is one of most successful

effects used in spintronic devices to date. Spin valves are used in magnetic sensors and hard

disk read heads.

Normally, the device is composed of two material layers with different hysteresis curves

so one layer (“soft” layer, e.g., Cr) changes polarity while the other (“hard” layer, e.g., Fe)

keeps its polarity. In the Figure 2.5, the top layer is soft and the bottom layer is hard.

(A)Low  Resistance

Magnetic Layer

Magnetic L ayer

(B)High Resistance

Magnetic Layer

Magnetic Layer

Figure 2.5: (A) Spin valve with the parallel configuration (normally it has low resistance),
(B) Spin valve with antiparallel configuration (normally it has high resistance).

When a ferromagnetic layer is polarized, the carrier electrons align their spins to the

external magnetic field. Once a potential exists across a spin valve, the spin-polarized

electrons keep their spin alignment as they move through the device. If these electrons

encounter a material with a magnetic field pointing in the same direction (see Figure 2.5

(A)), the electrical resistance of the device is normally at its minimum. If these electrons

encounter the opposite direction of magnetic orientation layer compared with the external

magnetic field (see Figure 2.5 (B)), then they have to flip spins to find an empty energy

state in the new material. This flip requires extra energy that normally causes the device

to have a higher resistance than when the magnetic materials are polarized in the same
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direction.

2.2 Spin Relaxation and Mechanisms

In this section, we will discuss with the spin relaxation, and use two phenomenological

parameters T1 and T2 to describe the processes of spin relaxation. We also will introduce

three main mechanisms for spin relaxation.

2.2.1 Spin Relaxation

Spin relaxation refers to processes that unbalanced population of spins change into

equilibrium. The presence of several types of interactions will cause the non-equilibrium of

population of spins to decay exponentially towards zero.

Two main relaxation processes can be identified. The z component of the spin (i.e., the

component along the spin quantization axis) decreases as individual spins flip, bringing the

population towards equilibrium. However, this direct process in a magnetic field requires

energy relaxation towards the lattice (therefore named spin lattice relaxation T1), and as a

consequence is a rather slow process.

The second type of process that is not requiring energy exchange, but this process can

destroy the coherence of the perpendicular component. Because every spin will see the field

created by the neighboring spins, the precessing in a local field contains a random compo-

nent. This causes the perpendicular component to decay with a different time constant T2

(also called as spin decoherence time).

T2 can be much faster than longitudinal spin-relaxation time T1 because decoherence

is sensitive to spatial and temporal inhomogeneities. These inhomogeneities are important

in measurements of decoherence in ensembles of spins. The spin decoherence by the these

inhomogeneities is reversible and can be reduced by careful sample design and special spin-

measurement techniques (such as spin-echo).

To express them in mathematic form, we assume that the good spin quantization axis is

the z axis (the applied magnetic field direction). The total spin of the system is S and the

external magnetic field is B. The symbols ‖ and ⊥ describe the components parallel and
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perpendicular to the z axis. The time evolution of the spin can be described by the Bloch

equations:

dS⊥
dt

= γ(B × S⊥)− S⊥/T2 (2.6)

dS‖
dt

= γ(B × S‖)− (S − S‖)/T1 (2.7)

Here, T1 and T2 are the two phenomenological constants that describe spin flip pro-

cesses. The longitudinal spin relaxation time (T1) is the decay time from a spin-down state

into a spin-up state in a strong magnetic field applied parallel to spin direction. At low

temperatures, this decay process involves emission of energy into the environment (phonon,

for example). This relaxation is irreversible.

Figure 2.6: Spin coherence times (T1 versus T2). Here, T1 and T2 are the two phenomeno-
logical constants that describe spin flip processes. T1 is the decay time from a spin-up state
into a spin-down state, and spin direction is parallel to the applied strong magnetic field.
T2 is the time for transverse electron spins to lose their phase, and T2 is also called as spin
decoherence time. The electron spin direction is perpendicular to the applied magnetic
field.
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The T2 is classically the time it takes for an ensemble of transverse electron spins, initially

precessing in phase about the longitudinal field, to lose their phase due to spatial-temporal

fluctuations of the precessing frequencies. Here, it needs to point out that T ∗2 is used to

describe spin dephasing of ensemble spins, while the symbol T2 is reserved for irreversible

loss of the ensemble spin phase. In general, T ∗2 ≤ T2.

One method to measure spin-coherence time is to find spin-relaxation time in zero

magnetic field, which can be done by injection and detection using ferromagnets. Another

method to find T2 is to measure the transverse spin-relaxation time in a strong magnetic

field, using spin resonance.

The maximally long spin-coherence time, T2 is limited by the coupling between spins and

the excitations in the environment. The decoherence from the environment is irreversible

and has the same physical origin as the longitudinal spin-relaxation process, and it can not

be connection.

2.2.2 Spin Relaxation Mechanisms

In metals and semiconductors, three main spin relaxation mechanisms were found as

the most relevant for conduction electrons. They are:

(1) The Elliot-Yafet mechanism [14], it arises because real crystals Bloch states (i.e,

momentum eigenstates) are not spin eigenstates anymore. The physical origin of the spin

mixing in the Bloch states is that the lattice ions induce a local atomic electric field, which,

via the spin orbit interaction, will mix spin up and spin down states (see Figure 2.7 (A)).

The Elliot-Yafet mechanism leads to a spin relaxation rate 1/T ∗2 proportional to the

momentum scattering rate. Usually this is expected to be the main spin-flip mechanism in

metals. If Elliot-Yafet is the main spin scattering mechanism, the spin flip length λsf =
√

Dτsf will be linearly proportional to the mean free path.

(2) D’yakonov Perel’ mechanism [15], this mechanism is related to spin mixing due to

the presence of a finite electric field in crystals lacking inversion symmetry (the crystal field).

In this case, the electrons feel a momentum dependent effective magnetic field and the spin

precesses around this effective field (see Figure 2.7 (B)). The process can be imagined as a
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(B)D'yakonov- Perel' Mechanism

(A)Elliot- Yafet mechanism

Figure 2.7: (A) The Elliot-Yafet spin flip mechanism is due to the interaction of spins with
the electric field of the atomic nuclei. The corresponding spin lifetime is proportional to the
momentum scattering time. (B) The D’yakonov Perel’ spin flip mechanism is due to the
presence of a crystal field, and the spin flip length is independent of the mean free path.

random walk in spin space. Since the spin relaxation rate will be inversely proportional to

the momentum scattering rate, the corresponding spin flip length will be independent of the

mean free path. Thus, the dependence on the momentum scattering rate will be canceled

out by the diffusion constant.

(3) Bir-Aronov Pikus mechanism [16], this mechanism plays an important role in semi-

conductors with a high overlap between the electron and hole wave functions, and it is due

to the electron-hole exchange interaction. Because of different effective mass and effective

hole concentration, it will produce an fluctuating effective magnetic field that is generated

by the total spin of holes. This magnetic field induces a precession of the electron spin

around an instantaneous axis, analogous to the D’yakonov Perel’ mechanism.
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2.3 Our Motivation

The goal of the this part of this thesis is to investigate the phenomena and mechanism

of electron-spin relaxation in nanometer scale normal metal grains (quantum dots). As we

mentioned before, it is necessary that the polarized carriers have long spin relaxation times

for spintronic devices. In a quantum dot, the conduction electrons spin will be confined to

a small volume (one said to exist in zero dimension (0D)). The spin relaxation times are

expected to be enhanced and influenced dramatically by this confinement.

In semiconductor, one of the challenges faced in spintronics is that electron spin can be

flipped in normal metals and semiconductors, which can lead to a finite relaxation time of

the spin-polarized current. The electron spin relaxation time can be enhanced by orders of

magnitude as a function of dopant concentration [17].

At present, most measurements of spin-relaxation have been used by optical techniques

in semiconductor quantum dots. In semiconducting heterostructures and quantum dots

[18], electron spin relaxation times on the order of nanoseconds persist, even at room tem-

perature.

Because of its stability, the spin of an electron confined in a semiconducting quantum dot

has been proposed as a candidate quantum bit [19, 20]. It has been shown theoretically that

the dominant spin-flip scattering mechanisms of the bulk become significantly suppressed in

quantum dots because of the the zero-dimensional character of the electronic wavefunctions

[21, 22]. The theoretical predictions have been confirmed experimentally in GaAs quantum

dots. Recently longitudinal spin relaxation times (T1) exceeding 200 µs [23], 50 µs [24],

similar to 0.85 ms [2], have been demonstrated.

Another most natural method for injecting spins into quantum dots would be to use

ferromagnets as electron source and drain reservoirs. Spin-polarized current can also be

generated without ferromagnets, using semiconductors in strong magnetic fields. Ferromag-

nets have the advantage that they have spin-dependent density of states in zero magnetic

field, which makes it possible to investigate spin-relaxation in zero magnetic field. Spin

relaxation in zero magnetic field is the same as spin decoherence.

Effective electrical injection of spin polarized carriers into nonmagnetic semiconductors
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has proven to be quite difficult. A possible explanation is that the conductivity mismatch

between the metallic injecting electrodes and the semiconductor [25] reduces spin-injection

efficiency.

However, effective spin-injection into normal metals is well established experimentally

[26, 27]. So, if it were possible to attain long spin relaxation in a metallic system, the

problem of inefficient spin injection could be bypassed. Thus the determination of the spin

relaxation in metallic systems should be useful in the spintronics community.

It has been shown that the spin relaxation time in homogeneous metal films is rather

small. The dominant spin-relaxation mechanism is caused by the spin-orbit interaction.[14,

28]. Spin-flip scattering through spin-orbit interaction leads to a spin relaxation time τSO

that is proportional to the momentum relaxation time τ , τSO = τ/α. This equation is

known as the Elliot-Yafet relation. At low temperatures, where electron-phonon scattering

is suppressed, τ becomes equal to the elastic electron scattering time. The scattering ratio

α ¿ 1 depends on the atomic number and band structure of the metal. In aluminum thin

films, for example, α is enhanced by the “spin hot-spots” in the band-structure [29, 30, 31]

and the spin relaxation time is T1 ∼ 0.1 ns [32]. This time is too short to be useful for

quantum computing.

Since the physical properties change in a fundamental way in response to the confine-

ment, it not be surprising that the spin-flip process in metallic grains is very different from

that in bulk. Analogous to the way that spin relaxation time is enhanced in semiconducting

quantum dots relative to bulk semiconductors [21, 22], we expect that the spin relaxation

time in nanometer-scale metallic grains should be much longer than that in bulk metals or

metallic thin films.

There has been little investigation into spin relaxation in metallic grains. Deshmukh et

al.[33], have found that the energy-relaxation time of some excited states in an aluminum

grain in a weak magnetic field was comparable to or larger than 19 ns. The spin-preserving

energy relaxation time, on the other hand, was predicted to be ∼ 10 ns [3], suggesting that

the spin-relaxation time may be comparable to or larger than 19 ns.

Spin-polarized transport through a metallic grain with quantized levels has not yet
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been studied experimentally and has been studied theoretically only very recently [34]. It

has been predicted that spin-polarized transport in metallic grains exhibits novel physical

properties, such as exchange interaction induced spin precession.

In order to gain a better understanding of spin relaxation in metallic grains, fundamental

questions need to be answered (i.e., how long is the spin decoherence time, and how is spin

decoherence measured in metallic grains, and what is the mechanism of spin relaxation in

nanometer scale metal grains). Once a measurement technique is developed, we shall study

the origin of spin decoherence in metallic grains. One challenge is that spin decoherence

time is possibly very long, so one needs to think how to access experimentally such a long

relaxation time scale. Also other properties of metallic grains are needed to gain a better

understanding. For example, studying spin decoherence shows it is possible to explore

effects of shape anisotropy in normal metal nanoparticles (for the first time). In addition,

statistical distributions of electron g-factors are studied.

In this thesis, we will investigate spin transport in nanometer-scale normal metallic par-

ticles connected to ferromagnetic reservoirs via tunnelling junctions. The interplay between

single electron charging effects and ferromagnetism in single metallic particles was studied

both experimentally [35, 36, 37] and theoretically [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

In these studies, however, metallic particles were large and did not exhibit discrete quan-

tum states. For a recent review, see reference [49]. In nanometer-scale aluminum particles,

Deshmukh and Ralph [50] have used discrete quantum states as spin-filters to investigate

spin-polarization effects in one ferromagnetic reservoir.

We use cobalt to make the reservoirs, and nonmagnetic metals (aluminum) to make the

nanometer scale grains. The grains are sufficiently small so that the energy level spacing

is smaller than the thermal energy at our experimentally accessible temperatures. The

relaxation time of electron spins is determined through spin injection and detection, and

extensions of these techniques, such as conduction-electron-spin-resonance (CESR). We will

investigate spin-polarized transport through ensembles of aluminum grains, i.e., through a

large number of aluminum grains placed in parallel (in about 1010 grains). But we do not

investigate spin polarized electron transport in single grains.
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2.4 Spin Transport in Metallic Grains

2.4.1 Elliot-Yafet Mechanism in Metallic Grains

In individual nanometer scale metallic grain, the conduction electrons are confined to a

small volume - this is said to exist in zero dimension (0D) [51, 52, 53]. This confinement

has a profound influence on the physical properties of the material [54, 55], thus opening

up a new way to study these properties. Examples include studies of superconductivity

[56], ferromagnetism [57, 58] , electron-electron interactions [33, 59], and the spin-orbit

interaction [60, 61, 62, 63].

Consider a metallic grain in weak tunnel contact with two reservoirs (electron source

and drain). If an electron enters the grain from one reservoir and then exits to another

reservoir, one would naively expect that the spin-flip probability is small if the transit time

through the grain is smaller than τ/α and that the spin-flip probability is large if the transit

time through the grain is larger than τ/α. τ is the momentum relaxation time in the grain.

However, this naive picture is incorrect because of the quantization of energy.

In 0D, the probability of a spin-flip through momentum scattering is independent of

the transit time. In nanometer scale grains, the spin-orbit interaction only changes the

energy levels and the eigenstates and does not lead to spin-relaxation [54, 64, 65]. Only

interactions between electron spins and the environment can lead to spin-relaxation [21, 22].

Such interactions include spin-orbit coupling to phonons and hyperfine coupling to nuclear

spins.

In the metallic grains system, we assume that the grains are ballistic. In this case,

the elastic scattering time inside the grains is given by τ = D/VF , where D is the grain

diameter and VF is the Fermi velocity. The electron dwell time on the grain (τ0) is roughly

equal to Rh
RQδ , where RQ = h/e2 = 25.8kΩ is the resistance quantum, δ is the single-electron

level spacing of the grain, and R is the resistance of the tunnelling junction through which

an electron exits the grain [55].

