PRODUCT INTEGRAL SOLUTIONS OF STOCHASTIC VOLTERRA-STIELTJES INTEGRAL EQUATIONS WITH DISCONTINUOUS INTEGRATORS

A THESIS
Presented to the Faculty of the Division of Graduate Studies
By Joe Wheeler Sullivan, Jr.

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Mathematics Georgia Institute of Technology

PRODUCT INTEGRAL SOLUTIONS OF STOCHASTIC VOLTERRA-STIELTJES INTEGRAL EQUATIONS WITH DISCONTINUOUS INTEGRATORS

Approved:

Date approved by Co-Chairmen: $11 / 22 / 76$

ACKNOWLEDGMENTS

The author gratefully acknowledges the assistance and encouragement of Dr. James V. He rod and Dr. Robert P. Kertz. Without Dr. Herod's influence the author would never have attempted serious mathematical research, and the work here could not have been completed without the help of Dr. Kertz. I also wish to thank Dr. Jamie J. Goode for carefully reading the thesis and for making several helpful suggestions.

With the support of my wife, Cheryl, this project has been completed. It is to her that I dedicate this dissertation.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
SUMMARY iv
Chapter
I. INTRODUCTION. 1

1. Introduction
2. Deterministic Volterra-Stieltjes Integral Equations
3. Lemmas on Sums and Products
II. STOCHASTIC CAUCHY-STIELTJES INTEGRALS 10
4. Definitions
5. Existence of the Stochastic Left
Cauchy-Stieltjes Integral
6. Uniform Convergence of Approximations
III. STOCHASTIC PRODUCT INTEGRALS 30
7. Existence of the Stochastic Product Integral
8. A Pairing of Evolutions with Generators
9. Solution of the Stochastic Integral Equation
10. Separable Versions of the Product Integraland Uniform Convergence of Paths
IV. APPLICATIONS AND EXAMPLES 79
11. Brownian Motion
12. A Process with Fixed and MovingDiscontinuities
13. Jumps Uniformly Distributed in $[0,1]$
BIBLIOGRAPHY 93
VITA 96

SUMMARY

Let $[a, b]$ be a closed interval in a linearly ordered set, let (Ω, A, P) be some probability space, and let $\left\{A_{t} \mid a \leq t \leq b\right\}$ be a family of σ-subalgebras of A such that $A_{s} \leq A_{t}$ when $s \leq t$. Let Γ_{o} denote the class of functions $f:[a, b] \rightarrow L^{2}(\Omega, A, p)$ such that $f(t) \varepsilon L^{2}\left(\Omega, A_{t}, P\right)$ for $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$ for which there exists a non-decreasing function $F:[a, b] \rightarrow R$ such that the expectation $E\left([f(t)-f(s)]^{2}\right) \leq$ $F(t)-F(s)$ for $s \leq t$. Let Γ_{3} denote the subclass of functions in r_{o} for which the re exist non-decreasing functions $G_{i}:[a, b] \rightarrow R, i=1,2$, such that the conditional expectations $E\left(\left[g_{i}(t)-g_{i}(s)\right]^{i} \mid A_{s}\right)$ do $\operatorname{not} \operatorname{exceed} G_{i}(t)-G_{i}(s)$ in absolute value for $i=1,2$ and $s \leq t$.

$$
\text { If } f, g:[a, b] \rightarrow L^{2}(\Omega, A, P), \text { then }(L) \delta^{b} f d g \text { (the left }
$$

stochastic Cauchy-Stieltjes integral) is defined as the L^{2}-norm 1imit of the net $\left\{\sum_{k=1}^{n} f\left(r_{k-1}\right)\left[g\left(r_{k}\right)-g\left(r_{k-1}\right)\right] \mid\left\{r_{k}\right\}_{k=0}^{n}\right.$ is a subdivision of [a,b]\}, where the subdivisions of [a,b] are ordered by inclusion. We show that if $f \varepsilon \Gamma_{o}$ and $g \varepsilon \Gamma_{3}$, then (L) f fdg exists.

$$
\text { If } g:[a, b] \rightarrow L^{2}(\Omega, A, P) \text {, then } \Pi^{b}[1+d g] \text { (the stochastic }
$$ product integral) is defined as the ${ }^{\text {a }}{ }^{2}$-norm limit of the net $\left\{\prod_{k=1}^{n}\left[1+g\left(r_{k}\right)-g\left(r_{k-1}\right)\right] \mid\left\{r_{k}\right\}_{k=0}^{n}\right.$ is a subdivision of $\left.[a, b]\right\}$. b

We show that if $g \in \Gamma_{3}$, then $\pi \quad[1+d g]$ exists. Moreover,
the function $u:[a, b] \rightarrow L^{2}(\Omega, A, P)$ defined by $u(t)=\pi^{t}[1+d g]$ is the almost surely unique solution in class Γ_{0} for the stochastic Stieltjes-Volterra integral equation

$$
u(t)=1+(L) s^{t} u d g
$$

We give a characterization of the class of functions generated as product integrals of functions in Γ_{3} and a one-to-one correspondence between the product integrals and the members of Γ_{3} which map a into $0 \varepsilon L^{2}(\Omega, A, P)$. Under additional hypotheses involving separability, we show the almost sure uniform convergence of the approximations given above to the left Cauchy-Stieltjes and product integrals on the interval $[a, b]$.

CHAPTER I

INTRODUCTION

1. Introduction

Mathematical models in the physical sciences, economic systems, and operations research frequently involve solutions of differential, difference, or integral equations. These models are generally classified as "deterministic" or "stochastic" according to whether the solutions of the equations are deterministic functions or stochastic processes.

Most work on stochastic differential and integral equations has been concerned with processes which were inherently continuous; the prototype being Brownian motion, whose paths are almost surely continuous. These processes are used in models of physical phenomena, usually involving some sort of "white noise," in which the continuity of the processes is both intuitive and reasonable. For example, an elementary description of the use of the Brownian motion process to account for thermal noise in a simple electrical network appears in Chapter 6 of Hoe1, Port and Stone [1]. Stochastic processes with continuous paths may also be used to obtain reasonable models of phenomena which are intuitively discontinuous, such as the growth of a population involving a large number of individuals (see Padgett and Tsokos [2]).

The most common models of discontinuous random phenomena
fall into one of two categories. In the first, many systems are modelled by discrete-time processes which satisfy some system of difference equations. One of the most common models of this type is the Markov chain storage model in stochastic reservoir theory (see, e.g., Moran [3]). A second type of discontinuous system has a continuous time model where the processes of interest are of pure jump type; for example, a birth-and-death process, or simply a Poisson process. A standard tactic in analyzing this type of system is to shift the concentration of interest to an imbedded discrete-time process and then apply standard results from other areas, such as Markov chain theory and renewal theory. For examples of this type of analysis in queueing theory, see, e.g., Kendall [4], Cohen [5], Cooper [6], etc.

Recently attention has turned to stochastic models of systems in continuous time whose paths are discontinuous, but not of pure jump type, and are governed by stochastic integral equations. One area of activity has been the series of papers by Çinlar and Pinsky [7], [8], and Çinlar [9] which consider a reservoir storage model with stochastic input and a deterministic release mechanism. These models involve the solution of an integral equation with a random, non-decreasing input function and an integral operator from a deterministic integral equation.

In this work, a theory of stochastic Volterra-Stieltjes integral equations is presented which is sufficiently general
to accommodate certain processes with both discontinuous input and discontinuous solutions of the integral equation. The solutions of the integral equations are exhibited as stochastic product integrals, which might be thought of as random evolutions on the time-axis or, alternatively, as a generalization of an exponential formula. Also shown is a one-to-one correspondence between stochastic Stieltjes integrators (thought of as generators of the evolution) of a certain class and stochastic product integrals of a corresponding class, together with an integral formula for the integrator corresponding to a given product integral process.

We now give a short sketch of why the solution of a Volterra-Stieltjes integral equation is a product integral. Let $[a, b]$ be some interval of real numbers, let $\left\{s_{k}\right\}_{k=0}^{n}$ be a subdivision of $[a, b]$, and let g be a function from $[a, b]$ to some normed linear space in which the multiplication indicated below is permitted. We abbreviate $g\left(s_{k}\right)-g\left(s_{k-1}\right)$ by $\operatorname{dg}\left(s_{k-1}, s_{k}\right)$. Using the telescoping sum of MacNerney [10, Lemma 1.1], we have

$$
\begin{equation*}
\prod_{k=1}^{n}\left[1+\operatorname{dg}\left(s_{k-1}, s_{k}\right)\right]-1= \tag{1.1}
\end{equation*}
$$

$$
\sum_{k=1}^{n}\left\{\prod_{j=1}^{k}\left[1+\operatorname{dg}\left(s_{j-1}, s_{j}\right)\right]-\prod_{j=1}^{k-1}\left[1+\operatorname{dg}\left(s_{j-1}, s_{j}\right)\right]\right\}=
$$

$$
\sum_{k=1}^{n} \operatorname{dg}\left(s_{k-1}, s_{k}\right)\left\{\prod_{j=1}^{k-1}\left[1+\operatorname{dg}\left(s_{j-1}, s_{j}\right)\right]\right\}
$$

The crux of the theory is this: if (Ω, A, P) is a probability measure space and g is a function from $[a, b]$ to $L^{2}(\Omega, A, P)$ which satisfies certain additional hypotheses given in Definition II.l.1, then there is a function u, defined on each pair (s, t) with $s \leq t$ in $[a, b]$ with range in $L^{2}(\Omega, A, P)$, such that $u(s, t)$ is the L^{2}-norm limit of the net $\underset{\mathrm{if}=1}{\mathrm{n}}\left[1+\operatorname{dg}\left(\mathrm{r}_{\mathrm{k}-1}, \mathrm{r}_{\mathrm{k}}\right)\right] \mid\left\{\mathrm{r}_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{n}}$ is a subdivision of $\left.[\mathrm{s}, \mathrm{t}]\right\}$, where the directed set of subdivision of $[s, t]$ is ordered by refinement. Thus the first term in (1.1) is an approximation of $u(a, b)$ while the last term of (1.1) is an approximation of

$$
\begin{equation*}
\sum_{k=1}^{n} \operatorname{dg}\left(s_{k-1}, s_{k}\right) u\left(a, s_{k-1}\right) \tag{1.2}
\end{equation*}
$$

If each of f and g is a function from $[a, b]$ to $L^{2}(\Omega, A, P)$ and satisfy certain additional hypotheses, then (L) $\int^{b} f d g$ is defined as the L^{2}-norm limit of the net $\left\{\sum_{k=1}^{n} f\left(r_{k-1}^{a}\right) d g\right.$ $\left(r_{k-1}, r_{k}\right) \mid\left\{r_{k}\right\}_{k=0}^{n}$ is a subdivision of $\left.[a, b]\right\}$. Thus the term in (1.2) is an approximation of (L) $\int_{a} u(a, \cdot) d g$, and we have that $u(a, \cdot)$ satisfies the following integral equation:

$$
u(a, b)=1+(L) \int_{a}^{b} u(a, \cdot) d g
$$

The theory presented here follows in part from recent work of Professor E. J. McShane [11], [12], and [13] in the area of stochastic integral equations and from earlier work by

Professor J. S. MacNerney [10] and [14] in the area of deterministic integral equations.

Chapter II develops the theory of the left Cauchyb Stieltjes integral (L) \int fdg in a stochastic setting and a explores convergence of the approximations shown above to the integral process. Chapter III introduces the product integral, investigates convergence of approximations to the product integral process, exhibits a pairing between the product integrals in Chapter III and the integrators in Chapter II, and, finally, shows that in the limit equation (1.1) becomes (1.3). Chapter IV presents examples of the processes considered in Chapters II and III.
2. Deterministic Volterra-Stieltjes Integral Equations Succeeding chapters will make use of the following deterministic results from MacNerney's paper [14]. Let S denote some nonempty set with a linear ordering, denoted by \leq, and some least element, denoted by 0 . To study difference equations one might choose $S=Z^{+}$, and to study integral equations one might choose $S=[0,1]$ or $S=[0, \infty)$, but there are other possible choices, some of them"larger" than $[0, \infty)$. Let $\Delta=\{(s, t) \varepsilon S x S\} s \leq t\}$. Let $\mathrm{OA}^{+}[14, p$. 150] denote the class of functions $V: \Delta \rightarrow[0, \infty)$ such that $V(s, t)+V(t, u)=$ $V(s, u)$ whenever $s \leq t \leq u$ in S. We note that there is a one-to-one correspondence between class OA^{+}and the class of functions $F: S \rightarrow[0, \infty)$ such that $F(0)=0$ and F is
non-decreasing: if V is in class' OA^{+}, let F be defined by $F(s)=V(0, s), s \in S$; and if F satisfies the conditions above, let $V=$ dF, i.e., $V(s, t)=F(t)-F(s)$ whenever $s \leq t$ in S. Let OM^{+}denote the class of functions $W: \Delta \rightarrow[1, \infty)$ such that $W(s, t) W(t, u)=W(s, u)$ whenever $s \leq t \leq u$ in S.

