
EÆciency and Security Trade-O� in Supporting Range

Queries on Encrypted Databases

Jun Li Edward R. Omiecinski

College of Computing

Georgia Institute of Technology, Atlanta, GA 30332

fjunli, edwardog@cc.gatech.edu

Abstract

The database-as-a-service (DAS) model is a newly emerging computing paradigm,

where the DBMS functions are outsourced. It is desirable to store data on database

servers in encrypted form to reduce security and privacy risks since the server may not

be fully trusted. But this usually implies that one has to sacri�ce functionality and

eÆciency for security. Several approaches have been proposed in recent literature

for eÆciently supporting queries on encrypted databases. These approaches di�er

from each other in how the index of attribute values is created. Random one-to-one

mapping and order-preserving are two examples. In this paper we will adapt a pre�x-

preserving encryption scheme to create the index. Certainly, all these approaches look

for a convenient trade-o� between eÆciency and security. In this paper we will discuss

the security issues and eÆciency of these approaches for supporting range queries on

encrypted numeric data.

Keywords: Con�dentiality, range query, interval-matching, pre�x-matching, random one-

to-one mapping, pre�x-preserving, order-preserving.

1 Introduction

The database-as-a-service (DAS) model [14] is a new computing paradigm which has

emerged recently. To save cost, data storage and management are outsourced to database

service providers. In other words, highly sensitive data are now stored in locations that

are not under the data owner's control, such as leased space and partners' sites. This can

put data con�dentiality at risk. Therefore, it is desirable to store data in encrypted form

to protect sensitive information. Also queries may reveal private information about the

user [6]. In this paper, we discuss how to eÆciently support searching functionality, in

particular, range queries, while preserving data con�dentiality and user privacy. The moti-

vation within this model of processing is to provide security and privacy but also have the

database service provider do most of the processing. The strategy is to process as much of

the query as possible at the service providers' site. Several approaches have been proposed

to generate the index which enables queries to be processed against encrypted data with

di�erent levels of eÆciency and security [13, 8, 3, 15]. In this paper, we will adapt a pre�x-

preserving encryption scheme to create the index. Certainly, all these approaches look for

a convenient trade-o� between eÆciency and security. In this paper we will discuss the

security issues and eÆciency of these approaches for supporting range queries on encrypted

data.

One simple way to preserve the con�dentiality is to decrypt the data when performing

search. There are several drawbacks with this approach. First, all the data stored in

the database needs to be decrypted for every query. This is very ineÆcient in terms of

computation. Second, this approach assumes the server is secure and fully trusted. This

assumption is less justi�ed in the DAS paradigm.

A major type of database queries is range-based, composed of intervals in the underlying

domain of the attributes. Attributes such as name, not typically thought of as numerical,

can be indexed and therefore linearized in some fashion. In this paper we will mainly

be concerned with interval-matching or exact-matching as query conditions1. Interval-

matching is de�ned as a boolean function f[a;b](x), which returns true if and only if x 2 [a; b].

Because computers can handle only inherently �nite and discrete attribute values, one can

assume without loss of generality x, a and b are all nonnegative integers. Exact-matching

is a special case of interval-matching in which a is equal to b.

The paper is organized as the follows, in Section 2, we survey the related work and

1Those more complex query conditions usually can be converted into exact-matching, though it might

not be eÆcient to do so.

1

discuss possible solutions based on well-known mechanisms. Section 3 shows how a rela-

tion is encrypted and stored on the server. In Section 4, we �rst show how an interval-

matching problem can be transformed into a set of pre�x-matching problems. Then the

pre�x-preserving encryption algorithm is presented. In Section 5, we describe that with

pre�x-preserving encryption how a condition in a range query is translated to a condition

over server-side representation and how select operations are implemented. Section 6 ana-

lyzes attacks against the random one-to-one mapping scheme, the order-preserving scheme

and the pre�x-preserving scheme under a particular assumption, while in Section 7 we

have some additional discussion on the security of the pre�x-preserving scheme. Section 8

compares the pre�x-preserving scheme with the random one-to-one mapping scheme in

the aspects of client side cost, server side cost and communication cost for supporting

range queries. In Section 9, we discuss about how to support query conditions other than

exact-matching/interval-matching, and relational operations other than selection. We then

conclude the paper in Section 10.

2 Related Work

Recently providing security and privacy in DAS has drawn considerable attention [13, 8,

3, 15]. The bucket index technique proposed in [13, 15] relies on partitioning attribute

domains of a client's table into sets of buckets. The index value of each remote table

attribute value is the bucket number to which the corresponding plain value belongs. This

representation supports eÆcient evaluation on the database service provider of both exact-

matching and interval-matching predicates; however, it makes it awkward to manage the

correspondence between bucket numbers and the actual attribute values present in the

database. For the convenience of comparison, in the rest of this paper, when we discuss

about this approach, we will assume that the size of each bucket is 1 and the bucket number

is generated by a random one-to-one mapping of the plaintext value. In this case, the server

will not return any redundant data to the client. Therefore, the client does not need any

database functionality to �lter out unsolicited data. This ful�lls the goal of the DAS model,

i.e., outsourcing database management and having the database server do most of the work.

In [8], the authors quantitatively evaluate the level of inference exposure associated

with the publication of attribute indexes generated by a random one-to-one mapping. To

eÆciently support range queries on encrypted data, they propose to build a B+-tree over

plaintext values, but then encrypt every tuple and the B+-tree at the node level using

conventional encryption. The advantage of this approach is that the content of B+-tree is

2

not visible to an untrusted database service provider. The disadvantage is that a lot of

data processing has to occur on client machines. This mitigates the advantage of the DAS

model.

In [17], a sequence of strictly increasing polynomial functions is used for encrypting

integer values while preserving their order. In [3], another form of order-preserving encryp-

tion is provided for computing the index. It takes a user-provided target distribution as

input and transform the plaintext values in such a way that the transformation preserves

the order while the transformed values follow the target distribution. They assume an ap-

plication environment where the goal is safety from an adversary who has access to all (but

only) encrypted values (the so called ciphertext only attack [19]). In this paper, we will not

only examine the pre�x-preserving scheme under ciphertext only attack, but also examine

it under known plaintext attack [19] (i.e., an adversary is assumed to gain full knowledge

to certain number of hplaintext, ciphertexti pairs through means other than compromising

the key).

A potential technique that can support searching on encrypted data is computing with

encrypted data [10, 1]. However, an expensive protocol between clients and database service

providers is needed. A closely related topic is Private Information Retrieval (PIR) [6, 7].

PIR mechanisms allow clients to query databases without revealing which entries are of

interest. PIR schemes often require multiple non-colluding servers, consume large amounts

of bandwidth, and do not guarantee the con�dentiality of the data.