In zero magnetic field, the eigenstates of the grain are two-fold degenerate because of the

Kramers degeneracy [54]. Theoretically, the spin-orbit interaction in 0D is characterized

by a strength parameter S = h/(τSOδ), where τSO = τ/α [64, 65]. S is independent of the
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transit time. If s ¿ 1, then spin-orbit scattering is weak. In this case, the eigenstates are

approximately pure spin-up and spin-down states, and the g-factors are close to 2. The

calculations predict the g-factors slightly smaller than two, [59, 64] roughly,

2− g ∼ S2 ∼ (
D

D∗ )
4, (2.8)

Where D∗ is a characteristic diameter defined below.If s À 1, then spin-orbit scattering

is strong, and the spin-up and spin-down states are significantly mixed in the eigenstates.

The g-factors are suppressed significantly (g À 1/s ¿ 2.0), and they vary among different

energy levels and different directions of the applied magnetic field (rms(g ∼ g)). The

characteristic diameter, defined as D∗∼λF /
√

α, D∗ is a borderline diameter. If D < D∗,

then spin-orbit scattering is weak; if D > D∗, then spin-orbit scattering is strong. The

effects of spin orbit interaction on energy levels and g-factors in metallic grains have been

investigated thoroughly, both experimentally [60, 61, 62, 63] and theoretically [59, 64, 65].

The experiments are in good agreement with the theory.

2.4.2 Spin Transport Though Grains

Here we will discuss electron spin transport through metallic grains in weak tunnelling

contact with ferromagnetic reservoirs. Spin transport is used to measure spin-relaxation

effects.

We assume that the junctions in Figure 2.8 are asymmetric. The average resistance

between Left and the grains (RL) is much smaller than the average resistance between the

grains and Right (RR), i.e., RL ¿ RR. At positive bias, electrons flow from L to grains and

from grains into R. The average dwell time of an electron on the grains is τ+ = τR ∼ hRR
δRQ

.

For negative bias, electrons flow from R to grains and from grains to L. The average dwell

time is τ− = τL ∼ hRL
δRQ

. So, τ− ¿ τ+.

Next, we investigate the effects of spin relaxation on tunneling magneto resistance. The

TMR definition is described in equation 2.3.

To apply the jullière’s model of spin polarized tunneling, we neglect single-electron

charging and spin relaxation effects, and assume that spin-polarized current arises from the
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(A) (B)

Figure 2.8: (A) The negative bias voltage across tunnelling junction, (B)The positive bias
voltage across tunnelling junction.

different densities of spin-polarized carriers in the reservoirs. We obtain:

TMR = 2P 2, (2.9)

Where P have the same form in equation 2.5

P =
N↑ −N↓
N↑ + N↓

, (2.10)

and we assume P 2 << 1.

It is the degree of spin-polarized density of states in the ferromagnets, and N↑ and N↓

are the densities of states of spin-up and spin-down electrons. This result is similar to the

usual expression for TMR of tunnelling junctions [13].

If we take into account spin relaxation, then injected spins decay during the dwell time,

which reduces the spin polarization when electrons exit the grains. In particular, if the spin

polarization at the injector is P, then, when an electron exits the grain at the detector, the

spin polarization is reduced to a value P ′ < P and the detector senses the reduced P0. In
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this simplest model, TMR = 2PP ′ < 2P 2.

P ′ depends on dwell time and spin-relaxation time T2. Assume that τL < T2 < τR .

When the negative bias voltage is applied, electron transport is faster than spin-relaxation,

so P ′ ∼ P and TMR = 2P 2. However, at positive bias, spin-relaxation is faster than

electron transport, and we measure TMR = 2PP ′ < 2P 2. Thus, a signature of spin-

relaxation in grains is an asymmetry in TMR around zero bias voltage.

2.4.3 Hanle Effect in Metallic Grains

The Hanle effect was discovered and explained by the German physicist Hanle eighty

years ago. The effect is observed optically in an increase in the degree of depolarization of

the resonance fluorescence.

Hanle measurements have been realized in semiconductor quantum dots [66]. The spin

dephasing time (T ?
2 ) can be extracted from the depolarization of their photoluminescence

in a magnetic field perpendicular to the spin direction. The optical realization of such a

Hanle experiment involves the measurement of the fluorescent emission of polarized light

from semiconductor quantum dots. This method is used to measure an ensemble of spins,

thus the total signal varies with the spin dephasing time T ?
2 rather than the decoherence

time T2 > T ?
2 , or T2 >> T ∗2 in a typical case.

In our tunnelling junctions, the structure is composed of two ferromagentic electrodes,

and grains are embeded in the junction. The number of grains that participate in electron

transport is not known making it difficult to estimate the resistances between the grains

and the reservoirs. As a result, τL and τR cannot be extracted from TMR and the IV

curves because we do not know the values of RL and RR. Fortunately, because electron

transport is spin-polarized, we can use the Hanle effect to characterize the spin dephasing

time T ?
2 [26]. This Hanle measurement experiment can be realized by using electron spin

current transport through aluminum grains, and applying the magnetic field perpendicular

to the magnetization direction.

The Hanle effect in a quantum dot has recently been calculated by Braun, et al.[67]. In

their calculation, they showed that a perpendicular field induces Larmour precession of the
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injected spin, which reduces spin polarization of the current.

Their device consists of a quantum dot and two ferromagentic electrodes with magneti-

zation directions anti-parallel to each other (see Figure 2.9 ).
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Figure 2.9: Differential conductance, for ferromagentic leads with anti-parallel magnetiza-
tion, as a function of the magnetic field ω applied perpendicular to the accumulated spin.
The half line width of the Hanle resonance directly determines the spin coherence time τs.
From reference: Braun, et al., “Hanle effect in transport through quantum dots coupled to
ferromagnetic leads” Europhysics Letters, 2005,72 (294–300).

In their calculation, they assumed that their device has symmetric coupling constants,

ΓL = ΓR, with an equal degree of polarization PL = PR = P and in a linear-response

regime. The exchange field originating from the left and the right tunnel barrier cancel out

each other so ωx = 0, and the dot spin precesses due to the external magnetic field. The

linear conductance, then, is:

G

G0
= 1− p2 τ∗2

τc

1 + ( n̂L−n̂R
2 ωBτ∗2 )2

1 + (ωBτ∗2 )2
. (2.11)

Finally they assumed the field to be aligned perpendicular to the electrode magnetiza-

tions (see figure 2.9), and their calculation results showed the Lorentzian dependence on
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the external magnetic field that familiar from the optical Hanle effect. The depth of the dip

was given by p2τ∗2 /τc while the half-width of the dip in figure 2.9 provides a direct access

to the spin coherence time τ∗2 .
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CHAPTER III

SAMPLE FABRICATION AND MEASUREMENT

PROCEDURES

The idea that electron tunneling could be used to probe properties of nanometer scale

metallic clusters is several decades old, and was pioneered by Giaever and Zeller [68]. Our

device is a recreation of a tunnelling device made by Zeller and Giaver in the 1960s , which

demonstrated Coulomb blockade for the first time. The difference between our sample and

the prior devices is that we have spin-polarized leads. Our measurements involved measuring

the I-V characteristics of metallic clusters embedded in insulating films; this allowed us to

probe the charging properties. However, these measurements were ensemble measurements

since a large number of metallic clusters were involved in the current transport.

There are practical reasons to investigate spin-transport through ensembles of aluminum

grains. These include: 1) the devices containing a large number of grains are easier to fab-

ricate than devices containing a single grain; 2) measured properties are ensemble averages;

consequently the data is sample to sample reproducible.

3.1 Sample Fabrication

The device fabrication process is not lithography based and it is relatively simple. Device

geometry is sketeched in Figure 3.1 (A). The top and the bottom electrodes are made from

cobalt. The thickness of the cobalt films is 100Å. The top and the bottom layers are 100Å

thick cobalt films. The width× length is 1.5mm×15mm and 1mm×20mm for the bottom

and the top layer, respectively. The sample cross-section, sketched in Figure 3.1 (B), shows

nanometer scale aluminum grains embedded in aluminum oxide. The magnetization of the

film is in the film plane, which is evidenced by large P in our spin-valve signal described

later. The electrodes are long rectangles and the easy axes is along the long direction of the

rectangles. This enables the parallel and the antiparallel configurations in zero magnetic
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field. Consequently, large P (averaged over the junction area) is obtained.

Figure 3.1: (A) Zeller-Giaver tunnelling junction with ferromagnetic leads, (B) Geometry
of the tunnelling junction.

The device is fabricated in two evaporation steps. First, we thermally evaporate a cobalt

film on a SiO2 substrate, which is a silicon wafer with a thermally grown oxide on the top,

through a mask at 4 × 10−7 Torr pressure. The deposition of cobalt is stopped by closing

the shutter. Next, we change the metal source to aluminum and evaporate aluminum in

high vacuum, while the shutter remains closed. Then we open the shutter for 1 second

and close the shutter again. The deposition rate is 0.2 nm/sec. So, the cobalt layer is now

covered with a seed layer of aluminum with nominal thickness 0.2 nm.

Our next deposition step is the reactive deposition of aluminum oxide. In this step,

oxygen is introduced into the chamber, which exposes the cobalt surface to oxygen vapor.

The oxidation of cobalt surface should be minimal, because paramagnetic impurities in

cobalt-oxide could affect spin-polarized tunnelling. Our strategy to minimize oxidation of

cobalt is to apply as little oxygen as possible for as little time as possible. In addition,

the seed layer also provides some protection of cobalt before passivation by the deposited
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aluminum oxide. The seed layer must be very thin, because if any metallic aluminum

remains on the cobalt surface after oxidation, then spin-polarized tunnelling density of

states will be reduced.

Immediately after closing the shutter the second time, we introduce oxygen into the

deposition chamber while evaporating aluminum. The oxygen is introduced at a flow rate

of 200 sccm. The chamber is continuously pumped with the cryopump gate valve fully

open. Oxygen pressure increases and reaches 10−5 scale Torr in few seconds and stabilizes

at 4 × 10−5 Torr after 30 sec. Only during these initial 30 seconds, while the pressure

increases and stabilizes, cobalt surface with a 0.2 nm seed layer of aluminum is exposed to

oxygen. After 30 sec, when the pressure is stabilized, we open the shutter and evaporate 5

nm of aluminum at a rate of 0.2 nm/s, to deposit the bottom aluminum-oxide film, which

is 7 nm thick.

In general, the thickness of the deposited oxide at fixed aluminum evaporation rate will

be an increasing function of oxygen pressure. In our case, thickness of the deposited oxide

versus pressure saturates at 7 nm at approximately 1 × 10−5 Torr. Any further increase

in oxygen pressure will not increase the aluminum oxide thickness. Consequently, in our

deposition process nearly all aluminum atoms that are deposited at 4 × 10−5 Torr are

oxidized, however, the oxygen pressure is only three times larger than the minimal oxygen

pressure for the oxidation of aluminum (the saturation pressure).

The oxygen pressure of 4× 10−5 is substantially smaller than typical oxygen pressures

used to thermally oxidize aluminum surfaces in tunnelling junctions. For example, in Ref-

erence [69], nanometer sized aluminum nanoparticles were oxidized at 0.1 Torr of oxygen

for 1−2 minutes. This process created tunnelling barriers of resistance in mega ohm range,

which corresponds to oxide thickness of approximately 1 nm. Since our oxygen pressure

is smaller by four orders of magnitude and the oxidation time is shorter, the thickness of

the surface aluminum oxide in our case must be considerably smaller than 1 nm. Thus, we

expect that the seed aluminum layer of nominal thickness 0.2 nm provides some protection

of cobalt surface from oxidation.

This reactive evaporation technique was used to create tunnelling junctions containing a
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single metallic grain [60]. The junctions were of high quality and they displayed well resolved

Coulomb-Blockade steps and discrete energy levels of the grain at low temperatures. So,

the aluminum oxide in our samples is a suitable insulator for the studies of properties of

metallic grains.

The sample, which is now passivated, is exposed to air and the mask is replaced. Next,

the sample is evacuated to base pressure and we deposit 1.5 nm of aluminum, which creates

isolated grains, as shown by the image in figure 3.2. Then we deposit another layer of

aluminum oxide, by evaporating 5 nm of aluminum at rate 0.2 nm/s at 4 × 10−5 Torr of

oxygen. Finally, we deposit the top cobalt layer.

Figure 3.2: Here is the scanning electron micrograph of nanosize aluminum grains. The
aluminum grains are in different sizes. The average grain diameter is ∼ 6 nm, and the
number of grains in the junctions is estimated as N = 2.5× 1010.

The average grain diameter is ∼ 6 nm. If we assume that the grains are hemispherical,

analogous to reference [69]. We estimate that the average electron-in-a-box mean level

spacing is 0.2 meV. Note that there is a relatively wide distribution of grain diameters in

Figure 3.2, as some grains have coalesced. Hence, the range of level spacings in the ensemble

is rather large.
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In addition, the grains are exposed to oxygen vapor before deposition of the top oxide

layer, at 4× 10−5 Torr for 30 seconds. As a result, the grain surface is oxidized from above,

but we expect that the oxide thickness is considerably smaller than 1 nm, as discussed

above. Additionally, there is generally chemisorbed oxygen remaining on the underlying

oxide surface. Consequently, the grain surface may be oxidized from below. Thus, the

average size of the metallic core of the grains could be smaller than the apparent grain size

because of this effect, by up to about 1 nm.

The number of grains in the junctions is N = 2.5 × 1010. Although the junctions are

very large, the resistance of the junctions (R) varies significantly among samples made at

the same time. R is in the range 1kΩ < R < 10MΩ. We also make tunnelling junctions

as described above but without aluminum grains and find these devices to be insulating.

In addition, we make control samples without aluminum grains and with the aluminum-

oxide layers at half the thicknesses from those above. If we fabricate 24 junctions at the

same time, the resistance of the junctions may vary within a factor of 100 among different

samples. The control sample resistance is in the same range (1kΩ < R < 10MΩ),which

shows that tunnelling in the devices with grains take place via the grains. The junctions

age in air, and we find that the samples must be cooled down to liquid nitrogen (or below)

within 24 hours.

The fluctuations in sample resistance among samples made at the same time show that

the tunnel current must be dominated by the current flow through weak spots. Conse-

quently, the number of grains that are active in transport is ¿ N . The weak spots may

result from thickness variations in the oxide layer across the junction area or from defects in

the oxide, or from both. Also the samples are extremely sensitive to electrostatic discharge,

and they must be very carefully treated.

We measured the surface roughness of a single aluminum oxide film deposited over SiO2

by the atomic force microscope and found that it was ∼ nm. This surface roughness can

cause weak spots in the tunnelling barrier, because the tunnel resistance decay length in

oxides (0.1 nm) is much smaller than the surface roughness.
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In addition, it is known that amorphous aluminum oxide has coordination number de-

fects, which may be caused by oxygen vacancies [70]. These defects could give rise to hole

traps near the valence band edge, which could result in weak spots for tunnelling. These

oxygen vacancies could be paramagnetic, which could affect spin-polarized tunnelling.

