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NOMEMCIATURE

a linear acceleration o the center of gravity of each rod,
ce in/sec=.
d diameter of the cross-section of the rod, in.

fA’fB driving forces acting on points A and B, lbs,

T characteristic frequency of the system, Hz.

c
f b natural frequency of the driving mechanism (cantilever beam),
5 B,

. . ; 2

g acceleration due to gravity, 1n/sec g

1 length of cantilever beam, in.

11,12 length of upper and lower elastic members

. - 2y
m mass at the end of the beam, 1b sec /in.
3

m, mass of the beam, 1b sec /in.

n number of rods

t time, sec.
Y1 maximum deflection of cantilever beam, in.
A area of the cross-section of the rod, in .

' 2

E elastic modulus of the beam material, lb/in”.
F&,FB amplitude of driving force on points A and B, lbs.
F.,,F . - §

RA°RB rotational reaction forces on A and B, 1bs.
FTA’FTB translational reaction forces on A and B, lbs.

I moment of inertia of the rods with respect to a vertical

axis passing through the center of gravity, in.™.



QA,SB,

gr g
A’'B

viii

moment of inertia of the cross-section of the beam, in.
elastic eguivalent spring constant of a cantilever beam, Ib/in.

length of each rod, in.

restoring forces on A and B, lb.

tension on first and last upper and lower elastic members,
excluding that due to roé weights, 1bs.

kinetic energy of the cantilever beam, lb-in.
inertial reaction torque, lb-in.
potential energy of the cantilever beam, lb-in,

welight of each rod, 1b,

displacements of points A and B, in.

linear acceleration of points A and B, in/sec2
amplitudes displacements of points A and B, in.
angular acceleration of the rod AB, rad/sec2

driving frequency rad/sec.

characteristic angular frequency of the system, rad/sec.
natural frequency of the cantilever beam, rad/sec.

angle of rotation of the rod with respect to its longitu-
dinal rest position axis, rad,

specific weight of the material of the rod, lb/inj.

angle of rotation o the upper and lower elastic members
at points A and B, red.



ix

SUMMARY

This thesis is concerned with the dynamic response of a
vibrational system which consists of a chain of coupled rods secured
to a lower and an upper frame using elastic members. This chain,
called a series of bifilar pendulums, receives an external disturbance
at one end in the form of an harmonical excitation.

The present study gives a mathematical model for the system,
gives the solution of the equaticns of motion, and discusses results
derived from such solutions. The motion response of the chain was
studied by varying two significant parameters. One of these para-
meters is a function ol the geometry of the rods, while the other is
a function of the ratio of the driving frecuency to the characteristic
frequency of the system.

When these parameters were changed, the motion response changed
significantly,especially when the values of the external driving
frequency were about the same as that of the characteristic frequency of
the system.

An experimental model was also built. This model was demonstrated
te be successful in demonstrating the different responses of the system,

which are in accord with the thecretical sclution.



CHAPTEE T

INTRODUCTION

The present work is concerned with the dynamic response of a
vibrational mechanism consisting of a chain of coupled bifilar pen-
dulums fixed to two frames, en upper and a lower frame, by meams of
long springs. The springs are fixed to the chain, one at each joint.
The mechanism vibrates under the action of an external harmonic exci-
tation at one end of the chain., The other end is free,

The physical parameters of the system, such as weight of the
elements, tension on the springs, and shape and moment of inertia of each
pendulum govern the magnitude of the characteristic freguency of the
system. If one changes the magnitude of the driving frequency from
slightly below the characteristic freaquency to above its wvalue the
manner in which the chain wvibrates changes significantly.

In order %o study these changes, the author has devised a
mathematical model for the mechanism and has constructed a prototype
for the system whose physical propersies are as close to the theoreti-
cal model as possible,

With use of the theoretical model, it was possible to predict
the behavior of the system. The resulting numerical values were very
useful in the design of' the prototype as well as in the interpretation
of the experimental results.

In the design of the prototype many Zactors were considered,

involving cost of fabrication, ease of handling and operation, objec-
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tivity in the results, ease of fabrication, etec. The actual conslruec-
tion was carried out using facilities in the Mechanical Engineering
School at the (Georgia Institute of Technology.

The results obtained from the experiments with the prototype
are definitely in accord with the theoretical predictions as regards
gross motions, although detailed numerical comparisons were not feasible.
The principal difficulties in this regard are due to the presence of
friction in the actual model and to the absence of suitable equipment
for making measurements of the displacements of each joint of the chain.
Neither simple vernier observations nor complex accelerometrics measure-
ments were useful for this purpose.

The motivation for this work came from the reading of a non-
published paper by Professor Takashi Nakada 1, of the Tokyo Institute
of Technology. This paper contains a short derivation establishing
the dynamical properties of one bifilar pendulum which was used as a
mechanical high-pass v:bration filter.

Also helpful to the author was the reading of an article on
dynamics of the bifilar pendulum by T. R. Xane 2 and Gan-Tai-Tseng of

she Division of Engineering Mec i Stant i ity.
the D sion of Engin ng Mechanics at Stanford Universit



CHAPTER IT

MATHEMATTCAL MODEL

Force Anslysis

The system to be studied may be defined as a chain of n coupled
rods fixed to a lower and an upper frame by elastic members. Both ends

of the chain ares free.

/
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/////\/”M

F‘\h_. Elastic
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ot )

Initial
Disturbance
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x‘H\\I‘_nry 37-417_»*j7d y

Figure 1. SchematicV iew of the gystem




In order to simplify the mathematical derivation , we initially
limit our attention to just one rod, i.e. the first rod as shown on
Fig. 1. However, the model for the study of this single rod implicitiy
incorporates the effects of all the rods of the chain.

If it is assumed that all rods have the same weight W, the dif-
ference in tensions of any intermediste elastic member in the upper
row, and any corresponding member in the lower row is W. The first and
the last elastic members will have upper minus lower tension difference
g . If there are n rods, the total weight supported by the upper elas-
tic members will be mW. The number of upper elastic members supporting

the chain in Fig. 1 is the number of pendulum plus one. Thus, the

total vertical force F on the chain is

[(n+1) -2]W + ?(:T) =F

}
=
Il
=]

(p-1) W

b

W =

With this viewpoint, we szy that the gravitational contribution
to the tension in the upper elastic members is W/2, W, W, .., W/2 as indi-
cated in Fig. 2.

If in addition to the gravitational contribution to the tension
each intermediate elastic membef iz assumed to have an additional tension 27
while the Tirst and last members have additional tension T, there will
be & force distribution as shown on Fig. 3.

