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Markovian Network Processes with System-Dependent 
Transition Rates 

Richard F. Serfozo 

Georgia Institute of Technology 

Abstract 

A Markovian network process describes the movement of discrete 
units among a set of nodes that process the units. There is consider-
able knowledge of such networks, often called queueing networks, in 
which the nodes operate independently and the routes of the units are 
independent. The focus of this study, in contrast, is on networks with 
dependent nodes and routings. Examples of dependencies are par-
allel processing across several nodes, blocking of transitions because 
of capacity constraints on nodes, alternate routing of units to avoid 
congestion, and accelerating or decelerating the processing rate at a 
node depending on downstream congestion. We introduce a rather 
general canonical network process and derive its equilibrium distribu-
tion. This distribution takes the form of an interchangeable product 
of functions of decreasing vectors. This new type of distribution is 
rather universal and may apply to other multi-variate processes as 
well. A basic idea in our approach is that we link certain micro-level 
balance properties of the network routing to the processing rates at 
the nodes. The link is via routing-balance partitions of nodes that are 
inherent in any network. We also give necessary and sufficient condi-
tions under which a unit moving in the network sees a time average 
for the unmoved units. Finally, we discuss when certain flows between 
nodes in an open network are Poisson processes. 

Keywords: Markovian network process, Queueing network, De-
pendent nodes and routing, Palm probability, Poisson process, Mov-
ing units see time averages. 
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1 Introduction 

A stochastic network process is a model for a system in which discrete 
units move among a set of nodes that process the units. Such processes are 
often called queueing networks. Some archetypal stochastic networks are 
as follows: 

Flexible Manufacturing Networks: Parts, tools or material (units) 
move among a group of work stations and storage areas (nodes) that ma-
chine and store the units for later use or for shipping. 

Telecommunications Networks: Telephone calls, data packets or 
messages move among operators or switching stations. 

Computer Networks: Transactions, data packets or programs move 
among processors, computers, peripheral equipment or files. 

Maintenance Networks: Reparable parts or equipment needed for 
the operation of a large system move among locations where they are used, 
repaired, and stored. 

Distribution Networks: Goods, orders or trucks move among plants, 
warehouses or market locations. 

Biological Networks: Animals, cells, molecules, neurons, etc. move 
among locations, states or shapes. 

Typical concerns associated with stochastic networks are: assessing the 
operational quality or feasibility of a network, comparing the quality of sev-
eral prototype networks, designing a least-cost network (determining num-
bers of machines, tools or routes), and selecting optimal operating rules for 
the network. To address these issues requires an understanding of the prob-
abilistic behavior of the network in terms of the equilibrium or stationary 
probability distribution of the numbers of units at the nodes. This distri-
bution is used to derive various performance measures of the network such 
as the expected cost of operating the network or the percentage of time 
a sector of the network is overloaded. It is also a basic ingredient for the 
development of mathematical programming algorithms to select optimal 
network designs and operating rules. Other important network features 
include the rate of flow of units on the arcs and through the nodes (the 
throughputs), the time a unit spends in the network, and the time it takes 
for a unit to move from one sector of the network to another. 

Most of the theory of Markovian network processes is for Jackson Net-
work processes; the early papers are [2], [11], [14], and [28], and standard 
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textbook references are [10], [16], [26] and [29]. The key features of Jackson 
processes are: 

• The units move one at a time. 

• The nodes operate independently. 

• The transition rates depend on only local information: the service 
rate at a node depends on only the number of units at that node and 
is independent of the rest of the network. 

• The routes of units are independent of each other and hence indepen-
dent of the congestion in the network. 

• The equilibrium distribution is of product form. 

Jackson processes can be viewed as the first generation of stochastic net-
work processes. They play an important role in analyzing networks with 
independent nodes and routes. 

By its very nature, however, a network is a system of interacting nodes 
in which the operation of a node and the routing of a unit may depend on 
what is happening throughout the network. Examples of dependencies are: 

• Parallel processing across several nodes. 

• Alternate routing of units to avoid congestion. 

• Accelerating or decelerating the processing rate at a node whenever 
downstream nodes are starved or congested. 

• Units are blocked from entering a sector of the network when the 
sector cannot handle any more units. 

Such dependencies are omnipresent in the networks mentioned above. To 
model networks with dependencies will require a new generation of network 
processes that will typically have more complex, non-product-form equilib-

rium distributions. Some initial work on this theme has already begun [5], 
[6], [7], [12], [13], [16], [17], [18], [24], [26], [29]. We will comment on these 
references as we proceed. 
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The aim of the present paper is to introduce a fairly wide class of Marko-
vian network processes with system-dependent transition rates that repre-
sent a variety of interactions between nodes. This class contains the Jackson 
processes and most of its generalizations developed to date. The equilib-
rium distributions for the processes take the form of an interchangeable 
product of functions of decreasing vectors. This new type of distribution 
appears to be rather universal and may apply to other processes as well. 
A key idea in our approach is that we link certain micro partial balance 
properties of the routing rates of the units to their processing rates at the 
nodes. 

Our discussion proceeds as follows. In Sections 2 and 3, we present our 
notation and give preliminary examples and results. The point of Section 3 
is to review two basic network processes that represent the two extreme ends 
of the spectrum of networks that is our focus. In Section 4 we define our 
network processes and derive their equilibrium distributions. We establish 
further properties of the processes in Sections 5, 6, 7, which cover the 
following topics: 

• Blocking of certain transitions due to network constraints. 

• Palm probabilities of a network at its transitions: When does a mov-
ing unit see a time average for the unmoved units? 

• Poisson flows in open networks. 

2 Notation 

We shall consider a network consisting of m nodes, labeled 1, , m, that 
process discrete units that move among the nodes. We will confine our dis-
cussion to indistinguishable units and point out later how the results extend 
to multiple types of units. The evolution of the network is represented by 
the stochastic process X = {X t  :t > 0} that records the numbers of units 
at the respective nodes. The state space of X is a set S of non-negative 
integer-valued vectors n = (n 1 , , n„,), where nj  denotes the number of 
units at node j. The network is open if units enter it from outside and even-
tually exit; here S is the set of all non-negative vectors. The network is 
closed if there are a fixed number of units, say N, continually circulating in 
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it; here S is the set SN of all n = (n i , 	,n,,i) such that n1  + ...+ n„, = N. 
For simplicity, we assume throughput Sections 2-6 that X is such a closed 
network; Section 7 covers open networks. The results herein also have ana-
logues for mixed networks (a combination of open and closed ones) and for 
network processes with more general state spaces as in (29) that monitor 
additional information about the nodes and units or environmental factors. 

We shall assume that the network process X is a pure jump Markov 
process. The distribution of such a process is determined by its transition 
rates 

q(n, ng) = lim t -1P{Xt = 	Xo  = n}, n' n. 

Our focus will be on networks in which only one unit may move at a time. 
Accordingly, we assume that a transition of X is synonomous with the 
movement of a single unit from one node to another. Specifically, if X is 
in state n and a unit moves from node j to node k, then the next state is 
Tikn, where 

n — ei  + 4 for ni  > 1 
Tik n 

n 	 for ni  = 0, 

and ei  is the m-dimensional vector with 1 in entry j and 0's elsewhere. The 
distribution of the process is therefore determined by the transition rates 
g(n,Tikn), j k, n i  > 1 (q(n, ni) = 0 for all other states n'). We shall 
express these rates as 

g(n,Tik n)= Aik 0i (n)All ik (n), 	 (1) 

where Ajk > 0 and (ki,T jk are positive functions on S. Section 5 covers 
the possibility of allowing Oi (n) or Aliik (n) to be zero on part of S, which 
results in blocking. 

The three-part factorization (1) is convenient, as we shall soon see, 
for isolating certain basic dependencies in the transitions. The particular 
factors and their interpretations will depend on the particular network. 
In general, one can view )tjk  as the routing intensity from j to k that is 
inherent in the structure of the network; it is typically a function of the 
node or arc characteristics, independent of the system state n. The Xjk  is 
sometimes the probability that a unit departing from node j is assigned 
to move to node k; in this case A,1  + + ajm  = 1 (we do not make this 
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restriction). The Odn) can be viewed as the departure rate at node j. This 
may be the same as the service rate or the service rate multiplied by an 
expediting function as in Example 5.6. Typically 4J  (n) is a function of only 
a few nk's that have some relation to node j. Finally, we view Vik (n) as 
a system-dependent transfer rate for arc j, k. It might be the intensity at 
which node k "pulls" or "accepts" units from j, or the intensity at which 
j "pushes" units to k. At this point, the intensities ek i (n) and Illik (n) are 
arbitrary functions. We will place restrictions on them in the course of our 
discussion. 

Our only other general assumption on the Aik is that they be such that 
the network process X is irreducible. There is no loss in generality from 
this assumption. Since Oi  and %Pik are positive, it is easy to see that X is 
irreducible if and only if the Markov matrix Aik/ E l aft , j, k = 1, . . . , 
is irreducible. Consequently, there are positive numbers w 1 , , w,„ that 
satisfy the routing balance equations 

E(WjAjk WkAkj) =. 0. 	 (2) 

The vector w 1 , , win  is unique up to a constant multiple. 
The assumption that the closed network process X is irreducible and 

the finiteness of its state space S = SN ensure that X has an equilibrium 
distribution, which we denote by ir(n), n€S. That is, 7r is the unique 
probability measure that satisfies the total balance equations 

ir(n) E q(n, Tik n) Elr(Tikn) q(Tikn,n), neS. 
i,k 	 j,k 

We will often write this it as 

m 
• ir(n) = cI(n) II  w1' , nES, 

1.1 

where w1, , wm  is as above, (1,  is a positive function on S and c is a 
normalizing constant such that these 7r(n)'s sum to 1. Note that (4) is not 
a special form for 1 -  since any distribution can be written this way — simply 
set (D(n) = ir(n)/II ;win.i and c = 1. 

