
ON THE SECURITY AND EFFICIENCY OF
ENCRYPTION

A Thesis
Presented to

The Academic Faculty

by

Charles David Cash

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
December 2009

ON THE SECURITY AND EFFICIENCY OF
ENCRYPTION

Approved by:

Professor Alexandra Boldyreva,
Advisor
College of Computing
Georgia Institute of Technology

Professor Patrick Traynor
College of Computing
Georgia Institute of Technology

Professor Mustaque Ahamad
College of Computing
Georgia Institute of Technology

Professor Prasad Tetali
School of Mathematics
Georgia Institute of Technology

Professor Dana Randall
College of Computing
Georgia Institute of Technology

Date Approved: 11 September 2009

To Emily. Your love, dedication, and patience give me strength.

You amaze me.

iii

ACKNOWLEDGEMENTS

I first thank my advisor, Sasha, for believing in me as a researcher and guiding me

to become one.

I thank Eike and Kaoru for their friendship and collaboration during my summer

visits, from which I drew inspiration.

I thank the graduate students and faculty in my department at Georgia Tech, who

made my years there a pleasure.

I thank my coauthors, from whom I have learned so much. The work here was

done in collaboration with Alexandra Boldyreva, Marc Fischlin, Eike Kiltz, Chris

Peikert, Amit Sahai, Victor Shoup, and Bogdan Warinschi.

I thank my parents and my brother, whose love and support have enriched my life

beyond words. I love you all dearly.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

SUMMARY . viii

I INTRODUCTION . 1

1.1 Encryption and Provable Security 1

1.2 Contributions of This Thesis . 4

1.2.1 Twin Diffie-Hellman Problems 5

1.2.2 Non-Malleable Hash Functions and Their Application to En-
cryption . 7

1.2.3 Circular-Secure Encryption 11

1.3 Organization and Credits . 16

II PRELIMINARIES . 18

2.1 Notation . 18

2.2 Algorithms . 18

2.3 Encryption schemes . 19

2.3.1 Public-Key Encryption . 19

2.3.2 Symmetric-Key Encryption 20

2.4 Security notions for encryption . 20

2.4.1 Security of Public-Key Encryption 20

2.4.2 Security of Symmetric-Key Encryption 22

2.5 The Random Oracle Model . 23

2.6 Security Proofs Using Games . 24

III THE TWIN DIFFIE-HELLMAN PROBLEM 25

3.1 Preliminaries . 25

3.1.1 Asymptotic Versus Fixed Parameter Analysis 25

3.1.2 Target-Collision Resistant Hash Functions 26

v

3.1.3 Identity-Based Encryption 26

3.2 Hashed ElGamal Encryption and the Diffie-Hellman Problem . . . 27

3.3 The Twin Diffie-Hellman Problem 30

3.3.1 Main Result . 32

3.4 Twin ElGamal Encryption . 33

3.5 A Variant of the Cramer-Shoup Encryption Scheme 37

3.5.1 The DDH and Twin DDH Assumptions 37

3.5.2 A Variant of the Cramer-Shoup Scheme 39

3.5.3 A Variant with Shorter Ciphertexts 43

3.5.4 A Variant with Security From the DH Assumption 45

3.6 Identity-Based Encryption . 50

3.6.1 The BDH and Twin BDH Assumptions 50

3.6.2 Twin Boneh-Franklin . 52

IV NON-MALLEABLE HASH FUNCTIONS AND THEIR APPLICATION
TO ENCRYPTION . 58

4.1 Preliminaries . 58

4.1.1 Hash Functions . 58

4.1.2 Collision Resistance . 59

4.1.3 Perfect One-wayness . 59

4.1.4 Trapdoor Permutations and Partial One-wayness 60

4.2 Non-Malleability of Hash Functions 61

4.3 Application to Encryption . 64

4.3.1 Proof of Proposition 11 – Security of Bellare-Rogaway En-
cryption . 67

V CIRCULAR SECURITY . 74

5.1 Preliminaries . 74

5.1.1 Key-Dependent Message Security 74

5.1.2 Noisy Learning Problems 75

5.2 Public-Key Encryption Scheme Based on LWE 78

vi

5.2.1 A Generic Transformation 80

5.2.2 Public-Key Scheme . 81

5.2.3 Proof of Security . 83

5.2.4 Amortized Extension . 89

5.3 Symmetric-Key Encryption Scheme Based on LPN 93

5.3.1 The Scheme . 93

5.3.2 Analysis . 94

5.4 Separating Standard Security and Circular Security 98

5.4.1 The Counterexample Scheme 99

REFERENCES . 104

vii

SUMMARY

This thesis is concerned with the design and analysis of practical provably-secure

encryption schemes. We give several results that include new schemes with attractive

tradeoffs between efficiency and security and new techniques for analyzing existing

schemes. Our results are divided into three chapters, which we summarize below.

The Twin Diffie-Hellman Problem. We describe techniques for analyzing en-

cryption schemes based on the hardness of Diffie-Hellman-type problems. We apply

our techniques to several specific cases of encryption, including identity-based en-

cryption, to design a collection of encryption schemes that offer improved tradeoffs

between efficiency and evidence for security over similar schemes. In addition to offer-

ing quantitative advantages over prior work in this area, our technique also simplifies

security proofs for these types of encryption schemes.

Our main tool in this chapter is the notion of Twin Diffie-Hellman Problems, which

provide an intermediate step for organizing security reductions and reveal very simple

variants of known schemes with correspondingly simple, but non-obvious, analyses.

Non-Malleable Hash Functions. We consider security proofs for encryption that

are carried out in the random oracle model, where one declares that a scheme’s hash

functions are “off limits” for an attacker in order to make a proof go through. Such

proofs leave some doubt as to the security of the scheme in practice, when attackers

are free to exploit weaknesses in the hash functions. A particular concern is that a

scheme may be insecure in practice no matter what very strong security properties

its real hash functions satisfy.

viii

We address this doubt for an encryption scheme of Bellare and Rogaway by show-

ing that, using appropriately strong hash functions, this scheme’s hash functions can

be partially instantiated in a secure way.

Our primary tool for doing this, which is of interest for other applications, is a new

notion of security for hash functions that is useful for both hash function designers and

protocol designers. Our notion, called non-malleability of hash functions, is similar

to related notions of non-malleability in cryptography, but we must address some

technical difficulties in transferring this intuitive notion to the hash function setting.

Circular Security. We consider a notion of security, called circular security, where

an adversary may obtain encryptions of a scheme’s secret keys as messages. Standard

security notions do not guarantee secrecy under this type of attack.

We give constructions of circular-secure encryption based on hard computational

learning problems. Our schemes provide alternatives to the only other known standard-

model scheme, which is based on Decision Diffie-Hellman. Our schemes are natural

relatives of existing non-circular-secure encryption schemes from the same learning

problems, and in fact they are as efficient as the other learning-based schemes. This

is in contract to the Decision Diffie-Hellman-based scheme, which “pays” an efficiency

hit over similar schemes from the same problem.

We also consider foundational questions regarding circular security. We settle the

following question: Once trivialities are addressed, is every standard-secure encryption

scheme also circular-secure? We prove that this is not the case by describing and

analyzing a counterexample.

ix

CHAPTER I

INTRODUCTION

This thesis is concerned with the design and analysis of encryption schemes. This

chapter provides some context for our work and then summarizes our results, which

follow in subsequent chapters.

1.1 Encryption and Provable Security

An encryption scheme is a cryptographic tool for exchanging messages secretly over

a public channel. The classical, ad-hoc approach for designing secure encryption

worked by suggesting schemes that were intuitively secure and then patching any

vulnerabilities that were found. This process provided little assurance that a more

clever attack would not be found when the scheme was deployed. Moreover, since

the search for attacks was not systematic, it was hard to estimate if a scheme would

provide secrecy when used in a particular way, leading to problems when encryption

schemes were used as components in more complicated protocols.

In this thesis we follow an alternative, and now quite standard, paradigm called

provable security [48]. This approach provides evidence for a scheme’s security by

connecting attacks against the scheme to efficient solutions to intractable computa-

tional problems. In some sense, one is able to prove that the only route towards

breaking a scheme involves solving a problem that is believed to be intractable. Fur-

thermore, provable security results guide the usage of schemes by providing precise

definitions of the environment in which one can expect security. This approach results

in theorems similar to All semantic information contained in the encrypted message

is hidden from any polynomial-time eavesdropping adversary, unless one can factor

integers efficiently.

1

A provable security result is a mathematical theorem which can be verified like any

other theorem. The interpretation and evaluation of such a result, however, involves

several orthogonal issues that complicate their use in practice. In order to more

effectively compare provably-secure encryption schemes, we fix the following three

somewhat informal metrics. Modern research in encryption can pursue a variety of

goals, but these metrics seem fairly complete, in that most effort in recent years can

be explained as attempts to improve these metrics.

Threat model. A threat model is a description of an adversary’s capabilities and

goals. In the context of provable security, a threat model is a rigorous definition

involving algorithms interacting through well-defined interfaces. A threat model de-

scribes the type of access an adversary gets to a schemes’ components and what type

of secrecy is expected in a precise way.

It is desirable to analyze schemes in threat models that reflect real applications as

accurately as possible, but analyses in weaker or even stronger models can be fruitful

for theoretical understanding and intermediate results.

Security in stronger threat models usually requires some cost in terms of the other

metrics. For example, public-key encryption schemes secure against an active attack,

where an adversary can request decryptions of ciphertexts, usually require about

double the computational resources to encrypt a message as schemes only secure

against passive attacks, where an adversary does not get any decryption queries.

Efficiency. Applications prefer that a scheme not use too many computational re-

sources, that its keys not be very large, and that it not introduce too much communi-

cation overhead. Depending on the context, we could be interested in the asymptotic

behavior of the scheme or instead in more detailed measures.

2

Reduction quality. All provable security results that we will consider consist of

a reduction1 of security to a particular computational problem. That is, they will

provide a process by which one can convert an adversary A that attacks the scheme

into an algorithm B for solving a hard problem. The aim is for the complexity and

correctness of B to be favorably related to the same measures of A.

Evaluating a reduction can be subtle and somewhat qualitative. Below we briefly

give an abstract viewpoint to identify the relevant issues.

The intuition for interpreting reductions goes as follows. Suppose the problem

we are reducing to is believed to be hard for algorithms with complexity β. Further

suppose that we wish to prove that no adversaryA can succeed in breaking our scheme

unless it has very high complexity. A security reduction shows how to convert any

successful adversary A with complexity α into a correct algorithm B with complexity

f(α) for some increasing function f . Of course, we must have f(α) ≥ β because the

computational problem is believed to be hard for algorithms with complexity β. Now,

using the reduction, we get the security guarantee we sought: If A is an adversary

with complexity α that successfully breaks the scheme, then we have a lower bound

on α, namely f(α) ≥ β.

This description reveals one feature of reductions that is usually called tightness.

The tightness of a reduction is measured, abstractly, by how the function f behaves.

If f is, say, defined by f(x) = x100, we only get that α ≥ β1/100, a bound which may

not rule out the possibility that an efficient adversary could break the scheme. When

f is the identity (or very close to it), however, we get a so-called tight reduction where

α ≥ β. This gives a better lower bound on α and thus a more reassuring result for

security.

1This is a reduction in a sense inspired by Turing reductions in complexity theory. We remark
that there is an extensively studied area of cryptography dealing with information-theoretic security
that does not need the concept of a reduction. The problems in encryption that we consider, however,
are provably impossible to resolve with information-theoretic security.

3

Above we started with the assumption that some problem is not solvable by al-

gorithms running with a certain complexity. If the assumption turns out to be false

then the reduction is vacuous and has no bearing on security. Our belief in assump-

tions is usually based on the failure of experts to find efficient algorithms for the

problem. It is not uncommon, however, to give security reductions to problems that

have not been studied closely (or at all), but also appear to be hard in the designer’s

best estimation. In some cases, the problem is quite unnatural and even interactive,

meaning that the problem involves communicating with some sort of oracle instead

of processing an input as usual. Interactive problems do not usually arise in fields

like number theory, and it can be very difficult to guess if an interactive problem

resists known techniques. Reductions to such problems are better than nothing, but

it is clearly preferable to deal with the problems that have received attention from

research communities, often for purposes that have nothing to do with cryptography.

A final issue in reductions which will receive attention in this thesis is the use

of ideal components. In these types of results, one declares a component of the

scheme “off limits” for the adversary, and analyzes the scheme in a model where that

component behaves in an ideal way. The most common ideal component used is a

so-called random oracle [11], which idealizes a cryptographic hash function. Clearly,

the use of ideal components is undesirable because, in reality, an adversary is free to

attack every part of the system. The extent to which we should doubt results that

use ideal components is debatable, but results without them are always preferable.

1.2 Contributions of This Thesis

This thesis develops techniques for constructing and analyzing practical provably-

secure encryption schemes. A particular emphasis is placed on improving the balance

between efficiency, like the running time of the algorithms involved, with the quality

of security provided. In the remainder of this chapter, we provide an overview of our

4

results, which are divided into three chapters.

1.2.1 Twin Diffie-Hellman Problems

Some very natural and practical encryption schemes are only known to be secure

under contrived, interactive assumptions that have never been studied by research

communities outside of cryptography. A prominent example of such a scheme is

hashed ElGamal, which has been standardized and widely deployed in applications.

Known security proofs for hashed ElGamal all depend on interactive variants of as-

sumptions related to computing discrete logarithms in prime order groups. Another

example is the basic Boneh-Franklin identity-based encryption scheme, which is in a

similar state, but with an even less-studied interactive assumption in pairing groups2.

In this chapter we show how to modify these, and other, schemes to base security

on a new class of interactive assumptions, which we call twin assumptions. The

advantage of our modified schemes is that the twin assumptions are equivalent to

standard, relatively well-studied, non-interactive assumptions, and therefore schemes

that rely on twin assumptions are actually only relying on standard non-interactive

assumptions.

Other techniques are known for modifying schemes like hashed ElGamal to rely

on standard assumptions, but our results provide an alternative with some attractive

properties. Unlike all previous modifications, our new schemes do not add any extra

redundancy or integrity checks to the ciphertexts of the original scheme. Our mod-

ifications are also quite simple to implement. Finally, the techniques in the security

proofs for our schemes are also relatively simple and portable, and have found further

applications.

We now highlight our techniques for the variant of hashed ElGamal in slightly

more detail. Our other applications will follow this template and be intuitively very

2Here we are referring to chosen-ciphertext security, which is defined in §2. Chosen-ciphertext
security is a strong notion of security sufficient for most common applications.

5

similar. Recall that hashed ElGamal is known to be (chosen-ciphertext) secure, in the

random oracle model, under the so-called strong Diffie-Hellman assumption. This is

an interactive version of the Diffie-Hellman assumption which assumes that the Diffie-

Hellman problem is hard, even with the help of a decision oracle for the problem. The

decision oracle could, in principle, make the problem easier and thus the assumption

stronger and less desirable.

Our variant of hashed ElGamal is called twin ElGamal. We prove that twin ElGa-

mal is secure under a new interactive assumption called the strong twin Diffie-Hellman

assumption. So far, not much has been gained, as the new assumption is seemingly

plausible, but it is still interactive and not well studied. The advantage comes when

we prove that the strong twin Diffie-Hellman problem is intractable as long as the or-

dinary Diffie-Hellman problem is intractable. It follows that twin ElGamal is secure,

in the random oracle model, as long as the ordinary Diffie-Hellman assumption holds.

Compared to other ElGamal variants with similar security properties, our scheme is

attractive in that it has very short ciphertexts and a very simple and tight security

proof. It is also competitive in terms of computational overhead.

Our techniques are portable enough to be applied other Diffie-Hellman-like prob-

lems, with similar gains. Applications of these other problems include a new variant

of Cramer-Shoup encryption [32] with a very simple security proof, without random

oracles, under the hashed decisional Diffie-Hellman assumption and a new variant

of Boneh-Franklin identity-based encryption [21], with very short ciphertexts, and a

simple and tighter security proof in the random oracle model, assuming the bilinear

Diffie-Hellman problem is hard.

Beyond encryption, our techniques also give a new variant of Diffie and Hellman’s

non-interactive key exchange protocol [35], which is secure in the random oracle model

assuming the Diffie-Hellman problem is hard and a very simple and efficient method of

securing a password-authenticated key exchange protocol of Abdalla and Pointcheval

6

[2] against server compromise, which can be proved secure, in the random oracle

model, under the Diffie-Hellman assumption. See [30] for details on key exchange

applications.

1.2.2 Non-Malleable Hash Functions and Their Application to Encryp-
tion

In this chapter we turn to the issue of random oracles [11] in security reductions.

Recall that a reduction is carried out in the random oracle model when all parties

have access to an idealized version of a hash function that maps any input to a fresh

random string. In reality, however, no such function is available, and one hopes that

a cryptographic hash function will approximate the random oracle’s behavior.

We are particularly interested in the question When can a random oracle be im-

plemented securely? A better understanding of this question will put the random

oracle methodology – which we employ in some of the results in Chapter 3 – on a

firmer foundation.

Prior work [27] has shown that we cannot always securely implement a random

oracle. More precisely, it is known that there are protocols which are provably secure,

under standard assumptions, in the random oracle model, but which also become

insecure when the random oracle is implemented with any real hash function. But

these protocols are arguably contrived, and they give little insight to question of if

common uses of random oracles can be instantiated.

Below we study the possibility of instantiating random oracles in encryption

schemes and find that a certain type of random oracle usage can be instantiated

in secure way. To address this question, we develop a theoretical tool which we hope

is of independent interest. Our tool is a new security notion for hash functions called

non-malleability. Interestingly, this concept turns out to be similar, in spirit, to non-

malleability for other cryptographic primitives, but we uncover some fundamental

differences. Because of these differences, and because of the potential for wider uses,

7

we suggest that non-malleability of hash functions is interesting in its own rite.

We start with an overview of non-malleability and the need for a useful definition

applied to hash functions, and then describe our contributions.

Informally, non-malleability of some function f is a cryptographic property which

requires that learning f(x) for some x does not facilitate the task of generating some

f(x∗) so that x∗ is related to x in a non-trivial way. This notion is especially useful

when f is used to build higher-level multi-user protocols where non-malleability of

the protocol itself is crucial (e.g., for voting or auctioning). Non-malleability has

been rather extensively studied for some cryptographic primitives. For example,

both definitions as well as constructions from standard cryptographic assumptions

are known for encryption, commitments and zero-knowledge [36, 13, 70, 33, 40, 72, 8,

34, 63, 64, 9]. Non-malleability in the case of other primitives, notably for one-way

functions and for hash functions,3 has only recently surfaced as a crucial property in

several works [17, 18, 28, 39], which we discuss below.

Many cryptographic schemes are only known to be secure in the random ora-

cle model [11], where one assumes that a hash function behaves as a truly random

function to which every party has access to. It is well-known that such proofs do

not strictly guarantee security for instantiations with hash functions whose only de-

sign principles are based on one-wayness and/or collision-resistance, because random

functions posses multiple properties the proofs may rely on. In fact, some recent re-

sults [17] showed that security of the widely deployed RSA-OAEP encryption scheme,

provably secure in the random oracle model, can be compromised if the underlying

hash function is malleable. A related example is the abstraction used to model hash

functions in symbolic (Dolev-Yao) security analysis. In this setting it is axioma-

tized that an adversary can compute some hash only when it knows the underlying

3We aggregate both one-way functions and hash functions under the term hash functions for
simplicity.

8

value. Clearly, malleable hash functions do not satisfy this axiom. Therefore, non-

malleability for hash functions is necessary in order to ensure that symbolic analysis

is (in general) sound with respect to the standard cryptographic model. Otherwise,

real attacks that use malleability can not be captured/discovered in the more abstract

symbolic model.

In a different vein, and from a more conceptual perspective, higher-level protocols

could potentially benefit from non-malleable hash functions as a building block. A

recent concrete example is the recommended use of such non-malleable hash functions

in a human-computer protocol for protecting local storage [28]. There, access should

be linked to the ability to answer human-solvable puzzles (similar to CAPTCHAs),

but it should be infeasible for a machine to maul puzzles and redirect them under a

different domain to other human beings.

Hence, non-malleability is a useful design principle that designers of new hash

functions should keep in mind. At this point, however, it is not even clear what the

exact requirements from a theoretical viewpoint are. Therefore, a first necessary step

is to find a suitable definition which is (a) achievable, and (b) applicable. The next

step would be to design practical hash functions and compression functions which are

non-malleable, or which at least satisfy some weaker variant of non-malleability.

In this chapter we initiate the study of non-malleable hash functions and their

application to encryption. We start with the design of an appropriate security def-

inition. Our definition follows a standard simulation paradigm of the sort that can

be used to define non-malleability for encryption and commitment schemes. It turns

out, however, that a careless adjustment of definitions for other primitives yields a

definition for non-malleable hash functions that cannot be realized. We therefore

motivate and provide a meaningful variation of the definition which ensure that the

notion is achievable and may be useful in applications.

Testifying to the difference to other cryptographic primitives, we note that for

9

non-malleable encryption the original simulation-based definition of [36] was later

shown to be equivalent to an indistinguishability-based definition [13]. For our case

here, finding an equivalent indistinguishability-based definition for non-malleable hash

functions appears to be far from trivial, and we leave the question as an interesting

open problem.

We note that our definition was shown to be achievable under minimal standard

assumptions. More precisely, if there exist one-way functions, then there exist hash

functions meeting our definition of security. These hash functions are highly im-

practical and should be seen as a proof-of-concept only. In particular, they employ

non-interactive zero-knowledge proofs of knowledge for a general family of languages.

This implies that the resulting hash functions are randomized, which we do not know

to be necessary. It is still an open problem of finding a practical, deterministic solu-

tion from, say, a number-theoretic assumption. Our definition is general enough to

allow such constructions.

Next we study of applicability of our definition to encryption. We show that our

definition suffices for a partial instantiation of a very natural encryption scheme of

Bellare and Rogway [11]. Partial instantiations are a subtle type of result, and their

interpretation deserves some discussion. In a partial instantiation, one starts with a

scheme that uses multiple random oracles, and shows how to realize some, but not all,

of the random oracles. Thus the “instantiated” scheme is still only proven secure in

the random oracle model, and still inherits all of the associated theoretical difficulties.

But the gain is that we learn something about the instantiated random oracles. We

precisely quantify sufficient properties of the instantiated hash for security to hold.

Thus, when implementing the scheme, there is one less source of imprecision in the

random oracle methodology.

We show that non-malleability is sufficient to instantiate one of the random oracles

in the encryption scheme of Bellare and Rogaway [11]. We briefly recall the scheme

10

here. The scheme is actually a generic and efficient method for encrypting with

any trapdoor permutation family. A public key is an instance of the family f , with

corresponding secret key set to f−1, the trapdoor for f . Encryption uses two hash

functions, G and H. For a message m, it selects r at random from the domain of f

and computes

y ← f(r), g ← G(r)⊕m, h← H(r||m).

The ciphertext is (y, g, h). Given a ciphertext (ŷ, ĝ, ĥ) and secret key f−1, decryption

computes

r̂ ← f−1(ŷ), m̂← ĝ ⊕G(r̂).

It outputs m̂ if H(r̂‖m̂) = ĥ holds, and it rejects if not.

This scheme is known to be semantically-secure under chosen ciphertext attacks

if f is one-way and if G and H are modeled as random oracles. We show that the

scheme is secure if H is instantiated with a non-malleable hash function. At a high

level, we are able to show that, as long as an adversary cannot compute H(r̂||m) from

H(r||m) for r̂ 6= r, then then the scheme will not demand any other properties from

H, and thus an implementation of this scheme only needs to check for this property.