3.2 Sample Testing and Mounting

The measurements of the devices are carried out in two step: the first step is to pre-select

the good samples, and the second one is cooling down the good samples.

First, we select our samples at room temperature. The bias voltage are supplied through

a voltage divider box. The output voltage is set using a toggle switch to select the proper

resistor for the voltage divider and in that way a voltage of order of mV is applied. We

use a DC voltage source. The bias voltage is 10 mV and is applied through the tunnelling

junctions.

We use a probe circuit measurement to measure resistance between each pair of elec-

trodes. The schematic of the circuit is shown in Figure 3.3. We can observe that 2 voltage

dividers are used to apply voltage between the two ends of the sample. The applied bias

voltage is set to 10mV to avoid blowing our samples. The current is measured by a low

noise Ithaco 1211 current amplifier that is set in serial with the circuit. We use a micro

manipulator to make contact in the contact pads of our samples. The resistance is in the

range from 1kΩ to 10MΩ (open circuit see in Figure 3.3).

After testing our samples, we proceed to mount those good samples on a sample holder

that is designed to facilitate the electrical connection.

A schematic of a sample holder is shown in Figure 3.4. The sample holder is made of a

printed circuit board which was etched in ferric acid for about 15 minutes. The dimensions

of the sample holder are approximately 9 mm wide and 15 mm long. A 4-pin Microtech

female connector is soldered to the small piece of board. The pins are distributed as follows:

1 pin for V +, 1 pin for V −. Then a four pin sample holder can be loaded with two samples.

To connect the contact pads of our sample to the point contact in our sample holder,

we use thin non-insulated wires. To connect this wire with the contact pads, we use indium
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Figure 3.3: Schematic of electrical measurement circuit: black lines indicate electrical con-
nections. Dashed lines indicate the superconductor solenoid that provide the magnetic field,
whereas grey lines indicate lines of communication between the data-acquisition computer
and various equipments.

dots pressed with a small allen tool. Because indium is very malleable, it is easy to press

against the contact pad. After pressing, the indium dot sticks to the contact and the wire

is in between.

As mentioned earlier, the samples are extremely sensitive to electrostatic discharge, so it

is crucial that one grounds oneself with a grounding strap, and the sample holder’s terminals

are shorted to each other. This ensures that some voltage is not accidently applied across

the device. Once the samples are loaded onto a dipstick, we need to test our samples to

verify that they do not blow them. Then the samples are pre-cooled to liquid nitrogen

temperature. As soon as the boiling stops, the dipstick can be inserted into a helium

dewar; this cools the samples immediately to 4 K. Once the samples have cooled they can
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be connected into the circuit using the make-before-break switch. The computer acquisition

program will acquire an IV curve as the bias is swept at a frequency 10 mHz. It is also

useful to look at the current through the device on an oscilloscope since bad devices can

be detected quickly. This category of good devices is closely related to the devices of the

resistive kind. In this case the blockade is smooth and the IV curve lacks sharp features.

This occurs mostly due to multiple particles in parallel connecting the two electrodes.

3.3 Noise Reduction

The following sources of noise should be checked before connecting the samples to the

external circuit.

Ground loops are a prominent source of noise and are caused by the presence of two

grounds in the circuit. The best way to check for them is by looking over the circuit and

ensuring that the only ground that you use to connect to the outer shields of a coaxial, or

a triaxial, cable is the one connected to the sample holder’s support structure,and that it
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is the only ground used in the measurement setup.

§ 1. Amplifiers and the voltage generators

The amplifiers used in the measurement have internal batteries, and I strongly recom-

mend using this feature since connecting them to the mains causes the output to be more

noisy. The signal generators used should be floating, and this can be checked by using an

ohmmeter; if they are not floating, then one is sure to run into problems with the ground

loops. One way to make doubly sure that there are no ground loops is to connect the signal

generators to the mains via isolation transformers.

§ 2. Bad cables

Bad triaxial cables can create extra noise in the system by inadequately shielding the

cables. This should be the last resort in terms of minimizing the noise and requires replacing

the cables one at a time to find the bad one. Once the noise is reduced to a level of 0.5 pA

the setup is ready for acquisition. Note that the sources of noise that have been addressed

above are mainly due to the external circuit. However, there is always the high frequency

noise that travels from the equipment down to the samples. Once the noise in the circuit is

minimized, the samples can be measured.

34



CHAPTER IV

EXPERIMENTAL RESULTS

As mentioned in Chapter 3, the MTJs could be used to probe a variety of physical

phenomena. We use a probe circuit measurement (Figure 3.3) to measure the current and

sweep the driving voltage between each pair of electrodes. This measurements display the

I-V characteristic curve of metallic grains embedded in MTJs, and this allowed us to probe

the charging properties and the spin polarization of the ferromagnet when a magnetic field

was applied for the samples.

4.1 IV-Curves at 4.2K

We present three Samples with aluminum grains. Figure 4.1 displays the IV-curve of

sample 1 at 4.2 K. The other two samples have similar IV-curves. The conductance is

suppressed at zero bias voltage, as expected from Coulomb-Blockade on aluminum grains,

consistent with reference [68].

The average charging energy EC is obtained by extrapolating the linear part of the

IV-curve at high voltage (V) to zero current (I) and finding the offset voltage, as indicated.

We averaged the Coulomb Staircase IV-curve [71] over the background charge, capacitance

ratios, and over capacitance range (C/4, 7C/4), where C is the total capacitance of a grain.

The corresponding offset was 1.3EC/e, where EC = e2/2C. EC is 4.3 meV in samples 1

and 2, and 6 meV in sample 3.

We also made tunneling junctions without aluminum grains, but with the aluminum

oxide at half the thickness using the same procedure as described in the section 3.1. The

data for IV curves (with aluminum grains) and (without aluminum grains) are shown in

the Figure 4.1 (A) and (B). These samples do not exhibit any significant conductance

suppression at V = 0, so Coulomb-blockade like behavior in our samples is caused by

aluminum grains.
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In an ensemble, there are particles with different diameters. At low bias voltage (<<

kBT/e), most of the current is carried through the largest particles, because they have the

smallest charging energy. Smaller particles contribute less here because the current through

them is blocked by the Coulomb blockade for a wide range of the background charge. As

the bias voltage increases, the relative contribution to the current from smaller particles

increases. Consequently, the contribution to TMR from smaller particles increases with

voltage.

(A)

(B)

Figure 4.1: (A) The I (current) vs. V (voltage) curve of Sample 1 (with aluminum grains),
the corresponding offset is 1.3EC/e, where C is the average capacitance of the grains.(B)
The IV curve data, and dash line is the linear curve fit for the data of sample (without
aluminum grains).
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4.2 Spin-Valve Effect

Figures 4.2 (A), (B), and (C) display current versus magnetic field in samples 1, 2, and

3 respectively, at constant bias voltage. All samples exhibit TMR, which demonstrates

that the tunnelling current is spin-polarized. Samples 1 and 3 exhibit a spin-valve effect:

at a large negative field, the magnetizations of the cobalt reservoirs are down. If the field

increases, the magnetization of one cobalt reservoir switches direction, and the tunnelling

current drops abruptly from I↑↓ to I↑↓. Finally, at a larger positive field the current jumps

back up to I· ≈ I↑↓. In sample 2, pinning of the magnetization of Co layer prevents spin

valve effects.

4.3 Bias Voltage Dependence of TMR

In addition to these abrupt transitions in TMR, we find that TMR varies continuously

with the magnetic field and it fully saturates in the applied field of ∼ 1T . The cobalt films

are generally multi-domain, and the average domain size in cobalt films is of the order of 1

micron [72]. If many domains were involved in providing the TMR signal, one would expect

the resistance transitions to be gradual due to the spread in coercive fields from domain

to domain. Thus, only a portion of the sample of order domain size or less is responsible

for the abrupt TMR transitions. This behavior is in agreement with the finding that the

tunnelling current is dominated by weak spots.

In sample 2, there is only one jump near zero field, followed by a broad TMR background

that saturates at B ∼ 1T , which shows that only one cobalt electrode exhibits an abrupt

transition with magnetic field. The abruptness of the transition indicates again that this

sample is sensitive to a very small fraction of the physical device. However, in contrast to

samples 1 and 3, the magnetic behavior of cobalt on one side of the effective contact area

indicates the presence of a very persistent magnetic defect, which for example could be a

360 degree domain wall [73].

Although our junctions are not ideal, we still can learn about the physics of spin-

polarized tunneling through grains by studying how the abrupt resistance transitions depend

on bias voltage and the perpendicular applied magnetic field. TMR corresponding to these
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Figure 4.2: A, B, and C: I (Current) versus B (parallel applied magnetic field) at 4.2K, in
samples 1, 2, and 3, respectively.
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transitions is a measure of the spin-polarization of the current. The number of particles that

contribute to the abrupt transitions is very small. It is certainly smaller than the number

of particles that fit under a micron scale domain in cobalt (roughly 104). The abrupt TMR

transitions are reproducible when the magnetic field cycle is repeated, as seen in Figure 4.2.

For the Hanle effect studies, we select devices that exhibit spin-valve effect.

The tunnelling magneto resistance is calculated as equation 2.3, where the current values

were taken immediately before and after the resistance transitions. Figure 4.3 (A) and (B)

display differential conductance G with bias voltage in samples 1 and 2, respectively. G is

measured by the lock-in technique. As the bias voltage is varied slowly at 3 mv/hr, the

magnetic field is swept between -0.25 T and 0.25 T at 0.01 Hz. The differential conductance

switches between G(P ) and G(AP ) when the magnetizations switch alignment.

G(P ) − G(AP ) changes significantly when the bias voltage varies in a narrow interval

around zero-bias voltage. In sample 2, the asymmetry in G(P ) − G(AP ) is dramatic:

conductance is spin-unpolarized at negative bias and significantly spin-polarized at positive

bias. TMR also changes significantly around zero bias voltage, as shown in Figure 4.3 (C)

and (D). Circles represent TMR from equation 2.3, and squares are obtained as TMR =
∫

GP (V )dV/
∫

GAP (V )dV − 1.

TMR values in our devices are less than 10 %. In the state of the art magnetic tunneling

junctions, TMR exceeds 40 % at room temperature and it is critically dependent upon the

fabrication process and annealing of the tunneling junctions [74]. As discussed before,

tunneling in our samples is dominated by weak spots caused by the surface roughness and

oxygen vacancies. The junctions are not ideal and thus the TMR is reduced.

Our sample’s TMR versus V is shown in Figure 4.3. At positive bias voltage (V), where

TMR is large, TMR is weakly dependent on bias voltage in interval 0.5 mV < V < 3 mV.

At larger voltage, TMR begins to decrease rapidly with voltage. At voltage ≈ 10 mV,

the decrease in TMR with bias voltage slows down. At very large bias voltage, TMR is

significantly reduced but not fully quenched to zero.

At negative bias voltage (V), where TMR is small, TMR is weakly dependent of voltage

in interval -3 mV < V < -0.5 mV. But, in sample 2, where TMR is fully quenched at V =
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Figure 4.3: A and B: Differential conductance versus bias voltage in samples 1 and 2, re-
spectively. The data display differential conductance G with bias voltage in samples 1 and 2,
respectively. G is measured by the lock-in technique. As the bias voltage is varied slowly at
3 mv/hr, the magnetic field is swept between -0.25 T and 0.25 T at 0.01 Hz. The differential
conductance switches between G(P ) and G(AP ) when the magnetizations switch alignment.
C and D: TMR versus bias voltage in samples 1 and 2, respectively. Circles represent TMR
from equation 2.3, and squares are obtained as TMR =

∫
GP (V )dV/

∫
GAP (V )dV − 1.

-0.5 mV, there is a maximum in TMR at around mV. In sample 1, where TMR is not fully

quenched at V = -0.5 mV, there is a much weaker maximum around a similar voltage.

Note that we assume that the level spacing is < kBT , so the transitions between the en-

ergy levels can be thermally driven. If the level-spacing is > kBT , this relaxation mechanism

is suppressed and T1 is enhanced.

At finite bias voltage, we assume that the energy relaxation rate is larger than the escape

rate, so that the distribution of electrons in the grain is in equilibrium (the basis of this

assumption is as follows: TMR decrease with V suggests that τD > T1; since we expect

T1 À τe−ph, it follows that T1 À τe−ph , so electrons are in equilibrium).
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In the antiparallel state, electron spins accumulate in the grains by transport, which

creates a difference PeV between the Fermi levels of spin up and spin down electrons,

as shown in figure 4.3 (A) and (B). However, if T1 is shorter than the dwell time, then

spin-up electrons in energy window EF ± PeV/2 can undergo a transition into one of the

unoccupied spin-down states at lower energies, as sketched by the arrow. TMR decreases

with voltage because T1 decreases with bias voltage , since electron-phonon transition time

τe−ph decreases with bias voltage (V). This qualitatively explains TMR versus V at V > 0.

In this picture, TMR begins to decrease with voltage roughly when the spin-imbalance

PeV becomes comparable to kBT , that is, when V ≈ kBT/(Pe) ∼ 1.5mV , in agreement

with the data.

At V ∼ 10mV , the decrease in TMR with voltage slows down, and TMR is not fully

quenched at very large bias voltage. In addition, TMR has a maximum at ∼ −10mV . We

suggest that these effects are caused by electron transport through small grains, in which

kBT < δs (s refers to small grains).

Near zero bias voltage (V ∼ kBT/e) only a very small fraction (∼ kBT/Es
C ) of small

grains are conducting (because of Coulomb-blockade), so TMR is dominated by electron

transport through larger grains. Spin relaxation is fast in large grains, as discussed before,

and it leads to asymmetric TMR. Spin-relaxation is suppressed in small grains, so small

grains have large and symmetric TMR, but, their contribution to total TMR is reduced

because of the Coulomb-blockade.

At a large positive or negative bias, V = ±δs/eP ≈ 5δs/e, the fraction of conducting

small grains increases to eV/Es
C ≈ 5δs/Es

C , which is on the order of 1. At this voltage,

small grains still do not exhibit spin relaxation, because there would be only one energy

level in energy window PeV in Figure 4.4, so these grains have large and symmetric TMR at

this bias voltage. Thus, TMR of the junction is enhanced at this voltage, which explains the

slow down and the maximum at positive and negative voltages, respectively. With further

increase in voltage, TMR of small grains begins to decrease, because the energy window

PeV becomes > δs.

We explain the asymmetry in TMR by spin-relaxation in aluminum grains and the

41



Figure 4.4: Sketch of the grain electronic configuration at bias voltage V. The arrow
indicates electron-phonon induced transition with spin-flip.

asymmetry between the resistance between the grains and the two reservoirs. Asymmetric

resistances are easily introduced by sample fabrication. For example, exposure of the bottom

aluminum oxide layer to air increases the oxide thickness by hydration.