It is convenient to assume that instead of one upper elastice

intermediate member at each infermediate joint with a tension 2T+W,
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there are two elastic members present, each one with a force T +
One of them is attached to the rod at the left of the joint, and the
other is attached to the rod at the right of the joint, giving a force

distribution as shown in Fig. 4.

LW W
Wt WY T*%’JT H
[ . : ] == *]
TYy T _Tw TY
< £ L L L 7 \/ 7 7 7 77

Figure k. Final Force Distribution

Thus the model chosen for the mathematical dérivation is one rod
with weight W, length L, area A and moment of inertia I, fixed to a
lower frame by an elastic member under the action of a tension T, and
to an upper frame by & member under & tension T +_g.

The upper and lower elastic members are taken to be‘ll and 12 units
long, respectively, as shown on Tig. 5.

We next consider the resultant motion of a single rod, under the
action of an external harmonical excitation with a frequency w,

The presence of the excitation on the rod at the left can bhe

represented as a force EA acting normal to the longitudinal axis of the
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Figure 5. Selected Model for Derivation
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tlgure ©, xternalF orces Acting on a Single Rod.



rod at the end A. Since the point B on ~“he rod is jointed to the input
terminal of the next element on the chain, a second force is acting on
end B, and its wvelue is taken as fB with a sign sense opposite to that
adopted for f,, consistent with Newton's third law (see Fig, 6). A
reaction force in the mimus direction due to the next stage input ter-

minal implies a positive force on the left end of the next rod, as shown

in Fig. 7.

f...1 s 1 ch fDT

Figure 7. Internal Forces

For given angles of cdeflection of the elastic members from the
g g

vertical, such as eq and GB and Gé and eé, due to the tensions in these

&

members, there will be horizontal restoring forces RA and RB’ acting on
the rod.. (See Fig. 8). It is assumed thet the tensions in the elastic
members are insignificantly increased due to stretching. Providing T
is sufficiently large this would be an appropriate assumption. If one
designates XA and XB as the displacements of the points A and B in the

+X direction, the restoring force at point A will be:

W )

R = (T+ %) si e+ sin @
A gy sm T ST p oy
where
X X
sin 68 = B sin 6' = A
A 1 2 A 1



S,

thus
Wy a R R
R =(T #5 . = *+ T.g =l %7 +gr )4
1 2 3 2 1
A, | 1 W X
R, = I3~ + =) +z— | & (1)
A L "ML L all_l
The restoring force at point B will therefore be:
= (T + E) sin 6 + T sin ©
RB 2 B B
where
X ;
‘B . .
sin 6, = — gin &' = —
B ll # B 1,‘2
It accordingly follows that
i w'\ l% _,X T T W X_
f% = ( b +§, g== ']—-—- = i == +—'—2l ) B
' 2 2 1 g 1
i 1 1 W X
H_B = ._T( 'i'l‘i' .j._.,:‘j + ﬁJ B (2)

Due to the translational acceleration of rod AB one ecan, in the
sense of one's writing Newton's second law as a statie force balance,
conceive of an inertial reaction force acting on the body AB. This

force, FT‘ according to Newton's second law of motion is

where

=
i

welght of the rod

gravity acceleration

o
Il

acg = acceleration of the center of gravity on body AB
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Figure &. Festoring Forces

Since the center of graviuy is in the center of the rod, one can
consider the force FT as divided intc two forces FTA and FTB’ each one
equal to one-half the wvalue of F?, ard acting at points A and B,
respectively (See Fig. 9.) This follows since the rod is symmetrical
with respect to an axis passing through its middle point and thus the
center of gravity will be locatec at this point. As indicated in Fig. 9, it
is possible to say that the displacement of the center of gravity is
equal to one-half the value of Kﬁ plus KB. Thsn , the acceleration of

this point is

o X 2
o _ d ( 5 By _ 1 4 % . & % )
g = @ 5 = 5 ) 5
- % =4t at

TA '3
i .

p o= Loy 1 df o, Xn}_ .

TA T 2 ‘g’ o

g 2 at® at® TB
ar
. WX, + X

FTA = 1?5 (A B) (3)



Figure 9.

Inertial Translational Resction Forces

Figure 10. IJrertial Rotational Reaction Forces

11



W X %
¥, = -
g = g L8 #7B) ()
Due to the rotational mection of the rod AB, about the vertical
axis through the center of gravity of the rod's weight, there is an
inertial reaction torque, TI’ acting on the body equal to the product

of the moment of inertia I of the body and its angular acceleration «AB.

This torque may be expressed as two forces, each of the same value but
with different direction acting on each end of the rod. The torque will
be equal to the product of this force with the length of the element,

or

“A or B

from which one identifies

The angle ¢ of rotation of the body in the horizontal plane with
respect to ite original rest position may be approximated by the value

of its tangent for small angles or rotation, i.e.

g AB = = = {
dt2 dt”~ B

q . e
d“8 £ X AB) 1 % - %

and one therefore identifies
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F = Lo % -'X.B) (5)
Ry =

F, o= 5 (87 ') (6)
2 L

Equations of Motion

All of the component forces discussed above are horizontal forces
actinz on the two ends of the rod. A complete diagram of these forces

is presented in Fig. 11

/ N
M
F
TE R :
E /B
Fra
Fra : =]
Fra B =
RA /'/
fa L
A e ,,--"'

Figure 11. Forces in the Horizontal Direction Acting on
a Bingle Rod,
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Newton's second law with the inertial force convention implies that the
net sum of all such forces ir the +X direction should be zero. IKurther-
more, the net torque, including inertial torques should be zero. These
two conditions are equivalent to sayinglthat the net force acting at

either end point should be zero. Thus, for point A, one has

= FA = 0

£, = &

AT A T a7 fea
or

X, +')iB)+

while for point B, one has

3 FB = 0
f+RB+E‘ + F = 0
B TB RB
or
T T W W
FB+LT(1-1+1—E) q_l YE = g (XA+}(B)-
'I‘z (XE-X'A)
L
or

S, 2B 4 (8)
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these may be summarized as

i I o ] 3. 1 W X
£f,={ + =) X, + | T(=— + =—) +=— A+
A Lg 2 A i iy ik 21,
W I | % (9)
(gg “ ) “B

W I EE + t @ ! l b W
-f = (—~-==) “A Tlo— # =) & — % 4
B Iz 2 L Lo L 21, - B
, W [ =2
(1g* 2% (103

The values for W, g, I, L, T, 11 and 1? are constant paramenters
for any given model. For this reason, it is convenient to make the

following substitutions;