If (s, t) is in Δ, then a subdivision of (s, t) is a sequence $\rho=\left\{r_{k}\right\}_{k=0}^{n}$ such that $s=r_{0}, t=r_{n}$, and $r_{k-1} \leq r_{k}$ for $1 \leq k \leq n$. If σ and τ are two subdivisions of the same pair in Δ, then τ is said to be a refinement of σ if σ is a subsequence of τ, denoted $\tau \gg \sigma$. Since $\{s, t\}$ is a subdivision of (s, t), any subdivision ρ of (s, t) is a refinement of $\{s, t\}$. If (a,b) is in Δ, V is in $O A^{+}$and $\rho=\left\{r_{k}\right\}_{k=0}^{n}$ is a subdivision of (a, b), then $\pi_{\rho}[1+V]$ denotes the product n $\prod_{k=1}\left[1+V\left(r_{k-1}, r_{k}\right)\right]$, and $\pi[1+V]$ denotes the limit, in the sense of refinements of subdivisions of (a, b), of the approximations $\left\{\Pi_{\rho}[1+V] \mid \rho \gg\{a, b\}\right\}$. Indeed, $\Pi[1+V]=$ L.U.B. $\left.\left\{\Pi_{\rho}[1+V] \mid \rho \gg\{a, b\}\right\} \leq \exp (V(a, b))\right\}[14, \operatorname{Lemma} 2.1]$. Similarly, if (a,b) is in Δ, W is in OM^{+}and ρ is a $\underset{\mathrm{n}}{\operatorname{sub}} \mathrm{division}$ of (a, b), then $\sum_{\rho_{\mathrm{a}}}[W-1]$ denotes the sum $\sum\left[W\left(r_{k-1}, r_{k}\right)-1\right]$, and $\Sigma[W-1]$ denotes the limit, in k=1 the sense of refinements of subdivisions, of the approximations $\left\{\Sigma_{\rho}[W-1] \mid \rho \gg\{a, b\}\right\}$. Indeed, $\sum_{a}^{b}[W-1]=$ G.L.B. $\left\{\Sigma_{\rho}[W-1] \mid \rho \gg\{a, b\}\right\}[14$, Lemma 2.2].

Furthermore, there is a one-to-one function E^{+} [14, Theorem 2.2] from OA^{+}to OM^{+}such that each of the following is equivalent:
(i) $(V, W) \in E^{+}$
(ii) $V(a, b)=a^{\Sigma}{ }_{b}^{b}[W-1]$ for each pair (a, b) in Δ.
(iii) $W(a, b)=\prod_{a}[l+V]$ for each pair (a, b) in Δ.

3. Lemmas on Sums and Products

Sums and products which approximate integrals and product integrals appear frequently in the following chapters. Certain identities and inequalities are collected here as lemmas in order to avoid repetition elsewhere. We shall adopt the convention that if $\left\{x_{i}\right\}_{i=1}^{n}$ is a sequence of numbers or elements in some other space in which the operations below are defined, then

$$
\sum_{i=k}^{j} x_{i}=0 \quad \text { and } \quad \prod_{i=k}^{j} x_{i}=1
$$

whenever $1 \leq j<k \leq n$. The following two lemmas are wellknown. The first is a special case of Lemma 1.1 of MacNerney [10]. The second is a discrete Gronwall inequality and may be proved by induction.

Lemma I.2.1
Suppose that $\left\{\mathrm{A}_{\mathrm{i}}\right\}_{\mathrm{i}=1}^{\mathrm{n}}$ is a sequence of numbers, then
(i) $\prod_{i=1}^{n}\left[1+A_{i}\right]-1=\sum_{i=1}^{n} A_{i}^{i-1}\left[1+A_{j}\right] \quad$ and
(ii) $\prod_{i=1}^{n}\left[1+A_{i}\right]-1-\sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} A_{i}\left\{\sum_{j=1}^{i-1}\left[1+A_{j}\right]-1\right\}$.

Suppose that each of $\left\{\mathrm{A}_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{n}}, \quad\left\{\mathrm{B}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\mathrm{n}}$, and $\left\{\mathrm{C}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\mathrm{n}}$ is a sequence of non-negative numbers and, for $1 \leq k \leq n$,

$$
\begin{equation*}
A_{k} \leq A_{k-1}\left(1+B_{k}\right)+C_{k} \tag{1.4}
\end{equation*}
$$

Then
(1.5) $\quad A_{n} \leq A_{0} \prod_{k=1}^{n}\left(1+B_{k}\right)+\sum_{k=1}^{n}\left\{C_{k} \prod_{j=k+1}^{n}\left(1+B_{k}\right)\right\}$.

Frequently one is faced with the problem of finding a bound for a conditional expectation $E\left(|f g| \mid A_{o}\right)$, where f and g are in $L^{2}(\Omega, A, P)$ and A_{o} is a σ-subalgebra of A. (For the definitions of conditional expectations, see Chapter II.)

One inequality which might be used is the Cauchy-Jordan inequality for conditional expectations (see Chung [15], p. 339).

$$
\begin{equation*}
E\left(|f g| \mid A_{o}\right) \leq\left(E\left(f^{2} \mid A_{o}\right) E\left(g^{2} \mid A_{o}\right)\right)^{1 / 2} \tag{1.6}
\end{equation*}
$$

An alternative approach is to use the inequality $2|x y| \leq$ $x^{2}+y^{2}$ for real numbers x and y to obtain

$$
\begin{equation*}
E\left(|f g| \mid A_{0}\right) \leq(1 / 2)\left\{E\left(f^{2} \mid A_{o}\right)+E\left(g^{2} \mid A_{o}\right)\right\} \tag{1.7}
\end{equation*}
$$

Inequality (1.7), Lemma I. 2.2 and Lemma II. 2.1 of the next chapter provide most of the estimates for bounds of conditional
expectations used in following chapters. A crucial point in the proofs of Lemma II. 2.1 and succeeding lemmas is to use (1.7) instead of (1.6) in estimating the conditional expectation of terms in a sum and thereby avoid the problem of showing that a sum of square roots is small.

CHAPTER II

STOCHASTIC CAUCHY-STIELTJES INTEGRALS

Chapter II contains definitions, a theorem of existence, and an investigation of convergence for left Cauchy-Stieltjes integrals in a stochastic setting. The left Cauchy-Stieltjes integral (L)s fdg is defined as the limit (with respect to an appropriate norm) of approximations of the form

$$
\sum_{k=1}^{n} f\left(r_{k-1}\right)\left[g\left(r_{k}\right)-g\left(r_{k-1}\right)\right], \quad a=r_{0} \leq r_{1} \leq \cdots \leq r_{n}=b
$$

taken over the directed set of refinements of (a,b).
In the deterministic case, the reason for defining the limit in the sense of refinements of subdivisions rather than the mesh $\left(=\max \left\{\left|r_{k}-r_{k-1}\right| \mid 1 \leq k \leq 1\right\}\right)$ is that $\int_{a}^{b} f d g$ will not be well defined if f and g have the same type of jump discontinuity at the same point. Considering the integral equation

$$
\begin{equation*}
z(t)=1+(L) \int_{a}^{l} z d g \tag{2.1}
\end{equation*}
$$

one can see that any solution would (in general) have the same type of discontinuity as g. It is our desire to find discontinuous solutions to an integral equation with a
discontinuous integrator; this requires a stochastic integral which can accommodate an integrator and integrand with the same discontinuities (see, e.g., the hypotheses of [11, Theorem 2] and the remark following).

1. Definitions

We now establish the setting for Chapters II and III. The field of real numbers is denoted by R; S denotes some non-empty set with a linear ordering denoted by \leq and a least element denoted by $o ;(\Omega, A, P)$ denotes a probability measure space; and $\left\{A_{t} \mid t \varepsilon S\right\}$ denotes a family of o-subalgebras of A with the property that $A_{S} \subseteq A_{t}$ whenever $s \leq t$ in S. The expectation operator is denoted by $E(\cdot)$, thus $E(f)=$ $\int f d P$ for any measurable function $f: \Omega \rightarrow R$ such that the integral Ω
is finite. If B is a σ-subalgebra of A, then, whenever
E(f) exists, $E(f \mid B)$ denotes the conditional expectation of f relative to B; thus $E(f \mid B)=g$ means that $g: \Omega \rightarrow R$ is B-measurable, and $\int_{Q} f d P=\int_{Q} g d P$ whenever Q is in B.

Recal1 (Chung [15] pp. 277-282) that if B and C are σ-subalgebras of A such that $C \subseteq B \subseteq A$, and $E(f)$ exists, then $E(E(f \mid B) \mid C)=E(f \mid C)=E(E(f \mid C) \mid B)$ and $E(E(f \mid B))=E(f)$. Moreover, if $g: \Omega \rightarrow R$ is C-measurable, then $E(f g \mid C)=g E(f \mid C)$. Let $L^{2}(\Omega, A, P)$, or simply $L^{2}(A)$, denote the class of A-measurable functions from Ω to R for which $E\left(f^{2}\right)$ is finite. Let $\|\cdot\|$ denote the L^{2} (semi-) norm; thus $||F||=\left\{\int_{\Omega}^{2} d P\right\}^{1 / 2}$. As usual, we consider two functions $f, g: \Omega \rightarrow R$ equivalent if
they are A-measurable and are equal on the complement of a set of P-measure zero. Any particular element of such an equivalence class is called a version of the class.

Again, $\Delta=\{(s, t) \varepsilon S x S\} s \leq t\}$, a monotone sequence $\left\{r_{k}\right\}_{k=0}^{n}$ in S is a subdivision of $(a, b) \varepsilon \Delta$ if $r_{0}=a$ and $r_{n}=b$, and subdivision τ refines subdivision σ, denoted $\tau \gg \sigma$, if σ is a subsequence of τ. If h is a function from Δ to $L^{2}(\Omega, A, P)$, then whenever $\sigma=\left\{s_{k}\right\}_{k=0}^{n}$ is a subdivision of some pair in $\Delta, \sum_{\sigma} h$ denotes $\sum_{k=1}^{n} h\left(s_{k-1}, s_{k}\right)$. The statement " $\sum h$ exists" for some pair (a, b) in Δ means that there is an element f in $L^{2}(\Omega, A, P)$ such that, for every $\varepsilon>0$, there is a subdivision σ of (a,b) such that if $\tau \gg \sigma$, then

$$
\left|\left|\Sigma_{\tau} h-f\right|\right|<\varepsilon
$$

If the situation in the preceding sentence holds, then we write $\sum_{a} h=f$. There is some ambiguity since if $f=g$ except on a set of P -measure zero, then $\Sigma \mathrm{h}$ is equivalent to g .

We now introduce the classes of functions which will become the integrators and integrands of the stochastic integrals.

Definition II.1.1
(i) Let Γ_{1} denote the $c l a s s$ to which a function $g: S \rightarrow L^{2}(\Omega, A, P)$ belongs on $1 y$ in case $g(t)$ is an
element of $L^{2}\left(\Omega, A_{t}, P\right)$ for each t in S.
(ii) Let Γ_{2} denote the subclass of Γ_{1} to which g belongs only in case there is a non-decreasing function $G_{2}: S \rightarrow R$ such that $G_{2}(0)=0$ and whenever $\mathrm{s} \leq \mathrm{t}$ in S , the condition

$$
\begin{equation*}
E\left([g(t)-g(s)]^{2} \mid A_{s}\right) \leq G_{2}(t)-G_{2}(s) \tag{2.2}
\end{equation*}
$$

holds except on a set of P -measure zero.
(iii) Let Γ_{3} denote the subclass of Γ_{2} to which g belongs only in case there is a non-decreasing function $G_{1}: S \rightarrow R$ such that $G_{1}(0)=0$ and whenever $s \leq t$ in S, the condition
(2.3)
$\left|E\left(g(t)-g(s) \mid A_{s}\right)\right| \leq G_{1}(t)-G_{1}(s)$
holds except on a set of P -measure zero.
(iv) Let Γ_{o} denote the subclass of Γ_{1} to which f belongs only in case there is a non-decreasing function $F: S \rightarrow R$ such that $F(0)=0$ and the condition
(2.4)

$$
E\left([f(t)-f(s)]^{2}\right) \leq F(t)-F(s)
$$

holds whenever $s \leq t$ in S.