We remark that the usefulness of the definition was also confirmed in indepen-

dent results [39] which showed that HMAC is a secure message authentication code,

assuming that the compression function is non-malleable.

1.2.3 Circular-Secure Encryption

In the first two chapters we focused primarily on semantic-security under chosen-

ciphertext attack (CCA security), which is usually cited as the “de facto gold stan-

dard for encryption security.” It also well known, however, that for certain natural

applications, CCA security is not sufficient. The mismatch comes from a subtle obser-

vation whose importance is not immediately apparent: The definition only guarantees

11

that it is safe to publish encryptions of messages that adversaries can compute them-

selves. But, in practice, we sometimes do encrypt messages that an adversary could

not compute itself. In particular, it is sometimes necessary to encrypt messages that

depend on the secret key.

In this chapter we consider a type of security, called circular security, that ad-

dresses this mismatch when applications publish encryptions of keys that form “cy-

cles.” That is, if (pki, ski) are public-key/secret-key pairs for i = 0, . . . , n, a cycle

consists of encryptions of ski under pki+1 mod n for each i. Interestingly, each of the ci-

phertexts alone would be safe to publish, but when considered together, the situation

becomes theoretically uncertain.

This issue of key-dependent messages was noticed at the outset of complexity-

based cryptography, and such use of encryption was categorically disallowed in prac-

tice. In the intervening years, however, practical applications have been found to

encrypt such dangerous messages. The most common example is whole-disk encryp-

tion, where the secret key used for encryption is usually stored on the disk itself. But

the issue arises in other contexts, such as a protocol of Camenisch and Lysyanskaya

[25] that forces users to publish a “circular encryption” of keys to prevent them from

selectively sharing their credentials. Security under key-dependent messages was also

shown to be sufficient for proving soundness results relating formal models (logics) of

cryptography with computational results [3].

The concerns over encrypting a key under itself are not a theoretical curiosity.

The IEEE P1619 standardization project, which was charged with specifying secure

methods for encrypted stored media, actually rejected a mode of operation for AES

due to a realistic attack when a particular key-dependent message was encrypted [62].

Black et al. [14] and Camenisch and Lysyanskaya [25] independently defined ver-

sions of security under key-dependent messages. These works give constructions of

symmetric-key and public-key encryption, respectively, but these are only known to

12

be secure using the random oracle model [11]. It was subsequently shown [53] that the

scheme of Black et al. could be insecure even when the random oracle was instantiated

with a hash function meeting a variety of security notions. The first construction of

an encryption scheme that is provably circular-secure, without random oracles, was

given by Boneh et al. [22], based on the decisional Diffie-Hellman problem.

Constructions from Learning Problems. The first set of results in this chap-

ter consists of new constructions of circular-secure encryption. Our core insight is

that encryption schemes based on hard learning problems (including those related to

worst-case lattice problems) offer homomorphic properties that are directly applicable

to achieving security for key-dependent messages.

As a result, our approach yields very natural encryption schemes that have signif-

icant efficiency advantages over the prior scheme of Boneh et al. [22]. The contrast is

clearest when we compare the current “cost” of achieving security for key-dependent

messages against the cost of achieving ordinary semantic security, for a given com-

putational intractability assumption. Comparing the scheme of [22] to other seman-

tically secure encryption schemes based on the DDH problem, the cost is dramatic:

while standard encryption schemes like ElGamal can encrypt a message of about

k = log |G| bits (where G is the underlying group of the DDH problem) using a single

exponentiation and one group element of overhead in the ciphertext, the scheme given

in [22] requires about k exponentiations and group elements of ciphertext overheard

per bit of key material encrypted. In contrast, our constructions are essentially as

efficient as prior semantically secure schemes based on essentially the same hardness

assumptions.

Our main results are two standard-model encryption schemes that are provably

circular-secure (and more), under standard assumptions concerning the hardness of

“noisy learning” problems. Specifically, we obtain:

• A public-key scheme based on the learning with errors (LWE) problem [69]. The

13

scheme is a variant of Regev’s LWE-based scheme and the more-efficient amor-

tized version due to Peikert, Vaikuntanathan, and Waters [66], with several

non-trivial modifications to facilitate the proof of security for key-dependent

messages. The most efficient version takes only Õ(n) amortized time per mes-

sage symbol for both encryption and decryption, and the ciphertext is only a

constant factor larger than the plaintext.

• A symmetric-key scheme based on the learning parity with noise (LPN) prob-

lem (c.f. [54]). The scheme is as efficient as a recent proposal for encrypting

with LPN [45], which was proved secure only in the standard sense, i.e., without

key-dependent messages.

In addition to circular security, both of our schemes actually enjoy key-dependent

message security with respect to arbitrary affine functions (over the message space)

of the secret key, similarly to the scheme of [22].

Informally, the LWE problem (for a dimension n and modulus q) is to recover a

secret vector s ∈ Zn
q given arbitrarily many “noisy random inner products” (ai, b ≈

〈ai, s〉) ∈ Zn
q ×Zq where the ai ∈ Zn

q are uniform and independent; LPN is the special

case where q = 2. These problems have been studied extensively in several works, and

much evidence suggests that no efficient algorithm can solve them with better than

negligible probability, even using quantum computation. The best known algorithms

for these problems require 2O(n log q/ log n) time and space [15]. They are directly related

to the famous problem of decoding random linear codes, and the LPN problem also

occupies a central position in learning theory: an efficient algorithm for it could be

used to learn several important concept classes, including 2-DNF formulas, juntas,

and any function with a sparse Fourier spectrum [37].

The LWE problem is also especially attractive as the basis for a cryptographic

hardness assumption due to its remarkable connection to worst-case lattice problems:

Regev [69] showed that solving LWE (for certain Gaussian-like error distributions)

14

is as hard as quantumly solving a few well-studied lattice problems, such as the

approximate shortest vector problem GapSVP. Recently, Peikert [65] also gave a

classical reduction from GapSVP (and variants) to LWE.

A Counterexample. Prior work leaves open the possibility that every encryption

scheme that is semantically secure in a standard sense is also circular-secure, once

some trivialities are taken care of. This would imply that our constructions and

those of [22] are unnecessary, as one could use simply use any standard scheme for

applications requiring circular security. Either proving this equivalence or ruling it

out was left as an open question by Boneh et al [22].

We summarize what is known. Here we deal with public-key case. It is a sim-

ple matter to give an encryption scheme that is semantically secure (under minimal

assumptions), but cannot securely encrypt its own key – that is, given a an encryp-

tion of a secret key under its corresponding public key, an adversary can mount a

chosen-plaintext attack against the scheme. This counterexample simply implements

a “check” in the encryption algorithm that detects of the input message is in fact

the secret key. If so, it can misbehave in some way, like outputting the secret key.

Standard security is preserved because an adversary is unlikely to submit the secret

key in a challenge query during a chosen-plaintext attack.

This counterexample also guides a simple patch that enables any secure encryption

scheme to also securely encrypt its own secret key. The idea is for the scheme to check

if its input message is its own secret key, and if it is, then encrypt a special symbol

instead of the key. When decryption detects this special symbol, it can output the

secret key.

This situation does not address more interesting practical cases, however. In most

situations we can avoid encrypting a secret key under its own public key, but it

seems more difficult to avoid circular encryptions of size say 2. To prevent such a

“2-cycle,” independent users must coordinate which keys they have encrypted in the

15

past, which may be very difficult or impossible in a complex distributed system. But

the counterexample above does not show that this type of cycle is dangerous.

Thus the question remains: Are encrypted cycles of size 2 or more potentially

dangerous?. If we can prove that, in general, they are not, then our work on circular-

secure encryption schemes is rendered obsolete, as one can take any standard scheme

and apply the patch to fix “1-cycles.”

This question was posed by Boneh et al. [22]. They provided a counterexample to

show that a one-way secure encryption scheme will not always remain one-way after a

2-cycle is published. Finding a counterexample for full semantic security seems more

difficult. This is because the keys and ciphertexts involved in an encrypted cycle

are all generated with independent randomness, and moreover the scheme must be

semantically secure in the standard sense, which rules out the technique of Boneh et

al., where each ciphertext leaks a significant amount of information, but not enough

to violate one-way security.

We settle this question by showing that not every semantically-secure encryption

scheme is also circular secure. We present a simple encryption scheme that is provably

semantically secure under chosen plaintext attacks, under a standard assumption

called the symmetric external Diffie-Hellman (SXDH) assumption [6], but breaks

completely when an encrypted two-cycle is published.

Our counterexample works by attaching a tag to the ciphertext of normally secure

encryption scheme, so that tags generated while encrypting a cycle will interlock and

help an attacker. Without an interlocking tag, however, a given tag is (provably)

useless to the adversary.

1.3 Organization and Credits

In Chapter 2 we review some basic notions from probability and cryptography. Our

results follow in the remaining three chapters.

16

The results in Chapter 3 are joint work with Eike Kiltz and Victor Shoup. They

were published, along with further results, in EUROCRYPT 2008 [30] and will appear

in J. Cryptology. The results in Chapter 4 are joint work with Alexandra Boldyreva,

Marc Fischlin and Bogdan Warinschi, and will appear at ASIACRYPT 2009 [16].

The constructions in Chapter 5 are joint work with Chris Peikert and Amit Sahai,

and will appear at CRYPTO 2009 in a paper including independent results by Benny

Applebaum [5]. The counterexamples in Chapter 5 are currently unpublished.

17

CHAPTER II

PRELIMINARIES

In this chapter we review the basic notation and definitions used in subsequent chap-

ters.

2.1 Notation

Let f, g be positive real-valued functions on Z+. We say that f(n) = O(g(n)) if

limn→∞
f(n)
g(n)

is a constant, and f(n) = o(g(n)) if this limit is 0. We write f(n) =

Ω(g(n)) if g(n) = O(f(n)), and f(n) = ω(g(n)) if g(n) = o(f(n)). A function f is

negligible if f(n) = o(n−c) for every c > 0. We say that a sequence of events {En}

occurs with overwhelming probability if Pr[¬En] is negligible.

Let Ψ be a probability distribution. We write Ψn for the n-fold product distribu-

tion of n i.i.d. copies of Ψ. We write x
$← Ψ to indicate that x is sampled according

to Ψ. If X is a set, then we write x
$← X to indicate that x is sampled uniformly at

random from X.

For x ∈ {0, 1}∗, we write |x| to mean the length of x. For equal-length bit strings

x, y, we write x⊕ y for the bit-wise exclusive or (XOR) of x and y.

We write [n] for {1, . . . , n}.

2.2 Algorithms

When describing an algorithm, we write Y ← A(X) to mean that Y is the value

output when A is run on input X. We interpret a randomized algorithm to be deter-

ministic algorithm with an extra input that will represent random choices. We will

refer to this extra input as the algorithm’s internal randomness. If A is a randomized

18

algorithm, we write y
$← A(x) to denote that y is a random variable with distribu-

tion induced by running A with input x and a uniformly chosen internal randomness

(where uniform here means uniform over {0, 1}p(|x|) for some appropriate function p).

We will model our cryptographic schemes and adversaries as algorithms in an

unspecified reasonable model of computation, like RAM machines. When we are

interested in more detailed run-time analysis, we will simply list the dominating

operations which can be translated into any model of computation.

2.3 Encryption schemes

In some of our applications we assume that a security parameter, denoted λ, is an

implicit input, in unary1, to every algorithm (including adversaries). When an algo-

rithm takes no other inputs, we will write the security parameter as an explicit input

to eliminate ambiguities.

2.3.1 Public-Key Encryption

A public-key encryption scheme PKE is composed of three algorithms.

• A probabilistic polynomial-time key-generation algorithm G, which takes λ ∈

Z+ as input and outputs a secret key/public key pair (sk, pk).

• A probabilistic polynomial-time encryption algorithm E, which takes as input

λ ∈ Z+, a public key pk and a message m, and outputs a ciphertext c.

• A deterministic polynomial-time decryption algorithm D, which takes as input

λ ∈ Z+, a secret key sk and a ciphertext c, and outputs a message m or rejects.

We will distinguish the key inputs to E and D by writing them as subscripts, as

in c
$← Epk(m) and m← Dsk(c). We will usually restrict the set of messages allowed

to some set M(λ,pk).

1The intention is that every algorithm will run in time related to λ itself, not the length of a
binary description of λ.

19

To be useful, any encryption scheme must properly decrypt ciphertexts. We

call this requirement correctness. More precisely, we require that for all messages

m ∈ M(λ,pk), we have m = m′ with overwhelming probability, where pk and m′ are

computed as

(sk, pk)
$← G

(
1λ

)
; c

$← Epk(m); m′ ← Dsk(c).

Note that this probability is over the internal randomness of G and E.

2.3.2 Symmetric-Key Encryption

A symmetric-key encryption scheme is a pair of algorithms.

• A probabilistic polynomial-time algorithm E that takes as input λ ∈ Z+, a key

k, and a message m and outputs a ciphertext c.

Here we assume k and m are a bitstrings of lengths determined by λ. It will

sometimes be convenient to allow any m ∈ {0, 1}∗.

• A deterministic polynomial-time algorithm D that takes as input λ ∈ Z+, a key

k, and a ciphertext c. It outputs a message m.

We will also require symmetric-key encryption schemes to be correct. In this case, we

mean for every message m and key k, we require that, with overwhelming probability,

m = m′, where m′ is computed as

c
$← Ek(m); m′ ← Dk(c).

This probability is only over the internal randomness of E.

2.4 Security notions for encryption

2.4.1 Security of Public-Key Encryption

We review two of the standard definitions of security for public-key encryption. The

first is referred to as semantic security under chosen ciphertext attack [68], which is

a strong notion sufficient for most common applications.

20

Definition 1. Let PKE be a public-key encryption scheme. Consider the following

game, played between an adversary A and another algorithm, referred to as a chal-

lenger. The game is parameterized by the security parameter λ.

1. The challenger samples (pk, sk)
$← G(1λ) and gives pk to A.

2. A makes a number of decryption queries to the challenger, where each such

query is a ciphertext ĉ. For each query, the challenger computes m̂ ← Dsk(ĉ)

are returns m̂ to A.

3. A makes one challenge query, which is a pair of equal-length messages (m0, m1).

For this query, the challenger chooses b ∈ {0, 1} at random, computes c
$←

Epk(mb), and returns c to A.

4. A makes more decryption queries, just as in step 2, but with the restriction that

ĉ 6= c.

5. A outputs b̂ ∈ {0, 1}.

We define the advantage of the adversary, AdvCCAA,PKE(λ) to be |Pr[b̂ = b]− 1/2|.

In §3 we will consider schemes that do not explicitly use a security parameter. The

definition above can also be modified to work without using a security parameter. In

particular, key generation produces its output with taking any input, and we define

advantage as a real number in [0, 1] (and not a function of λ).

We will try to bound the quantity AdvCCAA,PKE(λ) precisely when possible. How-

ever, in several contexts it suffices to study the asymptotic behavior of the advantage

as a function of λ. In this case, the scheme PKE is said to be secure against chosen

ciphertext attack if for all efficient adversaries A, this advantage AdvCCAA,PKE(λ) is

negligible (as a function of λ).

In some cases we will be interested in the following weaker type of security called

semantic security under chosen-plaintext attack [48].

21

Definition 2. Chosen-plaintext security is defined exactly the same as above, except

that steps 2 and 4 are skipped in the game. We denote the adversary’s advantage in

this game by AdvCPAA,PKE(λ).

Chosen-plaintext security is weaker than chosen-ciphertext security, but it is still

sufficient for some applications and typically easier to achieve. In the development

of secure encryption, chosen-plaintext security can see be seen as a step towards

chosen-ciphertext security.

2.4.2 Security of Symmetric-Key Encryption

Next we consider security definitions for symmetric-key encryption. Some subtleties

can arise in moving from public-key encryption, such as how we allow the adversary

to request encryptions of messages. This issue has been explored in detail in other

works [10]. We will avoid this distraction by achieving a reasonably strong version

of security when designing schemes, and demanding a relatively weak version when

selecting components for our schemes. We start with the stronger notion, which is

very similar to chosen-ciphertext security in the public-key case.

Definition 3. Let SE be a symmetric-key encryption scheme. Consider the follow-

ing game, played between an adversary A and another algorithm, referred to as a

challenger. The game is parameterized by the security parameter λ.

1. The challenger samples a random key k.

2. A makes a number of encryption queries and decryption queries to the chal-

lenger. Encryption queries consist of a message m; to process these, the chal-

lenger computes c′
$← Ek(m) and returns c′. Decryption queries consist of a

ciphertext Ĉ; the challenger processes these by computing m̂ ← Dsk(ĉ) and re-

turning m̂ to A.

3. A makes one challenge query, which is a pair of equal-length messages (m0, m1).

22

For this query, the challenger chooses b ∈ {0, 1} at random, computes c
$←

Ek(mb), and returns c to A.

4. A makes more encryption and decryption queries, just as in step 2, but with the

restriction that ĉ 6= c in decryption queries.

5. A outputs b̂ ∈ {0, 1}.

We define the advantage of the adversary AdvCCAA,SE(λ) to be |Pr[b̂ = b]− 1/2|.

We say that SE is secure against chosen-ciphertext attack if AdvCCAA,SE(λ) is

negligible for all polynomial-time adversaries A.

In Chapter 3 we will only require symmetric-key encryption that satisfies a weaker

notion of security called one-time semantic security under chosen-ciphertext attack.

This notion is defined exactly as chosen-ciphertext security for symmetric-key encryp-

tion, but with the following differences in the security game. This version completely

skips step 2, and in step 4, we allow the adversary to issue decryption queries but no

encryption queries. We denote the advantage of an adversary A against scheme SE

by AdvOTCCAA,SE(λ) in this case. We will sometimes call schemes that satisfy this

notion symmetric ciphers, in order to acknowledge that one-time CCA schemes may

have deterministic encryption algorithms.

2.5 The Random Oracle Model

Here we formalize the idea of the random oracle model [11].

To analyze a protocol in the random oracle model, we consider a modified version

of the appropriate attack model. We modify the model to allow all algorithms –

including the adversary, the challenger, and the protocol’s algorithms – to access an

oracle that computes a random function. More precisely, before the game starts, a

random function H : {0, 1}∗ → {0, 1}n(λ) is chosen, and then all algorithms can query

H. Alternatively, one can imagine that the game manages the output values of H via

23

lazy sampling. This means that the game maintains a list of past input values to H

that associates them with previous output values. Whenever an algorithm queries H

with an input that has not yet been seen, the game selects a random value in {0, 1}n,

records it in the table and returns that value.

We indicate that we are using the random oracle version of an attack model by

writing ro in the notation for advantage, as in AdvCCAro
PKE,A(λ).

2.6 Security Proofs Using Games

All of the security reductions in this thesis will be organized into a sequence of games.

We will follow an approach similar to the one described by Shoup [74], with some

inspiration from the closely related approach of Bellare and Rogaway[12]. The pri-

mary goal of this approach is to simultaneously make the proofs easier to read and to

verify. An alternative approach, like presenting a monolithic reduction for the entire

proof, seems inferior on both counts.

We provide a brief overview of game-based proofs. The references above provide

a detailed discussion of the nuances involved. In each of our proofs, we will start with

a game determined by the security definition and the scheme at hand. We will then

define a sequence of games, where Game i will be a relatively simple modification of

Game i−1. The idea is that, because we have only changed one portion of the game,

the behavior of the adversary can be shown to be very similar in the two games. We

continue with games until we arrive at a game that is trivial to analyze. In our proofs,

this final game will be a version of the CCA game where the challenger ignores the

challenge query messages submitted by the adversary. It is then trivial to see that no

adversary can win the final game, and then by collecting the relationships between

all of the games, we can conclude that no efficient adversary could win the original

game with any significant advantage.

24

CHAPTER III

THE TWIN DIFFIE-HELLMAN PROBLEM

In this chapter we carry out the plan outlined in §1.2.1. We develop techniques

for designing encryption schemes from Diffie-Hellman problems. Our technique can

be best understood as basing schemes on a new class of computational problems,

which we call twin Diffie-Hellman problems. However, as we will explain below,

schemes based on our new problems are just as well relying on the hardness of more

basic, well studied problems. We show how to use our technique to give several

constructions with attractive features over schemes with similar security properties.

As an additional benefit, our technique greatly simplifies security proofs for these

types of schemes.

We start with some definitions local to this chapter. In subsequent sections we

derive our main result and then show how to apply it to encryption in several contexts.

3.1 Preliminaries

3.1.1 Asymptotic Versus Fixed Parameter Analysis

The definitions of security in §2 used a security parameter to talk about asymptotic

versions of security. In this chapter we dispense with the security parameter in order

to simplify the discussion. In order to precisely define notions like intractable, one

needs to extend these results to the asymptotic case in a natural way, such as the

group scheme approach used by Cramer and Shoup [32]. We stress that extending

our results to this setting is quite straightforward.

25

3.1.2 Target-Collision Resistant Hash Functions

We briefly recall the concept of target collision-resistant hash functions. Let {T(λ)}

be a sequence of probability distributions on functions from {0, 1}∗ to {0, 1}n(λ).

We assume that there is a polynomial-time algorithm for sampling from T(λ) and a

polynomial-time algorithm for evaluating T (x), given the description of a sample T .

To define target collision-resistance we use the following game, which is played

between an adversary and a challenger. It is indexed by λ ∈ Z+.

1. The adversary gives x ∈ {0, 1}∗ to the challenger.

2. The challenger runs the sampler to draw a sample T from T(λ). It gives the

description of T to the adversary.

3. The adversary gives a second element x′ ∈ {0, 1}∗ to the challenger.

We define the advantage AdvTCRA,T(λ) of A as Pr[x 6= x′ ∧ T (x) = T (x′)]. We say

that T(λ) is target collision-resistant if AdvTCRA,T(λ) is negligible for every poly-time

A. In our schemes below, we assume that a sample T from T(λ) is implicitly available

in the public parameters and simply write T(x) when evaluating the hash function.

3.1.3 Identity-Based Encryption

Identity-based encryption [73] is a version of encryption meant to mitigate problems

with key distribution. Instead of using one public key per user, it allows one to use

any identity (i.e., bit string) as a public key. The encryptor only needs to obtain a

master public key instead of a new public key for each user.

An IBE scheme consists of algorithms for master key generation, user key gen-

eration, encryption, and decryption. The master key generation algorithm outputs

a random private/public master key pair. The user key generation algorithm uses

the private master key and outputs a private user key for any identity. To encrypt

a message for a user, one inputs the master public key and that user’s identity to

26

the encryption algorithm. Decryption then uses the user’s private key to recover the

message.

The concept of chosen ciphertext security naturally adapts to IBE. For an adver-

sary A and IBE scheme IBE, the game is as follows:

1. The challenger generates a master public key/secret key pair, and gives the

master public key to A.

2. A makes user secret key queries and decryption queries to the challenger. Each

user secret key query is an identity îd , and the challenger responds by running

the user secret key generation on îd and sending that key to A. Each decryp-

tion query is an identity îd and ciphertext ĉ, and the challenger responds by

decrypting ĉ using the secret key for id and sending the result to A.

3. A makes one challenge query, which is an identity id and a pair of equal-length

messages (m0, m1). The challenger chooses b ∈ {0, 1} at random, encrypts mb

for id , and sends the resulting ciphertext c to A. A is not allowed to choose id

after requesting the user private key for id in the previous step.

4. A makes more user secret key queries and decryption queries, just as in step 2,

but with the restriction that îd 6= id in user secret key queries and (îd , ĉ) 6=

(id , c) in decryption queries.