W X
M = =
E 2
E: L
W T
N = - 3
2
Eg L
R § ] W
K = T(—--i—-—-—)+—---
L4 1, 211_1

Substituting these new constants M, N and K into equations (9) and (10),

one obtains

[ =8 'Y-' 1 [
£, M__A + K}.A + mxB (11)
. o= NX + KX+ MX H2)
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If the external force applied to the aseembly is an oscillatory

function, the steady state displacement of the ends, XA and XB, of any

rod along with the internal forces f} and fB may be expressed as the
A
wt

— . - i .
real parts of quantities having time dependency e g La€u

Hy
I

23l

g1l
'_l
&
o
iy
i
tx
M

where

,X_B = complex amplitude of points A and B

F_ = complex amplitudes of forces acting on A and B

w = angular frequency of oscillation

It accordingly follows that

i 2 iws
X = ~w T e
A “A
e & iws
= =W 2}
XB :KB €

Substituting these values into Eq. (11), one obtains

iwt 2— jwi —  iwt Pee  il0E
e = MW Y & + KX e = Nw
EA Ly xLA Iy .‘A'.Be

or

2 '
FA = (-ng + K) EA = Nuj% (13)
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Similarly, from Eq. (12), one chtains

oo diwt 2 1wt e I 2. 1wt
-F e B -WIw'KAe + :QLBe - Mw _&Ee

or

5 &
-F o= =No© (Mo + KX
8 N _ZA + (MW~ + K ) X (1k)

If one next solves Eq. (14) for EA , he obtains
o

; (MO 4K) 1
IA=(—2—):.B+-—.;_HB (15)
Nw HNw™
which, when substituted into Eq. (13), yields
I - & S O} T+ 5]
A L i = 2 B
NwE'XB
this then simplifies to
2 . 2
r W e ) 2
ngl_[M H{z) e 28w T+
Nw =4
(—Mw2 + K)o
5
Nw~™ B
or
; 2 2,k 2 2 -
poo T0F - W) w - o+ K5 T
- 2
A il o |
2
w

The above equation may also be written in the matrix form
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- - 2 T 7
— (-Mw™ + K) 1 -
X AT e
EL Nu? Nu? ;EB
= (17)
2 2 Z 2
= . (MS—N]wu—sEﬂww + K -Mw + K o
& Nw™ 1w =
L. ks i
Alternately, if one makes the substitution
=M . W
Ty LR (18)
Nw
1
B = 2 (19)
Nw
- a0 o
P O Nﬂw‘ - g + K
N (20)
2
D = :MEL__;_E = A (21)
N
the above may be written in the form
X B hd
_‘;A A B 'LB
= (22)
¥ )
A C 1 FB
= - L — - —d

Application of the Equation o Motion to a Chain of Rods

The model of principal interest is a chain of coupled rods and

we now have the equation of motion for one single rod. However, these
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results may be used to analyze the motion of the enter chain, as is

schematically shown in Fig. 12,

i
Bl
e
'le
|
F -

L}

—
—
~3
-

9
@
]

Figure 12, Interactions of the Chain

one has, for example, for the first rod, the egquation

-_ -1 B e =5
2(_1 A B _’;2
- (22)
F C D F
|2 L 4 Ll
while for the second rod, one has
[~ = ] ™ = e
A B X -‘
- 3
e (23)
F2 C E_ _j3 J

S0 one can expresgs displacement end force et 1 in terms of displacement

and force at 3 by the ecuation

Xl A B £ B ._}ES
Fl C D G D F3

O 4
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i [ g]* T4
L] ] X,
= (2k)
F C D F
i
A L o | 3
similarly
3
Xl A B XL
= (25)
or for a system consisting of n such rods, one has
* B L 41
= (26)
¢ B Fn + 1

the above is the general form of the equation of oseillatory motion for
the proposed system. Some convenient interpretations are possible for
the matrix [A, B, C, D] which appears in the above equations. Iet us

first note that Egs. (11) and (12) mey alternately be written as

X+ KX = £ NX (12
A T T OSA T B -
e = --: i
MX, + KK = -fp - WK, (12)

The form of these suggests that one define =z characteristic frequency

w_ as
C

0
=
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which serves as a convenient reflerence frequency for the system. The
ratio of the driving frequency to u:c would accordingly appear to be a

convenient dimensionless parameter, which we here term &, i.e.

another convenient dimensionless guantity iz ratio Y of the two constants

N and M, i.e.

=
1

==

In terms of these quantities, one may readily express the matrix elements

in the following form

A = i (18+)
67 v
s et 19'
K 85 ¥ )
¢ = = (1-F) 8" -2+ ~2J (20")
&
D = £ = l——-—2— 6 | (211’)
5 ¥
In terms of these identification, the Eq. (26) becomes
B T 2 -\—.3(.. |
11 52 y 5&{ o 1
= @)
i 7 . 2
1 PR~ ! 8 * 1-48
- - - 2 A - | R
= 2y L (-¥)8 - 28 1J B




or

Since the left end of the chain is

== =
52 e
=8 4 =n + 1
n
1
§2
s " 7
)
: {Tl - _‘2)6’4 - 28 + l_J 1-67 Kn 1
L~ J L o

is no force at this end so

this then gives us the following form for !

miPm

i

2

5

Fn 3% M ¢
Eq. (27)
n =
§° 1] -
y 8° v T+l
, 2
(1 -*fg)fﬁ)+ S 26 1. 12‘ ? ¢
y L -4 5y
- — _—

22

(28)

considered to be free there

(29)

The above Eq. (29) gives one a simple way for calculating the

relative displacements of each joint of the chain, given any driving

frequency. ©Such calculations are given in the next chapter,
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CHAPTER III

EXPERIMENTAL MODEL

This chapter presents two aspects of the design of the experimen-
tal model! (1) calculations based on the equations of motion
previously derived. The input parameters are the physical constants
for a given model, while the output contains the description of the
predicted behavior of the model (2) The design and construction of the

different parts of the model.

Caleulations and Results

From Eq. (29) one may say that the displacement of any joint on
a chain of n rods relative to the displacement at the input end is a
function of just two numbers,® anc ¥. One mzy note that ¥ = W/M is in
turn a function of the dimensionless quantity th/I?W‘which represents
the square of the ratio of a rod's radius of gyration to its half length

Lf2; d.8.

1-[r /(/e)F

1+ [z /(1/2)1°

The value of & is, as discussed previously, the ratio of the driving
frequency w to the characteristic frequency wc'

Physical Parameters. 1In the design of the model the following

choices of parameters were made at the outset taking into account ease

of fabrication and desired cverall dimensions:
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Tension on elastic members = T = 1 lb.