The statement $\left(g, G_{1}, G_{2}\right) \varepsilon \Gamma_{3}$ means that g is in class Γ_{3} and G_{1} and G_{2} are non-decreasing functions from S to R such that conditions (2.3) and (2.2) hold, respectively, and $G_{1}(o)=G_{2}(o)=0$. The statement $(f, F) \varepsilon \Gamma_{o}$ means that f is in class Γ_{o} and f is a non-decreasing function from S to R such that $F(0)=0$ and condition (2.4) holds. We now define the left and right stochastic Cauchy-Stieltjes integrals.

Definition II.1.3
If each of f and g is a function $\underset{b}{\text { from } S}$ to $L^{2}(\Omega, A, P)$ then for $a \leq b$ in S, (L) $\int f d g$ and (R) \int fag denote $\sum h$, where $h(s, t)$ is $f(s)\left(g(t)^{a}-g(s)\right)$ and $f(t)^{a}(g(t)-g(s))$, respecttively, whenever $s \leq t$ in S.

Lemma II. 1.4
If each of f, g, and h is a function from S to $L^{2}(\Omega, A, P)$ and all except possibly one of the integrals in each statement below exist, then the remaining integral exists and the statement holds.

$$
\begin{align*}
& (L) \int_{a}^{b} f d g+(R) \int_{a}^{b} g d f=f(b) g(b)-f(a) g(a) \tag{i}\\
& \text { for } a \leq b \text { in } S .
\end{align*}
$$

(ii) $(L) \int_{a}^{b} f d g+(L) \int_{b}^{c} f d g=(L) \int_{a}^{c}$ fig for $a \leq b \leq c$ in S.
(L) $\int_{a}^{b}(f+g) d h=$
(L) $\int_{a}^{b} f d h+$
(L) \int_{a} gdh for $\mathrm{a} \leq \mathrm{b}$ in S .
(iv) (L) $\int_{a}^{b} f d(g+h)=(L) \int_{a}^{b} f d g+(L) \int_{a}^{b} f d h$ for $\mathrm{a} \leq \mathrm{b}$ in S .

Moreover, the conclusion holds if (L) is replaced throughout by (R) in the last three statements.

Indication of Proof:
Let $(a, b) \varepsilon \Delta$ be given and let $\rho=\left\{r_{k}\right\}_{k=0}^{n}$ be a subdivision of (a, b). Then $f(b) g(b)-f(a) g(a)=$

$$
\sum_{k=1}^{n} f\left(r_{k}\right) g\left(r_{k}\right)-f\left(r_{k-1}\right) g\left(r_{k-1}\right)=
$$

$$
\sum_{k=1}^{n} f\left(r_{k-1}\right)\left[g\left(r_{k}\right)-g\left(r_{k-1}\right)\right]+\sum_{k=1}^{n} g\left(r_{k}\right)\left[f\left(r_{k}\right)-f\left(r_{k-1}\right)\right]
$$

Part (i) follows immediately. Now suppose, for example, that (L) \int^{b} fag and (L) \int^{c} fig exist in (ii). Let $\varepsilon>o$ be given, and find partitions $\sigma \gg\{a, b\}$ and $\rho \gg\{a, c\}$ so that

$$
\begin{aligned}
& \left|\left|(L) \Sigma_{\sigma_{1}} f d g-(L) \int_{a}^{b} f d g\right|\right|<\frac{\varepsilon}{2} \text { and } \\
& \left|\left|(L) \Sigma_{\rho_{1}} f d g-(L) \int_{a}^{c} f d g\right|\right|<\frac{\varepsilon}{2}
\end{aligned}
$$

whenever $\sigma_{1} \gg \sigma$ and $\rho_{1} \gg \rho$. Let ρ_{1} denote the subdivision of ρ obtained by inserting b and any points of σ which are not in ρ. Let τ be the restriction of ρ_{1} to (b, c). Let τ_{1} be a refinement of τ, and let ρ_{2} be the refinement of ρ_{1} obtained by inserting any points in τ_{1} which were not in ρ_{1}.

Let σ_{1} be the restriction of ρ_{2} to (a,b). Then

Hence $(L) \int^{c} \mathrm{fdg}=(\mathrm{L}) \int^{\mathrm{c}} \mathrm{fdg}-(\mathrm{L}) \int^{\mathrm{b}} \mathrm{fdg}$. The other cases of (ii) are similar. The right-hand version of (ii) is proved with (ii) and (i). Parts (iii) and (iv) follow from a careful investigation of the partial sum approximations. The right-hand versions of (iii) and (iv) follow from their left-hand versions and part (i).

2. Existence of the Stochastic Left

Cauchy-Stieltjes Integral
The following lemma is useful in providing estimates for approximating sums for the left Cauchy-Stieltjes integrals considered below and for approximations of product integrals in Chapter III. The conclusion and the proof are both modifications of Lemma (1.1), p. 59, in McShane [13] (see also Lemma 1, p. 290, McShane [11].

Lemma II.2.1
Suppose that $\left\{A_{i}\right\}_{i=1}^{n}$ is a family of σ-subalgebras of
A such that $A_{i} \subseteq A_{j}$ if $i \leq j$, and each of $\left\{x_{i}\right\}_{i=1}^{n}$ and
$\left\{y_{i}\right\}_{i=1}^{n}$ is a sequence with range in $L^{2}(\Omega, A, P)$ such that x_{i-1} and y_{i} are A_{k}-measurable for $i \leq k$. Suppose that each of $\left\{X_{i}\right\}_{i=1}^{n},\left\{Y_{i}\right\}_{i=1}^{n}$ and $\left\{Z_{i}\right\}_{i=1}^{n}$ is a sequence of numbers such that, except on a set of measure zero, the following estimates hold for $1 \leq i \leq n$:
(i) $E\left(x_{i}^{2} \mid A_{i}\right) \leq x_{i}$,
(ii) $E\left(y_{i}^{2}\right) \leq Y_{i}$,
(iii) $\left|E\left(x_{i} \mid A_{i}\right)\right| \leq z_{i}$.

Then
(2.5) $E\left(\left\{\sum_{i=1}^{n} x_{i} y_{i}\right\}^{2}\right) \leq \prod_{j=1}^{n}\left[1+z_{j}\right] \cdot \sum_{i=1}^{n} Y_{i}\left\{X_{i}+Z_{i}\right\}$.

Corollary II. 2.2
If condition (ii) of the preceding lemma is replaced by
(ii') $E\left(y_{i}^{2} \mid A_{0}\right) \leq Y_{i}$, except on a set of measure zero, where A_{0} is a σ-subalgebra of A_{1}, and the remainder of the hypotheses of the lemma are unchanged, then the left-hand side of (2.5) can be replaced by

$$
E\left(\left\{\sum_{i=1}^{n} x_{i} y_{i}\right\}^{2} \mid A_{o}\right)
$$

and the modified inequality holds except on a set of measure zero.
$\underbrace{\text { I }}_{\text {Proof of Lemma II.2.1 }}$

$$
\text { Let } D_{k}=\sum_{i=1}^{\wedge} x_{i} y_{i} \text { for } 1 \leq k \leq n . \text { Define } D_{o}=0
$$

Then for $k>1$,

$$
\begin{aligned}
\left\|D_{k}\right\|^{2}= & \left\|D_{k-1}+x_{k} y_{k} \mid\right\|^{2} \\
= & \left|\mid D_{k-1} \|^{2}+2 E\left(D_{k-1} x_{k} y_{k}\right)+E\left(\left(x_{k} y_{k}\right)^{2}\right)\right. \\
= & \left|\mid D_{k-1} \|^{2}+2 E\left(D_{k-1} y_{k} E\left(x_{k} \mid A_{k}\right)\right)+\right. \\
& E\left(y_{k}^{2} E\left(x_{k}^{2} \mid A_{k}\right)\right) \\
\leq & \left|\mid D_{k-1} \|^{2}+2 E\left(\left|D_{k-1} y_{k}\right|\right) z_{k}+E\left(y_{k}^{2}\right) x_{k}\right. \\
\leq & \left\|D_{k-1} \mid\right\|^{2}+E\left(D_{k-1}^{2}+y_{k}^{2}\right) z_{k}+E\left(y_{k}^{2}\right) x_{k} \\
\leq & \left\|D_{k-1}\right\|^{2}\left(1+Z_{k}\right)+y_{k}\left(x_{k}+z_{k}\right) .
\end{aligned}
$$

Hence by the discrete Gronwall lemma (Lemma I.2.2),

$$
\left\|D_{n}\right\|^{2} \leq \sum_{i=1}^{n} \prod_{j=i+1}^{n}\left[1+Z_{i}\right] Y_{i}\left(X_{i}+Z_{i}\right) .
$$

The lemma follows immediately. The proof of the corollary is similar.

Lemma II. 2.3
Suppose that (f, F) and $\left(g, G_{1}, G_{2}\right)$ are members of
classes Γ_{0} and Γ_{3} respectively, and $a \leq b$ in S. Let $M=$ $\exp \left(G_{1}(b)-G_{1}(a)\right)$ and $G=G_{1}+G_{2}$. Then

$$
\left|\left|(L) \Sigma_{\tau} f d g-(L) \Sigma_{\sigma} f d g\right|\right|^{2} \leq M\left\{(L) \Sigma_{\tau} F d G-(L) \Sigma_{\sigma} F d G\right\}
$$

whenever $\tau \gg \sigma \gg\{a, b\}$.
Proof:

$$
\text { Suppose } \sigma=\left\{s_{k}\right\}_{k=0}^{n}, \tau=\left\{t_{j}\right\}_{j=0}^{m} \text { and } \tau \gg \sigma \gg\{a, b\}
$$

For $1 \leq j \leq m$, let $p(j)=\sup \left\{k \mid s_{k} \leq t_{j-1}\right\}$. Then $s_{p(j)} \leq$ $t_{j-1} \leq t_{j} \leq s_{p(j)+1}$ and $t_{j-1}<s_{p(j)+1}$ for $1 \leq j \leq m$. Then

$$
(L) \Sigma_{\tau} f d g=\sum_{j=1}^{m} f\left(t_{j-1}\right) d g\left(t_{j-1}, t_{j}\right)
$$

and

$$
\begin{aligned}
(L) \Sigma_{\sigma} f d g & =\sum_{k=1}^{n} f\left(s_{k-1}\right) \operatorname{dg}\left(s_{k-1}, s_{k}\right) \\
& =\sum_{k=1}^{n} f\left(s_{k-1}\right)_{p(j)=k-1}^{\sum} \operatorname{dg}\left(t_{j-1}, t_{j}\right) \\
& =\sum_{j=1}^{m} f\left(s_{p(j)}\right) \operatorname{dg}\left(t_{j-1}, t_{j}\right)
\end{aligned}
$$

Thus

$$
(L) \Sigma_{\tau} f d g-(L) \Sigma_{\sigma} f d g=\sum_{j=1}^{m} d f\left(s_{p(j)}, t_{j-1}\right) \operatorname{dg}\left(t_{j-1}, t_{j}\right)
$$

For $1 \leq j \leq m, \operatorname{let} x_{j}=\operatorname{dg}\left(t_{j-1}, t_{j}\right), y_{j}=\operatorname{df}\left(s_{p(j)}, t_{j-1}\right)$, $\Lambda_{j}=A t_{j}, X_{j}=d G_{2}\left(t_{j-1}, t_{j}\right), Y_{j}=d F\left(s_{p(j)}, t_{j-1}\right)$,
$Z_{j}=d G_{1}\left(t_{j-1}, t_{j}\right)$ and $W_{j}=d G\left(t_{j-1}, t_{j}\right)=X_{j}+Z_{j}$. Now note that

$$
\prod_{j=1}^{m}\left[1+Z_{j}\right] \leq \prod_{j=1}^{m} \exp \left(Z_{j}\right)=\exp \left(\sum_{j=1}^{m} Z_{j}\right)=M
$$

The sequences and σ-algebras defined above satisfy the hypotheses of Lemma II.2.1 by Definition II.l.1, hence by that lemma,

$$
\begin{aligned}
\left|\mid(L) \Sigma_{\tau} f d g\right. & -(L) \Sigma_{\sigma} f d g| |^{2} \leq \prod_{j=1}^{n}\left(1+Z_{j}\right) \cdot \sum_{i=1}^{m} Y_{i} W_{i} \\
& \leq M \sum_{i=1}^{m} d F\left(s_{p(j)}, t_{j-1}\right) d G\left(t_{j-1}, t_{j}\right) \\
& =M\left\{(L) \Sigma_{\tau} F d G-(L) \Sigma_{\sigma} F d G\right\} .
\end{aligned}
$$

The last equality follows from reversing the steps in the manipulations of sums above.