5. A outputs b̂ ∈ {0, 1}.

As before, we define the advantage AdvCCAA,IBE as |Pr[b̂ = b] − 1/2|. When a hash

function is modeled as a random oracle, we denote the advantage by AdvCCAro
A,IBE.

3.2 Hashed ElGamal Encryption and the Diffie-Hellman
Problem

To motivate our results below, we review the “hashed” ElGamal encryption scheme [1],

which, along with its variants, has been intensely studied and is widely deployed in

27

practice [41, 61, 75, 31, 7, 1, 32, 55]. Below we will note how a natural issue with

proving the security of hashed ElGamal leads to a need for decision oracles in security

reductions.

The hashed ElGamal public-key encryption scheme makes use of a group G of

prime order q with generator g. It also uses a hash function H, and a symmetric

cipher (E, D). A public key for this scheme is a random group element X ∈ G, with

corresponding secret key x ∈ Zq, where X = gx. To encrypt a message m, one chooses

a random y ∈ Zq, computes

Y ← gy, Z ← Xy, k ← H(Y, Z), c
$← Ek(m),

and the ciphertext is (Y, c). Decryption works in the obvious way: given the ciphertext

(Y, c), and secret key x, one computes

Z ← Y x, k ← H(Y, Z), m← Dk(c).

Define the function dh : G×G→ G by

dh(X, Y) = Z, where X = gx, Y = gy, and Z = gxy. (3.2.1)

The Diffie-Hellman (DH) problem is to compute dh(X, Y) for random X, Y ∈ G.

The DH assumption asserts that this problem is intractable for polynomial-time al-

gorithms. Clearly, the hashed ElGamal encryption scheme is secure only if it is hard

to compute Z = dh(X, Y), given the values X and Y – that is, only if the DH as-

sumption holds. However, this assumption is not sufficient to establish the security

of hashed ElGamal against a chosen ciphertext attack, regardless of what security

properties the hash function H may enjoy.

To illustrate the problem, suppose that an adversary selects group elements Ŷ

and Ẑ in some arbitrary way, and computes k̂ ← H(Ŷ , Ẑ) and ĉ
$← Ek̂(m̂) for some

arbitrary message m̂. Further, suppose the adversary gives the ciphertext (Ŷ , ĉ) to a

“decryption oracle,” obtaining the decryption m. Now, it is very likely that m̂ = m if

and only if Ẑ = dh(X, Ŷ). Thus, the decryption oracle can be used by the adversary

28

as an oracle to answer questions of the form “is dh(X, Ŷ) = Ẑ?” for group elements

Ŷ and Ẑ of the adversary’s choosing. In general, the adversary would not be able to

efficiently answer such questions on his own, and so the decryption oracle is leaking

some information about that secret key x which could conceivably be used to break

the encryption scheme.

The Strong DH Assumption. Therefore, to establish the security of hashed

ElGamal against chosen ciphertext attack, we need a stronger assumption. For

X, Ŷ , Ẑ ∈ G, define the predicate

dhp(X, Y, Z) =

 1 if dh(X, Y) = Z

0 otherwise

At a bare minimum, we need to assume that it is hard to compute dh(X,Y), given

random X, Y ∈ G, along with access to a decision oracle for the predicate dhp(X, ·, ·),

which on input (Ŷ , Ẑ), returns dhp(X, Ŷ , Ẑ). This assumption is called the strong DH

assumption [1].1 Moreover, it is not hard to prove, if H is modeled as a random oracle,

that hashed ElGamal is secure against chosen ciphertext attack under the strong DH

assumption, and under the assumption that the underlying symmetric cipher is itself

secure against chosen ciphertext attack. This was proved in [1, 55], for a variant

scheme in which Y is not included in the hash; including Y in the hash gives a more

efficient security reduction (see [32]). Note that the strong DH assumption is different

(and weaker) than the so-called gap DH assumption [61] where an adversary gets

access to a full decision oracle for the predicate dhp(·, ·, ·), which on input (X̂, Ŷ , Ẑ),

returns dhp(X̂, Ŷ , Ẑ).

1We remark that in more recent papers the name strong DH assumption also sometimes refers to
a different assumption defined over bilinear maps [20]. We follow the original terminology from [1].

29

3.3 The Twin Diffie-Hellman Problem

In this section we give our new problem, called the twin Diffie-Hellman problem, and

prove that it is no harder than the DH problem, even with the help of a decision

oracle.

Again, let G be a cyclic group with generator g, and of prime order q. Let dh be

defined as in (3.2.1). Define the function

2dh : G3 → G2

(X1, X2, Y) 7→ (dh(X1, Y), dh(X2, Y)).

We call this the twin DH function. We also define a corresponding twin DH predicate:

2dhp(X1, X2, Y, Z1, Z2) =

 1 if 2dh(X1, X2, Y) = (Z1, Z2)

0 otherwise

The twin DH assumption states it is hard to compute 2dh(X1, X2, Y), given random

X1, X2, Y ∈ G. It is clear that the DH assumption implies the twin DH assumption.

The strong twin DH assumption states that it is hard to compute 2dh(X1, X2, Y),

given random X1, X2, Y ∈ G, along with access to a decision oracle for the predicate

2dhp(X1, X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2), returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

In this section we show that the DH assumption implies the strong twin DH

assumption. While this result has direct applications, the basic tool that is used

to prove the theorem, which is a kind of “trapdoor test,” has found even wider

application.

Roughly stated, the trapdoor test works as follows: given a random group element

X1, we can efficiently construct a random group element X2, together with a secret

“trapdoor” τ , such that

• X1 and X2 are independent (as random variables), and

• if we are given group elements Ŷ , Ẑ1, Ẑ2, computed as functions of X1 and X2

30

(but not τ), then using τ , we can efficiently evaluate the predicate

2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2)

while making a mistake with only negligible probability.

The purpose of the trapdoor test will be intuitively clear in the proof of Theorem 2:

in order to reduce the strong twin DH assumption to the DH assumption, the DH

adversary will have to answer decision oracle queries without knowing the discrete

logarithms of the elements of the strong twin DH problem instance. This tool gives

us a method for doing so.

Theorem 1 (Trapdoor Test). Let G be a cyclic group of prime order q, generated

by g ∈ G. Suppose X1, r, s are mutually independent random variables, where X1

takes values in G, and each of r, s is uniformly distributed over Zq, and define the

random variable X2 = gs/Xr
1 . Further, suppose that Ŷ , Ẑ1, Ẑ2 are random variables

taking values in G, each of which is defined as some function of X1 and X2. Then

we have:

(i) X2 is uniformly distributed over G;

(ii) X1 and X2 are independent;

(iii) if X1 = gx1 and X2 = gx2, then the probability that the truth value of

Ẑr
1Ẑ2 = Ŷ s (3.3.1)

does not agree with the truth value of

Ẑ1 = Ŷ x1 ∧ Ẑ2 = Ŷ x2 (3.3.2)

is at most 1/q; moreover, if (3.3.2) holds, then (3.3.1) certainly holds.

Proof. Observe that s = rx1 +x2. It is easy to verify that X2 is uniformly distributed

over G, and that X1, X2, r are mutually independent, from which (i) and (ii) follow.

31

To prove (iii), condition on fixed values of X1 and X2. In the resulting conditional

probability space, r is uniformly distributed over Zq, while x1, x2, Ŷ , Ẑ1, and Ẑ2 are

fixed. If (3.3.2) holds, then by substituting the two equations in (3.3.2) into (3.3.1),

we see that (3.3.1) certainly holds. Conversely, if (3.3.2) does not hold, we show that

(3.3.1) holds with probability at most 1/q. Observe that (3.3.1) is equivalent to

(Ẑ1/Ŷ
x1)r = Ŷ x2/Ẑ2. (3.3.3)

It is not hard to see that if Ẑ1 = Ŷ x1 and Ẑ2 6= Ŷ x2 , then (3.3.3) certainly does not

hold. This leaves us with the case Ẑ1 6= Ŷ x1 . But in this case, the left hand side of

(3.3.3) is a random element of G (since r is uniformly distributed over Zq), but the

right hand side is a fixed element of G. Thus, (3.3.3) holds with probability 1/q in

this case.

3.3.1 Main Result

We can easily prove Theorem 2, our main result.

So that we can give a concrete security result, let us define some terms. For a

group G and an adversary B, let us define its DH advantage, denoted AdvDHB,G,

to be the probability that B computes dh(X, Y), given random X, Y ∈ G. For an

adversary A, let us define his strong twin DH advantage, denoted Adv2DHA,G, to be

the probability that A computes 2dh(X1, X2, Y), given random X1, X2, Y ∈ G, along

with access to a decision oracle for the predicate 2dhp(X1, X2, ·, ·, ·), which on input

Ŷ , Ẑ1, Ẑ2, returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

Theorem 2. Suppose A is a strong twin DH adversary against the group G that

makes at most Qd queries to its decision oracle, and runs in time at most τ . Then

there exists a DH adversary B with the following properties: B runs in time at most τ ,

plus the time to perform O(Qd log q) group operations and some minor bookkeeping;

32

moreover,

Adv2DHA,G ≤ AdvDHB,G +
Qd

q
.

In addition, if B does not output “failure,” then its output is correct with probability

at least 1− 1/q.

Proof. Our DH adversary B works as follows, given a challenge instance (X,Y) of the

DH problem. First, B chooses r, s ∈ Zq at random, sets X1 ← X and X2 ← gs/Xr
1 ,

and gives A the challenge instance (X1, X2, Y). Second, B processes each decision

query (Ŷ , Ẑ1, Ẑ2) by testing if Ẑ1Ẑ
r
2 = Ŷ s holds. Finally, if and when A outputs

(Z1, Z2), B tests if this output is correct by testing if Z1Z
r
2 = Y s holds; if this does

not hold, then B outputs “failure,” and otherwise, B outputs Z1. The proof is easily

completed using Theorem 1.

3.4 Twin ElGamal Encryption

We now describe our main application, which is a new public-key encryption scheme

called twin ElGamal, which we denote by PKE2dh. This scheme makes use of a hash

function H and a symmetric cipher (E, D). It also uses a group G of prime order q

with generator g. A public key for this scheme is a pair of random group elements

(X1, X2), with corresponding secret key (x1, x2), where Xi = gxi for i = 1, 2. To

encrypt a message m, one chooses a random y ∈ Zq and computes

Y ← gy, Z1 ← Xy
1 , Z2 ← Xy

2 , k ← H(Y, Z1, Z2), c
$← Ek(m).

The ciphertext is (Y, c). Decryption works in the obvious way: given the ciphertext

(Y, c), and secret key (x1, x2), one computes

Z1 ← Y x1 , Z2 ← Y x2 , k ← H(Y, Z1, Z2), m← Dk(c).

We note that the ciphertexts for this scheme are extremely compact — no re-

dundancy is added, as in the Fujisaki-Okamoto transformation [41]. Moreover, the

33

security reduction for our scheme is very tight. We remark that this seems to be

the first DH-based encryption scheme with short ciphertexts. All other known con-

structions either add redundancy to the ciphertext [41, 61, 75, 31, 7] or resort to

assumptions stronger than DH [1, 32, 55].

We now analyze the security of the twin ElGamal encryption scheme. The security

will be based on the strong twin DH assumption, of course, and this allows us to

borrow the “oracle patching” technique from previous analyzes of hashed ElGamal

encryption based on the strong DH assumption [32]. We stress, however, that unlike

previous applications of this technique, the end result is a scheme based on the original

DH assumption.

Theorem 3. Suppose H is modeled as a random oracle and that the DH assumption

holds. Then PKE2dh is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack

against PKE2dh in the random oracle model, and that A runs in time τ , and makes at

most Qh hash queries and Qd decryption queries. Then there exists a DH adversary

Bdh and an adversary Bsym that carries out a chosen ciphertext attack against SE,

such that both Bdh and Bsym run in time at most τ , plus the time to perform O((Qh +

Qd) log q) group operations; moreover,

AdvCCAro
A,PKE2dh

≤ AdvDHBdh,G + AdvCCABsym,SE +
Qh

q
.

Proof. In light of Theorem 2, the proof is fairly standard. We proceed with a sequence

of games.

Game 0. Let Game 0 be the original chosen ciphertext attack game, and let S0 be

the event that b̂ = b in this game.

In this game, the challenger generates the secret key (x1, x2) and computes the

corresponding public key (X1, X2). We have to describe how the random oracle is

implemented by the challenger. This is done in a special way to facilitate the proof.

34

The challenger implements the random oracle using an associative array L, indexed

by elements of G3, where each element in the array takes an initial, default value of

⊥, indicating that it is undefined. In addition, the challenger prepares some values

in advance, to be used later as part of the ciphertext generated in response to the

adversary’s challenge query. Namely, the challenger chooses a random symmetric key

k, and a random y ∈ Zq, sets Y ← gy, Z1 ← Xy
1 , and Z2 ← Xy

2 . The challenger also

sets L[Y, Z1, Z2]← k, which intuitively represents the fact that H(Y, Z1, Z2) = k.

Now, the challenger sends the public key to the adversary. Whenever the adversary

makes a random oracle query, the challenger sends the corresponding entry in L to

the adversary, initializing it, if necessary, to a random symmetric key if it is currently

⊥.

To process decryption queries in step 2 of the chosen ciphertext attack game,

suppose the ciphertext is (Ŷ , ĉ). If Ŷ = Y , then the challenger simply responds with

Dk(ĉ). Otherwise, the challenger decrypts as usual, using the secret key (x1, x2), and

processing its own random oracle queries using L, just as above.

To process the challenge query in step 3, the challenger uses the values Y, Z1, Z2, k

generated in the initialization step, and computes c
$← Ek(mb). The ciphertext (Y, c)

is given to the adversary. Decryption queries in step 4 are processed just as in step 2.

That finishes the description of Game 0. Despite the syntactic differences, it is

clear that

AdvCCAro
A,PKE2dh

= |Pr[S0]− 1/2|. (3.4.1)

Game 1. We now describe Game 1, which is the same as Game 0, but with

the following difference: in the initialization step, the challenger does not initialize

L[Y, Z1, Z2]. Everything else remains exactly the same.

Let S1 be the event that b̂ = b in Game 1. Let F be the event that the adversary

queries the random oracle at (Y, Z1, Z2) in Game 1. Note that the challenger never

35

queries the random oracle at this point, due to the special way that decryption and

challenge queries are processed. Since both Games 0 and 1 proceed identically unless

F occurs, we have

|Pr[S1]− Pr[S0]| ≤ Pr[F]. (3.4.2)

We claim that

Pr[F] ≤ Adv2DHB2dh,G, (3.4.3)

where B2dh is an efficient strong twin DH adversary that makes at most Qh decision

oracle queries. We sketch at a very high level how B2dh works. Basically, B2dh runs

just like the challenger in Game 1, but for every random oracle query (Ŷ , Ẑ1, Ẑ2), B2dh

sends this triple to its own decision oracle, and marks it “good” or “bad” accordingly

(this is the only time B2dh uses its decision oracle). Using this information, B2dh can

easily process decryption requests without using the secret key: given a ciphertext

(Ŷ , ĉ) with Ŷ 6= Y , it checks if it has already seen a “good” triple of the form (Ŷ , ·, ·)

among the random oracle queries; if so, it uses the key associated with that triple; if

not, it generates a random key, and it will stay on the lookout for a “good” triple of

the form (Ŷ , ·, ·) in future random oracle queries, associating this key with that triple

to keep things consistent. At the end of the game, B2dh checks if it has seen a “good”

triple of the form (Y, ·, ·); if so, it outputs the last two components.

Of course, Theorem 1 gives us an efficient DH adversary Bdh with

Adv2DHB2dh,G ≤ AdvDHBdh,G +
Qh

q
. (3.4.4)

Finally, it is easy to see that in Game 1, the adversary is essentially playing the

chosen ciphertext attack game against SE. Thus, there is an efficient adversary Bsym

such that

|Pr[S1]− 1/2| = AdvOTCCABsym,SE. (3.4.5)

The theorem now follows by combining (3.4.1)–(3.4.5).

36

Instantiating PKE2dh with a length-preserving one-time CCA secure symmetric

encryption scheme (see Section 2.4.2 and [67, 50, 49, 51] for constructions), we obtain

a DH-based chosen-ciphertext secure encryption scheme with the following properties.

Optimal ciphertext overhead. The ciphertext overhead, i.e. ciphertext size mi-

nus plaintext size, is exactly one group element, which is optimal for Diffie-

Hellman based schemes.

Encryption/decryption efficiency. Encryption needs three exponentiations in G,

one of which is to the fixed-base g (that can be shared among many public-keys).

Decryption only needs one sequential exponentiation in G to compute Y x1 and

Y x2 simultaneously, which is nearly as efficient as one single exponentiation

(see, e.g., [57]).

3.5 A Variant of the Cramer-Shoup Encryption Scheme

In this section we show how to apply our trapdoor test to construct public-key encryp-

tion schemes with security proofs without random oracles. We give a new assumption

based on the decisional Diffie-Hellman problem and describe several schemes with

varying efficiency and security properties.

3.5.1 The DDH and Twin DDH Assumptions

Let G be a group of order q and let g be a generator of G. Distinguishing the two

distributions (X,Y, dh(X, Y)) and (X, Y, Z) for random X, Y, Z ∈ G is the decision

Diffie-Hellman (DDH) problem. For an adversary B, let us define his DDH advantage,

denoted AdvDDHB,G, by

AdvDDHB,G = Pr[B(X,Y, dh(X, Y)) = 1]− Pr[B(X, Y, Z) = 1], (3.5.1)

where X,Y, Z are uniform random variables on G. The DDH assumption states that

the DDH problem is hard.

37

We consider a natural decision variant of the twin DH problem, the twin DDH

problem is distinguishing the two distributions (X1, X2, Y, dh(X1, Y)) and (X1, X2, Y, Z)

for random X1, X2, Y, Z ∈ G. The strong twin DDH assumption states that the twin

DDH problem is hard, even given access to a decision oracle for the predicate for

2dhp(X1, X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2) returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2). (Note

the value dh(X2, Y) is never provided as input to the distinguisher since otherwise

the strong twin DDH assumption could be trivially broken using the 2dhp oracle.)

For an adversary B, we define its strong twin DDH advantage, denoted Adv2DDHB,G,

by

Adv2DDHB,G = Pr[B(X1, X2, Y, dh(X1, Y)) = 1]− Pr[B(X1, X2, Y, Z1) = 1], (3.5.2)

where X1, X2, Y, Z1 are uniform random variables on G, and B has access to an oracle

for 2dhp(X1, X2, ·, ·, ·).

We also consider potentially weaker “hashed” variants of the above two assump-

tions. For a hash function H : G→ {0, 1}κ, the hashed DDH problem is to distinguish

the two distributions (X, Y, H(dh(X, Y)) and (X, Y, k), for random X, Y ∈ G and

k ∈ {0, 1}κ. The hashed DDH assumption states that the hashed DDH problem is

hard. Finally, the strong twin hashed DDH assumption states that it is hard to distin-

guish the distributions (X1, X2, Y, H(dh(X, Y)) and (X1, X2, Y, k), even with access

to an oracle computing 2dhp(X1, X2, ·, ·, ·), where X1, X2, Y ∈ G and k ∈ {0, 1}κ are

random.

We note that the (strong twin) hashed DDH assumption simplifies to the (strong

twin) DDH assumption if the range of the hash function is G instead of {0, 1}κ and

H is the identity (i.e., it maps Z ∈ G to Z ∈ G). Furthermore, there are natural

groups (such as non-prime-order groups like Zp) where the DDH problem is known

to be easy yet the hashed DDH problem can still plausibly assumed to be hard for

a reasonable choice of the hash function [43]. If H is modeled as random oracle then

the hashed DDH and the DH assumptions become equivalent.

38

Using the trapdoor test in Theorem 1, we can prove an analogue of Theorem 2.

Theorem 4. The (hashed) DDH assumption holds if and only if the strong twin

(hashed) DDH assumption holds.

In particular, suppose A is a strong twin (hashed) DDH adversary that makes at

most Qd queries to its decision oracle, and runs in time at most τ . Then there exists

a (hashed) DDH adversary B with the following properties: B runs in time at most τ ,

plus the time to perform O(Qd log q) group operations and some minor bookkeeping;

moreover,

Adv2DDHA,G ≤ AdvDDHB,G +
Qd

q
.

3.5.2 A Variant of the Cramer-Shoup Scheme

We now can consider the following encryption scheme which we call PKEecs. This

scheme makes use of a symmetric cipher (E, D) and a hash function T : G → Zq

which we assume to be target collision-resistant (see §3.1.2).

This scheme uses a group G of prime order q with generator g. A public key

for this scheme is a tuple of random group elements (X1, X̃1, X2, X̃2) ∈ G4, with

corresponding secret key (x1, x̃1, x2, x̃2), where Xi = gxi and X̃i = gx̃i for i = 1, 2. To

encrypt a message m, one chooses a random y ∈ Zq, computes

Y ← gy, t← T(Y), Z1 ← (X t
1X̃1)

y, Z2 ← (X t
2X̃2)

y, k ← H(Xy
1), c

$← Ek(m),

and the ciphertext is (Y, Z1, Z2, c). Decryption works as follows: given the ciphertext

(Y, Z1, Z2, c) and secret key (x1, x̃1, x2, x̃2), one computes t← T(Y) and checks if

Y x1t+x̃1 = Z1 and Y x2t+x̃2 = Z2. (3.5.3)

If not, then one rejects the ciphertext. (In this case, we say the ciphertext is not

consistent). Otherwise, compute

k ← H(Y x1), m← Dk(c).

39

We remark that since |G| = |Zq| = q, hash function T could be a bijection, and

hence target collision-resistant unconditionally. See [23] for efficient constructions for

certain groups G.

Relation to Cramer-Shoup. Our scheme is very similar to the one by Cramer

and Shoup [32]. Syntactically, the difference is that in Cramer-Shoup the value Z1

is computed as Z1 = Xy
3 (where X3 is another random group element in the public

key) and t is computed as t = T(Y, Z1). However, our variant allows for a simple

security proof based on the hashed DDH assumption whereas for the Cramer-Shoup

scheme only proofs based on the DDH assumption are known (and the known proofs

do not seem to extend to the hashed case because the reductions all apply algebraic

operations to the challenge input).

We now show that, using the trapdoor test, PKEecs allows for a very elementary

proof under the hashed DDH assumption. We stress that are security proof is not in

the random oracle model.

Theorem 5. Suppose T is a target collision resistant hash function. Further, suppose

the hashed DDH assumption holds, and that the symmetric cipher SE = (E, D) is se-

cure against chosen ciphertext attack. Then PKEecs is secure against chosen ciphertext

attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack

against PKEecs and that A runs in time τ , and makes at most Qd decryption queries.

Then there exists a hashed DDH adversary Bddh, an adversary Bsym that carries out

a chosen ciphertext attack against SE, and a TCR adversary Btcr such that both Bddh,

Bsym and Btcr run in time at most τ , plus the time to perform O(Qd log q) group

operations; moreover,

AdvCCAA,PKE ecs ≤ AdvDDHBddh,G,H + AdvCCABsym,SE + AdvTCRBtcr,T +
Qd

q
.

Proof. We proceed with a sequence of games.

