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SUMMARY 

Electric propulsion has recently become a viable technology for spacecraft, 

enabling shorter flight times, fewer required planetary gravity assists, larger payloads, 

and/or smaller launch vehicles. With the maturation of this technology, however, comes a 

new set of challenges in the area of trajectory design.  Because low-thrust trajectory 

optimization has historically required long run-times and significant user-manipulation, 

mission design has relied on expert-based knowledge for selecting departure and arrival 

dates, times of flight, and/or target bodies and gravitational swing-bys.  These choices are 

generally based on known configurations that have worked well in previous analyses or 

simply on trial and error.  At the conceptual design level, however, the ability to explore 

the full extent of the design space is imperative to locating the best solutions in terms of 

mass and/or flight times. 

Beginning in 2005, the Global Trajectory Optimization Competition posed a 

series of difficult mission design problems, all requiring low-thrust propulsion and 

visiting one or more asteroids.  These problems all had large ranges on the continuous 

variables – launch date, time of flight, and asteroid stay times (when applicable) – as well 

as being characterized by millions or even billions of possible asteroid sequences.  Even 

with recent advances in low-thrust trajectory optimization, full enumeration of these 

problems was not possible within the stringent time limits of the competition. 

This investigation develops a systematic methodology for determining a broad 

suite of good solutions to the combinatorial, low-thrust, asteroid tour problem.  The target 

application is for conceptual design, where broad exploration of the design space is 

critical, with the goal being to rapidly identify a reasonable number of promising 

solutions for future analysis.  The proposed methodology has two steps.  The first step 

applies a three-level heuristic sequence developed from the physics of the problem, 

which allows for efficient pruning of the design space.  The second phase applies a global 



 xix

optimization scheme to locate a broad suite of good solutions to the reduced problem.  

The global optimization scheme developed combines a novel branch-and-bound 

algorithm with a genetic algorithm and an industry-standard low-thrust trajectory 

optimization program to solve for the following design variables: asteroid sequence, 

launch date, times of flight, and asteroid stay times. 

The methodology is developed based on a small sample problem, which is 

enumerated and solved so that all possible discretized solutions are known.  The 

methodology is then validated by applying it to a larger intermediate sample problem, 

which also has a known solution.  Next, the methodology is applied to several larger 

combinatorial asteroid rendezvous problems, using previously identified good solutions 

as validation benchmarks.  These problems include the 2nd and 3rd Global Trajectory 

Optimization Competition problems.  The methodology is shown to be capable of 

achieving a reduction in the number of asteroid sequences of 6-7 orders of magnitude, in 

terms of the number of sequences that require low-thrust optimization as compared to the 

number of sequences in the original problem.  More than 70% of the previously known 

good solutions are identified, along with several new solutions that were not previously 

reported by any of the competitors.  Overall, the methodology developed in this 

investigation provides an organized search technique for the low-thrust mission design of 

asteroid rendezvous problems.   
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CHAPTER I 

INTRODUCTION 

 With the recent launches of Deep Space 1, SMART-1, Hayabusa, and Dawn, 

electric propulsion has become a viable option for solar system exploration.1,2,3,4  Electric 

propulsion has the potential to result in shorter flight times, fewer required planetary 

gravity assists, and/or smaller launch vehicles.5  One major challenge of low-thrust 

missions is in the area of trajectory design and optimization.  At present, mission design 

often relies on local optimization of the low-thrust trajectories using expert-based starting 

points for departure and arrival dates and selection of gravitational swing-bys.  These 

choices are generally based on known configurations that have worked well in previous 

analyses or simply on trial and error.  At the conceptual-design level, however, exploring 

the full extent of the design space – over a large range of potential launch dates, flight 

times, and target bodies – is important in order to select the best possible set of solutions 

for additional higher fidelity analysis.  Global optimization is difficult because this design 

space is often multi-modal and discontinuous.  In choosing an analysis technique, there 

exists an important tradeoff between the accuracy of the results and computing time 

required.  Over the past several years, numerous improvements have been made in the 

areas of both low-thrust trajectory optimization and the application of global optimization 

methods to the low-thrust problem. 

 Missions to asteroids have become a high priority over the past several years.  

Asteroids are of significant scientific interest because of the possibility of an Earth 

impact and their connection to the formation of the solar system and potentially to life on 

Earth.  The NEAR mission, for example, which orbited the asteroid 433 Eros, was 

interested in answering questions related to the nature and origin of near Earth objects, 

for several reasons.6  First, asteroids are the primary source of large body collisions with 

Earth, thereby influencing evolution of the atmosphere and life.  Second, asteroids 
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provide clues to the nature of the early solar system processes and conditions, as these are 

often preserved on small bodies such as asteroids, comets, or meteorites.  The near-Earth 

asteroids are of particular interest because they are believed to contain clues to the nature 

of the building blocks from which the inner planets were formed.  Finally, the NEAR 

mission was interested in measuring the properties of 433 Eros, in order to establish a 

connection between meteorites and the history of asteroids, to better quantify the nature 

of their impact hazard to Earth.  NEAR was able to achieve these science goals with the 

use of a high-thrust propulsion system.  The goal of the Dawn mission, which intends to 

orbit the asteroids Vesta and Ceres, is to better understand the conditions and processes 

present in the early solar system4.  Dawn uses low-thrust propulsion, in the form of an ion 

propulsion system adapted from the Deep Space 1 mission.  The propulsion system uses 

Xenon propellant, and can achieve a maximum thrust level of 92 mN and a maximum 

specific impulse (Isp) of 3200 s.  Dawn launched in September of 2007 and conducted a 

Mars gravity assist in February of 2009.  The spacecraft will arrive at the first asteroid, 

Vesta, in August, 2011.  After a nine month stay at Vesta, the spacecraft will depart for 

Ceres, and arrive in February, 2015. 

 The Global Trajectory Optimization Competition (GTOC) was created in 2005 as 

an example of the types of challenges mission designers face when designing low-thrust 

trajectories to multiple bodies in the solar system.  Since its inception, there have been 

four editions of competition, all dealing with designing low-thrust trajectories to 

asteroids.  In each competition, entrants were given four weeks to solve the problem.  

GTOC1 required participants to maximize the change in semi-major axis of the asteroid 

2001 TW229 by impacting it with an electric-propelled spacecraft.7  The spacecraft could 

employ both thrusting and planetary gravity assists en route to the asteroid, while trying 

to maximize the following quantity: astrelf vUmJ vv
⋅= .  In the objective function 

equation, mf is the final mass of the spacecraft, relU
v

 is the velocity of the spacecraft 
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relative to the asteroid at arrival and astvv  is the heliocentric velocity of the asteroid.  

GTOC2 required participants to design a low-thrust trajectory that rendezvous with one 

asteroid in each of four predefined groups, while maximizing the ratio of final mass to 

total time of flight.8,9  For this problem, no gravity assists were allowed.  GTOC3 also 

involved a multiple-asteroid rendezvous mission, but in this case the goal was to design a 

low-thrust trajectory that would rendezvous with three asteroids out of a single group of 

140 and then return to Earth.10  Gravity assists of Earth were allowed and the objective 

function was to maximize a weighted combination of mass ratio and the minimum stay 

time at the three asteroids.  Most recently, the GTOC4 problem asked participants to 

maximize the number of asteroids visited (via a flyby) en route to a rendezvous with a 

final asteroid, without the use of any gravity assists.11  There were 1436 candidate 

asteroids for participants to choose from. 

 In light of the recent developments in electric propulsion and emerging scientific 

interest in asteroids, this work will focus on the development of a methodology for 

solving a multiple-asteroid rendezvous low-thrust mission design problem at the 

conceptual design level.  Two specific types of asteroid rendezvous problems are 

considered.  First is the case of rendezvousing with one asteroid from each of a given 

number of predetermined groups, as presented in the GTOC2 problem.  This type of 

mission would be relevant if the goal were to visit asteroids with different scientific 

properties.  The second type of problem is to rendezvous with several asteroids out of a 

single group, such as the Near Earth Asteroids (NEAs).  In either case, a spacecraft could 

return to Earth at the end of the mission duration, which would be representative of a 

sample return mission.  Because the target application is conceptual design, the goal will 

be to identify a large set of good solutions to a given multiple-asteroid rendezvous 

mission.  Unlike the GTOC competitions, which required only a single best solution to be 

submitted, the result of the methodology will be a suite of solutions that could then be 

carried forward into the more detailed design phases, where higher fidelity analysis with 
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additional constraints and objectives could be applied to the problem.  In this work, the 

methodology developed is applied to several multiple asteroid rendezvous problems over 

a wide range of problem sizes, in order to demonstrate its efficiency at located a family of 

good conceptual design solutions. 

1.1  Low-Thrust Trajectory Optimization Methods and Tools 

 As aforementioned, one of the challenges in employing electric propulsion comes 

in the area of mission design.  Optimal control theory provides the basis for the low-

thrust trajectory optimization used in mission design.  The basic optimal control problem, 

presented in Equations 1 through 3, involves determining the control history (u) that 

minimizes some performance index (J).  Equation 1 represents the dynamics of the 

system, written as a set of differential equations, each of which is a function of the state, 

x, the control, u, and the time, t.  Equation 2 represents the cost function, J.  Here, it is 

presented in Bolza form, which contains two terms – the first is a function of the final 

state and time and the second is an integral over the entire time domain.  Finally, 

Equation 3 represents the constraint equation, which can be comprised of control 

constraints and/or state constraints. 

 

 x
•

= f x,u, t( ) (1) 

 J = ϕ x t f( ),t f( )+ L x t( ),u t( ),t( )dt
t0

t f

∫  (2) 

 C x t( ),u t( ),t( )= 0 ∀ t ∈ t0,t f[ ]  (3) 

 

 For the low-thrust trajectory optimization problem, the thrust magnitude and 

direction along the trajectory make up the control history, and the cost function is to 

maximize the mass at the final state and time (equivalent to minimizing propellant 

consumption over the entire trajectory), assuming a fixed initial spacecraft mass.  The 

dynamics for this problem are specified in Equation 4, assuming two-body motion.  The 
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control is given by Equation 5, and consists of the thrust-direction unit vector, the thrust 

magnitude, and the power.  For a variable specific impulse trajectory, c, the exhaust 

velocity, is a function of the jet power and thrust, as presented in Equation 6.  For a 

constant specific impulse trajectory, such as those used in the GTOC problems, the power 

is not required as a control variable, and c is constant. 
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 For each leg of the trajectory, the spacecraft’s initial conditions are determined by 

the position and velocity of the departure body at a specified time.  At rendezvous, the 

spacecraft must also match the position and velocity of the target body.  The final time, tf, 

may be fixed or free, depending on the problem formulation.  These terminal state 

constraints are given in Equation 7.  

 

 C =
r s / c t f( )− r t t f( )
v s / c t f( )− v t t f( )
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=
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⎦ 
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Finally, there are additional constraints on the maximum thrust and power, as specified 

by the chosen spacecraft and engine parameters. 

 In general, there are two types of methods for solving the local trajectory 

optimization problem – direct and indirect.12,13,14,15  Indirect methods are based on 
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Pontryagin’s Minimum Principle, which minimizes the cost function by minimizing the 

Hamiltonian, which is given in Equation 8.  Furthermore, the costate equations, presented 

in Equation 9, must be satisfied.  This can be also formulated as a maximization problem, 

depending on the particular problem being solved. 

 

 ( ) ( ) ( )tuxftuxLtuxH T ,,,,,,, λλ +=  (8) 

 ( )
x
Ht

∂
∂

−=λ  (9) 

 

Finding a solution to this problem, however, is often difficult because the convergence 

domain for such problems tends to be small, and is sensitive to the initial guesses of the 

costate variables (λ), which are not physically intuitive.  In order to solve these problems, 

a homotopy chain is often used, where the solution to a similar problem is known, and 

that problem is changed slightly and solved with the initial guesses of the known problem 

in order to step closer to the problem of interest.16  Therefore, typical indirect methods 

are difficult to implement within an automated, global optimization program due to the 

long execution times, small region of convergence, and required user oversight.  

Additionally, the level of accuracy achieved by indirect methods is generally not required 

during the conceptual mission design phase.   

 Direct methods, on the other hand, parameterize the optimal control problem and 

use nonlinear programming (NLP) techniques to directly optimize the performance index.  

A variety of direct trajectory optimization methods exist, including numerical integration, 

collocation, and differential inclusion.17,18,19,20,21  The number of design variables for 

direct methods can become very large, and therefore these problems are sometimes 

limited by available NLP techniques.  Additionally, because direct methods require the 

discretization of a continuous problem, the solution is mathematically sub-optimal, 

although the accuracy is generally sufficient for use in conceptual design.  The main 

advantages of direct method techniques are their increased computational efficiency and 
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more robust convergence.  The solution is generally less sensitive to the initial guesses 

and those initial guesses are more physically intuitive, which make direct methods 

preferable for implementing within an automated global optimization scheme. 

 Differential dynamic programming (DDP) also parameterizes the control 

variables, providing a large convergence domain and decreasing the sensitivity to poor 

initial guesses. As compared to direct methods, DDP is less sensitive to the high 

dimensionality of the low-thrust trajectory optimization problem as it transforms the large 

problem into a succession of low dimensional sub-problems.  Quadratic programming is 

then used on each resulting quadratic sub-problem to solve for controls that improve the 

trajectory locally.  The states and objective function are then calculated forward in time 

using the updated controls, and the process is repeated until the problem has converged.  

One disadvantage of DDP is that it is most effective for smooth unconstrained problems.  

Low-thrust problems, however, tend to include numerous constraints and can be highly 

non-smooth.  In recent work, Lantoine and Russell have modified the traditional DDP 

algorithm to create a hybrid differential dynamic programming algorithm that addresses 

some of the weaknesses of DDP.  The hybrid approach uses first- and second-order state 

transition matrices to calculate the partial derivates required for optimization, and 

combines DDP with NLP techniques to increase its robustness and efficiency.222324 

 Finally, there also exist hybrid methods which numerically integrate the Euler-

Lagrange equations and control the spacecraft based on the primer vector.14,25  As in the 

direct method, hybrid methods solve a nonlinear programming problem, but with the 

Lagrange multipliers making up part of the parameter vector while maximizing or 

minimizing some cost function.  Hybrid methods search numerically for the set of 

parameters that extremize the cost function, while explicitly satisfying kinematic 

boundary constraints.  According the work by Gao and Kleuver, the advantages of hybrid 

trajectory optimization methods include a significant reduction in the design space and 
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improved accuracy (as compared to direct methods) with a larger convergence domain 

and faster problem convergence (as compared to indirect methods).25 

1.1.1  Improvements to Indirect Methods 

 Two of the main difficulties with utilizing indirect methods have been the 

requirement of non-intuitive initial guesses of the costate variables, along with the small 

region of convergence.  For low-thrust trajectory optimization, an adjoint control 

transformation can be employed to give physical meaning to the initial guesses of the 

costate variables.  A recent example of how this can be applied to a mission design 

problem is presented by Ranieri at the University of Texas at Austin.14,26  He replaces the 

velocity costates with angles that describe the direction of the thrust.  These new 

unknowns have physical significance; therefore, intelligent estimates of their initial 

guesses can be made.  Ranieri applies this technique to solving roundtrip, time-

constrained trajectories with Isp constraints and mass discontinuities, for both Mars and 

Jupiter applications with variable and constant specific impulse engines.  Two cases for 

roundtrip trajectories to Mars are presented in Figure 1, one with constant specific 

impulse (CSI) and one with variable specific impulse (VSI).  For the CSI case, a coast-

thrust-coast sequence is assumed for each leg of the trajectory.  As can be seen, the CSI 

trajectory closely approximates the VSI solution. 

 

        
Figure 1: Mars roundtrip trajectory results from Ranieri: variable IBspB (left), constant IBspB (right).14 
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Another example of applying a costate transformation is presented by Russell.27  

In his work, the unknown initial position and velocity co-states are replaced with more 

physically meaningful quantities: α and β (the in- and out-of-plane orientation angles, 

which represent the direction of the initial thrust), S (the switching function), and their 

time derivatives.  This transformation is applied to the initial guesses for the targeting 

routine and then directly iterates on the co-states.  This transformation is part of a larger 

effort, which applies primer vector theory to a global low-thrust trade study algorithm.  

This methodology is applied to two multiple-revolution problems in the restricted three-

body problem: a phase-free transfer between two distant retrograde orbits at Europa and a 

phase-free transfer from a distant near circular orbit at Earth to a distant retrograde orbit 

at the Moon. 

1.1.2 Improvements to Direct Methods 

 Sims and Flanagan developed a new direct method, which is implemented in 

MALTO, a tool intended for the preliminary design of low-thrust trajectories including 

those with gravity assists.12,13  As shown in Figure 2, the trajectory is divided into legs 

that begin and end at control nodes.  Typically, these control nodes represent planets or 

other bodies, but could also represent free points in space.  On each leg is a match point, 

and the trajectory is propagated forward from the previous control node and backward 

from the subsequent control node to the match point.  Each leg is also subdivided into 

numerous segments containing an impulsive ∆V at the middle of each segment.  In the 

limit, as the number of segments is increased, this approximates the continuous thrust 

problem.  The magnitude of the ∆V is limited by the total amount of ∆V that could be 

accumulated over the entire segment for the continuous thrust case.  Propagation of the 

trajectory assumes two-body motion, and gravity assists are assumed to cause an 

instantaneous change in the direction of the V∞ vector. 
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Figure 2: Trajectory structure of the Sims and Flanagan direct method.12 
 

 This trajectory structure leads to a large, sparse, constrained, nonlinear 

optimization problem, which is solved using the program SNOPT.28  At the beginning 

and ending control nodes, the independent variables include the velocity of the spacecraft 

relative to the body, the mass of the spacecraft, and the corresponding epoch.  At an 

intermediate body, there are two sets of variables – one at arrival and one at departure – 

to account for potential changes in velocity for a flyby, changes in mass, or changes in 

time for a rendezvous.  The majority of the independent variables are comprised of the 

components of the thrust vector on each segment.  Additional independent variables can 

include the reference power of the spacecraft and the specific impulse.  Each of these 

independent variables has associated upper and lower bounds.  The primary optimization 

constraints are that the position, velocity, and mass of the spacecraft must be continuous 

at the match points.  Additionally, the magnitude of the thrust on each segment is 

constrained by the power available for thrusting.  Other constraints can include the mass 

at the initial control node, the V∞ vector at departure, at an intermediate body, or at 

arrival, the time of flight and propellant mass between any two control nodes, and the 

minimum allowable distance from the Sun.   
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 In the initial paper by Sims and Flanagan12, the authors applied their direct method 

to several different trajectories, verifying their results by comparison to SEPTOP.  

SEPTOP is a heritage, low-thrust trajectory optimization code that implements an indirect 

method.  It will be described in further detail in Section 1.2.4.  Trajectory verification 

was performed for a flyby of the asteroid Vesta with a Mars gravity assist, a rendezvous 

with the comet Tempel-1, and a flyby of Pluto with two Venus gravity assists and one 

Jupiter gravity assist.  With their direct method, even simple initial guesses for thrust 

direction and magnitude worked well in arriving at the solution.  For the initial guess, 

they assume that the thrust varies linearly between nodes, with the direction at the nodes 

being perpendicular to the radius vector at that point.  The solutions for the three 

reference missions compared well to those obtained using SEPTOP.  For the Vesta and 

Tempel 1 trajectories, SEPTOP had difficulty converging for some of the cases, while the 

Sims and Flanagan method converged readily.  Furthermore, SEPTOP could handle at 

most two intermediate flybys, so the Earth-Venus-Venus-Jupiter-Pluto trajectory had to 

be broken into two trajectories in SEPTOP.  Using the Sims and Flanagan method, any 

number of intermediate bodies can be analyzed.  They do note that for more complicated 

trajectories, however, the optimization does not always converge with the initial starting 

conditions, so a fair amount of user manipulation is still required to arrive at a converged 

solution. 

 In addition to the reference missions analyzed by Sims and Flanagan, several 

papers by investigators at Purdue University include results using GALLOP, a trajectory 

optimization tool developed at Purdue based on the Sims and Flanagan direct method.29,30  

These additional trajectories include a rendezvous with Ceres via Mars, an Earth-Venus-

Earth-Mars-Jupiter trajectory, an Earth-Venus-Jupiter trajectory, an Earth-Mars-Jupiter 

trajectory, and an Earth-Earth-Mars-Jupiter trajectory.  These solutions helped to further 

validate the method as well as demonstrate its ability to handle a number of different 
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flyby problems with numerous intermediate bodies.  In the Purdue studies, the initial 

guesses were generated using a shape-based analytic method (described in Section 1.2.3). 

 Building on the Sims and Flanagan method, Yam at Purdue University explored 

different approaches to parameterize the ∆V in an effort to decrease run time31,32.  The 

optimization variables for the N-vector formulation, which was used in the initial Sims 

and Flanagan model, consist of the ∆V components on each segment.  The node 

formulation, suggested by Yam, replaces the ∆V magnitudes with a set of on/off nodes 

that define the switching point from null-thrust to maximum-thrust and vice versa.  In the 

Chebyshev formulation, the ∆V angles are modeled as a Chebyshev series, with the 

optimization variables consisting of the coefficients of the Chebyshev series.  A 

Chebyshev series of degree k can be defined as follows, where Tk(u) is the Chebyshev 

polynomial of degree k, u is the independent variable of the Chebyshev polynomial, and 

ci are the coefficients of the series. 

 

 ( ) ( ) ( )uTcuTcuTc kk+++ L1100  (10) 

 

Finally, the Node + Chebyshev formulation uses on/off nodes to parameterize the ∆V 

magnitude and a Chebyshev series to model the ∆V angles. 

 In Ref. 32, four different case studies are examined to determine the performance 

of each of the four ∆V parameterizations.  These case studies include a simple Earth-

Jupiter rendezvous mission, a flyby of the asteroid Vesta with a Mars gravity assist, an 

Earth-Mars cycler mission, and an Earth-Mercury rendezvous.  Based on the performance 

of each ∆V parameterization method, it is clear that the best formulation is problem 

dependent, although time savings can be realized over the original N-Vector formulation 

developed by Sims and Flanagan.  The Node + Chebyshev formulation tended to have the 

fastest run times for the largest range of problems; however, it did have problems with 

convergence in some instances.  For large problems, the tolerances had to be relaxed in 
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order for the Node + Chebyshev formulation to arrive at a solution.  The Node + 

Chebyshev method appears to be the most beneficial for searching broad areas of the 

design space.  On the other hand, the N-Vector formulation is the most stable, although it 

was not always the fastest approach, and in some cases, it was significantly slower.  The 

N-Vector formulation is therefore a good standard method when only a small number of 

cases need to be performed. 

1.1.3  Analytic, Shape-Based Methods 

 Indirect and direct methods tend to be computationally intensive because the 

trajectory must be numerically integrated or propagated.  An analytic method, on the 

other hand, has the potential to significantly reduce run times by eliminating the need for 

numerical integration and instead solving for an analytic solution to the equations of 

motion.   

 Petropoulos, at Purdue University, developed a shape-based method intended for 

quickly searching a broad design space and generating initial guesses to then be used in a 

more accurate trajectory optimization program.33,34,35  This method assumes that the 

spacecraft trajectory follows a predetermined shape, from which the thrust profile can be 

determined.  With the correct choice of shape, there exists an analytic solution to the 

equations of motion.  The motion of the spacecraft between planets can either be purely 

conic (coasting) or involve thrusting.  Each leg can be characterized as thrust, thrust-

coast, or coast-thrust.  For the thrusting segments, the in-plane motion of the spacecraft is 

assumed to follow an exponential sinusoid shape, given by Equation 11, where k0, k1, k2, 

and φ are all constants that define the shape of the trajectory: 

 

 r = k0e
k1 sin k2θ +φ( )

 (11) 
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Gravity assists are modeled as instantaneous changes in the heliocentric spacecraft 

velocity (with no change in position).  Out-of-plane motion is based on an analysis of the 

orbital angular momentum vector, where the out-of-plane angle and speed are 

approximated by the in-plane angular momentum and velocity components. 

 This method has been applied to a number of different trajectories, one of which 

was a rendezvous with the asteroid Ceres with an intermediate flyby of Mars, assuming 

thrust-only legs.29,30,33,35  A search was done for departure dates ranging from 1990 to 

2049 with launch V∞ between 0.75 km/s and 2 km/s.  Figure 3 (left) plots the resulting 

arrival V∞ for each of the cases analyzed.  This broad search allows mission designers to 

choose the best points to examine further with higher-fidelity trajectory optimization 

methods.  In this study, the best point from the shape-based analysis was then used as an 

initial guess for GALLOP.  The result had good agreement with an optimal solution 

presented by Sauer in an earlier study.  Another trajectory analyzed by Petropoulos was 

Earth-Venus-Earth-Mars-Jupiter (EVEMJ).  A sweep of departure dates from 1975 to 

2049 was analyzed, with an increment of 10 days.  Additionally, values of launch V∞ 

between 0.5 km/s and 2 km/s were considered.  For this case, the in-plane propellant 

mass fraction was the parameter of interest, which is plotted in Figure 3 (right).  As 

before, the best trajectory from this broad design space exploration was used as an initial 

guess in GALLOP in order to optimize the solution. 

 A shape-based method was also applied by the winning team at the 2005 1st 

Global Trajectory Optimisation Competition.36  The objective of the optimization 

problem was to maximize the change in the semi-major axis of asteroid 2001 TW229 

after impacting it with a spacecraft employing low-thrust propulsion.  The initial mass of 

the spacecraft was given, along with the thruster’s Isp and maximum thrust level.  

Additionally, a launch date window of 20 years was given, with a maximum time of 

flight of 30 years.37  In approaching this problem, the winning JPL team took a two-step 

approach.38  First, they searched over a large range of the solution space using a shape-
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based method, then honed in on the most promising portion with a more accurate local 

optimization method.  The JPL team considered 15 different gravity assist combinations, 

and then conducted a grid search for each combination over launch date and launch V∞ 

values using the shape-based method.  The best solutions from the grid search (high 

values of arrival V∞) were then passed on to MALTO to examine in more detail.  

 

  
Figure 3: Results of shape-based method design space exploration for Earth-Mars-Ceres (left) and 

EVEMJ (right).33 
   

1.1.4  Low-Thrust Trajectory Optimization Tools 

 There are a wide variety of available tools for low-thrust trajectory optimization, 

many based on the methods described above.  In 2002, NASA established the Low-

Thrust Trajectory Tools Team (LTTT) to improve the agency’s low-thrust trajectory 

analysis capability and to create a common set of low-thrust trajectory tools.39,40  Under 

the effort, five new tools were developed, and 32 reference missions were identified that 

would be relevant to future NASA missions and would test the capabilities of these new 

tools.  The reference missions include missions with multiple gravity assists as well as 

flybys of and rendezvous with comets and asteroids.  In general, the new tools are of 

higher fidelity, easier to learn and use, and can analyze a broader range of missions than 

the previously existing set of tools. 
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 Prior to the LTTT effort, the primary low-thrust trajectory analysis tools for most 

of NASA’s preliminary design studies were CHEBYTOP, VARITOP, SEPTOP, and 

SAIL.34  CHEBYTOP uses Chebychev polynomials to represent state variables, which 

are then differentiated and integrated in closed form to solve a variable-thrust trajectory.  

This solution can then be used to approximate a constant thrust trajectory.  While it is 

considered a low-fidelity program, it is highly valued for its ability to rapidly assess large 

trade spaces.  It cannot, however, analyze multi-leg missions and is limited to the 

heliocentric sphere of influence.  VARITOP, SEPTOP, and SAIL all use calculus of 

variations in the formulation of the state and co-state equations, which are integrated 

numerically to solve the two-point boundary value problem.  The programs differ in their 

solar electric propulsion, nuclear electric propulsion, and solar sail models.  These tools 

can also only handle heliocentric trajectories, and are considered to be medium-fidelity.  

 The tools developed under the LTTT effort are all considered to be medium- to 

high-fidelity trajectory tools.34  MALTO was developed at JPL based on the method by 

Sims and Flanagan described in Section 1.2.2.  It is considered to be medium fidelity.  

This tool has been used for numerous trajectory design studies, including the trajectories 

for the Jupiter Icy Moons Orbiter.  The remaining LTTT tools are all considered to be 

high-fidelity.  COPERNICUS, developed at the University of Texas at Austin, is an n-

body tool with a high degree of flexibility.  The user can model a number of different 

missions, with varying gravitational bodies, objective functions, optimization variables, 

constraint options, and levels of fidelity.  Additionally, it can model multiple spacecraft, 

as well as optimize for both constant and variable specific impulse trajectories.  

COPERNICUS employs multiple shooting and direct integration for targeting and state 

propagation.41  Mystic was developed by Greg Whiffen at JPL, and implements 

Static/Dynamic Optimal Control (SDC), which was developed by Whiffen.  SDC is a 

nonlinear optimal control method designed to optimize both static variables and dynamic 

variables (functions of time) simultaneously.42  The program is robust enough to take 
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advantage of gravity assists if a flyby body is near the reference trajectory.  Mystic was 

used to design the Dawn trajectory, and after being flight qualified, is expected to be used 

to validate the other tools.  OTIS 4.0 is an upgraded version of the program originally 

developed by NASA Glenn Research Center and Boeing for launch vehicle trajectory 

analysis.43,44  This tool employs a direct method for low-thrust trajectory optimization, 

using nonlinear programming techniques to solve the implicit integration problem.  

SNAP, developed at NASA Glenn Research Center, is the final tool developed under the 

LTTT effort.  SNAP’s distinguishing feature is its ability to propagate planet-centered 

trajectories, including aspects such as atmospheric drag, shadowing, and higher-order 

gravity models.  It does not, however, contain an optimizer. 

 With the exception of SNAP, the various tools described above were compared 

for a number of different low-thrust mission scenarios.  Ref. 39 provides an overview of 

five of the 32 reference missions examined, and compares in detail the results of the 

various tools.  In general, it was found that the low, medium, and high fidelity tools 

arrived at very similar answers when their input assumptions were consistent.  The high 

fidelity tools do not necessarily provide significant improvements in accuracy, but are 

able to model more complex missions.  Low fidelity tools, on the other hand, have the 

advantage of faster execution times, rapid trade study analysis, and are often much easier 

to learn and implement.  

 In addition to the LTTT tools, several recent university-developed tools have been 

created for low-thrust trajectory optimization.  Petropoulos at Purdue University 

incorporated a low-thrust gravity assist capability to STOUR (Satellite Tour Design 

Program) to create STOUR-LTGA (Satellite Tour Design Program – Low Thrust, 

Gravity Assist), which automatically searches for gravity-assist trajectories33.  In this 

program, the user specifies a sequence of gravity-assist bodies, a range of launch dates, a 

range on launch V∞, and constraints on various parameters, such as time of flight and 

propellant consumption.  STOUR-LTGA employs a shape-based method to approximate 
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the shape of the trajectory and analytically solve the equations of motion, as described in 

Section 1.2.3.  Also developed at Purdue University, GALLOP implements the direct 

method formulated by Sims and Flanagan, originally found in MALTO.31,32 Note that 

while COPERNICUS was developed under the LTTT program, it was also developed by 

university researchers. 

1.2  Global Optimization Methods and Applications 

 Many of the tools described above not only implement a trajectory optimization 

method for finding the optimal control history of the spacecraft (thrust magnitude and 

direction), but also include some ability to optimize for other parameters such as launch 

date or arrival date.  Because the design space is multi-modal with respect to launch date, 

a gradient-based optimizer cannot guarantee convergence to the global optimum.  The 

optimizer typically converges to the local minimum closest to the given initial guesses.  If 

a broad search space is desired, such as in the case of the STOUR-LTGA examples, a 

domain-spanning, global optimization method is required.   

1.2.1  Evolutionary Algorithms 

 One of the most well known types of global optimization methods are 

evolutionary algorithms, which are domain spanning, probabilistic optimization 

algorithms based on the Darwinian theory of evolution.45  One of the more well known of 

these evolutionary algorithms is the genetic algorithm (GA).46,47,48  Although there are 

numerous variations, the simple genetic algorithm begins with a random initial 

population, which is made up of a set of individuals.  Each individual in the population 

represents a single value for each of the design variables.  This generally results in a 

random scatter of points over the design space.  Each set of design variables is referred to 

as a chromosome and is typically encoded as a binary string, which must be mapped to 

the real values of the variables.  The design variables are discretized between their lower 
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and upper bounds.  In each generation, the population is subjected to certain genetic 

operators such that the population will “evolve” and improve its fitness (objective 

function).  The typical genetic operators are reproduction, crossover, and mutation.  The 

purpose of reproduction is to weed out the members of the population with low fitness 

values, and to keep those with high fitness values.  Crossover combines two “parents” by 

switching parts of their chromosome strings with each other to create two “children”.  

Mutation is responsible for switching individual bits in a chromosome string.  Because 

there is no necessary condition for optimality, the convergence criteria is generally 

chosen either as a maximum number of generations (iterations) or a certain number of 

generations with no change in the objective function and/or design variables.  As the 

generations progress, there should be a steady improvement in both the average fitness of 

the population as well as the fitness of the best member.  In general, at the termination of 

the GA, the population will be clustered around the global optimum. 

 One of the main advantages of genetic algorithms is their ability to find a global 

optimum in a discrete, multi-modal design space.  They can also handle a large number 

of variables, and require no initial guesses for the design variables.  Genetic algorithms, 

however, do have some disadvantages.  Because of the probabilistic nature of the 

algorithm, there is no guarantee that the optimal solution will be found.  Therefore, the 

GA must generally be run more than once to ensure optimality.  Genetic algorithms also 

require a large number of iterations, and therefore function calls, in comparison to a 

gradient-based method.  Finally, if the original design space is comprised of continuous 

design variables, the discretized solution will generally not correspond to the precise 

global optimum.  A common practice is to use the solution obtained by the GA as an 

initial guess to a gradient-based optimizer, in order to improve the accuracy of the 

solution. 

 Several variations on the standard genetic algorithm have also been developed.  In 

order to locate multiple local optima, a sharing function can be added to the GA, which 



 20

draws upon the theory of niche and speciation in Darwinian evolution.49  The purpose of 

the sharing function is to degrade an individual’s fitness function based on its proximity 

to neighboring individuals.  As a result, the largest number of individuals will converge 

to the local optimum with the best fitness value, with fewer individuals converging to 

optima with lesser fitness.  The number of optima found by a genetic algorithm with 

sharing is a function of the size of the population.  Another genetic algorithm variant 

addresses multi-objective problems.50  One way of dealing with multiple objectives is to 

solve for the Pareto-optimal set, which encompasses the set of non-dominated solutions.  

When comparing two solutions, x1 and x2, x1 dominates x2 if (1) x1 is no worse than x2 in 

all objectives and (2) x1 is strictly better than x2 in at least one objective.  Therefore, the 

Pareto-optimal set contains all the solutions that are not dominated by any other 

solutions.  This concept has been implemented in NSGA-II (non-dominated sorting 

genetic algorithm), developed by the Kanpur Genetic Algorithm Laboratory.51 

 Genetic algorithms have been applied to a number of different trajectory 

optimization problems, beginning with their application to ballistic (high thrust) transfers 

and gravity assist problems.52,53,54,55  For the high-thrust case, solving for a single 

trajectory is much less time-consuming and is generally done using a Lambert Solver.  

Therefore, a genetic algorithm, even with the large number of required function calls, is 

appropriate for global optimization.   

 Gage and Braun applied a genetic algorithm with a sharing function to impulsive 

Earth-Mars trajectories in order to optimize for launch date and time of flight54.  Figure 4 

plots ∆V as a function of departure date and transfer time.  As can be seen, this is a multi-

modal space, and for conceptual design, it is desirable to locate each of the local minima, 

which was successfully accomplished using a sharing function.   
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Figure 4: Results of a genetic algorithm with a sharing function applied to an Earth-Mars impulsive 

transfer.54 
 

 Several studies have also attempted to apply genetic algorithms to solve for the 

optimal control parameters of the low-thrust problem.56,57  This approach, however, has 

not shown any benefit over direct or indirect methods for trajectory optimization, again 

because of the large number of function calls required by the GA.   

 More recently, several authors have attempted to apply the genetic algorithm to 

selecting the global parameters of the optimization problem, combined with a direct or 

indirect method for solving for the optimal control history of the spacecraft.58,59,60  De 

Pascale proposes a method for combining a genetic algorithm with an analytic shape-

based method to optimize low-thrust gravity-assist trajectories55.  The trajectory is divided 

into sub-arcs, which are chosen to be either coast arcs or low-thrust arcs.  The two-point 

boundary value problem for the coast arcs is solved with a Lambert solver, while the low-

thrust arcs are solved using a shape-based method based on the work by Petropoulos.  De 

Pascale uses an exponential trigonometric shape to analytically solve the equations of 

motion.  Gravity assists are modeled as instantaneous changes in the heliocentric 

velocity.  The genetic algorithm is used in conjunction with a static penalty function, in 

order to handle constraints.  The full set of design variables includes the departure V∞, the 

right ascension and declination at launch, the velocities at each of the encounter bodies, 
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the sequence of encounter bodies, the pericenter-radius for each flyby, and the number of 

revolutions around the Sun for each phase.   

 De Pascale applies this method to several different trajectories55.  First, a simple 

low-thrust transfer to Mars is examined.  The solutions obtained match very closely to 

existing optimal solutions for this problem.  Ballistic (two-impulse) missions to Jupiter 

were then examined, using the full set of design variables, so that the gravity assist 

sequence was not predetermined.  Several promising trajectory paths resulted: EVEEJ, 

EMMJ, and EVVEJ.  When low-thrust trajectories to Jupiter were considered, however, 

the author did not use the full set of design variables, but instead optimized the trajectory 

for predetermined sequences of gravity assists (EVJ, EVVJ, and EMMJ).  It was not clear 

if the method had failed for the full set of design variables in the low-thrust case or if it 

had not been attempted. 

 Woo, Coverstone, and Cupples proposed a method combining a genetic algorithm 

with SEPTOP, which uses an indirect method for solving the optimal control problem59.  

One of the key features of this work is the procedure for reducing the size of the 

parameter space before applying the GA/SEPTOP hybrid method.  Trajectories 

previously generated by SEPTOP are used to limit the size of the design space through a 

number of different methods: R-ratio analysis, delivered mass estimation, thruster 

modeling, ballistic approximation, and phase calculation.  The genetic algorithm is then 

used to search the reduced parameter space, which generates inputs to run SEPTOP.  

SEPTOP returns the convergence error to the genetic algorithm as a measure of the 

fitness of the initial input.  Results are generated for a series of outer-planet missions with 

a single Venus gravity assist.  In previous work, this hybrid procedure was also 

successfully applied to the design of a trajectory for a sample return to the comet Tempel 

1.  For this problem, however, the reduction of the parameter space could not be applied 

because there were no previously generated trajectories. 
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 Vavrina and Howell at Purdue University combine a genetic algorithm with 

GALLOP61, the low-thrust trajectory optimization code described in Section 1.2.4, which 

is based on the direct method by Sims and Flanagan.  The design variables controlled by 

the genetic algorithm are as follows: time at departure, ∞V
v

 at departure, initial mass, time 

of arrival and departure at any intermediate bodies, ∞V
v

 at arrival and departure of any 

intermediate bodies, time at arrival of the final body, ∞V
v

 at arrival of the final body, and 

the thrust vector on each segment.  The objective function is to maximize the final mass 

at the arrival body.  Because of the large number of variables required to represent the 

thrust vectors, the thrust is represented in spherical coordinates, with the two thrust 

angles modeled using a Chebyshev series and the thrust magnitude modeled using an 

on/off formulation.  GALLOP also has control to locally optimize the design variables it 

has been passed.  Vavrina and Howell use a combination of two inheritance schemes – 

Lamarckian and Baldwinian.  In Baldwinian inheritance, the resulting locally optimized 

fitness function is assigned to the original design variables passed to GALLOP by the 

GA.  In Lamarckian inheritance, on the other hand, the new values of the locally 

optimized design variables replace the original design variables in the GA population. 

 Vavrina and Howell apply their hybrid technique to a number of low-thrust 

trajectories: Earth – Mars rendezvous, Earth – Venus – Earth – Jupiter – Pluto 

rendezvous, Earth – Mars – Earth – Jupiter – Pluto rendezvous, and Earth – Venus – 

Earth – Jupiter – Neptune rendezvous.  For each of the multiple gravity-assist trajectories, 

the genetic algorithm required 171 design variables, and a population size of 200 was 

chosen.  The GA was run for 150 generations, requiring 30,000 GALLOP evaluations.  

After the 150 generations, the GA had yet to converge on a single solution for any of the 

trajectories, but clear bands of feasible solutions had emerged.  While the hybrid method 

did require a large number of GALLOP evaluations, the best final mass found for each 

trajectory matched or exceeded the best solutions presented in the literature. 



 24

1.2.2  Evolutionary Neurocontrollers 

 Evolutionary algorithms can also been combined with artificial neural networks 

(ANNs), to create an Evolutionary Neurocontroller (ENC).  These have recently been 

applied to trajectory optimization problems by Dachwald at the Institute of Space 

Simulation in Germany.62,63,64  Artificial neural networks are inspired by information 

processing in animal nervous systems, in that they will learn from experience, generalize 

previous examples to new ones, and extract essential information from noisy input data.  

ANNs are composed of processing elements called neurons that are organized into 

neuron layers.  Figure 5 illustrates an example of a feedforward ANN, with a layered 

topology and three layers.   

 

 
Figure 5: Example of a layered, feed-forward neural network.62 

  

 Depending on the function used for the neurons, a neural network can be regarded 

as a continuous parameterized function, called a network function, which simply maps a 

set of inputs to a set of outputs.  If a training set exists – the correct output for a set of 

given inputs – then the network error can be measured and used to learn the optimal 

network function.  If a training set does not exist, then it becomes a reinforcement 

learning problem, where the optimal behavior must be learned through interaction with 
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the environment.  For an evolutionary neurocontroller, an evolutionary algorithm is used 

to find the neurocontroller’s optimal network function.  

 Dachwald’s work applies an evolutionary neurocontroller to solar sail trajectories, 

which have very low thrust magnitudes, thereby exhibiting solutions with many 

revolutions around the Sun.  Furthermore, the objective function is generally to minimize 

the time of flight since there is no propulsion required for a solar sail.  More recently, 

however, Dachwald applied his method to solar electric propulsion (SEP) spacecraft as 

well62.  In his formulation, a trajectory is the result of a spacecraft steering strategy that 

controls the spacecraft’s thrust vector according to the current state of the spacecraft 

relative to the target.  An artificial neural network is then used to implement the 

spacecraft steering strategy, with the evolutionary algorithm used to optimize the 

neurocontroller parameters.  Figure 6 illustrates how such a formulation works for the 

SEP trajectory. The neural network pictured below illustrates how the inputs for a SEP 

trajectory are mapped to outputs, as per Dachwald’s formulation.  Here, the inputs 

represent the difference in the spacecraft’s state and its target at any point along the 

trajectory.  The output then corresponds to the control parameters that will result in the 

spacecraft meeting its target constraints at the specified final time. 

 In his example case, Dachwald utilized the evolutionary neurocontroller to 

optimize the launch date in addition to the spacecraft steering strategy.  He did not, 

however, consider problems with multiple legs or encounter bodies.  The evolutionary 

neurocontroller was applied to a Mercury rendezvous and a near-Earth asteroid 

rendezvous, and compared to similar problems in the literature.  Dachwald’s method was 

able to locate solutions better than those presented in the literature, due to its ability to 

search a large portion of the design space. 
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Figure 6: Converting an evolutionary algorithm chromosome into a spacecraft trajectory (left); 

example neurocontroller that implements a spacecraft trajectory (right).63 
 
 
 Carnelli later extended Dachwald’s method to include low-thrust trajectories with 

gravity assists64.  An evolutionary neurocontroller is combined with a steepest descent 

method used to optimize the gravity assist maneuvers.  As before, the ENC searches for 

the optimal parameter set (steering strategy) that forces the spacecraft’s state from its 

initial state to the target body’s final state, along a trajectory that obeys the dynamic 

constraints and terminal constraints, while maximizing some cost function and potentially 

crossing the sphere of influence (SOI) of an assisting body.  Instead of choosing some 

sequence of gravitational assists a priori, the ENC is freely allowed to choose the 

spacecraft controls, and a gravity assist is performed only if that steering strategy takes 

the trajectory through the SOI of some intermediate planet.  Because the relative size of 

each planet’s SOI is very small in comparison to the scale of the overall trajectory, their 

size had to be inflated.  Otherwise, the ENC would be very unlikely to ever find a gravity 

assist trajectory.  When the chosen steering strategy does take the spacecraft within a 

planet’s SOI, a steepest-descent algorithm is used to determine the optimal pointing 

distance for the gravity assist maneuver.  Making these modifications allowed Carnelli to 

successfully apply this method to a Pluto flyby trajectory via Jupiter and a Mercury 

rendezvous via Venus. 
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1.2.3  Combinatorial Optimization 

 Choosing the optimal asteroid sequence in an asteroid tour mission design 

problem is by nature a combinatorial and integer optimization problem.  The 

distinguishing feature of such problems is that the variables belong to a discrete set where 

there is not a continuum of alternatives.  One can write the linear integer programming 

problem, which has no continuous variables, as follows65: 

 

 { }nZx,bAx:cxmax +∈≤  (12) 
 

In Equation 12, Z+
n is the set of nonnegative integral n-dimensional vectors, and x = 

(x1,…,xn) are the variables or unknowns.  An instance of the problem is specified by the 

data (c, A, b), where c is an n-dimensional vector, A is an m x n matrix, and b is an m-

dimensional vector.  While this represents the general problem, it can be altered in a 

number of ways to represent myriad types of discrete optimization problems.  One 

example of a formulation of Equation 12 is the 0-1 knapsack problem, which is one of the 

most basic and common problems in combinatorial optimization.  This problem deals 

with choosing a subset of projects to maximize the sum of their values while not 

exceeding some budget constraint.  From Equation 12, the projects are represented by the 

variables x1,…xn, where a value of 1 indicates that project j is in the subset and a value of 

0 indicates that it is not.  The jth project has a cost of aj and a value of cj, and b represents 

the overall budget constraint. 