Theorem II.2.4
Suppose that f and g are members of $\underset{b}{c l a s s e s ~} \Gamma_{o}$ and Γ_{3}, respectively, and $a \leq b$ in S. Then (L) \int_{a} fdg exists and has an A_{b}-measurable version.
Proof:
Let F, G_{1} and G_{2} be the non-decreasing real-valued
functions associated with f and g in Definition II.1.1, and let $G={ }_{b}{ }_{b}+G_{2}$. J. S. MacNerney has shown [14, Lemma 4.3] that (L) \int FdG exists (indeed, (L) $\int \mathrm{F}_{\mathrm{a}} \mathrm{FdG}=\mathrm{L} . \mathrm{U} . \mathrm{B} \cdot\left\{(\mathrm{L}) \Sigma_{\tau} \mathrm{FdG} \mid \tau\right.$ $\gg\{a, b\}\})$. Hence, for each $\varepsilon>0$, there is a subdivision $\sigma \gg\{a, b\}$ such that if $\tau \gg \sigma$, then

$$
\left|(\mathrm{L}) \Sigma_{\tau} \mathrm{FdG}-(\mathrm{L}) \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{FdG}\right|<\frac{\varepsilon^{2}}{2 M},
$$

where M is as in Lemma II.2.2. Thus if $\tau \gg \sigma$ and $\tau^{\prime} \gg \sigma$, then by Lemma II.2.2,

$$
\left\|(L) \Sigma_{\tau} \mathrm{fdg}-(\mathrm{L}) \Sigma_{\tau}, \mathrm{fdg}\right\|<\varepsilon .
$$

It follows that the directed set of subdivisions of the pair (a,b) generates a Cauchy net

$$
\left\{(L) \Sigma_{\tau} f d g \mid \tau \gg\{a, b\}\right\}
$$

with range in the space $L^{2}\left(\Omega, A_{b}, P\right)$. In order to see that this net has a measurable limit we proceed as follows: choose a sequence of subdivisions $\{\sigma(n)\}_{n=1}^{\infty}$ such that $\sigma(\mathrm{n}+1) \gg \sigma(\mathrm{n}) \gg\{\mathrm{a}, \mathrm{b}\}$ and

$$
\left|(L) \Sigma_{\sigma(n)} F d G-(L) \int_{a}^{b} F d G\right|<\frac{1}{2 M^{2}} .
$$

Thus $\left\{(L) \Sigma_{\sigma(n)} f d g\right\}_{n=1}^{\infty}$ is a Cauchy sequence in the complete space $L^{2}\left(\Omega, A_{b}, P\right)$. It follows that there is an element h in $L^{2}\left(\Omega, A_{b}, P\right)$ such that h is the limit in the L^{2}-norm of (L) $\Sigma_{\sigma(n)} f d g$. Hence, from the work above,

$$
\left|\left|(L) \Sigma_{\tau} f d g-h\right|\right|<\frac{1}{n}
$$

for each $\tau \gg \sigma(n)$. Thus h is a version of (L) $\int_{a}^{b} f d g$. Corollary II. 2.5

Let $N(a, t)[f]=\sup \{| | f(s) \|| | a \leq s \leq t\}$ whenever $a \leq t$ in S and f is in class Γ_{o}. Suppose $\left(g, G_{1}, G_{2}\right)$ is in class Γ_{3}. Let $G=G_{1}+G_{2}$ and let $M=\exp \left(G_{1}(b)-G_{1}(a)\right)$. Then the following inequalities hold for $\mathrm{a} \leq \mathrm{b}$ in S :
(i) $\left\|(L) \int_{a}^{b} f d g\right\|^{2} \leq M(L) \int_{a}^{b}\|f\|^{2} d G$ if the integral on the right exists, and
(ii) $\|(L) \int_{a}^{b} f d g| |^{2} \leq M(L) \int_{a}^{b}\{N(a, t)[f]\}^{2} d G$.

Indication of Proof:
If the proof of Lemma II. 2.3 is modified such that $y_{j}=f\left(t_{j-1}\right)$ for $1 \leq j \leq m$ and $Y_{j}=\left\|f\left(t_{j-1}\right)\right\|^{2}$ for $1 \leq j \leq m$, then we obtain

$$
\left\|(L) \Sigma_{\tau} f d g| |^{2} \leq M(L) \Sigma_{\tau}| | f\right\|^{2} d G
$$

whenever $\tau \gg\{a, b\}$. The conclusions follow immediately.

3. Uniform Convergence of Approximations

We have now shown the existence of a version of b $\int f d g$ whenever $a \leq b$ in $S, f \in \Gamma_{o}$ and $g \varepsilon \Gamma_{3}$. Our investigation now turns to the behavior of a stochastic process $h \in \Gamma_{o}$ such that $h(t)=(L) \int_{a} f d g$ for each $t \geq a$. We make the following assumptions for the remainder of this section. If f is in class $\Gamma_{1}, a \leq b$ in S and $\sigma=\left\{s_{k}\right\}_{k=0}^{n} \gg$ $\{a, b\}$, then f_{o} denotes the step-function defined by

$$
f_{\sigma}(t)=f\left(s_{k}\right) \text { if } s_{k} \leq t<s_{k+1}, 0 \leq k \leq n-1
$$

and $f_{\sigma}(b)=f(b)$.
Note that if f is in class Γ_{1} and g is in class Γ_{3} and $\sigma \gg\{a, b\}$, then

$$
(L) \Sigma_{\sigma} f d g=(L) \int_{a}^{b} f_{\sigma} d g
$$

Suppose $S=[0, a]$ for some a in R. Fix (f,F) and $\left(g, G_{1}, G_{2}\right)$ in classes Γ_{0} and Γ_{3} respectively and suppose that each of F, G_{1} and G_{2} is right-continuous. Let $G=G_{1}+G_{2}$ and let $M=(1+G(a)) \exp \left(G_{1}(a)\right)$.
Lemma II. 3.1
For each integer $n \geq 1$, there is a subdivision $\sigma(n)$ of $\{a, b\}$ such that if $\tau \gg \sigma(n)$, then

$$
F(t)-F_{\tau}(t)<\frac{1}{4 n^{6} M^{2}}
$$

for each t in $[0, a]$.
Proof:

$$
\text { Let } m=\llbracket \frac{F(b)}{\varepsilon} \rrbracket+1 \text {, where } \varepsilon=\frac{1}{4 n^{6} M^{2}} \text {. For } 1 \leq k \leq m-1 \text {, }
$$

let $s_{k}=\inf \left\{s \mid F(s) \geq k_{\varepsilon}\right\}, s_{o}=0, s_{m}=a$. Then $F\left(s_{k}\right) \geq k_{\varepsilon}$. If $s_{k} \leq t \leq s_{k+1}$, then $k_{\varepsilon} \leq F\left(s_{k}\right) \leq F(t)<(k+1) \varepsilon$, so $\left|F\left(s_{k}\right)-F(t)\right|<\varepsilon$. If τ is a refinement of $\left\{s_{k}\right\}_{k=1}^{m}$, then $F\left(s_{k}\right) \leq F_{\tau}(t) \leq F(t)$, so $\left|F(t)-F_{\tau}(t)\right|<\varepsilon$.
Definition II .3.2
Let $\pi=\{\sigma(n)\}_{\mathrm{a}}^{\mathrm{n}=1} \mathrm{~b}$ be a sequence of subdivisions of $[0, a]$ such that $(L) \int_{0}^{a} F d G=\lim _{n \rightarrow \infty}(L) \int_{0}^{a} F_{\sigma(n)} d G$. By a version of (L$) f^{\mathrm{t}}$ fag determined by π, we mean a function $h: S \rightarrow L^{2}(\Omega, A, P)$ for which (L) $\int_{a}^{t} f_{\sigma(n)} d g$ converges in the L^{2}-norm to $h(t)$ for each t in S.

Remark:
There does exist at least one such sequence of martilions: let π be the sequence guaranteed by Lemma II.3.1. Then $0 \leq(L) \int_{0}^{a}\left(F-F_{\sigma(n)}\right) d G \leq \frac{G(a)}{4 n^{6} M^{2}}$. Then for each t in [0, a],

$$
\left.\left\|(L) \int_{0}^{t} f d g-(L) \int_{0}^{t} f_{\sigma(n)} d g\right\|\right|^{2} \leq(L) \int_{0}^{t}\left(F-F_{\sigma(n)}^{d G} \leq \frac{G(t)}{4 n^{6} M^{2}} .\right.
$$

Hence $(L) \int_{0}^{t} f_{\sigma(n)} d g$ is a Cauchy sequence in $L^{2}(\Omega, A t, p)$. Before continuing, we introduce a useful result by

Orey [16] concerning F-processes.
Definition II.3.3 (Orey [16], p. 301)
Suppose k is in class Γ_{1}. Then k is an F-process if there exists a constant K such that for every partition τ of $[0, a]$,

$$
E\left(\sum_{i=1}^{m}\left|E\left(k\left(t_{i}\right)-k\left(t_{i-1}\right) \mid A_{t_{i-1}}\right)\right|\right) \leq K .
$$

Any such K is called an F-bound for k. We may assume, without loss of generality, that τ is a refinement of any prescribed subdivision.

Theorem II.3.4 (Orey [16], Theorem 2.1, p. 303)
Let $k \varepsilon \Gamma_{1}$ be a separable F-process on [0,a] and let K be an F-bound for k. Then for any $\varepsilon>0, \varepsilon P[\sup k(s) \geq \varepsilon]$ $\leq E|k(a)|+K$, and $\varepsilon P\left[\inf _{0 \leq S \leq a} k(s) \leq-\varepsilon\right] \leq E|k(a)|^{0 \leq s \leq a}$ Remark:

The following situation will hold for the remainder of this section: Let $\pi=\{\sigma(n)\}_{n=1}^{\infty}$ be a sequence of subdivision of $[0, a]$ which satisfy Definition II.3.2. For each n, let $h_{n} \varepsilon \Gamma_{1}$ be a separable version of (L) $f_{0} f_{\sigma(n)} d g$, i.e. $h_{n}(t)$ is a version of $(L) f \quad f_{0(n)} d g$ for each t in $[0, a]$ and $h_{n}(\cdot)$ is a separable process (see Doob [17], Theorem 2.4, p. 57). There is a prohlem that h_{n} (and h defined below) may be an extended-real-valued function, but each h_{n} is finite on a set of measure 1 (to show this use Corollary II.2.5). Let h be a separable version of (L) \int_{0}^{f} fdg, i.e. $h(t)=(L) \int_{0}^{t} f d g$.