Many researchers have investigated the problem of zero-knowledge proof [11, 12]. In

particular, several protocols have been proposed [16, 5, 4] to prove that a committed num-

ber lies in an interval without actually revealing the number. But the performance in

terms of bandwidth and CPU power makes these protocols unattractive to the DAS model.

Moreover, it can only be used to preserve data con�dentiality, but not query privacy.

3 Data Organization

In a relational DBMS, data are organized in tables (e.g., employee data in Table 1, where

the underlined attribute represents the key of the table). The database can be encrypted

with regard to di�erent units, which can be individual table, a column of a table, a row

(tuple) of a table or a given column within each row (i.e., the data item value). Encrypting

at a coarser level of granularity such as a table implies that entire table must be returned

as the result of a query, although encryption/decryption will be more eÆcient. Encrypting

at a �ner level such as a data item allows for more eÆcient query processing but requires

3

FNAME LNAME SSN ADDRESS SALARY DNO

John Smith 123456789 731 Fondren, Storrs, CT 30000 5

Franklin Wong 333445555 638 Voss, Storrs, CT 40000 5

Alicia Zelaya 999887777 3321 Castle, Storrs, CT 25000 4

Ahmad Jabbar 987987987 980 Dallas, Storrs, CT 25000 5

James Borg 888665555 450 Stone, Storrs, CT 55000 1

Table 1: Employee

Enc tuple ISSN ISALARY IDNO

vWHkaHTF7J1p1ZFX 068764019 6488 250

otvfOg5dFQbGNFKp 277737042 45639 250

uJKJkM3huAsbI5C3 080581877 53798 224

tp1eSkSEtiae54V3 203690710 53798 250

DjjMU8qMaIqkb0AU 929644962 20577 59

Table 2: Encrypted Employee

increased overhead for encryption/decryption [14]. As in [13, 8, 3, 15], we assume encryption

to be performed at the tuple level. To provide the server with the ability to select a set

of tuples to be returned in response to a query, we associate each encrypted tuple with a

number of indexing attributes. An index can be associated with each attribute on which

conditions need to be evaluated for query processing.

Each plaintext relation will be stored as a relation with one attribute representing

the encrypted tuple and additional attributes representing the indexes. Each plaintext

tuple t(A1; :::; An) is mapped onto a tuple t0(E(t); I1; :::; Im) where m � n. The attribute

E(t) stores an encrypted string that corresponds to the entire plaintext tuple, and each Ii

corresponds to the index over some Aj. The encryption function E is treated as a black

box in our discussion. Any block cipher such as AES [2], DES [9] etc., can be used to

encrypt the tuples. Table 2 illustrates an example of the corresponding encrypted/indexed

relation Encrypted Employee where Enc tuple contains the encrypted triples, while ISSN ,

ISALARY , and IDNO are indexes over attributes SSN, SALARY, and DNO respectively.

4

4 A Pre�x-Preserving Encryption based Scheme

4.1 Transforming Interval-Matching into Pre�x-Matching

In this section, we will transform interval-matching into pre�x-matching. Pre�x-matching

has been used widely in databases and networks. The transformation is based on the fact

that an arbitrary interval can be converted into a union of pre�x ranges, where a pre�x

range is one that can be expressed by a pre�x [18]. For example, the interval [32, 111], the

8-bit binary representation of which is [00100000, 01101111], can be represented by a set

of pre�xes f001�, 010�, 0110�g. Throughout this paper, the notation � is used to denote

an arbitrary suÆx. To verify that a number is in the interval is equivalent to check that

the number matches any of those pre�xes in the set. For example, 37 (00100101 in binary)

is in the interval as it matches pre�x 001�, while 128 (10000000 in binary) is not in the

interval since it matches none of those three pre�xes.

Let n denote the length of the binary representation of the data, and let pn denote the

number of pre�xes needed to represent an interval. We have the following theorem on the

upper bound of pn.

Theorem 1 For any interval [a1a2 � � �an; b1b2 � � � bn] (n � 2), pn � 2(n� 1).

The proof of this theorem is presented in Appendix A. Note that for interval [1; 2n�2],

it can be easily veri�ed that pn is equal to 2(n� 1). Therefore, the upper bound is tight.

Theorem 2 For a given n, considering all possible intervals [a1a2 � � �an; b1b2 � � � bn], if we

assume all the intervals appear with the same probability, i.e., all queries are equi-probable,

the average number of pn is equal to (n�2)22n�1+(n+1)2n+1

22n�1+2n�1
, which is approximately equal to

n� 2, when n is large.

The proof of this theorem is presented in Appendix B. From these two theorems we

see that the upper bound of pn is a linear function of n and the average number of pn is

approximately a linear function of n. This is a very nice feature.

In Figure 1 we present a recursive algorithm to generate the set of pre�xes for a given

interval [a1a2 � � �an; b1b2 � � � bn].

We have seen that matching an interval based on a set of pre�x-matchings is both simple

and eÆcient. Therefore pre�x-preserving encryption algorithm can be used to eÆciently

5

1. Starting from k = 1, �nd the most signi�cant bit, numbered k, for which ak < bk.

2. If k is not found, i.e., for all 1 � i � n, ai = bi, then the interval can be denoted by pre�x

a1a2 � � � an. Return a1a2 � � � an.

3. If for all k � i � n, ai = 0 and bi = 1, then return a1a2ak�1� (return � if k = 1).

4. Transform interval [a1a2 � � � an; b1b2 � � � bn] into [a1 � � � ak�10ak+1 � � � an; a1 � � � ak�1011 � � � 1] [

[a1 � � � ak�1100 � � � 0; a1 � � � ak�11bk+1 � � � bn].

5. Run this algorithm with interval [ak+1 � � � an; 11 � � � 1] as input, concatenate a1 � � � ak�10 before

all the returned pre�xes. Then run this algorithm with interval [00 � � � 0; bk+1 � � � bn] as input,

concatenate a1 � � � ak�11 before all the returned pre�xes. Return all the pre�xes.

Figure 1: The Algorithm for transforming interval [a1a2 � � �an; b1b2 � � � bn] into pre�xes

support interval-matching as a query condition while preserving the con�dentiality of data

and queries.

4.2 Pre�x-Preserving Encryption

After transforming interval-matching into pre�x-matching, we need a pre�x-preserving en-

cryption scheme to generate the index, so that the database system will be able to answer

the queries based on encrypted data and queries. We apply an encryption scheme proposed

by Xu et al. [20] for pre�x-preserving IP address anonymization. First we introduce a for-

mal de�nition of pre�x-preserving encryption.

De�nition 1 (Pre�x-preserving encryption) ([20]) We say that two n-bit numbers

a = a1a2 � � �an and b = b1b2 � � � bn share a k-bit pre�x (0 � k � n), if a1a2 � � �ak = b1b2 � � � bk,

and ak+1 6= bk+1 when k < n. An encryption function Ep is de�ned as a one-to-one func-

tion from f0; 1gn to f0; 1gn. An encryption function Ep is said to be pre�x-preserving, if,

given two numbers a and b that share a k-bit pre�x, Ep(a) and Ep(b) also share a k-bit pre�x.