 Another common type of combinatorial optimization problem, which is more 

directly applicable to the asteroid tour problem, is the traveling salesman problem.  The 

classic version of this problem deals with solving the following scenario: given a set of 

cities and the distance between each pair of cities, determine the shortest route to visit 

each city exactly once while returning to the city of origin.66  Solution methods generally 

fall into two categories: algorithms for finding exact solutions and heuristic algorithms, 
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which find good solutions but can not be proven to be optimal.  Exact solutions can 

typically be implemented successfully only for small problems, while heuristic methods 

are used for larger problems where computation time of an exact method would become 

prohibitive.   

 A commonly used exact algorithm is branch-and-bound, which branches the 

original problem into successively smaller sub-problems.  Each subset contains a relaxed 

version of the original problem, which is easier to solve.  The procedure continues until 

each branch has resulted in either a feasible solution or is shown to contain no solution 

better than one already obtained.  Branch-and-bound methods result in locating the global 

optimum66.  Similarly, dynamic programming also takes advantage of problem 

decomposition, where the optimal solution to a given problem is expressed in terms of 

optimal solutions of smaller sub-problems.67 

 One of the most commonly known heuristic algorithms is the nearest neighbor 

algorithm, also referred to as the greedy algorithm.  In this method, the local optimum is 

chosen at each step.  For the classic TSP, for example, this would equate to choosing the 

closest city at each step, until all of the cities have been visited.  Another common 

heuristic method is to use minimum spanning trees.  A spanning tree is a collection of (n-

1) edges which join all n cities into a tree-structure.  This can then be extrapolated to 

create a tour, where each city is only visited once.  While the heuristic methods do not 

solve for the optimum solution, they can at least provide lower and upper bounds on the 

optimum.  However, one of the biggest challenges of heuristic methods is establishing 

performance guarantees – i.e., bounds on how far the solution will be from the optimum 

in the worst case66. 

 The classic TSP has many analogous features to the asteroid rendezvous problem, 

where the “distance” between each asteroid is instead a combination of propellant 

consumption and time of flight.  Some major differences do exist, however, between the 

classic TSP and the asteroid rendezvous problem.  First, the asteroid problem does not 
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require visiting every asteroid; only one asteroid must be visited in each defined group.  

Furthermore, the spacecraft does not have to return to Earth, the point of origin.  More 

importantly, the cost function (“distance”) between each pair of asteroids is not known a 

priori; instead, it changes with time and is not easily computable.  For each instance in 

time, for example, calculating the cost to go from asteroid i to asteroid i+1 requires 

solving a low-thrust trajectory optimization problem to determine the optimal thrust 

profile that minimizes propellant expenditure for the given time of flight. 

 Several variations on the classic traveling salesman problem have been studied, 

which address some of the asteroid tour problem complexities.  In the time-dependent (or 

moving-target) TSP, the cost of traveling from city i to city j changes as a function of 

time.  Work has been done on developing reliable heuristic methods with provable 

performance bounds for restricted versions of the time-dependent problem, such as where 

each target moves with a constant speed and direction and the pursuer has a maximum 

speed greater than the speed of each of the targets.68  In the Generalized Traveling 

Salesman Problem (GTSP), all of the targets are partitioned into clusters, and the problem 

is transformed into finding the shortest route while visiting at least one target in each 

cluster.  Another version of the GTSP requires that exactly one target must be visited in 

each cluster.69,70  Finally, the wandering salesman problem, also known as the messenger 

problem, does not require returning to the point of origin, but instead deals with finding 

the least cost route from u to v.70 

 Several authors have formulated trajectory optimization problems as traveling 

salesman problems.  Stodgell and Spencer posed the problem of autonomous satellite 

servicing as a multi-objective wandering salesman problem with dynamically moving 

vertices.71  Their specific problem can be defined as follows: given a set of target 

satellites, find tours that visit each target exactly once, while rendezvousing with the 

target for some minimum stay time and minimizing total flight time and ∆V.  In order to 

solve this problem, NSGA-II was used in order to deal with the multiple objective 
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functions.  In this problem, only impulsive maneuvers were considered, and a multi-

revolution Lambert algorithm was used to compute the required ∆V to transfer between 

two orbits for a specified time of flight.  The genetic algorithm was then used to 

determine the following global design variables: tour order, initial departure time, flight 

time between each target satellite, and stay time at each target.  This formulation was 

applied to several different target satellite configurations, with up to six target satellites.  

Figure 7 plots the resulting Pareto frontier for six target satellites in six different orbit 

planes separated by one degree each.  For this test case, the optimal tour order and 

corresponding time variables were successfully found by the genetic algorithm for all 

three random initial populations considered.  For some of the other test cases, however, 

the genetic algorithm would prematurely converge to a sub-optimal tour order depending 

on the initial population.   

   

 

Figure 7: Pareto frontier for satellite rendezvous problem with six targets.71 
 

 Wall and Conway posed the optimal control problem as a motorized traveling 

salesman problem, where the salesman drives a car with two bounded controls: steering 

angle velocity and acceleration.72  As in the original TSP, the salesman must still visit 
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each city once and then return to the origin.  The goal of the motorized TSP is to 

determine the control history of the steering angle and acceleration to minimize the total 

travel time.  The control history was discretized, and a genetic algorithm was used to 

determine the optimal solution of the resulting control parameters.  This method was then 

extended to apply to several different low-thrust orbit transfer problems, including an 

Earth-Mars transfer, a super-synchronous to geosynchronous orbit transfer, and a circle-

to-circle transfer.  The control parameters were parameterized using a variety of methods, 

and a genetic algorithm was again used to solve for the control parameters.  Finally, this 

methodology was applied to an asteroid interception problem, where the spacecraft 

departs from Earth and must visit three asteroids out of a population of eight, this time 

using impulsive maneuvers.  The objective function was to minimize the ∆V.  A branch-

and-bound method was used as the outer-loop solver to determine the optimal asteroid 

sequence, while a genetic algorithm was used to solve for the transfer times. 

 The variants on the classic traveling-salesman problem described above – time-

dependent TSP, generalized TSP, and wandering TSP – all model the various aspects of 

the asteroid problem.  In developing solution techniques for these variants, however, each 

type of TSP has been addressed separately.  No exact algorithm has been developed for a 

solving a problem that includes all three of these variants.  Furthermore, the cost function 

between each pair of targets requires only a simple distance calculation.  Even the exact 

algorithms for solving the time-dependent TSP are good only for very restricted cases, 

where the cost function is still easily calculated.  The papers by Stodgell and Spencer and 

by Wall and Conway solve a combinatorial rendezvous problem that has been formulated 

as a traveling-salesman problem.  In both papers, genetic algorithms are successfully used 

to solve for the optimal target sequence as well as the other system-level variables such 

as departure dates and flight times.  Both of these studies solve problems on a much 

smaller scale than the asteroid tour problem being solved in this thesis. 
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 As aforementioned, branch-and-bound is one type of algorithm that can be 

applied to the traveling salesman problem.  It can also be applied to the more general 

integer programming problem,65,73 which was described in Equation 12.  The idea behind 

this algorithm is to solve versions of the relaxed problem, which removes the integer 

restriction from the variables, in order to set bounds on the integer problem.  These 

bounds are then used to eliminate branches of the branch-and-bound tree until all nodes 

are either pruned or solved.  This yields the optimal integer solution of the original 

integer programming problem.  Figure 8 illustrates a segment of a branch-and-bound 

search tree. 

 

S
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Figure 8: Portion of a branch-and-bound search tree. 

 

 In describing the general branch-and-bound algorithm, L is a collection of integer 

programs, each of which takes the form { } SS;Sx:cxmaxz iii
IP ⊆∈= .  Associated with 

each problem in L is an upper bound i
IP

i zz ≥ .  First, the optimal relaxed solution is 

determined for the problem as a whole.  If the variables that yield the optimal solution all 

take integer values, then the algorithm is terminated and the optimal solution is found.  

Generally, this is not the case, so branches of the tree must begin to be enumerated.  

There are numerous techniques for deciding the order in which these should be evaluated, 
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but for this example, let us assume that the next relaxed solution will be for S0.  

Therefore, x1 is fixed to a value of 0, and a relaxed solution is computed, where all 

remaining variables are allowed to take any value.  This continues down the tree until an 

integer solution is computed.  This integer solution becomes the lower bound on the 

problem.  The process continues down the various branches of the tree, computing 

relaxed solutions at each node.  If the relaxed solution is less than the best known integer 

solution, the remainder of the branch can be pruned out of the search tree.  If a better 

integer solution is found, that becomes the lower bound on the integer programming 

problem.  When all branches have either been pruned out or yield integer solutions, the 

optimal solution to the integer programming problem is known. 

 While it is seen how the asteroid rendezvous problem could be formulated as a 

branch-and-bound search tree, the relaxed problem does not exist for the asteroid 

problem.  Because the discrete variables are either the asteroids themselves or a binary 

value indicating whether or not each asteroid is visited, the variables can only take 

discrete values.  Therefore, there is no solution for fractional values of the variables.  The 

idea of an enumerative and logical search process, however, could be applied to choosing 

the optimal sequence of asteroids. 

1.3  Research Objectives and Contributions 

 In recent years, missions to asteroids and comets have gained significant scientific 

interest, while electric propulsion has become a viable option for spacecraft exploring 

these bodies.  Conceptual design of these missions relies on the ability to quickly 

generate solutions for a wide variety of launch dates, flight times, and arrival bodies, in 

order to find trajectories that minimize propellant mass, flight time, or other parameters 

of interest.  Until recently, however, a thorough exploration of the design space was 

challenging because indirect methods for low-thrust trajectory optimization were time 
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consuming, user-intensive, and often dependent on already known solutions to similar 

problems. 

 Recent developments in the area of low-thrust trajectory optimization, namely 

advances in direct and shape-based analytic methods, have enabled approximate 

solutions, suitable for conceptual design, to be generated more rapidly.  Because the 

solution space with respect to many of the mission design parameters (launch date, flight 

times, etc) is multi-modal, genetic algorithms have been used in many instances in an 

attempt to locate the global optimum.  Several authors have also applied combinatorial 

optimization methods to the spacecraft rendezvous problems, and some of the methods 

and techniques used in these studies can be applied to solving the larger asteroid tour 

problem. 

 Conceptual design of spacecraft missions requires the ability to explore large 

portions of the design space in order to locate the best set of solutions.  At the conceptual 

design level, mass and flight time are generally the most important engineering 

parameters of interest.  Over a large design space, the difference between the best 

trajectories will generally differ only slightly, and that difference may be smaller than the 

error generated by approximations made at the conceptual design level.  Furthermore, 

when proceeding beyond the conceptual design phase, there are a number of other factors 

that must be considered when choosing a final trajectory (e.g., science objectives, 

reconnaissance view angles, and telecom considerations).  As a result, at the conceptual 

design level, it is perhaps more important to identify a broad suite of good solutions 

across the design space, than a single optimum solution. 

 This study presents a systematic methodology for efficiently determining a broad 

suite of good solutions to combinatorial low-thrust asteroid rendezvous problems.  The 

target application is for conceptual design, where broad exploration of the design space is 

critical.  The proposed methodology has two steps, the first that quickly eliminates poor 

solutions from the design space, and the second that then locates the best solutions from 
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the reduced design space.  The goal of the pruning step is to quickly reduce the size of the 

problem by several orders of magnitude.  This is accomplished using heuristics specific 

to the physics of the underlying problem, in order to identify areas of the design space 

that will not likely yield favorable solutions in terms of the objective function.  Heuristic 

methods, however, cannot guarantee that only poor solutions will be eliminated from the 

design space.  The goal of this first phase is to ensure that a large percentage of the best 

solutions remain for the second phase.  In this second phase, a global optimization 

algorithm is applied to the reduced design space to locate the best set of solutions.  The 

global optimizer is responsible for solving for the following design variables: asteroid 

combination, launch date, times of flight, and stay times.  This system-level optimization 

is coupled with a local low-thrust trajectory optimization scheme that determines the 

optimal control history of the spacecraft in order to minimize propellant for a given set of 

global optimization variables.  

 The methodology developed is used to predict the solution to a range of test 

problems with a known optimal soltution, and once verified, is applied to several larger 

asteroid tour problems, including versions of the GTOC2 and GTOC3 problems.  The 

GTOC competition problems were chosen because a set of solutions is available from the 

competition results which can be used as a benchmark in evaluating the performance of 

the methodology. 

 The following are the key contributions of this work: 

 

(1) A three-level heuristic sequence is developed based on the physics of the problem 

that allows for efficient pruning of the design space.  In reducing the size of the 

design space, a majority of the better solutions are maintained.  This pruning 

methodology is verified through solution of an intermediate-size sample problem 

whose solution is obtained through complete enumeration of the design space.  

The pruning methodology is shown to apply well across a range of low-thrust 
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asteroid tour mission design problems and relies on user-defined parameters to 

effectively tailor the degree of design space pruning based on the available 

computational resources. 

 

(2) A global optimizer is combined with a low-thrust trajectory optimization method 

to locate a broad suite of good solutions for the reduced problem.  This approach 

combines an innovative branch-and-bound algorithm (to solve for the optimal 

asteroid sequence) with a genetic algorithm (which solves for the optimal 

departure date, times of flight, and stay times for a given asteroid sequence), and 

finally with a low-thrust trajectory optimization program (which determines the 

optimal thrust profile that maximizes final mass).  The global optimization 

scheme is able to consistently locate the best known solution, along with a suite 

of good solutions across the design space.  A strategy was developed to set the 

initial lower bound in the branch-and-bound algorithm (a user-defined parameter) 

as a means of controlling the number of required low-thrust optimizations 

required and the number of good solutions found. 

 

(3) When the global optimization scheme is combined with the heuristic screening 

process, a systematic methodology for identification of a broad suite of good 

solutions to low-thrust, multiple asteroid rendezvous, conceptual mission design 

problems is achieved.  In addition to a wide range on each of the continuous 

variables, the problems to which the methodology is applied in this investigation 

are characterized by as many as 41 billion discrete asteroid sequences.  The key 

contribution of this methodology is the ability to locate a suite of good solutions, 

as opposed to just a single optimum solution.  In locating these good solutions, 

the overall methodology is able to reduce the number of asteroid sequences that 
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require low-thrust optimization by 6-7 orders of magnitude, as compared to the 

number of asteroid sequences in the original problem. 

  

 The remainder of this dissertation is broken down into five chapters.  Chapter 2 

outlines the approach taken in developing the methodology, and presents results for each 

of the techniques examined as applied to a small test problem with a known solution.  

Chapter 3 presents the final methodology that was developed.  Chapter 4 then validates 

the methodology, by applying it to an intermediate-sized sample problem, also with a 

known solution.  Chapter 5 applies the methodology to two large problems – a modified 

version of the GTOC3 problem and the GTOC2 problem.  Finally, Chapter 6 presents a 

summary and conclusions, along with recommendations for further work. 
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CHAPTER II 

DEVELOPMENT OF METHODOLOGY 

2.1 Approach  

The methodology developed in this dissertation is applicable to large, 

combinatorial asteroid rendezvous problems.  The approach taken in developing this 

methodology, however, can be applied to developing similar methodologies for solving 

other trajectory design problems with large design spaces.  The first piece of the 

methodology involves pruning the design space by several orders of magnitude, by 

eliminating solutions that do not produce favorable values of the objective function.  In 

order to do this, heuristics must be chosen that are specific to the physics of the 

underlying problem.  A number of metrics were considered for the pruning process, and 

were evaluated based on both their ability to approximate low-thrust final mass as well as 

their speed of execution.  In order to test their effectiveness, a small test problem was 

created and solved.  The candidate metrics could then be compared to the corresponding 

low-thrust final mass for each set of design variables.  This chapter will describe each 

candidate pruning metric in detail, and then present the results of each as applied to the 

sample problem. 

Next, an appropriate global optimization scheme must be selected that can search 

the full design space to locate a suite of good solutions.  The global optimizer is 

responsible for solving for the system-level variables: asteroid sequence, Earth launch 

date, times of flight, and stay times.  Each function call of the global optimizer calls a low 

thrust trajectory optimization routine, which is responsible for solving for the optimum 

∞V
v

 at Earth departure and the thrust profile along the trajectory that maximizes final 

mass.  Each candidate method is evaluated against the sample problem both for how 
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many of the best known solutions it is able to reliably locate as well as speed of 

execution. 

2.2   Candidate Pruning Methods 

 A number of pruning techniques were considered that were believed to 

approximate the physics of the low-thrust trajectory problem.  Each metric was evaluated 

to determine which ones could be used to reliably eliminate areas of the design space that 

do not yield high values of the objective function.  These pruning metrics generally fell 

into three categories: (1) ephemeris-based metrics, which use parameters such as semi-

major axis, inclination, and longitude of the ascending node, (2) approximations to the 

low-thrust trajectories, including two-impulse Lambert solutions with either single or 

multiple revolutions, and (3) metrics that attempt to take phasing into consideration. 

2.2.1  Ephemeris-Based Pruning Techniques 

 A number of ephemeris-based metrics were examined for potential use during the 

pruning phase of the methodology.  Many of these are based on the basic orbital elements 

of the asteroid orbits, as illustrated in Figure 9.  In this diagram, the orbit is referenced to 

the heliocentric-ecliptic frame, which is centered at the Sun, with the fundamental plane 

(I-J) defined by the plane of the Earth’s revolution around the Sun.  Additionally, h
v

 

represents the angular momentum vector of the orbit, rv  is the radius vector from the 

center of the orbit to the current position of the body, ev  is the eccentricity vector, which 

points in the direction of periapsis, ν is the true anomaly, ω is the argument of periapsis, 

nv  is the line of nodes, and Ω is the longitude of the ascending node. 
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Figure 9: Classical orbital elements. 

 

The first ephemeris-based pruning metric considered is the semi-major axis of 

each asteroid’s orbit, which is defined as half of the major axis of the orbit ellipse.  Here, 

semi-major axis is used as a surrogate for distance from the Sun.  Visiting the asteroids in 

either increasing or decreasing order makes intuitive sense, in order to minimize fuel 

consumption.  Because time of flight appears in the objective function, however, visiting 

the asteroids in order of increasing semi-major axis would be necessary to minimize the 

overall flight time of the mission. 

 The next ephemeris-based pruning metric considered is the change in inclination 

between the orbits of two asteroids, where inclination is defined as the angle between the 

angular momentum vector of the orbit and the vector normal to the ecliptic plane.  The 

angular momentum vector is calculated as normal to the orbital plane.  Using inclination 

change between two orbits as a pruning metric is based on the conjecture that large 

inclination changes require significant amounts of propellant, as is the case for impulsive 

orbit transfers.   
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Similarly, the change in the longitude of the ascending node between two orbits is 

evaluated.  The longitude of the ascending node is defined as the angle between the Î unit 

vector, generally pointing in the direction of the vernal equinox, and the point where the 

body crosses through the fundamental plane in a northerly direction, measured 

counterclockwise.  While inclination change can have a significant effect on propellant 

consumption, the orientation of the two orbits is also important.  Two methods for 

combining the change in inclination and the change in the longitude of the ascending 

node between two orbits are considered.  First, each metric is normalized and weighted as 

follows: 
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Inclination change varies from 0 to 180 degrees, while ascending node change varies 

from -180 to 180 degrees.  Second, the angle between the angular momentum vectors, 

θwedge, of the two orbits was calculated as follows: 
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 Several other ephemeris-based methods are also considered.  First is to choose 

asteroids in Group 1 (furthest from the Sun) with low energies – therefore, asteroids with 

the smallest values of semi-major axis.  In theory, these should be the most accessible out 

of the entire set.  Another ephemeris-based method would screen out asteroid 

combinations based on distance between their orbits.  This can be done by calculating the 

distance between the first asteroid’s apoapsis (the furthest distance from the Sun in the 

orbit) and the second asteroid’s periapsis (the closest distance from the Sun in the orbit).  
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Finally, both the eccentricity of a single orbit and the change in eccentricity between two 

orbits is evaluated. 

2.2.2  Phase-Free, Ballistic Approximations 

 In addition to the ephemeris-based pruning methods, two-impulse Lambert 

solutions are evaluated for potential use as a pruning metric.  The optimal, phase-free, 

two-impulse solution calculates the minimum delta-V transfer between two orbits, 

disregarding the actual location of the chosen asteroids.  Of course, there is no guarantee 

that the optimal asteroid configuration for a given asteroid pairing will occur during the 

date range given in the problem, but the idea behind this technique is to identify the most 

“reachable” asteroids.  In general, ballistic solutions will best approximate the low-thrust 

trajectories when the ratio of thrust time to flight time is low for the low-thrust 

trajectories. 

 Given two points in space, there are two elliptic orbits for a given semi-major axis 

that connect those two points.74  The two orbits constitute the “short-way” and “long-

way” transfers, or changes in true anomaly of less than and greater than 180 degrees, 

respectively.  Therefore, for a given semi-major axis, there are two associated values of 

delta-V, one for the short-way transfer and one for the long-way transfer.  Furthermore, 

for each transfer orbit, any number of revolutions can be made, each resulting in a 

different time of flight.  In the case of circular orbits, Shen and Tsiotras show that for a 

given value of semi-major axis, the short-way transfer always has a lower delta-V value 

than the long-way transfer.  As an example, Figure 10a plots delta-V as a function of the 

semi-major axis of the short-way transfer trajectory from asteroid 2006 QQ56 to asteroid 

Chicago, both with starting true anomalies of zero.  As can be seen, the function is 

unimodal.  Therefore, the minimum delta-V solution can easily be found using any 

gradient-based optimizer. 
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 In order to determine the optimum, two-impulse, phase-free delta-V between any 

two orbits, the true anomalies at departure and arrival are discretized between 0 and 360 

degrees.  Each possible combination of departure true anomaly and arrival true anomaly 

defines r1, r2, and the transfer angle, from which the minimum ∆V solution can be 

obtained.  Figure 10b plots contours of minimum delta-V for each value of departure and 

arrival true anomaly, also for the transfer from “2006 QQ56” to Chicago.  Because the 

solution space is multi-modal, a grid search is used to determine the approximate optimal 

solution. 
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Figure 10: (a) Delta-V as a function of the transfer orbit semi-major axis for a two-impulse transfer 
(left); (b) contour plot of the minimum two-impulse delta-V transfers over all departure and arrival 

true anomalies (right). 
 

2.2.3  Pruning Techniques Based on Phasing 

 The final set of pruning metrics considered takes phasing into consideration.  

Once again, two-impulse Lambert solutions are calculated, now using the actual asteroid 

ephemeris data for given departure dates and flight times.  In this case, because time of 

flight is a consideration, the Lambert problem is reformulated in order to solve for the 

minimum delta-V given r1, r2, and the time of flight.  For a given r1, r2, and time of flight, 

there are 2Nmax + 1 solutions to the multi-revolution Lambert problem, where Nmax is the 
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maximum possible number of revolutions for a given time of flight.  All 2Nmax + 1 

solutions must be calculated in order to determine the minimum delta-V solution. 

 Another possible approach to address phasing is to determine when the Group 1 

asteroids are at their perihelion, based on the assumption that it is most efficient to 

rendezvous with the last asteroid near its perihelion passage, where the orbital energy is 

the least.  The previous asteroids and departure dates are then chosen such that the 

spacecraft will in fact arrive at the final asteroid in the vicinity of perihelion.  This, in 

fact, was the pruning approach taken by the winning team in GTOC2. 

2.3   Candidate Global Optimization Methods 

 The goal of the global optimization component of the methodology is to search 

the reduced design space and locate a suite of good solutions, where the design variables 

consist of the asteroid sequence, Earth departure date, flight times, and stay times.  For a 

given value of each of the global variables, the global optimization method must call a 

low-thrust trajectory optimization routine in order to determine the thrust profile that 

maximizes final mass.  The asteroid sequence is a discrete, combinatorial problem.  The 

departure date, flight times, and stay times, however, are continuous variables, but the 

objective function (final mass) is multimodal with respect to these variables. Two 

different schemes for solving for the global variables are evaluated, as illustrated in 

Figure 11 and Figure 12.  The design variables listed in the figures represent those 

required for a rendezvous with four asteroids and no return to Earth.  Furthermore, the 

objective function illustrated is the ratio of final mass to time of flight, with a total flight 

time constraint of twenty years.  First, a single method is used to solve for all of the 

global variables.  Alternatively, the variables are divided, and a two-level optimization 

scheme is employed.  An outer loop is responsible for finding the optimal asteroid 

sequence, while an inner loop calculates the optimal departure date, flight times, and stay 

times for a given asteroid sequence.  Two optimization methods are considered for the  



 45

Global 
Optimizer

x1 = 1st asteroid
x2 = 2nd asteroid
x3 = 3rd asteroid
x4 = 4th asteroid
x5 = Earth launch date
x6 …x9 = Times of flight
x10…x12 = Stay times

J = Mf/TOF
TOF <= 20 yrs

MALTO

SNOPT

Trajectory 
Propagator

y1 = departure V∞
y2…yn+1 = thrust magnitude
yn+2…y3n+1 = thrust direction
(n = number of segments)

J = Mf
y1 ≤ V∞,max
y2…yn+1 ≤ Tmax
r, v, m continuous at match points

 
Figure 11: Single-level global optimization scheme. 
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y1 = departure V∞
y2…yn+1 = thrust magnitude
yn+2…y3n+1 = thrust direction

J = Mf
y1 ≤ V∞,max
y2…yn+1 ≤ Tmax
r, v, m continuous at match points
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Figure 12: Multi-level global optimization scheme. 
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outer loop: a genetic algorithm and a branch-and-bound-methodology.  A genetic 

algorithm is evaluated for the inner loop optimizer.  The inner loop then calls MALTO, 

which is responsible for the low-thrust trajectory optimization.  How MALTO is 

incorporated into the methodology is explained in greater detail in Section 2.4. 

2.3.1  Genetic Algorithm 

 As explained earlier, genetic algorithms are a class of evolutionary algorithms 

which are domain-spanning, probabilistic optimization algorithms based on the 

Darwinian theory of evolution.  The version of genetic algorithm in consideration begins 

with an initial random population, using a binary representation of each design variable.  

The number of bits chosen for each variable determines the resolution of that variable.  

These binary values are then mapped to their corresponding decimal values based on the 

chosen resolution and the range assigned to each variable.  Additionally, the population 

size, which remains constant throughout the optimization routine, is a user-defined 

parameter that must be chosen.  The genetic algorithm relies on three operations within 

each generation to improve the overall “fitness” of the population – reproduction, 

crossover, and mutation. 

 The purpose of the reproduction operation is to choose the best candidate designs 

from the population and allow them to pass to the next operation.  The method used in 

this work is Tournament Selection, which is stochastic in nature.  In this method, a 

certain number of “combatants” are randomly chosen from the population.  The candidate 

design with the best objective function wins the tournament and is placed in the post-

reproduction pool.  This process is repeated until the post-reproduction pool is completed, 

maintaining the same population size as the initial population.  Because the reproduction 

operation requires knowledge of the fitness of each member of the population, the fitness 

evaluations (i.e., function calls) are made prior this operation. 
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 The next operation is crossover, which mimics two parents having two children 

and passing on their characteristics to them.  This process assumes better designs can be 

created by splicing together parts of two known good designs.  In crossover, two 

candidate designs (“parents”) are chosen out of the post-reproduction table.  For each set 

of parents, there is some probability that crossover will occur.  If there is no crossover, 

the two parents are passed unchanged into the post-crossover population table.  In this 

genetic algorithm, two-point crossover has been implemented.  An entry and exit bit are 

randomly selected, and for the bits between the entry bit and the exit bit, the two parents 

switch bits.  The children are then passed into the post-crossover pool.  This process is 

continued with every set of two candidate designs in the post-reproduction population. 

 Mutation is the final operation in the genetic algorithm process.  Because the 

entire process is stochastic in nature, it is possible to contain a column of data in the 

population table that is all zeros or all ones.  Neither reproduction nor crossover would 

allow a bit in such a column to change.  Mutation, therefore, provides an opportunity for 

this to occur.  In this process, each candidate design has some probability of undergoing 

mutation.  If mutation does not occur, the candidate design passes unchanged to the post-

mutation table.  If mutation does occur, string-wise mutation is implemented, where one 

bit in the chromosome string is randomly selected.  This bit is flipped and the 

chromosome string is then passed to the post-mutation pool.  The post-mutation 

population is then passed back to the reproduction operation, and the three processes are 

repeated until the algorithm converges on a final solution.  The genetic algorithm is 

considered to be converged when there is no change in the best overall solution after a 

certain number of iterations (“generations”). 

 In order to limit the number of required function calls to the low-thrust trajectory 

optimization routine, an archiving scheme is used, whereby each candidate design 

evaluated is saved in a table.  This also enables a number of good solutions to be found, 

along with the global optimum. 
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2.3.2  Branch-and-Bound 

 The branch-and-bound methodology considered here is a variation on the general 

branch-and-bound method that uses linear programming relaxations, as presented in 

Section 1.2.3.  In an integer programming problem the relaxation step involves removing 

the integer constraints and solving for the solution to the continuous problem.  Relaxing 

the integer constraints is not possible, however, when the integer variables represent 

discrete asteroids choices.  Therefore, in place of the linear programming relaxation, a 

two-impulse Lambert solution is used to provide an upper bound on the low-thrust 

solution for the branch-and-bound algorithm.  The proposed branch-and-bound algorithm 

is based on the conjecture that the two-impulse solutions provide a reliable upper-bound 

to the low-thrust problem.  This assumption will be examined on the sample problem. 
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Figure 13: Example branch-and-bound tree. 
 

 The search tree enumerates all possible asteroids sequences, a small example of 

which is illustrated in Figure 13.  The first branch represents the choice of the first 

asteroid to visit from Earth.  The next branch represents the second asteroid to visit in the 

sequence and so on.  The branch-and-bound tree is used only to solve for the optimal 

asteroid sequence – the optimal departure date, flight times, and stay times must be 

obtained using another method.  In order to begin the algorithm, a known low-thrust 
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optimal solution must first be obtained.  Therefore, a single sequence must be chosen and 

the optimal value of the objective function for that sequence is calculated, based on a 

low-thrust trajectory.  This becomes the lower bound on the objective function.  

Subsequently, branches of the tree are evaluated, using the optimal two-impulse Lambert 

solutions as a surrogate for the LP-relaxation.  If the relaxed solution is less than the 

lower bound, that branch of the tree can be pruned.  Otherwise, that branch must be 

maintained and the optimal low-thrust solution must be calculated. 

 Using Figure 13 as an example, the low-thrust optimal solution for branch SP

147
P is 

calculated first.  This branch corresponds to asteroid 1 = 1, asteroid 2 = 4, and asteroid 3 

= 7.  These values are simply indices that refer to particular asteroids.  As 

aforementioned, another method must be used to determine the optimal departure date, 

flight times, and stay times for the asteroid sequence corresponding to that particular 

branch.  The optimal low-thrust solution for this asteroid sequence sets a lower bound on 

the objective function.  Once this lower bound has been set, the search process begins at 

the top of the branch-and-bound tree.  To illustrate how branches of the tree are pruned 

out, a relaxed solution is calculated for S2.  This relaxed solution is the two-impulse 

optimal solution for Earth to asteroid 1 = 2, over all departure dates, flight times, and stay 

times set by the problem.  If the relaxed solution is less than the lower bound, the entire 

branch of the tree below S2 can be pruned.  If not, further depth is required on that 

branch.  The relaxed solution is then calculated for S24.  Again, if that solution is less than 

the lower bound, that branch is pruned.  If not, then the relaxed solution to S247 is 

calculated.  If the relaxed solution is still greater than the lower bound, then the low-

thrust optimal solution for that entire asteroid sequence (asteroid 1 = 2, asteroid 2 = 4, 

and asteroid 3 = 7) must be calculated.  If the resulting low-thrust solution is greater than 

the lower bound, then a new lower bound is set.  This process continues until all of the 

branches of the tree are either pruned or their low-thrust optimal solutions are calculated. 
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 The order in which the branches are explored will have a strong impact on the 

number of optimal low-thrust solutions which must be calculated.  Several methods will 

be examined to determine which order results in the most efficient algorithm.   

2.4   Low-Thrust Trajectory Optimization 

MALTO is a low-thrust trajectory optimization algorithm based on the direct 

method by Sims and Flanagan, which was described in Section 1.1.2.  For a given 

function call to MALTO, the global optimizer passes the following variables: asteroid 

sequence, Earth departure date, times of flight between each asteroid, and the stay time at 

each asteroid.  Initial mass is also passed to MALTO, although in many instances, such as 

in the GTOC problems, this is a fixed value.  Additionally, MALTO requires initial 

guesses for the following variables: departure and arrival V∞ vectors and the thrust 

magnitude and direction on each segment of the trajectory.  The number of segments is a 

user-defined variable in MALTO, which remains constant throughout the MALTO 

optimization process.  A constraint may also be placed on the magnitude of the V∞ vector 

at Earth departure.  While any initial guess can be chosen for the remaining V∞ vectors, 

they must equal zero in the final optimized trajectory.  The thrust can be modeled in two 

ways: (1) using the Cartesian coordinates of the thrust vector on each segment (Tx, Ty, Tz) 

or (2) using the thrust magnitude and two thrust angles on each segment (Tmag, Tlat, Tlon).  

Within MALTO, SNOPT is used to solve for the Earth departure V∞ vector and the thrust 

profile to maximize the final spacecraft mass, while meeting all of the internal MALTO 

constraints. 

When the genetic algorithm sends a set of global variables to MALTO, MALTO 

is used to optimize the trajectory leg-by-leg.  First, MALTO calculates the optimum final 

mass for the trajectory from Earth to the 1st asteroid, with the fixed time of flight passed 

from the GA.  It then uses the final mass as the initial mass for the next leg of the 

trajectory – 1st asteroid to 2nd asteroid – and optimizes this leg.  This process continues 
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until all legs have been optimized.  This leg-by-leg approach produces the same results as 

a single end-to-end optimization, but requires significantly less computation time. 

Several approaches were evaluated for choosing the initial guesses into MALTO, 

such that MALTO is able to converge on the optimum solution for a given trajectory:   

 

1. The optimal two-impulse solution is calculated for a given trajectory (using the 

same launch date and flight times).  These values are then used as the initial 

guesses for the V∞ vectors, with the initial guess of the thrust set to zero all along 

the trajectory.   

 

2. Both the V∞ vectors and the thrust are set to zero.   

 

3. The V∞ vectors are set to zero, and the thrust magnitude is set to its maximum 

value with the direction of the thrust pointed in the direction of the spacecraft 

velocity vector (Tmag = Tmax, Tlat = 0, Tlon = 0).   

 

Which initial guess approach worked best depends on the particular asteroid pair, 

departure date, and time of flight.  As an example, Figure 14 plots the optimum final 

mass values for a transfer from Earth – 2006 QQ56, with a 600-day time of flight, 30 

segments, over a range of departure dates, using each of the three initial guess approaches 

tested.  As can be seen, the third approach consistently results in MALTO locating the 

optimum solution, while the second approach finds the optimum solution for all but a 

handful of points.  The first approach (ballistic initial guess for V∞ and zero thrust), 

however, results in MALTO converging to a sub-optimal solution across all departure 

dates considered.  In another example, Figure 15 plots the optimum final mass values for 

a transfer from Medusa – Kostinsky, with a 1200-day time of flight and 30 segments, 

again using the three initial guess approaches.  For this transfer, the first initial guess 
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approach performs best, followed by the third approach.  The second approach (zero V∞, 

zero thrust), however, converges to a sub-optimal solutions for a large number of 

departure dates.  Therefore, for each leg optimized in MALTO, all three approaches are 

used, and the best solution is kept. 

 

 
Figure 14: Optimum final mass for Earth – 2006 QQ56 with a 600-day time of flight, using three 

different approaches for the initial guess of the MALTO variables. 
 

 
Figure 15: Optimum final mass for Medusa – Kostinsky with a 1200-day time of flight, using three 

different approaches for the initial guess of the MALTO variables. 
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Next, the effect of the chosen number of segments is examined.  The greater 

number of segments used, the closer the discretized trajectory approximates the true low-

thrust trajectory.  More segments, however, also results in greater computation time 

because of a larger number of variables required to represent the thrust profile.  

Additionally, more segments leads to more variables, which creates a more difficult 

problem for SNOPT to solve.  In general, increased computation time is required as the 

number of segments on the trajectory increases.  As an example, the optimum low-thrust 

final mass was calculated over a range of departure dates, again for a transfer from Earth 

– 2006 QQ56, with a 600-day time of flight, using several different values for the number 

of segments.  Figure 16 plots the percent difference in final mass for each of the number 

of segments considered, as compared to the final mass computed using 90 segments.  As 

can be seen, the optimum final mass varies by less than half a percent as a function of the 

number of segments into which the trajectory is discretized.  Figure 17 then plots the 

MALTO run time per trajectory across the range of number of segments considered in 

Figure 16.  Based on these results and the application to conceptual design, it is 

appropriate to keep the number of segments small, in order to reduce computation time.  
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Figure 16: Effect of number of segments on the optimum final mass for Earth – 2006 QQ56, with a 

600-day time of flight. 
 

 
Figure 17: Effect of number of segments on computation time for Earth – 2006 QQ56, with a 600-day 

time of flight. 
 

2.5   Small Sample Problem 

 In order to test each of the candidate pruning and global optimization methods, a 

small sample problem with a known solution was developed.  The sample problem 

contains twenty four total asteroids, split evenly between three groups, leading to 3072 
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discrete asteroid combinations.  These asteroids were randomly chosen from the set of 

asteroids provided in the GTOC2 competition, and can be found in Appendix A.  Figure 

18 plots these asteroids, as a function of their semi-major axis, eccentricity, and 

inclination. 

 The objective function is to maximize the final mass of the spacecraft, and the 

following constraints are placed on the flight times:  Earth to Group 4 ≤ 600 days, Group 

4 to Group 2/3 ≤ 1800 days, and Group 2/3 to Group 1 ≤ 1200 days.  These constraints 

assume that the asteroids will be visited in the following order: Earth – Group 4 – Group 

2/3 – Group 1.  Applying this constraint reduces the number of discrete asteroid 

combinations to 512.  The validity of this assumption will be addressed in Section 2.5.1.  

Lastly, the launch window must fall between 2015 and 2025, inclusive, and the stay time 

at each asteroid is fixed at 90 days.  While flight time does not directly appear in the 

objective function, it is dealt with implicitly in the chosen constraints.  Launch from 

Earth is constrained by a hyperbolic excess velocity (V∞) of up to 3.5 km/s with no 

constraint on direction.  The spacecraft has a fixed initial mass of 1500 kg, which does 

not change with launch V∞, and a minimum final mass of 500 kg.  The propulsion is 

modeled to have a constant specific impulse of 4000 s and a maximum thrust level of 0.1 

N, and can be turned on and off as needed. 
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Figure 18: Set of asteroids for sample problem. 
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 Within the sample problem, MALTO was used to perform the local trajectory 

optimization.  The design space was discretized in terms of launch date and times of 

flight, and each leg of the trajectory was analyzed separately.  At first, only asteroid 

combinations following the assumed group order were considered (all other possible 

combinations were examined later).  The launch date from Earth was discretized in 30-

day steps, and the time of flight to the first asteroid (Group 4) was discretized in 100 day 

steps up to the 600-day constraint.  MALTO was used for each case to determine the 

departure V∞ and thrust profile that maximizes the final mass at the arrival asteroid, based 

on a 1500 kg initial spacecraft mass.  The time of flight for the second leg was also 

discretized in 100 day increments, up to 1800 days.  For each feasible Leg 1 trajectory 

(final mass greater than 500 kg), the corresponding Leg 2 trajectory was calculated to 

each of the Group 2/3 asteroids, for each of the discretized times of flight.  Finally, the set 

of Leg 3 trajectories was calculated in a similar fashion, starting from all of the feasible 

Leg 2 trajectories (final mass greater than 500 kg).  This approach locates the entire set of 

(discretized) feasible solutions, and ranks them by final mass.   
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Figure 19: Optimal solution for the small sample problem. 
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 The resulting set of feasible solutions contains 115 of the possible 512 asteroid 

combinations initially examined.  This set of solutions contains 4 Group 1 asteroids, 6 

Group 2/3 asteroids, and all 8 Group 4 asteroids (although not every permutation of these 

18 asteroids).  The best solution, plotted in Figure 19, visits the following asteroids: 2006 

QQ56 – Medusa – Kostinsky.  The spacecraft departs Earth on March 1, 2015 with a 

launch V∞ of 2.59 km/s.  The time of flight for each leg is 600 days, 1600 days, and 1200 

days, respectively.  Interestingly, even though time of flight does not appear explicitly in 

the objective function, the flight time for the second leg is not equal to its upper bound.  

While an 1800-day time of flight would result in a larger final mass for that particular 

leg, the shorter flight time results in better phasing for the third leg, thereby maximizing 

the overall final mass of the trajectory.  The total flight time from Earth departure to the 

final asteroid rendezvous is 3580 days, which includes the two 90-day stay times at each 

intermediate asteroid, and the arrival mass is 903 kg.  Table 1 lists the 10 best asteroid 

combinations, ordered in terms of final mass.  Table 2 lists the Keplerian orbital elements 

of each of the asteroids that appear in Table 1, in the J2000 heliocentric ecliptic frame. 

 
Table 1: Ten best asteroid combinations for sample problem ranked by final mass. 

Earth Dep. 
Date Ast. 1 Ast. 2 Ast. 3 Leg 1 TOF 

(days) 
Leg 2 TOF 

(days) 
Leg 3 TOF 

(days) 
Mf 
(kg) 

03/01/2015 “2006 QQ56” Medusa Kostinsky 600 1600 1200 904 
08/22/2016 “2006 QQ56” Hertha Telamon 600 1800 1200 856 
03/29/2021 Apophis Hertha Pandarus 300 1800 1200 843 
01/01/2015 “2002 AA29” Medusa Kostinsky 600 1700 1200 831 
09/11/2018 “2006 QQ56” Geisha Kostinsky 600 1700 1200 826 
08/28/2015 “2006 QQ56” Geisha Caltech 600 1700 1200 812 
03/01/2015 “2004 FH” Medusa Kostinsky 500 1800 1200 807 
09/06/2019 “2006 QQ56” Medusa Potomac 600 1800 1200 804 
07/18/2017 “2006 QQ56” Geisha Potomac 600 1800 1200 798 
12/5/2019 Apophis Medusa Potomac 500 1800 1200 787 
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Table 2: Orbital elements of asteroids in the J2000 heliocentric ecliptic frame. 
Asteroid 

Name Group # semi-major 
axis (AU) eccentricity inclination 

(deg) 
longitude of the 
asc. node (deg) 

argument of 
periapsis (deg) 

“2006 QQ56” 4 0.987 0.047 2.83 163.33 332.96 
“2002 AA29” 4 0.994 0.013 10.74 106.47 100.61 

“2004 FH” 4 0.818 0.289 0.021 296.18 31.32 
Apophis 4 0.922 0.191 3.33 204.46 126.40 
Geisha 2/3 2.24 0.193 5.66 78.34 299.88 
Medusa 2/3 2.17 0.065 0.937 159.65 251.13 
Hertha 2/3 2.43 0.207 2.31 343.90 340.04 

Kostinsky 1 3.99 0.220 7.64 257.11 163.00 
Telamon 1 5.17 0.108 6.09 341.01 111.19 
Pandarus 1 5.17 0.068 1.85 179.86 37.74 
Caltech 1 3.16 0.114 30.69 84.61 294.92 
Potomac 1 3.98 0.181 11.40 137.51 332.82 

 

2.5.1  Evaluation of Pruning Techniques on the Sample Problem 

 Each of the pruning metrics described in Section 2.2 are applied to the sample 

problem to determine their efficacy at reducing the size of the design space while 

maintaining a majority of the best solutions.  For a majority of the pruning metrics, the 

metric value for each asteroid pairing is compared to the maximum low-thrust final mass 

for that pairing, for each leg of the trajectory.  The correlation coefficient is then 

calculated between the metric in question and the low-thrust mass.  Correlation 

coefficient varies between -1 and +1, where a value of -1 corresponds to perfect negative 

correlation and a value of +1 corresponds to a perfect positive correlation.  The 

correlation coefficient between two random variables, X and Y, can be computed as 

follows, where E(XY) is the expected value of the product of X and Y, µ is the sample 

mean, and σ is the sample standard deviation: 
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 The first class of pruning metrics examined is ephemeris-based, beginning with 

visiting the asteroids in order of increasing semi-major axis.  Applying this restriction to 
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the sample problem reduces the number of asteroid sequences from 3072 to 512.  This 

eliminates only two asteroid sequences with feasible solutions, both for the following 

order: Earth – Group 4 – Group 1 – Group 2/3.  The maximum final mass for each of 

these two sequences, however, is only 608 kg and 524 kg, which ranks these solutions 

59th and 105th out of the now 117 feasible asteroid sequences. 