Lemma II. 3.5
If $k_{n}=h-h_{n}$, then k_{n} is an F-process with F-bound $K_{n}=\frac{1}{2 n^{3}}$.
Proof:
Let $\tau=\left\{t_{i}\right\}_{i=0}^{n}$ be a sub-division of $[0, a]$. We assume without loss of generality that $\tau \gg \sigma(n)$. Let $\varepsilon>0$ be given. For each $i, 1 \leq i \leq m$, let $\rho(i)$ be a subdivision of $\left[t_{i-1}, t_{i}\right]$ such that

$$
\|(L) \int_{t_{i-1}}^{t_{i}} f d g-(L) \int_{t_{i-1}}^{t_{i}} f_{\rho(i)} \operatorname{dg}| | \leq \frac{\varepsilon}{m}
$$

Let ρ be the subdivision of $[a, b]$ obtained by "piecing together" the subdivisions $\{\rho(i)\}_{i=1}^{m}$ across the interval [a,b]. Then

$$
\begin{aligned}
& E\left(\left|E\left(d k_{n}\left(t_{j-1}, t_{j}\right) \mid A_{t_{j-1}}\right)\right|\right) \\
& \leq E\left(\left|(L) \int_{j}^{t_{j-1}}\left(f-f_{\rho}\right) d g\right|\right)+ \\
& \left.E\left(\left|E(L) \int_{t_{j-1}}^{t_{j-1}}\left(f_{\rho}-f_{\sigma(n)}\right) d g\right| A_{t_{j-1}}\right) \mid\right)
\end{aligned}
$$

Suppose $\rho(j)=\left\{r_{i}\right\}_{i=0}^{k}$ and $s_{u(i)} \leq t_{j-1} \leq r_{o} \leq \cdots \leq r_{k} \leq$ $t_{j} \leq s_{u(j)+1}($ since τ refines $\sigma(n))$. Then
(L) $\int_{t_{j-1}}^{t_{j}}\left(f_{\rho}-f_{\sigma(n)}\right) d g=\sum_{i=1}^{k}\left(f\left(r_{i-1}\right)-f\left(s_{u(j)}\right) d g\left(r_{i-1}, r_{i}\right)\right.$,

$$
\begin{aligned}
& \text { and } E\left(\mid E\left((L) \int_{t_{j-1}}^{t_{j}}\left(f_{\rho}-f_{\sigma(n)} d g \mid A_{t_{j-1}}\right) \mid\right)\right. \\
& \leq E \sum_{i=1}^{k} E\left(\left|f\left(r_{i-1}\right)-f\left(s_{u(j)}\right)\right|\left|E\left(d g\left(r_{i-1}, r_{i}\right) \mid A_{r_{i-1}}\right)\right| \mid A_{t_{j-1}}\right) \\
& \leq \sum_{i=1}^{k} E\left(\left|f\left(r_{i-1}\right)-f\left(s_{u(j)}\right)\right|\right) d G_{1}\left(r_{i-1}, r_{i}\right) \\
& \leq \sum_{i=1}^{k} \sqrt{\operatorname{dF}\left(s_{u(j)}, r_{i-1}\right)} d G_{1}\left(r_{i-1}, r_{i}\right) \\
& \leq \frac{d G_{1}\left(t_{j-1}, t_{j}\right)}{2 n^{3} M} . \\
& \text { Thus } \sum_{j=1}^{m} E\left(\left|E\left(d k_{n}\left(t_{j-1}, t_{j}\right) \mid A_{t_{j-1}}\right)\right|\right) \\
& \leq \sum_{j=1}^{m}\left(\frac{\varepsilon}{m}+\frac{d G_{1}\left(t_{j-1}, t_{j}\right)}{2 n^{3} M}\right) \\
& \leq \varepsilon+\frac{1}{2 n^{3}} .
\end{aligned}
$$

Since ε was arbitrary, the last estimate must hold for $\varepsilon=0$ and the lemma is proved.

Theorem II. 3.6

$$
\text { If }(f, F) \text { and }\left(g, G_{1}, G_{2}\right) \text { are in } c \text { asses } \Gamma_{1} \text { and } \Gamma_{3}
$$

respectively with F, G_{1} and G_{2} right continuous on $S=[0, a]$, then versions of the stochastic integral

$$
h(t)=(L) \int_{0}^{\mathrm{t}} \mathrm{fdg}, \quad 0 \leq \mathrm{t} \leq \mathrm{a}
$$

can be chosen in such a way that h is a separable process in class Γ_{1}. Almost all sample functions will be right continuous on $[0, a)$ and will have left-limits on (0,a]. The fixed discontinuities of h will be points of discontinuity of at least one of the functions F, G_{1} and G_{2}. Moreover, there is a sequence $\pi=\{\sigma(n)\}_{n=1}^{\infty}$ of subdivisions of $[0, a]$ such that the sequence of separable processes $\left\{h_{n}\right\}_{n=1}^{\infty}$ satisfying

$$
h_{n}(t)=(L) \int_{0}^{t} f_{\sigma(n)} d g
$$

for each t in $[0, a]$ converge in the mean to $h(t)$ for each t in [0,a]; indeed, the paths of h_{n} converge uniformly to the paths of h with probability one.

Proof:
Let $\pi=\{\sigma(n)\}_{n=1}^{\infty}, f_{n}, h$, and h_{n} be as in the remark following II.3.4. Then h and h_{n} will have the required separability properties. It follows that

$$
E\left([d h(s, t)]^{2}\right) \leq d H(s, t) \quad \text { where }
$$

$H(t)=2\left\{| | f(0)| |^{2} d G(0, t)+(L) \int^{t} F d G\right\}$. Then h will be as right continuous and have left-limits because H is rightcontinuous and has left-limits.

$$
\text { Now note that if } k_{n}=h-h_{n}, E\left|k_{n}(a)\right| \leq\left|\left|(L) \int_{0}^{a}\left(f-f_{n}\right) d g\right|\right|
$$

$$
\leq \sqrt{(L) \int_{0}^{a}\left(F-F_{n}\right) d G M} \leq \sqrt{\frac{d G(0, a) M}{4 n^{6} M^{2}}} \leq \frac{1}{2 n^{3}}
$$

so by Theorem II. 3.4 and Lemma II.3.5,
$P\left\{\sup _{0 \leq s \leq a}\left|h(s)-h_{n}(s)\right| \geq \frac{1}{n}\right\} \leq 2 n\left(E\left|k_{n}(a)\right|+K_{n}\right) \leq \frac{2 n}{n^{3}}=\frac{2}{n^{2}}$.
Since $\sum_{n=1}^{\infty} \frac{2}{n^{2}}<\infty$ it follows from the Bore1-Cantelli lemma that $\left|h(s)-h_{n}(s)\right|<\frac{1}{n}$ for $0 \leq s \leq a$ for sufficiently large n with probability 1.

Remark
(i) The results for stochastic left Cauchy-Stieltjes integrals in Theorem II. 3.6 are analagous to the results for the stochastic integrals in Doob [17], Theorem 5.2, p. 445.
(ii) Theorem II. 3.6 ends our study of the stochastic left Cauchy-Stieltjes integral. In the next chapter we prove the existence of the stochastic product integral which will be used to represent a solution of

$$
u(t)=1+(L) \int_{a}^{t} u d g, \quad a \leq t \text { in } S
$$

where the integral is a stochastic left Cauchy-Stieltjes integral and g is in class Γ_{3}.

CHAPTER III

STOCHASTIC PRODUCT INTEGRALS

Product integrals have been used to represent the evolution system generated by deterministic differential and integral equations by many authors. As a (not necessarily representative) selection, we cite J. S. MacNerney [10], [14]; J. W. Neuberger [18]; J. V. Herod [19], [20]; J. A. Reneke [21]; B. W. Helton [22]; G. F. Webb [23], [24]; R. H. Martin [25]; M. G. Crandall and T. M. Liggett [26]; H. Brezis and A. Pazy [27]; J. A. Goldstein [28]; D. L. Lovelady [29]; G. Schmidt [30] and G. Birkhoff [31]. In addition, the Cauchy polygonal process has been used by G. Maruyama [32] and E. J. McShane [13] to represent the solutions of stochastic integral equations of the Ito and belated type with continuous integrators and solutions.

In this chapter we develop a stochastic product integral which will represent the solution of the stochastic integral equation

$$
\begin{equation*}
z(t)=1+(L) \int_{0}^{t} z d g, \quad t \text { in } s, \tag{3.1}
\end{equation*}
$$

where g is a member of the class Γ_{3} described in Chapter II. Moreover, a pairing, similar to J. S. MacNerney's mapping E^{+}
in [14], is found between the generators, dg, of the evolution system and the evolutions.

Section 1 contains lemmas which provide bounds for the norms of partial products approximating the product integral and a theorem of existence for the product integral. Section 2 shows the pairing between the class T_{3} of stochastic evolutions and a subset of generators in class Γ_{3}. In Section 3 the product integral is seen to generate the almost surely unique solution in class Γ_{o} for the integral equation (3.1). Section 4 shows that, with mild additional hypotheses, there is a sequence of approximations of the product integral whose paths converge almost surely uniformly on each bounded interval in S to version of the stochastic product integral.

1. Existence of the Stochastic Product Integra1

Suppose h is a function from Δ to $L^{2}(\Omega, A, P), a \leq b$
in S, and $\rho=\left\{r_{k}\right\}_{b=0}^{n} \gg\{a, b\}$, then define $\Pi_{\rho} h=\prod_{k=1}^{n} h\left(r_{k-1}, r_{k}\right)$. The statement " Π h exists" means that there is an element f in $L^{2}(\Omega, A, P)$ such that for every $\varepsilon>0$, there is a subdivision $\sigma \gg\{a, b\}$ such that if $\tau \gg \sigma$, then

$$
\left|\left|\Pi_{\tau} h-f\right|\right|<\varepsilon .
$$

If the situation in the preceding sentence holds, then we
\square
write $\Pi h=f$. As with $\sum h$, there is some ambiguity since if $f=g$ except on a set of p-measure zero, then Π is also
equivalent to g.
Temporarily fix $\left(g, G_{1}, G_{2}\right)$ in $c l a s s \Gamma_{3}$ and for convenience let $G=2 G_{1}+G_{2}$. The following lemmas provide estimates for partial products and differences of partial products which estimate Π [1+dg].

Lemma III.1.1
Suppose $\rho=\left\{\mathrm{r}_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{n}} \gg\{\mathrm{a}, \mathrm{b}\}$. For convenience let A_{k} denote $A_{r_{k}}$ and let $M=\exp \left(G_{1}(b)-G_{1}(a)\right)$. Then the following hold except on a set of measure zero:
(i) $E\left(\left[1+\operatorname{dg}\left(r_{k-1}, r_{k}\right)\right]^{2} \mid A_{k-1}\right) \leq 1+d G\left(r_{k-1}, r_{k}\right)$ for $1 \leq k \leq n$,
(ii) $E\left(\pi_{\rho}[1+d g]^{2} \mid A_{0}\right) \leq \pi_{\rho}[1+d G]$,

$$
\begin{equation*}
E\left(\left\{\pi_{\rho}[1+d g]-1\right\}^{2} \mid A_{0}\right) \leq \pi_{\rho}[1+d G]-1 \tag{iii}
\end{equation*}
$$

(iv) $E\left(\left\{\pi_{\rho}[1+d g]-[1+d g(a, b)]\right\}^{2} \mid A_{0}\right) \leq$

$$
M\left\{\pi_{\rho}[1+d G]-[1+d G(a, b)]\right\} .
$$

Proof:

In what follows, let $x_{k}=d g\left(r_{k-1}, r_{k}\right), X_{k}=d G\left(r_{k-1}, r_{k}\right)$,
$y_{k}=\prod_{i=1}^{k-1}\left[1+x_{i}\right], Y_{k}=\prod_{i=1}^{k-1}\left[1+X_{i}\right], Z_{k}=d G_{1}\left(r_{k-1}, r_{k}\right)$,
$W_{k}=\mathrm{dG}_{2}\left(\mathrm{r}_{\mathrm{k}-1}, \mathrm{r}_{\mathrm{k}}\right)$ for $1 \leq \mathrm{k} \leq \mathrm{n}$. Then for $1 \leq \mathrm{k} \leq \mathrm{n}$,

$$
\begin{aligned}
E\left(\left[1+x_{k}\right]^{2} \mid A_{k-1}\right) & =E\left(1+2 x_{k}+x_{k}^{2} \mid A_{k-1}\right) \\
& \leq 1+2 Z_{k}+W_{k} \\
& =1+x_{k}
\end{aligned}
$$

where the inequality follows from Definition II.1.1. Thus (i) is proved. We prove (ii) by induction. Suppose the condition

$$
\begin{equation*}
E\left(\prod_{i=1}^{k}\left[1+x_{i}^{2}\right] \mid A_{0}\right) \leq \prod_{i=1}^{k}\left[1+X_{i}\right] \tag{3.2}
\end{equation*}
$$

holds for some $k, 1 \leq k<n$. Then

$$
\begin{aligned}
E\left(\prod_{i=1}^{k+1}\left[1+x_{i}^{2}\right] \mid A_{0}\right) & =E\left(\underset{i=1}{k}\left[1+x_{i}\right]^{2} E\left(\left[1+x_{k+1}\right]^{2} \mid A_{k}\right) \mid A_{0}\right) \\
& \leq\left[1+X_{k+1}\right] E\left(\underset{i=1}{k}\left[1+x_{i}\right]^{2} \mid A_{0}\right) \\
& \leq \prod_{i=1}^{k+1}\left[1+X_{i}\right] .
\end{aligned}
$$

Thus (3.2) holds for $k+1$. Since (3.2) holds for $k=1$ by part (i), it must hold for all $1 \leq k \leq n$. To prove (iii), we first use the telescoping series identity (i) of Lemma I.2.1. Thus

$$
\begin{aligned}
E\left(\left\{\prod_{k=1}^{n}\left[1+x_{k}\right]-1\right\}^{2} \mid A_{0}\right) & =E\left(\left\{\sum_{k=1}^{n} x_{k} \prod_{i=1}^{k-1}\left[1+x_{i}\right]\right\}^{2} \mid A_{0}\right) \\
& =E\left(\left\{\sum_{k=1}^{n} x_{k} y_{k}\right\}^{2} \mid A_{0}\right) .
\end{aligned}
$$

Now we apply Corollary II. 2.2 with W_{k} substituted for X_{k},
$1 \leq k \leq n$, to obtain from the last inequality in the proof of Lemma II.2.1 the following inequality:
(3.3) $E\left(\left\{\prod_{k=1}^{n}\left[1+x_{k}\right]-1\right\}^{2} \mid A_{0}\right) \leq \sum_{i=1}^{n} \prod_{j=i+1}^{n}\left[1+z_{j}\right]\left(z_{i}+W_{i}\right) Y_{i}$
except on a set of P-measure zero. Recall that $Y_{i}=$
$i-1$
$\prod_{j=1}^{1}\left[1+X_{j}\right]$, and $Z_{i}+W_{i}=X_{i}-Z_{i}$; thus the right-hand side of (3.3) is a telescoping sum with value $\prod_{i=1}\left[1+X_{i}\right]$ -
$\prod_{i=1}^{n}\left[1+Z_{i}\right]$. Part (iii) follows from the observation that $\underset{i=1}{n}\left[1+Z_{i}\right] \geq 1$.