40

Game 0. Let Game 0 be the original chosen ciphertext attack game, and let S0 be

the event that b̂ = b in this game. It is apparent that

AdvCCAA,PKE ecs = |Pr[S0]− 1/2|. (3.5.4)

Game 1. Let Game 1 be like Game 0, but with the following difference. Game 1

aborts if the adversary, at any time, makes a decryption query containing a Ŷ such

that Ŷ 6= Y and T(Ŷ) = T(Y) where Y comes from the challenge ciphertext. Call

this event F . It is clear that

|Pr[S1]− Pr[S0]| = Pr[F], (3.5.5)

Using a standard argument from [32] it is easy to show that

Pr[F] ≤ AdvTCRBtcr,T, (3.5.6)

where Btcr is an adversary as specified in the theorem. We outline how to prove this

inequality. In the TCR game, the adversary Btcr first selects a random Y from G and

gives it to the TCR challenger, which returns a sampled hash function T . Btcr proceeds

to simulate the entire chosen ciphertext game for A using T . When generating the

challenge ciphertext, Btcr uses its sample Y . If A ever submits a decryption query

that includes Ŷ such that T (Ŷ) = T (Y), then Btcr returns Ŷ to the TCR challenger.

If A never submits such a query, then Btcr chooses an arbitrary second output. It is

apparent that the game simulated by Btcr is exactly like Game 1, and that whenever

the event F occurs, Btcr wins the TCR game. The inequality follows.

Game 2. Let Game 2 be as Game 1 with the following differences. For computing

the public-key the experiment picks x1, x2, y, a1, a2 ∈ Zq at random and computes

X1 = gx1 , X2 = gx2 , and Y = gy. Next, it computes t← T(Y) and

X̃1 ← X−t
1 ga1 , X̃2 ← X−t

2 ga2 .

41

Note that the way the public-key is setup uses a technique to prove selective-ID

security for IBE schemes [19].

The challenge ciphertext (Y, Z1, Z2, c) for message mb is computed as

t← T(Y), Z1 ← Y a1 , Z2 ← Y a2 , k ← H(Xy
1), c

$← Ek(mb). (3.5.7)

This is a correctly distributed ciphertext for mb and randomness y = logg(Y) since,

for i = 1, 2, (X t
i X̃i)

y = (X t−t
i gai)y = (gai)y = Y ai = Zi. We can assume (Y, Z1, Z2, k)

to be computed in the beginning of the experiment since they are independent of

m0, m1.

A decryption query for ciphertext (Ŷ , Ẑ1, Ẑ2, ĉ) is answered as follows. Compute

t̂ = T(Ŷ). If t = t̂ then verify consistency by checking if Z1 = Ẑ1 and Z2 = Ẑ2. If the

ciphertext is consistent then use the challenge key k defined in (3.5.7) to decrypt ĉ. If

t 6= t̂ then proceed as follows. For i = 1, 2, compute Z̄i = (Ẑi/Ŷ
ai)1/(t̂−t). Consistency

of the ciphertext is verified by checking if

Ŷ x1 = Z̄1 and Ŷ x2 = Z̄2. (3.5.8)

Let ŷ = logg Ŷ . The value Ẑi was correctly generated iff Ẑi = (X t̂
i X̃i)

ŷ = (X t̂−t
i gai)ŷ =

(Ŷ xi)t̂−t · Ŷ ai which is equivalent to Z̄i = Ŷ xi . Hence, (3.5.8) is equivalent to the test

from the original scheme (3.5.3). If the ciphertext is consistent then one can use the

symmetric key k̂ = H(Z̄1) = H(Ŷ x1) to decrypt ĉ and return m̂ = Dk̂(ĉ).

Let S2 be the event that b̂ = b in this game. As we have seen,

Pr[S2] = Pr[S1]. (3.5.9)

Game 3. Let Game 3 be as Game 2 except that the value k used in the challenge

ciphertext is now chosen at random. We claim that

|Pr[S3]− Pr[S2]| ≤ Adv2DDHB2ddh,G,H, (3.5.10)

where B2ddh is an efficient strong twin hashed DDH adversary that makes at most

Qd queries to the decision oracle. B2ddh is defined as follows. Using the values

42

(X1, X2, Y, k) from its challenge (where either k = H(dh(X1, Y)) or k is random), ad-

versary B2ddh runs (without knowing x1, x2, y) the experiment as described in Game 2

using k as the challenge key in (3.5.7) to encrypt mb. Note that the only point where

Games 2 and 3 make use of x1 and x2 is the consistency check (3.5.8) which B2ddh

equivalently implements using the 2dhp oracle, i.e. by checking if

2dhp(X1, X2, Ŷ , Z̄1, Z̄2)

holds. We have that if k = H(dh(X1, Y)) ∈ {0, 1}κ, this perfectly simulates Game 2,

whereas if k ∈ {0, 1}κ is random this perfectly simulates Game 3. This proves (3.5.10).

Finally, it is easy to see that in Game 3, the adversary is essentially playing the

chosen ciphertext attack game against SE. Thus, there is an efficient adversary Bsym

such that

|Pr[S3]− 1/2| = AdvCCABsym,SE. (3.5.11)

The theorem now follows by combining (3.5.4)–(3.5.11) with Theorem 4.

3.5.3 A Variant with Shorter Ciphertexts

Consider a ciphertext in the above scheme that is of the form (Y = gr, Z1 =

(X t
1X̃1)

r′ , Z2, c) with r 6= r′. Such a ciphertext is inconsistent and should therefore

be rejected by Equation (3.5.3) in the decryption algorithm. Essentially, the trap-

door test says that in the view of the adversary, the unique value Z2 that leads the

simulation (as described in the proof of Theorem 5) to falsely accept such ciphertexts

is a uniformly distributed group element. Therefore, the adversary can never guess

this “bad Z2” and, with high probability, the simulation of the CCA experiment is

correct.

With this intuition it is easy to see that one can as well replace Z2 ∈ G in

the ciphertext by Z ′
2 = KDF(Z2) ∈ {0, 1}k, where KDF : G → {0, 1}k is a secure

43

key-derivation function. (For uniform X ∈ G, KDF(X) is computationally indistin-

guishable from an uniform bitstring in {0, 1}k.) Accordingly, decryption is modified

to check Z ′
2 = KDF(Y x2t+x̃2). This variant shortens the ciphertexts by replacing a

group element by a bitstring in {0, 1}k.

Yet another variant uses the value Z2 directly as a source for an integrity check

of the symmetric cipher. Here we assume that symmetric encryption satisfies the

stronger notion of (one-time) authenticated encryption [52]. Such a ciphertext can,

for example, be obtained by combining a one-time pad with a message authenticated

code (MAC). The idea is to move the value Z2 from the ciphertext into the symmet-

ric key which we re-define as k = H(Xy
1 · Z2) = H(Xy

1 · (X t
2X̃2)

y). Now, if (Y, Z1) is

inconsistent (in the above sense that r 6= r′) then the value for Z2 used in the simula-

tion is random and will make the symmetric key k essentially look random (from the

adversary’s view). Consequently, the authenticity property of the symmetric cipher

makes the simulated decryption algorithm reject this ciphertext. After applying one

more simplification (defining Z2 = Xy
2) we get the following scheme which we call

PKEfkd.

Public and secret keys as the same as in PKEecs with the difference that the element

X̃2 is no longer needed in the public-key. To encrypt a message m, one chooses a

random y ∈ Zq, computes

Y ← gy, t← T(Y), Z1 ← (X t
1X̃1)

y, k ← H(Xy
2), c

$← Ek(m),

and the ciphertext is (Y, Z1, c). Decryption works as follows: given the ciphertext

(Y, Z1, c), and secret key (x1, x̃1, x2), one computes t← T(Y) and checks if

Y x1t+x̃1 = Z1.

If not, reject; otherwise, compute

k ← H(Y x2), m← Dk(c).

44

This scheme is essentially the public-key encryption scheme presented in [52]. Here,

using the trapdoor test we offer a different and maybe simpler interpretation of its

security.

Theorem 6. Suppose T is a target collision resistant hash function. Further, suppose

the hashed DDH assumption holds, and that the symmetric cipher SE = (E, D) is

secure in the sense of authenticated encryption. Then PKEfkd is secure against chosen

ciphertext attack.

A proof and a more precise security statement can be looked up in [52] or can

alternatively be obtained by modifying the proof of Theorem 5 as described above.

We remark that even though it is not explicitly mentioned in [52] their original proof

already implies security of the PKEfkd scheme based on the hashed DDH assumption.

3.5.4 A Variant with Security From the DH Assumption

We now consider an extension of PKEecs that achieves security based on the (computa-

tional) DH assumption. The idea is to first extend the public keys and ciphertexts to

have several Xi and Zi terms, respectively, and then use the Goldreich-Levin hard-core

function [47, 46] as the hash function to extract symmetric key bits. Because security

depends on the reduction to the hard-coreness of the function, the reduction is not

very tight, and so we carry out the analysis in asymptotic terms. Below, we denote

by fgl the Goldreich-Levin hard-core function for dh’(X, Y, R) = (dh(X, Y), R).

Let κ be the security parameter, and for simplicity we assume that it is also the

length (in bits) of the symmetric keys for (E, D). Let ν = O(log κ) be some integer

that divides κ, and let ` = κ/ν. In this scheme, the secret key now consists of 2(`+1)

random elements of Zp, denoted xi, x̃i for i = 1, . . . , `+1. The public key contains the

2(` + 1) corresponding group elements Xi = gxi , X̃i = gx̃i , for i = 1, . . . , ` + 1, along

with a random bit string R of length long enough to evaluate a hard-core function

with ν output bits (u = 2 log |G| bits are sufficient). To encrypt a message m, one

45

chooses a random y ∈ Zq and computes

Y ← gy, t← T(Y), Zi ← (X t
i X̃i)

y for i = 1, . . . , ` + 1.

Then one sets ki ← fgl(X
y
i , R) ∈ {0, 1}ν (i = 1, . . . , `). Note that X`+1, X̃`+1, and

Z`+1 are not used for key derivation. Finally, a concatenation of all ki yields a

symmetric key k ∈ {0, 1}κ that is used to encrypt m as c
$← Ek(m). The ciphertext

is (Y, Z1, . . . , Z`+1, c). Decryption first verifies the consistency of (Y, Z1, . . . , Z`+1, c)

by checking if Y xit+x̃i = Zi for all i = 1, . . . , ` + 1. Then the key k is reconstructed

as the concatenation of ki = fgl(Y
xi , R) for i = 1, . . . , `, and finally m is recovered by

computing m← Dk(c).

In order to analyze this scheme we will need the following version of the Goldreich-

Levin theorem.

Theorem 7. Suppose that Agl is a probabilistic poly-time algorithm such that, given

(X, Y, R, k) as input, Agl distinguishes k = fgl(dh(X, Y), R) from a uniform string

with non-negligible advantage, for random X, Y ∈ G and random R ∈ {0, 1}u. Then

there exists a probabilistic poly-time algorithm Adh that computes dh(X, Y) with non-

negligible probability for random X, Y .

Using our techniques, it also not hard to show that this theorem still holds if

we assume that Agl additionally gets as input a random X ′ ∈ G and has access to

an oracle computing 2dhp(X, X ′, ·, ·, ·). We will use this augmented version in our

analysis below.

Theorem 8. Suppose T is a target collision resistant hash function. Further, suppose

the DH assumption holds, and that the symmetric cipher SE = (E, D) is secure against

chosen ciphertext attack. Then PKEdh is secure against chosen ciphertext attack.

Proof. We proceed with a sequence of games. For each i, let Si be the event that

b̂ = b in Game i.

46

Game 0. We define Game 0 to be the original CCA game that A plays against

PKEdh. By definition,

|Pr[S0]− 1/2| = AdvCCAA,PKEdh
(3.5.12)

Game 1. Game 1 is the same as Game 0, except now if the adversary asks for a

decryption of a ciphertext containing Ŷ 6= Y but T(Ŷ) = T(Y), where Y is from the

challenge ciphertext, then the game aborts. By the target-collision resistance of T,

we have that

|Pr[S1]− Pr[S0]| ≤ negl(κ). (3.5.13)

The proof of this inequality is almost exactly like transition between Games 0 and 1

in the proof of Theorem 5, and is omitted.

Game 2. Game 2 is the same as Game 1, except that k is set to a uniform and

independent bit string. We claim that

|Pr[S2]− Pr[S1]| ≤ negl(κ). (3.5.14)

We will prove this by a hybrid argument. For j = 0, . . . , ` we define the hybrid games

Hj and H′
j. Intuitively, in Hj and H′

j, k1, . . . , kj will be uniformly random strings,

while kj+1, . . . , k` will be computed normally. The hybrids will be defined so that Hj

and H′
j have exactly the same output distribution, but are run in a slightly different

way to facilitate the proof. In addition, H′
0 will have the same output distribution

as Game 1, and H` will have that of Game 2. (The hybrid games H0 and H′
` will

not be defined.) In the analysis, we will show that the games Hj and H′
j induce

the same output distribution and that the games H′
j−1 and Hj are computationally

indistinguishable.

We now describe the hybrid games. Fix some j ∈ {0, . . . , `}. We start with Hj

and show how to define H′
j afterwards. In Hj, the public key is generated as follows.

47

It samples y
$← Zq and sets Y ← gy, t ← T(Y). For i = 1, . . . `, i 6= j, Xi, X̃i are

generated normally. The game then samples xj, x`+1, aj, a`+1
$← Zq and computes

Xj ← gxj , X`+1 ← gx`+1 , X̃j ← X−t
j gaj , X̃`+1 ← X−t

`+1g
a`+1 . (3.5.15)

Finally, it samples R
$← {0, 1}u and sets the public key to (X1, X̃1, . . . , X`+1, X̃`+1, R).

To compute the challenge ciphertext, Hj does the following. It uses the Y that

it computed at the start of the game, and sets Zi ← Y xi for i 6= j, ` + 1. It sets

Zj ← Y aj and Z`+1 ← Y a`+1 . For i = 1, . . . , j, it sets ki
$← {0, 1}ν . For i = j+1, . . . , `

it computes ki ← fgl(Y
xi , R). It uses k ← k1 . . . k` and computes c ← Ek(mb), and

the challenge ciphertext is (Y, Z1, . . . , Z`+1, c).

To respond to a decryption query for the ciphertext (Ŷ , Ẑ1, . . . , Ẑ`+1, ĉ), Hj first

computes t̂ ← T(Ŷ). If t̂ = t, it checks if Ẑi = Zi for all i. If this holds it decrypts

ĉ using k. If t̂ 6= t, it verifies the consistency of Zi for i 6= j, ` + 1, normally. It then

computes

Z̄j ← (Ẑj/Ŷ
aj

j)1/(t−t̂), Z̄`+1 ← (Ẑ`+1/Ŷ
a`+1

`+1)1/(t−t̂)

and tests if

Ŷ xj = Z̄j and Ŷ x`+1 = Z̄`+1. (3.5.16)

If this holds, it computes k̂j ← fgl(Z̄j, R) and then computes the rest of the k̂i

normally (as fgl(Y
xi , R)) and decrypts ĉ using k̂ ← k̂1 . . . k̂`. This completes the

decryption of Hj.

We let the hybrid game H′
j be exactly like Hj+1, except that kj+1 is computed as

kj+1 ← fgl(Y
xj+1 , R) instead of being set to a random string. Note that in both Hj

and H′
j, k1, . . . , kj are set to random strings and kj+1, . . . , k` are computed normally.

The only difference between Hj and H′
j is the way in which the games are “managed,”

but the output distributions are exactly the same. The change between Hj and H′
j

is essentially like the change between Games 1 and 2 in the proof of Theorem 5, and

the same argument there can be applied here. The essential difference between Hj

48

and H′
j is which elements in the key are “trapdoor elements”: in Hj they are Xj, X̃j

while in H′
j they are Xj+1, X̃j+1.

We are now ready to describe our adversary that breaks the hardcore-ness of

fgl. Let Bgl be an adversary that gets (X,X ′, Y, R, s) as input, where either s =

fgl(dh(X, Y), R) or s is a random string. In addition, Bgl has access to an oracle

computing 2dhp(X, X ′, Ŷ , Ẑ, Ẑ ′).

Bgl does the following. It selects j
$← {1, . . . , `}, sets Xj ← X, and X`+1 ← X ′.

It proceeds to simulate H′
j−1 for A, except that it sets kj ← s. The only point where

xj and x`+1 are used is in the consistency check in (3.5.16), which Bgl can perform by

using an oracle query as in the proof of Theorem 5. When A outputs b̂, Bgl checks if

b̂ = b, and outputs 1 if this holds and 0 otherwise.

It is not hard to check that, conditioned on s = fgl(dh(X,Y), R), Bgl simulates

H′
j−1 for A, and conditioned on the event that s was random, Bgl simulates Hj. Then

the following standard hybrid argument applies.

Pr [Bgl(X, Y, R, s) = 1| s = fgl(dh(X,Y), R)]− Pr [Bgl(X, Y, R, s) = 1| s is random]

=
1

`

∑̀
j=1

Pr
[
b̂ = b in H′

j−1

]
− 1

`

∑̀
j=1

Pr
[
b̂ = b in Hj

]
=

1

`

∑̀
j=1

(
Pr

[
b̂ = b in H′

j−1

]
− Pr

[
b̂ = b in Hj

])
=

1

`

(
Pr

[
b̂ = b in H′

0

]
− Pr

[
b̂ = b in H`

])
(3.5.17)

=
1

`
(Pr [S1]− Pr [S0])

We get (3.5.17) by recalling that Pr
[
b̂ = b in Hj

]
= Pr

[
b̂ = b in H′

j

]
for j = 1, . . . , `−

1.

Finally, if the advantage of Bgl is non-negligible, then by Theorem 7 (augmented

with our trapdoor test), we get an adversary Bdh that solves the DH problem with

non-negligible advantage. Then, by the DH assumption, (3.5.14) follows.

Returning to the proof of the theorem, in Game 2 the adversary is mounting a

49

chosen-ciphertext attack against the symmetric encryption scheme. Thus, by the

CCA security of SE,

Pr[S2] = negl(k). (3.5.18)

The proof is completed by combining (3.5.12), (3.5.13), (3.5.14), and (3.5.18).

3.6 Identity-Based Encryption

In this section we show how to apply the trapdoor test in Theorem 1 to identity-based

encryption. We give a bilinear version of the strong twin DH problem and show that

it can be reduced to the standard bilinear DH problem. We then use this assumption

to construct a new IBE scheme that we call twin Boneh-Franklin. While our scheme

is not as computationally efficient as some other CCA secure schemes, it only incures

one group element of overhead in the ciphertexts and has tighter reduction in the

random oracle model to the BDH assumption than the original (CPA) scheme on

which it is based.

3.6.1 The BDH and Twin BDH Assumptions

In group schemes equipped with a pairing ê : G×G→ GT , we can define the following

function. Let g be a generator of G.

bdh(X, Y, W) = Z, where X = gx, Y = gy, W = gw, and Z = ê(g, g)wxy.

Computing bdh(X, Y, W) for random X,Y, W ∈ G is the bilinear DH (or BDH) prob-

lem [21]. For an adversary B, let us define his BDH advantage, denoted AdvBDHB,G,

as the probability that B computes bdh(X, Y, W) for random X,Y, W ∈ G. The

BDH assumption states that solving the BDH problem is hard, that is, that all prob-

abilistic polynomial-time adversaries have negligible BDH advantage. Next we define

50

a predicate

bdhp(X, Ŷ , Ŵ , Ẑ) =

 1 if bdh(X,Y, W) = Z

0 otherwise
.

We can also consider the BDH problem where, in addition to random (X, Y, W), one

is also given access to an oracle that on input (Ŷ , Ŵ , Ẑ) returns bdhp(X, Ŷ , Ŵ , Ẑ).

The strong BDH assumption [56] states that the BDH problem remains hard even

with the help of the oracle.

For reasons similar to the issue with hashed ElGamal encryption, the strong BDH

assumption seems necessary to prove the CCA security of the basic version [56] of

the original Boneh-Franklin IBE [21]. We can repeat the “twinning” idea and define

the twin BDH problem, where one must compute 2bdh(X1, X2, Y, W) for random

X1, X2, Y, W , where we define

2bdh(X1, X2, Y, W) = (bdh(X1, Y, W), bdh(X2, Y, W)).

The strong twin BDH problem is the same as the twin BDH problem, but the adver-

sary has access to an oracle computing the predicate

2bdhp(X1, X2, Ŷ , Ŵ , Ẑ1, Ẑ2) =

 1 if 2bdh(X1, X2, Ŷ , Ŵ) = (Ẑ1, Ẑ2)

0 otherwise

for Ŷ , Ŵ , Ẑ1, Ẑ2 of its choice. For an adversary B, define his strong twin BDH ad-

vantage, denoted Adv2BDHB,G, to be the probability that B computes bdh(X, Y, W)

when given random X, Y, W ∈ G along with access to an oracle for the predicate

2bdhp(X1, X2, ·, ·, ·, ·), which on input Ŷ , Ŵ , Ẑ1, Ẑ2 returns 2bdhp(X1, X2, Ŷ , Ŵ , Ẑ1, Ẑ2).

The strong twin BDH assumption states that the BDH problem is still hard, even

with access to the decision oracle.

We will need a slight generalization of the trapdoor test in Theorem 1 to prove

the following theorem. It is easy to check that Theorem 1 is still true if the elements

Ẑ1, Ẑ2 are in a different cyclic group of the same order (we will take them in the

51

range group of the pairing), and we replace Ŷ with ê(Ŷ , Ŵ). With this observation,

the proof of the following theorem is almost identical to proof of Theorem 2 and is

omitted.

Theorem 9. Suppose B2bdh is a strong twin BDH adversary that makes at most Qd

queries to its decision oracle, and runs in time at most τ . Then there exists a BDH

adversary Bbdh with the following properties: Bbdh runs in time at most τ , plus the

time to perform O(Qd log q) group operations and some minor bookkeeping; moreover,

Adv2BDHB2bdh,G ≤ AdvBDHBbdh,G +
Qd

q
.

In addition, if Bbdh does not output “failure,” then its output is correct with probability

at least 1− 1/q.

3.6.2 Twin Boneh-Franklin

Theorem 9 admits a simple analysis of the following IBE scheme, which we call the

twin Boneh-Franklin IBE scheme. This scheme will use a bilinear pairing scheme

ê : G × G → GT where each of the groups is of prime order q, and g is a generator

of G. It will also use two hash functions, H (which outputs symmetric keys) and G

(which outputs group elements), and a symmetric cipher (E, D). A master public key

is a pair of group elements (X1, X2), where Xi = gxi for i = 1, 2. The master private

key is (x1, x2), which are selected at random from Zq by the setup algorithm. The

secret key for an identity id ∈ {0, 1}∗ is (S1, S2) = (G(id)x1 , G(id)x2). To encrypt a

message m for identity id , one chooses y ∈ Zq at random and sets

Y ← gy, Z1 ← ê(G(id), X1)
y, Z2 ← ê(G(id), X2)

y,

k ← H(id , Y, Z1, Z2), c
$← Ek(m).

The ciphertext is (Y, c). To decrypt using the secret key (S1, S2) for id , one computes

Z1 ← ê(S1, Y), Z2 ← ê(S2, Y), k ← H(id , Y, Z1, Z2), m← Dk(c).

52

We shall denote this scheme IBE2bdh. Now we can essentially borrow the analysis

of the original Boneh-Franklin scheme under the strong BDH assumption [56], except

now we get that the scheme is secure against chosen ciphertext attacks under the

strong twin BDH assumption. By Theorem 9, we get that the above IBE scheme is

CCA secure under the BDH assumption if the symmetric cipher is secure and the hash

functions are treated as random oracles. This is captured in the following theorem.