 The next metric considered is the change in inclination between the orbits of two 

asteroids.  Figure 20 plots the maximum final mass for each leg-by-leg asteroid pair, over 

the date range considered, as a function of the absolute value of the inclination change 

between the starting and ending body (no differences were found in the results if a 

distinction was made between positive and negative inclination changes).  As will be true 

for all similar plots presented, only asteroid pairs that were actually analyzed are plotted.  

For example, four of the eight Group 4 asteroids yielded no feasible Leg 1 trajectories, 

and were therefore not considered in analyzing subsequent Leg 2 and Leg 3 trajectories.  

For Leg 1, because there were only eight possible pairs, additional Group 4 asteroids 

were randomly selected and analyzed in order to add more data points.  Furthermore, any 

asteroid sequences that resulted in a maximum final mass of less than 500 kg were 

deemed infeasible and appear as 0 kg in the plots. 
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Figure 20: Maximum final mass for each asteroid sequence as a function of inclination change. 

 

 For Leg 1 and Leg 2, there is a perceptible correlation between final mass and 

inclination change, where smaller values of inclination change result in larger values of 
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final mass.  The correlation coefficient between inclination change and mass for these 

two trajectory legs is -0.823 and -0.803, respectively.  Leg 3, however, yields a 

correlation coefficient of only -0.203, indicating a weak correlation between final mass 

and inclination change.  The final masses for Leg 3 are dependent on both the goodness 

of that particular asteroid pair but also on the final mass and arrival date of the 

corresponding Leg 2 trajectory, which also depends on the final mass and arrival date 

from the corresponding Leg 1 trajectory.  If all of the Leg 3 asteroid pairs are analyzed 

over a range of departure dates for a starting mass of 1500 kg, the correlation coefficient 

between final mass and inclination change is improved to -0.514.  Therefore, a pruning 

metric such as inclination is much more effective for early trajectory legs, where the final 

mass is not nearly as dependent on upstream results. 

 Next, the longitude of the ascending node is included with inclination as a 

candidate pruning metric, using the two methods described in Section 2.2.1.  The first 

method, which involves normalizing each metric and then combining them with weights, 

is less correlated to mass than using inclination change alone, even for a variety of 

weightings.  The second method, which uses the angle between the angular momentum 

vectors (θwedge), results in correlation coefficients of -0.823, -0.790, and -0.423 for Legs 

1, 2, and 3, respectively.  If all of the Leg 3 asteroid pairs are again considered with a 

starting mass of 1500 kg, the correlation coefficient for the third leg is improved to -

0.833.  This increase in the correlation for the Leg 3 asteroid pairs indicates that θwedge is 

a good predictor of low-thrust mass, as long as the initial mass for all pairs is equal.  

When upstream information affects the initial mass and departure date, however, θwedge 

no longer approximates low-thrust mass as well.  Figure 21 plots the maximum final 

mass for each of the asteroid pairs as a function of θwedge 
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Figure 21: Maximum final mass for each asteroid combination as a function of wedge angle, the 

angle between the two angular momentum vectors. 
 

 None of the remaining ephemeris-based pruning metrics considered prove to be 

reliable for pruning the sample problem.  The first method is to choose Group 1 asteroids 

with low energies – therefore, asteroids with the smallest values of semi-major axis.  

When the maximum final mass for each Group 1 asteroid is compared to its semi-major 

axis, the correlation coefficient is only -0.402.  Furthermore, the Group 1 asteroid with 

the second largest semi-major axis (Pandarus, a = 5.17 AU) appears numerous times in 

the final set of feasible trajectories, including in the 3rd best overall trajectory.  These 

results suggest that the semi-major axis of the final asteroid is not a reliable pruning 

metric.  Finally, neither eccentricity nor the distance between the two orbits yield any 

meaningful correlation with low-thrust final mass. 

 The next pruning metric evaluated is the optimal, two-impulse, phase-free ∆V.  

Figure 22 plots the maximum final mass for each asteroid pair as a function of ∆V.  The 

correlation coefficients for each leg are -0.785, -0.866, and -0.186, respectively.  

Therefore, the optimal two-impulse, phase-free ∆V appears to be a good predictor of low-

thrust final mass for the first two legs.  Once again, the correlation for Leg 3 is small.  

When the correlation coefficient is computed for the Leg 3, 1500 kg initial mass data, 

however, the resulting value is -0.871. 
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Figure 22: Maximum final mass for each asteroid pair as a function of the minimum, phase-free, 

two-impulse ∆V. 
 

 The final type of pruning metric considered takes phasing into account, in order to 

eliminate areas of the departure date, flight time, and/or stay time domain for particular 

asteroid combinations.  First, two-impulse, multi-revolution Lambert solutions are 

calculated in an attempt to locate departure dates and flight times that yield low ∆V 

values for each asteroid combination.  The resulting high-thrust ∆V values are then used 

to calculate equivalent mass values, using Equation 16, to better compare them with the 

low-thrust results. 
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 The first approach is to compare the two-impulse and low-thrust mass-optimal 

solutions for a given asteroid pair as a function of departure date, with a fixed time of 

flight.  The two-impulse solution presented is the lowest ∆V Lambert solution over all 

possible number of revolutions.   

 Figure 23 compares the two-impulse and low-thrust mass-optimal solutions from 

Earth to 2006 QQ56 for a 600-day time of flight.  While the peaks in the two solutions 

generally occur for the same departure dates, the two-impulse solution does not 

consistently represent the low-thrust solution over the entire range of dates.  Figure 24 

then plots the two-impulse and low-thrust mass-optimal solutions (both with initial 

masses of 1500 kg) for the Leg 3 transfer from Chicago – Kostinsky, with a 1200-day 
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time of flight.  In this case, the mass-optimal departure dates for the two solutions have 

very little correlation.  These results are typical of the results generated for all of the 

asteroid pairs, when comparing the two-impulse and low thrust solutions for a fixed time 

of flight.  Therefore, it can be concluded that the two-impulse mass-optimal solutions can 

not be used for pruning departure dates with fixed flight times.  
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Figure 23: Comparison of two-impulse and low-thrust mass-optimal solutions for Earth – 2006 QQ56 

with a 600-day time of flight. 
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Figure 24: Comparison of two-impulse and low-thrust mass-optimal solutions for Chicago – 

Kostinsky with a 1200-day time of flight. 
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 The next approach is to compare the two-impulse and low-thrust mass-optimal 

solutions for a given asteroid pair as a function of departure date only, without fixing the 

time of flight.  Therefore, for each departure date, the mass-optimal solutions are 

calculated over the specified range of times of flight.  Figure 25 plots the two-impulse 

and low-thrust mass-optimal solutions for the transfer from Earth to Apophis, with a free 

time of flight up to 600 days.  Even without the fixed time of flight, the two solutions do 

not show good correlation.  Again, these results are typical of the comparison between 

the two-impulse and low-thrust solutions for each of the asteroid pairings. 
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Figure 25: Comparison of two-impulse and low-thrust mass-optimal solutions for Earth – Apophis 

with a time of flight up to 600 days. 
 

 Therefore, it appears that using a two-impulse approximation to eliminate areas of 

the time domain is not feasible.  In some cases, a good low-thrust solution could be 

missed when using a high-thrust screening strategy to choose good departure dates and 

flight times.  The opposite, however, is also true, in that good high-thrust solutions can 

translate into poor low-thrust solutions.   
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The next phasing metric examined is to intercept the Group 1 asteroids near their 

perihelion.  The previous asteroids and departure dates could be then chosen such that the 

spacecraft will arrive at the final asteroid at the specified time.  Figure 26 plots the final 

mass of all the feasible trajectories from the sample problem as a function of the true 

anomaly of the last asteroid at arrival, where a true anomaly of zero degrees corresponds 

to perihelion.  While there does appear to be a cluster of high final mass solutions in the 

vicinity of 30 degrees, most of these solutions are for a single asteroid sequence.  Figure 

27 then plots the arrival true anomaly for the maximum mass solution for the top twenty 

asteroid sequences.  From this figure, it is apparent that there is no strong correlation 

between arrival true anomaly at the final asteroid and the resulting final mass. 
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Figure 26: Final mass of all feasible trajectories as a function of arrival true anomaly at final 

asteroid. 
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Figure 27: Maximum final mass for top twenty asteroid sequences as a function of arrival true 

anomaly at final asteroid. 
 

 Based on the evaluation of all the candidate pruning metrics on the sample 

problem, three metrics were chosen to be incorporated into the final methodology, based 

on their correlation between final mass and each metric’s value: sorting by increasing 

semi-major axis, the angle between the angular momentum vectors (θwedge) and the phase-

free, optimal, two-impulse ∆V.  Each of these is used to eliminate asteroid sequences or 

pairs, but not to eliminate departure dates or flight times.  Furthermore, for wedge angle 

and optimal two-impulse ∆V, the ability of each metric to act as a predictor of low-thrust 

mass decreases for each subsequent trajectory leg, due to the effect of the previous legs 

on the initial mass and departure date. 

 Increasing semi-major axis is applied first to all asteroid sequences, since it is a 

binary metric.  Either an asteroid sequence meets this criteria or it does not.  Those 

sequences that do not meet the criteria are eliminated from the design space.  For the 

sample problem, this step reduces the number of asteroid sequences from 3072 to 512 (a 

factor of 6).  Three different techniques were then evaluated for applying the remaining 

two pruning metrics.  First, all of the metrics are combined for each full asteroid 

sequence i, as illustrated in Equation 17, where a small value of Wi is better: 
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Each pruning metric is summed over all of the legs in the sequence, where each leg 

represents each asteroid pair in the sequence, and then normalized to fall between zero 

and one.  The two summed metrics are then combined with an equal weighting.  By 

ranking all of the asteroid sequences using this single value, a user-defined percentage of 

sequences can be eliminated.   
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Figure 28: Final mass as a function of the summed pruning metric (Equation 17) for each asteroid 
sequence remaining in the small sample problem. 

 

 Figure 28 plots Wi from Equation 17 against the corresponding optimal low-thrust 

final mass for each asteroid sequence in the small sample problem.  In order to keep all 

feasible solutions (all solutions with a final mass greater than 500 kg) in the design space, 

up to 55% of the asteroid sequences can be eliminated.  In order to keep all of the top ten 

asteroid sequences in the design space, up to 85% of the sequences can be eliminated.  

Finally, to keep just the optimum solution in the design space, up to 99% of the 

sequences can be eliminated.  The main drawback to this method, however, is that each 
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pruning metric must be calculated for each possible asteroid pair in the design space.  

While this is not a problem for the small sample problem, it will become computationally 

intensive for significantly larger problems.  

 Second, each pruning metric is still summed over all the legs for each sequence, 

but each metric is applied individually, in sequence.  Therefore, all of the asteroid 

sequences are first ranked as a function of θwedge, summed over each of the legs.  A user-

defined percentage of sequences is then eliminated from the design space.  Next, the 

remaining sequences are ranked as a function of the optimal phase-free, two-impulse ∆V, 

again summed over all the legs.  A user-defined percentage of sequences is then 

eliminated from the design space.  This approach requires less computation time, since 

the optimal ∆V needs to be computed for a smaller number of sequences.  Figure 29 and 

Figure 30 plot the optimal low-thrust final mass as a function of θBwedgeB and optimal 

phase-free, two-impulse ∆V, summed over all the legs for each asteroid sequence in the 

sample problem.   
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Figure 29: Final mass as a function of θwedge, summed over all legs for each asteroid sequence 
remaining in the small sample problem. 
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Figure 30: Final mass as a function of optimal, phase-free, two-impulse ∆V summed over all legs for 
each asteroid sequence remaining in the small sample problem. 

 

 Assuming the same percentage is eliminated for each pruning metric, the largest 

percentage that can be eliminated for each metric to keep all feasible solutions in the 

design space is 36%.  This percentage results in reducing the overall number of asteroid 

sequences from 512 to 201.  In order to keep all of the top ten asteroid sequences in the 

design space, up to 64% can be eliminated for each metric.  This results in 66 remaining 

asteroid sequences.  Finally, to keep the optimum solution in the design space, up to 93% 

can be eliminated for each metric.  This results in just one asteroid sequence remaining in 

the design space, which is the optimal solution. 

The last pruning approach considered applies the metrics sequentially leg-by-leg.  

First, θwedge is used to eliminate a user-defined percentage of Leg 1 (Earth – 1st asteroid) 

asteroid pairs.  Full asteroid sequences that include this pair are eliminated from the 

design space. θwedge is then used to eliminate a user-defined percentage of Leg 2 (1st 

asteroid – 2nd asteroid) asteroid pairs, and is finally used to eliminate a user-defined 

percentage of Leg 3 (2nd asteroid – 3rd asteroid) asteroid pairs.  Next, the optimal, two-

impulse, phase-free ∆V is applied to the reduced design space using the same leg-by-leg 

approach.  This approach requires the least computation time, since the design space is 

reduced one metric at a time, and subsequent metrics need only be calculated for the 
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reduced-size problem.  Furthermore, the percentages eliminated on each leg can be 

decreased for legs further from Earth.  As was shown previously, the pruning metrics are 

good approximations of low-thrust final mass for the first two legs; the correlations drop 

significantly for the third leg, however.  Therefore, the percentage eliminated for Leg 3 

can be chosen to be smaller than for the first two legs.  Table 3 summarizes this third 

pruning approach as applied to the sample problem for a range of percentages.  Using this 

approach, the percentages chosen for each leg can be tailored to account for the reduced 

ability of each pruning metric to approximate low-thrust mass for later legs.  As shown in 

Table 3, if the percentage of asteroids eliminated for Leg 1, Leg 2, and Leg 3, 

respectively, is chosen to be 10%, 10%, and 10%, no feasible solutions are eliminated.  

Percentages of 30%, 25%, and 15% result in feasible solutions being eliminated, but none 

of the asteroid sequences in the top ten being eliminated.  For percentages higher than 

these values, however, asteroid sequences in the top ten begin to be eliminated. 

 

Table 3: Performance of pruning method for a range of elimination percentiles. 
Percent 

Eliminated 
Leg 1 

Percent 
Eliminated 

Leg 2 

Percent 
Eliminated 

Leg 3 

# Remaining 
Asteroid 

Sequences 

# Feasible 
Sequences 
Eliminated 

Max. Mass of 
Eliminated 

Sequnces (kg)
10% 10% 0% 424 0 0 
10% 10% 10% 368 0 0 
20% 15% 10% 240 4 653 
25% 20% 10% 179 7 653 
30% 25% 15% 131 19 653 
30% 25% 20% 118 26 812 

 

In comparing the three approaches, the goal is to reduce the size of the design 

space as much as possible while keeping a majority of the best asteroid sequences in the 

design space.  For the sample problem, each approach is compared based on its ability to 

keep the top ten asteroid sequences in the design space.  Furthermore, the number of 

asteroid pairs for which the pruning metrics must be computed is important to consider, 

particularly when scaling the approach to larger problems.  In the first approach, up to 
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85% of the asteroid sequences could be eliminated without eliminating any of the ten best 

sequences.  This results in 73 remaining asteroid combinations.  This approach, however, 

requires calculating each metric for all 136 distinct asteroid pairs.  Applying the second 

approach to the sample problem, up to 87% of the asteroid sequences can be eliminated, 

resulting in 66 remaining asteroid sequences.  Using this approach, however, θwedge must 

be calculated for all 136 asteroid pairs, but the optimal two-impulse, phase-free ∆V must 

be calculated for only 62 asteroid pairs.  Finally, the third approach can eliminate up to 

74% of asteroid sequences, leaving 131 remaining sequences. θwedge must be calculated 

for 104 asteroid pairs, while the optimal, two-impulse, phase-free ∆V must be calculated 

for 77 asteroid pairs.  Therefore, all three approaches are comparable in that some require 

calculating the pruning metrics for more asteroid pairs but enable a greater reduction in 

the design space, and vice versa.  The third approach is selected because for larger 

problems, a greater reduction in the design space will realize an even greater savings in 

the number of pruning metrics that must be calculated.  This is an important 

consideration, when the number of asteroid sequences is in the millions or billions.  

When applying the pruning approach to a problem, the percent of asteroid pairs 

eliminated in each leg for each pruning metric is chosen based on two factors.  First is the 

desired reduction in the design space – the smaller the resulting number of asteroid 

sequences, the larger the percent eliminated must be.  The more asteroid combinations 

that are eliminated, however, the greater chance there is of eliminating some of the best 

sequences.  Therefore, a user would choose a desired reduction in the number of asteroid 

sequences and then find suitable values for the percentages based on that desired final 

value.   

Table 3 illustrates how the percentages can be incrementally increased until the 

desired number of asteroid sequences remains.  For a general problem, however, the 

number of good sequences eliminated is of course unknown.  Table 4 summarizes the 

results when the following percentage values are applied to the sample problem: 30%, 
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25%, and 15% for Leg 1, Leg 2, and Leg 3, respectively.  The number of asteroid 

sequences is reduced from 3072 to 131, and only 19 feasible sequences were eliminated.  

The best sequence eliminated has a final mass of 653 kg, which ranks 37P

th
P.  Therefore, 

none of the top solutions are eliminated and the design space is reduced by a factor of 23. 

 

Table 4: Pruning methodology applied to sample problem. 
Pruning 
Metric 

Trajectory Leg % Sequences 
Eliminated 

# Sequences 
Eliminated 

aBiB < aBi+1B All N/A 2560 
θBwedgeB Leg 1 30% 128 
θBwedgeB Leg 2 25% 96 
θBwedgeB Leg 3 15% 42 
∆VBoptB Leg 1 30% 41 
∆VBoptB Leg 2 25% 46 
∆VBoptB Leg 3 15% 28 

 

2.5.2  Evaluation of Global Optimization Methods on the Sample Problem 

 The global optimization methods under consideration are all tested on the full 

sample problem (instead of the pruned design space), in order to evaluate them on the 

largest possible design space.  For the genetic algorithm, two approaches are considered, 

as was presented in Figure 11 and Figure 12: (1) a single-level approach, where all global 

design variables are solved for simultaneously, and (2) a two-level approach, where an 

outer loop optimizer solves for the asteroid sequence and an inner loop optimizer solves 

for the time variables.  The branch-and-bound is used solely in the two-level 

configuration, with the branch-and-bound method solving for the asteroid sequence and a 

genetic algorithm solving for the time variables. 

 The basic genetic algorithm is applied to the sample problem in a variety of ways.  

In each case, the following settings must be chosen: 
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 Population size 

 Number of bits for each variable – controls the resolution of the discretization 

 Stall generations – number of generations with no change in the best ever 

objective function after which the genetic algorithm is considered converged 

 Maximum number of generations 

 Tournament size – number of individuals that participate in each round of the 

tournament selection 

 Probability of crossover 

 Probability of mutation 

 

Different values of these settings are tested in each case.  For each set of values, ten runs 

of the genetic algorithm are carried out, and the number of runs that yield the optimum 

solution are recorded.  This value will be referred to as the solution success percentage, 

and is used as an indicator of the performance of the genetic algorithm.  In evaluating the 

genetic algorithm on the sample problem, the GA functions by using a table look-up of 

the sample problem data, as opposed to directly calling MALTO.  Therefore, for each 

asteroid sequence, departure date, and set of flight times, the corresponding optimum 

low-thrust final mass is looked up based on the solution set from the sample problem.  In 

order to achieve this, the discretization for the GA variables is set to equal the 

discretization used in solving the sample problem.  The table look-up significantly 

decreases the run time of the GA, allowing more variations to be evaluated. 

 The first version of the genetic algorithm attempts to solve for all of the global 

design variables at once: asteroid sequence, Earth departure date, and times of flight.  The 

asteroid sequence is handled in two different ways.  First, three variables are used to 

represent the three asteroids in the sequence: asteroid 1, asteroid 2, and asteroid 3.  

Second, a single variable is used to represent the asteroid sequence number, where all of 

the possible asteroid sequences are ordered and assigned an index number.  Including 
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Earth departure date and three times of flight, the first method requires seven total design 

variables, while the second case requires five design variables.  Neither case, however, is 

successful at reliably finding the global optimum solution.  In the first case, the highest 

solution success percentage was only 10%.  Therefore, only 1 of 10 runs of the GA 

yielded the global optimum solution.  Four of the ten cases, however, found the correct 

asteroid sequence, but not the optimal departure dates and flight times.  In the second 

configuration of the asteroid design variables, the highest solution success percentage 

was again only 10%.  The first case required on average 65 generations and 889 function 

calls, while the second case required on average 62 generations and 821 function calls.  

Table 5 lists the values of the GA settings that were used to obtain the stated results. 

 
Table 5: Settings for the single-level genetic algorithm. 

GA Setting Value, Case 1 Value, Case 2 

Design Variables 
Ast. 1, Ast. 2, Ast. 3, 
Earth dep. date, TOF 
1, TOF 2, TOF 3 

Asteroid sequence, 
Earth dep. date, TOF 
1, TOF 2, TOF 3 

Population Size 100 100 
Max. Generations 200 200 
Stall Generations 50 50 
Tournament Size 4 4 
Crossover Proability 0.8 0.8 
Mutation Probablity 0.1 0.1 

 

 The second version of the genetic algorithm uses a two-level approach, where the 

outer loop GA solves for the asteroid sequence and the inner loop GA solves for the 

departure date and flight times for each particular sequence.  This approach has a much 

higher success rate at finding the global optimum.  First, the two loops were examined 

separately, beginning with the outer loop.  The design variables for the outer loop are 

indices representing asteroid 1, asteroid 2, and asteroid 3.  Again, a table look-up of the 

maximum final mass for each asteroid sequence was used to decrease the run time.  The 

solution success percentage in this case was 60%, using the settings listed in Table 6.  An 

average of 27 generations was required with 111 total function calls.  The number of 
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generations being so close to the stall generations indicates that the optimum solution is 

being found either in the random initial population or in the first couple of generations.  

Therefore, the number of stall generations required for convergence could be decreased 

in order to decrease the number of required function calls.   

 

Table 6: Settings for inner and outer loop genetic algorithm. 
GA Setting Value, Outer Loop Value, Inner Loop 

Design Variables Ast. 1, Ast. 2, Ast. 3 Earth dep. date, TOF 
1, TOF 2, TOF 3 

Population Size 50 50 
Stall Generations 25 25 
Tournament Size 4 4 
Crossover Proability 0.8 0.8 
Mutation Probablity 0.1 0.1 

 

Next, the inner loop portion of the GA was examined on the top ten asteroid sequences 

(from Table 1), using the settings listed in Table 6.  Again, the GA was run ten times for 

each asteroid sequence.  Overall, the solution success rate was 33%, requiring an average 

of 33 generations and 220 function calls.  In order to try and increase the success rate of 

the genetic algorithm, the population size was increased to 100 and the GA was again 

applied to the same ten asteroid sequences.  Because a larger population size increases 

the number of function calls, the number of stall generations required for convergence 

was decreased to 15.  As a result, the solution success rate improved to 56%, and the 

average number of generations required decreased to 21.  The average number of 

function calls, however, increased to 395 per run of the genetic algorithm.  These two 

cases illustrate the important tradeoff between the performance of the genetic algorithm 

and the required number of function calls.  Finally, the outer and inner loop genetic 

algorithms were combined and applied to the overall sample problem, using the settings 

in Table 7.  As before, for each case, the outer loop genetic algorithm was run ten times.  

For each function call, the outer loop genetic algorithm calls the inner loop genetic 
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algorithm, which determines the optimal departure date and flight times for the particular 

asteroid sequence chosen by the outer loop optimizer.  As seen above, the success rate of 

the inner loop GA is less than 100%, which means that there is no guarantee that a single 

run of the GA will yield the optimum solution.  Therefore, each time the inner loop GA is 

called, it is actually run several times and the best solution is then sent back to the outer 

loop GA.    The first case is based on the baseline values of the GA settings from Table 6.  

For each function call of the outer loop GA, the inner loop GA is run 3 times.  The 

resulting solution success rate (the percentage of time the outer loop locates the optimal 

asteroid sequence, along with the optimal departure date and flight times found by the 

inner loop) is 60%.  The outer loop ran for an average of 30 generations, and required on 

average 181 function calls to the inner loop optimizer.  Although a table look-up of the 

sample problem data was still used, the equivalent number of MALTO function calls 

would be nearly 78,000. 

 
 

Table 7: Settings and performance of the multi-level genetic algorithm. 
 GA Setting Case 1 Case 2 Case 3 Case 4 

Population Size 50 50 50 100 
Stall Generations 25 10 10 10 
Tournament Size 4 4 4 4 
Crossover Probability 0.8 0.8 0.8 0.8 

O
ut

er
 L

oo
p 

Mutation Probability 0.1 0.1 0.1 0.1 
Number of runs of inner loop 
per function call: 3 3 5 3 

Population Size 50 50 50 100 
Stall Generations 25 10 10 10 
Tournament Size 4 4 4 4 
Crossover Probability 0.8 0.8 0.8 0.8 

In
ne

r L
oo

p 

Mutation Probability 0.1 0.1 0.1 0.1 
Solution Success Rate 60% 40% 60% 80% 
Avg. Number of Generations 30 13 12 11 
Avg. Number of Func. Calls 181 144 146 270 
Avg. Number of MALTO Calls 77775 43341 68504 140466 
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 In an attempt to reduce the number of required function calls, the number of stall 

generations required for convergence was lowered in Case 2.  While the number of outer 

loop function calls was reduced to 144 and the number of MALTO function calls was 

reduced to just over 43,000, the solution success rate also decreased to 40%.  Therefore, 

more runs of the genetic algorithm would be required to find the optimal solution with 

the same confidence as for Case 1.  Next, the number of runs of the inner loop GA per 

function call was increased to five, keeping the remaining settings the same as from Case 

2.  This resulted in raising the success rate of the GA back to 60%, while reducing the 

number of required MALTO calls from Case 1.  Finally, the population size was 

increased to 100 for both the inner and outer loops to try to raise the success rate above 

60%.  While the success rate was increased to 80%, the number of calls to MALTO also 

increased to over 140,000.  The results presented in Table 7 indicate that the multi-level 

genetic algorithm is successful at locating the optimal solution more than half the time 

(depending on the settings chosen).  The number of MALTO runs required, however, 

makes this method prohibitive, particularly as the problem size increases.  Each end-to-

end MALTO run takes on the order of 10 seconds, which would require anywhere from 5 

days (for Case 2) to 16 days (for Case 4) for a single run of the genetic algorithm on a 

single processor. 

 Next, the branch-and-bound method presented in Section 2.3.2 is evaluated as the 

outer-loop optimizer.  As aforementioned, it relies on the ability of the two-impulse 

approximation to act as an upper bound for the optimal low-thrust solution.  For each 

trajectory leg (Earth – Asteroid 1, Earth – Asteroid 1 – Asteroid 2, and Earth – Asteroid 1 

– Asteroid 2 – Asteroid 3), the mass-optimal two-impulse solution is compared to the 

mass-optimal low-thrust solution for each possible asteroid sequence.  The two-impulse 

optimal solutions represent the minimum ∆V solutions over all possible number of 

revolutions, using the same departure date range and times of flight as the sample 

problem.  The optimal solutions are found using a grid search.  The corresponding mass 
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is calculated using the same specific impulse and initial mass as for the low-thrust 

problem.  The results are plotted in Figure 31, Figure 32, and Figure 33, sorted by the 

two-impulse final mass. 
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Figure 31: Comparison of mass-optimal low-thrust and two-impulse solutions for all Earth – 

Asteroid 1 sequences. 
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Figure 32: Comparison of mass-optimal low-thrust and two impulse solutions for all Earth – 

Asteroid 1 – Asteroid 2 sequences. 
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Figure 33: Comparison of mass-optimal low-thrust and two-impulse solutions for all Earth – 

Asteroid 1 – Asteroid 2 – Asteroid 3 sequences. 
  

 The figures above indicate that as calculated, the two-impulse solutions do not 

provide a reliable upper bound.  However, if the two-impulse solutions are shifted 

slightly, then they could provide an upper bound for the low-thrust solutions.  For the 

sample problem, this would require a multiplication factor of 1.09, 1.14, and 1.21 for Leg 

1, Leg 1 + Leg 2, and Leg 1 + Leg 2 + Leg 3, respectively.  Of course, on a larger 

problem, this multiplication factor is not known a priori.  Choosing a value of this 

parameter that is too small will result in a number of good sequences being pruned out 

during the branch-and-bound procedure.  Choosing a value that is too large, however, 

will result in an unnecessarily large number of low-thrust trajectory optimizations to be 

carried out because very few asteroid sequences will be pruned.  The solution is to iterate 

on the best value of this multiplication factor during the branch-and-bound procedure, as 

will be illustrated on the sample problem. 

 Another important aspect of the branch-and-bound method is the order in which 

the branches are evaluated.  Choosing this order in an intelligent fashion can significantly 

reduce the number of asteroid sequences that require low-thrust trajectory optimization.  

If an asteroid sequence with a high final mass is evaluated early in the process, then more 

branches will be pruned out than if all low mass sequences are evaluated initially.  One 

way to choose the order in which to evaluate the various branches is based on the pruning 
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metrics which were calculated in the previous phase of the methodology.  For each full 

asteroid sequence, the pruning metrics can be combined as follows, where the two 

pruning metrics are weighted equally: 
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For each asteroid sequence i, Wi will fall between 0 and 1, with smaller numbers being 

better.  The first sequence evaluated, which is used to set the initial lower bound, is 

chosen based on the results of Equation 18.  The branches are then evaluated in 

sequential order based on the weighted combination of the pruning metrics. 

 The first example applies the branch-and-bound method without any multiplier on 

the two-impulse solutions.  For the sample problem, the first asteroid sequence evaluated 

is Earth – 2006 QQ56 – Medusa – Pandarus.  The resulting optimal low-thrust solution is 

638 kg.  This becomes the current lower bound.  The next asteroid sequence, based on the 

pruning metric rank, is Earth – 2006 QQ56 – Chicago – Pandarus.  First, the optimal two-

impulse solution is calculated for the first leg: Earth – 2006 QQ56, yielding an optimal 

final mass of 1371 kg.  Because this is greater than the current lower bound, the next 

level down must be calculated.  The resulting two-impulse optimal solution for Earth – 

2006 QQ56 – Chicago is 824 kg.  Again, this branch can not be pruned.  Finally, the two-

impulse optimal for the entire sequence, Earth – 2006 QQ56 – Chicago – Pandarus, is 

736 kg.  Because this is still greater than the current lower bound, the optimal low-thrust 

solution for this asteroid sequence must be calculated.  This sequence does not yield a 

feasible solution (MBfB < 500 kg), and therefore, the previous lower bound remains the best 

known solution thus far.  The third ranking asteroid sequence is Earth – 2006 QQ56 – 

Medusa – Kostinsky.  The same process is carried out, and again the optimal two-impulse 
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solution for the entire asteroid sequence is not sufficient to prune out that branch.  The 

resulting low-thrust optimal solution is 904 kg, which happens to be the optimal solution 

for the sample problem.  Of course, for a general problem, the optimal solution is not 

known, so all of the branches have to be evaluated. 

 When the entire branch-and-bound method is completed, the low-thrust optimum 

of only 4 asteroid sequences has to be computed.  Of the 8 Earth – Asteroid 1 two-

impulse solutions computed, 1 resulted in that branch being pruned.  Of the remaining 56 

Earth – Asteroid 1 – Asteroid 2 trajectories, 41 resulted in that branch being pruned.  That 

left 120 two-impulse optimizations of the full sequence (Earth – Asteroid 1 – Asteroid 2 

– Asteroid 3), of which only 4 required low-thrust optimizations. 

 The results of this first iteration of the branch-and-bound method can then be used 

to revise the multiplier on the two-impulse solutions.  The low-thrust optimum solutions 

that were calculated can be compared to the corresponding two-impulse solutions.  Of 

these asteroid sequences, only one yields a low-thrust final mass that is greater than the 

impulsive solution.  The required increase in the impulsive solution sets the 

multiplication factor at 1.15.  The branch-and-bound procedure can then be repeated 

using this new multiplication factor on all of the impulsive solutions.  Now, none of the 

Earth – Asteroid 1 branches can be pruned out, requiring the optimal impulsive solution 

to be found on 8 additional Earth – Asteroid 1 – Asteroid 2 trajectories.  Furthermore, a 

total of 224 two-impulse optimizations are now required for the full sequence.  Finally, 

10 additional low-thrust trajectory optimizations must be carried out, for a total of 14 

over the two iterations of the branch-and-bound procedure.  All of the new low-thrust 

solutions are less than their corresponding impulsive solutions; therefore, no more 

iteration on the impulsive multiplier is required.  After two iterations, not only was the 

global optimum solution found, but 5 of the top 10 asteroid sequences were also located.  

Figure 34 plots all of the feasible asteroid sequences in the sample problem in blue, 
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sorted by final mass.  All of the sequences identified by the branch-and-bound algorithm 

are identified in pink. 
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Figure 34: Asteroid sequences identified by applying branch-and-bound algorithm to small sample 

problem. 
 

 If the optimum solution is found early in the branch-and-bound algorithm, as is 

the case for the sample problem, a number of good solutions will be pruned out due to the 

high value of the lower bound.  Therefore, once the branch-and-bound algorithm has 

completed and found the optimal solution, additional low-thrust optimizations can be 

carried out to find additional good solutions.  A smaller value of the lower bound can be 

selected, and all asteroid sequences with two-impulse optimal solutions greater than that 

bound (using the final impulsive multiplier value of 1.15) can be passed to the genetic 

algorithm to calculate their low-thrust optimum.  For example, if additional solutions 

greater than 800 kg were desired, there are 65 additional asteroid sequences whose two-

impulse optimum final mass (multiplied by 1.15) is greater than 800 kg.  If the low-thrust 

optimum is calculated for each of these sequences, then all of the top ten asteroid 

sequences are found.  
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 As was seen above, a multiplier of 1.21 was required to fully bound the low-thrust 

solutions with the impulsive solutions, while the iterative branch-and-bound method 

resulted in a final multiplier of only 1.15.  Of course, there is no guarantee that the correct 

multiplier has been obtained without evaluating the low-thrust optimal for all branches of 

the search tree, but this would defeat the purpose of using the impulsive approximation as 

a bound.  For the sample problem, only 3 full asteroid sequences were pruned out 

incorrectly using the multiplier value of 1.15.  In general, to increase the confidence that 

a good multiplier has been obtained, and therefore the optimal solution has been found, 

several additional low-thrust optimal solutions can be computed after the branch-and-

bound procedure has been completed.  This not only adds more data points from which to 

iterate on the impulsive multiplier, if necessary, it also adds more good asteroid 

sequences to the final solution.  Therefore, after the branch-and-bound was completed on 

the sample problem, the low-thrust optimal was found for the ten best impulsive 

solutions.  Although this did not result in the multiplier value being changed, it did find 

an additional asteroid sequence that falls in the top ten for the sample problem. 

 The same procedure can then be repeated, without using the pruning metrics to 

rank the asteroid sequences, in order to compare the number of low-thrust optimizations 

that must be carried out.  In this case, the order in which they are evaluated is based 

solely on proceeding in numerical order using the asteroid’s identification numbers.  In 

just the first iteration (impulsive multiplier equal to 1), 268 low-thrust trajectory 

optimizations must be carried out, as compared to just fourteen required low-thrust 

optimizations over two iterations using the previous technique.  From this example, it is 

clear that evaluating the branches in a sequence based on the pruning metric ranking 

saves significant computation time.  Evaluating the branch-and-bound branches in this 

manner reduces the number of asteroid sequences that require low-thrust optimization 

because a large value of the lower bound (best known low-thrust solution) is set early in 

the algorithm, thereby pruning out branches of the search tree with lower values of two-



 84

impulse optima.  Figure 35 plots the optimal low-thrust solutions for the 512 asteroid 

sequences in the branch-and-bound tree, as a function of the normalized sum of the 

pruning metrics.  This represents the order in which these sequences would be evaluated 

during the branch-and-bound algorithm.  As expected, most of the better solutions occur 

for higher ranked sequences, resulting in fewer required low-thrust optimizations than if a 

random order were used in the branch-and-bound algorithm. 

 

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Normalized Sum of Pruning Metrics

O
pt

im
al

 L
ow

-T
hr

us
t M

f (
kg

)

 
Figure 35: Low-thrust optima as a function of the normalized sum of the pruning metrics (branch-

and-bound ranking), for the small sample problem. 
 

 The branch-and-bound lower bound can also be selected intelligently.  Up to this 

point, the branch-and-bound algorithm was initiated without a known low-thrust solution 

and therefore a lower bound of zero.  This lower bound is then incrementally increased as 

better low-thrust solutions are found.  For the small sample problem, the optimum 

sequence is the third ranked sequence and also the third sequence evaluated in low-thrust.  

While it is expected that better solutions will be found early for larger problems, there 

may still be a relatively large number of poor sequences that must be evaluated in low-

thrust before the better solutions are found and the lower bound is correspondingly 
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increased.  If the branch-and-bound algorithm were started with a non-zero lower bound, 

however, a lot of these low-thrust optimizations of poor sequences could be eliminated.   

 The initial lower bound is a user-defined value, based on estimating the optimal 

value of the objective function based on the physics of the problem being solved.  An 

iterative approach could be utilized in setting this initial lower bound.  If, for example, an 

initial lower bound is chosen and the best low-thrust solution found at the completion of 

the branch-and-bound algorithm is less than this lower bound, the value chosen was 

potentially set too high.  The initial lower bound could then be decreased to match the 

best low-thrust solution found in order to capture additional good solutions (the 

sequences that already required low-thrust optimization would not have to be re-

evaluated). 

 Another important observation can be made from Figure 35, which could also 

serve to reduce the number of low-thrust optimizations required.  As was previously 

highlighted, the best solutions are generally evaluated early in the branch-and-bound 

algorithm, as a result of using the pruning metrics to prioritize the order of the asteroid 

sequences.  For the sample problem, the top ten known solutions all rank in the first 73 

asteroid sequences (out of 512) – this represents the top 14% in terms of the branch-and-

bound ranking.  Furthermore, seven of the top ten solutions rank within the top 5% of all 

ranked sequences.  Therefore, in solving a large problem where time and computational 

resources are limited, it is also possible to consider only analyzing some user-defined 

percentage of the branch-and-bound tree (based on computational time constraints) and 

still locate a majority of the good solutions.   

 While these additional modifications to the branch-and-bound algorithm are not 

applicable on the small sample problem, they will be evaluated on the larger problems 

considered in Chapter 5 to determine if these same trends hold and how large a reduction 

in the number of required low-thrust optimizations can be achieved as a function of the 

number of good solutions found. 



 86

CHAPTER III 

OVERVIEW OF METHODOLOGY 

 The final methodology combines a three-level heuristic pruning step, which 

quickly reduces the size of the design space, with a multi-level global optimization step, 

which locates a suite of good solutions.  Each of the steps of the methodology is 

presented here, followed by a discussion of the assumptions and scope. 

  3.1   Overview of Methodology 

 The pruning phase of the methodology applies three pruning metrics, in order of 

required computation time: 

 

(1) ai ≤ ai+1 – keep only asteroid sequences where the semi-major axis of the 

asteroids increases from one asteroid to the next 

(2) θwedge – angle between the angular momentum vectors of asteroid pairs 

a. θwedge is computed for all Leg 1 (Earth – 1st asteroid) asteroid pairs; the 

worst k1 percent is eliminated from the design space. 

b. θwedge is computed for all remaining Leg 2 (1st asteroid – 2nd asteroid) 

asteroid pairs; the worst k2 percent is eliminated from the design space. 

c. θwedge is computed for all remaining Leg 3 (2nd asteroid – 3rd asteroid) 

asteroid pairs; the worst k3 percent is eliminated from the design space. 

d. θwedge is computed for all remaining Leg 4 (3rd asteroid – 4th asteroid) 

asteroid pairs; the worst k3 percent is eliminated from the design space. 

(3) ∆Vopt – optimal two-impulse, phase-free delta-V between asteroid pairs 

a. ∆Vopt is computed for all remaining Leg 1 (Earth – 1st asteroid) asteroid 

pairs; the worst k1 percent is eliminated from the design space. 
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b. ∆Vopt is computed for all remaining Leg 2 (1st asteroid – 2nd asteroid) 

asteroid pairs; the worst k2 percent is eliminated from the design space. 

c. ∆Vopt is computed for all remaining Leg 3 (2nd asteroid – 3rd asteroid) 

asteroid pairs; the worst k3 percent is eliminated from the design space. 

d. ∆Vopt is computed for all remaining Leg 4 (3rd asteroid – 4th asteroid) 

asteroid pairs; the worst k3 percent is eliminated from the design space. 

 

 The percentages eliminated on each leg (k1, k2, k3, k4,) are user-defined constants, 

which are chosen based on the desired reduction in the design space.  As a general rule of 

thumb, two considerations should be made when choosing the percentages.  First, the 

percentages should decrease for each subsequent leg, particularly for legs beyond Leg 1 

(k1) and Leg 2 (k2).  A 5% to 10% decrease from leg-to-leg is appropriate.  Second, the 

maximum pruning percentage (k1, Leg 1 percentage) should be kept as small as possible, 

while still achieving the desired overall reduction in the design space and decreasing the 

percentages for subsequent legs.  The more asteroid sequences that are eliminated, the 

greater the chances are of eliminating a large number of good solutions from the design 

space.  Therefore, these values must be chosen to balance the required computation time 

of solving a larger problem with the risk of eliminating good solutions from the design 

space. 

 Once the design space has been pruned, and the desired number of remaining 

asteroid sequences has been achieved, the multi-level global optimization scheme is 

applied to the reduced problem.  This approach combines a branch-and-bound algorithm, 

which solves for the optimal asteroid sequence, with a genetic algorithm, which solves 

for the optimal departure date, times of flight, and stay times for a given sequence.  

Additionally, the genetic algorithm is linked with MALTO, which maximizes final mass 

for a given set of global variables.  The global optimization scheme is outlined as 

follows: 
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(1) All asteroid sequences are ranked as a function of the normalized sum of the 

pruning metrics.  In order to set the initial value of the lower bound, one of the 

following three techniques can be employed:  

a. For the top ranked sequence, the genetic algorithm is run NGA times to 

solve for the optimum low-thrust solution.  The optimal final mass of the 

asteroid sequence is set as the current lower bound on the design space. 

b. If a solution is already known for a given sequence (from previous work, 

for example), this can be used as the current lower bound. 

c. An approximation can be made for the initial value of the lower bound, 

based the physics of the problem being solved. 

(2) Multiplier on the optimal, impulsive solutions is set to 1. 

(3) Beginning with the next highest-ranked sequence, the branches begin to be 

evaluated. 

a. The optimal, multi-rev, two-impulse solution (over the same date range 

and time of flight range specified in the low-thrust problem) is calculated 

for the first segment of the branch, i.e., Earth – 1st asteroid.  

i. If the optimal, multi-rev, two-impulse solution is less than the 

current lower bound, the rest of that branch is pruned out.  

Continue to Step 4. 

ii. If the optimal, multi-rev, two-impulse solution is greater than the 

current lower bound, continue to next segment. 

b. The optimal, multi-rev, two-impulse solution is calculated for the first and 

second segments of the branch, i.e., Earth – 1st asteroid – 2nd asteroid. 

i. If the optimal, multi-rev, two-impulse solution is less than the 

current lower bound, the rest of that branch is pruned out.  

Continue to Step 4. 
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ii. If the optimal, multi-rev, two-impulse solution is greater than the 

current lower bound, continue to next segment. 

c. Above process is continued until the end of the branch has been reached, 

i.e., Earth – 1st asteroid – 2nd asteroid - … - nth asteroid.   

i. If the optimal, multi-rev, two-impulse solution is greater than the 

current lower bound, compute the optimal low-thrust solution for 

the entire sequence (by running the genetic algorithm NGA times). 

ii. If the optimal low-thrust solution is greater than the current lower 

bound, update the current lower bound. 

d. Continue above steps until all branches have been solved or pruned. 

(4) Once all branches have been evaluated, compare the known low-thrust optimal 

solutions with their corresponding optimal, multi-rev, two-impulse solutions.  

Update the impulsive multiplier such that all known low-thrust solutions are 

bounded by the two-impulse solutions.  

a. If the impulsive multiplier needs to be updated, repeat Step 3 with the new 

value of impulsive multiplier. 

b. Otherwise, terminate branch-and-bound. 