In summary of the preceding discussion, X = {Xt  : t > 0} represents a 
closed, irreducible Markovian network process in which N units circulate 

(3) 

(4) 
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among m nodes, and the transition rates of X are 

q(n, T5kn) = A 505 (n)clik (n). 

The problem we address is to find intensities 05 , ‘Ii5k that are as general 
as possible but such that the equilibrium distribution of X has a tractable 
form. 

Because our main results are still several pages away, we now jump 
ahead and give an example that describes the gist of our study. The next 
section provides a more leisurely lead-in. 
Example 2.1 A Precursor to the Main Result 
Suppose the network described above has a node jo  whose service rate is 
independent of the other nodes; that is, for each j 5  jo  and n, the 050  (n) is 
independent of n5  and 4)5(n) is independent of ni) . This restriction is only 
used here to simplify some notation; it is not imposed in our main results. 
Assume that, for each n and j, k # j o , 

4); (n)O k (n — e5) = O k (n)(Mn — e k ). 	 (5 ) 

In addition, assume that the intensities 4) pc  are symmetric over a family of 
routing-balance partitions as described in Section 4. This routing-balance 
symmetry is central to our development. Then the equilibrium distribution 
of the network process X is ir(n) = oli(n) jj i  w7', where 

n • 	5-1 	 njo  

(I)(n) = 	11 (n — E na es  — rei ) - i 11 0;0  (r) -1 . 	(6) 
. iOio r=1 	 .1 	 r=1  

This is a special case of our Theorem 4.6. Assumption (5) ensures that this 
product (6) of 0 1 , , 4)„,_i with decreasing vector arguments can be taken 
in any order. This is a key feature of our processes. 

3 Preliminary Examples and Results 

In this section, we present examples and corollaries of our results that are 
related to previous studies, and point out some issues that our work ad-
dresses. Our aim is to describe several types of networks that highlight 
a spectrum of networks with interacting nodes. We use the notation pre-
sented above. One can read this section before or after the main results in 
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Section 4. A reader who is familiar with network processes and prefers to 
see examples after the main results might want to skip ahead to Section 4. 
Example 3.1 Jackson Networks 
Suppose the network process X has transition rates 

q(n,Tik n) = Aik0i(ni), 

where Oi  (ni) is the service rate at node j depending on only nj. This is 
the classical Jackson network with equilibrium distribution 

ir(n) = cdo(n) fl  w.i 
3 

where "a 
(I)(n) = fl H (r) 

5 r=1 

Here the non-interacting nodes give rise to a product-form equilibrium dis- 
tribution. It would be informative to find a characterization of the general 
rates (1) for interacting nodes that also yield a product-form distribution. ❑ 

Dependencies in a network arise naturally via subsets of nodes that have 
special interactive features based on some common property. For instance, 
subsets of work stations (nodes) in a manufacturing network may represent 
work centers, as described in [6], whose intra-center routing rules differ 
from the inter-center routing rules, and the processing rate at a station 
may depend on the number of units in the center in which it resides. The 
following is one of the simplest dependencies between subsets of nodes. 
Example 3.2 Networks with Generalized Product-Form Equilib-
rium Distributions  
Suppose there is a partition P of the nodes 1, , m based on some of their 
characteristics (F. is a collection of disjoint sets whose union is {1, , m}). 
Assume that the transition rates of X are 

q(n,Tik n) = A ik 0j(E lant ) for jcJ, JEP. 

That is, the departure intensity at each node jeJ is a function of the total 
number of units in J (e.g. one processor may be serving all units in J 
simultaneously). It follows, by verifying the balance equations (3), that the 
equilibrium distribution of X is 

7 



ir(n) = fl 4,j(EiEjni)  II  w7i 
JeP 	 jeJ 

where 01:0j(v) = fl 1  MO'. This distribution is a product of functions of 
{nj  : jEJ} for the disjoint J in P. Our results in Section 4 shed light on the 
question: Is this generalized-product-form valid for departure intensities (k j 

 that are more general functions of {n1  : jab or for more general transition 
rates? ❑ 

Many dependencies in networks over a partition or subnetworks can be 
modeled by existing processes simply by ingenuity of notation. One ap-
proach is to view the subnetworks as a coarser network, as in 129], in which 
each subnetwork J is a "node" with a state {ni  : je./}. Another approach 
is to attach labels to the units to form a multi-type network process. Our 
concern will be dependencies, including those involving overlapping subsets 
of nodes, that cannot be handled as easily. 

Another major source of network dependencies is between the routing 
of units and the processing rates. Our main focus will be on characterizing 
such dependencies in terms of how the routing intensities Aik interact with 
the departure-transfer intensities 4 ; (n)T ik (n). The next two examples set 
the stage for this. 
Example 3.3 Kelly-Whittle Networks 
Suppose the network process X has transition rates 

q(n,Tikn) = Aikl(n—ej) I t(n), 
	

( 7) 

where (I) : SN-1 U SN 	R+ and R+ = (0, oo). Note that the Jackson 
network process is a special case. One can view V(n) — log (I)(n) as the 
system "potential" when in state n. Then the departure intensity ¢ j  (n) = 
exp[V(n) — V (n—e1)] is a function of the difference in potential between the 
state n and n with one less unit at node j. It follows, by verifying (3), that 
the equilibrium distribution for this network is ir(n) = c'(n) rj j  tv 2n.i. This 
process is discussed in [16] and [29]. 

The following result describes a variation of this process. One can prove 
this directly by appeal to (3); it is also a corollary of Theorem 4.6 below. 
Proposition 3.4 Suppose the transition rates of X are q(n,Tikn)= Aivrki(n) 
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and there exists a (D : SN R+ such that 

40(n+e1 )Oi (n+ei) = (1)(n+ek)Ok(n+ek) for each j k and n. 	(8) 

Then the equilibrium distribution of X is 7r(n) = c4► (n)II1 w71 . The condi-
tion (8) holds if and only if each 01 is of the form 

4J (n) =/(n—ej)/4)(n) 	 (9) 

for some / : SN_ 1  R+. 
This result establishes that the 4)(n — e3) in the rates (7) can be re-

placed by any function (n — ei ) and the w remains the same. That is, 
7r is "insensitive" to /. (This is a generic use of the word insensitive that 
differs from its traditional use in queueing theory.) We initially thought 
this insensitivity was remarkable, but our study shows that it is a rather 
common phenomenon. This is because the 1 "factors out" of the balance 
equations (3) since ry(Tik n — ek ) = /(n—e1 ). The throughputs at the nodes 
and other performance parameters of the network as shown below, however, 
generally depend on l. Proposition 3.4 shows that the departure intensities 
in (7) and (9) are rather natural. Note that, for the process X, the it is 
essentially determined upon specifying 4) in (7) or (9). One of our goals is 
to develop the forward approach of starting with the service rates (k i  as the 
initial data and then deriving 4) and hence w as an explicit function of the 
his. ❑ 
Example 3.5 Kingman Reversible Networks 
We say that the network process X is reversible if its equilibrium distribu-
tion 7r satisfies the detailed balance equations 

7r(n)q(n, Tik n) = 7r(Tik n)q(Tik n,n) for each j, k, n. 	(10) 

The standard definition of reversibility, as for instance in 1161, requires the 
additional condition that X is stationary, but we do not need this. Similarly, 
we say that the routing is reversible if there are positive , w,„ that 
satisfy 

wi Aik  = wk  Aki  for each j, k. 	 (11) 

A classic example of such routing is a star-like network with node 1 as the 
center, and the A 11 , Ail  are positive for j = 2, ... , m and ask = 0 otherwise. 
The following result is discussed in [17] and [29]; it follows immediately 
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from (10) and is a corollary of Theorem 4.6. Here we use Aik (n) to denote 
the departure-transfer rate (ki  (n) 	(n). 
Proposition 3.6 Suppose the network process X has transition rates 

q(n,Tikn) = AikAik(n) 
	

(12) 

and the routing is reversible. Then X is reversible if and only if each Ajk 
is of the form 

Ajk(n) = (10(n— ei ) 40(n) -1-yik (n—ei) 	 (13) 

for some 4 : SN-1U SN R+ and 15k : SN-1 R+ that satisfy 15k = 1ki. 
In this case, the equilibrium distribution of X is r(n) = ct(n) 

In expression (13), the 40(n—e i) can be incorporated in iik(n—ej), but 
the given form is more convenient. Although the function 4:1) is typically de-
fined on only SN, its definition usually extends readily to the larger domain 

...0 SN. An example of this result is a network with rates 

q(n, Tikn) = Aierki (nj)th (nk), 

and na 

4)(n) = 	tPi  (r — 1)/0i (r) 
j r.1 

-yik (n) = ti,j (ni )Ok (nk ). 