It is helpful to consider a geometric interpretation of pre�x-preserving encryption [20].

If a plaintext can take any value of a n-bit number, the entire set of plaintexts can be

represented by a complete binary tree of height n. This is called the plaintext tree. Each

node in the plaintext tree (excluding the root node) corresponds to a bit position, indicated

by the height of the node, and a bit value, indicated by the direction of the branch from

its parent node. Figure 2(a) shows a plaintext tree (using 4-bit plaintexts for simplicity).

A pre�x-preserving encryption function can be viewed as specifying a binary variable

6

0
1

1
1

0
0 1

1
0 1

0 1
1

1
10 0

0 0

1
0

1
1

0
0 1

1
0

1
1

0 1
1

1 0 0
1

00

1 1 1 11 0 1

0 0 0 01 1 1

10

0 1

1

1

0
0

0

0 1
0 0

0

0

1

1

0 1 0 0 0 0 0

0
0 0 0 0 0 1 1 1 1 1 11 1

0
1

0

Flip

0

Leaf Node
Do Not Flip

0
0

1
0

0 1
1

0 1
1 0

1
1

11 0
0

0 01
1

0
0

0 1
0

0
0

1
0 1

0
1 1 1

1
0

1
0

0 1 01 1 0

0 0 1 01 0 1

10

1 0

1

1

1
0

0

1 0
1 1

1

0

0

1

0 1 0 0 1 0 11

1
1 1 1 1 1 0 0 0 0 0 00 0

1
1

0

(a) plaintext tree (b) encryption function (c) ciphertext tree

Figure 2: An example of pre�x-preserving encryption

for each non-leaf node (including the root node) of the plaintext tree. This variable speci�es

whether the encryption function \
ips" this bit or not. Applying the encryption function

results in the rearrangement of the plaintext tree into a ciphertext tree. Figure 2(c) shows

the ciphertext tree resulting from the encryption function shown in Figure 2(b). Note that

an encryption function will, therefore, consist of 2n � 1 binary variables, where n is the

length of a plaintext.

A general form of pre�x-preserving encryption function is presented in [20]. Let fi be

a function f0; 1gi to f0; 1g, for i = 1; 2; � � � ; n � 1 and f0 is a constant function. Given

a plaintext a = a1a2 � � �an, the ciphertext a0
1a

0
2 � � �a

0
n will be computed by the algorithm

given in Figure 3. According to Theorem 1 (canonical form theorem) in [20], the algorithm

given in Figure 3 is a pre�x-preserving encryption algorithm.

1. Compute a0i as ai � fi�1(a1a2 � � � ai�1), where � stands for the exclusive-or operation, for

i = 1; 2; � � � ; n.

2. Return a01a
0
2 � � � a

0
n.

Figure 3: Pre�x-preserving encryption algorithm

In [20], the pre�x-preserving encryption scheme is de�ned as instantiating functions fi

with cryptographically strong stream ciphers or block ciphers as follows:

fi(a1a2 � � �ai) := L(R(P(a1a2 � � �ai); �)) (1)

where i = 0; 1; � � � ; n�1 and L returns the \least signi�cant bit". HereR is a pseudorandom

function or a pseudorandom permutation (i.e., a block cipher). � is the cryptographic key

used in the pseudorandom function R. Its length should follow the guideline speci�ed for

the pseudorandom function that is actually adopted.

7

The encryption function can be performed quickly as it only involves n symmetric key

cryptographic operations, and these n operations can be done in parallel. A pre�x expresses

a pre�x range, thus a pre�x-matching query can be eÆciently processed as a range query

with a B+-tree index structure. Therefore, high performance in the database system can be

achieved. We will compare the performance of the pre�x-preserving scheme with previously

proposed schemes in Section 8.

5 Implementing Range Queries over Encrypted Rela-

tions

5.1 Mapping Range Query Conditions Mapcond

With the pre�x-preserving encryption algorithm, denoted by Ep, we can translate speci�c

query conditions in operations (such as selects and joins) to corresponding conditions over

server-side representation. This translation function is called Mapcond. Since this paper is

mainly focused on supporting range queries, we will only consider select operations in this

section. We will discuss other relational operations in Section 9.

A query condition is a Boolean expression speci�ed on relation attributes. It can be

made up of a number of clauses of the form

<attribute> <comparison op> <value>,

or

<attribute> <comparison op> <attribute>

where <attribute> is the name of an attribute, <comparison op> is one of the operations

f=;�;�g, and <value> is a constant value from the attribute domain. Clauses can be ar-

bitrarily connected by the Boolean operators AND, OR, and NOT to form a general query

condition. It has been discussed in [14] to translate a composite condition to the corre-

sponding condition over server-side representation after each clause is translated. Hereafter

we discuss how to translate a single clause.

attribute = value: Since the pre�x-preserving encryption is a one-to-one mapping,

the mapping is simply de�ned as follows:

Mapcond(Ai = v)) Ep(Ai) = Ep(v)

attribute � value: A query condition Ai � v is equivalent to an interval-matching

of f[vmin;v](Ai), where vmin is the lower bound of the attribute domain. The interval

[vmin; v] can be converted into a union of pre�x ranges, fP1; P2; � � � ; Plg, with Algorithm 1.

Therefore, interval-matching f[vmin;v](Ai) can be transformed to a set of pre�x-matchings

8

fMP1(Ai);MP2(Ai); � � � ;MPl(Ai)g, where MPk(Ai) denotes the boolean function, which re-

turns true if and only if the value of Ai matches pre�x Pk. Then the pre�x-preserving

encryption can be applied on the pre�xes. Therefore, the mapping is de�ned as follows:

Mapcond(Ai � v)) fMEp(P1)(Ep(Ai)) OR MEp(P2)(E(Ai)) OR � � � OR MEp(Pl)(Ep(Ak))g.

attribute � value: This condition is symmetric with the previous one. A query

condition Ai � v is equivalent to an interval-matching of f[v;vmax](Ai), where vmax is the

upper bound of the attribute domain. The interval-matching can be transformed to a set

of pre�x-matchings fMP1(Ai);MP2(Ai); � � � ;MPl(Ai)g with Algorithm 1. Then the pre�x-

preserving encryption can be applied on the pre�xes. Therefore, the mapping is de�ned as

follows:

Mapcond(Ai � v)) fMEp(P1)(Ep(Ai)) OR MEp(P2)(Ep(Ai)) OR � � � OR MEp(Pl)(Ep(Ak))g.