Theorem 10. Suppose H and G are modeled as random oracles. Further, suppose

the BDH assumption holds in G, and that the symmetric cipher SE = (E, D) is secure

against chosen ciphertext attack. Then IBE2bdh is secure against chosen ciphertext

attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack

against IBE2bdh in the random oracle model, and that A runs in time τ , and makes at

most Qh hash queries, Qd decryption queries, and Qid user secret key queries. Then

there exists a BDH adversary Bbdh and an adversary Bsym that carries out a chosen

ciphertext attack against SE, such that both Bbdh and Bsym run in time at most τ ,

plus the time to perform O((Qid + Qh + Qd) log q) group operations; moreover,

AdvCCAro
A,IBE2bdh

≤

e · (Qid + 1) ·
(

2Qh + Qd

q
+ AdvBDHBbdh,G + AdvCCABsym,SE

)
.

Proof. As with our other proofs, we proceed with a sequence of games.

Game 0. Let Game 0 be the original IBE chosen ciphertext attack game, and let

S0 be the event that b̂ = b in this game.

The challenger chooses the master private key (x1, x2) and gives the adversary

the corresponding master public key (X1, X2) as normal. To track random oracle

responses, the challenger uses two associative arrays L and K. L will store responses

for G and K will store responses for H, and both will initially have all entries set to ⊥.

53

When processing a random oracle response, the adversary returns the corresponding

entry if it is defined, and otherwise initializes it with an appropriate random value

and returns that. Apart from this bookkeeping, the challenger runs Game 0 exactly

as specified in the definition, and we have

AdvCCAro
A,IBE2bdh

= |Pr[S0]− 1/2|. (3.6.1)

Game 1. Game 1 will be like Game 0, but now we change how the challenger

processes queries to G. Now, in addition to inserting oracle responses into L, the

challenger also “marks” some entries in the L array used to store G responses. On

query G(îd), in addition to the normal processing, with probability δ the challenger

marks L[îd]. The challenger completely hides the marks from the adversary.

At the end of the game, the challenger looks at L and decides if it should abort

the game. For each user secret key query that the adversary issued during the game,

the challenger checks if the entry in L for that identity is marked. If any of them are

marked, the challenger aborts the game. Finally it checks the entry L[id], where id is

the identity from the challenge query. If that entry is not marked, then the challenger

aborts. Otherwise it proceeds normally.

Let S1 be the event that b̂ = b in Game 1 and F1 be the event that the challenger

aborts. Since the coins that determine F1 are independent of the rest of the game, it

follows that

|Pr[S1]− Pr[S0]| = Pr[F1] ≤ δ · (1− δ)Qid ,

and if we set δ = 1/(1 + Qid),

|Pr[S1]− Pr[S0]| ≤ (e(1 + Qid))
−1. (3.6.2)

Game 2. Game 2 will be like Game 1, except that now the challenger sets up some

of the challenge ciphertext in advance. Before starting the game, it chooses a random

symmetric key k, random y ∈ Zq and random W ∈ G, sets Y ← gy, Z1 ← ê(W, X1)
y

54

and Z2 ← ê(W, X2)
y.

Now the challenger uses these values in the rest of the game. When creating the

challenge ciphertext, the challenger sets K[id, Y, Z1, Z2] ← k (overwriting the entry

if it is already defined), computes c
$← E(k,mb), and returns (Y, c).

For decryption queries, when the adversary asks for the decryption of (Ŷ , ĉ) under

identity îd, if îd = id, L[id] is marked, and Ŷ = Y , then the challenger uses k to

decrypt ĉ. Otherwise, the challenger decrypts normally.

For the challenge query, the challenger uses k to compute c
$← E(k,mb) and returns

(Y, c).

Let S2 be the event that b̂ = b in Game 2. Since Game 2 and Game 1 only differ

when the adversary manages to query H(id, Y, Z1, Z2) before the challenge query, and

this event only happens if the adversary can guess Y , an independently chosen group

element. Thus

|Pr[S2]− Pr[S1]| ≤ QH/q. (3.6.3)

Game 3. Game 3 will include one simple change from Game 2: it no longer imme-

diately stores the value k in K as described in Game 2. Instead, it leaves that entry

unchanged, but still uses the k, Y, Z1, Z2 generated at the beginning of the game to

generate the challenge ciphertext.

Let S3 be the event that b̂ = b in Game 3. Let F2bdh be the event that the

adversary queries H at (id , Y, Z1, Z2), where id is the identity used in the challenge

ciphertext. Since Game 2 and Game 3 are exactly the same when F2bdh does not

occur, it follows that

|Pr[S3]− Pr[S2]| ≤ Pr[F2bdh]. (3.6.4)

We claim that

Pr[F2bdh] ≤ Adv2BDHB2bdh,G, (3.6.5)

55

for an efficient strong twin BDH adversary B2bdh that makes Qh + Qd decision oracle

queries. We give a high level description of B2bdh. B2bdh gets (X1, X2, Y, W) as input

and begins to run Game 3, acting as the challenger for the adversary. Of course, it

sets the master public key to (X1, X2) and uses (Y, c) as challenge ciphertext, where

c
$← Ek(mb), as in Game 3.

We need to describe how B2bdh answers queries for the random oracles and user

secret keys. When the adversary requests G(îd), if that entry gets marked, B2bdh

chooses a new random r ∈ Zq, sets L[îd]← Wgr, and gives Wgr to the adversary. If

the entry does not get marked, B2bdh returns gr instead. (Note that B2bdh can respond

with the corresponding user secret key for unmarked identities.) In either case, r is

remembered for later.

When the adversary requests the user secret key for an unmarked identity îd,

B2bdh retrieves the r used to generate the entry gr in L[îd], and returns (Xr
1 , X

r
2). If

the adversary requests the user secret key for a marked identity, B2bdh immediately

aborts.

For H queries, B2bdh implements the same oracle patching idea used in the proof

of Theorem 3. On query H(îd, Ŷ , Ẑ1, Ẑ2), B2bdh looks up Ŵ stored at L[îd] and

queries its decision oracle with (Ŷ , Ŵ , Ẑ1, Ẑ2), and marks the tuple as “good” or

“bad” depending on the answer. If it finds a good tuple, it uses the corresponding

key to decrypt ciphertexts with Ŷ . Otherwise, it generates a random symmetric key

to use with those ciphertexts, and watches for a good tuple to come up as a hash

query. When it sees one, it “patches” that query by returning the symmetric key

generated earlier.

After the game ends, B2bdh checks that the identity from the test query was un-

marked. If not, B2bdh aborts. Otherwise, it examines K and looks for a good entry

of the form K[id, Y, Z1, Z2] (where id and Y are from the test query). If it finds one, it

looks up the Ŵ = Wgr and corresponding r and outputs (Z1/ê(X1, Y)r, Z2/ê(X2, Y)r).

56

It is straightforward to check that B2bdh solves the strong twin BDH problem whenever

the event F2bdh would happen in Game 3.

Finally, in Game 3 the adversary is essentially playing the chosen ciphertext game

against SE. Thus there is an adversary Bsym such that

|Pr[S1]− 1/2| = AdvCCABsym,SE. (3.6.6)

The theorem follows by combining (3.6.1)–(3.6.6).

We remark that our ideas can also be applied to the IBE scheme from Sakai-

Kasahara [71]. The resulting IBE scheme is more efficient, but its security can only

be proved based on the (computational) q-BDHI assumption [19].

57

CHAPTER IV

NON-MALLEABLE HASH FUNCTIONS AND THEIR

APPLICATION TO ENCRYPTION

In this chapter we develop the notion of non-malleability for hash functions and show

how to analyze an encryption scheme of Bellare and Rogaway [11] using our notion.

We start with several definitions from prior work that are used below.

4.1 Preliminaries

4.1.1 Hash Functions

We start with a definition of a hash function. In order to study our new security

properties, it will be necessary to use a definition that is slightly more general than

usual. In particular, we will use a definition that allows for randomized hash functions,

which can produce several possible hashes for fixed input. Unlike our treatment of

hash functions in §3, we will make the concept of a hash key explicit, since how and

when the key is used will become important below.

A hash function consists of three algorithms.

• A probabilistic polynomial-time algorithm HK, which on input a security pa-

rameter λ (in unary), outputs a hash key K. We assume that K implicitly

defines a domain DK of messages for the hash function.

• A probabilistic polynomial-time algorithm H for inputs K and x ∈ DK returns

a value y ∈ {0, 1}∗.

• A polynomial-time algorithm HVf that, on inputs K, x, y, returns a bit.

We will only consider hash functions that satisfy a basic correctness requirement.

58

Specifically, let K be any key that is possibly output by HK(1λ), and let x ∈ DK . We

require that b = 1 with probability 1, where b is computed as

y
$← H(K, x), b← HVf(K,x, y).

We remark that, for deterministic hash functions, verification can simply recompute

the hash value can compare it to the given value.

4.1.2 Collision Resistance

We recall the standard definition of collision resistance for hash functions, adapted

to our general version of hash functions. Let (HK, H, HVf) be a hash function. For an

adversary A, we consider the following game, played with challenger.

1. The challenger runs K
$← HK(1λ), and gives K to the adversary.

2. The adversary outputs bitstrings x0, x1, y.

We define the term AdvCRH,A(λ) to be the probability that

x0 6= x1 ∧ HVf(K, x0, y) = 1 ∧ HVf(K, x1, y) = 1

holds. We say that the hash function H is collision resistant if AdvCRH,A(λ) is negli-

gible for all probabilistic polynomial-time adversary A.

4.1.3 Perfect One-wayness

We recall the notion of perfect one-wayness [26], which some adaptations to our

setting.

Definition 4. Let H be a hash function. We say that H is perfectly one-way with

respect to predicate P and side information function hint if, for every probabilistic

polynomial-time adversary B, the following two distributions are indistinguishable.

The distributions are indexed by a bit b. They are produced by the following pro-

cedure.

59

1. A key K
$← HK(1λ) is sampled and given to the B.

2. B returns a description of a message distribution X .

3. The challenger selects x
$← X , σ

$← hint(K, x). Then if b = 0, it computes

y
$← H(K, x). If b = 1, it samples x′

$← X and sets y ← H(K, x′). It gives y, σ

to B.

4. B outputs a bit d.

5. The procedure checks if P (X) = 1. If so, it outputs (K, x, d). Otherwise it

outputs ⊥.

As pointed out in [26, 29] the definition only makes sense if hint is an uninvertible

function of the input (such that finding the pre-image x from hint(x) is infeasible)

and B only outputs descriptions of well- spread distributions (i.e., those with super-

logarithmic min-entropy). Otherwise the notion is impossible to achieve.

Perfectly one-way hash functions (in the sense above) can be constructed from

any one-way permutation [29, 38] (for the uniform input distribution), any reg-

ular collision-resistant hash function [29] (for any distribution with fixed, super-

logarithmic min-entropy), or under the decisional Diffie-Hellman assumption [26] (for

the uniform distribution). Usually, these general constructions are not known to be

secure assuming arbitrary functions hint, but for the particular function hint required

by the application, they can often be adapted accordingly. A concrete example is

given below, in our discussion of the Bellare-Rogaway encryption scheme.

4.1.4 Trapdoor Permutations and Partial One-wayness

We review the standard concept of trapdoor permutations [76]. Formally, we define a

family of trapdoor permutations F as a triple of three algorithms.

• A probabilistic polynomial-time algorithm TDPGen that, on input λ (in unary)

60

outputs a description of a function f and a trapdoor τ . We assume that f is a

permutation on {0, 1}λ.

• A polynomial-time algorithm, that, on input f and x in the domain of f , outputs

f(x).

• A polynomial-time algorithm that on input y in the range of f and a trapdoor

τ , computes f−1(y).

We will be interested in trapdoor permutation families that are partial one-way.

We say that a permutation family is partial one-way if, for (f, τ)
$← TDPGen(1λ) and

a random x in {0, 1}λ, any probabilistic polynomial-time adversary A that is given

f, f(x) outputs the λ/2 most significant bits of x with only negligible probability.

We remark that this is still a mild hardness requirement for a trapdoor function.

For example, the RSA trapdoor function is known to be partial one-way under the

RSA assumption [42]. Moreover, these exist simple generic constructions from any

one-way trapdoor permutation.

4.2 Non-Malleability of Hash Functions

Our definition for hash functions follows the classical (simulation-based) approach

for defining non-malleability [36]. Informally, our definition requires that the success

probability of an adversary, given a hash value h, finding another value h∗, such that

the pre-images are related, is negligibly close to the one of a simulator which does

not see h.

In the adversary’s attack we consider a three-stage process. The adversary first

selects a distribution X from which an input x is then sampled. In the second stage

the algorithm sees a hash value h of this input x, and the adversary’s goal is to

create another hash value h∗ (different from h). In the third stage the adversary is

given x and now has to output a pre-image x∗ to h∗ which is “related” to x. The

61

simulator may also pick a distribution X according to which x is sampled, but then

the simulator needs to specify x∗ directly from the key of the hash function only.

In the second stage the adversary (and consequently the simulator) also gets as

input a “hint” σ about the original pre-image x, to represent some side a-priori

information potentially gathered from other executions of other protocols in which

x is used. As in the case of non-malleable commitments and encryption, related

pre-images are define via a relation R(x, x∗) which also depends on the distribution

X to catch significantly diverging choices of the adversary and the simulator and to

possibly restrict the choices for X , say, to require a certain min-entropy. However,

unlike for these primitives, we do not measure the success of the adversary and the

simulator for arbitrary relations R between x and x∗, but instead restrict R to a

class R of admissible relations. We discuss the necessity of this restriction and other

subtleties after the definition:

Definition 5 (Non-Malleable Hash functions). For some hash function H, we

define two games used in the definition. These games are parameterized by λ ∈ Z+,

a relation R, and a side-information function hint.

The first is the real game between an adversary A an a challenger, and second

is the simulated game between a simulator S and a different challenger. We say

that the hash function is non-malleable with respect to R if, for every probabilistic

polynomial-time adversary A, there exists a probabilistic polynomial-time simulator

S such that∣∣∣Pr[A wins the real game]− Pr[S wins the simulated game]
∣∣∣ (4.2.1)

is negligible (as a function of λ), where we define these events as follows.

We now define the real game.

1. The challenger runs HK(1λ) to generate a hash key K, and gives it to A.

62

2. A responds with a circuit describing a message sampler, denoted X .

3. The challenger runs X on a random input to sample a message x. It then

computes σ
$← hint(K, x) and h

$← H(K, x). It returns h, σ to A.

4. A outputs a hash h∗.

5. The challenger gives x to A, and finally A returns some message x∗

We say that A wins the real game if the following hold:

R(X , x, x∗) = 1, (x, h) 6= (x∗, h∗), HVfK(x∗, h∗) = 1. (4.2.2)

Now we define the simulated game as follows.

1. The challenger runs HK(1λ) to generate a hash key K, and gives it to S.

2. S responds with a circuit describing a message sampler, denoted X .

3. The challenger runs X on a random input to sample a message x. It then

computes σ
$← hint(K, x). It returns σ to S.

4. S outputs a message x∗.

We say that the simulator S wins the simulated game if

R(X , x, x∗) = 1. (4.2.3)

We extend the definition to a class of relations R in the natural way: A hash

function is non-malleable with respect to R if it is non-malleable with respect to

every R ∈ R.

Our definition only fixes a relation R or class of relations R. This is because, for

some relations, the definition is simply not achievable, as in the case when the relation

involves the hash of x instead of x itself. For example, consider the relation R(X , x, x∗)

63

which parses x∗ as K,h and outputs HVf(K, x, h). Then, an adversary, on input h, σ,

may output h∗
$← H(K, (K, h)) and then, given x, returns x∗ = (K, h). This adversary

succeeds in the real game with probability 1. In contrast, any simulator is likely to

fail, as long as the hash function does not have “weak” keys, i.e., keys for which the

distribution of generated images is not well-spread (such that the simulator can guess

h with sufficiently high probability).

We avoid this difficulty by only requiring the definition to hold for a subset R of

all relations. It is, of course, desirable to seek secure constructions with respect to

very broad classes of relations, which are more useful. At the same time, certain sce-

narios may only require non-malleability with respect to a small set of relations, as in

the case of encryption below. For virtually all “interesting” functions H and relation

classes R the definition is achievable only for adversaries and simulators that out-

put descriptions of well-spread distributions X in the first stage, and “uninvertible”

functions hint.

In the case of non-malleable encryption, the original simulation-based definition of

[36] was later shown to be equivalent to an indistinguishability-based definition [13].

The superficial similarity between our definition of non-malleable hash functions and

the one of non-malleable encryption suggests that this may be possible here as well.

Surprisingly, straightforward attempts to define non-malleability of hash functions

through indistinguishability do not seem to yield an equivalent definition. We leave it

as an interesting open problem to find a suitable indistinguishability-based definition

for non-malleable hash functions.

4.3 Application to Encryption

In this section we confirm the usefulness of our definition for cryptographic applica-

tions.

We recall the encryption scheme proposed by Bellare and Rogaway in [11], which

64

we will denote PKEbr. Let F be a familiy of trapdoor permutations and G, H be ran-

dom oracles. The message space of the scheme is the range of G. The key generation

algorithm, on input λ ∈ Z+, samples (f, τ) from the trapdoor permutation family

and outputs f as the public key and τ as the secret key. The encryption algorithm,

on inputs pk = f and message m, picks random r in the domain of f and computes

y ← f(r), g ← G(r)⊕m, h← H(r||m).

Finally, encryption computes c ← (y, g, h) and outputs c as the ciphertext. The

decryption algorithm, on inputs sk = τ, ĉ = (ŷ, ĝ, ĥ), computes

r̂ ← f−1(ŷ), m̂← ĝ ⊕G(r̂).

It outputs m̂ if H(r̂‖m̂) = ĥ holds, and it rejects if not. This completes the description

of the scheme PKEbr.

The scheme PKEbr was proven to be CCA secure, in the random oracle model,

assuming that F is one-way.

We study partial H-instantiations of the scheme. That is, we consider the pos-

sibility of analyzing the scheme when H is instantiated with a function family H =

(HK, H, HVf).

More precisely, we consider a modified version of the scheme where the public

and secret keys also contains a key K
$← HK(1λ) specifying a function, and encryp-

tion computes H(K, r‖m) instead of H(r‖m). Decryption computes HVf(K, r‖m, h)

instead of checking whether H(r‖m) = h.

Before stating the theorem, we must address one technicality. It will become

necessary to assume that the (non-malleable) hash function used below includes a

random sample from a trapdoor permutation family in the key. That it is, in addition

to using a hash key K, it will also sample f , which will not be used anywhere in the

hash, and set the key to K ′ = (K, f). One could remove this assumption by allowing

the various algorithms involved to take an additional input, but this assumption seems

65

is sufficient and quite reasonable. In particular, the known construction from one-way

functions achieves the definition with this modification.

We fix some notation for the parameters used in the theorem. Let

• msb : {0, 1}λ → {0, 1}λ/2 output the λ/2 most significant bits of its input.

• hintbr that takes as input a key (K, f) and message x, and outputs f(msb(x)).

• Predicate Pbr(X) output 1 if and only if X is a canonical distribution that

samples uniform r
$← {0, 1}λ/2, and then samples an arbitrary m ∈ {0, 1}λ/2,

and outputs r‖m.

• The relation Rbr(X , x, x̂) which outputs 1 if and only if the following hold: (1)

P (X) = 1, and (2) msb(x) = msb(x̂).

Theorem 11. Let F be a family of trapdoor permutations and let H = (HK, G, HVf)

be a hash function. Then PKEbr is CCA secure, in the random oracle model, if H is

1. collision resistant,

2. non-malleable with respect to the relation Rbr and side information hintbr,

3. perfectly one-way with respect to the predicate Pbr and side information hintbr.

Such non-malleable hash functions were shown to exist, assuming that one-way

functions exist [16]. Perfectly one-way hash functions meeting our requirements were

shown to exist under reasonable assumptions [29].

We note that, assuming only conditions (1) and (2), we can show that any suc-

cessful CCA adversary can be turned into a successful CPA adversary against the

scheme. The third condition is only needed to show that CPA security holds.

We also note that the security assumption on F is actually implicit due to the

assumptions of H. This is because the non-malleability of H with respect to our

particular side information implicitly requires F to be partial one-way.

66

The proof appears in the next section, but before moving on we provide some

intuition. Consider an adversary A that breaks CCA security of PKEbr. After issuing

a challenge query m0, m1, it is given the challenge ciphertext of the form (y, g, h) =

(f(r), G(r)⊕mb, H(K, r‖mb)) for a random string r and bit b, and tries to predict

b. We first claim that the scheme is CPA secure, meaning that without decryption

queries A cannot break security. This follows from condition (3) above, the perfect

one-wayness. That is, if B has non-negligible advantage in determining b without

making any decryption queries, then one can break adaptive perfect one-wayness of

H.

Next we show that decryption queries do not help A. Assume that A makes

decryption queries of the form ĉ = (ŷ, ĝ, ĥ). If A has queried oracle G about r̂ =

f−1(ŷ) before then we can easily find this entry in the list of G-queries and simulate

the additional decryption steps. Else, consider the case that A has not made such a

query to G but tries to succeed by mauling the challenge ciphertext c = (y, g, h) to

ĉ = (ŷ, ĝ, ĥ). Then it follows from the non-malleability of H that this ciphertext is

likely to be invalid. The collision-resistance additionally prevents that A creates any

other valid ciphertext without querying G about r̂ beforehand.

4.3.1 Proof of Proposition 11 – Security of Bellare-Rogaway Encryption

We proceed with a sequence of games, where the first game is the original CCA game

just described, and the final game is simple to analyze. We show that for each two

adjacent games Game i and Game i + 1, the adversary’s advantage can change only

negligibly. In the final game, we complete the proof by showing that the adversary’s

advantage is negligible.

67

Game 0. Let Game 0 be the original chosen-ciphertext attack game, and let S0 be

the event that the adversary wins this game. Then we have, by definition,

Pr[S0] = AdvCCAro
A,PKEbr

(λ). (4.3.1)

Below, we will denote by c = (y, g, h) the challenge ciphertext submitted by A.

Game 1. This is like Game 0, except that on decryption query ĉ = (ŷ, ĝ, ĥ), if ŷ 6= y

(where y is from the challenge ciphertext) and B has not queried an r̂ to G such that

ŷ = f(r̂), Game 1 rejects the ciphertext. Everything else remains unchanged.

Let S1 be the event that A wins Game 1, and let F1 be the event that B submits

a ciphertext in Game 1 that is rejected, but would not have been rejected in Game

0. It is clear that when F1 does not occur, B’s outputs in Game 0 and Game 1 have

the same distribution. More precisely, we have

|Pr[S1]− Pr[S0]| ≤ Pr[F1]. (4.3.2)

We claim that Pr[F1] is negligible, by the collision resistance of H. We will show

that there exists an adversary Bcr, which runs in about the same time as A, such that

AdvCRBcr,H(λ) ≥
(
Pr[F1]

)3
/8. (4.3.3)

The adversary Bcr works as follows. It takes as input a hash key K and uses it in

the public key in Game 1. It generates the rest of the public key/secret key pair itself

and answers random oracle queries for A, having full control over the random oracle

G (i.e. answering each new query with a new random string and storing all queries

and the relies in an array called G-list, so the repeated queries could be answered

consistently). It also creates the challenge ciphertext as described by the protocol.

Bcr handles decryption queries exactly as in Game 0 by using the secret key, except

with the following difference. If A submits a decryption query (ŷ, ĝ, ĥ) that would

get rejected in Game 1, but not Game 0, then Bcr halts the game. Bcr computes

68

r̂ ← f−1(ŷ), m̂ ← G(r̂) ⊕ ĝ, generating the value G(r̂) from scratch. Finally, Bcr

selects a new random message m, and outputs

(r̂‖m̂, r̂‖m), ĥ

as its messages and hash for the collision resistance game. This completes the de-

scription of Bcr.