The tPk(nk) can be viewed as the intensity at which node k attracts or 
accepts units from any other node. Other types of general intensities (13) 
are 10(n), -y(n — ei, n + ek)0(n) and -y(n — ei,n+ ek )(here 	1). See 
[5], [6], [18], and [24] for related examples. ❑ 

The two preceding examples represent extreme cases of system-dependent 
transition rates. In Example 3.3 the networks have general routing rates Ask 

but the departure-transfer rates are restricted. On the other hand, the net-
wails in Example 3.5 have general departure-transfer rates but the routing 
rates are restricted to be reversible. We shall study a spectrum of networks 
between these cases that have varying degrees of routing reversibility. The 
following is one such example. 
Example 3.7 Networks with Reversible Routing Between (or With-
in) Disjoint Subnetworks 
Suppose the network is comprised of a union of disjoint subnetworks (i.e. 
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subsets of nodes), and let Sa  denote the subnetwork containing node j. As-
sume that the routing of units between any two subnetworks is reversible 
in that the w 1 , , w„,, that satisfy (2) also satisfy 

wiAik  = wkAkJ for each keS' 
	

(14) 

where Si {1, ... ,77}\Si . Now, assume that the transition rates of X are 

q(n,Tikn) = 
A k4)(n — ei)4)(n) -l iik(n — ei) iceS; (15) 
Ajk4.(n—ei)4) (n) -lisa (n—ei) kap 

Here 'Ys : SN_i 	R+, and Pyik : SN-1 	R+ are such that -yak = NJ . 
In this network, the movement of units between subnetworks is compara-
ble to the reversible movement in Example 3.5 and the movement of units 
within each subnetwork is comparable to the movement of units in Exam-
ple 3.3. It follows from Theorem 4.6 that the equilibrium distribution of 
X is 7r(n) = c4)(n)II -w n.i • There is an analogous network process in which 
the routing of units within each subnetwork is reversible and the routing 
between subnetworks need not be. This is defined as above by simply re-
versing the roles of Ss; and Si in expressions (14), (15). These examples 
exhibit a partial routing reversibility in terms of only disjoint subnetworks. 
We will also discuss related partial reversibilities via non-disjoint subnet-
works. ❑ 

The examples presented above suggest that they belong to a wider fam-
ily of processes that apparently have a convenient canonical form. This is 
the subject we shall now develop. 

4 A Canonical Network Process 

Throughout this section we assume that X = {X t  : t > 13} is a closed 
Markovian network process with transition rates 

q(n,Tik n) = AjkOi(n) 	(n)• 

We shall characterize the equilibrium distribution of X for rather general 
intensity functions 0j, 4fik. 

We begin with a few definitions. We have seen that partial reversibility 
or balance of the routing rates AJk on subsets of nodes allows more general 
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intensities (i)j, W1k for the nodes. A convenient way of characterizing par-
tial balance properties of the routing rates is by routing-balance partitions 
defined as follows. 
Definition 4.1 Let w 1 ,... ,w„, be positive real numbers that satisfy the 
routing balance equations 

E(WjAjk — WkAkj) = 0 j = 
	

(16) 
k 

For each j, let Di denote the set of all nodes k that satisfy the "detailed 
balance" condition 

wiAik= wkAki• 	 (17) 

Let Bi be any collection of disjoint sets of nodes in D; 	, m}\D1  
that partition D; and satisfy the "partial balance" condition 

(Wi 	WkAki) = 0 for each Bap 	 (18) 
keB 

We call Bi ,...,B„, routing-balance partitions. 
Note that the detailed-balance set D 1  and the partial-balance partition 

Bi do not depend on the particular choice of w 1, , w,n . This follows since 
any two vectors that satisfy (16) differ by only a constant multiple, and 
so (17) and (18) are satisfied by any such vector. One can therefore view 
Di and 13; as being defined solely by {Aik}. The Di  and Bi  exist for any 
{A, k }. Clearly D1  is a unique set. Two extreme cases are D1  = {j}, which 
represents no detailed balance, and Di  = {1,...,m}, which represents 
complete detailed balance implying that Bi  is the empty family. Note that 
Di  = D„,,= {1,...,m} if and only if the routing is reversible. Clearly 
Di  contains all k such that XJk = Aka = 0. 

Keep in mind that Bi  is any partition of D; and hence is not unique. 
The coarsest partition Bi  {D;} is always a possibility. Note that each 
(nonempty) set B in Bj  consists of at least two nodes; if B were to consist 
of only one node, then that node would be in D1 . As we shall soon see, 
finer partitions Bi  allow more general service-transfer intensities. Therefore, 
when there are several possibilities for B i  (which is not uncommon), then 
one should choose a fine one. It would be nice if there were a unique "finest" 
partition B1 , but there generally isn't; see the Appendix. We already used 
routing-balance partitions in Example 3.7; there D1 = .91 and 8; = {S1}. 
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Note that each network process has routing-balance partitions. Our def-
inition does not represent a new property —it only labels the partial balance 
that is implicit in the network routing. The routing-balance partitions may 
be a prominent feature of the network due to its design, such as Example 
3.7, but in other cases they may be inconspicuous. 

Routing-balance partitions are important for demarcating the partial 
balance of the entire network process as follows. 
Definition 4.2 Let 	B,„ be routing-balance partitions for the process 
X. Suppose that it is a probability measure on S with positive values such 
that, for each j and n, 

7r(n)q(n,Tikn) = 7r(Tikn)q(Tikn,n) keDi 	 (19) 

E[7r(n)q(n,Tikn) — 7r(Tik n)q(Tik n,n)1= 0 BeBi. 	(20) 
keB 

These partial balance conditions imply the total balance conditions (5), and 
hence r is the equilibrium distribution for X. We say that X is balanced 
over B i ,...,B„,. 

To see the meaning of this definition, first recall that ir(n)q(n,Tik n) is 
the number of occurrences per unit time of the event that a unit moves from 
j to k when X is in state n. The Appendix contains a concise description 
of such occurrence rates. The r(n)q(n,Tikn) is also called the rate of flow 
(or probability flux) from j to k when X is in state n. Then 

E ir(n)q(n,T ik n) 
ne S 

is the rate of flow of units from j to k. Note that condition (19) implies 
that for each j and k between which the routing is reversible as in (17), the 
rate of flow from j to k equals the rate of the reverse flow from k to j. 

Similarly, condition (20) implies that the rate at which units flow from 
j into B equals the rate of flow of units from B into j. The network studies 
to date have emphasized the partial balance condition (20) only for the 
case in which B = {1,... , m}. Conditions (19), (20) simply bring to light 
further micro-level insights into the balance of the flows. 

We now introduce a key concept related to partial balance. 
Definition 4.3 Functions -yik : SN --+ [0, oo), j, k = 	m, are symmet- 
ric over the routing balance partitionsB m if 

-yik (n-Fei)= -yki (n-Fek ) for each j,k,n 	 (21) 
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and 
= 	for each k, £cB, BEB J  and j. 	 (22) 

This simply says that the functions 7;k (n) 	lik(n-Fej) are such that 
= 7ki, and 7Jk  is the same for each kEB, where Bap An example is 

ryik(n) — g
ik(n— ei ,n+ ek ) kW .; 

hili(n— ei,n+ ek) kEB, 

where gik and h,B are functions on SN-1 X SN-Fi and gik = gkj . Note that 
this notion of routing-symmetric functions is not related to the notion of a 
symmetric queue. 

Routing-symmetric functions play an important role in our analysis. 
They are useful for linking the service-transfer intensities to the routing 
intensities, which we will do shortly. A more fundamental use of routing-
symmetric functions relates to partial balance as follows. Here we use 
Ajk(n) to represent the departure-transfer intensity ch(n)xli ik (n). 
Lemma 4.4 Let X denote the network process with transition rates q(n,T ik n) = 
Aik Aik (n). Suppose there is a function 40 : S 	RI-  such that the functions 
4i(n)Aik(n) are symmetric over the routing-balance partitions 8 1 ,...,B,n . 
Then the equilibrium distribution of X is ir(n) = c4i(n)n,w7 , , and X is 
balanced over Bi,...,B, n . 
Proof. It suffices to show that the specified it satisfies the partial balance 
equations (19), (20). Fix n and j. If ni  = 0, then (19), (20) are trivially 
satisfied. Hereafter, assume ni > 0. From the definition of r and since 
4iAik are symmetric over ,B„„ it follows that, for each k, 

7r(Tikn) = r(n)(D(Tikn)40(n) -1wk wi 1 , and, 

(1)(Tik n)A ki  (Tik n) = iD(n)Ajk (n). 

Applying these identities, we have 

ir(Tikn)q(n, Tikn) = r(n)(1)(Tik n)4i(n) -1 Wk W; 1 A ki A ki (Tik n) 
= ir(n)wkwi l AkiAik(n). 	 (23) 

For keDj, we know that wkivT l Aki = Aik, and so (23) immediately yields 
(19). Also, for BcB1 and a fixed k' in B, it follows from (23) and AA = 
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kEB, that 

7r(T;kn) q(T;kn,n) = 7r(n)Ape(n)w -1 1  E wkAki  
keB 	 keB 

= 7r(n) AA; (n) E Ajk 
keB 

= 7r(n) E q(n,Tik n). 
keB 

This proves (20). ❑ 
The following is a consequence of Lemma 4.4. 

Criterion for Determining an Equilibrium Distribution 4.5 Suppose 
7r is a distribution on S with positive values such that the functions 

ryik (n) = 7r(n)wi 1 Aik(n) 

are symmetric over B r ,...,B„,. Then it is the equilibrium distribution of 
X, and X is balanced over B 1 ,...,B„,. 
Proof. Let W(n) = jj i  w2n. 1  and define t (n) = 7r(n)/W(n). It suffices, by 
Lemma 4.4, to show that the functions 

t(n)A;k(n) = ryik(n)wiW(n) -1 . 

are symmetric over B1 , . . . , B„,. But this follows since the 15k are sym-
metric by assumption and so is w1W(n) -1  since wilV(n+e1) -1  = W(n), 
independent of j. ❑ 

This criterion is surprisingly simple but very useful. It says that to 
verify that a distribution 7r satisfies (19), (20) and hence is the equilibrium 
distribution of X, one need only verify that the specified function -yak  satisfy 
the simple symmetry conditions (21), (22). 