 

The algorithm specifies calculating the optimal two-impulse solutions for a number of 

asteroid sequences.  In this work, this is calculated using a grid search, but a genetic 

algorithm, a gradient-based method with multiple starting points, or another method 

could also be employed. 

 If after the first iteration of the branch-and-bound, no low-thrust optimum 

solutions are calculated (other than the first optimum calculated to set the lower bound, if 

applicable), it is possible that the impulsive multiplier need not be updated.  Instead of 

terminating the branch-and-bound with only the lower bound computed, a small set of 

additional low-thrust optima can be calculated based on the sequences that have the best 
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two-impulse optimum solutions.  Therefore, a larger sample size is available to more 

accurately determine the next required value for the impulsive multiplier.  This procedure 

can also be carried out at the end of the branch-and-bound algorithm (after multiple 

iterations) to ensure that the correct value of the impulsive multiplier has been converged 

on.  This process also serves to potentially locate additional good solutions that were not 

calculated during the branch-and-bound algorithm.  This is especially important if the 

optimal solution is located early in the branch-and-bound algorithm, since the high value 

of the lower bound will eliminate a large number of potentially good solutions.  While 

locating the optimum solution early in the algorithm will minimize the number of low-

thrust optimizations that must be carried out, it also results in a larger number of good 

solutions being pruned out.  The number of good solutions desired (in addition to the 

optimum) will determine the number of additional low-thrust optimizations to be carried 

out after the branch-and-bound algorithm as terminated. 

 Furthermore, if the branch-and-bound algorithm is started with an estimate made 

for the initial value of the lower bound (step 1c), and a satisfactory set of low-thrust 

solutions is not found, the lower bound can be incrementally decreased and the branch-

and-bound algorithm re-run with the new initial lower bound.  Both in this scenario and 

in the iterative approach to setting the impulsive multiplier, it is not necessary to re-run 

the two-impulse or low-thrust optimizations that have already been calculated.  In order 

to minimize computation time, both the two-impulse and low-thrust optima should be 

saved for each asteroid sequence for which they are evaluated.  A simple table look-up 

can then be used for these sequences as opposed to rerunning the optimizations for each 

iteration through the branch-and-bound algorithm.  In this manner, only the new asteroid 

sequences requiring optimization need to be evaluated. 

 A similar iterative approach can also be taken with regards to the pruning phase.  

If time permits upon completion of the methodology, the pruning percentages could then 

also be relaxed, increasing the number of asteroid sequences passed to the global 
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optimization phase.  The branch-and-bound algorithm can then be reapplied in an attempt 

to locate additional good solutions.   

  3.2   Assumptions and Scope 

 The methodology presented here is for the conceptual design of low-thrust 

trajectories that rendezvous with multiple asteroids or other small bodies and if desired, 

return to Earth.  The methodology is applicable to both small and large domain problems, 

and is scalable depending upon the computational resources available to the user. 

 While the methodology does not model flybys (of gravitational bodies or the 

asteroids themselves), it can be used as an initial screening technique to identify the best 

asteroid sequences independent of flybys.  As will be seen in Section 5.1, in many cases, 

the sequences that yield the best solutions in terms of mass and time of flight without 

flybys also yield the best solutions when flybys are considered.  In these cases, the flybys 

serve to improve upon already good asteroid sequences.  Because the addition of flybys 

to a trajectory is not a trivial task, the methodology proves useful in greatly reducing the 

number of asteroid sequences that need to be considered for the inclusion of these flybys.  

Modeling of flybys within this methodology is a potential area of future work. 

 At several steps in the methodology, two-impulse solutions are used to 

approximate the low-thrust trajectories – these are used in the pruning phase as well as in 

the branch-and-bound algorithm as a surrogate for relaxed solutions.  For the asteroid 

pairings and sequences examined in this work, this proved to be a good approximation.  

In general, this will be the case when the ratio of thrust time to trajectory time is low for 

the low-thrust trajectory.  While this is true for many low-thrust trajectories, there are 

cases where continuous or near-continuous thrusting over a majority of the trajectory is 

optimal.  In these cases, a two-impulse approximation would not be appropriate.  If the 

trend information provided by the two-impulse solutions is not a good surrogate for the 

associated low thrust problem, the methodology would have to be modified by 
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identifying another metric that could be used in the place of the two-impulse 

approximation. 

 The branch-and-bound algorithm requires that the objective function increase or 

decrease monotonically as it proceeds down each segment of a branch.  For example, 

final mass can only decrease as additional legs of the trajectory are examined, i.e., going 

from Earth – Body 1 to Earth – Body 1 – Body 2 to Earth – Body 1 - ··· - Body N.  As 

long as this is true, branches of the tree can be pruned out before reaching the bottom 

branch, decreasing the computation time required.  If this is not the case, however, the 

branch-and-bound algorithm could be modified such that entire branches must be 

evaluated before deciding whether or not they had to be pruned.  For example, the two-

impulse optimal solution for the entire Earth – Body 1 - ··· - Body N trajectory would 

have to be solved for to determine if that branch is pruned or needs to be evaluated in 

low-thrust.  In this case, the step-by-step algorithm for the global optimization phase 

would instead proceed as follows: 

 

(1) All asteroid sequences are ranked as a function of the normalized sum of the 

pruning metrics.  In order to set the initial value of the lower bound, one of the 

three techniques outlined above would be employed. 

(2) Multiplier on the optimal, impulsive solutions is set to 1. 

(3) Beginning with the next highest-ranked sequence, the branches begin to be 

evaluated. 

a. The optimal, multi-rev, two-impulse solution (over the same date range 

and time of flight range specified in the low-thrust problem) is calculated 

for the full branch, i.e., Earth – 1st asteroid – 2nd asteroid - … - nth asteroid.   

i. If the optimal, multi-rev, two-impulse solution is greater than the 

current lower bound, compute the optimal low-thrust solution for 

the entire sequence (by running the genetic algorithm NGA times). 
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ii. If the optimal low-thrust solution is greater than the current lower 

bound, update the current lower bound. 

b. Continue above steps until all branches have been solved or pruned. 

(4) Once all branches have been evaluated, compare the known low-thrust optimal 

solutions with their corresponding optimal, multi-rev, two-impulse solutions.  

Update the impulsive multiplier such that all known low-thrust solutions are 

bounded by the two-impulse solutions.  

a. If the impulsive multiplier needs to be updated, repeat Step 3 with the new 

value of impulsive multiplier. 

b. Otherwise, terminate branch-and-bound. 
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CHAPTER IV 

VALIDATION OF METHODOLOGY 

 In order to validate the methodology, an intermediate-sized sample problem is 

created and solved.  The proposed methodology is applied to this intermediate problem, 

in order to validate its ability to locate a suite of good solutions. 

4.1   Intermediate Sample Problem 

The intermediate sample problem was created with the same parameters and 

constraints as the small sample problem, which was outlined in Section 2.5.  This 

problem, however, is an order or magnitude larger, consisting of three groups of twelve 

asteroids, for a total of 10,368 discrete asteroid sequences.  Figure 36 plots the asteroids 

in the intermediate problem, as a function of their semi-major axis, inclination, and 

eccentricity.  The orbital elements for these asteroids can also be found in Appendix A.  

Once again, the objective function is to maximize final mass, with constraints placed on 

the time of flight of the individual trajectory legs.   
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Figure 36: Set of asteroids for intermediate sample problem. 

 

 The intermediate problem was solved in the same manner as the small sample 

problem, by discretizing the departure date and flight times and using MALTO to solve 
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for each trajectory leg.  Once again, all possible combinations were analyzed to have a 

basis for evaluation of the performances of the pruning and global optimization phases.  

The best solution visits the following asteroids: 2006 QQ56 – Medusa – Kostinsky.  The 

spacecraft departs Earth on March 1, 2015 with a launch V∞ of 2.59 km/s.  The time of 

flight for each leg is 600 days, 1600 days, and 1200 days, respectively.  The total mission 

time is 3580 days, which includes the two 90-day stay times at each asteroid, and the 

arrival mass is 903 kg.  This is actually the same optimal solution as for the small sample 

problem, and is plotted in Figure 19. 

  

Table 8: Ten best asteroid combinations for intermediate problem ranked by final mass. 
Earth Dep. 

Date Ast. 1 Ast. 2 Ast. 3 Leg 1 TOF 
(days) 

Leg 2 TOF 
(days) 

Leg 3 TOF 
(days) 

Mf 
(kg) 

03/01/2015 2006 QQ56 Medusa Kostinsky 600 1600 1200 904 
01/01/2015 2004 VJ1 Medusa Kostinsky 500 1800 1200 870 
08/22/2016 2006 QQ56 Hertha Telamon 600 1800 1200 856 
03/05/2020 2006 FH36 Medusa Potomac 500 1800 1200 843 
03/29/2021 Apophis Hertha Pandarus 300 1800 1200 843 
10/12/2018 2006 FH36 Geisha Kostinsky 500 1800 1200 834 
01/01/2015 2002 AA29 Medusa Kostinsky 600 1700 1200 831 
09/11/2018 2006 QQ56 Geisha Kostinsky 600 1700 1200 826 
06/12/2024 2004 VJ1 Medusa Potomac 600 1800 1200 820 
08/28/2015 2006 QQ56 Geisha Caltech 600 1700 1200 812 
 

Table 9: Orbital elements of asteroids in Table 9, in the J2000 heliocentric ecliptic frame. 
Asteroid 

Name Group # semi-major 
axis (AU) eccentricity inclination 

(deg) 
longitude of the 
asc. node (deg) 

Argument of 
periapsis (deg) 

2006 QQ56 4 0.987 0.047 2.83 163.33 332.96 
2002 AA29 4 0.994 0.013 10.74 106.47 100.61 

Apophis 4 0.922 0.191 3.33 204.46 126.40 
2004 VJ1 4 0.944 0.164 1.29 233.54 332.36 

2006 FH36 4 0.954 0.199 1.59 280.92 154.81 
Geisha 2/3 2.24 0.193 5.66 78.34 299.88 
Medusa 2/3 2.17 0.065 0.937 159.65 251.13 
Hertha 2/3 2.43 0.207 2.31 343.90 340.04 

Kostinsky 1 3.99 0.220 7.64 257.11 163.00 
Telamon 1 5.17 0.108 6.09 341.01 111.19 
Pandarus 1 5.17 0.068 1.85 179.86 37.74 
Caltech 1 3.16 0.114 30.69 84.61 294.92 
Potomac 1 3.98 0.181 11.40 137.51 332.82 
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 Table 8 lists the 10 best asteroid sequences, ordered in terms of final mass. Table 

9 lists the Keplerian orbital elements of each of the asteroids that appear in Table 8, in the 

J2000 heliocentric ecliptic frame. 

4.2   Application of Methodology to Intermediate Problem  

4.2.1  Pruning Phase 

First, the pruning phase of the methodology is applied to the intermediate 

problem.  The first step of the pruning phase requires keeping only asteroid sequences 

where the semi-major axis of each asteroid increases from one asteroid to the next.  This 

first step reduces the number of asteroid sequences in the design space from 10,368 to 

1,728 (a factor of 6 reduction).  Only two sequences were eliminated that yield feasible 

solutions (final mass greater than 500 kg), and their optimum final masses are 608 kg and 

524 kg.  These solutions rank 191st and 467th, respectively.  Therefore, this first pruning 

step is effective in reducing the size of the design space without eliminating the best 

asteroid sequences. 

The second and third steps in the pruning phase use two metrics to eliminate a 

user-chosen percentage of asteroid pairs from each leg of the trajectory.  Since this 

problem is not significantly larger than the small sample problem, the same percentage 

reductions are applied to each leg: k1 = 0.3, k2 = 0.25, and k3 = 0.15.  The first of these 

two metrics – the angle between two asteroids’ angular momentum vectors – reduces the 

number of asteroid sequences from 1,728 to 824 (factor of 2).  The second metric – the 

optimal, phase-free, impulsive ∆V – further reduces the number of asteroid sequences 

from 824 to 416 (factor of 2). 

Overall, the pruning procedure reduces the number of asteroid sequences by a 

factor of 25, from 10,368 to 416.  While 199 feasible sequences are eliminated, only one 

sequence in the top ten is eliminated (Mf = 831, ranked 7th overall).  The next best 
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sequence eliminated has a final mass of 760 kg, which ranks 25th.  Figure 37 plots in blue 

the 1728 remaining asteroid sequences after the first pruning metric is applied, ordered by 

optimal low-thrust final mass.  In pink are the asteroid sequences remaining after the 

second and third pruning metrics are applied.  As can be seen, a majority of the good 

asteroid sequences remain in the design space after the pruning procedure is applied.  

Table 10 summarizes the pruning procedure as applied to the intermediate problem. 

 

 
Figure 37: Asteroid sequences remaining in design space after 1st pruning metric (blue) and 2nd & 3rd 

pruning metrics (pink). 
 

Table 10: Pruning methodology applied to intermediate problem. 
Pruning 
Metric 

Trajectory Leg % Asteroid Pairs 
Eliminated 

# Sequences 
Eliminated 

aBiB < aBi+1B All N/A 8640 
wedge angle Leg 1 30% 432 
wedge angle Leg 2 25% 324 
wedge angle Leg 3 15% 130 

impulsive ∆V Leg 1 30% 174 
impulsive ∆V Leg 2 25% 152 
impulsive ∆V Leg 3 15% 100 
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 In order to further validate the pruning phase of the methodology, the correlations 

between each pruning metric and optimal low-thrust final mass were calculated, as was 

done for the small sample problem while developing the methodology.  Figure 38 plots 

the maximum low-thrust final mass for each asteroid pair, for each trajectory leg, as a 

function of the angle between the angular momentum vectors.  As expected, there 

appears to be a strong correlation between this pruning metric and final mass, particularly 

for the Leg 1 and Leg 2 asteroid pairs.  Similarly, Figure 39 plots the maximum low-

thrust final mass for each asteroid pair, for each trajectory leg, as a function of the 

minimum phase-free, two-impulse ∆V of each asteroid pair.  The same results are 

observed, where there is a strong correlation between ∆V and final mass for the first two 

trajectory legs, but a much smaller correlation for the third leg. 
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Figure 38: Maximum final mass for each asteroid pairing as a function of the angle between the two 

angular momentum vectors. 
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Figure 39: Maximum final mass for each asteroid combination as a function of the minimum, phase-

free, two-impulse ∆V. 
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 Table 11 presents the correlation coefficients for each of the cases plotted above.  

While the correlation coefficients are not as close to -1 (indicating perfect negative 

correlation) as for the small sample problem, there is still a good correlation between the 

two pruning metrics and low-thrust final mass.  In particular, the Leg 2 correlations are 

lower than was observed in the small sample problem – the Leg 3 correlation for wedge 

angle is actually higher than the Leg 2 correlation.  If the plots in Figure 39 are examined 

closely, however, there are many cases of low final mass values for good (low) values of 

the pruning metrics, which is contributing to the lower correlation coefficient.  What is 

important, however, is high final mass values do not exist for poor (high) values of the 

pruning metrics, which would cause those asteroid pairings to be pruned from the design 

space.  Therefore, these two pruning metrics can be reliably used to prune the design 

space, without eliminating the best asteroid sequences. 

 

Table 11: Correlation (coefficients) between pruning metrics and low-thrust final mass for the 
intermediate sample problem. 

 Wedge Angle Delta-V 
Leg 1 -0.81 -0.83 
Leg 2 -0.64 -0.66 
Leg 3 -0.66 -0.54 

 

4.2.2  Global Optimization Phase 

The global optimization scheme is then applied to the reduced problem.  First, the 

remaining asteroid sequences are ranked by the normalized sum of the pruning metrics, in 

order to determine the order in which they will be evaluated in the branch-and-bound 

process.  Then, the optimum low-thrust final mass for the highest ranked asteroid 

sequence is obtained using the genetic algorithm combined with MALTO, in order to 

determine the initial lower bound on low-thrust final mass.  In this case, the result is an 

initial lower bound of 638 kg.  The first iteration of the branch-and-bound algorithm is 

carried out without any impulsive multiplier on the “relaxed” solutions (optimal two-



 100

impulse ∆V).  The first iteration eliminates zero of seven Earth – 1st asteroid branches, 11 

of 48 Earth – 1st asteroid – 2nd asteroid branches, and 306 of the remaining 319 Earth – 1st 

asteroid – 2nd asteroid – 3rd asteroid branches.  This leaves 12 asteroid sequences for 

which the low-thrust optimum must be calculated (one was already calculated to set the 

initial lower bound).   

 

  
Figure 40: Branch-and-bound tree enumerating all asteroid sequences remaining in the intermediate 

sample problem after the pruning phase. 
 

 
Figure 41: Branch-and-bound tree illustrating asteroid sequences pruned out by the first iteration of 

the branch-and-bound algorithm on the sample problem. 
 

Figure 40 and Figure 41 are graphic representations of the first iteration of the 

branch-and-bound algorithm.  The branch-and-bound tree in Figure 40 enumerates all of 

the asteroid sequences remaining after the pruning phase.  The tree in Figure 41 
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illustrates the branches of the tree that were pruned out during the first iteration of the 

branch-and-bound.  The sequences that required low-thrust optimization are represented 

by the dashed lines and diamonds at the bottom of the figure. 

The genetic algorithm was run three times to calculate the low-thrust optimum for 

each asteroid sequence that was not pruned out by the branch-and-bound algorithm.  At 

the end of the first iteration, the best asteroid sequence found has a low-thrust final mass 

of 904 kg, which from previous enumeration is the best known solution.  When the low-

thrust optimum solutions are compared to their corresponding two-impulse optimal 

solutions, however, the impulsive multiplier must be increased to 1.145.  Figure 42 plots 

the results of this first branch-and-bound iteration.  The blue line plots the optimal two-

impulse final mass, sorted from largest to smallest, for every asteroid sequence.  The 

green dots plot the corresponding optimum low-thrust final mass for the 13 sequences 

that were evaluated.  Finally, the red line plots the new optimal two-impulse final mass, 

based on the new value of the impulsive multiplier. 
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Figure 42: Results of the 1P

st
P iteration of the branch-and-bound algorithm applied to the intermediate 

sample problem. 
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Because the impulsive multiplier had to be updated, a second iteration of the 

branch-and-bound algorithm is required.  In the second iteration, none of the Earth – 1st 

asteroid – 2nd asteroid branches can be pruned.  Therefore, the optimal two-impulse 

solution for all asteroid sequences must be calculated.  Furthermore, the low-thrust 

optimum must be computed for an additional 42 asteroid sequences.  After the second 

iteration, however, the impulsive multiplier does not need to be updated again, and the 

algorithm is considered to be converged.  Figure 43 plots the results of this 2nd iteration. 
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Figure 43: Results of the 2nd iteration of the branch-and-bound algorithm applied to the intermediate 

sample problem. 
 

Figure 44 plots all of the asteroid sequences remaining in the design space at the 

start of the global optimization step, ordered by low-thrust final mass (blue dots).  Plotted 

in pink are the 55 sequences found during the global optimization.  Not only is the 

optimum solution found, but also five of the top ten asteroid sequences in the known 

solution space for the intermediate problem are identified.  The overall branch-and-bound 

process required the two-impulse optimal ∆V to be calculated for all 416 asteroid 

sequences, and the low-thrust optimal was calculated for 55 asteroid sequences. 
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Figure 44: Asteroid sequences identified by applying branch-and-bound algorithm to intermediate 

problem. 
 

 Table 12 lists the top ten asteroid sequences for the intermediate sample problem 

(the same as are listed in Table 8).  For each sequence, it is indicated whether that 

particular sequence remained in the design space after the pruning phase and whether or 

not that sequence was found by the branch-and-bound algorithm.  The goal of the 

methodology is two-fold.  First, it should maintain a majority of the best solutions in the 

design space after the pruning phase.  This has been achieved on the intermediate sample 

problem, since nine of the top ten sequences remain.  Second, the branch-and-bound 

algorithm should then locate a suite of good solutions.  This aspect of the methodology 

has also been achieved, since the branch-and-bound successfully located five of the top 

ten best solutions, along with the optimum solution (found during the 1st iteration). 
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Table 12: Effectiveness of the methodology at locating the top ten solutions to the intermediate 
sample problem. 

Asteroid Sequence Mf (kg)
Remaining 

After Pruning 
Phase? 

Found By 
Branch-and-

Bound? 
2006 QQ56 – Medusa – Kostinsky 904 √ √ 
2004 VJ1 – Medusa – Kostinsky 870 √  
2006 QQ56 – Hertha – Telamon 856 √ √ 
2006 FH36 – Medusa – Potomac 843 √ √ 

Apophis – Hertha – Pandarus 843 √  
2006 FH36 – Geisha – Kostinsky 834 √  

2002 AA29 – Medusa – Kostinsky 831   
2006 QQ56 – Geisha – Kostinsky 826 √ √ 

2004 VJ1 – Medusa – Potomac 820 √  
2006 QQ56 – Geisha – Caltech 812 √ √ 
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CHAPTER V 

APPLICATION OF METHODOLOGY TO LARGER PROBLEMS 

 In this chapter, the methodology is applied in full to two larger problems where 

the global optimum solution is unknown.  The first problem is derived as a modified 

version of the 3rd Global Trajectory Optimization Competition, while the second problem 

is modified version of the 2nd Global Trajectory Optimization Competition.  For each 

problem, a number of known good solutions exists from the competition results, which 

will serve as benchmarks to evaluate the effectiveness of the methodology.  For both of 

these problems, the goal is to find a suite of good solutions for subsequent analysis with 

higher fidelity methods.  Additionally, the methodology is applied to the full version of 

the GTOC2 problem, subject to the time limitations of the competition, in order to 

determine where the best solution found in that timeframe would have placed in the 

competition. 

 For the larger problems, which will require greater computational resources, a 

computer cluster is utilized to carry out the low-thrust trajectory optimizations.  The 

genetic algorithm is run on a computer cluster comprised of fifteen nodes.  A Matlab 

code runs on the master node of the cluster, which executes the genetic algorithm and 

distributes the MALTO runs to each of the nodes.  The master node contains two AMD 

Opteron processors at 2.2 GHz each.  MALTO then runs on the cluster nodes.  A Fortran 

script creates the input files required for each of the MALTO runs, based on a batch 

script sent to each node by Matlab.  Seven of these nodes contain two AMD Opteron 

processors with 2.2 GHz each and 5 GB of RAM.  The remaining eight nodes contain 

two dual core AMD Opteron processors with 2.4 GHz each and 12 GB of RAM.  The 

operating system on the computer cluster is Ubuntu 8.04 LTS. 

Because of limitations in the Matlab Distributed Computing Server, each 

generation of the genetic algorithm was manually distributed to the nodes – e.g., if sixty 
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function calls to MALTO were required during a given generation, four function calls 

were sent to each node.  Section 6.2 outlines recommendations for future work in order to 

decrease the run time of the genetic algorithm.   

5.1   Modified GTOC3 Problem 

 In 2007, the 3rd Global Trajectory Optimization Competition (GTOC3) posed 

another asteroid rendezvous problem.10  For this problem, participants had to find the best 

possible trajectory, again using electric propulsion, that would rendezvous with three 

near-Earth asteroids out of a single group of 140 candidates, and then return to Earth.  

Figure 45 plots the candidate asteroids, as a function of semi-major axis, eccentricity and 

inclination.   
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Figure 45: GTOC3 set of asteroids. 
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Because these are all near-Earth asteroids, their semi-major axes all fall between 0.9 AU 

and 1.1 AU.  All have low inclination orbits – less than 10 degrees – while their 

eccentricities range from near circular to a maximum value of 0.87.  Note that this is a 

significantly different design space than in the GTOC2 problem.  

In addition, the objective function for GTOC3 is also slightly different, as it 

involves maximizing a combination of final mass and stay time at the asteroids: 
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In Equation 19, mi and mf are the spacecraft initial and final mass, τj is the stay time at the 

jth asteroid, τmax is the maximum allowable flight time, and K = 0.2.  Unlike GTOC2, 

gravity assists using Earth were permitted.  Additional problem constraints are listed in 

Table 13. 

 

Table 13: Constraints on GTOC3 problem. 
Constraint Value Notes 
Earth Launch VB∞B ≤ 0.5 km/s Unconstrained direction 
Earth Launch Date 2016 – 2025 Inclusive 
Asteroid Stay Time ≥ 60 days  
Total Flight Time ≤ 10 years  
Spacecraft Initial Mass 2000 kg  
Thruster Isp 3000 s  

Maximum Thrust 0.15 N Can be turned on/off at will  
No constraint on direction 

 

 For the purpose of validating the proposed methodology, the problem is altered 

slightly.  The objective function is changed to maximizing the final mass at Earth return.  

This does not change the problem significantly, since the maximum value of the stay time 

portion of the GTOC3 objective function contributes only marginally to the overall 

objective function.  The first portion of the original objective function will be on the 
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order of 0.8 (assuming a final mass of 1600 kg).  The second portion however, can only 

range from 0.003 (assuming a minimum stay time of 60 days) to 0.067 (assuming a 

maximum stay time of 3.33 years, which is based on times of flight of zero).  More 

realistically, the second portion of the objective function will range from 0.003 to 

approximately 0.04.  (This same increase in the objective function can be obtained by 

increasing the final mass by 80 kg.)  Because the stay time is being removed from the 

objective function, the stay time at each asteroid is also being fixed at 60 days.  The other 

alteration of the original GTOC3 problem is to disallow Earth gravity assists. 

 The best asteroid sequence found during the competition was Earth – Earth – 

Earth – 2000 SG344 – Earth – 2004 QA22 – 2006 BZ147 – Earth – Earth.  With the 

Earth gravity-assists removed, the mass-optimal solution for this sequence is 1590 kg.  

This was found by doing a grid search, with increments of 30 days on departure date and 

100 days on flight time.  A genetic algorithm with a higher resolution than the grid search 

was also run several times and was unable to find a better solution.  The optimal 

trajectory found by the grid search launches on December 13, 2024 with a launch V∞ of 

0.5 km/s, and has a total flight time of 9.8 years.  For reference, Table 14 summarizes this 

trajectory, which is the current best known solution to the modified GTOC3 problem. 

 

Table 14: Summary of best known trajectory for modified GTOC3 problem. 
Departure 
Body 

Arrival 
Body 

Departure 
Date 
(MJD) 

Time of 
Flight 
(days) 

Stay 
Time 
(days) 

Departure 
Mass (kg) 

Arrival 
Mass (kg)

Earth 2000 SG344 60658 1000 60 2000 1946.4 
2000 SG344 2004 QA22 61718 1100 60 1946.4 1795.5 
2004 QA22 2006 BZ147 62878 600 60 1795.5 1715.0 
2006 BZ147 Earth 63538 700 60 1715.0 1589.8 

 

 The initial problem has a total of nearly 2.7 million possible asteroid sequences.  

For this problem, the goal of the pruning phase of the methodology will be to reduce the 

number of asteroid sequences by two orders of magnitude.  This will leave on the order 
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of 10,000 asteroid sequences in the design space, which is small enough to be handled by 

the global optimization phase, but large enough to be confident that many of the best 

asteroid sequences have not been pruned out.  Because all of the asteroids are near-Earth 

asteroids, and therefore have similar semi-major axes, the first pruning metric will not be 

employed on this problem – the requirement that the asteroid sequence must increase 

sequentially in semi-major axis.  Furthermore, because only total time of flight is 

constrained, and not part of the objective function, this pruning metric becomes even less 

relevant.  Therefore, only the last two pruning metrics will be used: θwedge and optimal 

phase-free, two-impulse ∆V.  In order to achieve the desired size of the design space, the 

following percentage reductions are applied to the problem, for both pruning metrics: 

70% for Leg 1, 60% for Leg 2, 50% for Leg 3, and 25% for Leg 4.  This reduces the 

number of asteroid sequences to 10,311.  As a check, the best known sequence, presented 

above, is still in the design space. 

 Next, the global optimization step, combining the branch-and-bound method with 

the genetic algorithm, is applied to the reduced problem.  Because there is already a best 

known asteroid sequence, it is used as the initial lower bound on low-thrust final mass 

Note that this sequence also happens to be the highest ranked sequence based on the 

normalized sum of the pruning metrics and so would be the first low-thrust trajectory 

evaluated by the branch-and-bound algorithm.  For each asteroid sequence where the 

low-thrust optimum must be computed, the genetic algorithm is run three times, using the 

settings listed in Table 15 and Table 16. 

 

Table 15: Settings for genetic algorithm within branch-and-bound, as applied to the modified 
GTOC3 problem. 

GA Setting Value 
Population Size 90 
Stall Generations 10 
Tournament Size 4 
Crossover Probability 0.8 
Mutation Probability 0.1 
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Table 16: Design variables for genetic algorithm within branch-and-bound, as applied to the 
modified GTOC3 problem. 

Design Variable Units # Bits Lower 
Bound 

Upper 
Bound 

Earth Departure Date JD 8 2457388 2461041 
TOF, Leg 1 days 6 200 2000 
TOF, Leg 2 days 6 200 2000 
TOF, Leg 3 days 6 200 2000 
TOF, Leg 4 days 6 200 2000 

 

 The settings presented in Table 15 were chosen based partially on the results of 

applying the genetic algorithm to the small and intermediate sample problems and on 

general rules of thumb for genetic algorithms.  In general, the population size should be 

roughly two to three times the length of the chromosome string.  Based on the number of 

variables and the bits chosen for each variable, the chromosome string is 32 bits long, 

which leads to a population size of between 64 and 96.  The results of the sample 

problems led to reducing the number of stall generations, since it was observed that after 

ten generations without a change in the objective function, the genetic algorithm rarely 

found a better solution, so increasing the number of stall generations needlessly increases 

the required number of function evaluations.  Finally, the tournament size, crossover 

probability, and mutation probability were based on the values of each setting that 

appeared to work best on the sample problems and also on general genetic algorithm 

rules of thumb. 

 As the number of bits chosen for each variables increases, the resolution of the 

solution increases, but so does the required population size and therefore the number of 

function calls.  The number of bits chosen, shown in Table 16, attempts to balance these 

factors.  The resulting discretization for Earth departure date is approximately 15 days 

and the discretization for the times of flight is approximately 28 days.  The bounds 

chosen for the times of flight represent the minimum realistic time of flight for any of the 

trajectory legs and the maximum time of flight per leg that would likely yield an overall 

time of flight below the constraint. 
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First, the branch-and-bound algorithm is applied without any multiplier on the 

optimal two-impulse mass solutions.  Figure 46 plots the results of this first iteration.  

Each asteroid sequence is plotted as a function of its optimal impulsive ∆V, with the red 

line indicating the best known low-thrust solution at the end of the iteration.  Any points 

that fall below this red line are pruned from the branch-and-bound tree.  During the first 

iteration, all of the asteroid sequences are pruned, since none of the optimal impulsive 

solutions are greater than 1590 kg.  The optimal impulsive final mass for this asteroid 

sequence is 1477 kg, leading to a required multiplier of 1.077 for the next branch-and-

bound iteration. 
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Figure 46: Branch-and-bound results, iteration #1 (impulsive multiplier = 1). 

 

 Figure 47 plots the results of the second iteration.  The low-thrust optimum 

solution is calculated for an additional seven asteroid sequences.  In the process, an 

asteroid sequence with a higher low-thrust final mass is located, raising the current best 
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known solution to 1621 kg.  Based on comparing the eight known low-thrust final masses 

to their corresponding impulsive optimal solutions, the multiplication factor must be 

increased again, to a value of 1.096. 
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Figure 47: Branch-and-bound results, iteration #2 (impulsive multiplier = 1.077). 

 

Figure 48 plots the results of the third iteration.  Nine additional low-thrust optima 

are computed during this iteration.  The best known solution, however, is not improved 

upon.  Furthermore, the impulsive multiplier does not have to be updated, as it is 

sufficient to bound all of the known low-thrust solutions.  Therefore, the branch-and-

bound algorithm is considered converged after three iterations, with a final impulsive 

multiplier of 1.096 and a best low-thrust final mass of 1621 kg. 
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Figure 48: Branch-and-bound results, iteration #3 (impulsive multiplier = 1.096). 

  

Overall, low-thrust optima for 17 asteroid sequences were computed.  Impulsive 

optimum solutions for all of the Earth – Asteroid 1 (12), Earth – Asteroid 1 – Asteroid 2 

(270), and Earth – Asteroid 1 – Asteroid 2 – Asteroid 3 (10,311) sequences had to be 

computed.  Impulsive optima for only 1795 full sequences (Earth – Asteroid 1 – Asteroid 

2 – Asteroid 3 – Earth), however, were computed.  All of the impulsive optima were 

calculated using a simple grid search.  Table 17 summarizes the best asteroid sequences 

found in this investigation during the branch-and-bound process.  The asteroids are 

indicated by an index number – the corresponding asteroid names can be found in 

Appendix B.  The original best known solution, presented in Table 14, ranks third. 

 Another important observation is that the best low-thrust solutions found by the 

methodology are among the highest ranked sequences according to the normalized sum 

of the pruning metrics.  Of the 10,311 asteroid sequences remaining prior to the branch-

and-bound algorithm, the top five sequences identified in Table 18 are ranked #2, #19, 
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#1, #63, and #16, respectively.  Therefore, these will be evaluated early in the branch-

and-bound process, which is important for two reasons.  First, the lower bound on the 

objective function will be set to a large value early in the algorithm, minimizing the 

number of low-thrust optimization that must be carried out.  Second, if time and 

computing resources were not available to run the branch-and-bound algorithm to 

completion, many of these solutions could still be identified.  This is a consistent trend of 

the methodology, which will be seen again on the GTOC2 problem. 

 

Table 17: Top 5 solutions identified to the modified GTOC3 problem. 

Asteroid Sequence Earth 
Departure 

TOF 1 
(days) 

TOF 2 
(days)  

TOF 3 
(days) 

TOF 4 
(days) 

Low-Thrust 
MBfB (kg) 

E - 76 - 88 - 49 - E 06/13/2017 1086 657 457 1000 1621 
E - 88 - 76 - 49 - E 12/09/2016 514 1029 514 1314 1597 
E - 49 - 37 - 85 - E 12/13/2024 1000 1100 600 700 1590 
E - 96 - 88 - 49 - E 04/17/2017 971 743 429 1143 1589 
E - 88 - 19 - 49 - E 03/05/2019 1286 771 971 400 1587 
 

 Finally, the low-thrust optimum for an additional thirty asteroid sequences – 

based on the summed pruning metric ranking – is computed (again by running the genetic 

algorithm three times) to test the effectiveness of the branch-and-bound method in 

finding the best solutions.  Figure 49 plots all of the asteroid sequences where the low-

thrust optimum is known, along with the corresponding optimal impulsive solution, 

multiplied by 1.096 (the final value of the impulsive multiplier).  All of the new low-

thrust solutions are bounded by the impulsive final mass.  Additionally, no better 

solutions are found than those listed in Table 17.  Therefore, it appears that the branch-

and-bound method was successful when applied to the modified GTOC3 problem. 
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Figure 49: Comparison of optimum impulsive final mass (multiplied by 1.096) and optimum low-

thrust final mass for modified GTOC3 problem. 
 

 Even though the original GTOC3 problem was altered, the proposed methodology 

could still be applied to the original competition, and doing so could have yielded the 

winning asteroid sequence.  The only changes made to the competition problem were to 

alter the objective function and to disallow gravity assists.  Promising asteroid sequences 

could be identified by applying the methodology to the simplified problem, and a handful 

of sequences could then be analyzed in greater detail.  At this point, gravity assists could 

be added and asteroid stay time considerations could be accounted for. 

 As a benchmark, Table 18 lists the top ten previously known solutions from the 

competition, where each intermediate “E” indicates an Earth flyby (the first and last “E” 

indicate Earth departure and arrival).  Additionally, the last column in the table indicates 

if that particular asteroid sequence (excluding the Earth flybys) was found by applying 

the methodology to the modified problem, and what its rank was in the modified 

problem.  Note that the top four competition solutions all contain the same asteroid 

sequence, simply with different Earth flybys added.  This sequence corresponds to the 

third best sequence found when applying the methodology to the modified GTOC3 
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problem (Table 17).  Additionally, the sixth and ninth best solutions from the competition 

correspond to the fourth best solution to the modified problem; the eighth best solution 

from the competition corresponds to the seventh best solution to the modified problem; 

the tenth best solution from the competition corresponds to the fifth best solution to the 

modified problem. 

 The only asteroid sequence from Table 18 that was not identified by the 

present methodology is 88-96-49, which generated the fifth and seventh best solutions 

during the competition with the inclusion of Earth flybys.  This asteroid sequence 

remained in the design space after the pruning phase of the methodology, but was pruned 

out during the branch-and-bound algorithm.  In order to check if it was pruned out 

correctly, its optimal low-thrust final mass was computed, and was found to be 1565 kg.  

Its corresponding impulsive optimal mass is 1478 kg, which with the final impulsive 

multiplier of 1.096, bounds the low-thrust solution.  As evidenced by these results, 

applying the methodology to the modified problem could be used as an initial screening 

test to identify the most promising asteroid sequences for more detailed analysis. 

 

Table 18: Top ten solutions from GTOC3 competition. 

Asteroid Sequence Final Mass 
(kg) 

Min. Stay 
Time (days) J Found by 

methodology? 
E-E-E-49-E-37-85-E-E 1733 60 0.870 √ (3P

rd
P) 

E-E-49-E-37-85-E-E 1730 60 0.868 √ (3P

rd
P) 

E-49-E-37-85-E-E 1721 60 0.864 √ (3P

rd
P) 

E-49-E-E-37-85-E-E 1717 60 0.862 √ (3P

rd
P) 

E-88-E-96-49-E 1647 245 0.837  
E-96-E-88-49-E 1647 211 0.835 √ (4P

th
P) 

E-88-E-96-E-49-E 1658 60 0.832  
E-E-96-76-E-49-E 1649 60 0.828 √ (7P

th
P) 

E-96-E-88-49-E 1633 165 0.826 √ (4P

th
P) 

E-88-19-49-E 1606 62 0.806 √ (5P

th
P) 
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5.2  GTOC2 Problem 

 In 2006, the 2nd Global Trajectory Optimization Competition (GTOC2)8,9 posed a 

trajectory optimization problem of a “Grand Asteroid Tour.”  Over the span of four 

weeks, 26 organizations attempted to design the best possible trajectory, using electric 

propulsion, that would rendezvous with one asteroid from each of four defined groups.  

Only 15 of the 26 teams were able to submit solutions by the deadline, and only 11 of 

those solutions satisfied all of the problem constraints.  The given objective function 

rewarded trajectories with low propellant consumption and low total flight time.  Earth 

launch date, Earth launch V∞, times of flight, and stay times at each asteroid were free 

design variables.  Figure 50 plots the set of asteroids for the GTOC2 problem, as a 

function of inclination, eccentricity, and semi-major axis.75   

 Group 4, which is comprised of asteroids closest to Earth, contains 338 asteroids.  

Group 3 has 300 asteroids, Group 2 has 176 asteroids, and Group 1, whose asteroids are 

the furthest from Earth, has 96 asteroids.  As such, this problem permits 41 billion 

possible discrete asteroid combinations, which is four orders of magnitude larger than the 

GTOC3 problem, which was examined in Section 5.1.  The size of this problem is 

increased further when launch date, arrival dates, stay times, and thrust profile are 

included as free design variables.  The objective was to maximize the ratio of final mass 

to total time of flight, as is presented in Equation 20. 

 

 
TOF
M

J f=  (20) 
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Figure 50: GTOC2 set of asteroids. 

  

Table 19 presents the constraints on the problem.  No gravity assists were permitted in 

the competition.     

 
Table 19: Constraints on GTOC2 problem. 

Constraint Value Notes 
Earth Launch VB∞B ≤ 3.5 km/s Unconstrained direction 
Earth Launch Date 2015 – 2035 Inclusive 
Asteroid Stay Time ≥ 90 days  
Total Flight Time ≤ 20 years  
Spacecraft Initial Mass 1500 kg 1000 kg of available propellant
Thruster IBspB 4000 s  

Maximum Thrust 0.1 N Can be turned on/off at will  
No constraint on direction 
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 For reference, Table 20 lists the eleven solutions submitted that met all of the 

problem constraints.  It is interesting to note that only five asteroids appear more than 

once in the submitted solutions, illustrating how large the design space is and how many 

different asteroid sequences can yield good solutions.   

 

Table 20: Feasible solutions submitted to GTOC2. 

Asteroid Sequence V∞ 
(km/s) 

Final 
Mass 
(kg) 

Time of 
Flight 
(yrs) 

J 
(kg/yr) 

2004 UT1 – Echo – Concordia – Scholl  3.50 898.2 9.106 98.64 
2004 QA22 – Medusa – Misa – Guinevere 3.50 913.9 10.394 87.93 
2003 YN107 – Reginhald – Dido – 1992 SU21 2.58 829.0 9.523 87.05 
2003 YN107 – Pilcher – Vanadis – Cunningham 2.45 835.2 9.777 85.43 
1999 AO10 – Photographica – Veritas – Potomac 2.18 861.0 10.096 85.28 
2004 QA22 – Euterpe – Lydia – Tuckia 3.23 859.1 10.170 84.48 
2005 QP11 – Chantal – Aglaja – 1998 QB32 3.50 890.5 10.796 82.48 
2006 FH36 – Russia – Ceraskia – Cunningham  3.50 826.1 10.816 76.67 
2003 YN107 – Ariadne – Galatea – Guinevere  2.46 864.1 11.509 75.08 
2004 QA22 – Medusa – Oceana – Hohmann  3.50 735.9 12.941 56.87 
2006 SP19 – Zelia – Eurydike – Nestor  3.50 536.3 19.195 27.94 

 

The methodology was next applied to the GTOC2 problem, but because of the 

large size of the problem, this solution was tackled in two steps.  First, a smaller version 

was solved, which has a reduced set of asteroids and approximately 400 million discrete 

asteroids sequences.  Note that this problem is more than two orders of magnitude larger 

than the modified GTOC3 problem solved in Section 5.1.  The modified version of the 

GTOC2 problem still has all of the same problem parameters and constraints as the 

original competition problem.  Next, the methodology is applied to the full GTOC2 

problem, given the time constraints of the GTOC2 competition. 

5.2.1  Modified GTOC2 Problem 

 In creating the modified GTOC2 problem, the asteroids that yielded the top seven 

solutions from the competition – all with J > 80 kg/yr – were kept in the design space, in 
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order to have a benchmark with which to evaluate the performance of the methodology.  

The remaining asteroids were chosen at random, keeping roughly the same proportion of 

asteroids from each group as in the original problem.  Figure 51 plots the asteroids for the 

modified GTOC2 problem, as a function of inclination, eccentricity, and semi-major axis.  

There are 107 Group 4 asteroids, 95 Group 3 asteroids, 56 Group 2 asteroids, and 30 

Group 1 asteroids.  Based on the figure, the distribution of asteroids relative to 

inclination, eccentricity, and semi-major axis appears similar to the original problem 

(Figure 50). 
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Figure 51: Set of asteroids for modified GTOC2 problem. 

 

 The best previously known solutions to the modified problem are listed in Table 

20.  The results of applying the methodology to the modified problem can then be 
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compared to these results to determine how well this methodology performs at finding a 

set of good solutions.  

The modified GTOC2 problem has 409,852,800 discrete asteroid sequences.  The 

goal of the pruning phase will be to reduce this number by four orders of magnitude, to 

approximately 40,000 sequences.  The first pruning metric removes all asteroid 

sequences that do not increase in semi-major axis from one asteroid to the next.  From 

Figure 51, it is clear that all remaining sequences will visit a Group 4 asteroid first and a 

Group 1 asteroid last.  Only the order of the Group 2 and Group 3 asteroids will need to 

be considered, greatly decreasing the amount of time required to apply this pruning 

metric.  The increasing semi-major axis constraint reduces the number of asteroid 

sequences from just over 400 million to approximately 17 million (factor of 12).  Next, 

the pruning percentages must be chosen in order to further reduce the number of asteroid 

sequences to around 40,000.  The following percentages were chosen, keeping in mind 

that the percentage eliminated should decrease for each leg: 65% for Leg 1, 60% for Leg 

2, 55% for Leg 3, and 40% for Leg 4.  This reduces the number of asteroid sequences to 

38,121, which achieves the desired order of magnitude reduction.  Table 21 lists the 

number of asteroid sequences eliminated for each pruning metric as applied to each 

trajectory leg.   

 

Table 21: Pruning methodology applied to modified GTOC2 problem. 
Pruning 
Metric 

Trajectory Leg % Asteroid Pairs 
Eliminated 

# Sequences 
Eliminated 

aBiB < aBi+1B All N/A 39,277,560 
wedge angle Leg 1 65% 11,172,000 
wedge angle Leg 2 60% 3,558,120 
wedge angle Leg 3 55% 1,137,090 
wedge angle Leg 4 40% 443,608 

impulsive ∆V Leg 1 65% 462,524 
impulsive ∆V Leg 2 60% 174,646 
impulsive ∆V Leg 3 55% 67,941 
impulsive ∆V Leg 4 40% 23,150 

 



 122

Of the remaining sequences, the 1st, 3rd, 4th, and 7th best known solutions from Table 20 

all remain in the design space.  