5.2 Implementing Select Operation over Encrypted Relations

Select operation (�): Consider a select operation �C(R) on a relation R, where C is a

condition speci�ed on one or more of the attributes A1; A2; � � � ; An of R. The operation

can be rewritten as follows:

�C(R) = D(�Mapcond(C)(E(R)),

where E(R) is the encrypted relational table (e.g., the Encrypted Employee table pre-

sented in Table 2), and D is the corresponding decryption function of E. The operation

�Mapcond(C)(E(R)) will be executed at the server. The results will be transmitted to the

client. Then the client can get the query results by applying decryption function D.

6 Attack with a Set of Queries

In this section, we will discuss the security issues of the pre�x-preserving scheme proposed

in this paper and the schemes proposed in the literature, i.e., random one-to-one mapping

and order-preserving. There are many possible attacks against these schemes [8, 3]. We are

not going to be exhaustive on all the possible attacks, instead we will discuss a particular

one.

An adversary may compromise the con�dential information by gathering query predi-

cate conditions. Sometimes it is reasonable for an adversary to assume that the index set

against one attribute from each query may be derived from a single interval. In other words,

each index set, though contains multiple indexes, represents only a single interval. Based

on this assumption, the encryption mapping may be revealed partially, i.e., the adversary

9

can �gure out a coarse order of a set of encrypted indexes. This will be further explained

in the rest of this section.

The feasibility of this attack is constrained by the ability of adversaries to collect enough

queries. Furthermore, clients may not obey the assumption, i.e., they may not always

submit a single interval-matching for each predicate against one index attribute in a query.

This will complicate the attack as well.

To alleviate this problem, clients can specify di�erent keys to generate indexes for

di�erent attributes, thus preventing an adversary from aggregating the information from

di�erent attributes. Also, clients can inject some noise into their queries to undermine the

adversary's assumption. But the price paid is that the clients will receive some data that

are not of interest. This compromises the purpose of the DAS model, since the clients still

need certain database functionality to be able to �lter out redundant results.

Since the order-preserving encryption preserves the order of the plaintext, it is trivial

for the adversary to �gure out the order of any set of encrypted indexes generated from the

order-preserving scheme. In the remainder of this section we will analyze possible attacks

against the random one-to-one mapping scheme and the pre�x-preserving scheme.

6.1 Against the Random One-to-One Mapping Scheme

An adversary is assumed to be able to collect a set of queries. In each query there is

a tuple of encrypted index sets. Based on our assumption, the encrypted indexes in a

set should represent a single interval. Assume the size of the index domain is 2n. If the

adversary is able to collect all the 2n � 1 two-index sets which contain two consecutive

indexes, then he/she will be able to �gure out an order of all the indexes, but without

knowing whether it is an ascending or descending order. If the adversary knows at least

one plaintext/ciphertext pair, then he/she will be able to decrypt any encrypted index. For

example, when n = 2, if the adversary is able to collect 3 index sets, fa; bg; fb; cg; fc; dg,

the he/she will be able to �gure out an order of the indexes, a, b, c, d, without knowing if

it is an ascending or descending order.

An algorithm to collect two-index sets from a list of encrypted index sets is given in

Figure 4.

6.2 Against the Pre�x-Preserving Scheme

To better illustrate the attack against the pre�x-preserving scheme, we introduce a de�ni-

tion as follows.

10

1. Discard one-index sets.

2. For any two sets A, B in the list of index sets, if none of A \ B, A \ B, A \ B is an

empty set, then add these sets into the new list of index sets. (Note that any of these

resulted sets still represents a single interval.)

3. If any new set is added, go to step 1. Otherwise, collect all two-index sets.

Figure 4: The Algorithm for attacking queries against the random one-to-one mapping

De�nition 2 Given two k-bit (k � 2) encrypted pre�xes a = a1a2 � � �ak� and b =

b1b2 � � � bk�, if there exists an i, 1 � i � k � 1 such that ai 6= bi and the range of

a and b can be merged into a single interval, then we call the set of pre�xes fa, bg

a non-trivial two-pre�x set with length k. We call an encrypted two-pre�x set

fa1a2 � � �ak�1ak�; a1a2 � � �ak�1ak�g a trivial two-pre�x set.

It is easy to see that if an adversary has all (2k�1 � 1) non-trivial two-pre�x sets of

length k, then he/she will be able to create an order for all k-bit encrypted pre�xes with-

out knowing if it is an ascending or descending order. If the adversary knows at least

one plaintext/ciphertext pair, then he/she will be able to decrypt any k-bit pre�x. For

example, if an adversary has the following three non-trivial two-pre�x sets of length 3,

fa1a2a3�; a1a2b3�g, fa1a2b3�; a1b2c3�g, fa1b2c3�; a1b2d3�g, then he/she will be able to �g-

ure out the following order for all 3-bit pre�xes: a1a2a3, a1a2a3�, a1a2b3�, a1a2b3�, a1b2c3�,

a1b2c3�, a1b2d3�, a1b2d3� without knowing whether it is an ascending or descending order.

If the plaintext of a1a2a3� is known to be 001�, the adversary will be able to decrypt any

3-bit pre�x.

Before we further describe the attack, we give the following property about transforming

an interval into pre�xes.

Theorem 3 Given the set of pre�xes S transformed from the interval [a; b], the longest

pre�xes in set S match either a or b.

Proof: Let pre�x c = c1c2 � � � ck� be one of the longest pre�xes in S. Pre�x c1c2 � � � ck� is not

in S, otherwise in S there should be pre�x c1c2 � � � ck�1� instead of pre�x c. For 8i < k, pre-

�x c1c2 � � � ci� is not in S, otherwise pre�x c should not be in S. Since c is the longest pre�x

in S, any pre�x which is longer than k-bit and matches c1c2 � � � ck� is not in S. So we know

[c1c2 � � � ck00 � � �0; c1c2 � � � ck11 � � �1]\ [a; b] = ;, while [c1c2 � � � ck00 � � �0; c1c2 � � � ck11 � � �1] �

[a; b].

If ck = 0, then we have c1c2 � � � ck�1100 � � �0 =2 [a; b], while c1c2 � � � ck�1011 � � �1 2 [a; b].

11

1. Preprocess the encrypted pre�x sets.

� Mark the longest pre�xes in each set as the edge pre�x of that set.

� For any pre�x longer than k-bit, a1a2 � � �akak+1 � � �al� (l > k), replace it by

a1a2 � � �ak�.

� For any pre�x shorter than k-bit, a1a2 � � �al� (l < k), replace it by all the k-bit

pre�xes which share the l-bit pre�x.

(Note that after the preprocessing, the encrypted pre�xes in a set still represent a

single interval.)

2. Discard trivial two-pre�x sets and one-pre�x sets.

3. For any two sets A, B in the list of pre�x sets, if none of A \ B, A \ B, A \ B is

an empty set, then add these sets into the new list of pre�x sets. Or if A � B, and A

contains the edge pre�x of B, then add A \B into the new list of pre�x sets. (Note that

any of these resulted sets still represents a single interval.)