We are now ready to present our main result. We will use the following 
condition: There is a joe{1,...,m} such that, for each n and j, k # j o , 

(1); (n)O k (n — ei  + ei.)0k (n — ek  + eh) O k (n)(1); (n — e k  + eio )Oio (n — e; + eh). 
(24) 

In addition, we define, for nESN , 

V 	 v- i 
t(n) = 	(n — E ei. + ve10 )14)ju (n— E ei. + (i) 	 (25) 

v=1 	8=1 	 8=1 
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where M = N — nio  and j1 , , jm is a sequence in {1, , m}\ {jo} such 
that E:=1  < n (componentwise) for each v. Condition (24) ensures that 
(25) is the same for any such sequence , jm; we justify this in Lemma 
4.7. 
Theorem 4.6 Suppose the network process X has transition rates 

q(n,Tik n) = Awk i (n)xlfik (n) 

where 0 1 ,...,4 ni  satisfy condition (24) and the IRA are symmetric over the 
routing-balance partitions Then the equilibrium distribution of 
X is r(n) = c(1)(n) Fl a  w7, where 4) is given by (25), and X is balanced 
over B1,...,B„,. 
Proof. It suffices, by Lemma 4 4, to show that the functions 

(n) = (I) (n) (1); (n) `Pik (n) 

are symmetric over B1 , . , B„,,. From Lemma 4.7(c) below, we know that 
condition (24) ensures that 05 (n+ ei )40 (n+ei) is independent of j. This 
and the symmetry of %P ik  over Bi , , B„,, imply that ryik  are symmetric 
over Bi, , Bm. ❑ 

A major step in the preceding proof is justified by the next result, which 
also explains the meaning of the condition (24). In fact, the equivalence of 
statements (a) and (d) here is the heart of Theorem 4.6. 
Lemma 4.7 The following statements are equivalent. 

(a) The functions O b ... ,0„,, satisfy condition (24). 

(b) The product (25) is the same for any sequence j 1 ,...,jm  with values 

in {1,...,m}Vjol such that 	< n for each v.1 

(c) There exists a function lis : SN 	R+ such that for each nESN_1, the 
40(n+ei)(ki (n+ei ) is independent of j. 

(d) There is a function 4 0  : SN-1 U SN R+ such that 

Oi(n) = 4i* (n — ei  + eja )(1)*(n) -1 0i0 (n — ei  e50 ) for each n and j. 
(26) 

If these statements are satisfied, then 	and 4)* are constant multiples of 
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Proof. Suppose (a) holds. We will prove (b) by induction on M = 
0, , N. Let (Dm(n) denote the product (25). Clearly (b) is trivially 
satisfied for M = 0 since (100 (n) = 1. Now assume (b) is true up to some 
M <N. For neSN with N - nic,=M+1, let (I) m+ 1(n) and (1)1f+1 (n) denote 
the product (25) for two sequences 51 ,-. , jm+1  and ji",...,j14+1 . Our aim 
is to show that (I) Af_f_ 1 (n) = (1)'1,f+I (n). Factoring out the first term in each 
of these products, we can write them as 

	

'M+1 (n) = 	(n — ej, eio )011 (n) -1 (1)m (n — ej, e jo ) 	(27) 

(Dm* +1 (n) = Ojo (n — e j; ejo )1jr(n)-1 40m(n — ej; ej 0 ). 

For the last term we used the induction hypothesis that 41 = t m. If jl = 
jj', then the two preceding expressions are the same. Now suppose j i  
Under the induction hypothesis, (I) A,f (n - 	ejo ) can be expressed as (25) 
for a sequence beginning with ji*, since j 1 	ji ensures that nil  * > 1. 
Factoring out the first term in this (1) 14 , expression (27) becomes 

(Dm+ (n) = 	(n - 	e10)011(n) -1010(n 	eir + 2ei0) 

	

iii (n 	+ eio) 4)m-i (n 	+ 2ei0). 
By similar reasoning, 

4)itt*  +1 (n) = 	(n 	+ eio )(Air (n) -103-0(n 	eir 2e10) 

(n — ej; ej1 )40m_ 1  (n — eh  + ei;  2ej0 ). 

Under the assumption (24), these two expressions are equal, and so the 
induction is complete. Thus we have established that (a) implies (b). 

	

If (b) holds, then expression (25) ensures that, for each j 	jo and 
neSN-1, 

(n-F ei )4); (n-Fei) = 41)(n + ei0 )0270 (n ejo ). 

Thus (c) is satisfied with to = '. Next, observe that (c) obviously implies 
(d) with to = V. Finally, (d) implies (a), since the 4; specified in (d) 
clearly satisfy (24). This finishes the proof that (a) - (d) are equivalent. 

Now, suppose these statements are true. Then from (d) and iterations 
on 51 , 	, j„,,, we have 

4)*(n) = 05.(n — ej, ej0 )0j1 (n) -1 4i' (n — eh + ejo ) 
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= 	(n — ei, 
+ eh )4h (n) -1050 (n — eil  — eh  + 2eh ) 

Oil (n — eh + eh ) -1 4:0 (n. — eil  — eh  + 2eh ) 

= 	(N eh )(1)(n). 

Thus •P* is a multiple of 4). Also, we noted above that (c) implies (d) with 
4" = cr. Thus 4" is a multiple of 40. 0 

Theorem 4.6 describes a canonical network process with system-dependent 
transition rates. Its assumptions are easy to check for an actual network 
with specified Oi  and Wik . Each of the examples and results in the preceding 
sections is a special case of Theorem 4.6. In Section 5, we give further ex-
amples and discuss canonical networks with blocking (Theorem 5.1). Many 
networks that have been of interest to computer scientists and operations 
research analysts will probably fit this canonical form, or its modification 
with blocking or multiple types of units that we discuss shortly. A re-
cent example is [25], which uses an indirect assumption resembling (b) in 
Lemma 4.7. For those networks that do not fit, one may still be able to 
use Criterion 4.5 to determine their equilibrium distributions. Other ap-
proaches that have been used to analyze dependencies in networks involve 
job local balance and adjoint processes [12], [13], and coupling of nodes to 
form networks [22] and [29]. These are broad approaches or recipes, like 
Lemma 4.4 and Criterion 4.5, that might be useful for deriving equilibrium 
distributions not covered by Theorems 4.6 and 5.1. 

Remarks 4.8 

(a) The equilibrium distribution in Theorem 4.6 is a tractable function of 
the (Pis that is a natural generalization of the Jackson equilibrium 
distribution. The 4' is an interchangeable product of the 4lis and 
the vector n — E sc].  ei, + ve in  is increasing in the joth coordinate and 
is decreasing in the other coordinates as v increases. The product 
(25) is the same for any , jm, and so, for the case in which this 
sequence is increasing, (25) becomes 

n•• 

41)(n) = 	Oi„(hi(n) — re i  reh)10i (hi (n) — (r — 1) ei  (r — 1)eh ) 
i#io r= 1  
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where 
I-1  

hi (n) = (0,...,0, n1 , ni+1 , 	, 14,0 (E 

(b) Condition (24) and the product (25) reduce to (5) and (6) in Exam-
ple 2.1 if jo  is a node such that for each j # jo  and n, the 050 (n) is 
independent of ni  and 05 (n) is independent of nh . A similar sim-
plification occurs for open networks when jo  is the outside node; see 
Theorem 7.2. 

(c) Recall that in the Kelly-Whittle networks in Example 3.3, the depar-
ture rates 05 are "assumed" to be of the form (26). From the equiva-
lence of (a) and (d) in Lemma 4.7, we now know an easily checkable 
condition on the basic data 0 1 , namely (24), that leads to the form 
(26). 

(d) The equilibrium distribution r does not depend on 	This insen- 
sitivity follows since, by assumption, Allik(n-l-ej) = All ki (n+ek ) and 
hence this term factors out of the rates in (19), (20). The through-
puts and other system parameters, however, generally depend on iD jk• 

(e) If Ajk = 0 and hence AikOi(n)Allik(n) = 0, then (ki and '5k for that 
particular j, k are irrelevant and can therefore be defined arbitrarily. 
Consequently, any assumption on them is not a restriction. 

(f) Whether or not 7r has a generalized product form as in Example 3.2 is 
a secondary issue. Such a form arises when there is a partition P of 
{1, , m} such that Oi (n) is a function of only {n k  : IccSi}, where Si  
is the set in P that contains j. The partition will usually be apparent 
from the particular way in which the nodes interact as "families" of 
nodes. 