Next, the global optimization phase is applied to the reduced design space, 

beginning with ranking the remaining asteroid sequences by the normalized sum of the 

pruning metrics.  Due to the GTOC2 objective function, which includes the overall time 

of flight, a slight modification was made in the calculation of the optimal two-impulse 

solutions, which are used to determine the upper bounds during the branch-and-bound 

process.  When the optimal two-impulse solutions were initially being calculated, it was 

discovered that many of the optimal solutions were falling in the very low time of flight 

range.  As the low-thrust optimal solutions were calculated, it became apparent that most 

of the asteroid sequences that yield very good impulsive solutions at low times of flight 

do not translate to good low-thrust solutions.  While low times of flight are possible for 

impulsive trajectories, low-thrust trajectories generally require longer times of flight to be 

feasible.  Therefore, a restriction was placed on the minimum time of flight when 

calculating the impulsive solutions.  This change was initially made in order to better 

model the low-thrust trajectories.  However, it also served to reduce the number of low-

thrust optimizations that would be required, since the optimal impulsive objective 

function for many of the asteroid sequences was greatly reduced when applying the time 

of flight restriction.  For this problem, this minimum allowable time of flight for the 

impulsive solutions was chosen at 7 years, which was estimated as the minimum realistic 

time of flight for the low-thrust trajectories.  Figure 52 plots the optimal impulsive 

solutions for the asteroid sequences remaining after the pruning phase, with and without a 

time of flight restriction. 
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Figure 52: Optimal impulsive solutions, with and without the time of flight restriction, for the 

modified GTOC2 problem. 
 

 Table 22 lists the settings used for the genetic algorithm as applied to this 

problem, and Table 23 lists the design variables, bounds, and discretization.  The number 

of bits for each design variable was chosen so that the discretization on all of the time 

variables was approximately equal.  For the bits chosen, the variables are discretized in 

approximately seven day increments.  Because of the greater number of low-thrust 

optimizations required in this problem, the genetic algorithm is run only once for each 

asteroid sequence.  At the end of the branch-and-bound algorithm, the genetic algorithm 

is then run three times on the most promising solutions, in an attempt to improve upon 

their objective functions.  Using these settings, on average, a single run of the genetic 

algorithm requires 1746 function calls (end-to-end optimizations by MALTO) and 49 

generations to converge.  With the available computing resources, each genetic algorithm 

run takes 70 minutes on average. 
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Table 22: Settings for the genetic algorithm as applied to the modified GTOC2 problem. 
GA Setting Value 
Population Size 200 
Stall Generations 20 
Tournament Size 4 
Crossover Proability 0.8 
Mutation Probablity 0.1 

 

Table 23: Design variables for the genetic algorithm as applied to the modified GTOC2 problem. 
Design Variable Units # Bits Lower 

Bound 
Upper 
Bound 

Earth Departure Date JD 10 2457023 2464328 
TOF, Leg 1 days 8 200 2000 
TOF, Leg 2 days 8 200 2000 
TOF, Leg 3 days 8 200 2000 
TOF, Leg 4 days 8 200 2000 
Stay Time, Ast. 1 days 5 90 360 
Stay Time, Ast. 2 days 5 90 360 
Stay Time, Ast. 3 days 5 90 360 

 

 Although a list of known solutions is available, the branch-and-bound algorithm is 

started without setting the best solution as the lower bound, since in the competition there 

were no a priori known solutions.  Therefore, the first iteration of the branch-and-bound 

requires the low-thrust optimum to be computed for the highest ranked asteroid sequence 

(in terms of the normalized sum of the pruning metrics).  The initial lower bound, Jmin, is 

40.29 kg/yr.  This iteration is carried out without any multiplier on the impulsive 

solutions.  Overall, the first iteration requires the low-thrust optimization of 809 asteroid 

sequences, which took approximately 39 days to complete.  Additionally, it requires the 

impulsive optimization of all the asteroid sequences – none of the branches were pruned 

out until the final trajectory leg.  The best solution found corresponds to the best solution 

found during the GTOC2 competition.  Its objective function is 98.64 kg/yr, which ranks 

674th in terms of the normalized sum of the pruning metrics.  During the execution of the 

branch-and-bound algorithm, it is the 378th asteroid sequence for which the low-thrust 
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optimum had to be computed.  Because all of the low-thrust solutions are bounded by the 

impulsive solutions, no additional iterations need to be carried out.   

 Figure 53 plots the evolution of the branch-and-bound algorithm.  Along the x-

axis is the asteroid sequence number, ranked by the normalized sum of the pruning 

metrics.  The green dots correspond to the low-thrust solutions, while the red dots 

correspond to the impulsive optima for each asteroid sequence.  The blue line is the 

current lower bound on the objective function – it increases as better low-thrust solutions 

are found.  The plot is shown for all 38,121 sequences and also for just the first 1000.  

Figure 54 plots all of the low-thrust and impulsive solutions, but sorted by the optimal 

impulsive objective function for the asteroid sequences.  From here, it can be seen that all 

of the low-thrust solutions are indeed bounded, and the impulsive multiplier does not 

need to be updated. 
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Figure 53: Results of branch-and-bound algorithm applied to modified GTOC2 problem. 
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Figure 54: Comparison of impulsive and low-thrust optimal solutions for modified GTOC2 problem. 
  

Table 24 illustrates another important observation, which is that six of the top 

seven solutions found are ranked in the top 2% of asteroid sequences in the reduced 

design space, based on the normalized sum of the pruning metrics.  While the branch-

and-bound algorithm was run to completion, the best solutions were found early on in the 

process.  As has been shown in the previous problems, this can greatly reduce the number 

of low-thrust optimizations required, due to the lower bound being set to a high value 

early in the process.  Additionally, however, if limited time were available to solve this 

asteroid rendezvous problem, such as during the competition, the branch-and-bound 

process would not need to be run to completion to find a handful of good solutions (and 

in this case, the best known solution).  This approach will be explored further in the 

subsequent section, which addresses solving the full GTOC2 problem. 

Table 24 summarizes the top seven solutions found by the methodology, all of 

which have J > 80 kg/yr.  The “B&B Ranking” indicates the rank based on the 

normalized sum of the pruning metrics, as calculated for the branch-and-bound 

algorithm.  The 1st, 3rd, 4th, and 7th best asteroid sequences from the GTOC2 competition 

were all found.  Furthermore, a better solution was found for the asteroid sequence 
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identified as the 7th best in the competition.  The remaining competition solutions were 

eliminated during the pruning phase (none were pruned out by the branch-and-bound 

algorithm).  Of note, three good sequences with J > 80 kg/yr (not identified by GTOC2 

competitors) were also found through application of this methodology.  With additional 

computing resources or additional time, less stringent pruning metrics could have been 

selected, highlighting the trade between pruning strength and available computational 

resources.   

 

Table 24: Top seven solutions found by the methodology for the modified GTOC2 problem. 

Asteroid Sequence Final 
Mass (kg)

Time of 
Flight (yr) 

J 
(kg/yr) 

B&B 
Ranking Notes 

2004 UT1 – Echo – 
Concordia – Scholl  898.2 9.11 98.64 #674 #1 GTOC2 

competition 
2003 YN107 – 
Reginhald – Dido – 
1992 SU21 

829.0 9.52 87.05 #205 #3 GTOC2 
competition 

2003 YN107 – Echo 
– Concordia – 
Scholl 

761.9 8.81 86.54 #210 
New sequence 
identified in this 
investigation 

2003 YN107 – 
Chantal – Aglaja – 
1998 QB32 

834.8 9.67 86.29 #482 
New sequence 
identified in this 
investigation 

2003 YN107 – 
Pilcher – Vanadis – 
Cunningham 

835.2 9.78 85.43 #4467 #4 GTOC2 
competition 

2005 QP11 – 
Chantal – Aglaja – 
1998 QB32 

812.9 9.52 85.39 #476 
Better solution to 
#7 GTOC2 
sequence 

2003 YN107 – 
Euterpe – Lydia – 
Tuckia 

722.9 8.73 82.83 #785 
New sequence 
identified in this 
investigation 

 

5.2.2  Full GTOC2 Problem 

 The methodology is then applied to the full GTOC2 problem, using the same 

constraints as were given during the competition.  The competition problem was released 

on November 6, 2006 and the deadline to submit results was December 4, 2006, a period 



 128

of exactly four weeks.  As a benchmark, Table 25 lists the top ten previously known 

solutions to the full GTOC2 problem.  Note that seven of these solutions are from the 

competition, while the remaining three were identified in this investigation while solving 

the modified GTOC2 problem.   

 

Table 25: Top ten known solutions to full GTOC2 problem. 

Asteroid Sequence 
Final 
Mass 
(kg) 

Time of 
Flight 
(yrs) 

J 
(kg/yr) 

2004 UT1 – Echo – Concordia – Scholl  898.2 9.106 98.64 
2004 QA22 – Medusa – Misa – Guinevere 913.9 10.394 87.93 
2003 YN107 – Reginhald – Dido – 1992 SU21 829.0 9.523 87.05 
2003 YN107 – Echo – Concordia – Scholl 761.9 8.81 86.54 
2003 YN107 – Chantal – Aglaja – 1998 QB32 834.8 9.67 86.29 
2003 YN107 – Pilcher – Vanadis – Cunningham 835.2 9.777 85.43 
2005 QP11 – Chantal – Aglaja – 1998 QB32 812.9 9.52 85.39 
1999 AO10 – Photographica – Veritas – Potomac 861.0 10.096 85.28 
2004 QA22 – Euterpe – Lydia – Tuckia 859.1 10.170 84.48 
2003 YN107 – Euterpe – Lydia – Tuckia 722.9 8.73 82.83 

 

The pruning phase is applied to the full set of asteroid sequences, with a goal of 

reducing the size of the design space by four orders of magnitude.  First, only asteroid 

sequences with increasing semi-major axes are kept in the design space.  This reduces the 

number of asteroid sequences by a factor of 24, from 41 billion to 1.7 billion.  Next, the 

following pruning percentages are applied to the problem, for θwedge and ∆Vopt: 65% for 

Leg 1, 60% for Leg 2, 50% for Leg 3, and 35% for Leg 4.  This further reduces the 

number of asteroid sequences to 3.9 million.  After the pruning phase, seven of the ten 

solutions from Table 25 remain in the design space.  

Next, the global optimization phase is allowed to run for two weeks.  Although 

the competition allowed for four weeks to complete the problem, two weeks were 

reserved for initial setup time and for refining the final solution and formatting it 

according to the competition guidelines.  In order to limit the number of low-thrust 

optimizations required, an aggressive estimate for the optimum solution is chosen, based 
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on a time of flight of 10 years and a final mass of 1000 kg.  This corresponds to an 

objective function of 100 kg/yr, which serves as the initial lower bound in the branch-

and-bound algorithm.  The genetic algorithm is run only once for each asteroid sequence 

that requires low-thrust optimization, using the settings listed in Table 22 and Table 23, 

from the modified GTOC2 problem.  During the two weeks, 308 asteroid sequences were 

optimized in low-thrust, which encompassed the top 3,000 ranked asteroid sequences in 

the branch-and-bound tree, based on the normalized sum of the pruning metrics.  Figure 

55 plots the evolution of the branch-and-bound algorithm over the two weeks, with the 

lower bound plotted in blue (100 kg/yr), the optimal two-impulse solutions plotted in red, 

and the optimal low-thrust solutions found by the genetic algorithm plotted in green.  All 

of the low-thrust optima calculated are bounded by their corresponding two-impulse 

solutions, as illustrated in Figure 56. 
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Figure 55: Results of branch-and-bound algorithm applied for two weeks to full GTOC2 problem. 
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Figure 56: Comparison of impulsive and low-thrust optimal solutions for full GTOC2 problem. 

 
 

While none of the previously known solutions in Table 25 are found, three new 

asteroid sequences with J > 80 kg/yr are found.  The best of these has a low-thrust 

optimum of 87.31 kg/yr, which would have ranked 3rd in the GTOC2 competition.  The 

asteroid sequence that yields this solution is: 2003 YN107 – Phyllis – Budrosa – 

Kostinsky.  It departs Earth on December 1, 2023, and has times of flight for each leg of 

539 days, 1605 days, 511 days, and 645 days, respectively, for a total mission time of 

9.77 years.  The final mass is 853 kg.  The second new sequence found with an objective 

function greater than 80 kg/yr is: 2003 YN107 – Phyllis – Hygiea – Guinevere.  Its 

optimum solution yields an objective function of 83.88 kg/yr, with a total time of flight of 

9.35 years and a final mass of 784 kg.  The third new good sequence found is: 2001 FR85 

– Erigone – Rosselia – Scholl, which has an objective function of 81.47 kg/yr, with a 

total time of flight of 10.09 years and a final mass of 822 kg. 

If more time or computing resources were available, additional good solutions 

could be found for the full GTOC2 problem.  Still assuming the same four orders of 

magnitude reduction during the pruning phase, Table 26 lists all of the known solutions 
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greater than 80 kg/yr, along with their rank in the branch-and-bound algorithm, according 

to the normalized sum of the pruning metrics (“Rank in Pruned Problem”).  The 2nd, 9th, 

and 10th best known solutions were eliminated during the pruning phase, and therefore 

have no results listed in the table.  Because many of the branches of the tree are pruned 

out based on their relaxed two-impulse solutions, only a subset of these sequences must 

be optimized in low-thrust.  

 

Table 26: Known solution to GTOC2 problem with J > 80 kg/yr. 
Asteroid 
Sequence 

J 
(kg/yr)

Rank in Pruned 
Problem 

# Low-Thrust 
Opt. Required 

#1, GTOC2 98.64 74,505 4,514 
#2, GTOC2 87.93 --- --- 
New 87.31 547 74 
#3, GTOC2 87.05 24,003 1,867 
New 86.54 24,524 1,890 
New 86.29 76,812 4,620 
#4, GTOC2 85.43 801,999 --- 
#7, GTOC2 
(improved) 85.39 56,030 3,663 

#5, GTOC2 85.28 --- --- 
#6, GTOC2 84.48 --- --- 
New 83.88 1821 203 
New 82.83 124,226 --- 
New 81.47 2,541 272 

 

Table 26 also lists the number of low-thrust optimizations that are required to find 

each sequence in the table (“# Low-Thrust Opt. Required”), assuming an initial lower 

bound of 100 kg/yr and also assuming that no solutions greater than 100 kg/yr are found.  

If solutions greater than 100 kg/yr are found, fewer low-thrust optimizations would be 

required – more branches of the tree would be pruned out based on the corresponding 

increase in the lower bound – although some of the solutions in Table 26 may be pruned 

out as well.  The two-impulse optima were only calculated for the first 78,000 asteroid 

sequences, which encompass the top 2% of the sequences remaining after the pruning 

phase, based on the results of the modified GTOC2 and modified GTOC3 problems.  For 
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these two problems, the best known solutions were all located within the top 2% of the 

ranked sequences in the branch-and-bound algorithm.  Since the 7th and 12th best known 

solutions (listed in Table 26) fall outside this range, the number of low-thrust 

optimizations required to locate these two solutions is unknown. 

Figure 57 plots the number of asteroid sequences that require low-thrust 

optimization as a function of the number of asteroid sequences evaluated in the branch-

and-bound, for the first 78,000 ranked sequences (plotted in red are the data points from 

Table 26).  In other words, Figure 57 illustrates the efficiency of the branch-and-bound 

algorithm at pruning out branches of the tree using the relaxed two-impulse solutions.  In 

the range considered, approximately seven percent of the sequences in the branch-and-

bound tree require low-thrust optimization – the rest are pruned out due to their optimal 

two-impulse solution being less than the lower bound of 100 kg/yr.  As the number of 

sequences evaluated in the branch-and-bound tree increases, the percent that require low-

thrust optimization decreases, due to the fact that the optimal two-impulse solutions tend 

to decrease as a function of their ranking in the branch-and-bound algorithm.  This trend 

was observed previously in Figure 53, which plots the evolution of the branch-and-bound 

algorithm for the modified GTOC2 problem.  The number of low-thrust optimizations 

required as a function of the number of branch-and-bound sequences evaluated can also 

be plotted for the modified GTOC2 problem, in order to illustrate this trend for a problem 

where the entire branch-and-bound tree was evaluated.  As expected, Figure 58 illustrates 

how the percent of sequences that require low-thrust optimization decreases towards the 

end of the branch-and-bound algorithm. 
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Figure 57: Number of sequences requiring low-thrust optimization as a function of the number of 

sequences evaluated in the branch-and-bound tree, for the full GTOC2 problem, assuming an initial 
lower bound of 100 kg/yr. 
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Figure 58: Number of sequences requiring low-thrust optimization as a function of the number of 

sequences evaluated in the branch-and-bound tree, for the modified GTOC2 problem, assuming an 
initial lower bound of 100 kg/yr. 

 

Based on the results in Table 26 and Figure 57, in order to locate eight of the top 

thirteen solutions to the full GTOC2 problem, the low-thrust optimization of 4,620 
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asteroid sequences would be required, from a total of over 41 billion sequences in the 

original problem (a reduction of seven orders of magnitude).  In order to locate the 

winning solution to GTOC2, the low-thrust optimization of 4,514 asteroid sequences 

would be required.  With improvements in the parallel distribution of the low-thrust 

optimizations, along with efficiency improvements in the various codes used (e.g., 

switching from Matlab to Fortran), it is likely possible to complete this number of genetic 

algorithm executions in the month timeframe.  Furthermore, it is likely that a number of 

additional solutions with J > 80 kg/yr would be located in those 4,620 sequences, based 

on the fact that three new good solutions were found in just the first 308 sequences in the 

branch-and-bound tree. 

5.3 Sensitivity of Methodology to User-Defined Parameters 

  In the previous two sections, it was shown how the methodology was able to 

successfully identify the best known solution as well as a family of good solutions for the 

modified GTOC2 and modified GTOC3 problems.  For the modified GTOC2 problem, 

the design space was pruned by four orders of magnitude and the low-thrust optimization 

of 809 asteroid sequences was required.  For the modified GTOC3 problem, the design 

space was pruned by two orders of magnitude and the low-thrust optimization of 17 

asteroid sequences was required.  For the full GTOC2 problem, it was shown that in two 

weeks, three previously unknown solutions were identified with J > 80 kg/yr, the best of 

which would have placed third in the competition.  Furthermore, for the full GTOC2 

problem, it would be possible to identify eight of the top thirteen known solutions with J 

> 80 kg/yr after the low-thrust optimization of 4,620 asteroid sequences.   

These results are based on particular values of the pruning metrics, along with 

additional assumptions such as the initial value of the lower bound for the branch-and-

bound algorithm.  The number of required low-thrust optimizations is primarily 

dependent on the reduction in the design space that can be achieved by the pruning phase 
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of the methodology and the initial lower bound set by the highest ranked sequence 

following the pruning step.  This section will examine the sensitivity to the various user-

defined parameters on the performance of the methodology, demonstrating how this 

methodology can be tailored to the amount of computation time available. 

5.3.1  Pruning Phase Sensitivity to Selection of Leg Pruning Percentages 

For the pruning phase of the methodology, the largest reduction has been by a 

factor of approximately four orders of magnitude on the modified and full versions of the 

GTOC2 problem.  In achieving that reduction, however, several of the best known 

solutions were eliminated.  For the modified GTOC2 problem, Table 27 illustrates how 

many known solutions are eliminated during the pruning phase, depending on the user-

defined pruning percentages.  The table includes only solutions known prior to the 

evaluation of the modified GTOC2 problem – it does not include the new solutions found 

by the methodology.  The percentages presented in each column of the table represent the 

percent of asteroid pairs eliminated for each leg of the trajectory for both pruning metrics.  

Once the pruning percentage applied to Leg 1 (k1) reaches approximately 70%, the best 

known solution is eliminated.  Furthermore, once the overall reduction in the number of 

asteroid sequences exceeds approximately four orders of magnitude, all of the best 

known solutions are eliminated from the design space.  Conversely, in order to keep all of 

the best known solutions in the design space, less than two orders of magnitude can be 

eliminated during the pruning phase. 
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Table 27: Best known solutions remaining in design space for varying orders of magnitude reduction 
during the pruning phase, for the modified GTOC2 problem. 

5 orders of 
magnitude 

4 orders of 
magnitude 

3 orders of 
magnitude 

2 orders of 
magnitude 

<2 orders of 
magnitude 

4,781 
sequences 
remaining 

38,121 
sequences 
remaining 

470,791 
sequences 
remaining 

4,248,084 
sequences 
remaining 

4,765,633 
sequences 
remaining 

Asteroid 
Sequence 

J 
(kg/yr) 

75%-70%-
65%-50% 

65%-60%-
55%-40% 

50%-45%-
40%-25% 

25%-20%-
15%-10% 

20%-20%-
15%-10% 

#1, GTOC2 98.64  √ √ √ √ 
#2, GTOC2 87.93    √ √ 
#3, GTOC2 87.05  √ √ √ √ 
#4, GTOC2 85.43  √ √ √ √ 
#7, GTOC2 85.39*  √ √ √ √ 
#5, GTOC2 85.28     √ 
#6, GTOC2 84.48    √ √ 
 

 The same analysis was conducted on the full GTOC2 problem, again using just 

the solutions known before the methodology was applied, which now include the 

additional three good solutions found on the modified GTOC2 problem.  The results are 

presented in Table 28.  Seven of the top ten known solutions remain in the design space 

of the full GTOC2 problem if the pruning phase reduces the number of sequences by four 

orders of magnitude.  If that reduction is increased to five orders of magnitude, however, 

only one of the best known solutions remains.  Note that to reach approximately the same 

number of remaining sequences as in the modified GTOC2 problem, a six order of 

magnitude pruning reduction is required. 

 

 

 

 

                                                 

 
 
* The objective function of 85.36 kg/yr represents the improved solution found for the 7th place GTOC2 
asteroid sequence. 



 137

Table 28: Best known solutions remaining in the design space for varying orders of magnitude 
reduction during the pruning phase, for the full GTOC2 problem. 

6 orders of 
magnitude 

5 orders of 
magnitude 

4 orders of 
magnitude 

3 orders of 
magnitude 

2 orders of 
magnitude 

46,661 
sequences 
remaining 

490,897 
sequences 
remaining 

3,917,173 
sequences 
remaining 

41,153,546 
sequences 
remaining 

425,208,487 
sequences 
remaining 

Asteroid 
Sequence 

J  
(kg/ 
yr) 

80%-75%-
70%-50% 

75%-70%-
60%-40% 

65%-60%-
50%-35% 

45%-45%-
40%-25% 

25%-20%-
15%-10% 

#1, GTOC2 98.64   √ √ √ 
#2, GTOC2 87.93     √ 
#3, GTOC2 87.05   √ √ √ 
New Seq. 86.54 √ √ √ √ √ 
New Seq. 86.29   √ √ √ 
#4, GTOC2 85.43   √ √ √ 
#7, GTOC2  85.39   √ √ √ 
#5, GTOC2 85.28      
#6, GTOC2 84.48     √ 
New Seq. 82.83   √ √ √ 
 

 Finally, this pruning analysis is conducted for the modified GTOC3 problem, the 

results of which are presented in Table 29.  When the methodology was applied in 

Section 5.1, the pruning phase achieved a reduction in the design space of approximately 

two orders of magnitude, from 2.7 million sequences to 10,311.  For this problem, 

however, a reduction of up to four orders of magnitude could have been achieved without 

eliminating any of the ten best known solutions.  Beyond four orders of magnitude, 

however, a majority of these solutions are eliminated. 
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Table 29: Best known solutions remaining in design space for varying orders of magnitude reduction 
during the pruning phase, for the modified GTOC3 problem. 

4+ orders of 
magnitude 

4 orders of 
magnitude 

3 orders of 
magnitude 

2 orders of 
magnitude 

65 
sequences 
remaining 

299 
sequences 
remaining 

2,306 
sequences 
remaining 

10,311 
sequences 
remaining 

Asteroid Sequence MBfB 
(kg) 

85%-80%-
75%-60% 

80%-75%-
70%-60% 

75%-70%-
60%-40% 

70%-60%-
50%-25% 

E - 76 - 88 - 49 - E 1621  √ √ √ 
E - 88 - 76 - 49 - E 1597 √ √ √ √ 
E - 49 - 37 - 85 - E 1590 √ √ √ √ 
E - 96 - 88 - 49 - E 1589  √ √ √ 
E - 88 - 19 - 49 - E 1587 √ √ √ √ 
E - 88 - 49 - 19 - E 1567 √ √ √ √ 
E - 96 - 76 - 49 - E 1565  √ √ √ 
E - 88 - 11 - 49 - E 1558 √ √ √ √ 
E - 88 - 129 - 49 - E 1557  √ √ √ 
E - 88 - 76 - 96 - E 1554 √ √ √ √ 

 

5.3.2  Global Optimization Phase Sensitivity to Selection of Initial Lower Bound 

For the global optimization portion of the methodology, the algorithm can be 

tuned based on the initial value of the lower bound chosen for the branch-and-bound 

algorithm.  Shown previously, Figure 53 illustrates the evolution of the branch-and-

bound algorithm for the modified GTOC2 problem.  In this figure, all of the asteroid 

sequences with impulsive optima (plotted in red) greater than the current lower bound 

(plotted in blue) must be optimized in low-thrust.  These results were based on running 

the branch-and-bound algorithm without an initial value for the lower bound – therefore, 

the lower bound is set by applying the genetic algorithm to the first asteroid sequence to 

determine its low-thrust optimum.  If an estimate is made for the initial value of the lower 

bound based on the underlying physics of the problem, this would eliminate some of the 

up-front low-thrust optimizations, few of which generally yield good solutions.   

For the modified GTOC2 problem, without an initial estimate of the lower bound 

of the objective function, the low-thrust optimization of 809 asteroid sequences was 
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required.  Figure 59 plots the number of optimizations that would have been required for 

different values of the initial lower bound.  Of course, if the initial lower bound is set too 

high, it is possible that all solutions will be pruned out by the branch-and-bound 

algorithm.  For this particular problem, the initial bound can be set as high as 105.9 kg/yr, 

and still find all of the known solutions greater than 80 kg/yr (105.9 represents the 

minimum value of the impulsive optima for the known asteroid sequences with low-

thrust optima greater than 80 kg/yr).    In practice, however, if the initial lower bound is 

set too high and no good solutions are found, it could be incrementally decreased until a 

satisfactory set of good solutions were found. 
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Figure 59: Number of low-thrust optimizations required as a function of the initial value of the lower 

bound during the branch-and-bound algorithm for the modified GTOC2 problem. 
 

The same plot is constructed for the full GTOC2 problem in Figure 60.  The 

number of low-thrust optimizations required in this case, however, only encompasses the 

first 78,000 sequences, which represents the top 2% of sequences based on the branch-

and-bound ranking (normalized sum of the pruning metrics).  Additionally, the plotted 

results are based only on the known low-thrust solutions (see Table 26).  If additional 
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good solutions exist in the design space, however, it is possible that the number of low 

thrust optimizations would decrease.  It is also possible that if low-thrust solutions exist 

in which the corresponding two-impulse optima are better than the best known solutions, 

that some of these sequences would be pruned out during the branch-and-bound 

algorithm.  Therefore, the results in Figure 60 are approximate, but illustrate the benefit 

of choosing an aggressive estimate for the initial lower bound. 

As with the modified GTOC2 problem, for the full GTOC2 problem, 105.9 kg/yr 

is the maximum value of the lower bound that still locates all of the known solutions in 

the top 78,000 with J > 80 kg/yr.  Setting the initial lower bound to this value would 

reduce the number of low-thrust optimizations from nearly 30,000 to 1,394.  As seen 

previously, if an initial estimate of 100 kg/yr was made, 4,620 asteroid sequences would 

require low-thrust optimization. 

 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Initial Value of Lower Bound (kg/yr)

N
um

be
r o

f L
ow

-T
hr

us
t O

pt
im

iz
at

io
ns

 
Figure 60: Number of low-thrust optimizations required as a function of the initial value of the lower 
bound during the branch-and-bound algorithm (top 78,000 sequences) for the full GTOC2 problem. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 This work presents an organized search technique for the low-thrust mission 

design of multiple asteroid rendezvous mission, at the conceptual design level.  

Specifically, a methodology is developed for quickly determining a broad set of good 

solutions to the large, combinatorial asteroid rendezvous problem.  The proposed 

methodology combines two-steps, the first which quickly eliminates poor solutions from 

the design space through a three-level heuristic pruning sequence, and the second which 

locates a set of good solutions from the reduced design space using a global optimization 

algorithm.  This approach combines an innovative branch-and-bound algorithm (to solve 

for the optimal asteroid sequence) with a genetic algorithm (which, in tandem with a low-

thrust trajectory optimization program, solves for the optimal departure dates, times of 

flight, and stay times for a given asteroid sequence).  This methodology was applied to 

several problems, ranging in size from several thousand possible asteroid sequences to 

over 41 billion.  The methodology is able to consistently locate the best known solution, 

along with a suite of good solutions across the design space.  The performance of the 

proposed methodology at efficiently pruning the design space and then locating the best 

set of solutions is summarized in this chapter. 

6.1 Performance of Methodology 

6.1.1  Pruning Phase 

 The goal of the pruning phase of the methodology is to quickly reduce the size of 

the design space by several orders of magnitude, while maintaining a majority of the best 

solutions.  In order to do so, a sequence of heuristics was developed, specific to the 

physics of the underlying asteroid tour problem, which is able to identify areas of the 

design space that will not likely yield favorable solutions in terms of final mass.  The 
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heuristics chosen were based on their effectiveness at pruning a small sample problem, 

and were then verified on an intermediate sample problem with a known solution, before 

being applied to the GTOC3 and GTOC2 competition problems.  The three metrics 

chosen for the pruning phase are as follows: 

 

1) Increasing semi-major axis.  Only asteroid sequences where the semi-major axis 

increases from one asteroid to the next are kept in the design space.  The rationale 

behind this metric is that visiting asteroids in sequential order in terms of distance 

from the Earth minimizes propellant expenditure.  In order to eliminate phasing, 

semi-major axis is used as a surrogate for distance.  Additionally, the restriction is 

limited to increasing semi-major axis in order to minimize the time of flight.  For 

problems where flight time is not a consideration, and the Earth departure V∞ is 

large, it may make sense to visit the furthest asteroid first and then visit the 

remaining asteroids in order of decreasing distance.  Furthermore, if return to 

Earth is required at the end of the trajectory, decreasing order could also be 

considered.  For certain problem, such as the GTOC3 problem, where all of the 

asteroids have similar values of semi-major axis, this pruning metric may not be 

applicable. 

 

2) Angle between the angular momentum vectors.  This metric is applied to 

asteroid pairings.  The angle between the angular momentum vectors takes two 

factors into account: the difference in inclination and the relative orientation 

between two orbits.  In general, as the change in inclination increases between an 

initial and final orbit, so does the ∆V required and therefore the propellant 

required.  However, inclination change is not sufficient, in that the orientation 

between two orbits must be considered.  In Section 2.5.1, it was shown that the 

angle between the angular momentum vectors of the two orbits has a strong 
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correlation with the propellant mass required.  As with the first metric, phasing is 

not taken into consideration here. 

 

3) Optimal, phase-free, two-impulse delta-V.  This third metric is also applied to 

asteroid pairings, and uses the optimal, phase-free, two-impulse ∆V as a surrogate 

for low-thrust propellant mass.  While phasing was initially considered, there was 

not a strong correlation between the impulsive and low-thrust propellant masses 

for specific departure dates and/or flight times.  Therefore, phasing is not taken 

into consideration here.  The optimal, phase-free, two-impulse delta-V for a given 

asteroid pair is determined using a Lambert solver, by solving for the minimum 

∆V over discretized values of departure and arrival true anomaly.  This heuristic 

is only applicable for low-thrust trajectories that can be well approximated by 

impulsive solutions, namely those with low ratios of thrust time to time of flight. 

 

 In the asteroid rendezvous problem, the pruning metrics are applied sequentially 

in the order presented.  The order was chosen to minimize the time required for this 

phase, since each subsequent metric requires additional computation time.  Furthermore, 

the second and third metrics are applied sequentially to each trajectory leg, and a user-

defined percentage is eliminated from each.  These percentages are chosen in order to 

balance the desired reduction in the number of asteroid sequences remaining in the design 

space with the risk of eliminating good solutions. 

 Table 30 presents a summary of the results of the pruning phase of the 

methodology applied to each of the problems examined.  The results presented are for the 

baseline pruning percentages used in this work; Section 5.3 presented sensitivities to the 

pruning metrics for the large problems.  For the small and intermediate sample problems, 

the optimal (discretized) solution is known for all asteroid sequences.  Therefore, the 

performance of the pruning phase is known absolutely.  For the modified GTOC3 
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problem, the best set of solutions is unknown, so the performance of the pruning phase is 

compared against the best known set of asteroid sequences identified in the competition, 

excluding the Earth gravity assists.  In this case, the asteroid sequences that generated the 

top ten competition solutions all remain in the design space.   

 

Table 30: Summary of pruning phase applied to each problem. 
Problem 

Description 
Initial # 

Sequences
Final # 

Sequences 
% 

Remaining Remaining Sequences 

Small Sample 
Problem 3.07×103 1.31×102 4.3% − Top 36 sequences all 

remain 
Intermediate 
Sample 
Problem 

1.04×104 4.16×102 4.0% 
− 23 of top 24 sequences 

remain 
− 7th best eliminated 

Modified 
GTOC3 
Problem 

2.69×106 1.03×104 0.38% − All of top 10 competition 
solutions remain 

Modified 
GTOC2 
Problem 

4.10×108 3.31×104 0.0093% 
− Of the top 7 competition 

solutions > 80 kg/yr, #1, 
#3, #4, and #7 remain  

Full GTOC2 
Problem 4.11×1010 3.92×106 0.0095% 

− Of the top 10 known 
solutions > 80 kg/yr 
(includes additional 
solutions found in 
modified problem), all but 
#2, #8, and #9 remain. 

 

 Similarly, for the modified and full GTOC2 problems, the best set of solutions is 

unknown, so the pruning phase is again compared against the best known solutions 

identified during the competition.  In this case, that is considered to be all of the 

competition solutions with J > 80 kg/yr.  For the modified GTOC2 problem, four of the 

top seven best sequences remain in the design space after the pruning phase is applied.  

Three additional solutions not reported by any of the GTOC2 competitors, all greater than 

80 kg/yr, are also found during the global optimization phase, increasing the number of 

known solutions greater than 80 kg/yr to ten.  For the full GTOC2 problem, seven of 
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these top ten best known solutions remain after the pruning phase.  Therefore, for each 

problem examined, it can be concluded that the pruning phase succeeded in keeping a 

majority of the best solutions in the design space.   

 The performance of the pruning phase is clearly dependent on the user-defined 

percent reduction in the size of the design space.  If a smaller number of sequences are 

eliminated, a larger percentage of the best solutions remain.  As was seen in Section 5.3, 

the design space can generally be reduced by up to four orders of magnitude, while still 

maintaining a majority of the best solutions. 

6.1.2  Global Optimization Phase 

 The goal of the global optimization phase is to identify the best set of solutions 

from the reduced design space, where the system-level optimizer is responsible for 

determining the following design variables: asteroid combination, launch date, times of 

flight, and stay times.  The system-level optimizer is coupled with a local low-thrust 

trajectory optimization program (MALTO) that determines the optimal control history of 

the spacecraft in order to minimize propellant for a given set of system-level variables.  A 

three-level global optimization scheme was developed, which if run to completion, 

identifies both the global optimum and a set of best solutions, which can then be carried 

forward into the more detailed design phases.  This strategy was described in Figure 12 in 

Section 2.3.  The outer loop optimizer consists of a branch-and-bound algorithm, which is 

responsible for identifying the optimal asteroid sequence.  This novel approach to branch-

and-bound uses optimal two-impulse solutions as a surrogate for constraint relaxations to 

set bounds on the problem.  As in the pruning phase, this assumption only holds for low-

thrust trajectories where the ratio of the thrust time to time of flight is small, which is the 

case for the problems examined in this work.  The inner loop optimizer, which is called 

for each asteroid sequence that requires optimization, consists of a genetic algorithm.  

The inner loop variables are the departure date, times of flight, and asteroid stay times.  
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Finally, for each set of inner loop design variables, MALTO is used as the low-thrust 

trajectory optimization algorithm.  MALTO is responsible for determining the maximum 

final mass for a given set of outer and inner loop design variables. 

 Table 31 presents the results of the global optimization phase as applied to each of 

the asteroid tour problems.  In all cases, the best known solution was found.  By nature, 

the branch-and-bound algorithm should always locate the optimal solution, contingent on 

two conditions.  First, the optimal impulsive solution must not incorrectly prune out the 

optimal sequence – the purpose of including the impulsive multiplier is to reduce the 

probability of this occurring.  Second, the genetic algorithm must find the optimal 

solution to that particular asteroid sequence.  Ideally, the genetic algorithm is run several 

times – the baseline value is three – in order to improve the chances of the optimal 

solution being found.  Because of the large size of the modified and full GTOC2 

problems, the genetic algorithm was nominally run only once for each asteroid sequence.  

The most promising cases were then run twice more in an attempt to improve those 

solutions.  

 The most important performance consideration of the global optimization phase is 

how many of the best solutions are found by the optimizer, which is presented in Table 

31 for each of the problems examined.  In order to evaluate this performance, the top ten 

previously known solutions for each problem were considered (top seven known 

solutions for the modified GTOC2 problem, since only the top seven competition 

solutions had values of J > 80 kg/yr).  Out of those top ten solutions that remained after 

the pruning phase, the number found by the multi-level optimization scheme was 

determined.  For the modified GTOC3 problem, eight of these top ten solutions were 

found, and for the modified GTOC2 problem, all (four) of these previously identified 

solutions were found.  Additionally, three new solutions with J > 80 kg/yr not reported by 

any of the GTOC2 competitors were identified in this investigation for the modified 

GTOC2 problem.   
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Table 31: Summary of global optimization phase applied to each problem. 

Problem 
Description 

# Branch-
and-Bound 
Iterations 

# Sequences 
Requiring 

Low-Thrust 
Optimization 

Best Set of Sequences Found 

Small Sample 
Problem 2 14 

− Optimal solution found 
− 5 of the top 10 remaining solutions 

found 
Intermediate 
Sample 
Problem 

2 55 
− Optimal solution found 
− 5 of top 9 remaining solutions 

found 
Modified 
GTOC3 
Problem 

3 17 
− Best known solution found 
− 8 of the top 10 remaining solutions 

found 

Modified 
GTOC2 
Problem 

1 809 

− Best known solution found 
− 7 solutions found with J>80 kg/yr: 
− 4 of 4 competition solutions 

remaining after pruning phase 
− 3 new solutions not reported in 

competition 

Full GTOC2 
Problem N/A 308  

(in 2 weeks) 

− Three new solutions with J>80 
kg/yr found that were not reported 
in competition 

− Better solution would have ranked 
3rd in GTOC2 

 

 For the full GTOC2 problem, the branch-and-bound algorithm was allowed to run 

for two weeks to simulate the time constraints from the competition.  In those two weeks, 

308 asteroid sequences were optimized in low-thrust.  Of these, three previously 

unknown asteroid sequences were identified with J > 80 kg/yr, the best of which would 

have placed third in the competition.  Furthermore, Section 5.2.2 analyzed how many 

low-thrust optimizations would be required to locate the additional known good 

solutions.  It was determined that using an initial guess for the lower bound of 100 kg/yr 

(same assumption as was made in the two weeks of analysis), 4,620 asteroid sequences 

would have to be optimized in low-thrust in order to locate eight of the thirteen known 

solutions with J > 80 kg/yr.  The thirteen known solutions include the seven reported 
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solutions from the GTOC2 competition along with the six additional solutions found in 

this work.  

6.1.3  Overall Performance 

 Table 32 summarizes the overall performance of the proposed methodology on 

each of the problems presented in this study (the full GTOC2 problem is not included in 

these results as the methodology was not run to completion for this problem).  Two 

metrics are of importance here.  First is the ratio of the number of asteroid sequences that 

require low-thrust optimization to the number of sequences in the initial design space.  

This is a measure of the efficiency that can be achieved by the overall methodology.  For 

the modified GTOC3 and modified GTOC2 problems, this results in an overall reduction 

of between 6 and 7 orders of magnitude.  Second is the number of good solutions found 

by the overall methodology.  Because the best solutions are not known for the GTOC2 

and GTOC3 problem, the solutions previously identified during the competitions are used 

as a benchmark.   

 Tailoring of the methodology to the amount of computing time available has also 

been demonstrated.  For the large problems examined, it is possible to reduce the number 

of asteroid combinations by up to four orders of magnitude and still keep a majority of 

the best known solutions in the design space. Clearly, based on user-assigned values, the 

design space could be pruned less aggressively at the expense of more required low-

thrust optimizations during the global optimization phase.  Another user-defined setting, 

the initial lower bound in the branch-and-bound algorithm, was also shown to directly 

affect the number of required low-thrust optimizations required and the number of good 

solutions found.  An aggressive estimate can serve to greatly reduce the number of low-

thrust optimization required; however, it can also prune out some of the good solutions if 

set too high.  A strategy was developed in which this value could be set high based on the 
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underlying physics of the problem and incrementally lowered until a satisfactory set of 

good solutions was identified.  

 

Table 32: Summary of overall performance of methodology as applied to each problem. 

Problem 
Description 

Initial # 
Sequences 

# Low-Thrust 
Optimizations Sequences#

LT# OPT  # Top 10 Known 
Solutions Found 

Small 
Sample 
Problem 

3.07×103 14 0.45% 5 

Intermediate 
Sample 
Problem 

1.04×104 55 0.53% 5 

Modified 
GTOC3 
Problem 

2.69×106 17 0.00063% 8 

Modified 
GTOC2 
Problem 

4.10×108 809 0.00020% 7* 

 

6.2 Conclusions 

 Based on the results presented above, the methodology developed in this 

investigation can be concluded to be effective at locating both the best known solution 

and a set of good solutions for low-thrust, combinatorial, asteroid rendezvous problems.  

Combining the pruning and global optimization steps, the methodology is able to 

significantly reduce the size of the design space: for large problems, a 6-7 order of 

magnitude reduction is achievable in terms of the number of asteroid sequences that 

require low-thrust optimization.  Furthermore, with the available computing resources, 

the methodology was run to completion for problems with up to 400 million asteroid 

sequences.  For this largest problem – the modified GTOC2 problem – 809 asteroid 

                                                 

 
 
TP

*
PT Includes three new solutions not previously identified during the competition 
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sequences were optimized in low-thrust and the entire branch-and-bound algorithm 

required just over one month to complete.  For the large problems examined in full – the 

modified GTOC2 and modified GTOC2 problems – the methodology was able to locate 

at least 70% of the best known solutions.   

 For the GTOC3 problem, the methodology was applied to a modified version that 

did not include gravity assists and did not take asteroid stay time into account in the 

objective function.  However, the asteroid sequence that yielded the winning solution in 

the GTOC3 competition was identified, along with the asteroid sequences that yielded 

eight of the top ten competition solutions.  Only 17 asteroid sequences had to be 

optimized in low-thrust.  Applying this algorithm to the GTOC3 competition would have 

clearly left ample time to add gravity assists to the best sequences found, and to add the 

stay time consideration back into the objective function.  This illustrates the ability of the 

methodology to be used as an initial screening technique for problems that require more 

complicated trajectories, such as gravity assists, and/or additional objective function 

terms. 

 For the modified GTOC2 problem, the methodology was able to locate four of the 

seven known solutions with objective function values greater than 80 kg/yr, including the 

best known solution.  Additionally, three additional asteroid sequences greater than 80 

kg/yr, which were not reported by the GTOC2 competitors were also found.   

 Due to resource limitations, the methodology was not run to completion for the 

full GTOC2 problem.  However, in just two weeks of run time, three new solutions 

greater than 80 kg/yr were identified, the best of which would have placed 3rd in the 

original GTOC2 competition.  If more time and/or computing resources were available, 

an incremental approach could be taken, as presented in Section 5.3.  In order to locate 

the best known solution and eight of the top thirteen known solutions (all with J > 80 

kg/yr), approximately 4,620 asteroid sequences would have to be optimized in low-thrust 

(assuming an initial lower bound of 100 kg/yr and that no solutions greater than 100 
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kg/yr are identified).  The approach utilized in solving the GTOC2 problem illustrates the 

flexibility of the methodology to be tuned to available time and computing resources.  

Additionally, because the best solutions tend to be found early in the branch-and-bound 

algorithm, a set of good solutions can be identified in a short amount time, even for 

problems containing billions of possible asteroid sequences. 