We now analyze the advantage of Bcr. Since the ciphertext (ŷ, ĝ, ĥ) would not

be rejected in Game 0, we know that HVf(K, ĥ, r̂‖m̂) = 1. Observe that when Bcr

computed m̂ = G(r̂)⊕ ĝ, it was actually setting m̂ to a random message. This is true

because B had never queried G(r̂), so Bcr selected a random string for it after the

game was over.

Let ε = Pr[F1]. Now condition on all of the random choices carried out by Bcr

until it selects m̂ at random. It then follows by a standard averaging argument that,

with probability ε/2 over of the choices made by Bcr, we have that the conditional

probability of F1 is at least ε/2 (over the choice of G(r)). This argument applies

equally well when Bcr selects a second message m after halting the game. Thus there

is at least an ε2/4 chance that m will satisfy HVf(K, h, r̂‖m) = 1. Thus the chance

that Bcr finds a collision is at least ε3/8, which proves (4.3.3).

Game 2. This game is like Game 1, except now the decryption oracle applies the

following rejection rules, in addition to all of the processing in Game 1. Now, for a

decryption query ĉ = (ŷ, ĝ, ĥ), where ŷ = y and ĥ = h (and thus ĝ 6= g), such that

the adversary has not queried G(r̂) such that ŷ = f(r̂), are rejected. Let S2 be the

event that A wins Game 2.

It is clear that until this reject rule is used, Games 1 and 2 are the same. Let F2

be the event that a query is rejected because of this rule that would not have been

69

rejected in Game 1. Then we have

|Pr[S2]− Pr[S1]| ≤ Pr[F2]. (4.3.4)

We claim that there exists an adversary Ccr that runs in about the same time as A,

such that

AdvCRCcr,H(λ) ≥ Pr[F2]. (4.3.5)

Ccr that takes as input a hash key K and attempts to find a collision in H. Ccr

uses K in the public key and runs Game 2 for B until the reject rule in Game 2 is

used (again, controlling G and generating a valid challenge ciphertext).

Let Ĉ = (ŷ, ĝ, ĥ) be the ciphertext that triggered the reject rule, so ŷ = y and

ĥ = h. Ccr computes r̂ ← f−1(ŷ) and m̂← G(r)⊕ g. Then it recalls that mb was the

message used in the challenge ciphertext, and then outputs

(r̂‖mb, r̂‖m̂), ĥ

as its messages and hash for the collision resistance game.

We claim that Ccr finds a collision with probability Pr[F2]. This is because if the

event F2 occured, then the ciphertext Ĉ must have been valid, i.e., HVf(K, r̂‖(G(r̂)⊕

g)) = 1. By assumption g 6= ĝ, hence m̂ = G(r)⊕ g is different from mb = G(r)⊕ ĝ

but still verifies (prepended by r = r̂) for the same hash value h = ĥ. This establishes

(4.3.5).

Game 3. Game 3 is like Game 2, except now the decryption oracle rejects all

ciphertexts Ĉ = (ŷ, ĝ, ĥ) such that A did not query G(r̂) such that ŷ = f(r̂). (This

amounts to adding a new rule to reject ciphertexts with ŷ = y, ĥ 6= h, and this

property.) Let S3 be the event that A wins Game 3.

Games 2 and 3 are clearly the same until the new rule is applied. Let F3 be the

event that a ciphertext is queried that triggers this reject rule in Game 3 but would

70

not have been rejected in Game 2. Then we have

∣∣Pr[S3]− Pr[S2]
∣∣ ≤ Pr[F3]. (4.3.6)

We claim that

Pr[F3] ≤ negl(λ), (4.3.7)

by the non-malleability condition on H in the theorem.

We prove this as follows. Using A, we construct an adversary Bnm that wins the

real non-malleability game with the prescribed parameters with probability related

to Pr[F3]. We then show that any simulator can win the simulated game with only

negligible probability. By the non-malleability condition, it follows that Pr[F3] must

be negligible.

We now describe Bnm. In the first step of the non-malleability game it gets a hash

key K ′ = (K, f) as input. It simulates Game 3 for A using K and f in the public key.

To simulate the random oracle G properly, Bnm stores all the random oracle queries A

makes and the corresponding replies in an associative array, the G-list. Bnm answers

decryption queries (y, g, h) as described in Game 2 by first locating a previously made

query g in the G-list such that y = f(r), and rejecting all other ciphertexts. Bnm

never needs to compute f−1 to maintain this simulation.

Bnm continues the simulation until A issues its challenge query (m0, m1). Then

Bnm chooses a random bit b and outputs the canonical encoding of the distribution X

that selects r
$← {0, 1}λ/2 and outputs r‖mb. This concludes the description of Bnm

through the first two steps of the non-malleability game.

In the next step, Bnm receives h, σ from the challenger, where h was computed

as h
$← H(K,x) and x

$← X , and σ was computed as y ← f(msb(x)). It returns to

the simulation with A. To compute the challenge ciphertext, Bnm sets g to a random

string, defines G(r) = g ⊕mb and returns c = (y, g, h) as the challenge ciphertext for

A. From this point, Bnm handles random oracles queries slightly differently. For each

71

of A’s queries r̂ to the random oracle G, Bnm checks if f(r̂) = y, and if so, returns

G(r). Ay continues to answer all other queries as before, until A halts.

After A halts, Bnm examines all of the rejected decryption queries ĉ = (ŷ, ĝ, ĥ)

issued by A that had ŷ = y and ĝ 6= g (noting that queries ŷ = y, ĝ = g and ĥ 6= h

are clearly invalid). Out of these queries, Bnm selects one at random and returns ĥ as

its new hash in the non-malleability game.

In the final step of the non-malleability game, Bnm gets x = r‖mb. To compute

x∗, it selects m∗ at random, and outputs x∗ = r‖m∗. This completes the description

of the non-malleability adversary Bnm.

Now if the event F3 occurred, then there is some ciphertext that would have been

rejected in Game 3 but not Game 2, and Bnm will have at least a 1/Qd chance at

picking that ciphertext, where Qd is the number of decryption queries issued by A

in the simulated game. It is simple to check that if F3 occurs and Bnm selects such

a ciphertext, then it wins the non-malleability game. This gives Bnm a Pr[F3]/Qd

chance at winning.

We now analyze the performance of any simulator S. S receives K ′ = (K, f)

as input, chooses a distribution X , and gets only σ = f(r) in the third step of the

simulated game. In particular, it cannot predict the leading λ/2 bits of r because by

the partial one-wayness of F . Therefore, the probability of the simulator satisfying

the relation Rbr is negligible. But then we have that Pr[F3]/Qd is also negligible,

which establishes (4.3.7).

Game 4. Game 4 is like Game 3, except that now the challenge encryption query

ignores the adversary’s messages and encrypts a random message.

Let S4 be the event that it wins Game 4. We claim that

|Pr[S3]− Pr[S4]| ≤ negl(λ), (4.3.8)

by the perfect one-wayness condition in the theorem. To prove this, we construct

72

an adversary Bpow that wins the POW game with probability ε = |Pr[S3]− |Pr[S4]|.

Bpow gets a hash key K ′ = (K, f) as input, and runs Game 4 while using (K, f) in the

public key. Bpow answers decryption queries itself, as described in Game 3, without

f−1. When A issues its challenge query (m0, m1), Bpow selects a random bit b and

outputs a canonical distribution X that samples r
$← {0, 1}λ/2 and a random m′ from

the message space, and outputs r‖mb with probability 1/2 and r‖m′ otherwise.

In the third step of the perfect one-wayness game, Bpow gets as input h and side

information y = f(r). Bpow first chooses a random string g, which implicitly defines

G(r) = g ⊕m, where m is either mb or a random message chosen by the game. Bpow

continues to simulate the game for A with challenge ciphertext C = (y, g, h) until

either (1) A queries r = f−1(y) to the random oracle, or (2) A halts with a bit d as

output.

In case (1), Bpow aborts the simulation and can immediately win the game (with

overwhelming probability) by checking if HVf(K, r‖mb, ĥ) = 1. In case (2), Bpow

tests if b̂ = b, and if so, it outputs 1, and otherwise it outputs 0. If the hash oracle

returned ĥ = G(K, r‖mb), then Bpow perfectly simulated Game 3 for the adversary.

Otherwise, Bpow perfectly simulated Game 4. A standard argument gives that Bpow

has advantage at least Pr[F4]/4, finishing the proof of the claim.

Finally, it is obvious that

Pr[S4] = 1/2 (4.3.9)

because the bit b is never used in Game 4. Collecting (4.3.1)-(4.3.9) we get that A

must have had negligible advantage in the original CCA game.

73

CHAPTER V

CIRCULAR SECURITY

In this chapter we give two complementary sets of results concerning circular security.

First, we show how to construct very natural and efficient circular-secure encryption

schemes using hard learning problems. In the second part, we prove that our schemes

are non-trivial, in that not all semantically-secure encryption schemes are necessarily

also circular secure. We prove this by giving a counterexample that is provably

secure under a Diffie-Hellman-like assumption, but is easily breakable when a circular

encryption of size 2 is published.

5.1 Preliminaries

For our learning-based schemes, we will denote the security parameter by n instead

of λ. This change is due to prior work in lattice-based cryptography, where the n

(which will be identified below in the definition of the LWE problem) is the most

natural parameter to adjust for hardness.

Let Berε denote the Bernoulli distribution over {0, 1} that is 1 with probability ε

and 0 with probability 1− ε.

5.1.1 Key-Dependent Message Security

We follow the presentation of Boneh et al. [22], which generalizes the definition of

Black et al. [14]. In this definition, an adversary interacts with a challenger that

answers encryption queries for functions of the users’ secret keys. The adversary is

restricted to functions from a certain family, which we will denote F ⊂ {f | f : K` →

M}. Strictly speaking, F is a family of sets of functions parameterized by the security

parameter n and the number of users `.

74

Definition 6. Let (G, E, D) be a public-key encryption scheme, and let A be an ad-

versary. The game proceeds as follows:

1. The challenger chooses a bit b← {0, 1}. It also samples (pki, ski)
$← G(1n) for

i = 1, . . . , `. It gives pk1, . . . , pk` to A.

2. A makes encryption queries of the form (j, f), where j ∈ [`] and f ∈ F . To

process a query, if b = 0, the challenger computes m ← f(sk1, . . . , sk`) and

c
$← Epkj

(m). If b = 1 it instead sets c
$← Epkj

(0|m|). It returns c to A.

3. A ends the game and outputs b̂ ∈ {0, 1}.

We define the advantage of A with respect to F , denoted AdvKDMA,PKE,F(λ), to

be |Pr[b = b̂]−1/2|. If AdvKDMA,PKE,F(λ) is negligible for all probabilistic polynomial-

time adversaries A, then we say that PKE is KDM-secure with respect to F .

For a symmetric-key encryption scheme SKE, we define all these terms in ex-

actly the same way, except the adversary is not given the public keys, and encryption

naturally uses the secret key to encrypt.

If all constant functions (that is, functions fm such that fm(sk1, . . . , sk`) = m

for some message m) are contained in F , then security with respect to F can be

shown to imply standard CPA security. If the projection functions, fj such that

fj(sk1, . . . , sk`) = skj for some j are also contained in F , then security with respect

to F implies circular security.

We remark that these definitions can be extended to allow the adversary to issue

decryption queries [24]. We do not pursue this direction here.

5.1.2 Noisy Learning Problems

We recall the learning with error (LWE), due to Regev [69], with the learning parity

with noise (LPN) as a special case.

75

For positive integers n and q ≥ 2, a vector s ∈ Zn
q , and a probability distribution

χ on Zq, define As,χ to be the distribution over Zn
q ×Zq induced by choosing a vector

a ∈ Zn
q uniformly at random, an error term x

$← χ, and outputting (a, 〈a, s〉+ x).

Definition 7. For an integer function q = q(n) and an error distribution χ on Zq,

the learning with errors problem LWEq,χ in n dimensions is to find s ∈ Zn
q (with

non-negligible probability) given oracle access to the distribution As,χ for uniformly

random s.

The learning parity with noise problem LPNε is the special case of LWEq,χ for

q = 2 and χ = Berε.

Using standard self-reduction and amplification techniques, an algorithm that

solves the LWE problem with non-negligible probability for uniform s may be ef-

ficiently transformed into one that solves LWE with overwhelming probability for

arbitrary s.

We will be interested in error distributions χ over Zq that are derived from Gaus-

sians. For any r > 0, define the one-dimensional Gaussian probability distribution

by its density function Dr(x) = exp(−π(x/r)2)/r. For α > 0, define Ψ̄α to be the

distribution on Zq obtained by drawing y ← Dα and outputting bq · ye mod q.

Regev [69] demonstrated strong evidence for the hardness of the LWE problem

(with Gaussian error distribution), by giving a quantum reduction from approximat-

ing well-studied lattice problems to within Õ(n/α) factors in the worst case to solving

LWEq,Ψ̄α
, when α · q ≥ 2

√
n. Recently, Peikert [65] gave a related classical reduction

for similar parameters.

Regev showed [69] that, when q = poly(n) is prime and χ is a Gaussian error

distribution, the distribution As,χ is pseudorandom, assuming only that the search

version of LWE is hard. Here we extend the argument to show that for prime power

moduli and the same error distribution, the LWE distribution As,χ (for uniform s) is

76

also pseudorandom (i.e., computationally indistinguishable from uniform), assuming

that the LWE problem is hard.

Lemma 12. Let q = pe be a prime power with p = poly(n), and let χ be a distri-

bution over Zq that produces an element in {−p−1
2

, . . . , p−1
2
} ⊂ Zq with overwhelming

probability. There is a probabilistic polynomial-time reduction from LWEq,χ to distin-

guishing between As,χ for uniformly random s ∈ Zn
q and the uniform distribution on

Zn
q × Zq).

Proof. The proof is a simple extension of prior ones for prime moduli (see, e.g., [69,

Lemma 4.2]), therefore we emphasize only the new elements. The idea is to use a

distinguisher to recover the least significant base-p digits of s, at which point the

distribution is “narrow” enough to solve for the remainder of s via rounding and

standard linear algebra.

For i = 0, . . . , e, define the hybrid distribution Ai
s,χ that is obtained by drawing a

sample (a, b) from As,χ and outputting (a, b+pi ·r) ∈ Zn
q ×Zq for a uniformly random

r ∈ Zq (freshly chosen for each sample). Note that Ae
s,χ is identical to As,χ, while

A0
s,χ = U . Therefore, an algorithm D that distinguishes between As,χ and U with

non-negligible advantage must distinguish between Aj−1
s,χ and Aj

s,χ with non-negligible

advantage, for some j ∈ {1, . . . , e}. By standard self-reduction and amplification

techniques, we can assume that D accepts with overwhelming probability given Aj−1
s,χ

for any s, and rejects given Aj
s,χ (with overwhelming probability, for any s).

Below we show how to use D to find s′ = s mod p, i.e., the least significant digit

(in base p) of each entry of s. Having done so, we can then transform As,χ into

Ap·t,χ, where p · t = s − s′. A sample from the latter distribution is of the form

(a, b = p · 〈a, t〉 + x) for x ← χ; because x ∈ {−p−1
2

, . . . , p−1
2
} with overwhelming

probability, we may round b to the nearest multiple of p and learn the value of

〈a, t〉 mod p. By drawing n samples, we may then solve for t by linear algebra.

77

We find the entries of s′ one by one in the following way. To test whether entry

s′i = 0 ∈ Zp, apply a transformation to As,χ mapping (a, b) to (a− l ·pj−1 ·ei, b+pj ·r)

for uniform and independent l, r ∈ Zp (where ei is the ith standard basis vector).

Because p is prime, it may be verified that if s′i = 0, then the resulting distribution

is exactly Aj
s,χ, otherwise it is Aj−1

s,χ , therefore D reveals which is the case. Testing

whether s′i = k for each k ∈ Zp is done similarly; because p = poly(n), the reduction

is polynomial-time.

5.2 Public-Key Encryption Scheme Based on LWE

In this section we design a public-key encryption scheme based on the LWEq,χ problem,

where as usual, the error distribution χ = Ψ̄α for some α = α(n) ∈ (0, 1), chosen with

the modulus q to satisfy various constraints.

Our techniques. Our LWE-based construction involves a few techniques that may

be of independent interest and application.

In the LWE problem and the encryption schemes of [69, 66], the secret key is a

vector s ∈ Zn
q chosen uniformly at random (where the modulus q is related to the

security parameter n), while the message space is Zp for some p� q. An important

idea in the work of Boneh et al. [22] is the ability to generate, given only a public

key, a ciphertext that decrypts to a message related to s. Because decryption in

the LWE-based schemes of [69, 66] is essentially a linear operation, it is possible to

generate ciphertexts that are somehow related to s. However, because the entries of s

are taken modulo q � p, it is unclear how to “fit” the entries into the message space.

In our scheme, we address this issue by instead drawing the entries of the secret

key s from the very same (Gaussian) error distribution as in the underlying LWE

problem. For a sufficiently “narrow” error distribution, each entry of s can take on at

most p different values (with overwhelming probability), allowing the entire entry to

fit unambiguously into the message space. Moreover, this change does not affect the

78

hardness of the LWE problem: we show a simple, tight reduction from the standard

LWE problem to the variant just described. Abstractly, the reduction may be viewed

as putting the LWE distribution into Hermite normal form (HNF); interestingly, the

HNF was also used by Micciancio [58] and Micciancio and Regev [60] as a way to

improve the efficiency of lattice-based encryption schemes.

The second important technique relates to the faithful simulation of key-dependent

messages. In Regev’s scheme, for instance, ciphertexts are produced from two compo-

nents: a uniformly random “syndrome” u ∈ Zn
q , and a pseudorandom “mask” v ∈ Zq

(for hiding the message) that is concentrated around the inner product 〈u, s〉 ∈ Zq.

However, the exact distribution of d = v− 〈u, s〉 ∈ Zq is difficult to characterize, and

may differ for each syndrome u. We modify the encryption algorithm so that d has

the same “nice” (Gaussian) distribution for every u, which ensures that our simu-

lated key-dependent ciphertexts are properly distributed. This step applies analytical

techniques used in Regev’s reduction from worst-case lattice problems to LWE [69,

Section 3.2.1]; we also generalize the techniques to deal with the amortized encryption

scheme of Peikert et al. [66], where ciphertexts contain several masks vi for a single

syndrome u.

A final interesting technique concerns key cycles or cliques, where every user’s

secret key may be encrypted under every user’s public key. Simulating such a scenario

seems to require knowing a relation between every pair of (unknown and independent)

secret keys. In the work of Boneh et al. [22], the simulator creates the relations itself

by “masking” one unknown (binary) secret key with random strings, and generating

the related public keys via homomorphisms. In our setting with Gaussian secret keys,

it is unclear how to generate a properly distributed public key by manipulating a given

one. Fortunately, the HNF-style LWE transformation described above also happens

to produce the required linear relations as a side-effect! Briefly, this is because the

transformation may be applied several times to the LWE source distribution, and each

79

resulting Gaussian secret is linked to the original secret s via a known linear relation.

5.2.1 A Generic Transformation

We start with a useful transformation that reduces the LWE problem to one in which

the secret itself is chosen from the error distribution χ, essentially putting the LWE

distribution into “Hermite normal form.” The transformation applies for any q and

χ.

Lemma 13. There is a deterministic polynomial-time transformation T that, for

arbitrary s ∈ Zn
q and error distribution χ, maps As,χ to Ax̄,χ where x̄ ← χn, and

maps uniform distribution on Zn
q × Zq to itself. The transformation also produces

an invertible square matrix Ā ∈ Zn×n
q and b̄ ∈ Zn

q that, when mapping As,χ to Ax̄,χ,

satisfy x̄ = −ĀT s + b̄.

Proof. The transformation T is given access to some distribution D over Zn
q × Zq

(where D may be either As,χ or uniform over Zn
q × Zq), and proceeds in two stages.

In the first stage, T performs some initial processing to obtain Ā, b̄. It does this by

drawing several pairs (a, b) from D, and keeping certain pairs until it has accumulated

a set of n samples {(āi, b̄i)} that will make up Ā, b̄ in the natural way. With each

new sample (a, b), T checks whether a is linearly independent modulo q of all those

āi that have been kept so far; if so, (a, b) is kept, otherwise it is discarded. Note

that the probability of keeping a particular sample is at least ϕ(q)/q ≥ 1/2 (where

ϕ denotes the Euler totient function), so with high probability, T accumulates the

required n samples after drawing O(n2) samples from D. Now by construction, Ā is

invertible modulo q. Also observe that each sample is kept or discarded based only

on its a component, so when D = As,χ, we have b̄ = ĀT s + x̄ where x̄ is drawn from

χn.

The second stage actually transforms (fresh) samples from D into samples from

a possibly different distribution. Given a draw (a, b) ∈ Zn
q × Zq from D, T outputs

80

(a′, b′) ∈ Zn
q × Zq, where

a′ = −Ā−1a and b′ = b + 〈a′, b̄〉.

Observe that because Ā is invertible modulo q and a ∈ Zn
q is uniform, a′ ∈ Zn

q is

uniform as well. We now consider the two cases for D. If D = U , then (a′, b′) is

also distributed according to U , because b ∈ Zq is uniform and independent of a. If

D = As,χ, then b = 〈a, s〉+ x for some x← χ, so we have

b′ = 〈a, s〉+ x− 〈Ā−1a, ĀT s〉+ 〈a′, x̄〉 = 〈a′, x̄〉+ x.

Therefore, (a′, b′) is distributed according to Ax̄,χ, as desired.

5.2.2 Public-Key Scheme

We now define a KDM-secure encryption scheme based on the LWE problem. For

technical reasons, our construction uses a prime power modulus q = p2 of a certain

size, with messages taken over Zp. (Other choices of q = pe are possible, but q = p2

seems to correspond to the mildest underlying assumption.) Note that any element

v ∈ Zq may be written as v = (v1, v0) ∈ Zp × Zp, where v1 and v0 are the most and

least significant digits in the base-p representation of v, respectively, with the digits

chosen from the set of residues {−p−1
2

, . . . , p−1
2
}. Recall that by Lemma 12, the LWE

distribution As,χ (for uniform s ∈ Zn
q) remains pseudorandom if the search problem

LWEq,χ is hard, and if the error distribution χ is concentrated on {0}×Zp (which will

be the case in our system, by explicit design).

For simplicity, we start with a scheme that encrypts a single element of Zp at a

time, later extending it to an amortized version in Section 5.2.4. Our scheme is similar

to the construction of Regev [69], with two main differences. First, the entries of the

secret key s ∈ Zn
q are chosen from the (narrow) error distribution, so that they may

be represented unambiguously as elements of the message space Zp (see Lemma 18);

this is safe due to Lemma 13. Second, we modify the encryption algorithm so that it

induces a “nice” distribution over ciphertexts (see Lemma 19).

81

The scheme involves a number of parameters. The main parameters are the prime

p and error parameter α, which we instantiate below. Let χ = Ψ̄α.

• Key generation: The secret key is s← χn. The public key is (A,b) ∈ Zn×m
q ×

Zm
q , which is made up of m ≥ 2(n + 1) lg q draws (ai, bi) from As,χ. I.e., b =

AT s + x for independent A
$← Zn×m

q and x
$← χm.

• Encryption: Before specifying the encryption algorithm, we define a distribution

EA,b over Zn
q×Zq, which has parameters r = ω(

√
log m) and r′ = r·

√
m·(α+ 1

2q
).