Remark 4.9 Normalizing Constants 
Although the normalizing constant c defined by 

ra 
c 	= > 	(n) 	11.7 n. 1  

»ESN 	5=1 

can be computed by total enumeration for small networks, a more parsimo- 
nious approach would generally be required for large networks. Computing 
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c is as hard as computing a normalization constant for a Gibb's distribu-
tion for a Markov random field. The difficulty, of course, would depend on 
the complexity of 4)(n). There is apparently no "universal" procedure that 
would be efficient for all 40s. The worst case would be that the values of 
4)(n) are nearly all different and have no pattern (like a table of arbitrary 
numbers). These worst cases would be the exception rather than the rule 
since actual networks have natural dependencies that lead to a highly struc-
tured 4)(n). For particular applications, ad hoc computational procedures 
or approximations based on the structure of (1)(n) would be in order. 
Remark 4.10 Throughputs 
For the process in Theorem 4.6, the throughput from node j to node k is 

rik 	FIE 	x,,_ — e, + ek ) 
a<t 

> r(n)q(n,Tik n) 
ne 5N 

CAA E [(1) (n)¢,i  (n) 	(n) 11 tuN 
n' Sly 

The Appendix gives further insights on throughputs. Factoring out a tv i 
 from the last product, we can write this as 

rik  = wjAik(cicN-1) E riv- 1 (n)-y(n)iiik(n+ei)1(1)(n) 
neSN -1 

where i(n) 4)(n + eijO io  (n + ea0 ) and 

z-par _1(n) = cN_ 1 (1)(n)Iltql neSN-1 

is the equilibrium distribution of the network process X with N —1 units in 
it. This expression for rik  will usually simplify depending on the structure 
of Pik  and 4), and this form might be convenient for recursive computations 
for N = 1, 2, ... As with normalizing constants, particular applications for 
large networks would warrant ad hoc computational procedures. 
Remark 4.11 Multiple Types of Units 
The results herein readily extend to networks with multiple types of units. 
A standard way of doing this is to append another letter to the node num-
bers as follows. Let n ot denote the number of type a units at node j, where 
acC, a set of types or classes. A generic state of the network processes X 
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would therefore be n = {naj  : aEC, j = 1,...,m}. A typical transition 
would be from n to Taj,1301, which means that a type a unit at node j enters 
node k as a type 13 unit. The rate of such a transition would be 

q(n,Tod,i3kn) = A ajpok Oaj (n)1 r  aj j ok(n)• 

In an obvious manner, one can restate each result herein in terms of the 
doubly subscripted variables aj,13k,... instead of simply j,k,... 

5 Blocking of Transitions 

One of the commonest system dependencies in a network is that of blocking 
of transitions due to certain constraints. The simplest example is that the 
number of units at a node (or a set of nodes) cannot exceed a prescribed 
value and if a unit attempts to enter the node when the number of units 
there equals that value, then it is blocked - the unit remains where it is for 
another service cycle. This is often called communication blocking. Other 
examples of constraints that result in blocked transitions are as follows. 

• The service rate at a node is zero if the number of units there is below 
a prescribed value. 

• The entry of a unit from node j into a set of nodes K is suppressed 
if the number of units in K exceeds the number in j. 

• Each node must contain at least one unit. 

These go/no-go constraints are simply restrictions on the usual transitions 
of the network process that confine it to a smaller state space. We purposely 
avoided these constraints in the preceding, by assuming that ch(n)W ik (n) 
is positive, so as not to cloud the main ideas. We now show how such 
constraints can be incorporated into our canonical network. 

Suppose that X = {X t :t> 0} is the closed network process described 
in Theorem 4.6. We shall consider a modification of this process in which 
the state space is restricted to a subset S" of SN. Specifically, we let X* = 
{X; :t > 0} be a Markov network process with transition rates 

q*(n,Tik n) 	Aik0i(n)llik(n)ai k (n) neSs 	 (28) 
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Here ao (n) > 0 is an additional intensity that suppresses certain transi-
tions when it is zero. The process X* evolves just as X would subject to the 
modification that if X were to have a transition from n to Ton in S* and 
aik (n) = 0, then this transition is suppressed. The interpretation is that 
the unit due to move from j to k returns to j to endure another sojourn 
there, as a new entry would. In some applications, the ao(n) might be the 
probability that the potential movement of a unit from j to k is accepted. 
This formulation of blocking via (28) covers a variety of system-dependent 
blockings that have not been characterized before. 

Since X* is similar to X on the smaller state space S*, it is natural to 
ask whether the equilibrium distribution r* for X* is a truncation of the 
distribution w for X. The next result addresses the issue. For convenience, 
we assume that X* is irreducible on the space S*. 
Theorem 5.1 If aik are symmetric over the routing balance partitions 

B,n , then the equilibrium distribution of X* is 

7r*(n) = ir(n)/ E 7r(ni) ncS*, 
nteS• 

and X* is balanced over 81,...,B,,,.. 
n - 

Proof. Let W(n) = 	/Di '. By Criterion 4.5, it suffices to establish that 
the functions 

IAN = ir*(n)wi lAik (n) 

= 4)(n)(ki(n)li ik (n)aik (n)wi lW (n)I E ir(n') 
n'eS' 

are symmetric over Bi,...,B„,,. But this follows since the proof of Theorem 
4.6 showed that 4)(n)ch(n)illik(n) satisfy this condition, the aik satisfy it 
by assumption, and wi lW(n) satisfy it since tq lW(n+e ; ) = W(n). ❑ 

Example 5.2 State-Dependent Acceptance Sets 
Suppose X* represents the network process X in which a transition from n 
to Ton is accepted if and only if k is in a prescribed set Ai(n) of nodes that 
accept units from j when in state n. Then X* can be modeled as above 
with 

ajk  (n) = 1 (k cAi  (n)). 
Here 1• is the indicator function. These aik are symmetric over /31, 	, B,,,, 
if and only if the Ai(n) are such that, for each j and ncS*, 

IccAi (n) is equivalent to jEA k (Ton), and 
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B n A.(n) = B or is empty, for each B€Bi . 

Under these conditions, the conclusions of Theorem 5.1 apply to this pro-
cess X*. ❑ 
Example 5.3 State-Independent Acceptance Sets 
A standard form of blocking is simply to consider X restricted to an arbi-
trary set S*. This is modeled by X* with 

aik (n) = 1(Tikn€S *). 

One can view this as Example 5.2 with A.(n) = {k : Tak nES*}. In this case, 
the (yak are symmetric over Bi,...,B,„ if and only if the S* is such that, for 
each j and nES*, 

TiknES* is equivalent to {T,kn : k€B} C S*, 

Therefore, if S* satisfies this condition, then the conclusions of Theorem 
5.1 apply to X*. This type of result is known for Jackson processes. ❑ 

Example 5.4 Maximum Capacities at Nodes with Reversible Rout-
ing 
Suppose the network process X has a subset of nodes D such that 

wi Aik  = wk Aik  for each j, k€D. 

That is, the routing between each pair of nodes in D is reversible in that 
it satisfies the detailed balance condition. Let D o  = {k€D : Ask = 0, j€Dc}, 
the set of nodes in the interior of D that cannot be reached from De in one 
transition. Suppose that each node k in Do  can accommodate at most Mk 
units. Then the resulting process X* is as in Theorem 5.1 with 

1(nk  + 1 < Mk ) j,kED o  
aik(n) = 

1 	 otherwise. 

To verify that these aik  are symmetric over Bi ,...,B„,,, it is convenient to 
write 

aik (n) = 1(n < M, T, k n < M) 

where M = (M1 ,...,M„,,) and Mi  = N for j€D0. The condition n < M 
ensures that n€S*. Then clearly aik(n-Fei) = aki(n-Fek) for each j # k, 
and 

aik(n) = aik,(n) =1 for each j and k, k 1 €13;, 
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since D C Di , when jcD. The latter condition implies that aik  are sym-
metric over "any" B 1 , , B, . ❑ 

Example 5.5 Maximum Capacities on Sets of Nodes 
Suppose the network process X has a partition of nodes P as in Example 
3.7 such that 

tv i Aik  = wk Aki  for each j and IscS;, 

where Si  is the set in P that contains node j. The vector N(n) = (E53  ni  : 
SO) records the numbers of units in the sets in P. Assume that each set 
S in P can accommodate at most Ms units. In other words, 

N(n) < M (Ms : so). 

This type of constraint is used in [6], [7], and [8]. Then the resulting network 
process X* can be expressed as in Theorem 5.1 with 

aik(n) = 1(N(n) < M, N(Tikn) < M). 

An easy check shows that the aik are symmetric over any B1,...,B„„ since 

N(Tikn)= N(Tik,n) = N(n) for k,k`ED; = Si. 

Note that the single-node constraints as in the previous example could also 
be incorporated in this type of network. ❑ 

Example 5.6 Transfer Rates That Help Equalize Conjestion 
Actual networks typically have flexible servicing and routing capabilities 
built in so as to help equalize congestion, or to maximize throughput or 
some other parameter. There are many conceivable transfer rate functions, 
such as route-to-the-shortest-queue, that, unfortunately, do not lead to 
tractable equilibrium distributions. The following is a simple illustration 
of the transfer rate features that one can model in our framework. 

Consider a network in which there is a set of nodes D as in Example 
5.4 such that the routing is reversible between any pair of nodes in D. The 
congestion in D is to be equalized to a reasonable degree. Accordingly, the 
network is designed so that the transition rates of X are 

q(n,Tikn) = fAikili(ni)ni(ni)ak(nk) j,k in D 
AikAi (ni) 	 otherwise. 
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Here iti(ni) is the actual service rate at node j, the ak(nk) is the intensity 
(or probability) at which node k accepts units and ni (ni) is an expediting 
intensity. To level the congestion in D, the ak(nk) is decreasing in nk and 
In(%) is increasing in ni. Furthermore, each node k in Do (the nodes 
that cannot be reached in one transition from outside D) is restricted to 
accommodate at most Mk units, and so ak(nk) = 0 for nk  > Mk. We can 
write the transition rates above as 

q(n, Tikn) = Ajoki‘llik(n), 

where 
oi(n) = (n )77i (ni )/cci (nl — 1) jeD 

j AD 

yk (n) = ai(ni — 1)ak(nk) j,keD 
1 	 otherwise. 