At large magnitude of bias voltage, TMR has a complex dependence on the magnitude

of bias voltage. It is difficult to explain the origin of this dependence, but we speculate

that energy dependence of the spin relaxation time, single electron charging effects, and the

distribution of energy level spacings in the ensemble of grains may play important roles.

4.4 TMR Hanle Effect

Here we discuss the effects of spin precession in the applied magnetic field Bn applied

perpendicular to the film (the Hanle effect). Figure 4.5 (A) displays the resulting peak in

current versus Bn, for sample 3 in the antiparallel configuration (in zero applied parallel
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field). The dependence is reversible when Bn is swept up and down, which shows that the

curve does not arise from the hysteresis loop in the leads. The peak amplitude is close to

(I· − I↑↓)/2.

The characteristic field BC , defined as half-width of the peak, is 8 mT. We find that BC

is symmetric with bias voltage, which shows that BC is independent of the dwell time. So,

the processes that contribute to the Hanle effect half-width are different from the processes

responsible for the TMR asymmetry.

The Hanle effect in a quantum dot had been calculated by Braun, et al [67]. The

calculation shows that perpendicular field induces Larmour precession of the injected spin,

which reduces spin polarization of the current. Current versus Bn exhibits a Lorentzian

peak of amplitude (I· − I↑↓)/2 (in agreement with our data) centered at Bn = 0. If a

constant large parallel magnetic field B is present, then the peak width becomes B and the

Hanle effect half-width is symmetric with bias voltage.

Our observations Figure 4.3 (C) can be explained by these theoretical results, if in zero

applied field there exist a local magnetic field BC acting on the grains. This local field

induces spin precession in zero applied magnetic field, and the spin-coherence time is the

Larmour period in the local field: T ∗2 ∼ h/µBB ∼ ns.

The local field could be caused by the surface roughness, which generates a finite dipole

field originating from cobalt. Note that the top aluminum-oxide/cobalt interface in Figure

4.5 is irregular because of the underlying aluminum grains. The local field of 8 mT is

certainly possible because the internal field in cobalt is 2 T. The hyperfine field from the

nuclei can also create an effective field of order mT that causes dephasing [75]. In our

junctions, tunnelling is dominated by weak spots. Consequently, the local magnetic field

will fluctuate among samples, explaining the difference in BC between the samples.

It might be surprising that electron transport is spin-coherent with such a short de-

phasing time. In this experiment, TMR survives dephasing because of the conservation of

the spin-component along the local field direction. Even if the electron dwell time is much

longer than the dephasing time, TMR will be finite. This is sketched in Figure 4.5 (B. If

the magnetizations switch from a parallel to antiparallel state at finite bias voltage, then
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(A)

(B)

Figure 4.5: A. Current versus perpendicular field in sample 3. B. Sketch of the effects of
the local field on TMR. The component of the injected spin along the local field direction
gives rise to a finite TMR, even if T ?

2 is much shorter than the dwell time.

the injected spin component along the local field direction switches from zero to finite value,

giving rise to a finite TMR. The perpendicular component of the injected spin is averaged

to zero, which reduces the TMR by a factor of cos2(α), where α is the angle between the

magnetization and the local field.

44



CHAPTER V

DISCUSSION AND SUMMARY

We investigated spin-polarized current through ensembles of nm-scale aluminum grains.

The spin-coherence time is obtained from the Hanle effect measurement: T ?
2 ∼ ns; for the

first time in metallic grains (quantum dots). Fast dephasing is attributed to spin-precession

in the local magnetic field. Tunnelling magneto resistance is asymmetric with current

direction, and TMR has bias voltage dependence, which is attributed to spin relaxation.

5.1 Voltage Dependence on TMR

Our results showed the magnitude of the TMR decreases strongly with increasing bias

voltage. One may explain the drop in TMR by the inelastic scattering of magnon excitations

[76]. Since more magnons can be emitted with increasing bias voltage, this result in the

reduced TMR values. However, this magnon excitations explanation may be useful in

interpreting the softening of the TMR with bias about 200 mV. In our cases, the sample’s

TMR versus bias voltage is shown that TMR reduced rapidly within 3 mV (see figure

4.3). Also most of our samples showed strong asymmetric TMR with current direction

dependence. Thus, this bias voltage dependence in TMR should be dominated by the

mechanisms other than magnon excitations.

Another mechanism that may contribute to the voltage dependence of the conductance

and TMR is related to the electronic structure of the ferromagnets. When a bias voltage

is applied between the MTJ electrodes, this leads to the change of electronic structure of

ferromagnets as a function of energy. Due to this change, the conductance or TMR should

be energy dependent. This change should obviously be sensitive to the type of ferromagnet.

But our results show a strong voltage-dependence in a range much small than the range for

band structure effects.

One possible explanation is that the voltage drop in TMR is due to localized trap states
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in the amorphous barrier or the impurity-assisted contribution. But our aluminum oxide is

not defective. It is an extremely good insulator in our junctions, because junctions without

aluminum nanoparticles and the same oxide thickness have immeasurably high resistance.

Hence, we are certain that tunneling in our devices is a two-step process via the aluminum

grains. It is well known that pure aluminum oxide does not have free electron spins. The

only impurity spins may come from cobalt surfaces. However, our bottom cobalt layer is

first covered with a 2 Å seed layer of aluminum in high vacuum. This aluminum film is

then oxidized from the top at ∼ 3 × 10−5 torr of oxygen, and then the additional oxide

is grown on top by reactive evaporation without breaking the vacuum. Thus, the bottom

cobalt layer surface is never exposed to oxygen, and it is protected when exposed to air.

Also our large TMR is the evidence that spin relaxation by impurity spins in the oxide must

be weak. One can argue that perhaps the top cobalt layer has surface impurity spins. But

the top layer is deposited over pure aluminum oxide surface, which was not exposed to air.

It is hard to imagine that the oxygen would remove itself from Al2O3 and attach to cobalt

to create impurity spins.

So far, we have given the plausible arguments that there are no impurity spins. To

clear the issue, now we prove that there are no impurity spins in the oxide. We have

made tunneling junctions without aluminum nanoparticles, but with the aluminum oxide

at half the thickness using the same procedure as described in Chapter 3, section 3.1. The

data for I versus V and TMR versus V are shown in the figure 4.1. These samples do

not exhibit any significant conductance suppression at V = 0, so the Coulomb-blockade-

like behavior in our samples is caused by aluminum grains. More importantly, TMR is

symmetric and independent of V in this small voltage range. This proves that there are no

impurity surface spins in the barrier. We can conclude that asymmetric TMR and the bias

voltage-dependence is therefore caused by the the aluminum grains. This means that the

Voltage-dependence is caused by the processes inside the grains.

This TMR bias voltage dependence can be explained by a fast decrease in T1 with

voltage. This would be the case if spin-relaxation is caused by the electron-phonon energy

relaxation in the presence of spin-orbit interaction, because electron-phonon relaxation time
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τe−ph decreases with voltage. This spin-relaxation mechanism is well known in bulk metals,

where T1 = τe−ph/α (Elliot-Yafet relation), and α is the scattering ratio (10−4 in aluminum)

[77].

The spin-conserving energy-relaxation in aluminum grains takes place by phonon emis-

sion with the relaxation rate [3].

1
τe−ph(ω)

=
(

2
3
EF

)2 ω3τeδ

2ρ~5v5
S

, (5.1)

Where EF = 11.7eV is the Fermi energy, ω is the energy difference between the initial

and the final state, ρ = 2.7g/cm3 is the ion-mass density, vs = 6420m/s is the sound

velocity, and τe is the elastic scattering time. At zero bias voltage, typical excitation energy

at 4.2 K is around 3.5kBT = 1.3meV . Equation 5.1 gives the average transition time

τe−ph(1.3meV ) = 60ns between the excited states at 4.2 K. So, T1 is longer than 60 ns. If we

assume that the Elliot-Yafet relation is valid in grains, we can estimate T1 = 60ns/α ∼ ms,

which is comparable to T1 in GaAs quantum dots.

5.2 Asymmetric TMR

Another significant phenomenon is that we found a strong asymmetric TMR in our tun-

nelling juntions with grain (see figure 4.3 (C) and (D)). The TMR (the tunnelling junction

without grain) are symmetric and independent of V at same bias voltage range (see fig-

ure 5.1). Therefore we can conclude that asymmetric TMR and the bias voltage-dependence

are caused by the aluminum grains.

In non-ideal magnetic tunnelling junctions, TMR can be strongly asymmetric and bias

voltage dependent [78, 79, 80, 81]. The asymmetry has been explained by the two-step

tunnelling via localized states. In our control samples (without grains), TMR is found

to be symmetric and weakly dependent on voltage (see Figure 5.1). This shows that the

localized states responsible for asymmetric TMR in junctions with grains are the electronic

states in the grains.

We explain this asymmetry in TMR by the asymmetry between the average resistances

between the grains and the two reservoirs (in Figure 2.8). Asymmetric resistances are easily
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Figure 5.1: TMR versus bias voltage without Al Grains.

introduced by sample fabrication. For example, exposure of the bottom Al2O3 layer to air

increases the Al2O3 thickness by hydration.

The average dwell time is τD ∼ RD
RQ

h
δ , where RD is the average resistance between the

grains and the drain reservoir, and RQ = 26kΩ. When the bias voltage changes sign, the

drain reservoir changes, so τD also changes.

Asymmetric TMR occurs when the spin-relaxation time T1 is smaller than the longer

dwell time. For example, sample 2, figure 4.3 (B), suggests that T1 is much smaller than

the dwell time at negative bias, and T1 is comparable to or longer than the dwell time at

positive bias. The voltage interval around zero bias where the dwell times change is given

by the Coulomb blockade thermal width 7kBT/e, in agreement with Figure 4.3 (A) and

(B).
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5.3 Summary

In this chapter, we analyzed spin-polarized current through MTJs embedded with en-

sembles of nm-scale aluminum grains. The main result is that tunnelling magneto resistance

is asymmetric with current direction. The finding is significant because our spintronics de-

vices have a similar behavior as the conventional diodes (resistance is dependent on current’s

direction). The difference is: our MTJs current carries spin state information, whereas the

current though diodes carries electron information. This kind of device is a good comple-

mentarity for Spintronics community.

Finally, we have carefully discussed the several possible explanations and mechanisms

for this voltage dependence phenomenon. The tunnelling magneto resistance has a complex

voltage dependence, which we mainly attribute to the asymmetry in electron dwell times

and spin-relaxation that we directly measured the spin-coherence time T ∗2 that was found to

be ∼ ns. We suggested that the dephasing process in grains is attributed to spin-precession

in the local fringing fields. Tunnelling magneto resistance survives dephasing because of

the conservation of spin-component along the local field direction. Even if the electron

dwell time is much longer than the dephasing time, TMR will be finite. Our observation is

confirmed by the theoretical calculation of Hanle effect in a quantum dot by Braun, et al.

[67].
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CHAPTER VI

MOTIVATION AND INTRODUCTION

In this chapter, we present our motivation of the second component of this thesis,

and describe the typical behaviors in relaxor ferroelectrics materials. Then, we discuss

the Debye relaxation (simplest dielectric relaxation) with bistable model; next, we discuss

about the dielectric relaxation with multi-relaxation time. All those context are essential

to understand the behaviors of relaxor ferroelectric dielectric relaxation.

6.1 Our Motivation

Ferroelectricity is a dynamic area of both pure and applied research. Due to some

recent developments in nanotechnology, discoveries of fundamental new physics, and soci-

etal demand for data handling and storage, there has been a renaissance in the realm of

ferroelectrics. The purpose of this component is to understand the dielectric behaviors in

those small nanoparticles and to discover their possible applications based on their peculiar

behaviors at nanometer scale.

Recently the ferroelectric materials have been widely used in nanostructure device, and

investigated extensively in the nanoscale ferroelectrics community. The relaxor ferroelectrics

[82] are a special class of disordered crystals, with peculiar structure and properties, and

were discovered almost 50 years ago among the complex oxides with perovskite structure.

Today, the relaxor ferroelectric crystals are widely used in a variety of applications including

transducers, capacitors, and non-volatile data storage elements. Some applications are based

on very high dielectric constants of multi-crystalline ferroelectric samples.

In general, when the dimensions of the device approach dimensions associated with a

characteristic length scale of the material of a given composition, the changes in properties

of a ferroelectric material will be seen. Hence, it is very important to choose the appropriate

parameters such as the nanoparticle size, film thickness for the industrial manufacture. All
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those generated the need for an essential understanding for the recent rapid development

of nanoscale ferroelectric structures that are keeping to reduce dimensions.

Most recently, the Ba1−xSrxTiO3 (BST) and BaTiO3 (BTA) systems have received

much attention due to their promising dielectric properties when used as thin film [83, 84,

85, 86, 87], and nano wire [88, 89].

The possible BST applications include the future generation of ultra-large-scale inte-

grated dynamic random access memories (ULSI DRAMs) [4, 5, 6] and infrared detectors

and filters [90]. With voltage tunable dielectric behavior, i.e., percent change in dielectric

permittivity, ωr, with DC bias, has been used for components such as phase-shifters (in

phased-array antennas for radar) and preselect filters (in receivers for communication and

radar) [91].

Investigation of size effects in ferroelectric materials could allow control and improvement

of the ferroelectric effects by varying the grain size, rather than the chemical composition.

Much of the recent development is focused on understanding fatigue and degradation, im-

provement of polarization retention, the switching speed, and the exploration of the finite

size effects. The finite size effects are important when they are investigated in the nanoscale

regime.

Many measurements are made in a wide range of frequencies and temperatures, and

for many types of impurity-induced relaxor ferroelectrics (such as BST, BCT) [92, 93, 94,

95, 96, 97]. The measurements display the temperature and frequency dependence of the

complex permittivity (ε∗ = ε′−iε′′) for thin films and bulk. Most experimental observations

on bulk relaxor ferroelectrics are interpreted in terms of phenomenological models based on

a very broad spectral distribution of relaxation times.

The theories of BST bulk dielectric and ferroelectric properties are well developed

[98, 99]. But nanometer scale particles of these compounds are not well understood and

they exhibit variation in their polarization behavior with particle size [100, 101, 102, 103],

electric field, and temperature [93]. Electric properties of these nanometer scale particles

are of fundamental interest for the physics of such dimensionally constrained microstruc-

tures. In addition, an understanding of their dielectric relaxation behaviors and ferroelectric
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properties is essential before they may be successfully integrated into commercial devices.