Length of elastic members = ll = 12 = B0 %nh,
Weight of each rod = 0.5 1b,

Tength of each rod = L in,

Values for Y. If one examines the relation,

=}

=

s==
Hmlv—i L'—\i:ln—i

some limiting values may be predicted for Y. Since I, W, and g are all
positive the magnitude of the numerator must always be less than that
of the derominator, so one can state

-1 < ¥ < 1
Calculations were performed for five different values of ¥: 1, &, O,
-3 and -1. Each of these values corresponds to a different value for
I, and to a different corresponding shape for each of the rods. Table
1 summarizes the different alternatives.

Velues for § . Exploratory calculations were performed for values

of & ranging from 0.25 to 20.0. However,,the results showed that sig-
nificant changes wcowrred mainly in the range of values from 0.25 to 5.0,
g0, consequently, the chosen values for discussion are 0.5, .75, 18, 1.5,

2.8, 3.0y 5.9,

Another parameter intrinsic to the model is the number of rods in
the chain. Our exploratory celculaticns seemed to indicate that 10 was
sufficiently large to exhibit dynamical features expected for much longer
chains and the fabrication complexities dictated that one not select an

unrealistically large number.
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Table 1. Values of Y, T__» and Corresponding Rod Shape
Y 1 3 0 -5 =1
. " WP WI2 WA
2z 12g Lg Lg %
(Lumped mass {Cylindri:al (Lumped Lumped masses (Radius of
at center) uniform rod)| pmasses on cross gyration
at ends) members at| infinite)
distance
1
g I w=0

3

—

__.!_S_

—

As regards the computations per sé let

alternately be written as

rf* Fy P
1 52 ¥
" 1
i )
. 8=y
X
or

— - —

f} C

X

10

10
BI'

Dl’

(31)
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with obvious identifications for the symbols A', B', C', D' = A'., The
matrix is alternately termed [P'], i.e.
Al B'
Pl & ¢! D’

The matrix [P'] raised to the tenth power is alsc a 2 x 2 matrix,

which we here denote as [P"] with corresponding elements A%, B", C" and

D", i.e.
10
A' BI Arl Brr
= (32)
Gt i a" D"
thus, Eq. (31) may be written as
e M M
4 8 H 41
= (33)
At 1"
f} g D 9]
K
Hault B 4 L
or
X = A" 1
£ “a1 (3%)
™ . =111 I it
T ¢ Xy (35)
X
from which one has
ﬁ 1
]! £
= = = (36)
Fl 4

In order to calculate the relative displacements at intermediate
joints on the chain, i. e. to determine the ratios Zé/K 3 ES/E;"EL/Ei’ e

‘Zéfzi,,ﬁiolzi, Eq. (29) was reinterpreted.



A

N = i 1 - -
_ , , -
£y A B L 42
- - (37)
F at B F
ol i+
K K
- _I L —_— — —

where i is any positive integer such that 2 =i S5 10, If one similarly

defines matrix elements A", B", ¢"', D"

i
A' B' Am Bm
= - (38)
c' D‘ CH‘[ Dl'fl
thus, Eq. (37) may be written as
"'"x = [~ Al BM W '_Xl T
-—l ] + l
= (39)
m m
i ¢ B Fi g
K
_K = L. ~ L =
or, alternately, by the twoc equatiors
X = At 4 B B
iﬁ Eﬁ + 1 i+ 1 (ko)
K
<5 _ ~nt =2 =it
By = ev Ry g B 5 (41)
7 =
Tt follows from these in turn that
T . Hy ] - sy
L -A"% ;1 C& g
= (L2)

Bll! = Dllr

However, from Egq. (36), one has
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&3

x . B T
K .L'"L" -
so, BEq. (42) reduces to the following relation etween X, , , and X,
p— 4y = 1" = _ A
X - A g o " & 42
= - (43)
B'I'Il DH[
or
z 35 L Arn DM '}" N B o — R
1 dl‘l—CE“XiL ¢" B )gl+l(m+)
If we divide this by z]
mo_ moHm 5 — mwoo_ ptmn 7
D A"D" X ., =C"B cB" X, |, (45)

Xl AT ' Xl

and then solve the above resulting equation for X

- AL ‘-'1" iy
lﬁ + 1 ¥ iig-w
or simply
1Ny AT
2.1 1 (A"DM" ~¢"B"") ’
T = E-IT‘ @"F’I__DHI - cHr Blll) (J'l' )

One may note that for the analytical model selected, there is no
damping and, consequently the ratios'EE_+ o /’Zi are all real. Also these
ratios give the instantaneous ratio of the corresponding instantaneous

dlsplacement_ﬁi 1 to‘ﬁl.
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All the matrices [P"™ ] and [P"] were calculated by the use of a
_ computer program, listed in Appendix 1, on the UNIVAC 1108, at the Georgia
Institute of Technology. The corresponding values of the ratios Zi+l/le
are given in Tables 3, 4, 5 and 6. Fesults for the case ¥ = O are omitted.
What actually would be predicted in thiz limiting case is that, regardless
of the wvalue oi‘}%} the remaining Xi o & =% Bs wa s o , 11 would all
be identically zero. This should be apparent from Eqs. (28) and 46).
Consequently, the case ¥ = o is of relatively little interest.

Graphs of the chain's configuration based on the nuﬁérical values
in Tables 3, L4, 5, and 6 are precented in Figs 13, 14, 15 and 16, These
Tigures were used as a reference in the selection of the remaining

physical parameters needed to completely specify the experimental model.

Design and Construection

As was previously pointed cut, different values of Y imply dif-
ferent moments of inertia and different shapes of the individual rods.
As indicated in Table 1, the most convenient shape for the rod from the
stand pecint of fabrication is a c¢ylindricel uniform rod. This reason
plus the fact that there seems to be no spectacularly different type of
response behavior for cther values of ¥ suggested that we use cylindrical
uniform rods in the constructiorn of the model.

A detailed description of the design of the model is given below.