4. If any new set is added, go to step 2. Otherwise, collect all non-trivial two-pre�x sets.

Figure 5: The Algorithm for attacking queries against the pre�x-preserving scheme

Since c1c2 � � � ck�1100 � � �0 = c1c2 � � � ck�1011 � � �1+1, we must have b = c1c2 � � � ck�1011 � � �1,

i.e., pre�x c matches number b.

If ck = 1, then we have c1c2 � � � ck�1011 � � �1 =2 [a; b], while c1c2 � � � ck�1100 � � �0 2 [a; b].

Since c1c2 � � � ck�1100 � � �0 = c1c2 � � � ck�1011 � � �1+1, we must have a = c1c2 � � � ck�1100 � � �0,

i.e., pre�x c matches number a. 2

Note that after pre�x-preserving encryption, the ciphertext of the longest pre�x will

still be the longest pre�x in the encrypted set S.

An adversary is assumed to be able to collect a set of queries. In each query there is

a tuple of encrypted pre�x sets. Based on our assumption, the encrypted pre�xes in a set

should represent a single interval. An algorithm to collect non-trivial two-pre�x sets of

length k from a list of encrypted pre�x sets is given in Figure 5.

Hereafter we give a simple example of this attack. Suppose an adversary wants to attack

the 3-bit pre�xes, and he/she has the following encrypted pre�x sets from the queries. A =

fa1a2a3� (edge); a1a2�; a1b2�; a1b2b3� (edge)g, B = fa1a2c3� (edge); a1b2�; a1b2b3� (edge)g,

C = fa1b2d3e4� (edge), a1b2�g, where edge means that pre�x contains the boundary of

12

the interval represented by that pre�x set. The adversary can get the following 3-bit

pre�x sets. A0 = fa1a2a3� (edge); a1a2c3�; a1a2c3�; a1b2d3�; a1b2d3�; a1b2b3� (edge)g, B0 =

fa1a2c3� (edge); a1b2d3�; a1b2d3�; a1b2b3� (edge)g, C 0 = fa1b2d3� (edge); a1b2b3�; a1b2b3�g.

Then he/she will get the following non-trivial two-pre�x sets: A0\B0 = fa1a2a3�; a1a2c3�g,

A0\C 0 = fa1b2d3�; a1b2b3�g, B
0\C 0 = fa1a2c3�; a1b2d3�g. Finally the adversary will be able

to �gure out the following order of the 3-bit pre�xes: a1a2a3�, a1a2a3�, a1a2c3�, a1a2c3�,

a1b2d3, a1b2d3�, a1b2b3�, a1b2b3�, without knowing whether it is an ascending or descending

order.

7 Additional Security Analysis for Pre�x-Preserving

Encryption

In this section we will have more discussion about the security of the pre�x-preserving

encryption scheme. It has been proved that with the instantiating functions as (1) the

pre�x-preserving encryption scheme is indistinguishable from a random pre�x-preserving

function, a function uniformly chosen from the set of all pre�x-preserving functions when

the adversaries are assumed to be computationally bounded. This is elaborated in [20].

Moreover, as mentioned in Section 4.2, when plaintexts can take any value of a n-bit num-

ber, the pre�x-preserving encryption function consists of 2n�1 binary variables. Therefore,

we have a key of 22
n�1 possibilities. For example, when n is only 16, the number of possible

keys is 265535. Therefore, the key � in (1) can be suÆciently long such that it is impractical

for adversaries to try each possible key to compromise the pre�x-preserving scheme.

In the remainder of this section, we discuss another possible way in which the pre�x-

preserving scheme may be attacked. An adversary is assumed to have compromised (gain

full knowledge to) certain number of hplaintext, ciphertexti pairs through means other

than compromising the key, i.e., the known plaintext attack model [19]. Then he/she

will be able to infer information from other ciphertexts by pre�x-matching, because the

encryption is pre�x-preserving. For example, if an adversary knows hplaintext, ciphertexti

pair ha1a2 � � �an; a
0
1a

0
2 � � �a

0
ni, then given another ciphertext a

0
1a

0
2 � � �a

0
k�1a

0
kbk+1 � � � b

0
n, he/she

knows the k-bit pre�x of the plaintext should be a1a2 � � �ak�1ak. Note that if an adversary

knows one hplaintext, ciphertexti pair ha1a2 � � �an; a
0
1a

0
2 � � �a

0
ni, then he/she should also

know the hplaintext, ciphtertexti pair ha1a2 � � �an; a
0
1a

0
2 � � �a

0
ni. Therefore, an adversary

always knows an even number of hplaintext, ciphertexti pairs.

Suppose an adversary knows 2 pairs of hplaintext, ciphertexti. Given a random ci-

13

phertext, let A(n) denote the average length of the pre�x that can be inferred by pre�x-

matching, where n is the length of the binary representation of the data. The probability

that the k-bit pre�x of the plaintext can be inferred is 1
2k
, for 1 � k � n � 1, while for

k = n, the probability is 2
2n
. Therefore, A(n) =

Pn�1
i=1

i

2i
+ 2n

2n
=
Pn�1

i=0
1
2i
= 2 � 1

2n�1
< 2.

In other words, on the average an adversary can infer no more than 2 bits from a random

ciphertext, if he/she knowns 2 pairs of hplaintext, ciphertexti.

We also analyze the situation that an adversary knows 2k (k > 1) pairs of hplaintext,

ciphertexti. This is presented in Appendix C. In summary, when n!1, given a cipher-

text, the average length of the pre�x that can be inferred is bounded by log2 k + 2 based

on numerical results. So the pre�x information an adversary can obtain by comparing a

ciphtertext against a few pairs of hplaintext, ciphertexti is limited. Therefore, we claim

that the pre�x-preserving scheme is secure even if a few pairs of hplaintext, ciphertexti are

known by an adversary. To make the system even more secure, the data owner can specify

di�erent keys to generate indexes for di�erent attributes, thus preventing an adversary

from aggregating the information from di�erent attributes.

8 Performance Comparison

8.1 Communication Cost

With the pre�x-preserving scheme, the total length of the indexes for an interval-matching

query condition is less than 2n(n � 1) bit. With random one-to-one mapping, the total

length is l � n, where l is the length of the interval. So when l is larger than 2(n� 1), the

pre�x-preserving scheme is more eÆcient. If we assume all the intervals appear with the

same probability, the average length of the interval is
P2n

i=1

i(i+1)

2P2n

i=1
i

= 23n�1+3�22n�1+2n

3(22n�1+2n�1)
, which

is approximately equal to 2n=3, when n is large. Therefore, the average number of bits of

the indexes is about n � 2n=3, which is much greater than 2n(n� 1), when n is large.