 The methodology presented in this work is applicable to the conceptual design of 

low-thrust, combinatorial asteroid rendezvous missions, subject to the assumptions 

outlined in Section 3.2.  First, the methodology does not take flyby trajectories into 

account.  As was seen on the GTOC3 problem, however, the methodology can still be 

used as an initial screening technique to identify good sequences independent of flybys, 

with the plan to add these flybys subsequently.  Second, in both the pruning phase and in 

the branch-and-bound algorithm, the methodology assumes that two-impulse optima are 

good surrogates for low-thrust optima.  This generally occurs when the ratio of thrust 

time to time of flight for the low-thrust trajectories is small, as was the case of the 

problems examined in this work.  If this were not true, the general framework presented 

could still be applied; however, an alternate metric would have to be identified that better 

approximates the low-thrust solutions.  Finally, the branch-and-bound algorithm was 

shown to be feasible under the assumption that the objective function monotonically 

increases or decreases for each subsequent section in each branch of the tree.  If this were 

not the case, the objective function could either be simplified, as was done for the 

GTOC3 problem, or the relaxed solution for each entire branch would be solved for in 

order to determine if that branch is pruned or optimized in low-thrust.  Therefore, the 

framework presented provides some flexibility for problem modification on a case-by-

case basis, if the problem of interest varies from a low-thrust, multiple asteroid 

rendezvous mission design problem. 

 The methodology and overall framework developed provides an organized search 

technique for the low-thrust mission design of asteroid tour missions.  The intended 
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application is for the conceptual design phase, where the ability to quickly explore the 

full extent of the design space is imperative to locating a broad suite of good solutions. 

6.3 Recommendations for Future Work 

 Opportunities exist for future work to apply, modify, and improve upon the 

methodology presented.  The following is a list of potential areas for future work: 

 

1) Explore methods for incorporating phasing into the pruning phase of the 

methodology.  The three-level heuristic sequence developed for this problem 

removes asteroid sequences from the design space but does not eliminate any of 

the time domain for particular asteroids, asteroid pairs, or asteroid sequences.  

None of the phasing metrics examined proved to be reliable predictors of low-

thrust final mass.  Additional work could delve deeper into this problem, in an 

attempt to incorporate phasing into the pruning aspect of the methodology. 

 

2) Improve upon the evolutionary algorithm (inner loop optimizer).  The 

evolutionary algorithm chosen for the inner loop optimizer is a simple genetic 

algorithm, using basic methods for reproduction, crossover, and mutation.  

Additionally, it archives all of the solutions found, to reduce the number of calls 

to MALTO and to keep track of the best solution found, in case it does not 

continue to subsequent generations.  However, there are countless opportunities 

for improving the evolutionary algorithm used in the inner loop optimizer.  One 

example would be to include the inheritance scheme implemented by Vavrina and 

Howell in Ref. 61, where MALTO would be free to locally optimize the global 

variables passed to it by the genetic algorithm.  The goal of improving the 

evolutionary algorithm would be to reduce the number of function calls required 
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(calls to MALTO) and to increase the solution success rate of a single run of the 

genetic algorithm.   

 

3) Improve the distributed computing framework to increase the speed of genetic 

algorithm runs.  Genetic algorithms are excellent candidates for distributed 

computing, since each generation requires a number of parallel function calls – in 

this case, to MALTO or the low-thrust optimization algorithm of choice.  For this 

work, due to software limitations, the function calls to MALTO were manually 

distributed to each node of the computer cluster (e.g., if fifty function calls are 

required and there are ten nodes, five function calls are sent to each node).  A 

large improvement in computing time could be realized if the distributed 

computing were automated. 

 

4) Method for determining impulsive multiplier in branch-and-bound.  Currently, 

the branch-and-bound method requires an impulsive multiplier to be placed on the 

optimal impulsive solutions that serve as surrogates for relaxed solutions.  This 

value is determined in an iterative fashion, beginning with no impulsive 

multiplier, and increasing its value each iteration as required to bound all of the 

known low-thrust solutions.  A possible area for future work would be to explore 

methods for determining the value of this multiplier in a more rigorous manner, in 

order to avoid the iterative process and to help ensure that its final value is large 

enough to bound all of the low-thrust solutions. 

 

5) Explore the possibility of applying traveling salesman solution techniques to 

asteroid tour problem.  Different versions of the traveling salesman model 

include many of the aspects of the asteroid tour problem, as was presented in 

Section 1.2.3.  While solutions techniques have been developed for each of these 
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types of the TSP, they have not been incorporated into a single problem which 

represents so many different variants.  For example, the dynamic aspect of the 

trajectory problem is represented by the time-dependent TSP, the fact that not all 

asteroids have to be visited is represented by the generalized TSP, and if a return 

to the point of origin is not required, that is represented by the wandering TSP.  

Each of these variants has its own solutions technique, but future work could 

attempt to incorporate these different approaches into a single solution technique 

that could be applied to the asteroid tour problem. 

 

6) Better initial guesses for MALTO.  One of the most difficult challenges in this 

work was determining appropriate initial guesses for MALTO, which could be 

automated within the framework of the global optimization framework, and that 

would reliably produce the optimum solution for a range of asteroid sequences 

and values of the time variables.  While a number of techniques were examined, 

three different initial guesses were chosen, which results in MALTO being run 

three times for each trajectory that must be optimized.  Future work could attempt 

to determine a more rigorous method for determining an appropriate initial guess, 

while reducing the amount of computation time required. 

 

7) Apply methodology/framework to additional problems.  The problems examined 

in this work were chosen because they all had known solutions against which the 

results generated by the methodology could be compared.  There are additional 

problems of interest, however, to which the methodology could be applied.   

 

a. In 2003, the National Research Council completed a decadal survey on 

solar system exploration.76,77  Its task was to develop a science strategy for 

solar system exploration for the upcoming decade, by determining the 
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most important scientific questions currently facing planetary science.  

Furthermore, the study was tasked with creating a prioritized list of 

mission options that could best seek to answer those questions, one of 

which is an asteroid rover/sample return mission.  In its Cosmic Vision for 

space science, the European Space Agency (ESA) also identified a near-

Earth object sample return mission as one of its priorities in the 2015-2025 

timeframe.78  Although in both instances, the sample return mission called 

for would only visit a single asteroid, it is pointed out in the Cosmic 

Vision that a full understanding of the populations, histories, and 

relationships of asteroids and meteors would eventually require sample 

return missions to asteroids in each of the spectral classes.  Therefore, a 

multiple asteroid sample return mission would eventually be of interest to 

both NASA and ESA.   

 

The methodology could be applied to the conceptual design of such a 

mission, in order to determine its feasibility in the near-term from a 

mission design standpoint.  The goal of the mission design would be to 

rendezvous with two near-Earth asteroids and then return to Earth, while 

maximizing final mass at Earth return, maximizing the stay time at each 

asteroid, minimizing overall time of flight, and minimizing the arrival 

velocity at Earth (the objective function could consider one or more of 

these objectives and implement the remaining objectives as constraints).  

The mission would implement low-thrust propulsion, the specifics of 

which would be based on currently available technologies in terms of 

thrust and specific impulse.  The asteroids could consist of a single group 

of all known near-Earth asteroids (currently totaling 6,496)79 or multiple 

groups of asteroids based on their scientific interest and/or value.  The 
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methodology would be applied in the same way as it was applied to the 

GTOC3 (single group of asteroids) or GTOC2 (multiple groups of 

asteroids) problem.  Because only two asteroids are visited and Earth 

return is required, the first pruning metric would not be employed 

(increasing semi-major axis). 

 

b. In 2009, the Augustine Commission completed its report on the future of 

NASA human spaceflight.80  Several options for initial exploration beyond 

low-Earth orbit were described, one of which consists of visiting a series 

of locations and objects in the inner solar system.  In this Flexible Path 

architecture, the time duration and complexity of the missions slowly 

builds, beginning with human missions to the Lagrange points, followed 

by missions to near-Earth objects, and finally human missions to Mars.  It 

calls for visiting several near-Earth objects in order to return samples, 

practice operations near a small body, and potentially practice in-situ 

resource utilization.  While the plans call for only a single asteroid 

rendezvous, an interesting offshoot would be to look at a multiple-asteroid 

rendezvous human mission, in order to increase the mission duration 

before the first human mission to Mars.   

 

Two possible related mission design problems could be of interest in this 

case.  First would be the trajectory design of the human mission to the 

asteroids.  This would likely employ chemical (high-thrust) propulsion, 

but the methodology could still be applied to determine a set of good 

solutions.  In this case, the objective would be to minimize ∆V and time of 

flight (or simply constraint time of flight to some upper bound) and to 

minimize Earth arrival velocity.  The pruning phase of the methodology 
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could be applied as-is, but the branch-and-bound would be altered in that 

there would be no low-thrust optimization at the end.  The “relaxed” 

solutions would instead be the actual impulsive solutions.  Alternatively, 

the relaxed solutions could still consist of two-impulse solutions and 

instead of low-thrust, multiple-impulse trajectories could be considered. 

 

Second, if in-situ resource utilization is to be tested at the asteroids, it may 

be useful to pre-deploy those assets prior to the human missions.  Because 

time of flight is not nearly as constrained for cargo delivery missions, low-

thrust propulsion could be employed in this case.  For this problem, the 

goal would be to visit two asteroids, while maximizing final mass (no 

Earth return required).  The results of the low-thrust cargo delivery 

missions and the high-thrust human missions could be combined in order 

to locate pairs of asteroids that would be easily accessible to both mission 

types. 
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APPENDIX A 

SET OF GTOC2 ASTEROIDS 

 Table 33 lists all of the asteroids in the full GTOC2 problem, including their SPK-

ID number, common name, orbital elements (semi-major axis, eccentricity, inclination, 

longitude of the ascending node, argument of periapsis, mean anomaly, and epoch), and 

group number.  Additionally, for each asteroid, the table indicates if that asteroid was part 

of each of the problems examined: the small sample problem (s), the intermediate sample 

problem (i), and the modified GTOC2 problem (m).  The asteroids are sorted by their 

group and then by their SPK-ID number. 

 

Table 33: GTOC2 Asteroids. 

SPK-ID Name a 
(AU) e i 

(deg) 
LAN 
(deg) 

arg. 
periapsis 

(deg) 

M 
(deg) 

Epoch 
(MJD) Group Prob 

2002062 Aten 0.9667013 0.18271178 18.932519 108.62768 147.94205 334.92171 54000 4 s,i,m 

2002100 Ra-Shalom 0.83206393 0.4364584 15.757434 170.87687 355.99521 158.8253 54000 4 s,i,m 

2002340 Hathor 0.84389537 0.44995917 5.8539782 211.51958 39.938047 303.69494 54000 4  

2003362 Khufu 0.98946745 0.46856161 9.9183703 152.50975 54.982849 230.97821 54000 4 m 

2003554 Amun 0.97371428 0.28048062 23.361458 358.67621 359.38617 297.0219 54000 4  

2003753 Cruithne 0.99774049 0.51478951 19.8093 126.29699 43.743147 261.34727 54000 4 s,i 

2005381 Sekhmet 0.94744835 0.29610804 48.973045 58.562459 37.413535 345.61516 54000 4 s,i,m 

2005590 "1990 VA" 0.98568232 0.27958167 14.186004 216.34471 34.416179 218.05496 54000 4  

2005604 "1992 FE" 0.92728217 0.40535123 4.796818 312.00418 82.422924 192.01877 54000 4  

2033342 "1998 WT24" 0.71851637 0.41798842 7.3416842 82.004826 167.28181 149.53901 54000 4  

2065679 "1989 UQ" 0.91486343 0.26464041 1.2914011 178.35188 14.927526 324.04271 54000 4  

2066063 "1998 RO1" 0.99093072 0.72009385 22.666222 351.92132 151.06633 312.1291 54000 4 m 

2066146 "1998 TU3" 0.78727129 0.48380682 5.4099722 102.31935 84.562367 277.80779 54000 4  

2066391 "1999 KW4" 0.64231117 0.68842863 38.891521 244.9322 192.59839 260.28645 54000 4 m 

2066400 "1999 LT7" 0.85520974 0.57256097 9.0653163 79.918316 341.27615 303.78632 54000 4  

2068347 "2001 KB67" 0.96282557 0.37978055 17.139554 245.97862 243.8006 304.03906 54000 4  

2085770 "1998 UP1" 0.99873332 0.3449384 33.178463 18.403672 234.37669 74.743373 54000 4 m 

2085953 "1999 FK21" 0.73876145 0.70312537 12.598508 180.54824 172.32944 193.41695 54000 4  

2085989 "1999 JD6" 0.88271351 0.63293609 17.047146 130.29026 309.14389 57.092802 54000 4  

2086450 "2000 CK33" 0.9680575 0.41479377 18.106551 124.91312 215.55604 86.689225 54000 4  

2086667 "2000 FO10" 0.85926966 0.59473781 14.284786 208.40354 172.40027 208.35792 54000 4 m 

2087309 "2000 QP" 0.84745188 0.46306937 34.745734 294.31189 188.12379 171.16429 54000 4 m 

2087684 "2000 SY2" 0.85873344 0.64269364 19.234294 162.11324 47.709401 287.41396 54000 4 m 

2088213 "2001 AF2" 0.9539439 0.59522617 17.814259 114.31678 194.94151 172.78666 54000 4  

2096590 "1998 XB" 0.90795755 0.35118792 13.597697 75.804099 202.65036 198.06344 54000 4  

2099907 "1989 VA" 0.72853347 0.59476 28.792699 225.62898 2.8083713 218.4728 54000 4 m 
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2099942 Apophis 0.92226308 0.1910585 3.3313256 204.46 126.39552 84.786507 54000 4 s,i 

2105140 "2000 NL10" 0.9142539 0.81702607 32.514695 237.49863 281.51518 154.92805 54000 4  

3005821 "1992 BF" 0.90800988 0.27176599 7.2538905 315.473 336.42244 186.28381 54000 4  

3005964 "1994 TF2" 0.99299794 0.28400259 23.752266 175.27593 349.68503 252.92589 54000 4  

3005969 "1994 WR12" 0.75686007 0.39730327 6.8638137 63.069077 205.68112 168.83864 49709 4  

3005970 "1994 XL1" 0.67082068 0.5263641 28.163343 252.69674 356.52092 0.48117591 54000 4 m 

3005972 "1991 VE" 0.89088169 0.66458077 7.2190179 62.010882 193.51103 336.36256 54000 4  

3005973 "1995 CR" 0.90672544 0.86843062 4.0352333 342.77703 322.39388 99.988219 54000 4  

3007848 "1997 UH9" 0.83004916 0.47478051 25.492374 42.445929 180.85609 86.169308 54000 4 m 

3009717 "1997 AC11" 0.9132051 0.36807412 31.677089 116.97656 141.55437 290.00574 54000 4 m 

3010201 "1997 MW1" 0.93754452 0.34638355 12.773843 260.05979 203.7136 229.81762 54000 4  

3010207 "1997 NC1" 0.8655388 0.20828137 16.718068 96.571071 16.625509 314.20271 54000 4  

3011815 "1998 DG16" 0.89669302 0.3581831 16.208789 344.42506 356.81644 222.69406 54000 4  

3012397 "1993 VD" 0.87624175 0.5514582 2.0627017 2.7408046 253.64179 352.82705 54000 4  

3013030 "1998 HE3" 0.87849063 0.44056444 3.3998126 53.890616 309.00862 327.02451 54000 4  

3013071 "1998 HD14" 0.96311766 0.31262107 7.8072693 183.97257 260.72001 53.391542 54000 4  

3014113 "1998 ST27" 0.81932815 0.53002281 21.049912 197.61161 322.42211 146.69697 54000 4  

3014114 "1998 SZ27" 0.9032239 0.50379849 23.425461 166.83655 47.499929 92.326803 51081 4 m 

3014184 "1998 SD9" 0.70287493 0.5042051 2.9029512 167.15519 6.2466136 188.83079 51077 4  

3015691 "1998 VF32" 0.85113036 0.44357995 23.750628 236.336 320.85172 257.14348 54000 4 m 

3016523 "1998 XX2" 0.74123992 0.36744228 6.9691489 74.57572 152.86115 301.0636 54000 4  

3017039 "1998 VR" 0.87579594 0.3181469 21.802114 46.44937 170.67926 55.367825 54000 4 m 

3017060 "1999 AQ10" 0.93722796 0.23454007 6.5601162 327.40619 299.48051 33.408243 54000 4  

3017309 "1999 AO10" 0.91140605 0.11077323 2.6226597 313.34135 7.6536829 82.979128 54000 4 m 

3019650 "1999 MN" 0.67402486 0.66520869 2.0164845 80.792574 9.8818082 236.01441 54000 4 m 

3020946 "1999 HF1" 0.81902244 0.46252854 25.657332 155.93408 253.33986 114.23065 54000 4  

3021790 "1998 SD15" 0.93250655 0.34499429 26.793225 183.98793 35.805081 63.591671 54000 4 m 

3024030 "1999 VX25" 0.89999766 0.13956765 1.6633228 55.303545 151.72637 221.34283 54000 4  

3025763 "2000 AC6" 0.85357291 0.28634449 4.6958454 101.79881 187.91717 3.8151398 54000 4  

3025764 "2000 AF6" 0.87831922 0.41135064 2.6926995 110.86572 200.06223 197.96191 54000 4  

3025765 "2000 AZ93" 0.74678009 0.36001309 8.6005618 277.58834 7.9287065 310.47211 54000 4 m 

3027730 "1998 XE12" 0.87828555 0.73912509 13.432252 280.10884 353.0528 273.61263 54000 4  

3028808 "2000 CH59" 0.86324958 0.42308796 3.2721008 214.29152 109.00818 253.08418 54000 4  

3029428 "1999 YK5" 0.82941678 0.55831156 16.741231 349.66292 292.73797 117.89073 54000 4 m 

3031020 "2000 BD19" 0.876503 0.89503754 25.676583 333.80753 324.24248 205.0929 54000 4 m 

3031176 "2000 EB14" 0.89556289 0.49535956 11.560793 162.90292 139.56794 175.79773 54000 4  

3031177 "2000 ED14" 0.83508053 0.56664333 13.775537 3.9767428 310.03182 116.79868 54000 4  

3031178 "2000 EE14" 0.66184819 0.53291455 26.470152 155.80371 197.79925 234.65129 54000 4  

3031183 "2000 ET70" 0.94696812 0.12351254 22.321499 331.20642 46.371289 169.54532 54000 4 m 

3031186 "2000 EW70" 0.93766812 0.32108762 5.4192095 178.31731 125.30451 330.94723 54000 4  

3031703 "2000 BM19" 0.74122654 0.35849219 6.8900577 70.682966 247.33611 283.11028 54000 4  

3035165 "2000 EZ106" 0.92871575 0.44688014 40.260068 358.52887 313.90075 275.64076 51624 4 m 

3035166 "2000 EA107" 0.92969018 0.45572011 28.578789 52.953803 277.98821 281.16831 54000 4  

3036363 "2000 HB24" 0.81552756 0.43044014 2.6620264 55.249024 17.867756 355.02601 54000 4 m 

3039898 "2000 GD2" 0.75784422 0.47657125 32.143436 358.1575 16.943112 78.616265 54000 4 m 

3042555 "2000 LG6" 0.91610235 0.11212565 2.8299469 72.769203 7.7459151 237.46661 54000 4  

3046648 "2000 OK8" 0.98475099 0.22113264 9.9847342 304.64098 166.10892 312.02601 54000 4  

3050515 "2000 SP43" 0.81138241 0.46688594 10.355937 350.69072 224.30388 170.08819 54000 4  

3053717 "2000 PJ5" 0.87266158 0.37357638 51.180869 124.4379 7.6049849 322.8322 54000 4 m 

3054338 "2000 SZ162" 0.92940488 0.16742376 0.89619274 14.741749 131.29453 116.32414 54000 4  
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3054373 "2000 UK11" 0.88325596 0.24874524 0.7818067 237.8882 293.04609 279.96198 54000 4 i,m 

3057545 "2000 WO107" 0.91136333 0.78064631 7.783026 69.374003 213.58275 302.66343 54000 4  

3061547 "2000 RN77" 0.95118128 0.31832272 16.093766 312.84998 211.71057 12.786194 54000 4  

3062815 "2000 UH11" 0.87028331 0.4223829 32.228534 29.823765 187.37091 271.42008 54000 4 m 

3063058 "2000 WC1" 0.87949364 0.26271471 17.412879 50.862594 229.98231 141.9183 54000 4  

3063789 "2000 UR16" 0.90366249 0.43874889 11.744223 33.888091 228.71238 38.109895 54000 4  

3063823 "2000 WP19" 0.85448153 0.28864592 7.6757121 55.931647 221.95088 252.14788 54000 4  

3064315 "1998 XN17" 0.98185794 0.2096551 7.2453491 85.995719 226.33812 105.51781 54000 4 m 

3067492 "2000 YS134" 0.85678956 0.22462344 3.4909518 97.371774 189.32344 247.32303 54000 4 m 

3067616 "2001 BE10" 0.8233799 0.3689377 17.513089 297.87042 30.585412 332.21202 54000 4  

3068066 "2001 BA16" 0.9402947 0.13738105 5.7684736 115.62224 242.83832 185.9995 54000 4  

3069758 "2001 CP36" 0.71449449 0.4073083 10.551364 331.00521 353.49934 284.26514 54000 4  

3070801 "2001 CQ36" 0.93967934 0.17625793 1.2921429 31.947763 342.489 166.51755 54000 4 m 

3071939 "2001 BB16" 0.8542365 0.17238766 2.0261914 122.57094 195.57522 217.07665 54000 4  

3072196 "2001 ED18" 0.98914235 0.057313022 11.62947 357.82492 306.54524 94.254912 54000 4  

3072273 "2001 FR85" 0.98269502 0.02797089 5.2439975 183.09711 233.5423 352.59284 54000 4  

3072291 "2001 FO127" 0.88860879 0.15914197 7.2897211 189.24157 200.81708 356.38095 54000 4  

3072413 "2001 CK32" 0.72538055 0.38255603 8.1364752 109.55428 234.13343 173.96749 54000 4  

3074756 "2001 HY7" 0.91403391 0.41209793 5.209049 205.39319 210.98323 203.67515 54000 4  

3076722 "2001 FZ57" 0.94421086 0.60426198 20.663998 22.148342 339.94382 205.64386 54000 4  

3076775 "2001 HC" 0.87462622 0.49934979 23.74621 32.651464 28.155709 337.96255 54000 4  

3079950 "2001 OT" 0.93386971 0.32328704 12.090374 295.94754 142.88185 155.09714 54000 4  

3081066 "1998 SV4" 0.81647942 0.64201038 53.296773 177.26469 359.48387 110.45555 54000 4 m 

3089251 "2001 QP153" 0.89155077 0.21371778 50.207445 317.70623 244.31983 122.67802 54000 4 m 

3092114 "1993 DA" 0.93557259 0.09336139 12.377796 329.18587 354.30512 193.60748 54000 4  

3092124 "1994 GL" 0.68441915 0.50211708 3.6341904 197.22215 179.0533 179.7846 49450 4  

3092144 "1996 BG1" 0.89755766 0.28065043 3.8139909 139.95032 150.27456 206.58537 50107 4  

3092156 "1996 XZ12" 0.97997322 0.49926135 5.6585162 251.74134 55.816361 72.906521 50427 4 m 

3092192 "1998 SO" 0.73134122 0.69855898 30.350464 176.17726 359.82079 118.70808 54000 4  

3092226 "1999 LK1" 0.90718857 0.33269924 11.907748 240.07869 223.55372 286.28021 54000 4  

3092245 "1999 VW25" 0.92884396 0.1120346 10.776168 232.31222 354.5409 62.090196 54000 4 m 

3092253 "2000 EM26" 0.81607747 0.46980368 3.8734528 345.26231 23.964009 77.21737 54000 4  

3092260 "2000 HO40" 0.74399955 0.52412868 5.9877829 30.318292 6.0866893 173.17855 51662 4 m 

3092272 "2000 RH60" 0.8258742 0.55130757 19.643821 177.92578 354.37058 189.62089 54000 4 m 

3092324 "2001 RU17" 0.95860272 0.240769 13.877065 170.77281 330.28055 356.41634 54000 4  

3092325 "2001 RV17" 0.91409916 0.34251754 7.5207799 154.15697 4.3166007 117.71373 54000 4  

3092339 "2001 SQ263" 0.94807271 0.49150795 3.951064 327.3059 262.35483 225.1088 54000 4  

3092347 "2001 TD" 0.95414371 0.16607503 9.011133 13.218041 241.34418 217.30782 54000 4  

3092357 "2001 RY47" 0.90650678 0.39299432 17.604042 11.3038 213.96837 38.677025 54000 4  

3092370 "2001 TW1" 0.91129913 0.5259771 31.336012 27.399044 208.76826 338.40154 54000 4  

3092377 "2001 TD2" 0.9619541 0.48147436 19.038812 12.90751 199.00974 201.23957 54000 4  

3092380 "2001 TX44" 0.87475176 0.54598912 15.203483 57.856362 135.96125 231.29666 54000 4  

3092386 "2001 TD45" 0.79674105 0.77741935 25.419665 30.332708 212.38759 52.895742 54000 4 m 

3092390 "2001 UP" 0.88493377 0.28666987 7.7052214 25.592661 133.00062 225.31406 54000 4  

3102665 "2001 WF49" 0.75103189 0.3734296 18.179766 239.71613 358.3795 188.25934 52242 4  

3102680 "2001 XU1" 0.79739141 0.54626241 27.159807 69.743317 208.48745 19.485949 54000 4  

3102687 "2001 XY10" 0.87176578 0.38714096 30.995333 92.982658 219.67403 59.371016 54000 4 m 

3102718 "2001 YE4" 0.67636878 0.54206925 4.8003637 306.08255 318.32119 221.27778 52271 4 m 

3102727 "2002 AX1" 0.8799063 0.54157069 33.006701 294.73391 25.324129 351.02314 54000 4 m 

3102728 "2002 AY1" 0.77873106 0.43775061 29.88594 287.90059 323.84803 192.59727 54000 4 m 
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3102731 "2002 AB2" 0.84083923 0.38595466 13.181771 103.14846 149.5432 282.4749 54000 4  

3102744 "2002 AU4" 0.85560809 0.3736 17.179764 99.516019 205.13541 153.88991 54000 4  

3102756 "2002 AO11" 0.91555629 0.16340646 13.072181 295.18464 306.60939 16.12534 54000 4  

3102762 "2002 AA29" 0.99426257 0.013065778 10.742631 106.46935 100.60964 164.92244 54000 4 s,i 

3102779 "2002 BN" 0.87507581 0.54652018 27.746329 115.8071 147.21096 156.49332 54000 4 m 

3102787 "2002 CD" 0.97987696 0.1766903 6.879208 8.7510894 331.56631 51.187861 54000 4  

3114017 "2002 CQ11" 0.97888269 0.42840825 2.4597657 81.442256 272.77239 357.32802 54000 4  

3114023 "2002 CW11" 0.86557884 0.22561468 3.1333566 137.63141 210.35146 42.307944 54000 4  

3114026 "2002 CC14" 0.8198196 0.40303203 12.607732 137.70231 217.99794 186.56678 54000 4  

3114104 "2002 DB4" 0.8577063 0.36944345 16.599775 234.34539 94.099107 12.146551 54000 4  

3117427 "2002 EM7" 0.92124305 0.36305932 1.5475656 347.22658 57.667418 131.23247 54000 4  

3117446 "2002 FW1" 0.82348932 0.341939 6.5978745 164.19778 223.15648 134.38613 54000 4  

3117447 "2002 FB3" 0.76147828 0.60181997 20.270204 203.66158 148.24457 40.981494 54000 4  

3117460 "2002 FT5" 0.96703756 0.30044155 28.064829 7.9945393 31.452424 26.207003 54000 4  

3117468 "2002 FT6" 0.98825788 0.46273267 9.4897329 188.61692 226.69016 281.87596 54000 4 m 

3120861 "2002 GB" 0.99226321 0.52902156 22.554197 40.865148 8.3075997 259.155 54000 4  

3120863 "2002 GQ" 0.76830954 0.37557174 10.628605 189.48132 206.28661 4.8467488 54000 4  

3120884 "2002 EZ16" 0.92160627 0.56640928 30.14657 262.94414 25.307036 177.07735 54000 4 m 

3124996 "2002 JX8" 0.7701479 0.30533751 4.3155863 68.645093 338.18528 337.37454 54000 4  

3125004 "2002 JC" 0.81884734 0.39093655 40.85275 69.427745 306.91181 146.81126 54000 4 m 

3125009 "2002 JW15" 0.89868318 0.26626348 11.765305 218.53494 175.17419 259.49608 54000 4  

3126183 "2002 JR100" 0.92470305 0.29777782 3.7633964 203.56944 253.41942 71.988181 54000 4  

3127391 "2002 LY1" 0.95500888 0.37938048 2.9089622 248.23483 133.95352 127.29616 54000 4  

3127401 "2002 LT24" 0.71992412 0.49553466 0.76027896 166.75667 282.02629 166.8299 54000 4  

3127406 "2002 LT38" 0.84475671 0.31396358 6.1999594 259.60686 162.73931 25.047051 54000 4  

3130459 "2002 MQ3" 0.9135579 0.27422333 36.28443 109.10504 346.86651 103.49846 54000 4  

3131055 "2002 NN4" 0.87651922 0.43432919 5.4175723 259.65972 222.15883 198.16622 54000 4  

3132092 "2002 OA22" 0.93591413 0.24289976 6.9056071 174.41506 318.27888 347.97534 54000 4  

3133156 "2002 QY6" 0.81697506 0.69905755 12.748378 164.33324 355.26495 358.67083 54000 4  

3134264 "2002 RR25" 0.96703422 0.30996246 13.538525 349.95955 156.04858 305.86572 54000 4  

3134268 "2002 RW25" 0.82550846 0.28643033 1.3250455 92.022439 71.690414 355.44719 54000 4  

3136734 "2002 SP" 0.90470877 0.60068666 20.869143 350.95397 169.36365 127.32394 54000 4 m 

3137844 "2002 TZ66" 0.93000656 0.12057551 8.4784677 13.140614 223.07557 275.96035 54000 4  

3141527 "2002 UA31" 0.79876331 0.48723132 30.700644 209.35617 358.62917 331.99547 54000 4 m 

3141535 "2002 VV17" 0.83739563 0.43662198 9.6948341 222.32902 348.73063 247.83159 54000 4 m 

3141538 "2002 VE68" 0.7236569 0.41051242 8.9801315 231.66157 355.51291 280.154 54000 4  

3143084 "2002 VX91" 0.98456037 0.20136283 2.331352 216.87263 78.254887 72.980025 54000 4  

3143121 "2002 XB" 0.90584107 0.23739246 25.53355 245.93098 351.2243 346.24144 54000 4 m 

3144153 "2002 XP37" 0.95516322 0.35943369 21.528325 265.95557 317.58094 263.35691 54000 4  

3144155 "2002 XY38" 0.90911752 0.21719253 2.0854213 160.69647 118.5063 274.21168 54000 4  

3144531 "2002 XS90" 0.80953528 0.24208909 34.160061 81.700317 178.61437 246.44399 54000 4 m 

3145517 "2003 AK18" 0.87611211 0.38410512 7.3889096 301.85306 23.557751 298.6393 54000 4  

3146499 "2003 AF23" 0.87482965 0.42612924 23.236807 286.83005 43.944275 283.29971 54000 4 m 

3147579 "2003 CA4" 0.9203212 0.11970839 7.4793473 139.95971 172.95921 223.42272 54000 4  

3150768 "2003 EM1" 0.95752824 0.051791757 15.269684 346.05269 23.978949 75.424192 54000 4  

3150774 "2003 EO16" 0.93470009 0.24963774 13.220376 178.04024 167.88093 155.74913 54000 4  

3151641 "2003 FK1" 0.70741718 0.48594178 23.375604 177.59264 196.51278 158.54796 52724 4 m 

3151644 "2003 FU3" 0.8585099 0.39390777 13.050528 21.684072 339.2499 342.06502 54000 4  

3151655 "2003 FY6" 0.73081812 0.58168944 6.6462784 359.37936 29.591842 322.20328 54000 4  

3152309 "2003 GS" 0.89306537 0.21856995 12.031238 196.34869 181.81855 202.52777 54000 4 m 



 162

3152317 "2003 GQ22" 0.87232869 0.18199623 17.024551 199.60692 168.68648 275.52077 54000 4  

3153508 "2003 HB" 0.84990274 0.380551 18.108305 70.456253 306.68814 322.20206 54000 4  

3153509 "2003 HM" 0.81317508 0.27040152 26.275789 30.512696 19.241924 24.021864 54000 4  

3153530 "2003 HT42" 0.81508903 0.26213285 4.8810454 39.08647 351.8594 56.376705 54000 4  

3154503 "2003 KO2" 0.72744426 0.5109053 23.505997 215.53035 203.9569 308.37372 54000 4  

3154513 "2003 KZ18" 0.94882172 0.33060063 23.901897 250.048 154.67071 73.518182 54000 4 m 

3154520 "2003 LH" 0.96054013 0.14975606 10.795804 247.33008 238.12675 294.20537 54000 4  

3156302 "2003 LN6" 0.85723098 0.21046138 0.63241404 215.81727 210.40318 248.98378 54000 4  

3157339 "2003 NZ6" 0.79330244 0.49250313 18.233456 124.69036 311.55026 87.736143 54000 4  

3160723 "2003 RU11" 0.88859382 0.18325773 4.6515135 178.77306 316.20899 88.522675 54000 4  

3160748 "2003 SW130" 0.88518207 0.30354972 3.6597329 176.57871 47.968282 321.24813 54000 4  

3160799 "2003 SD220" 0.82842354 0.2097393 8.4615437 274.20954 326.31267 130.70576 54000 4  

3160853 "2003 TG2" 0.90779594 0.31592396 25.432456 200.72375 355.12527 314.04643 54000 4  

3163736 "2003 TL4" 0.77653201 0.38182999 12.146048 220.16201 321.8564 329.76908 54000 4  

3164401 "2003 UY12" 0.70092845 0.59594346 16.508885 22.958041 200.59164 116.86678 54000 4  

3164404 "2003 UC20" 0.78130319 0.3368181 3.794778 188.87281 59.273754 206.13498 54000 4  

3164431 "2003 UT55" 0.97915383 0.14704531 17.058952 212.81145 287.43237 269.39447 52939 4  

3167348 "2003 WU21" 0.90863991 0.5445115 28.539008 57.597699 140.64874 280.45945 52966 4 m 

3167353 "2003 WP25" 0.99058994 0.12109868 2.5230027 42.306512 225.08689 97.336963 54000 4  

3167367 "2003 WT153" 0.88991985 0.18053258 0.3560634 65.466287 138.0166 5.1901772 54000 4  

3170202 "2003 YJ" 0.93049583 0.19888123 19.460508 89.811876 165.60388 236.09578 54000 4  

3170203 "2003 YX1" 0.87876494 0.26655962 5.7547748 89.91715 222.81766 232.34244 54000 4  

3170204 "2003 YS17" 0.93033425 0.31303949 6.5240763 99.18043 134.48003 274.13873 54000 4  

3170208 "2003 YG136" 0.96902587 0.35503538 2.735198 86.544614 127.98154 235.18049 54000 4  

3170221 "2003 YN107" 0.99414961 0.013466245 4.3015637 265.1633 83.895555 14.977607 54000 4 m 

3170242 "2003 YR1" 0.89864059 0.45058732 29.268846 86.451474 138.05774 357.61805 54000 4 m 

3172322 "2004 BY1" 0.88403687 0.22188425 3.6171905 299.09124 28.23779 217.61998 54000 4  

3174187 "2004 BT58" 0.96090346 0.38494142 17.667309 300.91031 45.800414 38.593947 54000 4  

3175337 "2004 DH2" 0.94402813 0.40024487 23.023004 157.35712 216.07589 41.130168 54000 4  

3176187 "2004 DA53" 0.88455581 0.33025347 5.141462 336.708 50.031926 128.14063 54000 4  

3177176 "2004 EW" 0.98950948 0.27977013 4.6639542 343.45054 55.822201 302.36837 54000 4  

3177188 "2004 EU9" 0.88044837 0.50520426 28.587726 161.13348 202.3902 144.08901 54000 4 m 

3177193 "2004 EL20" 0.81459703 0.26847244 7.5899015 356.20573 337.56064 8.6811993 54000 4  

3177197 "2004 ER21" 0.90031102 0.17108277 7.9562364 357.43335 343.24023 181.87279 54000 4 m 

3177202 "2004 FH" 0.81796821 0.28900036 0.021373399 296.18068 31.319869 14.154055 54000 4 s,i,m 

3177226 "2004 FM17" 0.88559948 0.24938109 6.7662088 170.07059 196.2384 197.01913 54000 4  

3177232 "2004 FG29" 0.87856871 0.49234168 3.5104099 183.39904 142.00897 280.59227 54000 4  

3177234 "2004 FJ29" 0.91350452 0.34920303 33.467907 195.47359 210.26718 55.132809 54000 4 m 

3179349 "2004 GP" 0.69653246 0.48849431 14.547286 115.75337 278.56009 230.04016 54000 4  

3179363 "2004 HC" 0.78916702 0.59877773 28.975304 203.02793 159.32865 47.977419 54000 4  

3180192 "2004 HT59" 0.97997642 0.22337695 11.135007 214.71419 112.10254 87.29048 54000 4 m 

3182186 "2004 JW20" 0.95274176 0.56156984 14.734804 235.26374 207.42161 290.45178 54000 4  

3182187 "2004 JX20" 0.90121009 0.26577903 10.52491 101.99185 348.94624 27.260244 54000 4  

3182823 "2004 KG1" 0.83006288 0.40744127 1.9081961 243.48958 213.17629 141.06958 54000 4 m 

3182829 "2004 KH15" 0.96114304 0.17028425 35.070972 78.132599 350.0398 355.76643 54000 4 m 

3182833 "2004 KH17" 0.71192116 0.49856275 22.055369 79.22656 340.67122 148.13048 54000 4 m 

3183847 "2004 LO2" 0.91488208 0.3513503 25.453919 82.670132 309.52078 121.70682 54000 4 m 

3184475 "2004 MD6" 0.95062062 0.56280186 29.334285 263.9296 231.36764 230.38682 54000 4 m 

3249978 "2004 FU162" 0.82681962 0.39218262 4.1644361 191.24861 139.79199 262.65627 53100 4  

3249980 "2004 QB3" 0.95021121 0.4167979 14.339061 327.20744 232.1766 88.266623 53241 4  
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3250193 "2004 QG13" 0.95199695 0.17441825 56.22508 151.86061 9.1122288 165.27237 53244 4 m 

3250195 "2004 QD14" 0.94312385 0.33803687 6.2477966 75.46293 109.19721 210.80311 54000 4  

3250293 "2004 QA22" 0.95092007 0.12170564 0.57411596 175.15212 28.533305 202.67682 54000 4 m 

3251510 "2004 RU10" 0.90403261 0.65680238 15.91456 119.11494 65.154363 317.11312 54000 4  

3251512 "2004 RX10" 0.92044085 0.35110701 5.9585478 173.8943 333.85506 323.2308 54000 4  

3252104 "2004 RO111" 0.96120257 0.32880847 5.3345585 199.45033 280.81436 315.18661 54000 4  

3253645 "2004 ST2" 0.95427638 0.1863123 22.053165 356.79811 226.8361 173.13211 54000 4 m 

3254500 "2004 SD20" 0.87511021 0.46481928 21.334924 46.654234 94.378224 53.416337 54000 4 m 

3255174 "2004 SW26" 0.73778019 0.41619723 18.418049 180.36366 359.49238 183.96342 53272 4 m 

3255464 "2004 SB56" 0.86591757 0.23763089 18.701611 302.13149 233.48043 3.3642175 54000 4  

3255465 "2004 SC56" 0.7670961 0.42892764 4.7613942 202.37822 322.48787 207.26302 54000 4  

3255879 "2004 TA1" 0.90794321 0.24989018 13.512538 14.576143 200.48313 239.92139 54000 4  

3256321 "2004 TD10" 0.75098496 0.44284208 2.6217937 48.487884 136.67192 208.67795 54000 4  

3256580 "2004 TR12" 0.89500976 0.2095971 19.353928 155.44787 77.702026 230.72107 54000 4  

3256583 "2004 TP13" 0.97640702 0.16192739 36.517136 12.606993 138.64939 238.04986 53289 4 m 

3257077 "2004 TN20" 0.94624489 0.25852582 14.059494 203.10884 56.491094 130.79876 54000 4 m 

3258062 "2004 UH1" 0.95420397 0.39678012 3.7129817 29.862271 120.62117 303.80802 54000 4 m 

3258076 "2004 UT1" 0.9644237 0.22112866 4.5080307 211.98291 294.21659 275.85009 54000 4 m 

3261401 "2004 VZ" 0.94051139 0.2439765 16.218207 225.83194 297.07694 286.7039 54000 4  

3261681 "2004 VJ1" 0.94377277 0.16445192 1.2936976 233.53862 332.35792 220.29651 54000 4 i 

3262331 "2004 VG64" 0.96831267 0.6554068 36.276971 208.92346 43.876742 42.361252 54000 4 m 

3262569 "2004 WC1" 0.85560093 0.16979483 10.348597 54.94469 179.78693 299.55207 54000 4  

3263232 "2004 XG" 0.83752123 0.2980902 1.2031678 285.35506 0.81535776 244.86104 54000 4  

3263233 "2004 XJ" 0.88711985 0.1708655 12.187234 253.39186 15.930031 209.35138 54000 4  

3263448 "2004 XK14" 0.74868835 0.43382753 3.0995667 307.15697 302.8351 107.2211 54000 4  

3263449 "2004 XL14" 0.76001344 0.40978133 21.488824 85.680513 157.51318 99.054976 54000 4  

3263451 "2004 XN14" 0.93149302 0.26650978 10.738706 120.95563 115.66393 228.79036 54000 4 m 

3263793 "2004 XY60" 0.64024467 0.7968061 23.746543 122.70088 130.7697 23.609494 54000 4 m 

3264188 "2004 YC" 0.86840745 0.31327764 6.0667175 263.47717 47.285452 167.70475 54000 4  

3264189 "2004 YD" 0.84262456 0.24011097 12.086974 265.61112 7.8051078 264.56936 54000 4  

3264547 "2004 YA5" 0.80883312 0.5361478 28.149668 269.94609 31.209738 243.68826 54000 4 m 

3265905 "2005 AY28" 0.872222 0.56873666 5.8691155 117.66371 155.76728 265.87081 54000 4  

3265909 "2005 BE" 0.88383727 0.42113866 31.187501 116.00428 168.67007 191.20433 54000 4 m 

3266031 "2005 BU" 0.84659761 0.30073285 12.969629 296.89813 38.72732 170.98457 54000 4 m 

3266035 "2005 BO1" 0.94878176 0.35599452 10.674391 113.41088 174.10611 131.31082 54000 4  

3267564 "2005 CN61" 0.99121273 0.068706638 9.5265808 147.02475 248.61695 326.2324 54000 4  

3273458 "2005 EP1" 0.89266375 0.77031035 16.320488 344.39249 328.04398 297.39556 53433 4  

3273782 "2005 ES70" 0.76389989 0.38338784 20.484115 353.00599 351.28138 192.40885 53441 4 m 

3273788 "2005 EK70" 0.95945314 0.13537803 30.002363 329.84879 347.06403 8.5373459 54000 4 m 

3274691 "2005 FC" 0.91854667 0.27307317 12.946712 0.23650582 310.74842 150.4935 54000 4  

3274905 "2005 FN" 0.93308734 0.33019919 3.7480425 177.42193 120.84034 160.1944 54000 4  

3275869 "2005 GO21" 0.7532051 0.34020433 24.917136 272.74031 156.55353 293.86874 54000 4 m 

3275978 "2005 GR33" 0.77884535 0.38380306 28.00374 22.727001 334.54877 268.0763 54000 4  

3276398 "2005 GE60" 0.95886166 0.24585539 5.5684355 229.95645 112.70238 75.266559 54000 4  

3276601 "2005 GB120" 0.79131389 0.39482129 9.1506832 161.0855 243.61206 140.13948 54000 4  

3276686 "2005 GZ128" 0.95138211 0.13570386 18.653347 203.11495 230.49457 316.55945 54000 4  

3277400 "2005 HN3" 0.85478599 0.33557573 7.8992289 59.628165 6.0811678 42.263504 54000 4  

3278402 "2005 KA" 0.84051334 0.21493604 2.9048383 226.50305 181.14322 102.53286 54000 4  

3279867 "2005 MB" 0.98527456 0.79257712 41.420794 88.69818 42.781343 197.64349 54000 4 m 

3283218 "2005 MF5" 0.80376703 0.38177862 29.514513 98.090608 349.71695 85.132792 54000 4 m 
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3283227 "2005 MR5" 0.85281863 0.29558723 27.788514 263.65459 190.52382 9.5232994 54000 4 m 

3283249 "2005 MO13" 0.86343014 0.41102769 6.3146007 176.759 250.09525 64.949008 54000 4  

3283679 "2005 NE21" 0.7892811 0.49636097 10.639743 289.8331 194.62252 51.811201 54000 4 m 