An easy check shows that Wik are symmetric over any routing-balance par-
titions and the (iYs trivially satisfy (24). Thus, from Theorems 
4.6 and 5.1, the equilibrium distribution of X is 

n • nt 

7r(n) = c 11 tun.i 11 Ai (r) -1  II 11  at (r — 1)Mt (r). 
r=1 	 LcD r=1 

The following special case was introduced in [24], and discussed further 
in [5], [6], [7] and [18]. Suppose that D represents a star-like subnetwork 
such that node 1 is at the center, Do  = D\{1} and 

Alk = Akl = A, kcDo. 

Suppose the transition rates of X are 

Ai l.(ni)(Mk — nk)/(a bni) j =1,1c€D0 
q(n,T )ikn = 

AikAi(ni) 	 otherwise, 

where a, b are constants. This is a particular case of the preceding with 

ai (ni) = 1 n1(n1) = 1/(a + bn i ) 

ak(nk) = (Mk — nk) nk (nk) = 1 /ma). ❑ 
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6 Palm Probabilities of a Network at its Tran-
sitions 

A remarkable property of a stationary closed Jackson network process is 
that whenever a unit moves from j to k, the probability distribution of 
the disposition of the N —1 unmoved units is the same as the equilibrium 
distribution irN._ 1  of an identical network with N-1 units in it. We call this 
the MUSTA property at j, k: "a moving unit sees a time average". This 
is similar to the ASTA property (arrivals see time averages) in a queueing 
system; see [4], [20] and [30]. These transition probabilities concerning 
the unmoved units are actually Palm probabilities of the process at its 
transitions. In this section, we present expressions for Palm properties of 
general events that may occur in a canonical network whenever a transition 
takes place. We use these to establish several MUSTA properties for general 
transitions, including a new one for Jackson networks. 

We begin with some comments about transitions of a network. A tran-
sition or jump of a network process X is synonymous with the movement 
of a single unit in the network. Each "type" of transition is associated with 
a subset C of S x S. By a C-transition of X we mean that X jumps from 
state n to state n' for some (n, n') in C. We find it convenient to express 
C as 

C = {(n ei, n + ek) : (j,k)eC n ,neSN-11 	 (29) 

where Cn  = {(j, k) : (n ei , n ek)eCl. In this guise, one thinks of the 
C-transition as the movement of a unit from node j to node k and the state 
of the N —1 unmoved units is n, for some (j,k)cC n  and nESN_ i . Note that 
C is defined by the sets Cn, neSN_ 1 , of node pairs for possible movements. 
We say that C is state-independent if Cn  is independent of the state n of 
the N —1 unmoved units. Here are some examples of transitions and their 
defining sets Cn . 

(a) "A unit moves from a node in the set J to a node in the set K": 
Cn  = J x K. 

(b) "A jump of X occurs" : Cn  = {1, , m}2  (this and the preceding 
transition are state-independent). 
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(c) "A unit moves from a node where the most units currently reside": 
C„ = {(j,k): ni + 1 nt, 	i; and k i}- 

(d) "A unit moves into a node that contains less than v units": Cn  = 
k) nk < v; and k # j}. 

(e) "The state of the network is in the subset S' of S and a unit moves 
into a node with less units": C n  = { (5, k) : nk < ni and n + ejc.91. 

For the rest of this section, we assume that X is the network process in 
Theorem 4.6. We know that the number of occurrences per unit time of a 
C-transition is given by 

ac 	lim t-1  E i((x,_, xs)€c) t.00 9<t 
E r(n)q(n,n1). 	 (30) 

(n,n9eC 

This can be expressed as follows. Here 7rN_1(n) = cN_ 1 41)(n) jj w7, nc8N-1, 
is the equilibrium distribution of the network process X with N — 1 units. 
Proposition 6.1 For the network process X in Theorem 4.6, the occurrence 
rate of a C-transition is 

ac 	> 7rN- (n)lic (n) 	 (31) 
SN —1 

where 
Hc(n) = h(n) E wi Aik Tik (n+ei ) 

(j,k)EC. 

h(n) = 4.(n+ e io )Oh (n + eh )/(1)(n)• 

Proof. In light of (29) and the form of r and q, expression (30) can be 
written as 

ac = E E ir(n+ei)q(n + ei ,n+ ek ) 
ne SN-1 (j,k)eC,, 

E E ct (n+ei)ch(n+ei)tviAik 11 w,ntw,k (n). 
?If SN-1 (j,k)EC n  

From Lemma 4.7(c), we know that 

4)(n+ei)0(n+ei) = 4)(n+ e ic,)(4,(n+ ei0 )= h(n)4)(n). 
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Using this and the definition of 7rN_ 1  in the preceding expression yields 
(31). ❑ 

We are now ready to describe Palm probabilities of the network process 
X. General expositions on Palm probabilities appear in [1], [9] and [15]. 
Assume that X is stationary: that is, P{Xt  = n} = ir(n). The Palm 
probability of the event (X t _, Xt )EA given that a C -transition occurs at time 
t is defined by 

.Pc (A) 14g.  /3{(Xt _u , Xt )EA (Xt _u , Xt )cC), A C C. 	(32) 

This probability does not depend on t since X is stationary. The standard 
definition of a Palm distribution reduces to this simple limit since X is a 
pure jump Markov process. Here are some special cases of interest: 
At a C-transition, the probability that the N —1 unmoved units are in state 
ne SN 

Pc(n) P({(n+ ej,n+ ek) 	k) EC fil) • 

Whenever a unit moves from node j to node k, the probability that the 
unmoved units are in state ne.S N_ i  is 

Pjk (n) P({(n+ ei,n + ek)}). 

Expressions for these Palm probabilities are as follows. 
Theorem 6.2 For the stationary network process in Theorem 4.6, 

Pc(A) = «A/ac 

	

E 1rN-1(n)HA(n)/ > 1x-1(ni)Hc(n1 )• 
	(33) 

nESN -1 	 n'ESN-1 

In particular, 

Pc (n) = 11'N-1 (n)Hc (n)/ E z-N_ 1 (re)Hc  (ni) 	(34) 
n'ESN- 1  

Pik (n) = 7rN_I  (n)Wik  (n ei) nscEsiy_i 	+ 	(35) 

Proof. From the definition (32) and A C C, it follows that 

Pc (A) = limP{(X t-u , Xt )EA} I P{(X t _„,Xt )EC} 
to 

=
t 	

P {(X0 , Xu)cA} l[u -  P{(X0 , Xu)cC}1. 
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Also, the stationarity of X and the form of q(n, n') imply that 

ac  = E ir(n)g(n,n 1) = 	P {(X0 , Xu)EC}. 
(n,n')€C 	

ts10 

The aA  has a similar expression. Putting the preceding expressions together 
yields (33). Expressions (34) and (35) are just special cases of (33). ❑ 

The Palm probability Pc(n) is the probability that a unit triggering a 
C-transition "sees" the rest of the units in the state nESN_ 1 . We will show 
that in some cases Pc(n) = rN_ 1 (n), for each nESN_ I . One can interpret 
this as a moving unit sees a time average (MUSTA) at the transition C; 
that is, the distribution of the N — 1 unmoved units is the same as the 
distribution of an identical network with N —1 units in it. Similarly, the 
property Pik(n) = ii-N_ 1 (n) is called MUSTA at j,k. In some networks one 
may have Pc  (n) = rpt_ 1 (n) for some but not all n. We will not consider 
these partial MUSTA situations. 

The next result addresses the question of when does a network have 
MUSTA properties? 
Theorem 6.3 Suppose the network process Xis stationary. 

(a) A necessary and sufficient condition for MUSTA at C is that H c (n) 
is independent of n. 

(b) A necessary and sufficient condition for MUSTA at j, k is that h(n)if ik (n+ 
e.) is independent of n. 

(c) If X has transition rates g(n,Tikn) = Aikob(n—ei)14:0(n), then it has 
the MUSTA property at each state-independent transition. 

Remark 6.4 Recall that the Jackson network process has the MUSTA 
property at each j, k. From Theorem 6.3(c), we now know that the Jack-
son process has the MUSTA property at each state-independent transition. 
Proof. (a) If He (n) is independent of n, then using this in (34) yields 
MUSTA at C. Conversely, MUSTA at C and (32) imply that 

He (n) = 	(W)Hc (nI), 

which is independent of n. 
(b) An argument like the preceding one yields statement (b). 
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(c) Any state-independent transition C can be expressed as 

C = {(n ei ,n ek ) : (j,k)c/,neSN_ i l 

for some subset I of node pairs. For such a transition, we clearly have 

Hc(n) = > WjAjk 
(j,k)eI 

which is independent of n. Thus, by statement (a), the process has MUSTA 
at C. ❑ 

7 Open Network Processes 

The discussion up to now has been on closed networks. In this section, we 
shall consider an open network in which units enter from the outside and 
move among the nodes as in a closed network until they eventually exit the 
network never to return. 