To show part (iv), use part (ii) of Lemma I. 2.1 to write
$E\left(\left\{\pi_{\rho}[1+d g]-1-\operatorname{dg}(a, b)\right\}^{2} \mid A_{0}\right)=E\left(\left\{\sum_{i=1}^{n} x_{i} \underset{j=1}{i-1}\left[1+x_{j}\right]-1\right)\right\}^{2}\left\{A_{0}\right)$

$$
=E\left(\left\{\sum_{i=1}^{n} x_{i}\left(y_{i}-1\right)\right\}^{2} \mid A_{0}\right)
$$

By part (iii), $E\left(\left(y_{i}-1\right)^{2} \mid A_{0}\right) \leq \prod_{j=1}^{i-1}\left[1+X_{i}\right]-1$, so by Corollary II.2.2, the following inequality holds except on a set of measure zero.

$$
\begin{gather*}
\text { E(\{ } \left.\left.\sum_{i=1}^{n} x_{i}\left(y_{i}-1\right)\right\}^{2} \mid A_{0}\right) \leq \tag{3.4}\\
\prod_{j=1}^{n}\left[1+Z_{j}\right] \sum_{i=1}^{n}\left\{z_{i}+w_{i}\right\}\left\{\prod_{j=1}^{i-1}\left[1+x_{i}\right]-1\right\} .
\end{gather*}
$$

Note that $M \geq \prod_{j=1}^{n}\left[1+Z_{j}\right], X_{i} \geq Z_{i}+W_{i}$ for $1 \leq i \leq n$; thus the right-hand side of (3.4) is less than or equal to

$$
M \sum_{i=1}^{n} X_{i}\left\{\sum_{j=1}^{i-1}\left[1+X_{j}\right]-1\right\}=M\left\{\prod_{i=1}^{n}\left[1+X_{i}\right]-1-\sum_{i=1}^{n} X_{i}\right\}
$$

Thus (iv) holds.

Lemma III.1.2

With the same assumptions and conventions as Lemma III.1.1, the following condition holds except on a set of measure zero:
(v) $\left|E\left(\pi_{\rho}[1+d g]-1 \mid A_{0}\right)\right| \leq \pi_{\rho}[1+d G]-1$

Proof:
With the notation of the proof of Lemma III.1.1,

$$
\Pi_{\rho}[1+d g]-1=\sum_{k=1}^{n} x_{k} \prod_{j=1}^{k-1}\left[1+x_{j}\right] .
$$

Then $\left|E\left(\sum_{k=1}^{n} x_{k} \prod_{j=1}^{k-1}\left[1+x_{j}\right] \mid A_{0}\right)\right| \leq$

$$
\begin{aligned}
& \sum_{k=1}^{n} E\left(\left|E\left(x_{k} \mid A_{k-1}\right)\right| \sum_{j=1}^{k-1}\left[1+x_{j}\right]| | A_{0}\right) \leq \\
& \sum_{k=1}^{n} Z_{k} E\left(\left|{ }_{j=1}^{k-1}\left[1+x_{j}\right]\right| \mid A_{0}\right) \leq
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{n} Z_{k} E\left(\left|\prod_{j=1}^{k-1}\left[1+x_{j}\right]\right| \mid A_{0}\right) \leq \\
& \sum_{k=1}^{n} Z_{k}\left(\frac{1}{2}\right) E\left(\prod_{j=1}^{k-1}\left[1+x_{j}\right]^{2}+1 \mid A_{0}\right) \leq \\
& \sum_{k=1}^{n} Z_{k}\left(\frac{1}{2}\right)\left\{\prod_{j=1}^{k-1}\left[1+X_{i}\right]+1\right\} \leq \\
& \sum_{k=1}^{n} Z_{k}^{n} Z_{j=1}^{n-1}\left[1+X_{j}\right] \leq \sum_{k=1}^{n} X_{k}^{n} \sum_{j=1}^{k-1}\left[1+X_{j}\right]
\end{aligned}
$$

and the lemma is proved.
Lemma III.1.3
Suppose $\left(g, G_{1}, G_{2}\right)$ is in class Γ_{3}, $a \leq b$ in S, and $\tau \gg \sigma \gg\{a, b\}$. For convenience, let $G=2 G_{1}+G_{2}$ and $M=\exp (G(b)-G(a))$. Then except on a set of measure zero,

$$
\begin{gather*}
E\left(\left\{\Pi_{\tau}[1+d g]-\Pi_{\sigma}[1+d g]\right\}^{2} \mid A_{a}\right) \leq \tag{3.5}\\
M^{5}\left\{\Pi_{\tau}[1+d G]-\Pi_{\sigma}[1+d G]\right\} .
\end{gather*}
$$

Hence

$$
\left.\left|\|_{\tau}[1+d g]-\Pi_{\sigma}[1+d g]\right|\right|^{2} \leq M^{5}\left\{\Pi_{\tau}[1+d G]-\Pi_{\sigma}[1+d G]\right\} .
$$

Remark
The proof of this lemma involves two applications of Corollary II. 2.2 and one application of the discrete Gronwall

1emma (Lemma I.2.2). We now give a brief sketch of the proof.

Suppose that $\tau=\left\{t_{j}\right\}_{j=0}^{m}$ is a refinement of
$\sigma=\left\{s_{k}\right\}_{k=0}^{n}$. For $1 \leq k \leq n$, we let w_{k} denote the truncation of the difference of $\Pi_{t}[1+d g]$ and $\Pi_{\sigma}[1+d g]$ at the point s_{k} (see (3.6) below). Then, for $1 \leq k \leq n$, let $W_{k}=E\left(w_{k}^{2} \mid A_{a}\right)$.
The object of the proof is to show that W_{n} is bounded by the left-hand side of (3.5).

It is necessary to obtain, as an intermediate goal, a difference-inequality for W_{k} in a form to which we may apply the discrete Gronwall lemma. To obtain differenceinequality (3.9) below, we proceed as follows. Fix k and assume that $s_{k-1}=t_{r(k-1)} \leq \cdots \leq t_{r(k)}=s_{k}$, and let v_{j} denote the truncation of $\Pi_{\tau}[1+d g]$ at t_{j} minus the truncation of $\Pi_{\sigma}[1+d g]$ at s_{k-1} for $r(k-1) \leq j \leq r(k)$ (see (3.7)). Then let $V_{j}=E\left(v_{j}^{2} \mid A_{a}\right)$. We then apply Corollary II. 2.2 to obtain a bound for V_{j} in terms of W_{k-1} (see (3.8)). Corollary II.2.2 may be applied again to obtain difference-inequality (3.9).

We then apply the discrete Gronwall inequality to
(3.9) to obtain (3.10). The conclusion of the lemma follows from a simple manipulation of the left-hand side of (3.10). Proof:

$$
\text { Suppose } \tau=\left\{t_{j}\right\}_{j=0}^{m} \gg \sigma=\left\{s_{k}\right\}_{k=0}^{n} \gg\{a, b\}
$$

$\Pi_{\tau}[1+d g]-1=\sum_{j=1}^{m} x_{j} y_{j}$ where $x_{j}=d g\left(t_{j-1}, t_{j}\right)$ and
$y_{j}=\prod_{i=1}^{j-1}\left[1+x_{i}\right]$. Let p be the function from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$ such that $p(j)=\max \left\{k \mid s_{k} \leq t_{j-1}\right\}$. Thus $s_{p(j)} \leq t_{j-1} \leq t_{j} \leq s_{p(j)+1}$ and $t_{j-1} \leq s_{p(j)+1}$. Now

$$
\begin{aligned}
\pi_{\sigma}[1+d g]-1 & =\sum_{k=1}^{n} \operatorname{dg}\left(s_{k-1}, s_{k}\right){\underset{i=1}{k-1}\left[1+\operatorname{dg}\left(s_{i-1}, s_{i}\right)\right]}=\sum_{k=1}^{n} \sum_{i(j)}^{\sum} \sum_{k-1} x_{j=1}^{k-1}\left[1+\operatorname{dg}\left(s_{i-1}, s_{i}\right)\right]
\end{aligned}
$$

$$
=\sum_{j=1}^{m} x_{j} z_{j}
$$

where $z_{j}=\underset{\prod_{k=1}^{p}(j)}{ }\left[1+\operatorname{dg}\left(s_{k-1}, s_{k}\right)\right]$.
Hence

$$
\Pi_{\tau}[1+d g]-\Pi_{\sigma}[1+d g]=\sum_{j=1}^{m} x_{j}\left(y_{j}-z_{j}\right)
$$

We now assume without loss of generality that σ and τ do not contain repetitions, i.e. $s_{k-1}<s_{k}$ and $t_{j-1}<t_{j}$ for $1 \leq k \leq n$ and $1 \leq j \leq m$. Now let r be the function from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, m\}$ such that $t_{r(k)}=s_{k}$. Note that if $r(k)<j \leq r(k+1)$, then $p(j)=k$.

$$
\text { Define } w_{0}=0 \text { and for } 1 \leq k \leq n, w_{k}=\sum_{j=1}^{r(k)} x_{j}\left(y_{j}-z_{j}\right)
$$

Note that $w_{n}=\Pi_{\tau}[1+d g]-\Pi_{\sigma}[1+d g]$ and
(3.6) $w_{k}=\prod_{j=1}^{r(k)}\left[1+\operatorname{dg}\left(t_{j-1}, t_{j}\right)\right]-\prod_{i=1}^{k}\left[1+\operatorname{dg}\left(s_{i-1}, s_{i}\right)\right]$

$$
=y_{r(k)+1}-z_{r(k)+1}
$$

For $1 \leq j \leq m$, define $X_{j}=d G_{2}\left(t_{j-1}, t_{j}\right), Z_{j}=d G_{1}\left(t_{j-1}, t_{j}\right)$, and $M=\exp (G(b)-G(a))$.