3283835 "2005 NW44" 0.77941341 0.48307519 6.0356351 114.63866 0.58825253 89.042008 54000 4  

3283950 "2005 NJ63" 0.86926394 0.42248981 26.58707 120.89719 1.6808852 337.42373 54000 4  

3285073 "2005 OU1" 0.97601434 0.31997874 12.52351 309.81948 204.75039 202.77323 54000 4  

3288855 "2005 QC5" 0.89356017 0.36457579 9.4605918 48.218676 108.6557 278.29264 54000 4  

3288933 "2005 QP11" 0.97558635 0.17580176 3.9570556 334.9335 119.6269 297.85286 54000 4 m 

3289173 "2005 QQ87" 0.99925501 0.30304443 33.871509 155.09527 54.330821 115.24323 54000 4 m 

3289739 "2005 RB3" 0.87749296 0.39370241 36.068592 165.88104 320.37879 349.70934 54000 4 m 

3290865 "2005 SG" 0.98106367 0.28308734 34.840215 23.566708 205.51961 110.17821 54000 4 m 

3291224 "2005 SP9" 0.8655333 0.62371237 27.756769 354.90012 228.05435 158.12306 54000 4  

3292261 "2005 TM" 0.84131167 0.41651256 5.2041768 8.67502 151.88261 240.44876 53647 4  

3293790 "2005 TQ45" 0.82682197 0.23366556 25.622782 14.945903 185.79892 267.99709 54000 4  

3293831 "2005 TE49" 0.94924874 0.37694757 5.0055771 195.25531 304.934 276.71907 53652 4  

3293922 "2005 TG50" 0.92386804 0.13387525 2.4267858 346.0492 199.58911 220.00037 54000 4  

3293923 "2005 TH50" 0.83735026 0.22569769 0.73313176 196.83563 18.129628 155.00452 53655 4  

3297182 "2005 UE1" 0.89288955 0.17018689 5.6532049 32.652164 139.63883 260.57564 54000 4  

3297356 "2005 UL5" 0.93729026 0.56966238 14.293632 58.989362 127.58469 263.15198 54000 4  

3297379 "2005 UV64" 0.95814923 0.11600732 5.4166472 216.10028 313.89196 220.99061 54000 4  

3297628 "2005 VK1" 0.74145111 0.42653472 24.545328 223.74752 358.53892 309.99123 54000 4 m 

3297629 "2005 VL1" 0.89095046 0.22521846 0.2501009 37.454728 228.7358 132.91306 54000 4 i 

3299721 "2005 VN5" 0.94479231 0.23311402 2.0866116 49.351328 115.03663 247.96876 54000 4  

3304566 "2005 WS3" 0.6716719 0.57517628 23.030433 69.435747 176.04117 9.3177124 54000 4  

3305028 "2005 WJ56" 0.95853738 0.15192594 21.623399 288.1221 297.85814 119.57933 54000 4  

3306579 "2005 XZ7" 0.96807507 0.32044152 32.651067 75.70229 238.56512 87.195098 53713 4 m 

3307228 "2005 XT77" 0.84064591 0.26639019 17.248864 84.890649 149.93067 220.28289 54000 4 m 

3307229 "2005 XV77" 0.78419138 0.41420507 16.853707 282.3189 9.2001035 165.71215 54000 4 m 

3309039 "2005 YS" 0.7109288 0.55050252 19.581348 288.69066 327.84503 281.67673 54000 4  

3309091 "2005 YO3" 0.76032651 0.371895 12.795812 274.41391 20.046772 181.31049 54000 4  

3309092 "2005 YR3" 0.81856961 0.27264748 3.6070987 71.203243 222.54974 148.62055 54000 4  

3309828 "2005 YQ96" 0.74387078 0.33313323 22.196585 282.7454 339.97538 249.41827 54000 4 m 

3309832 "2005 YO128" 0.8212713 0.2963478 15.586801 281.79624 328.32981 221.01954 54000 4  

3309857 "2005 YU128" 0.77172747 0.32160915 7.7314462 100.74026 189.88574 184.97114 54000 4  

3309858 "2005 YV128" 0.9229554 0.51225824 14.137932 127.80299 191.7352 14.612568 54000 4  

3311964 "2006 AM4" 0.98261634 0.64901708 4.1646477 123.37688 139.52651 173.2487 54000 4  

3313739 "2006 BA9" 0.91259519 0.36592669 8.3160351 305.98482 25.497647 43.203772 54000 4  

3314789 "2006 BQ147" 0.81990323 0.4222185 24.380862 146.84225 153.17094 103.18551 54000 4  

3315649 "2006 CJ" 0.67622812 0.75501232 10.296226 303.38991 29.482862 217.22446 54000 4  

3324253 "2006 DS14" 0.86368636 0.33670256 26.531002 162.3011 187.48359 57.179409 54000 4 m 

3324656 "2006 DM63" 0.69549487 0.49762915 1.7812336 336.43224 17.429135 140.24267 53794 4  

3328632 "2006 FK" 0.92250426 0.34340855 14.622177 15.228858 3.1455032 356.30048 54000 4  

3329255 "2006 FH36" 0.95446956 0.19860002 1.5906721 280.91861 154.81012 276.65717 54000 4 i,m 

3329278 "2006 GB" 0.95908392 0.17937767 10.060842 183.9189 242.88627 281.19884 54000 4  

3330155 "2006 HV5" 0.84194719 0.31558662 31.806967 35.992828 317.68035 246.80424 53846 4 m 

3330538 "2006 HR29" 0.98525825 0.26341245 9.5375754 232.82844 212.56695 246.14269 54000 4  

3330688 "2006 HV50" 0.84884937 0.26080106 16.418388 34.794089 22.616138 331.26257 54000 4  

3333079 "2006 JF42" 0.67190303 0.58163186 5.9724883 41.039218 17.670959 14.966162 54000 4 m 

3337162 "2006 MD12" 0.83860414 0.60517513 27.26727 291.85793 174.50168 318.38756 54000 4 m 

3337325 "2006 NL" 0.84773943 0.57581932 20.07954 115.27511 29.325849 199.74045 54000 4  
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3338368 "2006 QQ23" 0.80375651 0.28451361 3.439796 4.9652624 124.76779 235.02335 54000 4  

3339082 "2006 QQ56" 0.98674925 0.046543451 2.8266463 163.3305 332.95836 225.00633 54000 4 s,i 

3341199 "2006 RJ1" 0.95075741 0.30076367 1.4144836 93.52479 110.27498 136.8701 54000 4  

3342322 "2006 SE6" 0.80476877 0.34642503 4.8343905 347.5677 182.91696 190.23549 54000 4  

3342323 "2006 SF6" 0.94928888 0.28045436 5.865093 228.17418 305.53284 190.56084 54000 4  

3342642 "2006 RO36" 0.90638531 0.23131827 23.88335 270.9998 261.22068 144.12389 54000 4  

3343104 "2006 SP19" 0.88152606 0.29156747 4.5585453 358.58023 165.97431 205.79041 54000 4  

3344169 "2006 SF77" 0.92191222 0.32902583 32.483792 1.2876999 224.38265 103.38686 54000 4 m 

3347493 "2006 SU217" 0.98577785 0.17475527 2.6419584 194.39292 38.266669 110.3162 54000 4  

3348144 "2006 TL" 0.94018863 0.39616796 11.569969 195.46581 315.13044 265.13542 54013 4  

3350632 "2006 TS7" 0.94745779 0.58305705 5.5041004 225.42431 299.84819 272.59296 54021 4  

3350633 "2006 TU7" 0.85107872 0.46865622 2.9133876 92.154235 68.436379 235.83518 54000 4  

2000003 Juno 2.6676188 0.25819419 12.971682 170.12215 247.82331 75.986335 54000 3  

2000005 Astraea 2.5736689 0.19269048 5.3685634 141.6853 357.50991 266.07961 54000 3  

2000006 Hebe 2.4251131 0.20172572 14.752027 138.74385 239.55732 326.18977 54000 3 m 

2000007 Iris 2.3854903 0.23142212 5.527283 259.72283 145.41092 349.83031 54000 3  

2000008 Flora 2.2015458 0.15620731 5.8884175 110.96399 285.39792 246.60931 54000 3  

2000009 Metis 2.3871957 0.1214414 5.5765165 68.973442 5.6901086 127.8487 54000 3  

2000011 Parthenope 2.4522002 0.10011807 4.6247051 125.62803 195.29555 178.97445 54000 3 m 

2000012 Victoria 2.334669 0.22056537 8.3638054 235.53818 69.58648 301.90748 54000 3  

2000014 Irene 2.5849886 0.16811947 9.1072838 86.461325 96.32871 156.36084 54000 3  

2000015 Eunomia 2.643284 0.18718147 11.738272 293.27326 97.914615 309.03614 54000 3  

2000017 Thetis 2.4700724 0.1344116 5.58717 125.60807 136.00231 216.015 54000 3  

2000018 Melpomene 2.2955326 0.21870798 10.125237 150.53455 228.00031 43.626263 54000 3 m 

2000020 Massalia 2.4091511 0.14287954 0.70691821 206.50811 255.50551 346.24964 54000 3 m 

2000023 Thalia 2.6273733 0.2329636 10.145257 67.227831 59.312781 351.82574 54000 3  

2000025 Phocaea 2.3999647 0.25544399 21.584123 214.268 90.161994 33.436221 54000 3 m 

2000026 Proserpina 2.656335 0.086901823 3.5621827 45.885083 193.16118 138.34082 54000 3  

2000027 Euterpe 2.3476948 0.17191778 1.5837422 94.806111 356.77913 153.80173 54000 3 m 

2000028 Bellona 2.7780323 0.14824802 9.4013833 144.50295 342.55305 15.27945 54000 3 m 

2000029 Amphitrite 2.5540421 0.072585419 6.096443 356.49859 63.459167 253.78959 54000 3  

2000030 Urania 2.3665367 0.12638171 2.0974832 307.77461 86.72257 223.47454 54000 3  

2000032 Pomona 2.5879007 0.08299776 5.5306247 220.57549 339.79731 22.315567 54000 3  

2000033 Polyhymnia 2.865151 0.3376296 1.87042 8.59314 338.24659 128.61147 54000 3  

2000037 Fides 2.6414184 0.17665525 3.0732741 7.4126651 62.695182 6.3427201 54000 3 m 

2000039 Laetitia 2.7686996 0.11419824 10.382913 157.17103 209.57309 36.855297 54000 3  

2000040 Harmonia 2.2678373 0.046566607 4.2556875 94.292217 268.90779 220.356 54000 3  

2000042 Isis 2.4419555 0.22279671 8.5295276 84.397918 236.6316 96.043894 54000 3  

2000043 Ariadne 2.2032648 0.16794702 3.4679469 264.93471 15.950712 191.974 54000 3  

2000057 Mnemosyne 3.1493067 0.1182737 15.20008 199.33961 212.88978 50.32014 54000 3  

2000060 Echo 2.393591 0.18203332 3.6020835 191.80383 270.41631 64.514348 54000 3 m 

2000061 Danae 2.9819926 0.1678048 18.21925 333.7717 13.81601 110.25816 54000 3  

2000063 Ausonia 2.395578 0.12605849 5.7855725 337.91498 295.63623 356.80652 54000 3  

2000067 Asia 2.4213289 0.18484185 6.0269995 202.72444 106.29921 156.01781 54000 3  

2000068 Leto 2.782613 0.18536679 7.9716224 44.182403 305.38918 3.378668 54000 3  

2000071 Niobe 2.7549414 0.176456 23.255563 316.10551 267.4553 352.31621 54000 3 m 

2000073 Klytia 2.6660162 0.041362 2.37313 7.23877 54.66187 191.9127 54000 3  

2000079 Eurynome 2.4444158 0.19213223 4.6226653 206.80097 200.35481 123.7389 54000 3  

2000080 Sappho 2.296534 0.2003401 8.66477 218.82041 139.11469 234.60882 54000 3  

2000082 Alkmene 2.7598915 0.2244582 2.8333141 25.636344 110.38231 269.9886 54000 3  
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2000089 Julia 2.5500653 0.18377079 16.140829 311.64793 45.00997 104.93539 54000 3 m 

2000100 Hekate 3.0933126 0.1650934 6.43021 127.33508 185.87533 130.37461 54000 3 m 

2000101 Helena 2.5829817 0.14151875 10.198982 343.4749 347.82922 101.84486 54000 3  

2000103 Hera 2.7026333 0.0795678 5.421 136.27878 190.13768 52.67649 54000 3  

2000113 Amalthea 2.3755464 0.087703611 5.0372639 123.59522 79.053555 337.73369 54000 3 m 

2000115 Thyra 2.3806207 0.1915 11.59731 308.99545 96.7467 221.98288 54000 3  

2000116 Sirona 2.7695069 0.13755329 3.5690216 64.03691 93.101434 318.91078 54000 3  

2000118 Peitho 2.4371741 0.1633635 7.74344 47.7451 33.63437 198.28777 54000 3  

2000119 Althaea 2.5812942 0.0810231 5.77832 203.73791 171.29982 338.06631 54000 3 m 

2000123 Brunhild 2.6942954 0.1218106 6.42781 307.95504 124.95905 16.10407 54000 3  

2000124 Alkeste 2.6301198 0.076540038 2.9507408 188.18585 63.155748 230.10546 54000 3 m 

2000126 Velleda 2.4389509 0.105986 2.9245 23.47891 327.99036 91.12117 54000 3  

2000138 Tolosa 2.4486111 0.1624635 3.20806 54.95009 260.0207 143.2047 54000 3  

2000149 Medusa 2.1744038 0.0653143 0.93695 159.64764 251.12748 253.78577 54000 3 s,i,m 

2000151 Abundantia 2.5917414 0.0331371 6.4444 39.04645 134.55059 7.94691 54000 3  

2000158 Koronis 2.8685446 0.0565242 1.00337 278.55081 143.9388 3.12319 54000 3 m 

2000167 Urda 2.8527952 0.0336352 2.21049 166.44873 125.83834 28.77731 54000 3  

2000169 Zelia 2.3578594 0.13075 5.50226 354.82138 334.69519 350.02999 54000 3  

2000170 Maria 2.5532105 0.0646822 14.4023 301.46438 157.69423 300.03171 54000 3 m 

2000172 Baucis 2.3803732 0.1142941 10.03136 332.0841 359.24594 288.80348 54000 3  

2000174 Phaedra 2.859052 0.1458847 12.12754 327.80693 289.76608 316.3647 54000 3 m 

2000178 Belisana 2.4599218 0.0438536 1.89948 51.19998 211.55291 281.47495 54000 3  

2000179 Klytaemnestra 2.970494 0.1155056 7.81766 252.12535 105.37094 104.12798 54000 3  

2000180 Garumna 2.7200002 0.1690067 0.87057 312.70655 175.49316 231.86403 54000 3  

2000181 Eucharis 3.1402839 0.1982904 18.7985 143.59272 317.42132 113.3454 54000 3 m 

2000182 Elsa 2.4179605 0.18506679 2.0028901 107.27931 309.90481 156.27731 54000 3  

2000183 Istria 2.7931846 0.349925 26.37466 142.01678 264.16968 253.8036 54000 3 m 

2000186 Celuta 2.3617979 0.1499119 13.17267 14.87064 315.24035 18.13794 54000 3 m 

2000188 Menippe 2.7629704 0.1775287 11.73414 241.2132 68.31891 295.83763 54000 3  

2000189 Phthia 2.4499896 0.0370351 5.17924 203.61856 166.82805 133.14401 54000 3  

2000192 Nausikaa 2.404096 0.24621664 6.8170145 343.41423 29.840171 221.89748 54000 3  

2000196 Philomela 3.1149136 0.02269419 7.2609296 72.55494 199.92548 346.38828 54000 3  

2000197 Arete 2.7408956 0.1602645 8.79318 81.68189 246.00807 318.73523 54000 3  

2000198 Ampella 2.4593202 0.2278889 9.30913 268.52803 88.55903 290.62198 54000 3  

2000202 Chryseis 3.0764769 0.0962809 8.82984 137.05498 0.94421 72.40597 54000 3  

2000204 Kallisto 2.67313 0.1719995 8.27148 205.21481 55.82695 137.45271 54000 3  

2000208 Lacrimosa 2.891708 0.0154312 1.74941 4.5539 125.39114 191.44426 54000 3 m 

2000215 Oenone 2.7669402 0.0344195 1.69006 25.05574 321.44768 34.44622 54000 3  

2000218 Bianca 2.6657744 0.11716641 15.226448 170.87994 60.735184 77.80577 54000 3 m 

2000219 Thusnelda 2.3539776 0.2230137 10.84215 200.9526 142.27416 336.21897 54000 3  

2000221 Eos 3.0115033 0.1032757 10.8869 141.94429 195.91626 104.86267 54000 3  

2000228 Agathe 2.2013308 0.241223 2.53831 313.42898 18.77463 353.21101 54000 3  

2000230 Athamantis 2.3832188 0.060890097 9.4382745 239.96029 139.39921 230.91656 54000 3 m 

2000234 Barbara 2.3858256 0.2442783 15.35266 144.63948 192.16925 134.46103 54000 3 m 

2000235 Carolina 2.8829304 0.0598554 9.02719 66.23928 211.97564 170.0847 54000 3 m 

2000236 Honoria 2.8031571 0.1873378 7.68294 186.13681 174.03894 258.17166 54000 3  

2000237 Coelestina 2.7622571 0.0733517 9.75594 84.44051 201.72651 197.94377 54000 3  

2000243 Ida 2.8611801 0.045985314 1.1375042 324.18546 108.3985 28.35885 54000 3  

2000245 Vera 3.1015974 0.19769977 5.1773835 61.525116 327.52007 193.52253 54000 3 m 

2000254 Augusta 2.195187 0.1215113 4.51431 28.54322 233.09692 329.78941 54000 3  
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2000258 Tyche 2.6152135 0.2051338 14.29304 207.70149 154.94955 38.8324 54000 3  

2000262 Valda 2.5523258 0.2141044 7.70896 38.71081 24.60432 119.04846 54000 3  

2000264 Libussa 2.802004 0.1338519 10.43526 49.77904 340.02132 217.85622 54000 3  

2000270 Anahita 2.1980431 0.15082857 2.3654059 254.5632 80.326577 210.76351 54000 3  

2000277 Elvira 2.8871937 0.0873359 1.16195 231.61197 135.57413 264.50517 54000 3  

2000287 Nephthys 2.3527778 0.023729805 10.023053 142.48241 120.55732 223.14593 54000 3  

2000288 Glauke 2.7554606 0.2101927 4.32933 120.56933 83.12444 123.7304 54000 3  

2000295 Theresia 2.7959558 0.1703209 2.70624 276.12026 148.56188 226.83366 54000 3  

2000296 Phaetusa 2.2287841 0.1597919 1.74678 121.59151 252.57079 286.30861 54000 3  

2000305 Gordonia 3.1048717 0.1859286 4.44565 207.85299 260.20059 112.25397 54000 3  

2000306 Unitas 2.3578262 0.15049 7.26805 142.03554 167.61862 189.61238 54000 3  

2000311 Claudia 2.8978498 0.0078441 3.22488 81.1549 40.37368 271.97283 54000 3  

2000312 Pierretta 2.7808834 0.1616625 9.03534 6.74435 260.2729 0.17345 54000 3  

2000321 Florentina 2.8862686 0.0430939 2.59384 40.46183 30.91652 123.78883 54000 3  

2000328 Gudrun 3.1079701 0.1126465 16.07973 352.61251 101.00197 41.63909 54000 3 m 

2000339 Dorothea 3.0128991 0.09462 9.92931 173.79528 160.47059 317.36304 54000 3 m 

2000340 Eduarda 2.7459333 0.1173656 4.67867 27.11612 42.5169 323.31427 54000 3  

2000341 California 2.1992684 0.1937417 5.66779 29.1945 293.41228 8.27634 54000 3  

2000346 Hermentaria 2.7950112 0.1025065 8.76066 92.16618 289.94435 152.33019 54000 3  

2000351 Yrsa 2.7639952 0.156579 9.19393 99.44622 31.66235 228.34098 54000 3  

2000352 Gisela 2.1939318 0.1501057 3.38211 247.42532 144.23938 62.80526 54000 3  

2000354 Eleonora 2.8004843 0.11333869 18.379466 140.45317 7.156191 84.076712 54000 3 m 

2000364 Isara 2.2209348 0.1490966 6.00474 105.61761 312.93786 210.62896 54000 3  

2000374 Burgundia 2.7796261 0.0798103 8.98647 219.23568 27.75383 246.94554 54000 3  

2000376 Geometria 2.2888879 0.1714106 5.43035 302.25603 316.30919 318.79015 54000 3  

2000378 Holmia 2.7767367 0.1295631 7.01027 232.7592 156.09891 167.15252 54000 3  

2000384 Burdigala 2.6511976 0.1483651 5.60405 48.10942 33.56521 73.08764 54000 3  

2000385 Ilmatar 2.8472955 0.12656961 13.565001 345.24165 188.09878 148.57539 54000 3  

2000387 Aquitania 2.7391293 0.23705267 18.134397 128.31422 157.68246 180.64512 54000 3 s,i,m 

2000389 Industria 2.6089236 0.065160176 8.1342143 282.55924 263.55197 227.94975 54000 3  

2000394 Arduina 2.7601348 0.229052 6.22412 67.37124 269.66619 179.60716 54000 3  

2000397 Vienna 2.6347117 0.2465269 12.835543 228.26765 139.38269 93.681871 54000 3 m 

2000402 Chloe 2.5584357 0.1127408 11.82138 129.5359 18.17371 115.8071 54000 3 m 

2000403 Cyane 2.8107151 0.0966235 9.15501 244.84291 251.86352 320.86082 54000 3  

2000416 Vaticana 2.7913658 0.21853534 12.862244 58.208003 198.84647 225.9835 54000 3 m 

2000421 Zahringia 2.5407221 0.2827883 7.77214 187.53759 209.22374 44.4314 54000 3 m 

2000432 Pythia 2.3691579 0.1462883 12.13154 88.87357 174.15765 110.98779 54000 3  

2000443 Photographica 2.2155777 0.040032951 4.2304545 175.55548 348.80375 213.66194 54000 3 m 

2000453 Tea 2.1829344 0.1089484 5.5578 11.82328 220.16628 299.0741 54000 3  

2000458 Hercynia 2.9945128 0.2423835 12.62356 134.95413 274.82091 141.13805 54000 3 m 

2000459 Signe 2.6205643 0.2094949 10.29674 29.57945 19.25982 334.1296 54000 3  

2000462 Eriphyla 2.8740387 0.0830898 3.1911 105.32977 250.36867 293.74567 54000 3 i 

2000470 Kilia 2.404738 0.0933121 7.22745 173.30542 46.2614 88.91894 54000 3  

2000471 Papagena 2.8861595 0.23353842 14.98526 84.095024 314.48203 42.91019 54000 3 m 

2000472 Roma 2.5439924 0.0938108 15.79966 127.26845 296.35407 218.67478 54000 3  

2000477 Italia 2.4151108 0.1882294 5.28847 10.73814 322.28708 359.09369 54000 3  

2000478 Tergeste 3.0152043 0.0882385 13.17546 234.02285 241.42639 277.32205 54000 3 m 

2000480 Hansa 2.6444378 0.0466305 21.29332 237.39549 212.40356 342.11821 54000 3 m 

2000482 Petrina 2.9986012 0.1030376 14.46735 179.55439 88.07899 322.25031 54000 3  

2000487 Venetia 2.6712337 0.0864081 10.23447 114.89867 281.04144 229.32471 54000 3  
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2000496 Gryphia 2.1987751 0.079568 3.78914 207.7666 258.15505 259.49828 54000 3  

2000502 Sigune 2.3826518 0.1791063 25.00994 133.09316 19.42627 26.13608 54000 3 m 

2000509 Iolanda 3.0645243 0.0899784 15.41164 217.81003 157.19742 309.23183 54000 3 m 

2000513 Centesima 3.0200353 0.0784204 9.71732 184.69574 222.61276 193.18467 54000 3  

2000519 Sylvania 2.78994 0.185968 11.01574 44.81205 303.08502 61.36499 54000 3 m 

2000529 Preziosa 3.0167164 0.0952662 11.02327 65.28007 336.21389 338.78737 54000 3 m 

2000532 Herculina 2.7705832 0.17861371 16.313485 107.60159 76.778716 81.370926 54000 3 m 

2000533 Sara 2.9792699 0.0425945 6.55229 180.57574 40.39599 315.61114 54000 3 m 

2000534 Nassovia 2.883731 0.0570623 3.27661 94.2555 333.48245 104.92852 54000 3  

2000540 Rosamunde 2.2187693 0.0900753 5.57618 202.26254 337.04541 92.34394 54000 3  

2000542 Susanna 2.9068967 0.140981 12.06846 153.25681 214.26388 203.84649 54000 3 m 

2000548 Kressida 2.2830652 0.1843779 3.87117 108.5126 320.26734 178.898 54000 3  

2000549 Jessonda 2.6819981 0.2607464 3.96628 291.64694 156.97231 44.20735 54000 3 m 

2000550 Senta 2.5885648 0.2210401 10.11404 270.82874 44.6313 246.80346 54000 3 m 

2000556 Phyllis 2.465813 0.1016516 5.23196 286.23223 177.69124 103.79414 54000 3  

2000562 Salome 3.0200435 0.0947892 11.12606 70.78883 261.54824 0.27796 54000 3  

2000563 Suleika 2.7115251 0.2362785 10.24831 85.46154 336.61987 31.05904 54000 3  

2000565 Marbachia 2.4441963 0.1283881 10.99229 226.06462 290.83268 264.72051 54000 3 m 

2000571 Dulcinea 2.4096288 0.2426047 5.22678 3.25658 27.65282 336.72112 54000 3  

2000574 Reginhild 2.2520296 0.2397801 5.68496 336.85928 76.87759 280.01942 54000 3 m 

2000579 Sidonia 3.0098865 0.0827351 11.02146 82.83799 231.62261 199.22196 54000 3  

2000582 Olympia 2.6093875 0.2250105 30.01247 155.81846 309.97325 326.65629 54000 3 m 

2000584 Semiramis 2.3743584 0.2329791 10.7257 282.30101 84.784938 276.38474 54000 3  

2000599 Luisa 2.7703969 0.2938211 16.67178 44.68837 292.98145 185.01868 54000 3 m 

2000611 Valeria 2.9811262 0.1184348 13.44867 189.87939 253.66966 105.58655 54000 3 m 

2000616 Elly 2.5543067 0.0578729 14.96176 356.29941 108.68871 107.63951 54000 3 m 

2000619 Triberga 2.5202746 0.0752591 13.78251 187.56918 178.39417 21.96518 54000 3  

2000622 Esther 2.416276 0.24156635 8.6414972 142.12698 256.47956 228.26596 54000 3  

2000631 Philippina 2.7905149 0.0854026 18.93284 224.78721 279.07028 175.92013 54000 3 m 

2000633 Zelima 3.0197599 0.0877737 10.90825 147.54125 185.51247 261.16568 54000 3  

2000639 Latona 3.0180846 0.1023474 8.57595 280.09687 67.46954 300.6397 54000 3  

2000642 Clara 3.1960193 0.118776 8.14064 6.78999 112.02326 51.50708 54000 3  

2000644 Cosima 2.6016046 0.1544563 1.04065 109.95042 268.66057 230.99733 54000 3  

2000651 Antikleia 3.0236314 0.0963724 10.76903 38.21433 355.83247 296.88522 54000 3  

2000653 Berenike 3.0142155 0.044892 11.28504 133.23306 49.90575 204.14329 54000 3  

2000658 Asteria 2.8545654 0.0617484 1.50589 351.20658 61.9558 222.70176 54000 3  

2000660 Crescentia 2.5333023 0.1064984 15.21514 157.15003 104.86147 26.85243 54000 3 m 

2000661 Cloelia 3.0162704 0.0366429 9.25742 336.01605 169.75515 302.94086 54000 3  

2000669 Kypria 3.0126289 0.0824955 10.78161 170.90917 114.17126 319.51092 54000 3 m 

2000673 Edda 2.8147227 0.0107688 2.87946 226.90118 256.96914 146.86493 54000 3  

2000674 Rachele 2.9256113 0.1924971 13.51228 58.23889 42.34252 156.94179 54000 3  

2000675 Ludmilla 2.7677939 0.2042498 9.80224 263.42953 151.95144 49.7925 54000 3 m 

2000686 Gersuind 2.588401 0.269099 15.68124 243.42817 88.35887 104.57222 54000 3  

2000695 Bella 2.5396531 0.1599762 13.85554 275.79136 79.48882 27.07343 54000 3 m 

2000708 Raphaela 2.6712774 0.0832228 3.48812 355.32832 197.68247 275.39522 54000 3  

2000714 Ulula 2.5353112 0.0572934 14.27153 234.0746 230.23879 331.17093 54000 3 m 

2000716 Berkeley 2.8129656 0.0860072 8.4957 146.29921 53.18106 175.64261 54000 3  

2000720 Bohlinia 2.8869458 0.0134885 2.3584 35.93197 104.59844 1.17256 54000 3  

2000736 Harvard 2.2019306 0.1649511 4.37435 135.97225 200.35955 320.7405 54000 3  

2000737 Arequipa 2.5912677 0.2429092 12.36024 184.98656 133.69582 255.05591 54000 3  
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2000742 Edisona 3.0109608 0.119093 11.21532 64.367 286.12007 103.97612 54000 3  

2000749 Malzovia 2.2431611 0.1736152 5.38885 109.88041 128.43565 263.27234 54000 3  

2000753 Tiflis 2.3290415 0.2213364 10.08948 61.48843 203.04489 68.30372 54000 3 m 

2000770 Bali 2.2209539 0.151461 4.3891 44.8096 17.75077 8.33105 54000 3  

2000775 Lumiere 3.010628 0.0748552 9.28083 298.00083 169.97933 273.2585 54000 3 m 

2000782 Montefiore 2.1799237 0.0385567 5.26248 80.53587 81.47485 288.82101 54000 3  

2000797 Montana 2.5346964 0.0602577 4.50134 238.47756 352.71322 72.6863 54000 3  

2000800 Kressmannia 2.1930117 0.2020272 4.2661 325.26844 347.23211 303.5713 54000 3  

2000807 Ceraskia 3.0163759 0.0668862 11.30563 132.34846 341.59535 226.7289 54000 3 m 

2000811 Nauheima 2.8951889 0.0757905 3.13615 130.95759 180.32103 194.10173 54000 3  

2000824 Anastasia 2.7946416 0.1328303 8.11508 141.74643 140.23895 47.45443 54000 3  

2000839 Valborg 2.6138575 0.1538848 12.60576 338.27524 339.22259 144.00512 54000 3  

2000847 Agnia 2.7838528 0.0939305 2.48025 271.19928 128.06198 166.21445 54000 3  

2000851 Zeissia 2.2282453 0.0907124 2.39137 141.24049 7.12275 115.0055 54000 3  

2000858 El Djezair 2.8092647 0.1035334 8.88289 67.30295 175.63874 73.08798 54000 3  

2000864 Aase 2.2082083 0.1899383 5.44451 163.21265 193.85566 326.6475 54000 3  

2000876 Scott 3.011357 0.1077304 11.3311 151.14979 210.64758 313.11061 54000 3  

2000883 Matterania 2.2379184 0.1993118 4.71591 285.70745 42.16645 232.0517 54000 3  

2000888 Parysatis 2.7086863 0.1942403 13.85879 124.23326 297.67398 349.84095 54000 3  

2000897 Lysistrata 2.5415771 0.0947401 14.32899 258.05353 22.97731 293.86656 54000 3 m 

2000901 Brunsia 2.2237482 0.2215654 3.44429 265.30654 68.06748 201.12121 54000 3  

2000925 Alphonsina 2.6997365 0.081273206 21.068739 299.73888 201.94338 171.13251 54000 3 s,i,m 

2000937 Bethgea 2.231828 0.2178144 3.69552 243.80823 72.00629 311.97017 54000 3  

2000939 Isberga 2.2465816 0.1774328 2.5884 327.28426 5.94831 215.58057 54000 3  

2000945 Barcelona 2.6371401 0.162079 32.84988 318.39121 161.12384 7.3489 54000 3 m 

2000951 Gaspra 2.2093123 0.17412152 4.1024509 253.21825 129.49617 113.11692 54000 3 m 

2000962 Aslog 2.9048251 0.1017686 2.60193 145.66692 225.13159 69.99682 54000 3  

2000963 Iduberga 2.2475028 0.1378807 7.98932 62.56217 4.90994 44.92148 54000 3  

2000966 Muschi 2.7208903 0.1277792 14.39219 72.62607 178.16174 144.49032 54000 3 m 

2000968 Petunia 2.8690829 0.1349555 11.59647 209.00875 298.94054 78.47586 54000 3  

2000974 Lioba 2.5327706 0.111811 5.46304 86.76519 301.95786 106.25134 54000 3  

2000975 Perseverantia 2.8338758 0.0354774 2.55965 38.85387 52.91719 345.36437 54000 3  

2001029 La Plata 2.8902401 0.022333 2.42891 30.1445 140.88708 327.05951 54000 3 m 

2001043 Beate 3.0918753 0.0468296 8.92769 159.56785 157.83728 246.86415 54000 3  

2001047 Geisha 2.2407153 0.1930689 5.66428 78.33893 299.87517 162.4419 54000 3 s,i 

2001052 Belgica 2.2358075 0.1440351 4.69483 99.67349 297.39036 80.72568 54000 3 m 

2001055 Tynka 2.1983055 0.2076132 5.2722 147.21064 176.30191 0.29895 54000 3 m 

2001058 Grubba 2.1965147 0.187668 3.68964 221.93836 93.99614 318.1367 54000 3  

2001078 Mentha 2.2700948 0.1382134 7.367 93.94718 43.88779 68.71652 54000 3  

2001079 Mimosa 2.8768912 0.0437337 1.17674 329.6275 106.23144 163.95851 54000 3 i 

2001087 Arabis 3.0136918 0.0953399 10.0704 30.51174 28.59489 336.51307 54000 3  

2001088 Mitaka 2.2013686 0.1962884 7.65469 54.58213 319.43627 74.07687 54000 3  

2001112 Polonia 3.0214941 0.1014478 8.99516 302.99073 86.60968 259.12752 54000 3 m 

2001129 Neujmina 3.0275955 0.0795809 8.60007 269.61883 134.63107 180.36891 54000 3  

2001133 Lugduna 2.1861828 0.1868778 5.37678 58.33863 306.58117 287.54725 54000 3  

2001140 Crimea 2.7718627 0.1109592 14.13293 72.1973 311.2347 288.89636 54000 3 m 

2001148 Rarahu 3.0137128 0.1155158 10.84361 145.68035 174.52707 245.78469 54000 3  

2001185 Nikko 2.2379296 0.1053667 5.70048 71.99598 2.23257 182.64599 54000 3  

2001186 Turnera 3.0185508 0.1082265 10.75844 43.21724 294.1858 222.2892 54000 3  

2001215 Boyer 2.5776575 0.1332289 15.91705 123.81564 265.72624 93.16039 54000 3  
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2001216 Askania 2.2322234 0.1793551 7.60351 121.67187 144.58578 32.44269 54000 3  

2001223 Neckar 2.868483 0.0605204 2.55052 41.07034 10.09496 109.17591 54000 3  

2001224 Fantasia 2.3050331 0.1986313 7.87488 258.27234 128.83203 192.44571 54000 3 m 

2001245 Calvinia 2.8931802 0.077307 2.88642 151.89411 207.55894 296.80457 54000 3  

2001249 Rutherfordia 2.2241593 0.0759426 4.87109 259.11704 223.39854 41.71452 54000 3  

2001252 Celestia 2.6956455 0.204297 33.8886 141.08271 62.91168 193.19854 54000 3 m 

2001274 Delportia 2.2289372 0.1135176 4.39773 327.29125 244.48473 288.76466 54000 3  

2001286 Banachiewicza 3.0223851 0.0884699 9.73977 200.93254 102.70785 4.68589 54000 3  

2001289 Kutaissi 2.8612633 0.0584571 1.61241 193.25201 117.98548 59.06832 54000 3  

2001306 Scythia 3.1478297 0.096918 14.91028 274.51946 134.41113 160.8342 54000 3 m 

2001307 Cimmeria 2.2510661 0.0962503 3.94621 233.97124 207.16335 128.16734 54000 3  

2001314 Paula 2.2950475 0.1750754 5.24428 264.77378 144.00208 318.51489 54000 3  

2001329 Eliane 2.6180742 0.1709445 14.4656 132.21704 165.03163 26.91872 54000 3 m 

2001336 Zeelandia 2.8506578 0.0598015 3.19404 97.51433 218.75154 19.58499 54000 3  

2001339 Desagneauxa 3.019179 0.0560568 8.68943 291.08859 166.96765 224.50772 54000 3 m 

2001350 Rosselia 2.857687 0.0873096 2.93719 139.67262 239.65381 327.23494 54000 3  

2001391 Carelia 2.545694 0.1678673 7.58659 103.57028 85.14437 96.86838 54000 3  

2001401 Lavonne 2.2263167 0.1800958 7.28695 277.67193 70.88823 155.25928 54000 3  

2001415 Malautra 2.2234386 0.08697 3.42654 329.4137 240.54671 304.88173 54000 3  

2001416 Renauxa 3.0236638 0.102367 10.04353 353.02629 62.48575 166.59297 54000 3  

2001418 Fayeta 2.2418907 0.2038894 7.19825 355.20138 324.07708 277.18144 54000 3  

2001422 Stromgrenia 2.2478713 0.1669438 2.67554 201.72553 170.75431 259.86018 54000 3  

2001434 Margot 3.0188203 0.0609659 10.81365 152.79993 142.70098 60.04093 54000 3 m 

2001442 Corvina 2.8732162 0.0811964 1.25469 221.18371 126.91285 149.86304 54000 3  

2001449 Virtanen 2.2225604 0.1423314 6.63863 110.83068 131.9687 179.36625 54000 3  

2001500 Jyvaskyla 2.2420833 0.190578 7.44355 20.04662 16.77771 79.33813 54000 3  

2001504 Lappeenranta 2.3994278 0.1585168 11.04154 94.96816 51.38235 86.57975 54000 3 m 

2001532 Inari 3.0037347 0.0553451 8.7858 330.92626 127.1195 284.23106 54000 3  

2001533 Saimaa 3.0128199 0.0341753 10.69007 156.87489 359.37335 324.18222 54000 3  

2001584 Fuji 2.3765044 0.1942035 26.6425 305.46984 187.97207 263.98458 54000 3  

2001601 Patry 2.2338815 0.12969 4.94351 74.77234 196.50973 69.6855 54000 3  

2001602 Indiana 2.2446852 0.1036564 4.16426 75.1916 73.33204 325.00527 54000 3  

2001619 Ueta 2.2410031 0.1755953 6.21376 61.59932 328.19457 270.73248 54000 3  

2001621 Druzhba 2.2300159 0.1197028 3.16935 182.00627 238.19504 329.30148 54000 3  

2001636 Porter 2.234451 0.1280727 4.4334 168.50633 238.94113 63.78235 54000 3  

2001644 Rafita 2.5505794 0.153738 7.01216 270.95555 197.49709 124.28199 54000 3  

2001648 Shajna 2.2356559 0.2070075 4.56623 130.50431 134.30702 151.96224 54000 3  

2001657 Roemera 2.3493066 0.2345214 23.40366 105.44236 53.94026 238.70086 54000 3  

2001665 Gaby 2.4134306 0.2075508 10.8324 91.66581 6.12477 194.44845 54000 3 m 

2001681 Steinmetz 2.6953244 0.207426 7.22492 94.62869 0.72186 0.45966 54000 3 m 

2001707 Chantal 2.2187809 0.1709882 4.03832 6.28529 42.38917 107.0253 54000 3 m 

2001711 Sandrine 3.0143118 0.1116368 11.08177 134.93638 252.71894 330.46795 54000 3 m 

2001717 Arlon 2.1959125 0.1286555 6.19124 340.64383 115.78748 92.40988 54000 3  

2001723 Klemola 3.0115989 0.0458738 10.92085 150.00584 6.18978 172.39803 54000 3 m 

2001755 Lorbach 3.0902268 0.0498287 10.69528 157.33044 327.98813 229.63128 54000 3  

2001830 Pogson 2.1881582 0.0558756 3.95267 147.57026 335.13972 22.26099 54000 3  

2001842 Hynek 2.2662171 0.1801126 5.35433 153.5978 125.43054 264.22915 54000 3  

2001990 Pilcher 2.1741611 0.0512001 3.13114 193.75332 12.25806 241.19664 54000 3 m 

2002000 Herschel 2.3822032 0.2970119 22.74792 292.18933 129.81927 140.16102 54000 3 m 

2002050 Francis 2.3256838 0.2370149 26.57894 72.61229 170.76705 36.08949 54000 3 m 
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2002052 Tamriko 3.0071574 0.0836701 9.50768 213.98224 207.86004 301.1236 54000 3 m 

2002089 Cetacea 2.5336949 0.156226 15.39516 102.80752 287.08913 59.54672 54000 3 m 

2002090 Mizuho 3.0715557 0.1351973 11.79893 340.05302 337.43316 329.75184 54000 3  

2002111 Tselina 3.0177442 0.0909077 10.48847 167.35643 233.75672 284.67168 54000 3  

2002156 Kate 2.2423419 0.2018135 5.35454 17.28794 4.19018 170.84981 54000 3  

2002345 Fucik 3.0156037 0.0784936 9.14384 304.07412 139.06296 287.37178 54000 3  

2002411 Zellner 2.2254446 0.0866982 1.61434 131.05565 129.58459 199.82879 54000 3  

2002422 Perovskaya 2.3282179 0.1986802 6.40677 160.1336 52.03561 295.16215 54000 3  

2002430 Bruce Helin 2.3627815 0.2139148 23.44678 46.00305 309.62649 16.44569 54000 3 m 

2002510 Shandong 2.2529475 0.1963001 5.26923 102.98427 209.36488 28.3665 54000 3  

2002830 Greenwich 2.3780438 0.2064344 25.32361 49.12056 140.44195 88.0689 54000 3 m 

2012746 "1992 WC1" 2.2382462 0.1908783 4.71175 265.31898 81.63331 100.23076 54000 3 m 

2000010 Hygiea 3.1366114 0.11799269 3.8423915 283.45768 313.00295 56.250366 54000 2  

2000016 Psyche 2.9197742 0.13948318 3.0956171 150.34418 227.86709 101.78424 54000 2  

2000021 Lutetia 2.4350514 0.16374276 3.0644634 80.91394 250.10776 231.18992 54000 2  

2000022 Kalliope 2.9091742 0.10280545 13.710708 66.236811 356.08934 3.206616 54000 2 m 

2000024 Themis 3.1307722 0.13212508 0.7597936 36.007074 107.94133 257.16605 54000 2  

2000031 Euphrosyne 3.1498399 0.22591347 26.31623 31.239635 62.002727 356.86228 54000 2 m 

2000034 Circe 2.6851564 0.1087005 5.50356 184.534 330.0982 178.03603 54000 2  

2000035 Leukothea 2.9897564 0.228466 7.93736 353.8186 213.97512 58.38133 54000 2 m 

2000036 Atalante 2.7470479 0.30349954 18.431224 358.47404 47.141652 25.346092 54000 2  

2000038 Leda 2.7424397 0.15148566 6.9542317 295.91795 168.63723 86.025664 54000 2 m 

2000041 Daphne 2.7654349 0.27184993 15.764855 178.16309 46.221564 226.08638 54000 2 s,i 

2000047 Aglaja 2.8776367 0.13528824 4.984635 3.2446812 314.60266 204.79556 54000 2 m 

2000054 Alexandra 2.7122777 0.1964305 11.80389 313.45001 345.58093 81.759176 54000 2 i,m 

2000055 Pandora 2.7585286 0.14476162 7.1847686 10.539693 4.2608489 93.446378 54000 2  

2000058 Concordia 2.6998953 0.043183319 5.0578201 161.29511 34.44369 352.92475 54000 2 m 

2000066 Maja 2.6451 0.1733656 3.04729 7.66789 43.73999 46.22178 54000 2  

2000069 Hesperia 2.980066 0.16704444 8.5813425 185.1207 289.98554 137.4484 54000 2  

2000070 Panopaea 2.6162373 0.1812037 11.58479 47.80504 255.87084 78.00096 54000 2  

2000074 Galatea 2.7784206 0.23987342 4.0751328 197.31394 174.52383 15.554851 54000 2 m 

2000075 Eurydike 2.673238 0.3047786 5.00253 359.48157 339.5614 3.77453 54000 2  

2000078 Diana 2.6201204 0.20736367 8.6876426 333.58458 151.41908 330.57112 54000 2  

2000081 Terpsichore 2.8537425 0.2108515 7.81207 1.50533 50.1751 129.18942 54000 2  

2000086 Semele 3.1156178 0.20751135 4.8208178 86.451459 307.76761 247.06828 54000 2  

2000090 Antiope 3.1571193 0.15623753 2.2197774 70.234113 242.52717 58.626905 54000 2  

2000095 Arethusa 3.067408 0.1489283 12.99847 243.14905 155.04622 308.59388 54000 2  

2000097 Klotho 2.668392 0.25700227 11.78307 159.77806 268.6762 351.69754 54000 2  

2000099 Dike 2.6637091 0.19688701 13.858287 41.678878 196.02815 281.54555 54000 2 m 

2000104 Klymene 3.1549271 0.15268145 2.7914565 41.872068 30.942654 188.30844 54000 2  

2000105 Artemis 2.3739092 0.17644901 21.460972 188.35744 56.502696 7.3945065 54000 2  

2000107 Camilla 3.4773045 0.078537037 10.047151 173.13537 309.88106 346.53934 54000 2  

2000110 Lydia 2.7340757 0.0781141 5.97379 56.99462 281.76827 284.77871 54000 2 m 

2000111 Ate 2.594318 0.10084142 4.923668 305.89396 165.92105 61.815975 54000 2  

2000120 Lachesis 3.1157251 0.059447364 6.9548919 341.51217 231.93546 132.32475 54000 2  

2000121 Hermione 3.4573207 0.13841548 7.599757 73.217451 295.98151 233.08272 54000 2  

2000125 Liberatrix 2.7420783 0.08125 4.65594 169.16097 110.22377 246.10837 54000 2  

2000128 Nemesis 2.7489736 0.12733828 6.2542741 76.459095 302.41385 159.53128 54000 2  

2000129 Antigone 2.8677223 0.21285798 12.218021 136.44012 108.17944 90.343092 54000 2 m 

2000132 Aethra 2.6093823 0.3881 25.05101 258.91641 254.37088 276.89429 54000 2 m 
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2000134 Sophrosyne 2.5632069 0.1166245 11.588804 346.2139 83.692584 86.432954 54000 2  