Rods.- Given that the shape. weight and length of the rods are

already specified, the only questions to be considered are those involving
selection of the diameter d of the rod and of the material. In regards

to the latter taking into account cost and availability, possible choices
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Teble 2. Coefficients for Matrices [P']
¥ 5 0.25 0.5 0.75 1.0 1.5 2.0 3.0 5.0
A' 15,0 3.0 0.77 0.0 -0.55 -0.75 -0.88 -0.96
1.0 B 15.62 3.91 1.74 0.98 0.43 0,24  0.11  0.0&
P o O ¢~ 205 0,885 ~1.08 -1.59 ~1.79 -1.93 -2.01
D" 15.0 3.0 0.77 0.0 -0.55 -0,75 -0.88 -0.9%
A" 30.0 6.0 1.55 0.0 -1.11 -1.50 -1.77 -1.92
B* 31.35 TS2 3.L8  1.95 0.87 0.48 0.22 0.08
v ¢" 28.73 L.4k6  o.h1 -0.51 0.27 2.55 13.36 34.18
D'  30.0 6.0 1.55 0.0 -1.11 -1.50 =1.77 =-1.92
A’ ®
B o
0
5 0
D" ®
A" -30.0 -6.0  .1.55 0.0 1,11 1.50 1.77 1.9
B' -31.35 -7.82 3,48 -1.95 -0.87 -0.48 -0.,22 -0,08
e c' -28.73 -L4.L6 oh1 0,81  -0.27 -2.55 -13.36 =-34.18
D' - 30.0 -6.0  -1.55 0.0 1.11  1.50  1.77 1.9
A' -15.0 -3.0 <0.77 0.0 0.55 0.75 0.88 0.96
B' -15.62 -3.91 -1.74 -0.98 -0.43 -0.24 ~0.,11 -0.04
- ¢t -1k.27 2,05 0.23 1.02 1.59 1.79 1.93 2.01
D' -15.0 -3,0 -0.77 0.0 0.55 0.75 0.88 0.96




Table 3. Resulte for the cese ¥ = 1.0
(] x2/11 13/3(1 kl‘/xl xs/xl )(6/3(]L x,’/xl xa/xl ng/xl xm/.xl- xnjxl

0.25 = - - - - - -- -- - --

05 |1mx10t] 2.8x102 | 82x10" |68 x10® |77 x160 | 557 x 208 7.1 x208| 137 x20°| -7.06x167| wke x 10°°
0.75 1.18 0.797 0.102 -0.658 -1,18 ~0.935 -0.538 0.240 0.982 1.25

1.4 0.0 -1.009 0 1.009 o -1.02 ] 1.02 ] -1.03

1.5 -0.898 0.001 0.903 -0.997 0.201 0.77 -1.05 0.k 0.6 -1.086
2,0 -1.652 1.hs59 -0,566 -0.633 1.50 -1.£é 0.946 0,225 -1.26 1.69

3.0 8.2h -15.53 19.48 -18,96 14,45 -6.hge -2.791 11,52 =17.77 20,0

5.0 -0,87 0.675 -0, h22 0.128 0.166 -0,U47 0.696 -0,8% -1.052

1.010

1€



Table 4. Results for the Case Y = 0,50

5 %/% x3/% X/ %, X/% Y/ %y /% X/ %, Xof %y X0/ % Yo /%
0.25 = = == = = = & — . .
0.5 | 2.66x1071| 6.66x 101 2.02 1.12 550 x20°" [-5.99x107Y| 1.8x102 | -1.6x102 | 4,9x 103 3.5 x 107
0.75 | 3.2 x102| 1 x10? | 235 x| boxa0d |2hxwt | 2.0x207" Lixw0t | 5.7x107 |-9.9x10° | 8.3 1070
1.0 0.0 -1.0 0.0 1.0 0 -1.0 ) 101 ) -1.01
L5 1.626x10"| k22 x10! |2 xi0t| nwx10d 892102 | 78x162 | 95x20° | 232102 | 94 x202 | 1.8x1207
2.0 |-3.8x10% | 1.72x102 |-h93x102]| 2.67x10° |-8.9x103 | 1.12x103| n63x102| -1.35x 20| -1.75 x 10 | 1.35 x 107
3.0 [2.84x10Y | 7.6x10° |-2.3x10! | -8.25 x 2073 522103 | 121 x 203 8.22x 20| 2.87 x 106 -8.07 x 206 | 7.86 x 1076
5.0 |2.8x10t | 7.6x107 |a.7x10? | -9.35 x 1073 |4.35 x,1<;'3 1152203 | 711 10| 173 x 10| 8.23 x 106 | 6.22 x 206

4%



Table 5, Results for the Case ¥ = - 0.50
s L% /% hl% X% | Yo/ %) /% Xg/ % Xof ¥y X0/ % /%

0.25 - - - - - .- - . 55 -
0.50 | -2.66 x 107 | 6,66 x 10™* 2,02 12 | -55lx 10| 5.9 %20t | c1.8x102  [-1.6x102 |-hox10d | sx207V
0.75 | -3.2 x 10 | b x 10t [2.35x 20| B9x103 ]| 2k x10t | 10x107* | -n1x10® |57x20% | 9.9x107 | 8.3x107
1.00 0 -1.0 0 . 1.0 0 1.0 o 1.01 0 -1.01
1.5 | 626x20 | hzex10t | 2B x| 1arx10Y B8.9x20° | 7hx120° | 95x10° [2.3x120" |-9bx10? | 1.8x1c7
2.0 | 3.8x107 [ 1.72x107 [ hox10?| 2.67x102 8.9x1203 | 1122103 | -1.63x203 135 x 207t 175 x 207" | 1.35x 207
3.0 | 2.8 x10) | 7.6x102 | 23x1200 | B2sx10Y s5.22x203| 121 x303 | 822 x 20 | 28121078 8.07 x 2078 | 7.86 x 207C
5.0 | 28x10r | 7.6x10% | 172202 | w935 x 20 35 x103] 1152103 zmxa0t 173 x 10| 8.23x10°0 | 6.20 x 2076

%

€e



Tabls 6, Resulta for the Case ¥ = =-1.,0

s %/ % /% N/ % o/ % Y6/ 21 /% X/ % Xof %1 X0/ % n/%
0.25 - - - - — - - - = ==
0,5 [-1.71x 10‘:l 2.8 x107° |-8.2x 10‘1’ 6,41 x 1072 7.7% x 1077 5.57 x 10'6 -7.11 x 10'6 1.37 x 107° 7.96 x 1077 | .2 x 10"3
0.75 -1.18 0,797 -0.102 -0,658 1.18 -0.935 0.538 0.24 -0.982 1.25
1.0 0 -1.009 0 1,009 0 -1.02 0 1.02 0 -1.03
1.5 0.898 0.001 -0.903 0.997 0,201 0.77 1.05 0.1k -0.60 -1.086
2.0 1.652 1.k459 0.566 -0.633 -1.50 -1.62 -0.946 0.225 1,26 1,69
3.0 -8.24 =15.53 -19.48 -18.96 -1k, 45 -6,4% 2.7 1.5 17.77 20.0
5.0 0.87 0.675 0.422 0,128 -0.,166 -0, hl7 -0.696 -0.892 -1,01 -1.052