Let X = {Xt  : t > 0} denote such a network process with states n = 
(ni , , nm) in S = {0,1, ...}m denoting the numbers of units at the m 
nodes of the network. Let node 0 represent the "outside" of the network. 
Define Tan = n ek and Tion = n — ei or n according as ni  is > 1 or 
= 0. Also, define Tikn as before for j,k =1,...,m. We assume that X is 
a Markov process with transition rates 

q(n,Tikn) = AikOi(n)Wik(n), j k in {0,1, 	, 	(36) 

where ch and ill jk are functions from S to R+, and Aik > 0 with Au = 0 for 
each j. Assume that X is irreducible. One can show that this is equivalent 
to the irreducibility of the Markov routing matrix AJk/ Et10  Ait, j, k = 
0, , m. Consequently, there exist unique positive numbers w o, , wm 

 that satisfy the balance equations 

E(piAik - wkAki) =0, 
k=0 

and wo  = 1. 
From the preceding description, it is obvious that this open network 

process is like a closed network process with one more node 0 with the 
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special property that n f e 0  = n. The following is a formal statement to 
this effect. 
Major Remark 7.1 All of the results in sections 4-6 extend mutatis mu-
tandis to the open network process. Just replace the closed network nota-
tion in the first column below by the notation in the second column. 

Closed Network 
	

Open Network 
j,k in {1,...,m} 
S = SN 
811.-9Bm 

n ei  
M = N — niu in (24) 
cicN_ 1 lrN_ 1 (n) in (31) 
11W-1(n) in Section 6 

j,k in 0,1, ,m} 
S = {0,1...}m 
B09.-98m 
n ei  = 0 when j = 0 

M  EiOjo ni 
r(n) 
7r(n) 

Further amplifications on the preceding remark are in order. Although 
Theorem 4.6 holds as stated, it simplifies considerably as follows for the 
special case in which 50  = 0. 
Theorem 7.2 Suppose the open network process X has transition rates (36) 
where Wik are symmetric over routing balance partitions B 0,...,B,n  and, for 
each n and j,k # 0, 

ch(n)ch(n—ei ) = O k (n)Oi (n—ek ). 

Then the equilibrium distribution of X is 7r(n) = cti(n)11 ;  w1', and X is 
balanced over B 0, ... ,B,n  , where 41:0 is given by 

m ni 	 j-1 	 j-1 

	

4:10(n) 	4 0 (n — >2 n e, — (r + 1)ei)10; (n — >2 n,e, — rei). (37) 
j=1 r=1 	8=1 	 8=1 

Remark 7.3 A natural load-dependent network entry rate is 4 0 (n) = 
-y(n i  + + n„,), where 7  is a positive function. In this case (or when 
09 (n) FE 1), expression (37) reduces to 

	

m ni 	5-1 
(1)(n) = II f (ki  (n — 	 — 	 (38) 

	

j=1 r=1 	8=1 
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One might want to use this entry rate and also impose the constraint that 
the number of units in the network cannot exceed some value M. To do 
this, simply restrict the state space to S' = Ind : n1 + + rtn, < M} by 
defining 

q(n,n + ei) = Ajory(n i  + 	+ n„,)1(n i  + 	+ n„, M). 

Now, if (i)i and Wjk satisfy the conditions of Theorem 7.2, then this coupled 
with Theorem 5.1 yields the equilibrium distribution 7r(n) = et (n) 11 , tv73 , 
TIES*, where t is given by (38). A related example is in [16]. ❑ 

The results on Palm probabilities in Section 6 readily extend to open 
networks. We say that the open network process has the MUSTA property 
at the transition C if the distribution of the unmoved units at a C transi-
tion is 7r(n) - the same as the (unconditional) equilibrium distribution of 
the network. An easy check shows that Theorems 6.2 and 6.3, with 7rAr-1 
replaced by 7r, are true for the open network. 

A common property of a stationary open Jackson network process is 
that the flows of units exiting the network from the nodes are indepen-
dent Poisson processes. This result for our network process is as follows. 
Consider the point process 

N,(t) = E 1(X, = 	— e1 ) t > 0, 
8<t 

that represents the number of units that exit the network from node j in 
the time interval (0, t]. Of course, Ni  = 0 when Ai°  = 0. 
Theorem 7.4 Suppose the open network process X is stationary and has 
transition rates 

q(n,Tik n) = Ajk (n—ei)4)(n) -1 Tik  (n), 

where %II ik  are symmetric over B o , . , 8,.„ and Tio (n) = 1 for each j and n. 
Then N1. , Nu, are independent Poisson processes with rates wiAio, • • • , tomAmo 
respectively. Furthermore, 	 (s),.... . , Nm (s) : s > t} is independent of 
{Xu  : u < t}, for each t < O.} 
Proof. Consider the function 

(n, z) = 7r(n) -1  Eir(7e) q(ni, n) 1(n = Tion, n' — n = z), n, ZES. 
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This a* (n, z) with z = ei  is the intensity of the reversed-time version of Ni ; 
see [23]. The assertions will follow directly by Theorem 3.2(ii) of [23] if 

a* (n, z) = wiAio1 (z = ei). 

But this is true since 

a* (n, = (n) -1 7r(n+e1)g(n+ e1 ,n)1(z = e i), 

where r(n) = cl)(n) Ili 	and q(n e; , n) = A1ot(n)/41)(n+ei). ❑ 

Some of the flows inside the network may also be independent Poisson 
processes, see Theorem 4.2 [23], which generalizes the classical results in 
[3], [19] and [27]. 
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•-• 	• 

9 Appendix 

The following example shows that there does not always exist a unique 
finest routing-balance partition. The rest of the appendix consists of a few 
comments on occurrence rates of events in a network. 
Example 9.1 
Consider the routing intensity matrix 

o 	.6 	.1 .1 .2 
0 	0 	.15 .55 .3 

{Aik} = 1 0 	.2 	0 .1 .7 . 
.28 	.6 	.08 0 .04 
.4 	.2 	.1 .3 0 

This is balanced by the vector w = (.15, .30, .10, .25, .20). The balance- 
partition B5 could be either {{1, 2}, {3, 4}} or {{1, 3}, {2, 4}}. Clearly there 
is no finder partition B5 from which the preceding two partitions can be 
constructed as unions of sets from it. ❑ 

Considerable information about a network can be obtained by the rates 
of occurrence of events at its transitions or by the rates of various flows of 
units among the nodes. The following discussion explains how these rates 
can be interpreted as limiting averages or as expectations. First, consider 
the basic event that the network process X is in state n and a unit moves 
from node j to node k. The number of occurrences of this event per unit 
time is given by 

r(n,Tikn) 	lim 	i(x„_ = n, Xs  = Tikn) t-.00 it<t 

= 71- (n)q(n,Tik n). 

This is a standard strong law of large numbers for Markov process in which 
the limit holds with probability one. The sum is over all real .s < t, but 
only a finite number of the terms being summed are nonzero since X takes 
only a finite number of jumps in a finite time period. The rate r(n,Tikn) 
has two other interpretations. Namely, when X is stationary, then 

r(n,Tikn) = 	P {Xt  = n, Xt+h = Tikn}, and 	(39) 
NO 
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10 • 1, 

r(n,Tik n) = E[E1(Xt_ = n, Xt  = Ton)]. 	(40) 
t<1 

The latter is the expected number of occurrences of a transition from n to 
Ton in a unit interval. 

Rates of more complex events at transitions of X can be represented as 
sums of the basic rates r(n,Tikn). An important example is the throughput 
from node j to node k, or the rate at which units flow from j to k, which is 

r 3 lim t-1 > E i(x,_ = n, X„ = Tikn) 
t-40 

to<t n 

= E r(n, Tik n). 

Similarly, the throughput of node j, or rate at which units flow through j, 
is 

r, E rik = E rkj. 

These throughputs have two alternate interpretations as in (39), (40). 
As another example, suppose that J and K are subsets of nodes. Con-

sider the event that J contains more units than K and a unit moves from 
J to K. The occurrence rate of this event is 

lim EEEE 1(X,_ = n, X, = Ti  n) 
a<t jeJ keK neB 

=EEE r(n,Tikn), 
JEJ keK neB 

where B = : Ei, 	> >keK nk} • 
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Stochastic Flows in Networks 

1 Introduction 

This report summarizes our research accomplishments during the last year. 
The theme of our research is the equilibrium or ergodic behavior of stochas-
tic network processes. Such a process describes the movement of discrete 
units (customers, parts, data packets etc.) in a network of nodes that pro-
cess the units. Such processes are often called queueing networks. Some 
archetypal stochastic networks are as follows: 

Computer Networks: Transactions, data packets or programs move 
among processors, computers, peripheral equipment or files. 

Flexible Manufacturing Networks: Parts, tools or material move 
among a group of work stations and storage areas that machine and store 
the units for later use or for shipping. 

Telecommunications Networks: Telephone calls, data packets or 
messages move among operators or switching stations. 

Maintenance and Logistic Networks: Reparable parts or equip-
ment needed for the operation of a large system move among locations 
where they are used, repaired, and stored. 

Distribution Networks: Goods, orders or trucks move among plants, 
warehouses or market locations. 

Biological Networks: Animals, cells, molecules, neurons, etc. move 
among locations, states or shapes. 

The major concern associated with a stochastic network is to describe 
the probabilistic behavior of the network in terms of the equilibirum or sta-
tionary probability distribution of the numbers of units at the nodes. This 
distribution is used to derive various performance measures of the network 
such as the expected cost of operating the network or the percentage of time 
a sector of the network is overloaded. It is also a basic ingredient for the 
development of mathematical programming algorithms to select optimal 
network designs and operating rules. Other important network features 
include the rate of flow of units on the arcs and through the nodes (the 
throughputs), the time a unit spends in the network, and the time it takes 
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for a unit to move from one sector of the network to another. 
The existing theory of network processes is primarily for Jackson net-

work processes and its relatives. The key features of these processes are: 

• The units move one at a time. 

• The nodes operate independently. 

• The transition rates depend on only local information: the service 
rate at a node depends on only the number of units at that node and 
is independent of the rest of the network. 