2000135 Hertha 2.4280968 0.20653464 2.3056068 343.89794 340.03522 220.0661 54000 2 s,i 

2000136 Austria 2.2865589 0.0847066 9.56953 186.53627 132.61377 346.10322 54000 2  

2000137 Meliboea 3.1184487 0.21988728 13.42254 202.45635 106.78731 297.02006 54000 2  

2000143 Adria 2.7624553 0.0703414 11.46947 333.23845 250.94068 174.63933 54000 2  

2000144 Vibilia 2.6544514 0.23556544 4.8084344 76.486474 293.65938 40.157765 54000 2  

2000145 Adeona 2.6731693 0.14450786 12.636769 77.453037 44.944313 140.69001 54000 2  

2000146 Lucina 2.7189094 0.064905901 13.074324 84.178218 143.44602 130.23606 54000 2  

2000147 Protogeneia 3.1342865 0.0340697 1.93499 248.73039 106.84911 167.74868 54000 2  

2000156 Xanthippe 2.7331251 0.22220581 9.7483653 242.18207 337.90684 196.55934 54000 2  

2000159 Aemilia 3.1010391 0.11097779 6.1274027 134.33009 335.49307 282.20833 54000 2  

2000161 Athor 2.3795391 0.1374982 9.05318 18.78424 294.39304 102.63249 54000 2 m 

2000163 Erigone 2.367393 0.1903735 4.8058965 160.36447 297.49222 26.693449 54000 2  

2000168 Sibylla 3.3757402 0.0673035 4.63413 206.46806 168.09446 325.53015 54000 2  

2000171 Ophelia 3.1334027 0.12927424 2.5460896 100.54761 58.061999 89.493077 54000 2 m 

2000173 Ino 2.7416607 0.20834644 14.207656 148.35779 228.00507 117.48297 54000 2  

2000175 Andromache 3.1847599 0.2324518 3.21884 21.39951 321.25122 130.21293 54000 2  

2000185 Eunike 2.7394441 0.1271362 23.22034 153.94657 224.0974 264.43276 54000 2 m 

2000187 Lamberta 2.7321898 0.23670797 10.597906 21.904126 195.14152 153.41892 54000 2  

2000194 Prokne 2.6181429 0.23614207 18.485624 159.51944 162.83374 284.62328 54000 2  

2000195 Eurykleia 2.8803618 0.04057 6.96866 7.20269 123.4987 102.20799 54000 2  

2000200 Dynamene 2.7369494 0.13381634 6.9014922 324.69997 86.014728 305.98131 54000 2  

2000201 Penelope 2.6787336 0.1792631 5.75756 157.11692 181.24502 349.42127 54000 2  

2000205 Martha 2.7767208 0.0361837 10.69477 212.0672 171.02616 158.14767 54000 2 m 

2000206 Hersilia 2.7403923 0.040846283 3.7803055 145.27928 302.04137 284.70264 54000 2  

2000207 Hedda 2.2836787 0.0286959 3.80295 29.28743 192.12819 87.89963 54000 2  

2000209 Dido 3.1445726 0.062655847 7.1714093 0.78538285 250.07104 34.32137 54000 2 m 

2000211 Isolda 3.0409546 0.16227833 3.8821037 263.75641 174.76297 309.57543 54000 2 m 

2000216 Kleopatra 2.797122 0.25036608 13.133755 215.66472 179.3494 181.60763 54000 2  

2000224 Oceana 2.6444588 0.0460098 5.83838 353.0192 284.05593 257.00632 54000 2  

2000232 Russia 2.5502931 0.1778829 6.0708 152.52032 51.12076 64.32308 54000 2  

2000238 Hypatia 2.9086285 0.0879187 12.4025 184.19336 207.19158 178.19462 54000 2  

2000240 Vanadis 2.6643756 0.2068432 2.10451 115.22263 300.50223 324.5337 54000 2 m 

2000250 Bettina 3.153134 0.1270277 12.82149 24.05332 75.74685 142.31316 54000 2  

2000266 Aline 2.8043578 0.15736045 13.390532 236.00128 151.25527 16.632347 54000 2 m 

2000304 Olga 2.4030494 0.2214414 15.83975 159.22264 172.3242 191.50577 54000 2  

2000313 Chaldaea 2.3756945 0.1794471 11.6459 176.82084 315.81027 13.19227 54000 2  

2000325 Heidelberga 3.202845 0.1680242 8.54318 345.28451 67.86966 111.00173 54000 2  

2000326 Tamara 2.3176268 0.19054712 23.724144 32.334512 238.50135 100.32007 54000 2 m 

2000329 Svea 2.4764225 0.0238695 15.88431 178.54468 52.19986 96.05795 54000 2  

2000334 Chicago 3.885343 0.024215343 4.642853 130.2253 151.07984 5.201958 54000 2 s,i 

2000338 Budrosa 2.9120186 0.0201877 6.03807 287.63451 123.54059 295.61868 54000 2  

2000342 Endymion 2.5681538 0.128678 7.34603 232.74759 225.4028 193.24988 54000 2  

2000344 Desiderata 2.5948773 0.31596263 18.356075 48.25056 237.38162 172.27458 54000 2  

2000345 Tercidina 2.3253732 0.061343146 9.751305 212.79371 229.68958 8.5651683 54000 2  

2000347 Pariana 2.6131906 0.1641544 11.69434 85.84551 84.86164 248.97015 54000 2  

2000350 Ornamenta 3.1112374 0.1561224 24.90012 90.19672 338.9865 249.8531 54000 2 m 

2000356 Liguria 2.7559652 0.2397877 8.23048 354.86413 78.80956 333.70592 54000 2  

2000360 Carlova 2.9986233 0.1817627 11.71228 132.65874 288.55851 27.11377 54000 2  

2000369 Aeria 2.6491767 0.0976895 12.7077 94.38445 269.55336 10.20211 54000 2  
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2000373 Melusina 3.1131734 0.1465925 15.44736 4.0578 347.77644 202.41227 54000 2  

2000375 Ursula 3.1231061 0.107686 15.93372 336.67192 344.59878 192.61115 54000 2  

2000380 Fiducia 2.6788222 0.1132572 6.15571 95.21741 240.54282 21.26849 54000 2  

2000381 Myrrha 3.2204713 0.0955587 12.52422 125.34741 137.52796 102.99105 54000 2 m 

2000382 Dodona 3.1156156 0.1770362 7.40193 313.60394 270.78992 81.18543 54000 2  

2000386 Siegena 2.8945485 0.17292904 20.254208 166.94275 220.14756 65.82279 54000 2 m 

2000388 Charybdis 3.0067013 0.05887506 6.4580588 354.62692 333.05707 49.966331 54000 2  

2000393 Lampetia 2.7790703 0.33144266 14.870607 212.51713 91.047917 126.41939 54000 2 m 

2000395 Delia 2.7858859 0.0838058 3.35143 259.62654 12.95644 167.79539 54000 2  

2000404 Arsinoe 2.5943355 0.1983143 14.115702 92.674305 121.11608 271.32457 54000 2 m 

2000405 Thia 2.5837501 0.24463276 11.950979 255.29974 309.27005 353.02963 54000 2 m 

2000407 Arachne 2.6248052 0.0707861 7.53482 294.83119 82.01003 40.65893 54000 2  

2000410 Chloris 2.7285227 0.2365507 10.92226 97.21109 172.00263 59.08877 54000 2 m 

2000413 Edburga 2.584411 0.3431661 18.71569 103.92107 252.68584 308.8369 54000 2  

2000414 Liriope 3.5083344 0.0689192 9.54215 110.74346 326.64868 352.52959 54000 2 m 

2000418 Alemannia 2.5920701 0.119635 6.82571 249.0928 125.96347 103.5344 54000 2  

2000423 Diotima 3.0676241 0.041046488 11.240443 69.554082 206.55983 290.60245 54000 2  

2000429 Lotis 2.6070974 0.12333371 9.5273188 220.04862 168.7474 325.59031 54000 2 m 

2000441 Bathilde 2.8060136 0.0827663 8.1419 253.86288 201.35201 313.76537 54000 2 m 

2000442 Eichsfeldia 2.3449721 0.0714341 6.06243 135.03435 85.04871 278.05265 54000 2  

2000444 Gyptis 2.771173 0.17286275 10.278705 195.8366 155.21028 322.30187 54000 2  

2000445 Edna 3.1997043 0.1909852 21.37172 292.4142 79.8239 291.93822 54000 2 m 

2000448 Natalie 3.1381577 0.1843979 12.71486 37.37604 295.24661 107.79207 54000 2  

2000449 Hamburga 2.5526781 0.1708912 3.08986 86.03696 46.37252 342.694 54000 2  

2000466 Tisiphone 3.3583767 0.082421992 19.16314 291.19859 245.93322 345.95823 54000 2 m 

2000481 Emita 2.7389796 0.1582352 9.8583 67.0244 348.66307 80.4701 54000 2  

2000488 Kreusa 3.1579038 0.1692412 11.500393 84.980185 68.917033 289.65081 54000 2  

2000489 Comacina 3.1535619 0.038868229 12.976896 167.18408 12.619788 7.9310261 54000 2  

2000490 Veritas 3.1685051 0.0989462 9.26516 178.5047 196.80207 120.23447 54000 2 m 

2000494 Virtus 2.9888645 0.0568189 7.07552 38.39191 216.78947 177.45085 54000 2  

2000497 Iva 2.8579034 0.2973859 4.82186 6.77463 2.80643 228.05837 54000 2  

2000498 Tokio 2.6503781 0.2251495 9.50401 97.49661 241.2688 75.92796 54000 2  

2000508 Princetonia 3.1607974 0.014003443 13.36355 44.510226 179.85303 129.14648 54000 2  

2000511 Davida 3.1659016 0.18564446 15.938414 107.6717 338.52068 247.71727 54000 2 m 

2000516 Amherstia 2.6796943 0.2735302 12.95664 328.88736 258.53574 296.93286 54000 2  

2000521 Brixia 2.7417331 0.2813483 10.59138 89.69902 316.09633 246.32803 54000 2  

2000535 Montague 2.5690206 0.0229292 6.78274 84.87326 68.24631 20.05767 54000 2  

2000558 Carmen 2.9064565 0.0431148 8.3662 143.87801 317.36518 215.4325 54000 2  

2000559 Nanon 2.7122622 0.064323766 9.3105401 112.21021 130.74 212.48385 54000 2  

2000566 Stereoskopia 3.3823202 0.1108082 4.89863 80.26508 294.61109 331.04968 54000 2  

2000569 Misa 2.6561647 0.1828515 1.29584 301.97392 141.80532 34.01162 54000 2 m 

2000583 Klotilde 3.1705289 0.1619588 8.25067 257.98239 253.69818 179.04336 54000 2  

2000585 Bilkis 2.4303409 0.1296983 7.5572 180.37753 327.97351 205.455 54000 2  

2000593 Titania 2.6975729 0.2179818 16.89206 76.18743 30.92169 286.61962 54000 2 m 

2000602 Marianna 3.0914405 0.2440861 15.07537 331.64478 45.83763 302.7661 54000 2 m 

2000618 Elfriede 3.1900659 0.078422036 17.012019 111.19981 227.86543 239.39252 54000 2 m 

2000635 Vundtia 3.1443395 0.0786644 11.03908 183.46648 219.42795 168.40125 54000 2  

2000654 Zelinda 2.2968024 0.23192318 18.124633 278.57048 214.07158 112.35919 54000 2 m 

2000701 Oriola 3.0157244 0.0315655 7.1136 244.14352 313.54037 228.69453 54000 2  

2000702 Alauda 3.1943626 0.022868874 20.60234 289.97403 352.37054 337.72603 54000 2 m 
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2000712 Boliviana 2.5738464 0.1881205 12.781487 231.04829 181.1623 80.890211 54000 2  

2000713 Luscinia 3.391033 0.16608003 10.359739 217.79282 136.08384 286.71598 54000 2  

2000735 Marghanna 2.7292584 0.3214867 16.87956 43.03 310.136 332.75553 54000 2 m 

2000751 Faina 2.5502414 0.153174 15.61479 78.93492 302.31969 163.86706 54000 2  

2000755 Quintilla 3.1724209 0.1466565 3.23894 177.2636 42.40449 145.37775 54000 2  

2000764 Gedania 3.1850605 0.1070606 10.07278 259.37313 154.7591 100.1314 54000 2  

2000772 Tanete 3.0035141 0.092042448 28.783444 64.045057 142.09532 205.57057 54000 2 m 

2000776 Berbericia 2.9350442 0.16086041 18.245702 79.867084 306.61868 249.80628 54000 2 i,m 

2000785 Zwetana 2.5692316 0.2105935 12.73156 72.18331 129.96803 128.71164 54000 2 m 

2000786 Bredichina 3.1687258 0.1671064 14.55243 89.92703 133.60068 115.60687 54000 2  

2000791 Ani 3.115249 0.1996704 16.38494 130.11717 202.04482 217.95885 54000 2 m 

2000798 Ruth 3.0142313 0.0413488 9.22952 214.52891 41.83994 8.942 54000 2 m 

2000814 Tauris 3.1498691 0.3093096 21.83526 88.86011 297.08583 85.74032 54000 2 m 

2000821 Fanny 2.7776856 0.207103 5.37832 209.91865 32.90585 163.61022 54000 2  

2000849 Ara 3.1547846 0.1953547 19.48619 228.51247 63.9943 160.73835 54000 2  

2000860 Ursina 2.7945762 0.1091712 13.31523 309.55072 19.97543 210.65456 54000 2  

2000872 Holda 2.7313074 0.0784015 7.36689 194.94024 20.02667 299.6105 54000 2  

2000907 Rhoda 2.7977888 0.1637967 19.57368 43.17347 88.29047 211.84409 54000 2 m 

2000931 Whittemora 3.185335 0.2233883 11.44311 111.48085 313.89267 191.3093 54000 2 m 

2000977 Philippa 3.1153896 0.0293926 15.19978 75.90784 83.30353 169.14985 54000 2 m 

2001015 Christa 3.208478 0.081469182 9.4580072 120.49107 282.54502 235.74511 54000 2  

2001028 Lydina 3.3947356 0.1185204 9.39108 63.48771 25.06466 47.074 54000 2  

2001061 Paeonia 3.1383114 0.2082506 2.49726 91.29504 303.85151 225.10094 54000 2  

2001082 Pirola 3.1216608 0.1808789 1.85016 148.02332 188.61985 134.3123 54000 2 m 

2001093 Freda 3.1304429 0.2707514 25.20975 55.69696 251.94642 183.03763 54000 2 m 

2001102 Pepita 3.0687473 0.1173315 15.81039 216.84653 114.79816 256.27357 54000 2  

2001277 Dolores 2.6992491 0.239092 6.9664 247.25447 47.368 145.46956 54000 2  

2001445 Konkolya 3.1234889 0.1772867 2.28497 89.30058 270.99423 282.75712 54000 2  

2001461 Jean-Jacques 3.1272276 0.0423866 15.32426 104.84379 334.56144 191.21196 54000 2  

2001580 Betulia 2.1968759 0.48791122 52.097105 62.32879 159.50668 121.45456 54000 2 s,i,m 

2001606 Jekhovsky 2.6913513 0.3150995 7.70009 190.77887 142.30677 251.45853 54000 2 m 

2001625 The NORC 3.2016194 0.2218822 15.55532 322.144 282.75245 181.27996 54000 2 m 

2001639 Bower 2.5719099 0.1512801 8.42685 324.37971 105.46543 72.49232 54000 2  

2001794 Finsen 3.1288813 0.1552413 14.50739 221.50437 335.55787 231.28079 54000 2  

2001931 Capek 2.5404735 0.27278 8.2461 182.53508 163.92287 45.11593 54000 2  

2001963 Bezovec 2.4215853 0.21073058 25.051232 106.98322 355.82804 179.40627 54000 2  

2002379 Heiskanen 3.1646802 0.2762638 0.46741 151.27404 177.62201 154.27748 54000 2  

2002407 Haug 2.9224974 0.2211028 2.47635 342.34897 10.80364 43.83693 54000 2  

2000225 Henrietta 3.3888671 0.2668163 20.887897 197.19179 104.2599 310.40788 54000 1  

2000361 Bononia 3.9554449 0.21241778 12.631655 18.960258 68.162409 239.42006 54000 1  

2000588 Achilles 5.1947906 0.1465778 10.32134 316.59634 132.48447 216.43354 54000 1  

2000617 Patroclus 5.2266795 0.1381751 22.03587 44.35812 307.5839 183.22681 54000 1 m 

2000624 Hektor 5.2272807 0.023528317 18.193628 342.80533 185.13006 151.0004 54000 1 m 

2000659 Nestor 5.1922184 0.1166258 4.51942 350.88872 341.45996 318.17164 54000 1 i 

2000911 Agamemnon 5.25414 0.065868016 21.788152 338.02074 80.347917 253.5207 54000 1 s,i 

2000944 Hidalgo 5.7544224 0.66019798 42.532955 21.557042 56.72622 43.435582 54000 1 m 

2001038 Tuckia 3.9619932 0.227483 9.22988 58.20488 307.19412 201.38868 54000 1 m 

2001172 Aneas 5.1915116 0.10319405 16.683194 247.39536 49.477769 250.4737 54000 1  

2001173 Anchises 5.3227896 0.1371044 6.90993 283.91796 40.01722 205.92255 54000 1  

2001208 Troilus 5.2374808 0.0909268 33.56575 48.55332 295.69051 204.17234 54000 1 m 
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2001345 Potomac 3.9798138 0.1808098 11.40178 137.5123 332.82006 181.8755 54000 1 s,i,m 

2001362 Griqua 3.2218943 0.3698017 24.2039 121.39505 262.11257 18.88301 54000 1  

2001404 Ajax 5.3026206 0.1135323 18.00703 332.97289 59.33793 267.83412 54000 1  

2001437 Diomedes 5.1600747 0.0433457 20.52178 315.83789 129.75256 244.24908 54000 1 m 

2001583 Antilochus 5.1071568 0.0522215 28.55192 221.3685 186.33737 260.04144 54000 1  

2001749 Telamon 5.1722902 0.1078736 6.08844 341.00747 111.19397 197.09829 54000 1 s,i,m 

2001754 Cunningham 3.9500648 0.1672029 12.11822 163.24455 111.93204 295.64241 54000 1 m 

2001867 Deiphobus 5.1330811 0.0437056 26.9088 283.69667 358.70429 250.58354 54000 1 m 

2001873 Agenor 5.2491321 0.0922724 21.85938 197.91284 356.47324 335.83439 54000 1 m 

2001902 Shaposhnikov 3.971589 0.2236554 12.49318 59.4253 267.89541 47.99795 54000 1  

2002207 Antenor 5.1267457 0.0172127 6.81023 159.1796 300.66192 81.0411 54000 1  

2002223 Sarpedon 5.1985031 0.0140337 15.99057 220.98833 51.37102 279.17581 54000 1  

2002241 Alcathous 5.2059683 0.0670944 16.60687 267.98621 291.17519 324.5333 54000 1  

2002260 Neoptolemus 5.1896664 0.0439744 17.78242 86.57157 319.93149 252.91054 54000 1  

2002357 Phereclos 5.1921105 0.0438295 2.66967 179.31425 72.48815 292.0237 54000 1  

2002363 Cebriones 5.1655208 0.0356465 32.19648 211.83521 51.98333 290.96291 54000 1 m 

2002456 Palamedes 5.1372368 0.074439 13.90266 327.41517 93.63287 230.61779 54000 1  

2002483 Guinevere 3.9660655 0.2763629 4.49881 252.1627 182.86999 226.77818 54000 1 m 

2002674 Pandarus 5.1717545 0.0678804 1.85443 179.86277 37.74182 321.3662 54000 1 s,i,m 

2002759 Idomeneus 5.1700791 0.0660091 21.96815 171.23528 8.41746 126.14053 54000 1  

2002760 Kacha 3.9834018 0.1223004 13.46141 352.816 155.94779 327.81918 54000 1 m 

2002797 Teucer 5.1057194 0.0878189 22.39234 69.9464 47.69826 175.56344 54000 1  

2002893 Peiroos 5.17689 0.0764874 14.64719 108.76807 171.07065 241.30879 54000 1  

2002906 Caltech 3.1616197 0.1137911 30.6904 84.60812 294.92209 165.70717 54000 1 s,i 

2002920 Automedon 5.1130804 0.0269571 21.11915 230.96163 196.35511 223.31577 54000 1 m 

2002959 Scholl 3.9440841 0.2742882 5.23244 121.33837 284.68371 297.55373 54000 1 m 

2003063 Makhaon 5.1854315 0.0584969 12.17397 287.88023 204.89888 178.85982 54000 1  

2003134 Kostinsky 3.9793318 0.2201713 7.63747 257.10507 163.00334 272.12822 54000 1 s,i 

2003317 Paris 5.2132675 0.1259699 27.88043 135.9195 149.13296 258.45877 54000 1  

2003548 Eurybates 5.1604558 0.0888397 8.07572 43.54071 26.8289 246.50665 54000 1  

2003552 Don Quixote 4.2298497 0.71337656 30.907935 350.30192 316.99246 237.325 54000 1 s,i 

2003708 "1974 FV1" 5.220393 0.1577286 13.36738 291.17902 56.85664 189.19123 54000 1  

2003709 Polypoites 5.2609102 0.0614257 19.60369 187.17563 245.59639 219.05819 54000 1  

2003793 Leonteus 5.1948389 0.0891835 20.92981 200.52401 262.18506 206.49881 54000 1  

2004035 "1986 WD" 5.2795635 0.0562528 12.134 233.73474 197.12702 232.16471 54000 1  

2004063 Euforbo 5.1695887 0.1181985 18.94705 113.52578 317.49315 233.45724 54000 1  

2004086 Podalirius 5.2256622 0.1209423 21.7387 54.95767 356.03329 270.21371 54000 1  

2004489 "1988 AK" 5.2761594 0.0602848 22.16378 86.70204 5.3875 190.45873 54000 1 m 

2004543 Phoinix 5.0957247 0.0959612 14.73139 325.4165 84.13779 262.49894 54000 1 i 

2004709 Ennomos 5.1962516 0.0204462 25.51675 253.23497 89.40599 213.85689 54000 1 m 

2004754 Panthoos 5.1909721 0.0080923 12.34371 155.23002 213.07335 186.6018 54000 1  

2004791 Iphidamas 5.1792451 0.0461581 25.94351 261.4468 165.16477 99.89186 54000 1 i 

2004833 Meges 5.2562716 0.0928909 34.68256 101.76168 278.74281 271.01003 54000 1 m 

2004834 Thoas 5.2357128 0.1355501 28.45078 76.07509 350.67143 223.76284 54000 1 m 

2004836 Medon 5.1823797 0.1077418 19.41902 82.04271 34.03318 195.75845 54000 1 m 

2004837 Bickerton 3.1977504 0.1314229 28.22335 327.27954 42.92711 296.90452 54000 1  

2005012 Eurymedon 5.2652415 0.0857824 4.99793 34.82759 333.0567 293.9424 54000 1  

2005025 "1986 TS6" 5.2111349 0.0753205 11.01688 347.86522 72.09646 233.10794 54000 1 m 

2005130 Ilioneus 5.2456965 0.0099851 15.70813 242.53246 103.5806 169.16343 54000 1  

2005144 Achates 5.2263273 0.2720738 8.89879 322.85738 330.63494 227.70228 54000 1  
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2005209 "1989 CW1" 5.1533221 0.0495159 9.06609 322.75689 104.50996 257.03537 54000 1  

2005259 Epeigeus 5.1886873 0.0731641 15.93135 67.46291 199.37861 37.88812 54000 1  

2005264 Telephus 5.2043321 0.1107648 33.57519 121.90801 358.9272 178.74752 54000 1  

2006090 "1989 DJ" 5.3136952 0.0571189 20.18055 328.52802 72.38497 259.09504 54000 1 i,m 

2006984 Lewiscarroll 3.9692255 0.1871492 16.80098 206.29149 247.90573 216.503 54000 1  

2007119 Hiera 5.2067455 0.1031099 19.26732 285.66811 119.08349 235.10541 54000 1  

2007641 "1986 TT6" 5.2186575 0.0535495 34.68862 242.05333 227.73421 184.77791 54000 1 m 

2009661 Hohmann 3.9462035 0.2336894 12.9873 56.85707 288.56144 8.57451 54000 1  

2009799 "1996 RJ" 5.1942001 0.0479145 30.51326 259.54994 113.20009 280.79516 54000 1  

2011351 "1997 TS25" 5.2491115 0.0638223 11.5758 251.09162 159.70997 276.73337 54000 1  

2011395 "1998 XN77" 5.2073823 0.0672427 24.14544 213.23624 117.37947 328.72511 54000 1  

2011396 "1998 XZ77" 5.2054308 0.0640564 12.58719 195.68829 175.96375 289.49289 54000 1  

2011542 "1992 SU21" 3.9501468 0.2391642 6.87574 16.88982 48.9603 229.49648 54000 1 m 

2012444 Prothoon 5.2602165 0.0713189 30.80052 213.19945 64.17095 256.62017 54000 1 m 

2012714 Alkimos 5.2062335 0.0356216 9.51657 298.91469 163.16174 210.69903 54000 1  

2014268 "2000 AK156" 5.2873272 0.0906027 14.94484 284.67115 123.62387 237.9447 54000 1  

2014569 "1998 QB32" 3.977245 0.2859047 10.90696 346.1705 37.5375 338.80357 54000 1 m 

2015278 Paquet 3.9846457 0.2157149 9.29657 344.88781 64.13255 258.62785 54000 1  

2015436 "1998 VU30" 5.2056216 0.0439938 16.26675 253.42915 178.28135 227.83254 54000 1 s,i 

2016070 "1999 RB101" 5.1235811 0.1236231 16.25994 300.91274 352.61268 243.85689 54000 1  

2016560 "1991 VZ5" 5.0765482 0.0408516 15.29915 100.75566 157.40487 261.64642 54000 1  

2016974 "1998 WR21" 5.2149294 0.0702616 15.01434 241.62526 134.19018 272.57798 54000 1  

2020898 Fountainhills 4.2287314 0.4647309 45.4942 293.29012 234.87212 212.42781 54000 1 m 

2032511 "2001 NX17" 5.0492697 0.4282629 8.93717 285.89591 345.49142 172.48229 54000 1  

2100004 "1983 VA" 2.6090888 0.69471344 16.289474 77.431206 11.737654 142.26727 54000 1  

3035962 "2000 EJ37" 4.6900143 0.7036003 10.21541 183.5988 111.51786 202.03203 54000 1  

3046844 "2000 PG3" 2.8266851 0.85854077 20.464243 326.68865 138.58443 74.835735 54000 1  

3061681 "2000 SB1" 3.346388 0.5398696 22.15021 277.03743 145.21595 341.7947 54000 1  

3079876 "2001 KX67" 3.1268516 0.5748146 20.68275 245.06986 115.06575 323.76911 54000 1  

3081550 "2001 OB74" 3.0440863 0.5018147 16.79417 260.38958 38.40177 356.90507 54000 1  

3089425 "2001 QQ199" 5.3324536 0.4300086 42.44729 213.05295 193.03549 136.63782 54000 1  

3091801 "2001 QF6" 7.2342917 0.6863551 24.22652 144.27642 240.32669 85.9533 54000 1 m 

3117599 "2002 CX174" 3.0704328 0.5119076 21.62245 355.71658 225.09482 290.06416 54000 1  

3169278 "2003 WV157" 3.1343661 0.5204205 20.4243 252.16872 250.66259 169.20267 54000 1  
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APPENDIX B 

SET OF GTOC3 ASTEROIDS 

 Table 34 lists all of the asteroids in the full GTOC3 problem, including their SPK-

ID number, common name, and orbital elements (semi-major axis, eccentricity, 

inclination, longitude of the ascending node, argument of periapsis, mean anomaly, and 

epoch).  The asteroids are sorted by their SPK-ID number. 

 

Table 34: GTOC3 Asteroids. 

spkid name a 
(AU) e i 

(deg) 
LAN 
(deg) 

arg. 
periapsis

(deg) 

M 
(deg) 

epoch
(MJD) 

1 2004 ER21 0.900329 0.17105522 7.95592 357.43143 343.23658 52.625406 54200 
2 1995 CR 0.906736 0.86845445 4.03569 342.77208 322.39782 328.3017003 54200 
3 1992 BF 0.9080026 0.27176608 7.25394 315.47182 336.42045 54.111859 54200 
4 2002 XY38 0.9096341 0.21765254 2.09641 159.63529 119.41817 141.6151818 54200 
5 1999 AO10 0.911399 0.11078484 2.62269 313.33854 7.63927 309.5515364 54200 
6 2000 WO107 0.9114029 0.78065556 7.7829 69.37362 213.58377 169.2181562 54200 
7 2006 BA9 0.9125604 0.3659925 8.31532 305.97027 25.50724 269.3288907 54200 
8 2001 HY7 0.9139376 0.41209549 5.20961 205.38304 211.00626 69.2586068 54200 
9 2001 RV17 0.9140581 0.34250016 7.52263 154.12079 4.35647 343.2637171 54200 
10 1989 UQ 0.9152487 0.26483239 1.29152 178.29646 15.0241 189.1719934 54200 
11 2000 LG6 0.9163425 0.11221324 2.83037 72.72983 7.8651 102.1739718 54200 
12 2003 CA4 0.9203666 0.1197246 7.47925 139.95566 172.94835 86.6971188 54200 
13 2004 RX10 0.9204306 0.35114382 5.9586 173.89189 333.85636 186.4545742 54200 
14 2002 EM7 0.9212257 0.36304986 1.54747 347.21646 57.6856 354.1537351 54200 
15 Apophis 0.9222614 0.19105942 3.33131 204.45915 126.38557 307.3630785 54200 
16 2005 TG50 0.9238455 0.13388842 2.42676 346.04551 199.60593 81.9756648 54200 
17 2002 JR100 0.924675 0.29782641 3.76334 203.5673 253.42378 293.6715722 54200 
18 1992 FE 0.9272536 0.40535098 4.79702 311.9926 82.42602 52.7808967 54200 
19 2000 SZ162 0.9294449 0.16754816 0.89598 14.74941 131.30472 336.3249638 54200 
20 2002 TZ66 0.9300326 0.12059229 8.47831 13.13956 223.06212 135.7560272 54200 
21 2003 YS17 0.9303548 0.31304457 6.52409 99.17972 134.4818 133.8075539 54200 
22 2006 VX2 0.9330736 0.29005873 9.86637 47.38582 126.40932 69.0741375 54200 
23 2005 FN 0.9330778 0.33020963 3.74806 177.42092 120.83813 18.9011538 54200 
24 2002 OA22 0.9359164 0.24295478 6.90562 174.41213 318.28487 205.6768657 54200 
25 1999 AQ10 0.937275 0.23448424 6.55836 327.40416 299.49467 250.5925532 54200 
26 2000 EW70 0.9376817 0.32110421 5.41918 178.31485 125.311 188.0399576 54200 
27 2001 CQ36 0.9396849 0.17623802 1.29202 31.94641 342.49359 22.9155357 54200 
28 2001 BA16 0.9403125 0.13737419 5.76859 115.61889 242.8389 42.1907675 54200 
29 2004 QD14 0.9426399 0.33810282 6.25178 75.45204 109.28368 66.0525408 54200 
30 2004 VJ1 0.9437535 0.16446907 1.29373 233.53809 332.36301 75.2928449 54200 
31 2005 VN5 0.9447613 0.23312124 2.08656 49.35063 115.04505 102.617135 54200 
32 2006 TS7 0.9466118 0.57983607 5.46456 225.45909 299.72601 103.8271836 54200 
33 2001 SQ263 0.9480374 0.49151246 3.95115 327.30349 262.3598 78.649304 54200 
34 2005 TE49 0.9492487 0.37694757 5.00558 195.25531 304.934 276.7190717 53652 
35 2006 SF6 0.9493911 0.28039283 5.86507 228.16645 305.51522 43.6895559 54200 
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36 2006 RJ1 0.9508113 0.30070707 1.4145 93.51404 110.28027 349.5007972 54200 
37 2004 QA22 0.9508977 0.12172568 0.57414 175.15217 28.54873 55.2451141 54200 
38 2001 TD 0.9541288 0.16608077 9.01107 13.21665 241.33953 68.8170052 54200 
39 2004 UH1 0.9541748 0.39680796 3.71292 29.85969 120.62228 155.2936477 54200 
40 2006 FH36 0.9544687 0.1986 1.59072 280.91015 154.77967 128.0764061 54200 
41 2002 LY1 0.9550094 0.37931534 2.9091 248.2326 133.96031 338.4972621 54200 
42 2005 UV64 0.9580862 0.11600696 5.41663 216.09819 313.93026 71.146594 54200 
43 2005 GE60 0.9588639 0.24584744 5.56845 229.9559 112.69363 285.2220831 54200 
44 2004 RO111 0.9611941 0.32883148 5.33444 199.44692 280.82215 164.3568742 54200 
45 1998 HD14 0.9630822 0.31264453 7.80717 183.96655 260.73453 261.9364311 54200 
46 2004 UT1 0.9644067 0.22113792 4.50799 211.98171 294.22407 123.9756016 54200 
47 2003 YG136 0.968992 0.35504091 2.7352 86.5446 127.9831 81.832236 54200 
48 2005 QP11 0.9755418 0.1757465 3.95693 334.92822 119.64718 142.418984 54200 
49 2000 SG344 0.9774002 0.06697124 0.11024 192.31139 274.9223 180.3781477 54200 
50 2002 CQ11 0.9788526 0.42841032 2.45977 81.43849 272.76681 200.8820974 54200 
51 2002 CD 0.9798418 0.17672247 6.87919 8.74939 331.55652 254.4324731 54200 
52 1996 XZ12 0.9799732 0.49926135 5.65852 251.74134 55.81636 72.9065206 50427 
53 1998 XN17 0.9818487 0.20968172 7.24543 85.99494 226.33101 308.1410001 54200 
54 2006 AM4 0.9818736 0.649191 4.12836 123.29217 139.66996 15.6480498 54200 
55 2001 FR85 0.9826891 0.02793117 5.24394 183.09543 233.53197 194.9601844 54200 
56 2002 VX91 0.9846133 0.20141992 2.33173 216.8382 78.23357 274.8314614 54200 
57 2000 OK8 0.9847498 0.22112979 9.98502 304.63783 166.12112 153.7352685 54200 
58 2006 HR29 0.9852749 0.26346811 9.54116 232.80061 212.57562 87.7117748 54200 
59 2006 SU217 0.9858344 0.17456034 2.64217 194.38475 38.23562 311.7733113 54200 
60 2002 FT6 0.9882602 0.46273082 9.48968 188.6153 226.6889 122.5236582 54200 
61 2006 QQ56 0.9883457 0.04505596 2.7989 161.62964 330.03731 70.0709228 54200 
62 2004 EW 0.9894133 0.27979222 4.66406 343.43945 55.79267 142.6799405 54200 
63 Khufu 0.9894148 0.46856366 9.91863 152.50644 54.98951 71.2602183 54200 
64 2003 WP25 0.9907792 0.12120994 2.52245 42.1994 224.96577 297.5344418 54200 
65 2005 CN61 0.9907967 0.06870481 9.52323 146.97133 248.33039 166.3675529 54200 
66 2003 YN107 0.9927025 0.01393412 4.30184 264.84372 80.48505 217.7923676 54200 
67 2005 UH6 1.0006444 0.63236792 2.64874 19.21603 200.24778 235.9241374 54200 
68 2006 FV35 1.0010847 0.37754605 7.09998 179.61929 170.85813 226.9041918 54200 
69 2000 EE104 1.0047041 0.29345413 5.24196 25.96806 280.93086 266.5400007 54200 
70 2000 PH5 1.0051359 0.2301559 1.60139 278.41759 278.53077 327.3858309 54200 
71 2001 GO2 1.0064333 0.16803052 4.61512 193.60694 265.29267 63.1828205 54200 
72 2001 XX4 1.0065836 0.55673375 0.84697 127.00806 186.85712 159.7164678 54200 
73 2005 TC51 1.0075124 0.3055468 5.66968 199.48658 288.09442 97.8673657 54200 
74 1999 JV6 1.0075874 0.31111687 5.31393 124.62191 235.56835 198.4820189 54200 
75 2000 QX69 1.0104975 0.27149424 4.58184 150.52076 73.62628 265.8465193 54200 
76 2006 JY26 1.011128 0.08427146 1.42373 45.04477 277.02812 241.3233221 54200 
77 2005 WK4 1.0116893 0.23719672 9.8329 138.33302 74.39146 357.2955237 54200 
78 2002 PN 1.014505 0.0689143 9.14377 309.5259 107.45923 113.1536664 54200 
79 2005 CN 1.0160246 0.18501785 2.31341 308.83895 321.30873 287.5129436 54200 
80 2000 AG6 1.0176695 0.1899321 2.43499 283.11721 276.29949 318.9700596 54200 
81 2002 TY59 1.0191848 0.23375184 6.6107 9.84962 259.11368 214.0602972 54200 
82 2001 FC58 1.0201136 0.34316691 6.76713 174.76709 261.06877 26.774746 54200 
83 Asclepius 1.0223202 0.35703111 4.9126 180.39166 255.1881 230.9053982 54200 
84 1998 MW5 1.0228657 0.36267778 6.28735 80.47794 26.63877 320.6303075 54200 
85 2006 BZ147 1.023656 0.09861161 1.40819 140.15053 95.17529 318.8393785 54200 
86 2006 EK53 1.0251033 0.51704999 2.2214 5.21615 41.17404 67.9974415 53808 
87 2005 BG28 1.0257488 0.22716044 6.13219 313.53121 80.85145 108.3498278 54200 
88 1991 VG 1.0268385 0.04918621 1.44562 73.9738 24.50924 245.9824779 54200 
89 2006 BJ55 1.0270842 0.1282408 5.94186 307.70442 288.23104 323.2412364 54200 
90 2006 DQ14 1.0276275 0.05302857 6.29663 155.36066 292.38941 89.799583 54200 
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91 2006 FW33 1.0302366 0.80327705 8.33808 13.49756 349.3455 183.7475318 53821 
92 2002 RS129 1.0311837 0.32895355 8.44276 339.00692 246.98177 220.7092649 54200 
93 2001 CC21 1.0325665 0.21931701 4.80877 75.60574 179.29542 231.6344488 54200 
94 2000 AF205 1.0339259 0.27673625 2.40834 220.16324 127.26933 54.1327783 54200 
95 2001 CB21 1.034767 0.33365146 7.9034 353.8601 271.66177 240.5059958 54200 
96 2001 GP2 1.0378059 0.07394752 1.27901 196.88525 111.25934 142.9922893 54200 
97 1991 JW 1.0384084 0.11835385 8.72093 54.03708 301.86269 255.3126581 54200 
98 2001 AD2 1.0393562 0.65972685 1.6545 211.34163 111.06615 43.7195481 54200 
99 2006 SG7 1.0427851 0.56104837 4.76 2.33453 133.25344 111.879932 54200 

100 2006 SY5 1.0432951 0.15244708 7.56343 336.0463 175.54676 40.3103043 54200 
101 2001 TX1 1.047051 0.48246959 2.79874 159.32271 354.0293 321.7376165 54200 
102 2001 RB12 1.051899 0.3813088 6.61497 333.31433 141.59767 343.3547373 54200 
103 2003 MM 1.0531696 0.25621042 8.54111 127.72944 19.74445 279.2228606 54200 
104 1996 FG3 1.0542884 0.34982316 1.9903 299.88579 23.91208 324.6499271 54200 
105 2005 UG5 1.0554579 0.18966714 2.86666 35.78771 112.03922 24.9772368 54200 
106 2002 JD9 1.0556339 0.44049688 6.62426 208.47676 138.83217 292.4444528 52404 
107 2005 XY4 1.0563008 0.59843265 1.90691 163.16224 143.29953 139.3874036 54200 
108 2005 LU3 1.0570624 0.30829536 5.58047 80.77844 71.77661 317.1981038 54200 
109 1999 CG9 1.0606143 0.06251501 5.15795 138.8473 315.50051 211.2047726 54200 
110 2005 YK 1.0611429 0.30763539 5.62187 269.6859 80.38776 131.7596963 54200 
111 2001 QJ142 1.0622514 0.08631514 3.10602 184.48645 63.83549 124.4464309 54200 
112 Castalia 1.0631546 0.48332785 8.88727 325.66257 121.30415 330.3741366 54200 
113 2004 GD 1.064401 0.30749889 6.22219 26.72785 280.99671 191.2173454 54200 
114 2006 HE2 1.0646155 0.15656928 1.17974 200.48697 90.08023 255.2455945 54200 
115 2003 JC13 1.0659747 0.31508073 8.50584 205.9377 171.89361 82.4081951 54200 
116 2002 JE9 1.0677456 0.41671603 8.82762 200.16103 255.35021 242.9946642 54200 
117 2002 AW 1.0697566 0.2561265 0.56907 162.77042 118.2922 107.2813785 54200 
118 2002 BF25 1.0741513 0.2221592 6.23395 306.10315 77.43594 319.7553187 54200 
119 2002 XQ40 1.0744728 0.35058905 2.17913 270.64565 72.74243 17.1024107 54200 
120 1997 XR2 1.0768851 0.20119085 7.1731 250.83926 84.55575 204.5497089 54200 
121 2005 WC 1.0776112 0.4432993 1.74605 31.86884 133.55751 30.3343547 54200 
122 2001 QE71 1.0776821 0.15846392 3.03659 148.60211 96.3364 78.0191173 54200 
123 Bacchus 1.0780803 0.34953607 9.43429 33.1723 55.20031 7.2648785 54200 
124 2006 GU2 1.080348 0.25631038 3.38025 197.18848 266.16714 26.9925859 54200 
125 2006 CK 1.0826863 0.21429682 5.17308 310.98309 264.54637 317.653771 54200 
126 2005 EY95 1.0834122 0.53844388 3.1694 73.09689 341.91012 4.8238963 54200 
127 2001 TE2 1.0836375 0.1969092 7.60965 171.3078 35.69412 127.4288695 54200 
128 2006 LH 1.0847903 0.31604449 7.81951 95.33561 264.62857 290.2705427 53890 
129 2004 JN1 1.0853701 0.17556003 1.49675 144.04411 1.92689 270.3576509 54200 
130 1998 SH36 1.0878859 0.57093192 2.12941 218.1013 278.56258 120.649136 54200 
131 2005 CD69 1.0884135 0.18756634 2.78191 336.61216 264.4367 246.4800692 54200 
132 2001 WT1 1.0886769 0.39699185 7.1582 74.03236 180.45066 53.3923001 54200 
133 1998 FH12 1.0913606 0.53979829 3.55846 108.69104 284.3919 63.1123787 54200 
134 2001 FD58 1.0920485 0.57527056 6.5017 341.3105 45.86707 222.15772 54200 
135 2006 AN 1.0934731 0.21999476 7.4039 277.72573 273.42998 333.2696155 54200 
136 1997 YM9 1.0953326 0.10361643 7.84208 94.82634 51.60205 359.0655644 54200 
137 2003 UX34 1.0953726 0.61584396 2.56686 4.68824 218.14782 137.4209641 54200 
138 2006 CT 1.0975637 0.23090015 2.73548 285.70653 82.61744 121.0512446 54200 
139 1999 SH10 1.0976168 0.12987539 9.55702 178.64789 118.75966 252.1744405 54200 
140 2004 FM32 1.0984144 0.16200779 3.7612 184.51438 298.27291 277.7685811 54200 
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