7e
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Figure 13. Chain Motion for ¥ = 1,0
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Figure 14%. Chain Motion for ¥ = 0.5
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Figure 15. Chain Motion for ¥ = -0.5
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Figure 16. Chain Motion for Y = =1.0
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would be steel and aluminum. &Steel was selected primarily because of

its greater density. Since

where

-
; m d°.L.p
LS P
P = specific weight of the material
d = diameter of the eross-saction of the rod
L = lergth of the rod

Figure 17. Geometry of the Rod

the diameter d would have to vary with P as

d=\/m.1.8 (L8)

or, with the values W = 0.5 1b, L = 4 in; as

a =[5 (19}

if one substitutes here for n the specific weight Tor steel and aluminum

respectively one finds

_ [0a59 _ [958 _ .o

_. [9:159 [0.155 57 4 .
d& = D = \/b—'.la-l-E = 1.56 in. (Jl)
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Since a smaller size model would seem desirable, cone prefers a smaller
diameter on the rod. Also, the calculated diameter for the steel rod,
3/4 inch, is a standard commercizl size for steel. Thus, we selected

a 3/4 inch diameter steel rod. The moment of inertia for each rod would

then be
_ WI© _ 0.5 1b. (4 in) B ~ = . o
I = —5 = “ T (3% in) - L-73x107 1binsec (52)
sec?

Since the analytical model assumed each element on the chain to
be pin jointed at its ends to adjacent elements, a cylindrical Jjoint
was designed to simulate this. (Bee Fig. 18.

Finally, in order to attach the nominally vertical elastic mem-
bers, to each joint, two eye-screws were atfached at the two ends of
each 3/8" bolt which served as a pin in the cylindrical joint (Fig. 18)
connecting adjacent rods. This part is shown in Fig. 19.

In accord with the overall design specification of 10 rods total,
8 rods were constructed as indicated in Fig. 20 a, i,e, to accommodate
pin Jjoints at the two ends. The remaining two, the first and the last
on the chain, (which are pinned only at one end) were constructed
as indicated in Fig. 20 b.

Elastic Members. Several choices were considered in regard

to this part of the design. Plano wire and screen door springs were two
easily available possibilitbies. Because of the relatively low tension
(one pound) desired and the constraint that this tension not change

markedly with lateral rod deflections, the screen-door springs were

selected in preference 5o the piano wire. These springs are commercially
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Figure 18e. Pinned Joints on the Chain

~ Figure 18b. Sectional view of the Joint

Figure 18c. Top View A-A

Iy



Pigure 19, Eye-Screws at a Jeint

Figure 20 a) Intermediate Rods

b) First and Iast Rods
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available and have an overall length of 16" 1{16, which is close to the
20 in. sssumed in the calculations.

The spring constant of the door-spring is 1 1b. per 1/16 th inch
So tensions of 2T+W or 2T, respectively (were T =1 1b, W = % 1b) would
cause elongations of 5f32 and lf& in., Consequently, one would want the
average elongations of upper anc lower springs to be 9/6& in. In our
model this average statical elongation was taken to be 1/16” corresponding
Ty T 3/8 1b. The average statical elongation for the four springs at
the end was 1/32".

The loops at the ends of the springs were hooked onto eye-screws

fixed to the chain and to the upper and lowesr frame as shown in Fig. 21.

UV LIS S LT S AT I WP //g//J

b o e

Frame

1
168

: l .

LI 3 4 2 6
Chain T ] T : .
J :

% ——
LS
§ 161/

::a::ﬂ// L L Lty g E L TR E LTy

Figure 21. Elastic Memvers
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External Driving Mechanism. A basic consideration in the design

of this mechanism is the range of driving Irequencies. The calculations
presented here suggest “hat the significant changes in the motion of the
chain occur at input frequencies with wvalues in the vicinity of the char-

acteristic Trequency WC, i . e. near

- _|E s
1Nc M (53)
where
™ < 1 W
K = [MT +§ )+ (54)
L Ly g allJ
W T
o= g o (55)

the values of these quantitites appropriate to the experimental model

may be calculated by taken

= 3
T = 3 Ib.
"= 1y = 16 1/8
L = 4"

The welght of each rod was determined by dividing the total weight of

the chain (rods plus bolts and screws) by ten, giving

W= ijgi = 0.561 1b.
and
_1 W2 _ 1 (0.56) (16) 3. 5
L =13 5 = 1 386 = 1.93 x 10 ~ Ibinsec

There one has

= (1 1 0.56 1b
K=3/8 g+ B3+ 5(16.305) = 0-06k o
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i . =3 2
o _0.56 1,93 x 10 © -4 1o see
L 1% /3 _2
W o= 0.06k4 lbhln - 13.25 sec
& 4.83 x 107" 1bsec?/in
or
“n 13.25 )

F_l
]
ol
(&)

£.= 3m = %38 = 2

For the design of the driving mechanism, frequencies ranging from
0.5 fc to 1.5 fc were desired. Thus the driving mechanism should be
capable of driving the mechanism at frequencies between 1,06 Hz and 3,17 Hz.
The automatic shaker available 1n the School of Mechaniecal Engineering
was inappropriate for the purpose because 1t was designed for the 20 Hz
to 2000 Hz range. Also a simple rod with a large mass at the end was
considered but the necessary length to produce a harmonic vibration of
3.17 Hz was found to be 0.64 in .which was far too small when compared
with the size of the model.

The solution finally selected was a cantilever beam, with a mass
at its end, whose length could be varied frem 12.1 to 24.9 in. The
natural vibration frequency could then be varied over the desired range
of driving frequencies.

A brief discussion of the theory of this driving mechanism is
given below (see Fig. 22).

If the deflection of the mass 1s denoted by Vr» then the kinetic
energy of the system is given oy

g 2 6
L, = amy,  +sm y. o (56)

where @ is the average over length of the retic of the square of the
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-y
beam's deflection to y?. It is well known from the statical theory of

beam defleetions 3 that o is very nearly equal to l/h. similarly the

potential energy may be taken as

v, o= B K v (57)

where Kb is the apparent spring constant of the beam when a static
deflection force is applied at its end,

The conservation of energy thus implies that

m
& we Yo o AR B . A - p
& TtV T RmILY Y Y rR -0 68)
Dividing by ﬁL then gives
m+p) g +K vy = O (59)
which is the equation of motion for a system with natural frequency wnb’
the square cof which is
K
no m
m+'1|—

The spring constant of the beam is calculated as follows. Consider

a cantilever beam with a force applied at the end as in Fig. 23.