In the second component of this thesis, we will focus on investigating the physical

properties of nanoparticles that is the similar compositions of bulk BST material. First, we

will try to study size dependence of the electric properties and the Curie temperature. Our

measurements will be done in temperature range (4.2 K, 450 K). The average nanoparticle

diameter will be varied in range (5 nm, 100 nm). The crystallinity will also be varied in

this range of nanoparticle diameter, since we expect that the crystallinity will affect the

electric properties. To study the relaxation time, the nanoparticle diameter will be varied

from few nanometers to about 20 nm, since thermal switching is expected in this diameter

range. The relaxation time will be determined from frequency dependence of the real and

the imaginary part of the dielectric constant.

6.2 The Dielectrics Relaxation

First we begin our discussion by introducing the models of Dieelctric relaxation in fer-

roelectric materials. Dielectric relaxation refers to a process that shows the response and

stimulus of a dielectric medium to an external electric field. This relaxation is often de-

scribed in terms of permittivity as a function of frequency, which can, for ideal systems, be

described by the Debye relaxation [104]. The mechanism of dielectric relaxation is often

subtle and complicated. For example, the distortion related to ionic and electronic polar-

ization shows behavior of the resonance or oscillator type. The character of the distortion

process depends on the structure, composition, and surroundings of the sample. In most

cases, the dielectric relaxation is non-Debye relaxation.

6.2.1 The Debye Dielectrics Relaxation with a Single Relaxation Time

As early as 1927, Peter Debye [104] established that dielectric relaxation, the disper-

sion of the real permittivity (ε′) and the occurrence of dielectric absorption (ε′′) in the

frequency domain for dipolar liquids and solids, was due to the reorientational motions of

the dioples. Normally, the Debye relaxation response assumes that there is an assembly

of a non-interacting ideal dipoles system that has the same waiting time before making a

transition, or alternatively for an assembly of identical dipoles that have a loss of energy
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proportional to frequency.

The Debye relaxation may be derived from several models of the microscopic constitution

of matter. The simplest and most useful model is the “bistable” model, which has been

treated quantitatively by Frohlich [105]. Most people call it the bistable model.

In this bistable model, first we assume a simple case that a single dipole with charge

e+−e− may be in one or other of two states, 1 and 2 in absence of electric field. Those states

are defined as minima of the potential energy, and the ∆ is a potential hill in the middle of

those states, as shown in figure 6.1 (A). Then dipole moment µ has two equilibrium states

with opposite dipole direction, but with equal energy for states 1 and 2 in the absence of a

field. In this model, it is very easily to see that state 2 is equivalent to a 180 degree turn of

an angle of a dipole moment that is occupied by state 1.

When this microscopic system is applied by the external electric field E, the potential

energy is shown in Figure 6.1 (B). The states 1 and 2 will be modified by this external

electric field E. Hence, in the state 1, the potential energy will be shifted down −µE over

the state 1 in Figure 6.1 (A). The minus sign holds if well 2 is higher than well 1, as shown

in the figure where the electric field points towards the up. Similarly, the potential energy

of state 2 will be shifted up µE compared with the original state in Figure 6.1 (A) (without

electric field).

Hence, in Figure 6.1 (B), the potential energy difference for states 1 and 2 will be:

φ1 − φ2 = µE − (−µE) = 2µE. (6.1)

One of assumptions in Debye theory is: there is an assembly of non-interacting ideal

dipoles system. Here we assume a number N of bistable dipoles/unit volume representing

a very small density, so that the field due to dipolar interaction can be neglected. We also

assume the equal potential energy for the state 1 and 2 in the absence of an electric field.

As we know, the dipole moment states 1 and 2 will not change on macroscopic scale

because they do not have the energy to overcome the “potential hill” called energy barrier

∆ between those states.

However, in a microscopic system, we can imagine that there are spontaneously active N
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Figure 6.1: The Bistable Model. (A) In absence of an electric field, the potential energy,
both in state 1 and 2 is shown in “potential well” two minima. (B) The potential energy
is modified by an applied field E, the left-hand well is denoted by state 1, the right-hand
well by state 2 (for example, the non-polarizable rigid dipoles). The two wells contain the
dipole that may occupy either well.
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bistable dipoles that exchange energy with each other dipole in a heat reservoir. Hence the

directions of the dipoles fluctuate. For instance, the dipole in well 1 occasionally acquires

an energy sufficient to lift it over the energy barrier ∆, and the dipole drops into the well

2 associated with it. On arrival in state 2, the energy of the dipole is returned to the heat

reservoir, and the dipole stays in 2 until such time as it acquires enough energy from the

reservoir to return over the energy barrier to state 1. In the case of absence of electric field

(see Figure 6.1 (A)), the probability of finding it in either state 1 or 2 is the same.

According to statistical mechanics, the probability/unit time of those dipoles with energy

−µE (state 1) that jump over this double potential hill to arrive state 2 is given:

W1→2 = Ae
−∆+µE

KBT (6.2)

where A a factor that may or may not depend on the temperature, KB is the Boltzmann

constant, and T is the absolute temperature. The potential barrier ∆ is usually described

as an activation energy.

Similarly, the probability/unit time of jumps in the opposite direction, from 2 to 1, in

the sketched case, is given by

W2→1 = Ae
−∆−µE

KBT (6.3)

When this microscopic system is kept in a thermodynamics equilibrium state, the pop-

ulation of N bistable dipoles in states 1 and 2 will not change with time if transportation

only happens between states 1 and 2. then,

N1W1→2 = N2W2→1 (6.4)

where N1 is the number of occupied state 1, and N2 is that of occupied state 2. The

bistable dipole must be in one of the two states, and the total number of dipoles in occupied

states/unit volume will no change, in order to agree with the physical condition. Hence,

the total number of bistable dipoles is constant.
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N1 + N2 = N. (6.5)

The following are the time-dependent properties of this model. The change of state 1

with time should be equal to the sum of the number of dipoles that inflow from state 2 and

outflow from 1. Thus

dN1

dt
= −N1W1→2 + N2W2→1. (6.6)

While the constancy of N1 + N2 ( equation 6.5 ) gives:

dN2

dt
= −N1

dt
. (6.7)

hence,

d(N1 −N2)
dt

= 2
dN1

dt
. (6.8)

Putting equation 6.2 and 6.3 into equation 6.6, then

dN1

dt
= −N1Ae

−∆+µE
KBT + N2Ae

−∆−µE
KBT . (6.9)

Thus the equation 6.8 can be written as:

d(N1 −N2)
2dt

= −N1Ae
−∆+µE

KBT + N2Ae
−∆−µE

KBT , (6.10)

1

(2Ae
− ∆

KBT )

d(N1 −N2)
dt

= −N1e
−µE
KBT + N2e

µE
KBT . (6.11)

In most cases it is permissible to assume

µE

KBT
¿ 1. (6.12)

Developing equation 6.11 in terms of µE/kBT , the average induced moment in the field

direction is found to be
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1

(2Ae
− ∆

KBT )

d(N1 −N2)
dt

= −N1(1− µE

KBT
) + N2(1 +

µE

KBT
) (6.13)

= −(N1 −N2) + (N1 + N2)
µE

KBT
.

(6.14)

This is a differential equation for the argument N1−N2. In general, the polarization/unit

volume is given by that number of dipoles in one direction that are not compensated by

dipoles in the opposite direction, namely:

P = (N1 −N2)µ. (6.15)

According to equations 6.15 and 6.14, for the polarization P(t) form, the equation 6.14

is written:

τ
dP (t)

dt
+ P (t) =

Nµ2E

KBT
, (6.16)

where the relaxation time τ is expressed as:

τ =
1

2A
e
− ∆

KBT , (6.17)

here we set,

εs − ε∞ =
Nµ2E

KBT
, (6.18)

where εs is the static dielectric constant (ωτ ¿ 1), and ε∞ is the high frequency dielectric

constant where relaxation does not occur (ωτ À 1).

Then equation 6.16 may be generalized and written as:

τ
dP (t)

dt
+ P (t) = (εs − ε∞)E(t). (6.19)

in a periodic electric field

E∗(t) = E0 · eiωt, (6.20)
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Since the dielectric may have been polarized as a consequence of its previous history, we

have to take into account the initial polarization at t = 0. The general solution of equation

6.19 can be expressed in term of a complex quantity P ∗(t) for the dipolar polarization:

P ∗(t) = Pie
− t

τ +
εs − ε∞
1 + iωτ

· E0e
iωt, (6.21)

where Pi is the initial polarization. It can be seen that the first term in right side of

equation 6.21 decays with time, and it can be neglected in comparison with the second

term for alternating current measurements. When the first term is neglected, the dielectric

constant may be defined as

ε∗(ω)− ε∞ =
P ∗(ω, t)
E∗(ω, t)

, (6.22)

where asterisks denote complex quantities. Inspection of equation 6.21 shows that for

Pi = 0,

ε∗(ω, τ) = ε∞ +
εs − ε∞
1 + iωτ

(6.23)

here ε∗ may be separated into its real and imaginary parts, since

ε∗(ω, τ) = ε′(ω, τ)− iε′′(ω, τ). (6.24)

so the real and imaginary parts of the permittivity are:

ε′(ω, τ) = ε∞ +
(εs − ε∞)
1 + ω2τ2

(6.25)

and

ε′′(ω, τ) =
(εs − ε∞)ωτ

1 + ω2τ2
. (6.26)

the equations 6.25 and 6.26 are usually called Debye equations because they were derived by

Debye on a molecular basis [104]. The dielectric response of non-interacting dipoles should

follow this classical frequency response.

58



6.2.2 The Non-Debye Dielectric Relaxation with Many Relaxation Times

In the pervious subsection, the Debye relaxation (with a single relaxation time) is eas-

ily understood. However, the pure Debye relaxation is hardly ever found in nature and

deviations from it may be relatively slight. Usually the measured dielectric functions are

much broader than predicted by the Debye function. Moreover, in many cases the dielec-

tric function is asymmetric. That means the short time (high frequency) behavior is more

pronounced than the long time (low frequency) one. This is called non-Debye, or sometime

non-ideal, dielectric relaxation behavior.

One can consider intuitively the Debye relaxation as a basic relaxations, the complicated

and varied relaxation can be described naturally by many Debye relaxation behaviors. For-

mally the non-Debye relaxation behavior can be expressed in every case by a superposition

of Debye-functions with different relaxation times. It should be pointed out that a formal

separation of non-Debye relaxation behavior into different Debye relaxation processes does

not justify a dipole interpretation according to independent Debye-like relaxation processes

(see equation 6.23).

For this purpose, one can expect a distribution function for the relaxation time. K.S.

Cole and R.H.Cole [106] gave the first empirical expressions for ε∗(ω) in 1941. They eval-

uated their experimental data by a graphical display which plot ε′′(ω) against ε′(ω) in

complex plane. This kind diagram is often called as Cole-Cole plot. The cole-cole plot

provides an excellent method to determine whether a system has a single relaxation time.

This method is also very useful to characterize what the types of distribution function are.

A simple evaluation from the Debye equations 6.25 and 6.26, represents the Debye

relaxation with a single relaxation time. Hence the Cole-Cole plot of the imaginary part of

the complex relative permittivity against the real part is a semicircle. This is

(
ε′(ω)− εs + ε∞

2

)2

+ ε′′(ω)2 =

(
εs − ε∞

2

)2

. (6.27)

In many cases the Cole-Cole plot curve falls inside the Debye semicircle. K.S. Cole

and R.H. Cole [106] suggested that in this case the permittivity might follow the empirical
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equation

ε∗(ω, τ) = ε∞ +
εs − ε∞

1 + (iωτ)(1−α)
, (6.28)

where α is a constant, 0 ≤ α < 1. In the limit α = 0, of course, the Cole-Cole curve reduces

to the Debye semicircle which is relaxation with only a single relaxation time. This type of

Cole-Cole plot is symmetrical about a line through the center, parallel to the ε′′ axis.

However, Cole and Davidson [107] found another type equation where the experimental

results for certain materials, for example glycerol, do not have this symmetry, the Cole-Cole

plot may be a skewed arc. They suggested that behavior of this kind asymmetry could be

represented by the equation

ε∗(ω, τ) = ε∞ +
εs − ε∞

(1 + iωτ)β
(6.29)

where β is again a constant, 0 < β ≤ 1. This equation seems to be very successful in

representing the behaviour of substance at low temperatures. When β → 1, the arc tends

to a Debye semicircle again.

The third type relaxation function is the Negami-Havriliak (NH) equation [108], which

has been widely used to describe the relaxation behavior of glass-forming liquids and com-

plex systems.

ε∗(ω, τ) = ε∞ +
εs − ε∞(

1 + (iωτ)α

)β
(6.30)

here α and β are constants, in the range of 0 ≤ β ≤ 1. It is easily seen that this equation

is both a generalization of the Cole-Cole equation, to which it reduces for β = 1, and a

generalization of the Cole-Davidson equation, to which it reduces for α = 1.

All those empirical equations can be very successful in explaining the experimental re-

sults of dielectric behaviors in frequency domain. Actually the dielectric relaxation behavior

can be also understood by the natural time domain. The most widely accepted interpreta-

tion invoked the concept of distribution of relaxation times (DRT) (see Appendix C), that

modified the Debye expression equation 6.9 by introducing integration over the distribution
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function F (lnτ) of loss peak frequencies. Let F (τ)d(lnτ) be the fraction of the orientation

polarization processes that have relaxation times between τ and τ + dτ . Then the complex

permittivity is written as:

ε∗(ω, τ) = ε∞ + (εs − ε∞)
∫ ∞

0

F (τ)d(lnτ)
1 + iωτ

. (6.31)

separating real and imaginary parts:

ε′(ω, τ) = ε∞ + (εs − ε∞)
∫ ∞

0

F (τ)d(lnτ)
1 + ω2τ2

(6.32)

ε′′(ω, τ) = (εs − ε∞)
∫ ∞

0

ωτF (τ)d(lnτ)
1 + ω2τ2

(6.33)

And here we define

∫ ∞

0
F (τ)d(lnτ) = 1 (6.34)

Thus, in relaxation time domain, the Cole-Cole and Cole-Davidson types can be de-

scribed as arising from the existence of a continuous spread of relaxation times, each of

which alone would give rise to a Debye type of behavior. The F (lnτ) can be obtained

by doing the Laplace transform in the Cole-Cole and Cole-Davidson distribution functions

6.28 and 6.29 that are in frequency domain. Then the Cole-Cole function corresponds to a

logarithmic relaxation time distribution function (see Appendix C).

In time domain, the expression for the pulse-response function cannot be obtained di-

rectly using the inverse Laplace transform to the Cole-Cole equation. Instead, the pulse-

response function can be obtained indirectly by developing equation 6.28 in series. Taking

the Laplace transform to the series one can obtain:

F (τ) =
1
2π

sinαπ

cosh[(1− α)( τ
τ0

)]− cosαπ
. (6.35)

From the Cole-Davidson equation, the pulse-response function can be obtained directly

by taking the inverse Laplace transform equation 6.29: and the Cole-Davidson distribution

function that corresponds to it is given by

61



F (τ) =
sinβπ

π

(
τ

τ0 − τ

)β

. (6.36)

In many cases the non-Debye relaxation behavior in the time domain is described em-

pirically by the Kohlrausch-Williams-Watts (KWW) relaxation function. This function was

introduced in 1863 to describe mechanical creep in glassy fibers [109] and later was used by

Williams and Watts [110] in 1970 to describe dielectric relaxation in polymers. Though the

KWW and NH relaxation functions are not exactly the Laplace transform in each other.