Temporarily fix k. For $r(k-1)+1 \leq j \leq r(k)$, let
(3.7)

$$
v_{j}=y_{j}-z_{j} .
$$

Thus $v_{r(k-1)+1}=w_{k-1}$. For $r_{(k-1)}+2 \leq j \leq r(k), v_{j}-v_{j-1}=$ $z_{j-1} y_{j-1}$. For $r_{(k-1)}+1 \leq j \leq r(k)$, let

$$
V_{j}=E\left(v_{j}^{2} \mid A_{a}\right)
$$

Then

$$
v_{j}=E\left(\left\{w_{k-1}+\underset{i=r(k-1)+1}{\sum-1} x_{i} y_{i}\right\}^{2} \mid A_{a}\right) .
$$

Since $E\left(x_{j}^{2} \mid A_{t_{j-1}}\right) \leq x_{j}$ and $\left|E\left(x_{j} \mid A_{t_{j-1}}\right)\right| \leq z_{j}$ and $E\left(y_{j}^{2} \mid A_{a}\right) \leq M$, it follows from Corollary II. 2.2 that

$$
v_{j} \leq \prod_{i=r(k-1)+1}^{j-1}\left[1+Z_{i}\right] E\left(w_{k-1}^{2} \mid A_{a}\right)+
$$

$$
\underset{i=r(k-1)+1}{\frac{j-1}{I}}\left[1+Z_{i}\right] \sum_{j=r(k-1)+1}^{\sum}\left(X_{j}+Z_{j}\right) .
$$

$$
\text { If } s \leq t \text { in } S \text {, let } M_{1}(s, t)=\exp \left(G_{1}(t)-G_{1}(s)\right) \text { and }
$$ $M(s, t)=\exp (d G(s, t))$. Thus $M=M(a, b)$. Then

$$
\begin{gather*}
V_{j} \leq M_{1}\left(t_{r(k-1)}, t_{j-1}\right) W_{k-1}+ \tag{3.8}\\
M_{1}\left(t_{r(k-1)}, t_{j-1}\right) M d G_{3}\left(t_{r(k-1)}, t_{j-1}\right) \\
\leq M_{1}\left(t_{r(k-1)}, t_{j-1}\right) W_{k-1}+M^{2} d G_{3}\left(t_{r(k-1)}, t_{j-1}\right),
\end{gather*}
$$

where $W_{k-1}=E\left(w_{k-1}^{2} \mid A_{a}\right)$ and $G_{3}=G_{1}+G_{2}$. In order to eliminate k from the expressions above, write $t_{r(k-1)}=s_{p(j)}$ and $W_{k-1}=W_{p(j)}$ to obtain $v_{j} \leq M_{1}\left(s_{p(j)}, t_{j-1}\right) W_{p(j)}+$ $M^{2} d G_{3}\left(s_{p(j)}, t_{j-1}\right) 1 \leq j \leq m$.

$$
\text { Now } w_{k}=w_{k-1}+\underset{j=r(k)}{\sum(k)} x_{j}\left(y_{j}-z_{j}\right) \text {. Thus by }
$$

Corollary II.2.2,

$$
\begin{aligned}
& W_{k} \leq W_{k-1}^{\substack{\sqrt{2} \\
j=r(k-1)+1}}\left[1+Z_{j}\right]+ \\
& \underset{\substack{r(k) \\
j=r(k-1)+1}}{\left[l+Z_{j}\right]} \underset{j=r(k)}{\left.\sum_{j}(k)+1\right)+1}\left[X_{j}+Z_{j}\right] V_{j} .
\end{aligned}
$$

Thus

$$
\begin{gathered}
W_{k} \leq W_{k-1} M_{1}\left(s_{k-1}, s_{k}\right)+ \\
M_{1}\left(s_{k-1}, s_{k}\right) \underset{j=r(k-1)+1}{\sum_{j}(k)} d G_{3}\left(t_{j-1}, t_{j}\right)\left\{M_{1}\left(s_{k-1}, t_{j-1}\right) W_{k-1}+\right. \\
\left.M^{2} d G_{3}\left(s_{k-1}, t_{j}\right)\right\} .
\end{gathered}
$$

So
(3.9) $W_{k} \leq W_{k-1}\left\{M_{1}\left(s_{k-1}, s_{k}\right)+M_{1}^{2}\left(s_{k-1}, s_{k}\right) d G_{3}\left(s_{k-1}, s_{k}\right)\right\}+$

$$
M^{3} \underset{j=r(k-1)+1}{r(k)} d G_{3}\left(t_{j-1}, t_{j}\right) d G_{3}\left(t_{p(j)}, t_{j-1}\right)
$$

Note that $a \leq b$ implies that $e^{a}+e^{b} c \leq e^{b+c}$. Thus the coefficient of W_{k-1} in (3.5) is not greater than $\exp \left(3 G_{1}\left(s_{k}\right)+\right.$ $\left.G_{2}\left(s_{k}\right)-3 G_{1}\left(s_{k-1}\right)-G_{2}\left(s_{k-1}\right)\right)$, which is in turn not greater than $\mathrm{M}^{2}\left(\mathrm{~s}_{\mathrm{k}-1}, \mathrm{~s}_{\mathrm{k}}\right)$. We may now apply the discrete Gronwall lemma (Lemma I.2.2) to

$$
\begin{gathered}
W_{k} \leq W_{k-1}\left[1+\left(M^{2}\left(s_{k-1}, s_{k}\right)-1\right)\right]+ \\
M_{3} \sum_{j=}^{r(k)}(k-1)+1 \\
d G_{3}\left(t_{j-1}, t_{j}\right) d G_{3}\left(t_{p(j)}, t_{j-1}\right)
\end{gathered}
$$

to obtain (since $\left.W_{0}=0\right)$

$$
W_{k} \leq M^{2}\left(a, s_{k}\right) M^{3} \sum_{j=1}^{r(k)} d G_{3}\left(t_{j-1}, t_{j}\right) d G_{3}\left(t_{p(j)}, t_{j-1}\right)
$$

Letting $k=n$, one has

$$
\begin{align*}
& E\left(\left\{\Pi_{\tau}[1+d g]-I_{\sigma}[1+d g]\right\}^{2} \mid A_{a}\right) \leq \tag{3.10}\\
& M^{5}\left\{(L) \sum_{\tau} G_{3} d G_{3}-(L) \Sigma_{\sigma} G_{3} d G_{3}\right\}
\end{align*}
$$

Inequality (3.6) is sufficient to show the existence of the stochastic product integral, but to preserve the symmetry of the situation, we make the following observations.

First, $G_{3} \leq G$. Then

$$
\Pi_{\tau}[1+d g]-\Pi_{\sigma}[1+d g]=
$$

$$
\sum_{j=1}^{m} d G\left(t_{j}, t_{j}\right)\left\{\prod_{i=1}^{j-1}\left[1+d G\left(t_{i-1}, t_{i}\right)\right]-\prod_{k=1}^{p(j)}\left[1+d G\left(s_{k-1}, s_{k}\right)\right]\right\}
$$

A1so
$\prod_{i=1}^{j-1}\left[1+d G\left(t_{i-1}, t_{i}\right)\right] \geq\left[1+d G\left(s_{p(j)}, t_{j-1}\right)\right] \prod_{k=1}^{p(j)}\left[1+d G\left(s_{k-1}, s_{k}\right)\right]$.
Finally $\prod_{k=1}^{p(j)}\left[1+d G\left(s_{k-1}, s_{k}\right)\right] \geq 1$ and the first conclusion follows. The second conclusion is easily obtained from the
first.
Theorem III.1.4
Suppose that g is a member of $c l a s s \Gamma_{3}$ and $a \leq b$ in S. Then $\Pi \quad[1+d g]$ exists and has an A_{b}-measurable version. Proof:

Let G_{1} and G_{2} be the non-decreasing real-valued functions associated with g in Definition II.l.1 and let $G=2 G_{1}+G_{2}$. J. S. MacNerney has shown [14, Lemma 2.1] that $\Pi^{b}[1+d G]$ exists. Hence, for any $\varepsilon>0$, there is a subdivision $\sigma \gg\{a, b\}$ such that if $\tau \gg \sigma$, then

$$
\pi_{\tau}[1+\mathrm{dG}]-\pi_{\sigma}[1+\mathrm{dG}]<\frac{\varepsilon^{2}}{4 \mathrm{M}^{10}}
$$

where M is as in Lemma III.1.3. Thus by Lemma III.l.3,

$$
\left|\left|\Pi_{\tau}[1+d g]-\Pi_{\sigma}[1+d g]\right|\right|<\frac{\varepsilon}{2}
$$

If $\tau \gg \sigma$ and $\tau_{1} \gg \sigma$, then

$$
\left|\left|\Pi_{\tau}[1+\mathrm{dg}]-\pi_{\tau_{1}}[1+\mathrm{dg}]\right|\right|<\varepsilon .
$$

It follows that the directed set of subdivisions of the ordered pair (a,b) generates a Cauchy net

$$
\left\{\Pi_{\tau}[1+d g]\{\tau \gg\{a, b\}\}\right.
$$

with range in the complete space $L^{2}\left(\Omega, A_{b}, P\right)$. Hence there is some $h_{\varepsilon L}{ }^{2}\left(\Omega, A_{b}, P\right)$ such that for every $\varepsilon>0$ there is a subdivision σ such that for any refinement $\tau \gg \sigma$,

$$
\left|\left|h-\Pi_{\tau}[l+d g]\right|\right|<\varepsilon .
$$

Thus h is a version of $\pi_{\tau}[1+d g]$.
The following lemma will be useful in the sequel.
Lemma III.1.5
Suppose $\left\{f_{n}\right\}_{n=0}^{\infty}$ is a sequence in $L^{2}(\Omega, A, P), B$ is a $\sigma-s u b a l g e b r a$ of A, c is a non-negative number such that $E\left(f_{n} \mid B\right) \leq c$ for $n \geq 1$ and $\lim _{n \rightarrow \infty} E\left(\left|f_{0}-f_{n}\right|\right)=0$. Then

$$
E\left(f_{0} \mid B\right) \leq c
$$

Proof:
Let $Q=\left\{w \varepsilon \Omega \mid E\left(f_{0} \mid B\right)>c\right\}$. Then $Q \varepsilon B$. Suppose that $P(Q)>0$. Then

$$
\int_{Q} f_{0} d P=\int_{Q} E\left(f_{0} \mid B\right) d P>c P(Q)
$$

On the other hand,

$$
\int_{Q} f_{n} d P=\int_{Q} E\left(f_{n} \mid B\right) d P \leq c P(Q)
$$

Thus $\lim _{n \rightarrow \infty} \int_{Q} f_{n} d P<\int_{Q} f_{0} d P$, a contradiction. Therefore
$P(Q)=0$ and $E\left(f_{0} \mid B\right) \leq c$.
Theorem III. 1.6
Suppose $\left(g, G_{1}, G_{2}\right)$ is in class Γ_{3} and $a \leq b$ in S. For convenience, 1 et $G=2 \mathrm{G}_{1}+\mathrm{G}_{2}$ and $\mathrm{M}=\exp (\mathrm{G}(\mathrm{b})-\mathrm{G}(\mathrm{a}))$. Then for any version of $\Pi[1+d g]$, the following conditions hold except on a set of measure zero:
(i) $E\left(\left\{\pi^{b}[1+d g]\right\}^{2} \mid A_{a}\right) \leq \pi^{b}[1+d G]$
(ii) $E\left(\left\{\Pi_{a}^{b}[1+d g]-1\right\}^{2} \mid A_{a}\right) \leq \Pi_{a}^{b}[1+d G]-1$
(iii) $E\left(\left\{\pi^{b}[1+d g]-[1+d g(a, b)]\right\}^{2} \mid A_{a}\right) \leq$

$$
\left.\underset{a}{M\{ } \pi^{b}[1+d G]-[1+d G(a, b)]\right\}
$$

(iv) $\left|E\left(\Pi_{a}^{b}[1+d g]-1 \mid A_{a}\right)\right| \leq \prod^{b}[1+d G]-1$
(v) $E\left(\underset{a}{\left.\left\{\Pi^{b}[1+d g]-\pi_{\rho}[1+d g]\right\}^{2} \mid A_{a}\right) \leq}\right.$ $M_{a}^{5}\left\{\Pi^{b}[1+d G]-\Pi \rho[1+d G]\right\}$ for
any $\rho \gg\{a, b\}$.
Moreover, in all cases, the conditional expectation may be replaced by the unconditional expectation.

Proof:
Find a sequence of subdivisions $\{\sigma(n)\}_{n=1}^{\infty}$ such that $\sigma(n+1) \gg \sigma(n) \gg\{a, b\}$ for $n \geq 1$ and

$$
\left\|\Pi_{a}^{b}[1+d g]-\Pi_{\sigma(n)}[1+d g]\right\|<\frac{1}{n} .
$$

Let $f=\frac{b}{a^{\prime}}[1+d g], f_{n}=\Pi_{\sigma(n)}[1+d g], n \geq 1$. Note that $\Pi_{\sigma(n)}[1+d G] \leq \pi_{a}^{b}[1+d G]$ for $n \geq 1$. Note also that $(a+b+c)^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)$. Suppose $h \varepsilon L^{2}(\Omega, A, P)$ is such that $E\left(h^{2} \mid A_{a}\right) \leq b<\infty$ for some number b.
Then $E\left(\left|(f-h)^{2}-\left(f_{n}-h\right)^{2}\right|\right)$

$$
\begin{aligned}
& =E\left(\left|f-f_{n}\right|\left|f+f_{n}-2 h\right|\right) \\
& \leq\left\{E\left(\left|f-f_{n}\right|^{2}\right) E\left(\left|f+f_{n}-2 h\right|^{2}\right)\right\}^{1 / 2} \\
& \leq \frac{1}{n}\left\{E\left(f^{2}\right)+E\left(f_{n}^{2}\right)+4 E\left(h^{2}\right)\right\}^{1 / 2}
\end{aligned}
$$

Thus $\left.\lim _{n \rightarrow \infty} E(\mid f-h)^{2}-\left(f_{n}-h\right)^{2} \mid\right)=0$; so if $E\left(\left\{f_{n}-h\right\}^{2} \mid A_{a}\right) \leq c$ for all $n \geq 1$, then $E\left(\{f-h\}^{2} \mid A_{a}\right) \leq c$ by Lemma III.1.5. Thus (i), (ii) and (iii) follow from Lemma III.l.1 and part (v) follows from Lemma III.1.3. Part (iv) follows from Lemma III.1.2, noting that $|\mathrm{a}| \leq \mathrm{b}$ is equivalent to $\mathrm{a} \leq \mathrm{b}$ and $-\mathrm{a} \leq \mathrm{b}$. For all except (iv), the unconditional version follows immediately from the conditional case. In (iv), note that

$$
|E(f-1)|=\left|E\left(E\left(f-1 \mid A_{a}\right)\right)\right| \leq E\left(\left|E\left(f-1 \mid A_{a}\right)\right|\right) .
$$

2. A Pairing of Evolutions with Generators

We now investigate the connection between the classes of stochastic processes of Definition II.l.1 and the classes of stochastic evolutions in R defined below.