]
rJEJ IF

— e
—_—
7, S Y
Q?;D

Figure 23. Deflection of a
Cantilever Beam

Figure 22,
Cantilever with
Mass at End
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A free-body diagresm at any segment centered at a point x can be

constructed as in Fig. 24.

Figure 2L4. Force Analysis of a Cantilever Beam

The consequent application of the theory of beams gives

Vv = ¥ and

therefore

It accordingly follows that

M . de
EIb d:{2
where
o=

I = moment of inertia of cross-section of the bean

b

i
M = R V dx
X
M = F (1 - %)
F { x)

modulus of elasticity of the beam

after integrating the above twice we have

2
F X
= (1x-%)

Iy

e

(61)
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S0

F (1
El, "2 = &
The boundary conditions are that y:dy/dx =0 at x = 0, while y = YL, at

x = L, therefore

% EL, 2 G ! EL 3
It Kb is defined such that F = Kb 1,2 then the apparent spring constant
KE is simply
3ET
] F = b .
% *F 13 % 3 e
EL, 3 .

It then follows that the value for the natural freguency is

- 3ET
e b
W, = == : (63)

It is possible to express the area moment of inertia of the beam
as a function of the dimensions of the cross-section area. Tor the
present case a rectangular section steel beam with a cross-sectional
area 1" x 1/8", is to be used. Its moment of inertia, referring to Fig.

25-

x 6{ . YI- ; B "' ) : _;%sy 2.

B b |
T -

Figure 25, Moment of Inertia of the Beam Section
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h/2 h/2
IbKK = 25){2 di = 2}1 y12 bdy = 2b ‘-\Jy“: dy
0 o
b3
bh
bex - 5
1 (1)3 .
N 2 \8 1 .
_-_b}UC = ‘-'-'-'.—?——- = ----——-—-—-j--o in (6}_})
o 1.8 3¢ 2

The meass of the beam can be also expressed as a function of the

volume and the specific weight of the material by the formula

1 |
wb _ L Dsteel 65
mb=§__ g (/)
I s.L . SBY -
_._2 B (0.28) 1 0.0175 1 1b
T g - g in sec”

2 2 = b 1 1
w = (2nf )7 = 3.E, —m—m—m— . &= . ——
nb nb L0 3 0.%175 1
12 x 2 1
< (mﬁ——ﬂg——-—)

L 6 L2 .
The appropriate value for Estvel is 30 x 10° 1b/1n , and if one assumes

y

a value for m of & 38 for the mass &t the end, one has
Wte & o 3‘30-106
b 10 4% 0.0175 3
122" apg +TEm

The last equaticn may be reordered as follows:

0.0175 * s 1613 - 255.10° (66)



When the lower value of the range of frequencies desired 1i,e. fnb=l'06 Hz,

is substituted. The solution is
1 = 24,9 in.
Similarly, if the upper value is substituted, fnb = 3.17 Hz one has
' L noE 3 5 3
0.0175 17 + 16 17 = 28.5-10 (67)

wiich gives

1 12.1 in.

]

Thus the desired design is a cantilever beam with a h-lb'weight
at the end whose length can vary from 12.1 to 24.9 in. The designed

mechanism is showa in Figs. 26a and 26b.

Mass
m
T T2
o )
—— ~UB"
Slidin 7 4
bloc kg il d
*@E\\\\\\'?@' = 8 8
A
A | Sliding
+~—Angle - guide
|/
Fixed o d
block ‘_\/‘_ WV i ,__/Angle
Frume "\N 7&% 7/ g &ﬂ

< 3

/
7
/

AN

o

I'd

(o)

—
o

Figure 26, Driving Mechanisn
a) Middle Section I'ront View
b) Bide View



The driving mechanism is basically a beam fixed at one end to a
non-moving block. There is another block which can be positioned at
any point up to 10.5 inches from the upper face of the fixed block.
With two bolts passing through the block, 1t is possible to secure it
such that the beam is completely secured, giving another cantilever
beam with a different length.

The mass at the end actgas an energy reservoir, the greater
the amount of energy stored, the longer vibration time for the mechanism.
An initial displacement must be given to the system and then the motion
will continue for a considerable time period.

This mechanism is fastened to the chain by the small part shown

in Fig. 27.

Eye— sCrew

(b)

Figure 27. Beam-Rod Coupling
a) Tront View
b) Top View
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Frame. All the parts of tThe designed mechanism were put together

within a wooden frame specially designed and built for this purpose.

A schematic view of this frame is shown in Fig. 28.

38

Driving mechanism

Figure 28. Frame of the Model

Photographs of the model are ineluded in Figures 29a, 290, 30 and

31.
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Figure 29a. Experimental Model

Figure 29b. Experimental Model
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Figure 30. Driving Mechanism

il

Figure 31. Coupling of Beam to Chain
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CHAPTER IV
DATA AND COMPARISON WITE THEORY

After the experimental model was bullt, several observations were
made, The goal was the collection of data of the same kind as that
resulting from the calculations in order that one could compare the
theoretical results with the experimental data. In other words, the
idea was to measure the amplitude displacements of all the joints on
the chain, for wvarious wvalues of the parameter 6.

Before any measurement were made, 1t was necessary to check the
experimental response of the driving mechanism. This was found to be
slightly different from that of the theoretical calculations. In order
to compare the theoretical and experimental response of the mechanism,
graphs were ﬁlotted of the driving frequency fnb as a function of the
length of the cantiliver beam.

The theoretical predictions follow from Eq. (63)

= 2T t
©y = 3EI (63*)
3 4 mb
1™ (& 4]—)
where
ml’lb = Hn frlb
thus
- e _ 3ET

m~H-7+—-
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which with the appropriate numerical substitution becomes

) 3.30:10° _ 185+ 3864

£° = g —
b 12*210-Ln-13(§ + O'O;‘flj 13(16 + 0.0175 1)

or

N

T 1l 26°10 _ 532 1.0

2 1°(16.0 + 0.0175 1) ¥ 16 1 + 0.0175 1°

Table 7 gives the theoretical and experimentaly observed frequencies

of the beam for diffirent values of 1.

Teble 7. Beam Freguencies

Beam Iength Theor. Freguency Exp. Frequency
1 (in) fop ( Hz ) fe ( Hz )
20.62 1.40 1.3k
19.75 1.47 1.39
18.06 1.72 1.43
17.18 1.87 1.50
15.62 | 2,13 L5
14,25 2.4 2.00
13.00 2,82 2.25
12.25 3.09 2.h2
11.81 3,26 2.67
11.00 3.64 3.00
10.50 3.90 3. 37
10.00 h.21 3.50
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Figure 32 gives the theoretical and experimental curves of the

beam frequency as a function of the beam length.