They have a natural relationship that is proven by Alvarez’s analytical paper [111].

The KWW relaxation function is:

F (τ) = exp

[
− ( t

τKWW

)βKWW

]
(6.37)

the stretching parameter βKWW (0 < βKWW ≤ 1) leads to an asymmetric broadening of

F (τ) at short times (high frequencies) compared with the exponential decay (βKWW = 1).

τKWW is the related relaxation time.

In the experimental cases, the F (τ) was extracted from the observed values of ε∗(ω) that

used to be described by the Debye (D), Davidson-Cole (DC), Kohlrausch-Williams-Watts

(KWW), and the Cole-Cole (CC) empirical relaxation functions.

The relaxation time distribution functions are shown in Figure 6.2, where τD, τCC ,

τKWW and τDC are the most probable relaxation times for the corresponding laws. From

the Figure 6.2, we can see that F (τ) is the an symmetrical distribution for Cole-Cole(CC)

relaxation function, and the distribution function is asymmetrical form for the Davidson-

Cole (DC) and Kohlrausch-Williams-Watts (KWW) relaxation function. But the F (τ) for

Debye function is usually only one relaxation time.

In relaxor ferroelectrics, dielectric constants show strong dispersion of dynamic dielectric

response, Because of this dynamic characteristics (frequency dependence of dielectric per-

mittivity ε∗(ω), polarization etc.) are caused by the very broad relaxation time distribution

function F (τ).

However, the F (τ) (DRT) interpretation has the difficulty that there were no indepen-

dent ways of confirming the form of F (τ) required to give the desired to experimental data.
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Figure 6.2: Relaxation time distributions for Debye (D), Cole-Cole(CC), Davidson-Cole
(DC) and Kohlrausch-Williams-Watts (KWW)laws. From reference [112].

Moreover, the DRT approach fails to address the evident existence of universal fractional

power law behavior that represents very well the high-frequency dipolar behavior.

There are some other theories proposed as an explanation for the non-Debye behavior of

dynamic dielectric response in relaxor ferroelectrics, such as non-interacting polar regions

in the superparaelectric model [113], dipolar glass state [114], micro domain state due to

quenched random electric fields [115], random field theory based model [116], and Jonscher’s

many-body model [117]. However, all those interpretations seem to be plausible enough in

different group materials.

The task of dielectric theory is so difficult because permanent dipoles cannot always
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be identified, but mainly because they mutually influence one another; A dipole is not

only subject to the influence of a field but also has a field of its own. Therefore, that

it is essential to look for a more fundamentally satisfying interpretation of the relaxation

behavior. Additional experimental and theoretical investigations are extremely desirable.

6.3 The Relaxation Time-Temperature Dependence Theo-
ries

The dielectric relaxation time τ refers in the last resort to the regression time of fluc-

tuations of the polarization, and it is normally dependent on temperature. The common

relationship for a single relaxation time τ is given by equation 6.17, and is called the Ar-

rhenius Law. At the beginning, the Arrhenius Law is used to calculate the rate constant

of a chemical reaction. Later, it is used in dielectric relaxation, and is the theory of rate

process with temperature dependence.

τ = τ0 · e−
∆

KBT . (6.38)

Another type of relaxation time with temperature dependence is added by the pre-

exponential factor compared with Arrhenius Law. In this form, we can draw conclusions

regarding activation energies and pre-exponential factors from the shift with temperature

of wide relaxation peaks. The expression is

τ =
τ0

T
e
− ∆

KBT . (6.39)

this equation is an appropriate approximation, τ0 and ∆ being constants, and is used

successfully in many cases, particularly polymer.

In relaxor ferroelectrics, a large number of studies of dynamic properties have revealed

a common feature of their behavior, namely a specific slowing down of the relaxation pro-

cesses, which may be considered as a sum of those of relaxor ferroelectrics having an expo-

nentially wide and smooth spectrum of the relaxation times. Such behavior is known to be

an important characteristic for all disordered systems, i.e. relaxation processes.
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It is commonly attributed to an evolution of the exponentially wide spectrum of the

relaxation time τ rapidly increasing up to the macroscopic times scale, when the temperature

decreases towards some characteristic temperature T0, i.e., it is attibuted to singular, or at

least very fast, broadening of the spectrum at T → T0.

τ = τ0 · e−
∆

KB(T−T0) . (6.40)

this equation is called as the Vogel-Fulcher (VF) Law [118]. Under certain conditions,

the equation corresponds to the Vogel-Fulcher (T0 6= 0) and Arrhenius (T0 = 0) Laws for

relaxation time-temperature dependence. In general, the VF Law of relaxation behavior

was observed experimentally in all relaxors, and it is really the most important feature of

a relaxor.
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CHAPTER VII

DEVICE FABRICATION AND MEASUREMENTS

7.1 Materials Synthesis Methods

The progress in nanotechnology has led to a variety of novel techniques for fabrication

of nanoparticles. Nowadays, there is a focus on large scale production of nanoparticles

made from ferroelectric materials. There are several companies that produce nanoparticles

using ball laser ablation, vapor condensation, sputtering, chemical precipitation, sol-gel

processing, combustion synthesis, and plasma synthesis.

The early standard synthesis of ferroelectric nanoparticles included sol-gel techniques

[119] and solution synthesis of mono-disperse BaTiO3 nanoparticles [120]. Single crystal

nanorods composed of BaTiO3 and SrT iO3 have also been synthesized by solution chem-

istry [121]. In particular, nonvolatile electric polarization can be reproducibly induced and

manipulated on nanowires as small as 10 nm in diameter. Lead zirconate titanate (PZT)

nanoparticles have also been synthesized by laser ablation [122]. Amorphous PZT nanopar-

ticles began to crystallize above 600 ◦C, and they became a perovskite (ferroelectric) struc-

ture at 900 ◦C. Single crystal BaTiO3 and SrT iO3 nanostructures have been synthesized

also by annealing of powdered chemical components at 820 ◦C [123]. Additionally, meso-

porous PZT powders with nanoparticles of diameter 50 nm-60 nm have been created from

the aqueous solution of Pb2+, Zr4+, and Ti4+ cations [124]. Similarly, the loosely connected

submicron sized perovskite oxide particles have been synthesized by metathesis, at consider-

ably lower temperatures than those for their synthesis by ceramic methods [125]. Recently,

monodisperse PZT perovskite nanoparticles with diameters of 9 nm were produced by laser

ablation followed by a gas-phase annealing at 900 ◦C [126].

More recently Liu, et al., [127, 128] have invented a generic approach for the synthesis

of single-crystal complex oxide nanostructures of perovskites. The method is based on a

reaction between a metallic salt and a metallic oxide in a solution of composite hydroxide
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eutectic at 200 ◦C and 1 atm without using an organic dispersant or capping agent. The

advantage of this one-step synthesis technique is cost-effective, easy to control, and can be

conducted at low temperature and normal atmospheric pressure.

In this thesis, we selected BaTiO3 (BTA) and Ba0.77Sr0.23TiO3 (BST) manufactured

by nGimat Co., a nanotech company in Atlanta. Those BTA and BST nanoparticles were

created by combustion chemical vapor condensation (CCVD) technique, which works by de-

composing metalorganic precursors in nanospray diffusion flames [129]. The key advantage

of this technique is that the particles do not require any further thermal treatment to make

them ferroelectric. Another advantage of CCVD nanopowders is that the nanoparticles are

of high purity and have controlled properties (crystallinity, size, morphology).

The X-ray diffraction (XRD) of BST nanopowders are shown in Figure 7.2. The average

nanoparticle size is 30 nm, the size range where we expect strong size effects on ferroelec-

tricity. The nanoparticle shape is close to spherical. The nanoparticles are connected by

the weak van der Waals forces and they can be separated by sonication in solvents. TEM

demonstrates that the particles are crystalline. XRD-crystallite size is ∼ 10 nm.

7.2 BST Nanoparticles Character Measurements

The BST (Ba0.77Sr0.23TiO3) and BTA nanoparticles were manufactured by nGimat

Company (http://www.microcoating.com/nanotech/advantages.html). Figure 7.1 shows

the images of these BST nanoparticles, where Figure 7.1 (A) is the image of Transmis-

sion Electron Microscopy (TEM), and the Figure 7.1 (B) obtained by the field emission

scanning electron microscopy (SEM). Most particles are spherical and the diameter varies

from 5 nm to 100 nm. Most particles are not single crystal, and the crystallite size varies

in a similar diameter range.

The X-ray diffraction (XRD) pattern of the BST powder is shown in Figure 7.2 (A).

All the peaks in the XRD pattern are attributed to the BST perovskite cube; the average

crystallite size of the particles is 32 nm, which is estimated from the broadening of the (111)

plane diffraction peak using the Scherrer equation.

In the perovskite structure, (Ba or Sr)-cations (represented by A in Figure 7.2 (B)) and
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Figure 7.1: (A) The TEM image of BST nanoparticles; (B) the SEM image of BST nanopar-
ticles. The BST nanoparticles have different sizes, and most particles are spherical and the
diameter varies from 5 nm to 100 nm.
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oxygen-anyons (represented by O in Figure 7.2 (B)) are cubic close packed, with the smaller

Ti-cations (represented by B in Figure 7.2 (B)) occupying the octahedral holes between the

oxygen-anions. Ti-cations can be displaced slightly, because they are too small for close

packing with the oxygens. Since Ti-cations carry electrical charges, such displacements can

result in a net electric dipole moment. The material is a ferroelectric, by analogy with a

ferromagnet that contains magnetic dipoles.

The BST nanoparticles diameters distribution is in the range of 5 − 100 nm. We can

consider that the (BaO or SrO) (+) and TiO2 (-) dipole moment in a single unit cell.

We will see that the structures for our BST nanoparticles are very complicated in high

resolution TEM images, and those particles have different crystallitic structure even though

they have same diameter sizes. The Ti-cations can be easily displaced slightly from normal

position due to the internal and external electric field. Hence, it is very hard to estimate

the polarization of individual particle with the certain size.

At high temperature, Ti-cations can jiggle around in the larger holes between oxygens,

maintaining cubic symmetry. The static displacement occurs when the structure is cooled

below a certain transition temperature, known as the Curie temperature (TC). The dis-

placement along the z-axis results in tetragonal symmetry. Below the Curie temperature,

the electric polarization can point in two opposite directions, as sketched in Figure 7.2 (B).

This size is similar to the average size of the BST particles observed from SEM and

Transmission Electron Microscopy (TEM), Figure 7.1. Figure 7.3 shows a high-resolution

TEM image of BST particles, and demonstrates that some BST particles are crystalline (as

shown in Figure 7.3 (A)), some are multi-crystalline (as shown in Figure 7.3 (B)).

7.3 Device Fabrication

Our samples are capacitors containing a dense array of nanoparticles in the insulation

layer between the capacitor plates, sketched in Figure 7.4. The capacitors are fabricated in

two evaporation steps. First, an aluminum film with a basal area of 2×20 mm2 is thermally

evaporated on a SiO2 substrate through a mask at 4× 10−7 Torr pressure, and the Al film

is then exposed to air. The nanoparticles are sonicated in methanol, which makes them well
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Figure 7.2: (A) The XRD pattern of BST nanoparticles: All the peaks in the XRD pattern
are attributed to the BST perovskite cube; the average crystallite size of the particles is 32
nm, which is estimated from the broadening of the (111) plane diffraction peak using the
Scherrer equation. (B) The typical perovskite cube structure: (Ba or Sr)-cations (repre-
sented by A) and oxygen-anyons (represented by O in the sites of face centers) are cubic
close packed, with the smaller Ti-cations (represented by B) occupying the octahedral holes
between the oxygen-anions.
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Figure 7.3: The high-resolution TEM images of BST nanoparticles. (A) These high-
resolution TEM images show that these BST particles are single crystalline, with diameter
size around 35 nm. (B) These high-resolution TEM images show that these BST particles
are multi-crystalline, with diameter size around 35 nm.
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Figure 7.4: The sectional structure of the capacitor embedded with BST nanoparticles:
the bottom layer is an aluminum film with a basal area of 2 × 20 mm2 is thermally evap-
orated on a SiO2 substrate. Next, an uniform 5 µm thick BST nanoparticles film are
deposited. After that, the BST nanoparticles are spin-coated by a 400 nm thick layer of
polimethylmetacrylate (PMMA). Finally, the top film is covered with a copper layer.

dispersed. Several drops of this methanol mixture are placed evenly over the Al film and

then dried. This process creates a uniform deposit with thickness in the range of ∼ 100 nm

- 5 µm, depending on the nanoparticle density in methanol. In our case, 5 µm thick BST

nanoparticles are deposited, and the thickness is measured by observing the cross-section

with an optical microscope.

In the next step, the nanoparticles are spin-coated by a 400 nm thick layer of polimethyl-

metacrylate (PMMA) and baked at 150 ◦C to dry the PMMA. Finally, the nanoparticle

film is covered with the top copper layer by thermal evaporation. All those arrangements

are essential to measure the sample temperature in the immediate sample neighborhood

and to keep the sample temperature as constant as possible.
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Figure 7.5: The measurement set-up of Sawyer-Tower Circuit.

7.4 Measurement Methods and Procedures

The complex dielectric function ε∗ = ε′−iε′′ can be measured in the very broad frequency

regime from 10−6 Hz up to 1012 Hz. To span this dynamic range, different measurement

systems based on different measurement principles have to be combined. Fourier correlation

analyzers (10−6 Hz to 107 Hz), impedance analyzer (10 Hz to 106 Hz), network analyzers

(107 Hz to 1010 Hz), quasi-optical interferometers (1010 Hz to 1012 Hz), and fourier spec-

trometers (1011 Hz to IR).

Our typical samples have a capacitance of 3.5 pF. The sample geometry is a parallel

plate capacitor arrangement. For the techniques discussed so far, a sample cell that is

connected by BNC cables to the impedance plugs of the measurement system. Due to the

parasitic inductance of the BNC lines and connectors the high frequency limit is reached

at about 1 MHz (coaxial line reflectometry has to be employed at frequencies from 1 MHz
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to 10 GHz). Where very low frequency range end, very small currents down to fA have

to be measured. In this region, the measurement may be obscured by noise pick up and

piezoeletric charges in the cables due to mechanical stress. Therefore a sophisticated cell

and cable optimized design is required for both higher frequency (above 1MHz) and Lower

frequency (low 0.1 Hz) performance.