8.2 Client Side Cost

During the encryption of the database, it costs more to use the pre�x-preserving scheme

to compute the index for the records. Since the length of the index attribute n is most

likely smaller than the block size of a typical block cipher, to compute one index, the

pre�x-preserving encryption will require (n� 1) block cipher encryptions. In contrast, the

random one-to-one mapping will require only 1 encryption. Similarly, to encrypt an exact

matching query condition, it costs more with pre�x-preserving encryption. But to encrypt

14

an interval-matching query condition, with pre�x-preserving, at most 2(n�1)2 encryptions

are needed. With random one-to-one mapping, the number of encryptions needed is equal

to the length of the interval l. So when l is larger than 2(n � 1)2, the pre�x-preserving

scheme is more eÆcient. If we assume all intervals appear with same probability, then the

average length of the interval is about 2n=3, which is much larger than 2(n� 1)2, when n

is large.

8.3 Server Side Cost

As for the server side cost, we will be mainly concerned about the cost of disk accesses for

executing an interval-matching query, since in most cases it is the bottleneck. To estimate

the cost of disk accesses, we must know the number of the records (r), and the number of

blocks (b) (or close estimates of them). Also, we need to know the number of levels (h) of

B+-tree, which is the typical database storage structure for indexes. Another important

parameter is the number of distinct values (d) of an attribute and its selectivity (sl), which

is the fraction of records satisfying an exact-matching condition on the attribute. The

estimation of the selection cardinality (s = sl� r) of an attribute is the average number of

records that will satisfy an exact-matching selection condition on that attribute. By making

an assumption that the d distinct values are uniformly distributed among the records, we

estimate sl = 1=d and so s = r=d.

Without any index structure, to do a sequential scan of the whole database table, the

cost of disk accesses is b � ts, where ts is the time needed for a sequential disk block access.

In the random one-to-one mapping scheme, with a B+-tree index structure the number of

disk accesses needed for retrieving the indexes is l � h, where l is the length of the interval,

and the number of disk accesses needed for retrieving the actual records is l �f � sl � b, where

f is the percentage of the values in the interval that actually exist in the table. Therefore,

the total timing cost of disk accesses is l(h+ f � sl � b) � tr, where tr is the time needed for a

random disk block access. As mentioned in 4.2, a pre�x-matching query can be processed as

a range query. In the pre�x-preserving scheme, with a B+-tree index structure the number

of disk accesses needed for retrieving the indexes is less than 2(n� 1)(h� 1) + l, and the

number of disk accesses for accessing the actual records is l � f � sl � b. So the timing cost of

disk accesses is less than (2(n� 1)(h� 1) + l+ l � f � sl � b)tr. Therefore, when l > 2(n� 1),

the pre�x-preserving scheme is more eÆcient then the random one-to-one mapping scheme,

if sequential scan is not needed. A typical value of n could be 32. Then when l > 62, the

pre�x-preserving scheme is more eÆcient. A typical disk block size is 32K bits. A typical

15

Average Communication Cost Average Client Side Cost Server Side Cost

(length of indexes) (number of encryptions) (timing of disk accesses)

pre�x-preserving � 2n(n� 1) � 2(n� 1)2 � (2(n � 1)(h � 1) + l +

l � f � sl � b)tr

random mapping n � 2n=3 2n=3 l(h+ f � sl � b)tr

Table 3: Performance comparison of pre�x-preserving and random one-to-one mapping for

supporting range queries

size of a pointer to a disk block is 32 bits. Assume the number of records r in the database

is 1M, i.e., 220. Then the order of the B+-tree should be 32K=(32 + 32) = 29, and the

height h should be log29 2
20 = 3. Figure 6 shows the number of disk accesses with random

one-to-one mapping/pre�x-preserving, assuming f to be 100%, sl = 1=r = 2�20, and the

total number of disk blocks in the database b is 512K. Note that, assuming tr = 64 � ts, for

the random one-to-one mapping scheme, it will be more eÆcient to do a sequential scan of

the whole database table when l > 3177. With the pre�x preserving scheme, it might be

more eÆcient to do a sequential scan when l > 1260.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

nu
m

be
r

of
 d

is
k

ac
ce

ss
es

l

prefix-preserving
random one-to-one mapping

Figure 6: average number of disk accesses by varying l

In summary, we present the communication cost, client side and server side computation

cost for supporting an interval-matching query with random one-to-one mapping/pre�x-

preserving in Table 3.

16

9 Discussion

9.1 Mapping Conditions other than Exact-Matching/Interval-

Matching

attribute1 = attribute2: Such a condition might arise in a join. The two attributes

can be from two di�erent tables or from two instances of the same table. The condition

can also arise in a select, and the two attributes can be from the same table. Since the

pre�x-preserving encryption is a one-to-one mapping, the following is the translation:

Mapcond(Ai = Aj)) Ep(Ai) = Ep(Aj)

attribute1 � attribute2, attribute1 � attribute2: Such conditions might arise in

a join. These conditions can not be supported by our scheme conveniently. To support

these conditions, either eÆciency or security has to be sacri�ced. If the available bandwidth

between the client and the server is suÆcient, we can transfer all the involved tables from

server to client. Then client can decrypt the data and apply the query operation. If the

server is trusted, the server can decrypt involved tables and run the query on the decrypted

data. Since the most common use of join operation involves conditions with equality

comparisons only, we argue that this disadvantage is outweighed by the advantages of our

scheme in eÆciently and securely supporting other more commonly used query conditions.

9.2 Implementing Relational Operations other than Selections

In this section we describe how relational operators other than selection, such as join, set

di�erence and project operations, can be implemented in the proposed pre�x-preserving

scheme.

Since the pre�x-preserving encryption is a one-to-one mapping, it is straightforward to

implement project, union, intersection, minus, duplicate-elimination, and division opera-

tions.

Join operation (./): Consider a join operation R ./C S. Our scheme can eÆciently

support equijoin, in which the join condition C is an equality comparison, since the pre�x-

preserving is a one-to-one mapping. For more general conditions, as mentioned in previous

section, either eÆciency or security has to be sacri�ced.

Aggregate functions and grouping operation (
): We can de�ne an AGGRE-

GATE FUNCTION operation, using symbol
, to specify these types of requests as follows:

hgrouping attributesi
hfunction listi(R)

where <grouping attributes> is a list of attributes of the relation speci�ed in R, and

17

<function list> is a list of (<function> <attribute>) pairs. In each such pair, <function>

is one of the allowed functions, such as SUM, AVERAGE, MAXIMUM, MINIMUM,

COUNT, and <attribute> is an attribute of the relation speci�ed by R. Our scheme

can eÆciently support function COUNT, since the pre�x-preserving encryption is a one-

to-one mapping. For MAXIMUM/MINIMUM functions, in most cases, user should have

some idea about the range of the result. So the user can send an interval-based selection

query to the server, and decrypt all the results returned by the server, then apply the

MAXIMUM/MINIMUM functions. For SUM/AVERAGE functions, an eÆcient solution

can be to let the server keep encrypted statistics information, i.e., sum and average. Every

time the client updates the database, the client will get the statistics information from the

server, recompute the values, and update the server.