The distribution is obtained by choosing r
$← DZm,r and e

$← Ψ̄r′ and outputting

(Ar, 〈r,b〉+ e) ∈ Zn
q × Zq.

To encrypt a message z ∈ Zp given the public key (A,b), draw a sample (u, v)

from EA,b and output the ciphertext (u, c = v + z · p) ∈ Zn
q × Zq.

• Decryption: To decrypt a ciphertext (u, c) given the secret key s, output the

z ∈ Zp such that z · p is closest to c− 〈u, s〉 modulo q.

The main conflicting constraints on the parameters are given by the correctness

requirement (α cannot be too large) and the hardness requirement (α should be large

enough to invoke the worst-case lattice connections of [69, 65]). These constraints are

captured by the following inequalities to be satisfied:

2
√

n

q
=

2
√

n

p2
≤ α ≤ 1

p ·
√

m · ω(log n)
(5.2.1)

It is possible to satisfy these constraints simultaneously for m = O(n log n), p =

Õ(
√

mn), and α = 1/Õ(m ·
√

n). This yields an underlying worst-case approximation

factor of Õ(n/α) = Õ(n2.5) for lattice problems such as GapSVP.

We fix some notation used in the theorem below. For i ∈ [`], t ∈ Zn
p , and w ∈ Zp,

define the function

fi,t,w : (Zn
p)` → Zp

(s1, . . . , s`) 7→ 〈t, si〉+ w

.

82

Let Faff = {fi,t,w : i ∈ [`], t ∈ Zm
p , w ∈ Zp}.

Theorem 14. Let n,m, p, q, α satisfy (5.2.1). Then the above scheme is KDM-secure

with respect to Faff , assuming that LWEq,χ is hard.

We remark that one can extend the message space of this scheme from Zp to

Zn
p , without hurting KDM security, by simply concatenating ciphertexts. This gives

security against a suitably extended family of affine functions, which implies circular

security.

5.2.3 Proof of Security

5.2.3.1 Overview

The proof of Theorem 14 has the following structure. First we show completeness,

including correct decryption of key-dependent messages. Next we prove KDM security

in two main steps.

The first step is to show that the view of the adversary in the real attack game may

be generated faithfully, up to negligible statistical distance, via an alternate game:

starting from the distribution As,χ (for uniformly random s ∈ Zn
q), the game invokes

the transformation from Lemma 13 several times to produce independent distributions

As1,χ, As2,χ, . . . for each user (where each si ← χn), then generates the public keys

from these distributions in the natural way. The transformation additionally outputs

an invertible linear relation modulo q (hence modulo p as well) between each si and

s, thus linking every pair si, sj in a known way. The game answers the adversary’s

(key-dependent) message queries using these relations and the linear homomorphisms

of the scheme (this is where we use the fact that the system has a “nice” ciphertext

distribution). The crucial property of this game is that, aside from oracle access to

As,χ, the game works without needing to know any of the secret vectors s, s1, s2,

The second (and final) step is to consider a game that proceeds in exactly the same

way as above, except that the original distribution As,χ is replaced by the uniform

83

distribution over Zn
q × Zq. Because the game uses only oracle access to its given

distribution, the two games are computationally indistinguishable under the LWE

assumption. Moreover, all the public keys in this game are uniform and independent,

which implies that all the simulated ciphertexts are as well (up to negligible statistical

distance). It follows that the adversary has negligible advantage in this game, and

the scheme is secure.

5.2.3.2 Technical Lemmas

We will need the following (now standard) technical lemmas, which were proved in

prior works, below. We will refer to the following standard tail bound: a Gaussian

random variable with variance σ is within distance t · σ of its mean, except with

negligible (in t) probability.

Below we will refer to a particular lattice defined by a matrix A, denoted Λ⊥(A),

which was defined by Ajtai [4]. We do not need the exact definition of Λ⊥(A) in our

constructions or analysis, but the machinery we use will refer to it. We will also make

similar use of the smoothing parameter of a lattice, denoted ηε(Λ) [59] for some ε > 0.

The following lemma [44, Corollary 5.4], shows that the distribution of the vector

u in our scheme’s ciphertexts is statistically close uniformly.

Lemma 15. Let n and q be integers and let m ≥ 2n lg q. Then for all but a negligible

(in n) fraction of A ∈ Zn×m
q , and for any r ≥ ω(

√
log m), the distribution of u = Ar

is within negligible statistical distance of uniform over Zn
q , where r

$← DZm,r.

We also need the following lemma, which is a special case of [69, Corollary 3.10].

We note the original lemma actually dealt with e drawn from a continuous Gaussian,

not its discretized version. But since we are adding e to a value that is always integral,

rounding e first is equivalent to rounding the resulting sum.

Lemma 16. Let Λ ⊂ Rm be a lattice. Let x ∈ Zm be a vector and r, r′ > 0 be real.

Assume that (1/r2 + (‖x‖/r′)2)
−1/2 ≥ ηε(Λ) for some negligible ε = ε(m). Then there

84

exists β ∈ R,
√

2r′ ≥ β > 0, such that the distribution of 〈r,x〉 + e, where r
$← DΛ,r

and e
$← Ψ̄r′, is within negligible statistical distance of Ψ̄β.

The following lemma [44, Lemma 5.2] allows us to argue about the conditional

distribution of the randomness r used in encryption, given the first value u in the

ciphertext.

Lemma 17. Let u ∈ Zn
q and t ∈ Zm be an arbitrary solution to At = u mod q.

Then there exists a lattice Λ⊥ = Λ⊥(A) such that for any r ≥ ηε(Λ
⊥), the conditional

distribution of r
$← DZm,r, given Ar = u is exactly t+DΛ⊥,r,−t. Moreover, with over-

whelming probability over the choice of A, the lattice Λ⊥ satisfies ηε(Λ
⊥) ≤ ω(

√
log m)

for some negligible ε(m).

5.2.3.3 Abstract Properties

Here we derive a few technical facts about the distributions of keys and ciphertexts in

the public-key scheme. The proof of security relies only on these abstract properties,

which will be shown via the technical lemmas above.

The first fact is that the entries of the secret key may be represented unam-

biguously in the message space Zp. For convenience in dealing with key-dependent

messages, from now on we view the secret key s as an element of Zn
p ⊂ Zn

q .

Lemma 18. An s ← χ is of the form s = (0, s0) ∈ Zp × Zp with overwhelming

probability.

Proof. This follows directly from the upper bound on α from Equation Equation (5.2.1)

and the exponential tail bound on the Gaussian distribution.

The following lemmas characterize the ciphertext distribution, which is needed

for showing correctness, and (more importantly) for producing proper key-dependent

ciphertexts using the scheme’s homomorphisms.

85

Lemma 19. With overwhelming probability over the choice of the secret key s and

corresponding public key (A,b), the distribution EA,b is within negligible statistical

distance of As,Ψ̄β
for some β ≤

√
2r′.

Proof. In this proof we omit routine calculations with parameters, which can easily

be checked. For (u, v) drawn from EA,b where b = AT s + x, we have

(u, v) = (u, 〈r,b〉+ e) = (u, rTAT s + 〈r,x〉+ e) = (u, 〈u, s〉+ 〈r,x〉+ e).

First, by Lemma 15 we have that the marginal distribution of u induced by EA,b is

within negligible statistical distance of uniform, with overwhelming probability over

the choice of A. Next, fix an arbitrary u ∈ Zn
q and consider the distribution of r

conditioned on the event that Ar = u. By Lemma 17, this conditional distribution is

a discrete Gaussian over (a coset of) a particular lattice Λ⊥ with the same parameter

r. Finally, for fixed x, we can apply Lemma 16 with Λ⊥ and conclude that the

distribution of 〈r,x〉+ e is within negligible statistical distance of Ψ̄β. We note that

x, drawn as specified in our scheme, will satisfy the condition in Lemma 16 with

overwhelming probability. This concludes the proof.

Lemma 20. Let t ∈ Zn
p and y ∈ Zp be arbitrary. With overwhelming probability over

the choice of the public key (A,b) for arbitrary secret key s ∈ Zn
p , the following holds:

for (u, v)
$← EA,b, the distribution of

(u− t · p, v + w · p) ∈ Zn
q × Zq

is within negligible statistical distance of a (properly generated) encryption of the

message 〈t, s〉+ w ∈ Zp.

Proof. Consider the distribution of an encryption of 〈t, s〉 + w for fixed (A,b). By

Lemma 19 above, the ciphertext is distributed (up to negligible statistical distance)

as

(u′, 〈u′, s〉+ x + (〈t, s〉+ w) · p) = (u′, 〈u′ + p · t, s〉+ x + w · p),

86

where u′ ∈ Zn
q is uniform and x← Ψ̄β for some fixed β ≤

√
2r′. Rewriting u′ = u−p·t

for uniformly random u ∈ Zn
q , the ciphertext is negligibly close to

(u− t · p, 〈u, s〉+ x + w · p) = (u, v + w · p),

where (u, v) is drawn from EA,b (again by Lemma 19).

Finally, the next lemma is used for showing statistical security in the final hybrid

game.

Lemma 21. With overwhelming probability over the choice of a “malformed” public

key (A,b) from the uniform distribution over Zn×m
q × Zm

q , the distribution EA,b is

within negligible statistical distance of the uniform distribution over Zn
q × Zq.

Proof. The proof is immediate from Lemma 15. Note that we apply the lemma to

conclude that all of the m + 1 inner products in EA,b are uniform.

5.2.3.4 Proof Details

We first establish correctness. By Lemma 19, the noise in the c component of a

ciphertext is distributed according to Ψ̄β for some

β ≤
√

2r′ ≤ 4α
√

m · ω(
√

log n) ≤ 1

p · ω(
√

log n)
,

by Equation Equation (5.2.1). By the exponential tail inequality for Gaussians and

the definition of Ψ̄β, the noise term does not exceed q/2p = p/2, except with negligible

probability.

Next we establish security. We proceed with a sequences of games, as usual.

Game 0. We define Game 0 to be the original KDM security game. Let S0 be the

event that A wins this game. Then we trivially have

AdvKDMA,PKE,Faff
(n) = Pr[S0]. (5.2.2)

87

Game 1. We now describe an alternate game that faithfully simulates the true

KDM attack game, up to negligible statistical distance. The game starts with access

to the distribution As,χ for uniformly random s ∈ Zn
q . For each user i, it applies

the transformation described in Lemma 13 (using fresh draws from As,χ) to produce

the distribution Asi,χ, where si is distributed according to χn. As a side-effect, the

transformation also outputs invertible square matrices Āi ∈ Zn×n
q and vectors b̄i ∈ Zn

q

such that for all i,

s = Ā−T
i (b̄i − si) mod q.

Note that by setting the right-hand sides equal for any i, j and reducing modulo p,

we have

Ā−T
i (si − b̄i) = Ā−T

j (sj − b̄j) mod p ⇐⇒ si = ĀT
i,j · sj + b̄i,j mod p, (5.2.3)

where Āi,j = Ā−1
j Āi and b̄i,j = b̄i − ĀT

i,j · b̄j. The game then generates a public key

(Ai,bi) for each user i in the usual way by drawing m samples from Asi,χ.

We now describe how the game answers (key-dependent) message queries. Suppose

the adversary requests an encryption, under the jth user’s public key (Aj,bj), of the

function ft,w(si) = 〈t, si〉+w ∈ Zp (for some t ∈ Zn
p , w ∈ Zp) applied to the ith user’s

secret key si. Observe that

ft,w(si) = 〈t, si〉+ w = (Āi,j · t︸ ︷︷ ︸
t′∈Zn

p

)T · si + 〈t, b̄i,j〉+ w︸ ︷︷ ︸
w′∈Zp

.

The game therefore draws a sample (u, v)← EAj ,bj
and outputs

(u− t′ · p, v + w′ · p) ∈ Zn
q × Zq.

This completes the description of the game.

Let S1 be the event that A wins Game 1. By the above description and Lemmas 13

and 20, the following claim is apparent.

88

Claim 22. The distributions of the public keys and ciphertexts generated by the

challenger in Game 1 are within negligible statistical distance of the distributions

in Game 0.

This claim gives

|Pr[S1]− Pr[S0]| ≤ negl(n). (5.2.4)

Game 2. The last hybrid game proceeds exactly as the one above, except that the

initial distribution As,χ is replaced with the uniform distribution over Zn
q ×Zq). Note

that the game above only treats As,χ as an oracle (it never uses s directly), so As,χ

may be replaced in this way.

Now by Lemma 13, all the public keys (Ai,bi) generated by the game are uniform

and independent. Moreover, by Lemma 21, all the (key-dependent) message queries

are answered by ciphertexts that are uniform and independent of the message. The

next claim follows, and the proof of Theorem 14 is complete.

Claim 23. Assuming that LWEq,χ is hard, the distributions of Games 1 and 2 are

computationally indistinguishable, assuming that the LWEq,χ problem is hard.

Let S2 be the event that A wins Game 2. Then the claim gives

|Pr[S2]− Pr[S1]| ≤ negl(n). (5.2.5)

But in Game 2, the bit b chosen by the challenger is never used. It is apparent that

Pr[S2] = 1/2. (5.2.6)

The theorem is completed by collecting (5.2.2), (5.2.4), (5.2.5) and (5.2.6).

5.2.4 Amortized Extension

The system described in Section 5.2 encrypts only a single element z ∈ Zp per syn-

drome u ∈ Zn
q , so the ciphertext is a factor at least n larger than the message, and the

89

encryption algorithm performs at least n ·m operations per message element. Peikert,

Vaikuntanathan, and Waters [66] proposed a significantly more efficient “amortized”

version of the scheme, which can encrypt ` = O(n) symbols using only about twice the

time and space. Applying our techniques, we can show that a variant of that system

is also KDM-secure. The changes to the system in Section 5.2.2 are as follows.

• Key generation: The secret key is S
$← χn×`. The public key is (A,B) ∈

Zn×m
q × Zm×`

q for m ≥ 2(n + `) lg q, where B = ATS + X for independent

A
$← Zn×m

q and X
$← χm×`.

• Encryption: a distribution EA,B over Zn
q × Z`

q is defined similarly. The distri-

bution is obtained by outputting (u,v) = (Ar,BT r+ e) for e
$← Ψ̄`

r′ , where the

parameter r′ is a
√

` factor larger than before. A message z ∈ Z`
p is encrypted

as (u, c = v + z · p).

• Decryption: output the z ∈ Z`
p such that z · p is closest to c− STu modulo q.

The proof of security extends to this system in a straightforward way, except in

generalizing Lemma 19, which characterizes the ciphertext distribution and allows the

simulator to encrypt the secret key (without knowing it, of course). In the analysis

below, we give the details only for this portion, as the rest of the security proof is a

straightforward adaptation of the basic scheme’s analysis.

As in the basic scheme, we will start by showing that the first ciphertext compo-

nent u is statistically close to uniform. Then we examine the conditional distribution

of the noise in the second ciphertext component, given u. It turns out that this con-

ditional distribution is essentially the same for any u, which implies that a simulator

can produce simulated ciphertexts by manipulating the value u in a ciphertext and

leave the noise in the second component untouched.

We start with a technical lemma that shows we can decompose a spherical Gaus-

sian into two parts. For a matrix X with columns xi, let ‖X‖ = max‖xi‖, i.e., the

90

Euclidean length of its longest column.

Lemma 24. Let X ∈ Zm×`
q such that ‖X‖ ≤ L, where L =

(
α + 1

2q

)
·
√

m. Let

r′ =
√

` · L · r and e ← Ψ`
r′. Then there exist random variables e0, e1 such that

e = XTe0 + e1, e0 ← Ψm
r and e1 is distributed as a non-spherical Gaussian on Z`

that is independent of e0.

Proof. Let e0 have distribution Ψm
r , and define e1 = e−XTe0. We will show that the

constraints on the covariance matrix of e1 can be satisfied by a Gaussian, which is

sufficient to prove the lemma. In particular, we will show that all of the eigenvalues

of Cov(e1) are positive. First we have

Cov(XTe0 + e1) = Cov(XTe0) + Cov(e1) = r2XTX + Cov(e1).

Since each column of X has length at most L, every eigenvalue of r2XTX is at most

r2L2` by the Cauchy-Shwarz inequality. We also have that Cov(e) = (r′)2 · I, so all

of the eigenvalues of Cov(e) are equal to (r′)2.

Returning to e1, we can see that

Cov(e1) = Cov(e)− Cov(XTe0) = (r′)2I− r2XTX,

from which it is easily checked that the eigenvalues of Cov(e1) are at least (r′)2 −

λmax(r
2XTX), which is positive when r′ satisfies

(r′)2 > r2L2` ≥ λmax(r
2XTX)

(So r′ ≥ r · (α · ω(
√

log m) + 1/2q) ·
√

`m.) Since all of the eigenvalues of Cov(e1) are

positive, there exists a (non-spherical) Gaussian with this covariance matrix.

Now we can prove a an analogous version of Lemma 19 for our amortized scheme.

Lemma 25. Let A
$← Zn×m

q ,X
$← χ, r

$← DZm,r, e
$← Ψ̄`

r′. Then the distribution

of (Ar,BT r + e) is within negligible statistical distance of (u,STu + v), where v is

distributed as a multivariate (non-spherical) Gaussian independent of S and u.

91

Proof. By Lemma 15, the marginal distribution of u = Ar mod q is negligibly far

from uniform. And by Lemma 17, the conditional distribution of r, given Ar = u,

is Gaussian over a particular shifted lattice. The lemma would follow immediately if

this distribution were almost the same for every u, but this is not the case. Instead

we appeal to a result of Regev along with Lemma 24 to show the structure of r that

depends on u is effectively destroyed by the additional noise e.

In this line of reasoning, we first have that

BT r + e =
(
ATS + X

)T
r + e = STu + XT r + e.

By observing that ‖X‖ ≤ L with overwhelming probability, Lemma 24 applies and

we can write the error term XT r + e = XT (r + e0) + e1. By [69, Lemma 3.9], we

have that the distribution of r′ = r + e0 is negligibly far from a continuous spherical

Gaussian distribution. The key property of the distribution of r′ is that does not

depend on u. Once we observe that e1 does not depend on u, the lemma follows.

Lemma 26. Let t ∈ Zn
p and y ∈ Zp be arbitrary. With overwhelming probability over

the choice of the public key (A,B) for arbitrary secret key S ∈ Zn×`
p , the following

holds: for (u, c) = (Ar,BT r + e), the distribution of

(u− t · p, c + w · p) ∈ Zn
q × Zq

is within negligible statistical distance of a (properly generated) encryption of the

message ST t + w ∈ Zp.

Proof. Exactly the same as Lemma 20. This should be deleted, but I’m leaving it

for now in case it is needed. A proper encryption of ST t + w is distributed as (up to

negligible error)

(u′,STu′ + v + (ST t + w) · p) = (u′,ST (u′ + t · p) + v + w · p)

by Lemma 25. Rewriting u′ = u− p · t for a uniformly chosen u ∈ Zn
q ,

(u− t · p,STu + v + w · p)

92

5.3 Symmetric-Key Encryption Scheme Based on LPN

In this section we describe and analyze our KDM-secure encryption scheme based on

the LPN problem. Our construction is very simple and efficient, involving only bit

arithmetic. It can encrypt multi-bit messages, including its entire key in one cipher-

text. The KDM security analysis is also very simple compared to the analysis of [22]

and our LWE-based scheme. In the analysis we exploit the natural homomorphic

and “self referential” properties of the underlying learning problem, except now the

arithmetic is over Z2 and there is no accumulation of error terms when encrypting,

which eliminates many technical difficulties.

Our construction is similar to the scheme of Gilbert et al. [45], which is also based

on LPN, except that our ciphertexts include a matrix U where they only need one

vector u. In particular, the computation for encryption and decryption per plaintext

bit in our scheme is the same as in [45], as is the ratio of ciphertext length to plaintext

length.

5.3.1 The Scheme

Fix ε > 0. Let C ∈ {0, 1}m×n be the generating matrix of an efficiently decodable

linear code that can correct up to d > (ε + α)m errors, for some α > 0.

We will denote our scheme by SKElpn. The key space and message space of the

scheme are both {0, 1}n×k, where n is determined by the LPNε parameters and k is

free. In particular, if k = 1 the secret keys will be very short, but a larger k improves

the ciphertext overhead.

• Key generation: The secret key chosen as S
$← {0, 1}n×k.

93

• Encryption: To encrypt a message M ∈ {0, 1}n×k given the secret key S, com-

pute

U
$← {0, 1}m×n, X

$← Berm×k
ε , B← CM + US + X.

The ciphertext is (U,B).

• Decryption: To decrypt a ciphertext (U,B) ∈ {0, 1}m×n × {0, 1}m×k given the

secret key S, compute

W← B + US.

Then output M ∈ {0, 1}n×k, where each column of M is computed by decoding

the corresponding column of W.

We briefly compare our scheme to the recently proposed scheme of Gilbert et

al. [45]. The ciphertexts in their scheme consist of a vector u ∈ {0, 1}n, and the pad

for the message is computed as Stu. A ciphertext from our scheme can be seen as

an entangled set of m ciphertexts from their scheme, where this entangling seems

necessary to prove KDM security. While the ratio of ciphertext length to plaintext

length of our scheme is the same (if both schemes are instantiated with the same

size keys), our scheme is restricted in that it must send a full matrix U with each

ciphertext, even if the message M does not require such a large pad.

5.3.2 Analysis

We observe that our scheme correctly decrypts with overwhelming probability and

then analyze its KDM security.

Theorem 27 (Correctness). Decryption errors occur with negligible probability. In

particular, we have, for all M ∈ {0, 1}n×k and all S ∈ {0, 1}n×k,

Pr [D(S, ES(M)) 6= M]

is negligible, where the probability is taken over the choice of U and X.

94

Proof. A decryption error only occurs when a column of X has hamming weight

greater than (ε + α)m. The probability that is happens for a fixed column is expo-

nentially small in m when ε, α are constants by a simple Chernoff bound. We can

then take a union bound over the columns of X to finish the proof.

The security analysis uses the following lemma, implicit in [45]. It can be proven

by a simple hybrid argument.

Lemma 28. Let AS,ε be the distribution induced by computing

U
$← {0, 1}m×n, X

$← Berm×k
ε , R← US + X

and outputting (U,R) ∈ {0, 1}m×n × {0, 1}m×k.

Then an oracle that returns samples from AS,ε for a random S ∈ {0, 1}n×k is

indistinguishable from an oracle returning uniform samples, assuming that the LPNε

problem is hard.

Below we use the following simple observations about the schemes homomorphic

properties.

1. Let D ∈ {0, 1}n×n, and (U,R)
$← AS,ε. Then the distribution of

(U + CD,R)

is exactly the same as the distribution of an encryption of the message DS

under key S – that is, the same distribution as ES(DS). To see this, write

U′ = U + CD, and then we have that

(U + CD,R) = (U + CD,US + X) = (U′,U′S + C (DS) + X),

where X
$← Berm×k

ε .

2. Let (U,R)
$← ES(M). Then the distribution of

(U,R + CW)

95

is exactly the same as the distribution of ES(M + W). We also have that

(U,R + UT)

has the same distribution as ES+T(M). These can be verified through straight-

forward calculation.

In the following theorem, we denote by fj,D,E the function fj,D,E(S1, . . . ,S`) = DSj +

E, and let

Faff = {fj,D,E : j ∈ [`],D ∈ {0, 1}n×n,E ∈ {0, 1}n×k}.

Theorem 29 (Security). The scheme SKElpn is KDM-CPA secure with respect to

Faff , assuming that the LPNε problem is hard.