• The routes of units are independent of each other and hence indepen-
dent of the congestion in the network. 

• The equilibrium distribution is of product form. 

By its very nature, however, a network is a system of interacting nodes 
in which the operation of a node and the routing of a unit may depend on 
what is happening throughout the network. Examples of dependencies are: 

• Parallel or synchronous processing at units of several nodes. 

• Alternate routing of units to avoid congestion. 

• Accelerating or decelerating the processing rate at a node whenever 
downstream nodes are starved or congested. 

• Units are blocked from entering a sector of the network when the 
sector cannot handle any more units. 

Such dependencies are ominpresent in the networks mentioned above. To 
model networks with dependencies will require a new generation of network 
processes that will typically have more complex, non-product-form equilib-
rium distributions. We have made significant progress in this regard. The 
following sections give an overview of the results we obtained last year. 
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2 Markovian Network Processes: Congestion-
Dependent Routing and Processing 

Our work on this subject will appear in an article with the title above in 
the journal Queueing Systems Theory and Applications. This is a relatively 
new journal that is to be affiliated with the Operations Research Society of 
America; I am one of its associate editors. The cumulative papers on this 
research project is in the appendix. 

Prior to this paper, there was no theory for stochastic network processes 
for networks that have been dependent nodes or congestion-dependent rout-
ing. A major hindrance was that no one knew what type of multivariate 
equilibrium distribution would be appropriate for the numbers of units at 
the nodes in such a network. The existing theory with product form dis-
tributions and reversible ideas was no help in this regard. In this paper, 
we introduce a wide class of Markovian network processes with system-
dependent transition rates that represent a variety of interactions between 
nodes. This class contains the Jackson processes and essentially all of its 
generalizations developed to date that have closed-form expressions for its 
equilibrium distribution. We discovered a new family of multivariate dis-
tributions for these processes. These distributions appear to be rather 
universal and may apply to other multivariate stochastic processes as well. 
We review the few ad hoc network processes with dependent nodes studied 
to date and show how they fit into our general framework. 

The other topics in the paper are as follows: 
Blocking of Certain transitions Due to Network Constraints. We 
show how to model blocking when the network process is not entirely re-
versible - prior results required reversibility or used approximations. 
Palm Probabilities of a Network at its Transitions. A remarkable 
property of an open Jackson network is that when a unit moves from one 
node to another, the probability distribution of the unmoved units is the 
same as that for the entire network process. That is, a "moving unit sees 
time averages". We show that this MUSTA property is really an application 
of Palm probabilities, which are essentially conditional probabilities condi-
tioned on events of zero probability. This was apparently not known before 
- several papers are now starting to appear on this topic. We describe gen-
eral Palm probabilities for a variety of transitions and give necessary and 
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sufficient conditions for the MUSTA property. 
Poisson Flows in Networks. The flows of units between two nodes or 
the departures from a network process are sometimes Poisson processes. 
Knowing that the departure flow from a network is Poisson is useful when 
the flow enters another system such as a post- processor or inventory system 
and one wants to describe the behavior of the auxiliary system. We give 
easily checkable necessary and sufficient conditions for flows to be Poisson 
and characterize when they might be independent. 

In summary, the major contribution in this paper is the discovery of 
the new multivariate distribution for representing the equilibrium behavior 
of Markovian networks. This appears to be a major building block in the 
theory of network processes with dependent nodes and routings. 

3 Partially Balanced Markovian Processes 

Much of the work on this topic and the topics in the remaining sections are 
documented in the Ph.D dissertation by Kwangho Kook titled Equilibrium 
Behavior of Markovian Network Processes, June 1989. We will prepare 
several papers on these topics this summer. 

All of the Markovian network processes studied to date that have known 
closed-form expressions for their equilibrium distribution satisfy a certain 
"partial balance" property. Our work described above covers a large sub-
class of these partially balanced processes, but the entire class of partially 
balanced processes that have not been characterized is vast in compari-
son. We initially thought that researchers would develop the equilibrium 
theory for partially balanced networks by identifying and studying isolated 
subclasses of these processes. A universal equilibrium distribution for all 
such processes seemed unlikely. We have found, however, that a universal 
theory is indeed possible and we have developed much of it only recently. 
The generic problems we are addressing are: 

(a) Find a general form for the equilibrium distribution of partially bal-
anced networks. 

(b) Find necessary and sufficient conditions on the transition rates of the 
process for it to be partially balanced. 
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We have essentially solved these problems for Markovian networks in 
which units move one at a time. We have also begun to solve them for 
networks with concurrent movements of units- little is known about these 
networks, which are described later. This unraveling of the mystery of 
partially balanced networks is a major breakthrough in the understanding 
of dependencies in networks. We are extremely pleased with this result. 

4 Passage Times in Networks 

A long-standing problem in stochastic networks, even for Jackson networks, 
is to find the mean passage time for a unit to move from one sector of a 
network to another sector. We have solved this problem for very general 
processes. This also led us to the study of mean passage times for a variety 
of routes in a network. The difficulty in this topic is that one cannot 
approach the problem by standard Markovian reasoning. When a unit 
begins a passage on a route, it is not known whether the unit will complete 
the route until the unit reaches the end of the route. In other words, the 
numbers of units undergoing a passage at any time is a function of the 
future of the process as well as its past. We overcome this difficulty by a 
subtle labeling device that allows us to look into the future in a certain 
regenerative sense. Our expressions for mean passage times provide new 
performance parameters for assessing the quality of a network. 

5 Networks with Concurrent Movements 

In actual networks, batch processing and splittng and merging of units are 
more common than not. These are examples of what we call concurrent 
movement of units. Little is known about networks with concurrent move-
ments. We have begun to study these networks along the same lines as 
discussed above. 

An important type of concurrent movement is the modeling of resource 
sharing in a network where the processing at a node requires the use of 
an auxiliary resource, e.g. computer file, machine tools, pallets. The re-
sources can be represented as artificial units and their normal storage areas 
as artificial nodes. When a usual unit enters a node for processing, the 
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artificial units also move simultaneously to the node. When the processing 
is complete, all the units depart simultaneously. This problem area of re-
sume sharing in networks is relevant to many types of real world problems 
in manufacturing and computer systems. 

6 Service Stations with Batch Arrivals and 
Batch Services 

As a first step in developing the theory of networks with concurrent move-
ments, we studied several typical processing rules for one node in isolation. 
We eventually developed two models for a service center with batch arrivals 
and batch services. These models are important in their own right as well 
as in a network context. 

The first model is an Mnb /M„b/1 system. This is a single-server system 
in which batches of units arrive according to a Poisson process with rate 
depending on the number in the system and the batch sizes are i.i.d. and 
have a geometric distribution. The neumonic Mn refers to this type of pro-
cess. Similarly, the service process, also represented M.!, is a batch service 
system in which batches depart according to a Poisson process with rate 
depending on the number in the system and the batch sizes are indepen-
dent truncated geometric variables. We derive the equilibrium distribution 
of the number of units in this Mnb /MV1 system. 

One can also interpret the Mnb/M,,b/1 system as a generalized birth and 
death process where the births and deaths occur in batches or groups. Our 
results are therefore applicable in settings where traditional birth and death 
processes have been used. A special case is the classical M b/M/1 queueing 
system (Mb means compound Poisson with geometric batches). Other spe-
cial cases of the Mn/Mn/1 system, which have not been studied before, are 
the systems M,,b /M/s,M„b/M/oo, M nb/Mn/1,M7i /Mnb/1, etc. (Mn, means 
state-dependent Poisson Process). 

The second model we study in this chapter is an M b /MB/1 system. 
This is a single server system in which batches of units arrive according to 
a Poisson process and the batch sizes are i.i.d. geometric variables. The 
service process is a batch service system in which the B units are served 
together, except when less than B units are in the system and ready for 
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service, at which time all units are served. The service time for a batch 
is exponentially distributed. We derive the equilibrium distribution of the 
number of units in this system. In our future research, networks with 
concurrent movements where the nodes operate like these batch service 
systems. 

7 Appendix 

Cumulative List of Papers During Grant Period 9/84 to 4/89. 

All but the last one are authored by R. F. Serfozo. 

Partitions of point processes: multivariate Poisson approximations, Stoch. 
Processes Appl. 20, 281-294, 1985. 

Compound Poisson approximations for sums of random variables, Ann. 
Probability 14, 1391-1398, 1986. 

Heredity of stationary and reversible stochastic processes, Adv. Appl. 
Probability 18, 574-576, 1986. 

Equitable transit charges in multi-administration telecommunications net-
works, Queueing Systems: Theory and Applications 2, 83-92, 1987. 

Point Processes. Technical Report, Center for Stochastic Processes, Uni-
versity of North Carolina, 1987. Part of ORSA handbook on stochas-
tic processes. 

Extreme values of birth and death processes and queues, Stoch. Processes 
Appl. 27, 291-306, 1988. 

Extreme values of queue lengths in M/G/1 and G/M/1 systems, Math. 
Oper. Res. 13, 349-357, 1988. 

Poisson functionals of Markov processes and queueing networks, Adv. 
Appl. Probability (to appear) 1989. 

Markovian network processes: congestion-dependent routing and process-
ing, Queueing Systems (to appear) 1989. 
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Networks of queues with blocking and load balancing, joint with K.E. 
Chin, Proceedings of Material Handling Forum (to appear) 1989. 

Equilibrium Behavior of Markovian Network Processes, by Kwangho Kook, 
Ph.D. Dissertation in Industrial and Systems Engineering, Georgia 
Institute of Technology. 1989. 
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