10 Conclusions

This paper discusses concerns about protecting sensitive information of data and queries

from adversaries in the DAS model. Data and queries need to be encrypted, while the

database service provider should be able to eÆciently answer queries based on encrypted

data and queries. Several approaches are studied in this paper, random one-to-one map-

ping, pre�x-preserving and order-preserving. Possible attacks against these approaches

and the performance of these approaches are investigated. The pre�x-preserving scheme is

more eÆcient than random one-to-one mapping for supporting range queries. In terms of

communication cost, the length of indexes for an interval with pre�x-preserving is less than

2n(n � 1) bits, while with random one-to-one mapping the average is n � 2n=3. In terms

of client side cost, the number of encryptions needed with pre�x-preserving is 2(n � 1)2,

while with random one-to-one mapping the average is 2n=3. In terms of server side cost,

the average number of disk accesses with pre�x-preserving is smaller than the random one-

to-one mapping scheme, when the length of the interval is larger than 2(n-1). However,

the pre�x-preserving scheme is less secure than the random one-to-one mapping scheme,

because of the constraint of pre�x-preserving. For example, with the pre�x-preserving en-

cryption a coarse ordering of the encrypted data can be determined by a grouping based

on a k-bit pre�x, but not with a random one-to-one mapping.

18

References

[1] Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information from an oracle. In Proceedings

of the 19th ACM Annual Symposium on Theory of Computing, pages 195{203, May 1987.

[2] AES. Advanced encryption standard. FIPS 197, Computer Security Resource Center, National

Institute of Standards and Technology, 2001.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserving encryption

for numeric data. In Proceedings of the 2004 ACM SIGMOD International Conference on Management

of Data, pages 563{574, 2004.

[4] Fabrice Boudot. EÆcient proofs that a committed number lies in an interval. In Proceedings of

Advances in Cryptology { Proceedings of EUROCRYPT'00, pages 431{444, May 2000.

[5] Ernest F. Brickell, David Chaum, Ivan Damgard, and Jeroen van de Graaf. Gradual and veri�able

release of a secret. In Proceedings of CRYPTO'87, pages 156{166, 1987.

[6] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In

Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pages 41{50, October

1995.

[7] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single-database private information re-

trieval implies oblivious transfer. In Proceedings of Advances in Cryptology { EUROCRYPT'00, pages

122{138, May 2000.

[8] Ernesto Damiani, S. De Capitani Vimercati, Sushil Jajodia, Stefano Paraboschi, and Pierangela Sama-

rati. Balancing con�dentiality and eÆciency in untrusted relational dbmss. In Proceedings of CCS'03,

pages 93{102, 2003.

[9] DES. Data encryption standard. FIPS PUB 46, Federal Information Processing Standards Publication,

1977.

[10] Joan Feigenbaum. Encrypting problem instances, or ..., can you take advantage of someone without

having to trust him? In Proceedings of CRYPTO'85, pages 477{488, June 1986.

[11] Zvi Galil, Stuart Haber, and Mordechai Yung. A private interactive test of a boolean predicate and

minimum-knowledge of public-key cryptosystems. In Proceedings of the 26th IEEE Annual Symposium

on Foundations of Computer Science, pages 360{371, 1985.

[12] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity of interactive proof

systems. In Proceedings of the 17th ACM Annual Symposium on Theory of Computing, pages 291{304,

1985.

[13] Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over encrypted data in the

database-service-provider model. In Proceesings of the 2002 ACM SIGMOD International Conference

on Management of Data, pages 216{227, 2002.

[14] Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra. Providing database as a service. In Proceesings

of ICDE'02, pages 29{38, 2002.

19

[15] Bijit Hore, Shared Mehrotra, and Gene Tsudik. A privacy-preserving index for range queries. In

Proceedings of VLDB'04, pages 720{731, 2004.

[16] Wenbo Mao. Guaranteed correct sharing of integer factorization with o�-line share-holders. In Pro-

ceedings of Public Key Cryptography'98, pages 27{42, 1998.

[17] S. C. Gultekin Ozsoyoglu, David Singer, and Sun S. Chung. Anti-tamper databases: Querying en-

crypted databases. In Proceedings of the 17th Annunal IFIP WG11.3 Working Conference on Databse

and Application Security, August 2003.

[18] V. Srinivasan, George Varghese, Subash Suri, and Marcel Waldvogel. Fast and scalable layer four

switching. In Proceedings of ACM SIGCOMM'98, pages 191{202, September 1998.

[19] Douglas R. Stinson. Cryptography: Theory and Practice. CRC Press, 2002.

[20] Jun Xu, Jinliang Fan, Mostafa H. Ammar, and Sue B. Moon. Pre�x-preserving IP address anonymiza-

tion: measurement-based security evaluation and a new cryptography-based scheme. In Proceedings

of the 10th IEEE International Conference on Network Protocols, pages 280{289, November 2002.

Appendix

A Proof of Theorem 1

In this appendix, we o�er a proof of Theorem 1 (introduced in Section 4.1), which gives the upper bound

of the number of pre�xes needed to represent an interval. We will use the same notations as in Section 4.1.

Lemma 1 For any interval [0; a1a2 � � � an], pn � n.

Proof: We prove it by induction on n. The conclusion trivially holds for n = 1. Suppose the conclusion

also holds for n = k.

We now prove the lemma for n = k + 1. If a1 is equal to 0, then according to induction hypothesis,

we have pn � k. If for all 1 � i � k + 1, ai = 1, then the interval can be represented by pre�x �, i.e.,

pn = 1. Otherwise, the interval [0; a1a2 � � � ak+1] can be represented by [0; 011 � � �1][[100 � � �0; 1a2 � � � ak+1].

[0; 011 � � �1] can be represented by pre�x 0�. According to induction hypothesis, we need at most k pre�xes

to represent interval [100 � � �0; 1a2 � � �ak+1]. Hence for n = k + 1, we have pn � k + 1. 2

Lemma 2 For any interval [a1a2 � � � an; 11 � � � 1], pn � n.

The proof is omitted here, because it is similar to the proof of Lemma 1.

Theorem 1 For any interval [a1a2 � � � an; b1b2 � � � bn] (n � 2), pn � 2(n� 1).

Proof: We prove it by induction on n.

For n = 2, if a1a2 = 00 or b1b2 = 11, then according to Lemma 1 and Lemma 2, we have pn � 2. If

a1a2 = b1b2 = 01 or 10, then pn = 1. If a1a2 = 01 and b1b2 = 10, then pn = 2. So the conclusion holds for

n = 2.