Proof. We proceed with a sequence of games. Let A be an adversary attacking SKElpn

is the KDM-CPA game with functions Faff .

Game 0. Game 0 is defined to be the original attack game. We have

Pr[S0] = AdvKDMA,SKElpn,Faff
(n). (5.3.1)

Game 1. Game 1 is like Game 0, except we change how the game is run by the

challenger. These changes do not affect the distribution of the ciphertexts generated

for the adversary, however.

Let Si be the key for user i. In Game 0 each Si is selected independently at

random, but Game 1 samples them as follows. It selects S
$← {0, 1}n×k, and then for

each user i, it computes

Ti
$← {0, 1}n×k, Si ← S + Ti.

We first describe how to process an encryption query (i, fj,D,E), as follows.

1. It samples (U(1),R(1))
$← AS,ε. This sample has the same distribution as ES(0).

96

2. It computes

(U(2),R(2))← (U(1) + CD,R(1)).

(U(2),R(2)) now has the same distribution as ES(DS).

3. The challenger then computes

(U(3),R(3))← (U(2),R(2) + UTi).

(U(3),R(3)) has the same distribution as ES+Ti
(DS) ≡ ESi

(DS).

4. Finally, the challenger computes

(U(4),R(4))← (U(3),R(3) + CDTj + CE).

The distribution of (U(4),R(4)) is exactly the same as that of

ESi
(D(S + Tj) + E) ≡ ESi

(DSj + E) ≡ ESi
(fj,D,E(S1, . . . ,S`)).

The challenger returns the ciphertext (U(4),R(4)) to the adversary.

Now, when running the game, if b = 0 the challenger processes the query as

described. If b = 1, the adversary instead uses the above procedure with the function

f that is identically zero.

Since we have only changed the way the challenger runs the game, and not the

distribution of ciphertexts returned, we have

Pr[S1] = Pr[S0]. (5.3.2)

Game 2. Game 2 is exactly like Game 1, except with the following change: When

processing encryption queries, in step 1, the challenger sets (U(1),R(1)) a uniformly

random sample. Everything else remains exactly the same.

We claim that

∣∣Pr[S2]− Pr[S1]
∣∣ ≤ negl(n), (5.3.3)

97

assuming that the LPNε problem is hard. To see this, we construct an adversary that

solves the LPNε problem in the straightforward way: It selects b
$← {0, 1}, and then

responds to encryption queries are prescribed in Game 1, except that in step 1 it

queries its own oracle, which either samples AS,ε or uniform bits. It does not need S

anywhere else in the simulation. It runs until A halts, and if A wins it guesses “real”,

and “random” otherwise.

We observe that, depending on the oracle, our adversary will simulate either

Game 1 or Game 2. If there is a non-negligible difference in Pr[S1] and Pr[S2], this

will give our adversary non-negligible advantage in distinguishing the oracles. Then

by Lemma 28, our adversary can be used to solve the LPNε problem, which contradicts

the assumed hardness.

Finally, it is apparent that

Pr[S2] = 1/2, (5.3.4)

as the challenger’s responses are independent of the bit b. The theorem is completed

by collection (5.3.1),(5.3.2), (5.3.3) and (5.3.4).

5.4 Separating Standard Security and Circular Security

In this section we provide a simple example of a public-key encryption scheme that

semantically secure under a standard assumption, but is not circular secure.

External Diffie-Hellman. Below we will use the so-called symmetric external

Diffie-Hellman (SXDH) assumption. [6] To define the SXDH assumption, first recall

the decisional Diffie-Hellman (DDH) problem, defined in §3.5. Let G be a group with

prime order q, and let g be a generator of G. The DDH problem is to distinguish the

uniform distribution on G3 from the distribution induced by (X, Y, dh(X, Y)) on G3,

where X,Y are uniform random variables on G, and dh is defined by dh(gx, gy) = gxy.

98

The SXDH assumption is defined with respect to groups that support an asym-

metric pairing. That is, we consider triples of groups (G1, G2, GT), such that an

efficient computable bilinear map ê : G1 ×G2 → GT is available.

The SXDH assumption is then: The DDH problem is intractable in both G1 and

G2. Here, intractable can mean that any probabilistic polynomial-time algorithm will

be able to distinguish the distributions involved with at most negligible advantage.

Of course, one must take an appropriate asymptotic version of the groups involved

to define this precisely.

5.4.1 The Counterexample Scheme

We now describe our encryption scheme, denoted PKEsxdh, that is semantically-secure

against chosen-plaintext attacks, but breaks completely when a two-cycle is published.

Let en1 : Zq → G1 and en2 : Zq → G2 be efficiently invertible encoding functions.

Fix an asymmetric pairing ê : G1, G2 → GT , and let g1, g2 be generators for

G1, G2, respectively. A secret key in this scheme is a random (x1, x2) ∈ Zq × Zq, and

the corresponding public key is (X1, X2) = (gx1
1 , gx2

2) ∈ G1 ×G2.

Encryption takes as input a public key (X1, X2) and a message (m1, m2) ∈ Zq×Zq,

where mi 6= 0 for i = 1, 2. It chooses (y1, y2)
$← Zq × Zq, (r1, r2)

$← Zq × Zq and, for

i = 1, 2, computes

Yi ← gyi

i , Zi ← Xyi

i , Ci ← eni(mi) · Zi.

It then computes

R1 ← gr1
1 , R2 ← gr2

2 , S1 ← (X1)
r1 , S2 ← (X2)

r2

τ1 ← S
1/m2

1 , τ2 ← (S2)
1/m1 .

A ciphertext is composed of (Yi, Ci, Ri, τi) ∈ G4
i for i = 1, 2. We draw the reader’s

attention to the fact that τ1 is computed using m2, while τ2 is computed using m1.

99

Decryption gets as input a ciphertext

(Ŷ1, Ĉ1, R̂1, τ̂1), (Ŷ2, Ĉ2, R̂2, τ̂2)

ignores R̂1, R̂2, τ̂1, τ̂2 and uses only Ŷ1, Ŷ2, Ĉ1, Ĉ2, in addition to the secret key (x1, x2).

For i = 1, 2, it computes

M̂i ← Ĉi/(Ŷ
xi
i), m̂i ← en−1(M̂i).

It outputs (m̂1, m̂2) as the decrypted message.

Circular insecurity. We first verify that the scheme is not circular-secure. More

precisely, we will show that the circular-encryption of two secret keys sk and sk′ is

distinguishable from a pair of ciphertexts that is not an encrypted cycle. In this

attack, the adversary is given either ciphertexts (C, C ′) generated according to

C
$← Epk(sk

′), C ′ $← Epk′(sk) (5.4.1)

or as

C
$← Epk(m

′), C ′ $← Epk′(m) (5.4.2)

for some arbitrary messages (m,m′) 6= (sk, sk′). These message can be random, fixed,

or whatever is appropriate for the exact definition we wish to separate.

The attack proceeds as follows. Let sk = (x1, x2), sk
′ = (x′1, x

′
2), and write

C =
(
(Y1, C1, R1, τ1), (Y2, C2, R2, τ2)

)
and

C ′ =
(
(Y ′

1 , C
′
1, R

′
1, τ

′
1), (Y ′

2 , C
′
2, R

′
2, τ

′
2)

)
The attack simply tests if

ê(τ1, τ
′
2) = ê(R1, R

′
2). (5.4.3)

100

We now analyze the test in (5.4.3). Suppose (C, C ′) was generated according to

(5.4.1). Then we have

ê(τ1, τ
′
2) = ê

(
(X1)

r1/x′2 , (X ′
2)

r′2/x1
)

= ê
(
g

r1·x1/x′2
1 , g

r′2·x′2/x1

2

)
= ê

(
gr1
1 , gr2

2)(x1/x′2)·(x′2/x1)

= ê(R1, R
′
2),

and (5.4.3) holds with probability 1.

Now consider the case where (C, C ′) was generated according to (5.4.2). Write

m = (m1, m2) and m′ = (m′
1, m

′
2). Then we have

ê(τ1, τ
′
2) = ê

(
(X1)

r1/m′
2 , (X ′

2)
r′2/m1

)
= ê

(
g

r1·x1/m′
2

1 , g
r′2·x′2/m1

2

)
= ê

(
gr1
1 , gr2

2)(x1/m′
2)·(x′2/m1)

= ê(R1, R
′
2)

(x1/m′
2)·(x′2/m1).

From this we can conclude that when

(x1/m
′
2) · (x′2/m1) 6= 1 ∈ Zq,

the test in (5.4.3) will not hold. If m1, m
′
2 are random elements, or some fixed message

like eni(0), this equality will hold with negligible probability.

Thus, the test correctly distinguishes a circular encryption from a non-circular

encryption while erring with only negligible probability. This concludes the attack

on circular security.

Standard security. In this section we verify that the scheme is semantically

secure, assuming that the SXDH problem is hard. This proof is quite standard.

Theorem 30. The public-key encryption scheme PKEsxdh is semantically-secure against

chosen plaintext attacks, assuming the DDH problem is hard in G1 and G2.

Proof. We proceed with a sequence of games. Let A be an adversary attacking

PKEsxdh, and let Si be the event that A wins Game i.

101

Game 0. Game 0 is defined to be the chosen plaintext attack game. The following

is then apparent.

Pr[S0] = AdvCPAA,PKEsxdh
. (5.4.4)

Game 1. Game 1 is exactly like Game 0, except with the following differences.

When generating the challenge ciphertext, instead of computing Z1 as prescribed, the

challenger selects it at random from the appropriate groups. A standard argument

shows that there is an SXDH adversary Bddh1, running in about the same time as A,

such that

∣∣Pr[S1]− Pr[S0]
∣∣ ≤ AdvDDHBddh1,G1 . (5.4.5)

We outline the standard argument. The adversary Bddh1 gets X1, Y1, Z1 ∈ G1 as input

in the DDH game, where Z1 is set to either dh(X1, Y1) or to a random element of G1.

It uses X1 in the public key, and selects X2 as normal. For the challenge ciphertext,

it uses Y1 and Z1 in place of normal computations. It runs A until it halts, and then

checks if it wins the simulated game. If so, Bddh1 guesses “real” and otherwise it

guesses “random.” It is not hard to verify that, depending on how Z1 was set in the

DDH game, Bddh1 will simulate either Game 0 or Game 1. The claim follows.

Game 2. Game 2 is like Game 1, except now the values Z2, S1, S2 are selected at

random instead of being computed normally. By repeating an argument that is nearly

identical to the above one, we have

∣∣Pr[S2]− Pr[S1]
∣∣ ≤ AdvDDHBddh1,G1 + 2 · AdvDDHBddh2,G2 (5.4.6)

for adversaries Bddh1,Bddh2 that run in about the same time as A. We note that to

replace Z2 and S2 with random elements we must appeal to the DDH assumption in

G2.

102

Game 3. In Game 3, the challenger ignores the messages submitted by A in the

challenge query, and instead encrypts a random message. It is clear that this does

not change the distribution of the ciphertext given to A, and so we have

Pr[S2] = Pr[S1]. (5.4.7)

But it is also clear that

Pr[S2] = 1/2. (5.4.8)

The proof is completed by collecting (5.4.4),(5.4.5), (5.4.6), (5.4.7) and (5.4.8).

103

REFERENCES

[1] Abdalla, M., Bellare, M., and Rogaway, P., “The oracle diffie-hellman
assumptions and an analysis of dhies,” in CT-RSA, pp. 143–158, 2001.

[2] Abdalla, M. and Pointcheval, D., “Simple password-based encrypted key
exchange protocols,” in CT-RSA, pp. 191–208, 2005.

[3] Adão, P., Bana, G., Herzog, J., and Scedrov, A., “Soundness of formal
encryption in the presence of key-cycles,” in ESORICS, pp. 374–396, 2005.

[4] Ajtai, M., “Generating hard instances of lattice problems,” Quaderni di
Matematica, vol. 13, pp. 1–32, 2004. Preliminary version in STOC 1996.

[5] Applebaum, B., “Fast cryptographic primitives based on the hardness of decod-
ing random linear code,” Princeton University Department of Computer Science
Technical Report TR-845-08, December 2008.

[6] Ateniese, G., Camenisch, J., Hohenberger, S., and de Medeiros, B.,
“Practical group signatures without random oracles.” Cryptology ePrint Archive,
Report 2005/385, 2005. http://eprint.iacr.org/.

[7] Baek, J., Lee, B., and Kim, K., “Secure length-saving elgamal encryption
under the computational diffie-hellman assumption,” in ACISP, pp. 49–58, 2000.

[8] Barak, B., “Constant-round coin-tossing with a man in the middle or realizing
the shared random string model,” in FOCS, pp. 345–355, 2002.

[9] Barak, B., Prabhakaran, M., and Sahai, A., “Concurrent non-malleable
zero knowledge,” in FOCS, pp. 345–354, 2006.

[10] Bellare, M., Desai, A., Jokipii, E., and Rogaway, P., “A concrete security
treatment of symmetric encryption,” in FOCS, pp. 394–403, 1997.

[11] Bellare, M. and Rogaway, P., “Random oracles are practical: A paradigm
for designing efficient protocols,” in ACM Conference on Computer and Com-
munications Security, pp. 62–73, 1993.

[12] Bellare, M. and Rogaway, P., “Code-based game-playing proofs and the
security of triple encryption.” Cryptology ePrint Archive, Report 2004/331, 2004.
http://eprint.iacr.org/.

[13] Bellare, M. and Sahai, A., “Non-malleable encryption: Equivalence between
two notions, and an indistinguishability-based characterization,” in CRYPTO,
pp. 519–536, 1999.

104

[14] Black, J., Rogaway, P., and Shrimpton, T., “Encryption-scheme security
in the presence of key-dependent messages,” in Selected Areas in Cryptography,
pp. 62–75, 2002.

[15] Blum, A., Kalai, A., and Wasserman, H., “Noise-tolerant learning, the
parity problem, and the statistical query model,” J. ACM, vol. 50, no. 4, pp. 506–
519, 2003.

[16] Boldyreva, A., Cash, D., Fischlin, M., and Warinschi, B., “Foundations
of non-malleable hash and one-way functions,” in ASIACRYPT, 2009. To appear.

[17] Boldyreva, A. and Fischlin, M., “Analysis of random oracle instantiation
scenarios for oaep and other practical schemes,” in CRYPTO, pp. 412–429, 2005.

[18] Boldyreva, A. and Fischlin, M., “On the security of oaep,” in ASIACRYPT,
pp. 210–225, 2006.

[19] Boneh, D. and Boyen, X., “Efficient selective-id secure identity-based encryp-
tion without random oracles,” in EUROCRYPT, pp. 223–238, 2004.

[20] Boneh, D. and Boyen, X., “Short signatures without random oracles and the
sdh assumption in bilinear groups,” J. Cryptology, vol. 21, no. 2, pp. 149–177,
2008.

[21] Boneh, D. and Franklin, M. K., “Identity-based encryption from the weil
pairing,” in CRYPTO, pp. 213–229, 2001.

[22] Boneh, D., Halevi, S., Hamburg, M., and Ostrovsky, R., “Circular-
secure encryption from decision Diffie-Hellman,” in CRYPTO, pp. 108–125, 2008.

[23] Boyen, X., Mei, Q., and Waters, B., “Direct chosen ciphertext security from
identity-based techniques,” in ACM Conference on Computer and Communica-
tions Security, pp. 320–329, 2005.

[24] Camenisch, J., Chandran, N., and Shoup, V., “A public key encryption
scheme secure against key dependent chosen plaintext and adaptive chosen ci-
phertext attacks,” in EUROCRYPT, pp. 351–368, 2009.

[25] Camenisch, J. and Lysyanskaya, A., “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,” in EU-
ROCRYPT, pp. 93–118, 2001.

[26] Canetti, R., “Towards realizing random oracles: Hash functions that hide all
partial information,” in CRYPTO, pp. 455–469, 1997.

[27] Canetti, R., Goldreich, O., and Halevi, S., “The random oracle method-
ology, revisited,” J. ACM, vol. 51, no. 4, pp. 557–594, 2004.

[28] Canetti, R., Halevi, S., and Steiner, M., “Mitigating dictionary attacks
on password-protected local storage,” in CRYPTO, pp. 160–179, 2006.

105

[29] Canetti, R., Micciancio, D., and Reingold, O., “Perfectly one-way prob-
abilistic hash functions (preliminary version),” in STOC, pp. 131–140, 1998.

[30] Cash, D., Kiltz, E., and Shoup, V., “The twin diffie-hellman problem and
applications,” in EUROCRYPT, pp. 127–145, 2008.

[31] Coron, J.-S., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D.,
and Tymen, C., “Gem: A generic chosen-ciphertext secure encryption method,”
in CT-RSA, pp. 263–276, 2002.

[32] Cramer, R. and Shoup, V., “Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack,” SIAM J. on
Comput., vol. 33, pp. 167–226, 2003.

[33] Crescenzo, G. D., Ishai, Y., and Ostrovsky, R., “Non-interactive and
non-malleable commitment,” in STOC, pp. 141–150, 1998.

[34] Damg̊ard, I. and Groth, J., “Non-interactive and reusable non-malleable
commitment schemes,” in STOC, pp. 426–437, 2003.

[35] Diffie, W. and Hellman, M. E., “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. IT-22, no. 6, pp. 644–654, 1976.

[36] Dolev, D., Dwork, C., and Naor, M., “Nonmalleable cryptography,” SIAM
J. Comput., vol. 30, no. 2, pp. 391–437, 2000.

[37] Feldman, V., Gopalan, P., Khot, S., and Ponnuswami, A. K., “New
results for learning noisy parities and halfspaces,” in FOCS, pp. 563–574, 2006.

[38] Fischlin, M., “Pseudorandom function tribe ensembles based on one-way per-
mutations: Improvements and applications,” in EUROCRYPT, pp. 432–445,
1999.

[39] Fischlin, M., “Security of nmac and hmac based on non-malleability,” in CT-
RSA, pp. 138–154, 2008.

[40] Fischlin, M. and Fischlin, R., “Efficient non-malleable commitment
schemes,” in CRYPTO, pp. 413–431, 2000.

[41] Fujisaki, E. and Okamoto, T., “How to enhance the security of public-key
encryption at minimum cost,” in Public Key Cryptography, pp. 53–68, 1999.

[42] Fujisaki, E., Okamoto, T., Pointcheval, D., and Stern, J., “Rsa-oaep
is secure under the rsa assumption,” in CRYPTO, pp. 260–274, 2001.

[43] Gennaro, R., Krawczyk, H., and Rabin, T., “Secure hashed diffie-hellman
over non-ddh groups,” in EUROCRYPT, pp. 361–381, 2004.

[44] Gentry, C., Peikert, C., and Vaikuntanathan, V., “Trapdoors for hard
lattices and new cryptographic constructions,” in STOC, pp. 197–206, 2008.

106

[45] Gilbert, H., Robshaw, M. J. B., and Seurin, Y., “How to encrypt with
the LPN problem,” in ICALP (2), pp. 679–690, 2008.

[46] Goldreich, O., Foundations of Cryptography: Basic Tools. New York, NY,
USA: Cambridge University Press, 2000.

[47] Goldreich, O. and Levin, L. A., “A hard-core predicate for all one-way
functions,” in STOC, pp. 25–32, 1989.

[48] Goldwasser, S. and Micali, S., “Probabilistic encryption,” J. Comput. Syst.
Sci., vol. 28, no. 2, pp. 270–299, 1984.

[49] Halevi, S., “Eme*: Extending eme to handle arbitrary-length messages with
associated data,” in INDOCRYPT, pp. 315–327, 2004.

[50] Halevi, S. and Rogaway, P., “A tweakable enciphering mode,” in CRYPTO,
pp. 482–499, 2003.

[51] Halevi, S. and Rogaway, P., “A parallelizable enciphering mode,” in CT-
RSA, pp. 292–304, 2004.

[52] Hofheinz, D. and Kiltz, E., “Secure hybrid encryption from weakened key
encapsulation,” in CRYPTO, pp. 553–571, 2007.

[53] Hofheinz, D. and Unruh, D., “Towards key-dependent message security in
the standard model,” in EUROCRYPT, pp. 108–126, 2008.

[54] Katz, J., “Efficient cryptographic protocols based on the hardness of learning
parity with noise,” in IMA Int. Conf., pp. 1–15, 2007.

[55] Kurosawa, K. and Matsuo, T., “How to remove mac from dhies,” in ACISP,
pp. 236–247, 2004.

[56] Libert, B. and Quisquater, J.-J., “Identity based encryption without redun-
dancy,” in ACNS, pp. 285–300, 2005.

[57] Menezes, A. J., Vanstone, S. A., and Oorschot, P. C. V., Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, Inc., 1996.

[58] Micciancio, D., “Improving lattice based cryptosystems using the Hermite
normal form,” in CaLC, pp. 126–145, 2001.

[59] Micciancio, D. and Regev, O., “Worst-case to average-case reductions based
on Gaussian measures.,” SIAM J. Comput., vol. 37, no. 1, pp. 267–302, 2007.
Preliminary version in FOCS 2004.

[60] Micciancio, D. and Regev, O., “Lattice-based cryptography,” in Post Quan-
tum Cryptography (Bernstein, D. J., Buchmann, J., and Dahmen, E., eds.),
pp. 147–191, Springer, February 2009.

107

[61] Okamoto, T. and Pointcheval, D., “The gap-problems: A new class of
problems for the security of cryptographic schemes,” in Public Key Cryptography,
pp. 104–118, 2001.

[62] P1619, I., “Standard for cryptographic protection of data on block-oriented
storage devices,” 2007. https://siswg.net/.

[63] Pass, R. and Rosen, A., “Concurrent non-malleable commitments,” in FOCS,
pp. 563–572, 2005.

[64] Pass, R. and Rosen, A., “New and improved constructions of non-malleable
cryptographic protocols,” in STOC, pp. 533–542, 2005.

[65] Peikert, C., “Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract,” in STOC, pp. 333–342, 2009.

[66] Peikert, C., Vaikuntanathan, V., and Waters, B., “A framework for
efficient and composable oblivious transfer,” in CRYPTO, pp. 554–571, 2008.

[67] Phan, D. H. and Pointcheval, D., “About the security of ciphers (semantic
security and pseudo-random permutations),” in Selected Areas in Cryptography,
pp. 182–197, 2004.

[68] Rackoff, C. and Simon, D. R., “Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack,” in CRYPTO, pp. 433–444, 1991.

[69] Regev, O., “On lattices, learning with errors, random linear codes, and cryp-
tography,” in STOC, pp. 84–93, 2005.

[70] Sahai, A., “Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security,” in FOCS, pp. 543–553, 1999.

[71] Sakai, R. and Kasahara, M., “Id based cryptosystems with pairing on elliptic
curve.” Cryptology ePrint Archive, Report 2003/054, 2003. http://eprint.

iacr.org/.

[72] Santis, A. D., Crescenzo, G. D., Ostrovsky, R., Persiano, G., and
Sahai, A., “Robust non-interactive zero knowledge,” in CRYPTO, pp. 566–
598, 2001.

[73] Shamir, A., “Identity-based cryptosystems and signature schemes,” in
CRYPTO, pp. 47–53, 1984.

[74] Shoup, V., “Sequences of games: A tool for taming complexity in security
proofs,” 2004. Available at http://www.shoup.net/papers/.

[75] Steinfeld, R., Baek, J., and Zheng, Y., “On the necessity of strong assump-
tions for the security of a class of asymmetric encryption schemes,” in ACISP,
pp. 241–256, 2002.

108

[76] Yao, A. C.-C., “Theory and applications of trapdoor functions (extended ab-
stract),” in FOCS, pp. 80–91, 1982.

109