3¢ \\(_//Theurelicul

12 14 16 18 20 I(in)

Figure 32. Beam Frequency Vs. Beam Iength

The experimental curve in Fig. 32 suffices for the calibration
of the mechanism. For any desired frequency, it predicts the correspond-
ing length of the cantiliver beam. This length is a parameter that can

be measured and fixed without difficulty in the experimert al model.
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Experimental Results

The results obtained from different experiments with the model
are not of a quantitative value since no numerical data was collected.
However, many observations were made and the resulting photographs show
tﬁe pertinent qualitative results of the exzeriment.

It was not possible to ecollect any numerical data regarding motion
of the chain for different input Trequencies., The principal reason for
this 1s the relatively small amplitude of displacement of the Jjoints on
the chain. If one refer back to Table 4, which shows the theoretical
results for a case similar to the experimental case, i. e. ¥ = 0.5, it
is found that the range of . the amplitude raftios: Xi 1 Xl goes from
a value of 2.02 to 3.5 % lO-ll. Considering that the values for za.in
the model are not larger than 1.5 in., the measurement of such small
amplitude displacements along the chain was beyond the present capability
of the available egquipment.

The observations along with the corresponding photographs show the
response motion of the chain in the experimental model for excitation
with different driving frequencies. These have values ranging from 1.5
to 4.2 Hz/sec.

These results are for the most part compatible with the theoretical
prediction. It is possible to see that at frequencies below the charac-
teristic freguency of the system (approximately 2.7 Hz/sec), i. e. 1.5,
1.85, 2.40 Hz/sec, all the joints on the chain have displacements of the
same sign that the initial displacement at any time. The amplitude of
the displacements decrease at successive joint down the chain. This is
compatible with the analytical results given in Table 4 for values of

8 equal to 1.5, 2.0, 3.0, 5.0.
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The journal friction on the joints considerably affects the
response motion. This effeet is especially ncoticeable at low values
of the disturbance frequency. When this frequency adopts values above
I Hz the effect is not as significant. For this last case, the ob-
servationswere made after & manual perturbation was given to the chain
since the driving mechanism works only up to 3.5 Hz.

All the photographs were taken using a Mineolta SRT 101 Camersa
with a £ 1.7 lens. -The film used was black and white prints, Kodak
135-20 with ASA 400. The camera was set up on a tripod 4 feet above
the lower frame level. The axix passing through the lens made a 20°
angle with a vertical axis, perpendicular to the chain. The exposure

time was set at 1/125 sec.
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Figure 33. Response Motion for £ = 1.5 Hz

1.85 Hz

Figure 34. Response Motion for f



Figure 35.

Figure 36.

Response Motion for f

Response Motion for f

2.4 Hz

2.75 Hz
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Figure 37. Response Motion for f = 3.1 Hz

B |

Figure 38. Response Motion for £ = 3.5 Hz



Figure 39.

Figure L40.

I
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Response Motion for £ = L.0 Hz

Response Motion for f

4.5 Hz
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CHAPTER V
DISCUSSION AND CONCLUSIONS

The present research has two well defined parts: (1) the
analytical derivation, and (2) the observations on the experimental
model. An effort was rade to present both parts in as close a relation
as possible. However, some comments may be made concerning the relation
of the two.

The mathematical model was chosen with several assumptions and
simplifications. The reagon for this was that we have a suffilciently
simple model that we could have relatively uncomplicated solutions.
These sclutions were obtained, although they are not completely in
agreement with the actual mocdel., The reason for the incomplete agree-
ment are as follows:

1. The individual elements of the chain are not perfectly right
and may deform & small amount. One implication this neglect
may be found in the graphs in Figs. 13, 14, 15, and 16, which
give the motion response of the chain. When the amplitude
iz sufficiently large one would expect each element to be
Stretched a different amount, especially when the values of
8 are above 1.0, This is a clear disagreement with the ex-
Periment model, where all the elements of the chain may not
streteh sufficiently fo insure that the motion of each joint
be perfectly transverse. In the actual model, the chain

when undergoing the motion shown in the photographs is
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alternately undergoing a net longitudinal shortening of
length. This was not considered irn the mathematical model.

2., When considering the mathematical model, we assumed no friction
forces on the joints. The experimental model has a metal to
metal friction on the Jjoints, and the correspondent friction
forces. This is g very important parameter, very influential
in the motion transmission along the chain.

3. In the experimental model, due to the size of the rods, the
nature of the designed joints and of the eye-screws holding
the elastic members, the length of individual members is
significantly different than assumed by the theory. Also
the 1nertial effects of these parts of the system were notl
considered in the derivation.

The most important results of this study was the determination

of that value o the parameter & which represents the border between
two significantly different response motiors of the chain. This value
was found to be unity which is when the driving frequency is equal to
the characteristic frequency of the system. For any future research on
this topic, it is recormended that one introduce some changes in the
mathematical model.

For instance, one should consider the longitudinal shortening

of the chain when transverse motion is present. Also, friction forces
must be included inthe force analysis in the derivation. Finally, a
reduction in the number of elements of the chain up to five or six rods
might be tried.

Practical applications for this system were not considered in
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this study. However, the system represents a prototype of a mechanical
filter with strong freguency dependent characteristies. ©Such a filter
might be useful in any application where only freguencies above some

given value are desired to be Ltransmitted.



APPENDTIX I

The program used for successive matrix multiplication is listed

below in Fortran IV Language

FfR , IS MATMULT. MAIN
¢ PATRICI{ AIBAN
DIMENSIFN A (3,3), B (3,3), C (3,3)
DATA C/9 * 0.0 /
READ 10, N
10 FgRMAT ()
M = 0
READ 20, & (A Tp T)e T8 1, B), I = 1,29
20 FERMAT ( )

D 100 I 1,8

i

Dp 100 J = 1,2

00 B (1, d) = A (1, J)
k0o M = M+1
DHp 110 I = 1,2
pp 110 J = 1,2
Dp 110 K = 1,2
10 ¢ (1,J) = ¢ (T, J) +4 (I, X) * B(X, J)

1 F(M.GE.N) ¢f 19 120

Dg 130 = 1,2

Il

Dp 130 J 1,2

Il
—

A (I, d3) = &I, d}
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6p ™ ko
PRINT 30, ( (€ (T, J), J=1,2), [ = 1,2)
FORMAT ( / / , 5x 4 2 FL 5.2)

END
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