Suppose the conclusion also holds for n = k.

We now prove the theorem for n = k + 1. If a1 = b1, then according to induction hypothesis, we have

20

pn � 2(k � 1). Otherwise, we have a1 = 0 and b1 = 1. If for all 1 � i � k + 1, ai = 0 and bi = 1, then

the interval can be represented by pre�x �, i.e., pn = 1. The interval [a1a2 � � � ak+1; b1b2 � � � bk+1] can be

represented by [0a2 � � � ak+1; 011 � � �1] [[100 � � �0; 1b2 � � � bk+1]. According to Lemma 2, we need at most k

pre�xes to represent interval [0a2 � � �ak+1; 011 � � �1], and according to Lemma 1, we need at most k pre�xes

to represent interval [100 � � �0; 1b2 � � � bk+1]. Hence for n = k + 1, we have pn � 2k. 2

B Proof of Theorem 2

In order to compute the average number of pn presented in Section 4.1, we present Lemma 3 and Lemma

4 �rst.

Lemma 3 For a given n, considering all possible intervals [0; a1a2 � � �an], the average number of pn,

denoted by pn, is equal to
n2n�1+1

2n
, if we assume all the intervals appear with the same probability.

Proof: Let Bn denote the sum of the number of pre�xes needed for all intervals. Then we have pn =
Bn

2n
.

We compute Bn by classifying all the intervals into 2 di�erent cases:

Case 1: a1 = 0, obviously the sum of the number of pre�xes needed for all the intervals in this case is

Bn�1.

Case 2: a1 = 1, the interval [0; a1a2 � � � an] can be represented by [0; 011 � � �1][[100 � � �0; 1a2 � � �an]. So the

sum of pre�xes needed for all the intervals in this case is Bn�1 + 2n�1 � 1. The present of minus 1 is due

to the fact that interval [0; 11 � � �1] can be denoted by one pre�x (�) instead of two pre�xes.

So we have Bn = 2Bn�1 + 2n�1 � 1. And initially we have B1 = 2. Thus

Bn = 2n�1B1 +

n�1X

k=1

2k�1(2n�k � 1)

= 2n + (n� 1)2n�1 �

n�2X

k=0

2k

= (n+ 1)2n�1 � (2n�1 � 1)

= n � 2n�1 + 1

Lemma 4 For a given n, considering all possible intervals [a1a2 � � � an; 11 � � �1], the average number of pn,

denoted by pn, is equal to
n2n�1+1

2n
, if we assume all the intervals appear with the same probability.

Proof: Let Cn denote the sum of the number of pre�xes needed for all intervals. Then we have pn =
Cn

2n
.

Same as in Lemma 3, we have Cn = n2n�1 + 1. The computation of Cn is omitted here since it is very

similar to the computation of Bn.

Theorem 2 For a given n, considering all possible intervals [a1a2 � � � an; b1b2 � � � bn], the average number

of pn, denoted by pn, is equal to
(n�2)22n�1+(n+1)2n+1

22n�1+2n�1
, if we assume all the intervals appear with the same

probability.

Proof: Let An denote the sum of the number of pre�xes needed for all intervals. Then we have

pn =
AnP
2
n

i=1

i
= An

22n�1+2n�1
.

We compute An by classifying all the intervals into 2 di�erent cases:

Case 1: a1 = b1, obviously the sum of the number of pre�xes needed for all the intervals in this case is 2An�1.

Case 2: a1 < b1, the interval [a1a2 � � � an; b1b2 � � � bn] can be represented by [0a2 � � � an; 011 � � �1][[100 � � �0; 1b2 � � � bn].

So the sum of the number of pre�xes needed for all the intervals in this case is 2n�1(Bn�1 + Cn�1) � 1.

21

The present of minus 1 here is due to the fact that interval [0; 11 � � �1] can be denoted by one pre�x (�)

instead of two pre�xes.

So we have An = 2An�1 + (n� 1)22n�2 + 2n � 1. And initially we have A1 = 3. Thus

An = 2n�1A1 +

n�1X

k=1

2k�1((n� k)22n�2k + 2n�k+1 � 1)

= 3 � 2n�1 + n22n
n�1X

k=1

2�(k+1) � 22n
n�1X

k=1

k2�(k+1)

+(n� 1)2n �

n�1X

k=1

2k�1

= 3 � 2n�1 + n22n�1(1� 2�(n�1))� 22n
n�1X

k=1

k2�(k+1)

+(n� 1)2n � (2n�1 � 1)

= n22n�1 + 1� 22n
n�1X

k=1

k2�(k+1)

= n22n�1 + 1� (22n � n2n+1 + (n� 1)2n)

= (n� 2)22n�1 + (n+ 1)2n + 1

C Known plaintext attack against the pre�x-preserving

scheme

In this appendix, we analyze the information an adversary can obtain by comparing known hplaintext,

ciphertexti pairs to a ciphertext. Hereafter we will assume the length of the binary representation of the

data, denoted by n, is very long, i.e., n ! 1. Suppose that an adversary obtains 2k pairs of hplaintext,

ciphertexti randomly, and the average length of the pre�x he/she can obtain from a random ciphertext is

Ak. Then Ak can be computed as follows.

In the �rst step, the adversary will compare the �rst bit of the ciphertext with all the 2k pairs of

hplaintext, ciphertexti. If, among them, 2l pairs of hplaintext, ciphertexti match the �rst bit of the

ciphertext, then the other 2(k � l) pairs are not useful for further deriving pre�x information. Therefore,

the total pre�x information the adversary can obtain is the �rst bit plus the pre�x information he/she may

obtain with 2l pairs of hplaintext, ciphertexti, which is equal to 1 + Al. Since the possibility for 2l pairs

out of 2k pairs of hplaintext, ciphertexti to match the �rst bit of a ciphertext is (1=2)kCl

k
, the average

length of the pre�x an adversary can obtain is Ak =
Pk

l=0(1=2)
kCl

k
(1 +Al).

It is obvious that A0 is equal to 0. The remaining values of Ak can be computed inductively. For

example, A1 = 1 + 1
2
A1, thus A1 = 2, which is consistent with the result presented in Section 7. Table 4

shows Ak for several di�erent values of k. Figure 7 presents the curve of Ak by varying k, which is bounded

by log2 k+2. Therefore, the pre�x information that can be revealed by a few pairs of hplaintext, ciphertexti

is limited.

22

k 1 2 4 8 16

Ak 2 2.666667 3.504762 4.421077 5.377378

k 32 64 128 256 512

Ak 6.355176 7.343990 8.338377 9.335558 10.334156

Table 4: Ak by varying k

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

av
er

ag
e

le
ng

th
 o

f
pr

ef
ix

 r
ev

ea
le

d

k

average length of prefix revealed
log(k)/log(2)+2

Figure 7: Ak by varying k

23