Our measurements are performed in the temperature range (4.2K, 340K) using a liquid

helium cryostat. Both complex capacitances and electrical hysteresis are measured by the

Sawyer-Tower circuit [130], which is sketched in Figure 7.5. In the Sawyer-Tower circuit,

the sample capacitor is in series with a reference capacitor (1 µ F) that is much larger than

the specimen capacitor. It should be noted that the hysteresis loop can also be exhibited on

the oscilloscope. The circuit is driven by a 0.1V RMS sinusoidal signal, provided by signal

generator at frequencies (10, 102, 103, 104, 105)Hz. The dielectric properties are commonly

expressed as complex plane plots of permittivity, ε∗ = ε′ − iε′′, and the equivalent complex

capacitance given by C∗ = C ′ − iC ′′ (the details are described in B). Using our sample

dimensions, we can covert between ε∗ and C∗ as ε∗ = (1.41× 1010F−1) · C∗ (see Appendix

B, equation B.2).
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CHAPTER VIII

EXPERIMENTAL RESULTS AND ANALYSIS

8.1 The Temperature Dependence of the Complex Permit-
tivity

The capacitance (C ′ and C ′′) versus temperature (T) in a typical sample is shown in

Figure 8.1. The data is obtained with an AC field corresponding to 0.1 Volt RMS and

frequency 103 Hz. In Figure 8.1 (A) and (B), the thick and the thin line corresponds to

increasing and decreasing temperatures, respectively. When the temperature increases from

4.2 K, initially both C ′ and C ′′ are constant and small. They are comparable to the stray

capacitance of the leads. However, when temperature reaches approximately 20 K, there

is a significant and rapid increase in C ′ accompanied by a sharp peak in C ′′. Later in

the text we will show that the C ′-increase and C ′′-peak are frequency dependent. When

the temperature is larger than about 30 K, both C ′ and C ′′ are constant again, until the

temperature becomes close to 200 K. When the temperature increases above 200 K, both

C ′ and C ′′ increase quickly and display a broad peak centered around 270 K. In addition,

there are a few smaller peaks between 210 K and 340 K.

When the temperature decreases from 340 K to 4.2 K, C ′ and C ′′ exhibit hysteresis. The

broad peak centered around 270 K has reduced amplitude upon reducing the temperature.

However, at around 200 K, C ′ and C ′′ saturate and there is no more hysteresis below 200 K.

That is, when the temperature is below 200 K, C ′ and C ′′ versus T is a single valued function

of temperature. Only the temperature range above 210 K is characterized by hysteresis.

The broad maximum in permittivity versus temperature above 210 K is a behavior typical

for relaxor ferroelectrics [113]. In this thesis we focus on the low temperature properties of

the nanoparticles (T < 200K), where C ′ and C ′′ are single valued functions of temperature.

To determine the electric polarization versus applied electric field, we drive the capacitor

by a triangle wave form with amplitude 3 V and frequency 103 Hz. We use the Sawyer-Tower
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Figure 8.1: (A) Temperature dependence of C ′ and (B) C ′′ measured at 103Hz. The BST
capacitor is driven by a triangle wave form with amplitude 3 V and frequency 103 Hz. The
thick and the thin lines correspond to increasing and decreasing temperatures, respectively.
The data was obtained by measuring the Sawyer-Tower circuit.
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circuit (Figure 7.5). Figure 8.5 displays the resulting polarization versus applied voltage.

At temperatures close to the peak in C ′′ near 20 K and in the temperature range above

210 K, hysteresis is observed. Pr is the effective remanent polarization, Ec is the effective

coercive field, and Ps is the effective spontaneous polarization. Pr , Ec , and Ps are not

necessarily the same as the remanent polarization, the coercive field, and the saturation

polarization, respectively, because the hysteresis loop could originate from the time delay

in the electric response. In particular, if the electric relaxation time is comparable to the

period of the triangle wave, the hysteresis will occur because of the time delayed electric

response of the sample.

8.2 The Different Frequencies Measurements at Low Tem-
perature

In the same way, the experimental data was obtained by measuring the Sawyer-Tower

circuit, where is driven by a sinusoidal eletrical field which the aplitudate is 0.1 Volt RMS

and kept same frequency when we change the sample’s temperature. The results of our

measurements of the complex capacitance C ′ and C ′′ versus temperaure (T) are shown in

Figure 8.2 (A) and (B). All data are measured at frequencies (10, 102, 103, 104, 105) Hz and

at a temperature range of 4.2 K- 65 K.

On the assumption there is a Debye relaxation, a simple evaluation of equation 6.26

shows that the ε′′ have maximum value when ωτ = 1, then

ε′ =
εs + ε∞

2
(8.1)

ε′′max =

(
εs − ε∞

2

)
(8.2)

The positions of maxima correspond to the condition ωτ(T = Tm) = 1 in Figure 8.2

(B). Namely, the C ′′ has a maximum when ωτ = 1. The relaxation time is equal to τ = 1/ω

where the ω is the drive frequencies we setup. In this way, we can find out the temperature

Tm corresponding to C ′′ has a maximum in Figure 8.2 (B) with different frequencies.
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Figure 8.2: Temperature dependence at different frequencies of (A) the real parts C ′ and
(B) the imaginary parts C ′′. All data are measured at frequencies (10, 102, 103, 104, 105)
Hz and at a temperature range of 4.2K − 65K. The data was obtained by measuring the
Sawyer-Tower circuit.
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Figure 8.3: The − ln(τ) vs. 1/Tm curve for BST (solid circles, the experiment data; thin
line, the Arrhenius fits).

The peak shift to lower temperatures with decreasing frequency demonstrates that τ

increases as T decreases, as expected from the Arrhenius law for the relaxation time:

τ = τ0 exp(
∆

KBT
), (8.3)

where τ0 is the inverse of the attempt frequency, τ0 = 1/f0, and ∆ is the activation energy

to orient the dipoles. An attempt was made to fit the data to the equation (converted from

8.3)

− ln τ = (
∆

KB
)(

1
Tm

)− ln τ0. (8.4)

In Figure 8.3, the data shows a linear curve fit. This result indicates that the Arrhenius

Law (the relationship between relaxation time and temperature) is in quantitative agree-

ment with our measurements. Because the Vogel-Fuchler Law 6.40 and equation 6.39 are

expected to a nonlinear curve fit in Figure 8.3. The result of a linear curve fitting the data

is: the slope is corresponding the activation energy, and the intercept is corresponding the

attempt frequency. Finally, the activation energy and the attempt frequency are ∆ = 37.8

meV and f0 = 1.4 THz, respectively.
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The above analysis shows that the relationship of relaxation time and temperature follow

the Arrenhius Law instead of Vogel-Fuchler Law (Normally it is a feature of relaxor). Next,

we fitted our experimental data, which are indicated by markers in Figure 8.2. Whereas,

the thin line is the curve fit based on equations 6.25 and 6.26. The relaxation time τ is

based on the Arrhenius law (equation 8.4), and the activation energy and the characteristic

relaxation time τ0 are set as free variable parameters in these fits. The following table is

the result of the best fit value for the activation energy and the characteristic relaxation

time.

Table 8.1: The single relaxation fitted by the Debye model and Anhenius Law

ε∗ parameters 10Hz 102Hz 103Hz 104Hz 105Hz

Real part ∆
KB

327.26 K 342.95 K 448.31 K 420.12 K 449.78 K
ε′ ln v0 19.68 20.39 23.40 21.94 21.71

εs − ε∞ 2.511 nF 2.497 nF 2.462 nF 2.503 nF 2.464 nF
Image part ∆

KB
351.33 K 355.53 K 445.50 K 446.74 K 441.67 K

ε” ln v0 23.06 24.28 27.68 28.54 28.08
εs − ε∞ 2.416 nF 2.353 nF 2.352 nF 2.411 nF 2.368 nF

Compared with the results fitted in Figure 8.3, the fitting parameters’ fluctuations in

Table 8.1 are large. Because our temperature dependence measurements are done on a fly

and the sample is not in perfect thermal equilibrium with the thermometer, which is placed

several centimeters away from the sample. We repeated the measurements of capacitance

versus temperature, and found that the curves in Figure 8.3 can shift by approximately 2

K between different cool-downs. So the thermometer temperature is slightly different from

the sample temperature when measuring on a fly. Nevertheless, the excellent fits of the

curve shapes provide an adequate evidence for a single electric relaxation time scale in the

sample.

8.3 Cole-Cole Plots with A Single Relaxation Time

As we mentioned in chapter 6, the Cole-Cole plot provides an elegant method of find

whether a system has a single relaxation time. This plot also is used widely to find out the

type of distribution function.
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(markers) at the different frequencies (10, 102, 103, 104, 105) Hz in temperature range of
4.2− 65K and the curve fit (solid line) from equation 6.27.

Here in Figure 8.4, we present our experimental data’s Cole-Cole plot that displays out

of phase capacitance versus in phase capacitance. All the experimental data are frequency

independent and locate around a semicircle, as expected from equation 6.27. This means

our experimental data is shown as dielectric relaxation with only a single relaxation time.

It is important to note that in the Cole-Cole plot, the data fall on a semicircle even if the

sample temperature is slightly different from the thermometer temperature. We measured

the real capacitance and imaginary capacitance at same time.

Thus, Figure 8.4 proves that only one relaxation time is present, in contrast to two [131]

or multi relaxation time cases [132]. The data are fitted as shown by the solid black line

based on equation 8.4. The fitting results are Cs = 2.79nF , C∞ = 0.37nF .

8.4 The Polarization Versus Electric field Hysteresis Loops
and Analysis

Hysteresis loops for the BST nanoparticles were measured in Sawyer-Tower circuit. To

determine the electric polarization versus applied electric field, we drive the capacitor by

a triangle wave form with amplitude 3 V and frequency 103 Hz. Each hysteresis loop
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represents an average after 2000 runs, which were obtained over 2 second periods. At the

same time, We read the temperature from the thermal meter located nearby the samples.

The Figure 8.5 displays the resulting polarization versus applied voltage. At tempera-

tures close to the peak in C ′′ (for 1 KHz drive frequency, the temperature Tm is nearly 20

K) and in the temperature range above 210 K, hysteresis loops are obviously observed.

The Pr is the effective remanent polarization, Ec is the effective coercive field, and Ps

is the effective spontaneous polarization. Pr , Ec , and Ps are not necessarily the same as

the remanent polarization, the coercive field, and the saturation polarization, respectively,

because the hysteresis loop could originate from the time delay in the electric response. In

particular, if the electric relaxation time is comparable to the period of the triangle wave,

the hysteresis will occur because of the time delayed electric response of the sample.

To analyze this result, we presented a new model. First, we assumed that the system

has only a single relaxation time τ . When a dielectric is placed between charged plates, the

polarization of the medium produces an electric field opposing the field of the charges on

the plate. Then we can also obtain the time variation of the dipole moment P (t) for the

permittivity in an alternating field E = Vapplied(t)/D, where D is the distance between the

plates and V the potential difference between them.

From equation 6.18, we obtain the following linear differential equation:

τ
dP (t)

dt
+ P (t) = P0 · Vapplied(t)/Vmax, (8.5)

where P0=(εs − ε∞) · Vmax/D is the equilibrium dipole moment at voltage Vmax, and V (t)

is a triangle voltage wave with period T = 2π/ω and amplitude Vmax. We take the Fourier

Transform to both sides of equation 8.5, then obtain the P (t):

P (t) =
∞∑

n=1

8P0 · (−1)n−1

π2 · (2n− 1)2
[
1 + (2n− 1)2 · ω2τ2

]

·
[
sin

[
(2n− 1)ωt

]− (2n− 1)ωτ · cos
[
(2n− 1)ωt

]]

(8.6)
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V (t) =
∞∑

n=1

8Vmax · (−1)n−1

π2 · (2n− 1)2
sin[(2n− 1) · ωt] (8.7)

here ω is the driven angular frequency of the applied field V (t). When ωt = 0 and ωt = π/2,

we have:

P (0) =
∞∑

n=1

8P0(−1)n · ωτ

π2 · (2n− 1)
[
1 + (2n− 1)2ω2τ2

] (8.8)

P (
π

2ω
) =

∞∑

n=1

8P0

π2(2n− 1)2
[
1 + (2n− 1)2ω2τ2

] (8.9)

where P (0) and P (π/2ω) correspond to Pr and Ps shown in Figure 8.5, and we can obtain

the values of relaxation time τ and dipole moment P0 by solving equations 8.8 and 8.9.

Then we obtain a single relaxation time model hysteresis loop P (t) versus E(t) by using

equations 8.6 and 8.7.

At temperature below 200 K, we found the hysteresis loops are fitted very well by the

above model based on a single relaxation time. However, when the temperature is above

210 K, the experimental hysteresis shrinks compared with the curve fit that is calculated

within a single relaxation time approximation. Thus, a single Debye process is a good fit at

low temperatures, where the capacitance is single valued function of temperature, but not

above 200 K. The shrinkage of the data at 274 K compared with the single relaxation time

model can be explained by a partial saturation of the electric polarization of the ferroelectric

at large bias voltage.

The our BST nanoparticles are clearly ferroelectric because they displayed the hysteresis

loops. The remanent polarization Pr at zero field is pretty small on order of nC/cm2 in

Figure 8.5, whereas the ideal BST bulk spontaneous polarization is around 24.5 µC/cm2

(more than 20,000 times for the value of our BST particles). We also found that there is

almost no spontaneous polarization for BST nanoparticles at low temperature in Figure

8.5, and those small hysteresis loops occurred due to the single electric relaxation response.

We have repeated these measurements in about ten BST nanoparticle samples and

found that our results are quantitatively reproducible. We have also done measurements
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Figure 8.5: p versus (E = Vapplied/D) hysteresis loops of experimental data (solid squares)
at various temperatures and applied by a 103Hz triangle wave. p versus E hysteresis loops
(thin line) as calculated from equations (2) and (3) with single relaxation times.
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in BTA nanoparticle samples, and found similar results for the electric polarization at low

temperatures with comparable relaxation time to that in BST nanoparticles.
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CHAPTER IX

DISCUSSION

We had observed the unexpected relaxation behaviors by measuring the complex capac-

itance, which is equivalent to complex permittivity (ε∗), on the BST and BaTiO3 (BTA)

nanoparticles at frequencies between 10Hz and 105Hz, and in a temperature range of

4.2 − 340 K. We find a clear anomaly in both real and imaginary parts of permittivity at

low temperatures. This anomaly has a frequency and temperature dependence that can be

fitted by the Debye theory [104] with only one relaxation time (τ). The relaxation time

exhibits the Arrhenius Law. The activation energy is 37.83 meV and the attempt frequency

is 1.4 THz. A single relaxation time at low temperatures is observed in Ba0.77Sr0.23TiO3

nanoparticles at low temperatures.

At the low temperature (below 210 K), our experimental results are quite different

with the those behaviors of bulk and film BST that have similar compositions. Recently,

Bokov and Ye [82] had summarized the typical behaviors of relaxor ferroelectric in their

review paper. There are four important property peculiarities distinguished from normal

ferroelectrics crystals: First, they follow the Vogel-Fulcher law [118] instead of the Arrenius

law for relaxation time-temperature dependence; second, they have non-Debye type dynamic

dielectric response; third, they have non-ergodic behavior below the freezing temperature

T0 (i.e. properties depend on the cooling and heating regime); and fourth, they show a

distribution of different property maxima in a Curie region ∆T around Tm, this is maximum

of dielectric permittivity.

Zhang, et al., had done a series of similar studies [133, 134, 135] in large size grains,

including studies of bulk ceramic Ba0.7Sr0.3TiO3 (the composition is similar to our sample)

with different grain size (1860 nm, 1100 nm, 370 nm, 223 nm, 198 nm). They found some

size effects on the dielectric properties with temperature changes from 10 to 400 K, generally

that the dielectric constant and ferroelectric tendencies are suppressed with decreasing grain
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size.

The summation is that, clearly, all their results showed non-Debye type response and

non-Arrhenius form in relaxation time, which is totally different from our results below 200

K. In addition, the temperature dependence of the dielectric constant did not show any

measurable thermal hysteresis with heating and cooling, whereas we find thermal hysteresis

in our samples when the temperatures are above 210 K. In range of 5 nm to 100 nm, recently

Chen et al., [136] found that the BST films exhibited size effects with voltage and thickness

dependences at room temperature. But they didn’t study the temperature dependences.

As for the 100 nm thickness BST film, Shaw et al., [137] work shows that the dielectric

constant has no sharp peak, which is very different dielectric response type with our result.

There are also some other works [96, 97, 138] on size effects in BST that present the

variations of the dielectric constant as a function of temperature. The cause of size effects

in ferroelectrics are complicated, and it is often difficult to separate true size effects from

the other factors that change with film thickness or particle size, such as film microstructure

and defect chemistry or constraints such as electrode interaction and space change layers

and so on. None of these studies found a single relaxation time.

In our case, it is surprising that the electric relaxation in BST nanoparticle powders

at low temperature has only one relaxation time, because higher temperatures indicate

relaxor ferroelectric behavior with a broad distribution of relaxation times. This broad

distribution is attributed to the variation in the local Neel temperature and variation in the

local environments of the correlated electric dipoles [113]. At low temperatures, however,

when the correlated dipoles are frozen into the ferroelectric state, our data shows that there

remains a significant fraction of dipoles that are responsive to the changes in the applied

electric field. These free dipoles are characterized by only one relaxation time. Since our

sample has significant disorder, which is due to small crystallite size and local compositional

variation, the relaxation process of these free dipoles must be insensitive to the disorder.

The attempt frequency f0 ∼ 1THz is on the order of optical phonon frequency, which

suggests the free dipoles must be ions, not electrons. The energy barrier for tunnelling be-

tween sites (37.8 mV) is small compared to the ferroelectric free energy of the nanoparticles,
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which is proportional to the nanoparticle volume. 37.8 meV could be an energy barrier to

move a single titanium ion between two energetically degenerate positions.

A single relaxation time shows that activation energy does not vary among different ions

and it is reproducible among samples. This shows that the activation energy must be set

by the parameters of the crystal structure of BST, and not random defects.

In our samples, one possibility would be that the free dipoles are located on the nanopar-

ticle surfaces, because the surface to volume ratio is large. But this explanation is prob-

lematic because different Ti ions on the surfaces would experience different crystal fields,

so one would expect a broad range of energy barriers ∆. The average surface energy of

the ideal BTA surfaces is around 1.358 eV per surface unit cell. This value is much greater

than the energy barrier (0.038 eV) we measured. The surface energy of BST should be

comparable to the value of BTA. Thus, the surface component of the dipole moment is

relatively insensitive to the surface relaxation.

We suggest that these free dipoles are produced by a frustration effect, which prevents

locking into the ferroelectric order. The physical origin of this frustration is not clear, but

the small particle size must be playing an important role since the effect was not reported

in thin films or bulk.

We propose that the electric frustration occurs because the ferroelectric state in nanome-

ter scale particles is fundamentally different from ferroelectricity in bulk [139, 140]. Zero

dimensional ferroelectrics were shown to display phase-transitions that are unknown in bulk

[140], and we suspect that this could lead to a frustrated ferroelectric ground state, analo-

gous to the frustration in frustrated antiferromagnets. This frustration would cause the Ti

ions to remain responsive to the applied electric field at temperatures much below the Neel

temperature. Our measurements show that the the energy barrier for the electric response

in this state does not vary among different ions and it is reproducible among samples. This

suggests that the barrier is set by the parameters of the crystal structure of BST, and

therefore it should be calculable from the first principle calculations. More theoretical work

is needed to explain our measurements at low temperatures. Nevertheless, our results show

that below some particle size, there is no true ferroelectric order, as expected.
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As for the high temperature (above 210 K), the permittivity exhibits a broad range of

relaxation times typically found in relaxor ferroelectrics. One possible causes of this broad

maximum in permittivity versus temperature above 210 K is: The compositional disorder,

i.e., the disorder in arrangement of different ions (e.g., Ba and Sr) on the crystallographi-

cally equivalent sites, this disorder is the common characteristic of relaxors such as BST,

because it is difficult to maintain homogeneity in the cation distribution during the syn-

thesis and processing. It is well known that curie temperature (Tc) are dependent of the

the cation distribution. When the temperature changes, the thermal motion in different Tc

BST nanoparticles can result in broadened phase transition, and suppression in the peak

permittivity. As a result, a Tc shift, as well as the broadening and depression of the per-

mittivity maximum (there are also a lot of smaller peaks between 210 K and 340 K) were

observed due to the compositional disorder.

Another possible interpretation is: the phenomena of this broad maximum in permittiv-

ity can result in grain size effect, because the properties of ferroelectric are always associated

with the special structure and length scales. The main cause of this decrease in permittivity

is thought to be the presence of a low permittivity layer at the grain boundaries. Where

grain boundaries exist parallel to the electrodes and hence can act in series with the bulk

of the grain, the permittivity can be greatly reduced and depends strongly on nanoparticles

sizes.

In addition, we find thermal hysteresis in our samples when the temperatures are above

210 K. In some literature, this phenomena is called as the nonergodic relaxor state, which

can be irreversibly transformed into a FE state by a strong enough external electric field.

This is also an important characteristic of relaxors which distinguished them from typical

dipole glasses. When the temperature (below 200 K) are all below those Tc of nanoparticles,

a spontaneous phase transition happened and thus the nonergodic state does not exist.

9.1 Conclusion

The purpose of this part is trying to understand the factors that may influence the prop-

erties of ferroelectric materials at small dimensions. The XRD results indicated that BST

89



and BTA are oxide ferroelectrics with structures based on the perovskite structure. The

SEM and TEM images showed that our BST nanoparticles sizes distribution is in the range

of 5−100 nm. Though the whole physical picture is unclear to us, we still can conclude that

there is a characteristic size in this size range 5 − 100 nm and indicating that this funda-

mental limit of ferroelectric memory occurs above 5 nm diameter. This characteristic value

is a very important parameter for the future development of the application in nanoscale

electronic devices, such as high-density dynamic random access memories (DRAM).

From the results of the electric hysteresis loops, we found no permanent polarization

of the free dipoles in our samples when the temperature is below 210 K, whereas a huge

thermal hysteresis was observed in our samples when the temperatures are above 210 K.

This behavior is explained as originating from two types of particles, larger particles are

ferroelectric, and they produce the relaxor behaviors above 210 K. Smaller particles are not

ferroelectric, exhibit no permanent polarization, and display a simple Debye relaxation at

low temperature.
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APPENDIX A

LIST OF SYMBOLS

h Planck Constant (6.62× 10−34 Js)

kB Boltzman constant(1.38×10−23 J/K)

nm nanometer (10−9 m)

Å Unit of length, Angstrom (10−10m)

Ω Ohm

K Kelvin

T Teslas

Torr Unit of pressure, equal to 133.32 Pa

e Charge of an electron

eV electron volt

G Differential conductance

I Current

R Resistance

U Potential Energy

V Bias Voltage

τ Relaxation Time

f Frequency

T Temperature

t Time

T1 longitudinal spin relaxation time

T2 spin dephasing time

T ∗2 spin dephasing time of ensemble spins

M Magnetization
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DOS Density Of State

P Spin Polarization

Tc Critical Temperature

MTJ Magnetic Tunnel Junction

SDT Spin-Dependent Tunnelling

DRAM Dynamic random access memories

FM/I/FM Ferromagnetic Insulator Ferromagnetic

AP Antiparallel

TMR Tunnel Magneto Resistance

GMR Giant Magnetoresistance

PMMA PolyMethyl MethAcrylate

IPA Isopropanol

SCCM unit of flow, standard cubic centimeter per minute

BST Barium Strontium Titanate (Ba1−xSrxTiO3)

BTA Barium Titanate (BaTiO3)

CCVD Combustion Chemical Vapor Condensation

SEM Scanning Electron Microscopy

XRD X-Ray Diffraction

TEM Transmission Electron Microscopy
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APPENDIX B

DEBYE RELAXATION EQUIVALENT CIRCUITS

For the plate capacitor, when a capacitor is filled with a dielectric its static capacitance

is, in practical units,

C = εε0
A

d
= εC0 (B.1)

The capacitance under dynamic conditions may be expressed as the complex capacitance

C∗(ω) , which is in term of ε∗(ω) (the dynamic dielectric).

C∗(ω) = ε∗(ω)C0 (B.2)

or

ε∗(ω) = C∗(ω)/C0 (B.3)

The complex inpedance Z∗(ω) gives:

Z∗(ω) =
1

iωC∗(ω)
(B.4)

In other form is

C∗(ω) =
1

iωZ∗(ω)
(B.5)

In Figure (B.1) shows a combination of two capacitors and a resistor, where the branch

containing C1 and R1 is in series, and they are parallel to capacitor C∞. We will see that

this is a equivalent circuit, which is analogue of the most famous Debye relaxation of a

dielectric material.

The total inpedance (Figure B.1) in representation:

93



Figure B.1: The equivalent circuit of Debye relaxation with a single relaxation time

1
z∗(ω)total

=
1

(iωC∞)−1
+

1
R1 + (iωC1)−1

(B.6)

The total complex capacitance in equation (B.5) gives

C∗(ω) =
1

iωz∗(ω)total
= C∞ +

C1

1 + iωτ1
(B.7)

where

τ1 = R1C1 (B.8)

The real and imaginary parts of the complex capacitance C∗(ω) are given by
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C ′(ω) = C∞ +
C1

1 + ω2τ2
1

(B.9)

C ′′(ω) =
C1ωτ

1 + ω2τ2
1

(B.10)

Then equation B.3 for the complex dielectric gives

ε∗(ω) =
C∞
C0

+
C1/C0

1 + iωτ1
(B.11)

If we let ε∞ = C∞/C0 and εs− ε∞ = C1/C0, then the equation (B.11) will be in Debye

relaxation form:

ε∗(ω) = ε∞ +
εs − ε∞
1 + iωτ1

(B.12)

Similarly, in the Debye relaxation with Muti-relaxation times case, the equivalent circuit

was shown in Figure (B.2), where multi-branches where each branch contains resistance and

capacitor in series. The equivalent complex capacitance in circuit (Figure B.2) gives

C ′(ω) = C∞ +
C1

1 + iωτ1
+

C2

1 + iωτ2
+ · · ·+ Cn

1 + iωτn
(B.13)
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Figure B.2: The equivalent circuit of Debye relaxation with multi-relaxation times
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APPENDIX C

THE GENERAL DISTRIBUTION FUNCTIONS

Most dielectrics are linear when the electric field strength is not too high. In dielectric

relaxation response, the superposition principle is still valid, i.e. the polarization at a

time to due to an a electric field with a time-dependence that can be written as a sum

E(t) + E′(t), is given by the sum of the polarization’s P (t0) and P ′(t0) due to the E(t)

and E′(t) separately. The expression of polarization P (t) is much convenient in form decay

function of the polarization Ψ(t).

P (t) = P (0)Ψ(t) = χE(0)Ψ(t), (C.1)

The general expression for the polarization P (t) can be written in the integral form in

the case of a time-dependent Maxwell field.

P (t) = χ

∫ t

−∞
E(t′)[−∂Ψ(t− t′)

∂t
]dt′ (C.2)

= χ

∫ t

−∞
E(t′)Ψ̇(t− t′)dt′, (C.3)

Where, Ψ̇(t) is pulse-response function of polarization. Applying to the left and right

parts of equation C.2 the Laplace transform and taking into account the theorem of decon-

volution, we can obtain:

P ∗(ω) = ε∗(ω)E∗(ω), (C.4)

Where

97



ε∗(s) =
∫ ∞

0
Ψ̇(t)e−stdt (C.5)

≡ L(Ψ̇(t)) (C.6)

=
∫ ∞

0

G(τ)dτ

1 + sτ
(C.7)

The variable s is complex and for the purposes of the present application can best be

interpreted as s = γ + iω; γ → 0 and we’ll write instead of s in all Laplace transforms iω.

The function G(τ) in this expression is

G(τ) =
y(τ)

εs − ε∞
, (C.8)

The Laplace transform and the functions defined above appear in more mathematical

literature of dielectric relaxation in various ways.

Ψ̇(t) = L−1(ε∗(s)), (C.9)

defines the inverse Laplace transform. The integral in equation C.1 is frequently ex-

pressed in term of a variable

p = ln(
τ

τ0
), (C.10)

where τ0 is a positive constant. Now a distribution function F (τ) or F(p) is defined by

F (τ) ≡ τG(τ), (C.11)

where

∫ ∞

−∞
F (p)d(p) =

∫ ∞

0
G(τ)dτ = 1, (C.12)

while

ε∗(p) =
∫ ∞

−∞

F (τ)
1 + sτ

dp. (C.13)
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if real and imaginary parts are separated in equation C.7 or C.12 and we put p = iω

ε∗(iω) = ε′(ω)− iε′′(ω) (C.14)

=
1

εs − ε∞
(ε′(ω)− ε′′(ω)) (C.15)

where

ε′(ω) =
∫ ∞

0

G(τ)dτ

1 + ω2τ2
(C.16)

=
∫ ∞

0

F (τ)d(lnτ)
1 + ω2τ2

(C.17)

while

ε′′(ω) =
∫ ∞

0

ωτG(τ)dτ

1 + ω2τ2
(C.18)

=
∫ ∞

0

ωτF (τ)d(lnτ)
1 + ω2τ2

(C.19)
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