Definition III. 2.1
(i) Let T_{1} denote the class to which a function $u: \Delta \rightarrow L^{2}(\Omega, A, P)$ belongs only in case $u(s, t)$ is an element of $L^{2}\left(\Omega, A_{t}, P\right)$ whenever (s, t) is in Δ and $u\left(s_{1}, s_{2}\right) u\left(s_{2}, s_{3}\right)=u\left(s_{1}, s_{3}\right)$ except on a set of measure zero whenever each of $\left(s_{1}, s_{2}\right)$ and $\left(s_{2}, s_{3}\right)$ is in Δ.
(ii) Let T_{2} denote the subclass of T_{1} to which u belongs only in case there is a non-decreasing function $H_{2}: S \rightarrow R$ such that $H_{2}(0)=0$ and whenever (s, t) is in Δ the condition

$$
E\left([u(s, t)-1]^{2} \mid A_{s}\right) \leq \pi_{s}^{t}\left[1+d H_{2}\right]-1
$$

holds except on a set of measure zero.
(iii) Let T_{3} denote the subclass of T_{2} to which u belongs only in case there is a non-decreasing function $H_{1}: S \rightarrow R$ such that $H_{1}(0)=0$ and whenever (s, t) is in Δ the condition

$$
\left|E\left(u(s, t)-1 \mid A_{s}\right)\right| \leq \pi^{t}\left[1+d H_{1}\right]-1
$$

holds except on a set of measure zero.

Lemma III.2.2
Suppose $\left(g, G_{1}, G_{2}\right)$ is in class Γ_{3} and $u: \Delta \rightarrow L^{2}(\Omega, A, P)$ is given by $u(s, t)=\prod_{s}^{t}[1+d g]$ whenever (s, t) is in Δ. Then u is in class T_{3}.
Proof:
It is clear from III.l.4 that $u(s, t)$ has an $A_{t}{ }^{-}$ measurable version for each (s, t) in Δ, hence $u(s, t)$ is A_{t}-measurable. That u possesses the multiplicative property of T_{1} is intuitively clear, but a careful proof requires the following estimates.

Suppose $a \leq b \leq c$ in S. Let $\varepsilon>0$ be given. Then there exist subdivisions σ_{1}, σ_{2} of $\{a, b\}$ and $\{b, c\}$ respectively such that if $\tau_{1} \gg \sigma_{1}$ and $\tau_{2} \gg \sigma_{2}$, then

$$
\begin{aligned}
& \left|\left|\pi_{\tau_{1}}[1+d g]-\Pi_{a}^{b}[1+d g]\right|\right|<\varepsilon, \\
& \left|\left|\Pi_{\tau_{2}}[1+d g]-\Pi_{b}^{c}[1+d g]\right|\right|<\varepsilon \text {, and } \\
& \left|\Pi_{\tau_{1}}[1+d g] \Pi_{\tau_{2}}[1+d g]-\pi_{a}^{c}[1+d g]\right| \mid<\varepsilon .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left.\right|_{a} ^{\pi}[1+d g]{ }_{b}^{\mathrm{m}}[1+d g]-\pi_{a}^{c}[1+d g]| |< \\
& \varepsilon+\left|\left|\Pi_{\tau_{1}}[1+d g] \Pi_{\tau_{2}}[1+d g]-\Pi_{a}^{b}[1+d g] \Pi_{b}^{c}[1+d g]\right|\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \varepsilon+\left|\left|\Pi_{\tau_{1}}[1+\operatorname{dg}]\right|\right|| | \Pi_{\tau_{2}}[1+d g]-{ }_{b}{ }^{\mathrm{c}}[1+\mathrm{dg}]| | \\
& +\left\|_{b} \Pi^{c}[1+d g]\right\|\left\|\pi_{\tau_{1}}[1+d g]-\pi_{a}^{b}[1+d g]\right\| \\
& <\varepsilon\left\{1+\sqrt{\Pi_{\tau_{1}}[1+d G]}+\sqrt{\Pi^{c}[1+d G]}\right\} \text { where } G=2 G_{1}+G_{2} \text {. }
\end{aligned}
$$

The last inequality uses (ii) of Lemma III.1.1 and (i) of Lemma III.l.6. If $M=\exp (G(b)-G(a))$ then the last inequality yie1ds

$$
\|u(a, b) u(b, c)-u(a, c)\|<\varepsilon(l+2 \sqrt{M}) .
$$

Since ε was arbitrary and M does not depend on the particular subdivisions chosen, it follows that $u(a, b) u(b, c)=u(a, c)$ whenever $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$ in S . Now choose $\mathrm{H}_{1}=\mathrm{H}_{2}=\mathrm{G}$. Then by parts (iv) and (ii) of Theorem III.l.6 respectively, one has

$$
\begin{aligned}
& \left|E\left(u(s, t)-1 \mid A_{s}\right)\right| \leq \pi^{t}\left[1+\mathrm{dH}_{1}\right]-1 \text { and } \\
& E\left([u(s, t)-1]^{2} \mid A_{s}\right) \leq \pi^{t}\left[1+\mathrm{dH}_{2}\right]-1
\end{aligned}
$$

whenever (s, t) is in Δ. Hence u is in class T_{3}. Definition III.2.3

Let ε denote the function from class Γ_{3} to class T_{3}
given by $\varepsilon[g](s, t)=\pi^{t}[1+d g]$ for each pair (s, t) in Δ. Let Γ_{3}° denote the subclass of Γ_{3} to which g belongs only in case $g(o)=0$. Let ε° denote the restriction of ε to Γ_{3}°. Remark

It is the purpose of this section to show that the function ε° is a one-to-one mapping of Γ_{3}° onto T_{3} and to derive an integral-1ike formula for the inverse of ε°. The function ε° is analogous to the functions ε and ε^{+}of MacNerney [10], [14] and Herod [19].

Lemma III. 2.4
Suppose $\left(u, H_{1}, H_{2}\right)$ is in class T_{3} and $a \leq b$ in S. Then $\sum^{\sum^{b}(u-1) \text { exists. Moreover, the function } g: s \rightarrow L^{2}(\Omega, A, P)}$ defined by $g(s)=\sum_{0}^{s}(u-1)$ is a member of class Γ_{3}.
Proof:

$$
\begin{array}{r}
\text { Suppose } \tau \gg \sigma \gg\{a, b\} \text { for some } a \leq b \text { in } S \text {. Let } \\
\sigma=\left\{s_{k}\right\}_{k=0}^{n}, \tau=\left\{t_{j}\right\}_{j=0}^{m}, \text { and } p(j)=\sup \left\{k \mid s_{k} \leq t_{j-1}\right\} .
\end{array}
$$

Then $s_{p(j)} \leq t_{j-1} \leq t_{j} \leq s_{p(j)+1}$ and $t_{j-1}<s_{p(j)+1}$ for $1 \leq j \leq m$. Then

$$
\begin{aligned}
& \sum_{\sigma}(u-1)=\sum_{k=1}^{n}\left(u\left(s_{k-1}, s_{k}\right)-1\right) \\
&=\sum_{k=1}^{n} p(j)=k-1 \\
& \sum_{k=1}\left[u\left(s_{k-1}, t_{j}\right)-u\left(s_{k-1}, t_{j-1}\right)\right] \\
&=\sum_{j=1}^{m}\left[u\left(s_{p(j)}, t_{j}\right)-u\left(s_{p(j)}, t_{j-1}\right)\right]
\end{aligned}
$$

And

$$
\Sigma_{\tau}(u-1)=\sum_{j=1}^{m}\left[u\left(t_{j-1}, t_{j}\right)-1\right]
$$

Thus

$$
\begin{align*}
& \sum_{\sigma}(u-1)-\sum_{\tau}(u-1)= \tag{3.11}\\
& \\
& \quad \sum_{j=1}^{m}\left[u\left(s_{p(j)}, t_{j}\right)-u\left(s_{p(j)}, t_{j-1}\right)-u\left(t_{j-1}, t_{j}\right)+1\right] .
\end{align*}
$$

Using the multip1icative property of u, one has

$$
\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)=\sum_{j=1}^{m}\left[u\left(s_{p(j)}, t_{j-1}\right)-1\right]\left[u\left(t_{j-1}, t_{j}\right)-1\right]
$$

For $a \leq s \leq t \leq b, 1$ et $U_{i}(s, t)=\pi_{s}^{t}\left[1+d H_{i}\right]$ for $i=1,2$.
For $1 \leq j \leq m$, let $x_{j}=u\left(t_{j-1}, t_{j}\right)-1, y_{j}=u\left(s_{p(j)}, t_{j-1}\right)-1$,
$X_{j}=U_{2}\left(t_{j-1}, t_{j}\right)-1, Y_{j}=U_{2}\left(s_{p(j)}, t_{j-1}\right)-1, Z_{j}=U_{1}\left(t_{j-1}, t_{j}\right)-1$
and $A_{j}=A_{t_{j-1}}$. These sequences and $\sigma-a 1 g e b r a s$ satisfy the hypotheses of Lemma II.2.1 by Definition III.2.1. Hence, letting $M=\exp \left(H_{1}(b)-H_{1}(a)\right)$, we have
(3.12) $\left|\left|\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)\right|\right|^{2} \leq$

$$
M \sum_{j=1}^{m}\left[U_{2}\left(s_{p(j)}, t_{j-1}\right)-1\right]\left\{U_{1}\left(t_{j-1}, t_{j}\right)-1+U_{2}\left(t_{j-1}, t_{j}\right)-1\right\}
$$

For purposes of this proof, we may assume, without loss of generality, that $H_{1}=H_{2}$, hence $U_{1}=U_{2}$. Thus

$$
\left|\left|\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)\right|\right|^{2} \leq 2 M\left\{\Sigma_{\sigma}\left(U_{2}-1\right)-\Sigma_{\tau}\left(U_{2}-1\right)\right\}
$$

J. S. MacNerney has shown [] that $\Sigma^{b}\left(U_{2}-1\right)$ exists, indeed b
$a^{\Sigma}\left(U_{2}-1\right)=$ G.L.B. $\left\{\Sigma_{\sigma}\left(U_{2}-1\right) \mid \sigma \gg\{a, b\}\right\}$. Hence for every $\varepsilon>0$, there is some $\sigma \gg\{a, b\}$ such that if $\tau \gg \sigma$, then

$$
\left|\Sigma_{\tau}\left(U_{2}-1\right)-\Sigma_{\sigma}\left(U_{2}-1\right)\right|<\frac{\varepsilon^{2}}{16 M^{2}}, \text { thus }
$$

$\left|\left|\Sigma_{\tau}(u-1)-\Sigma_{\sigma}(u-1)\right|\right|<\frac{\varepsilon}{2}$, and if τ_{1} and τ_{2} are both refinements of σ, then $\left|\left|\Sigma_{\tau_{1}}(u-1)-\Sigma_{\tau_{2}}(u-1)\right|\right|<\varepsilon$. Thus $\left\{\Sigma_{\tau}(u-1) \mid \tau \gg\{a, b\}\right\}$ is a Cauchy net over the directed set of subdivisions of the pair (abb) $\varepsilon \Delta$. Therefore there is an element $f_{\varepsilon} L^{2}\left(\Omega, A_{b}, P\right)$ such that $\sum^{b}(u-1)=f$. Now let $g: s \rightarrow L^{2}(\Omega, A, P)$ be such that for each $t, g(t)$ is a version of ${ }_{o}^{\Sigma}(u-1)$. Then $g \varepsilon \Gamma_{1}$. If $\tau=\left\{t_{j}\right\}_{j=0}^{m} \gg\{s, t\}$, then $\Sigma_{\tau}(u-1)=\sum_{j=1}^{m}\left(u\left(t_{j-1}, t_{j}\right)-1\right)=$ $\sum_{j=1}^{m} x_{j} y_{j}$ if $x_{j}=u\left(t_{j-1}, t_{j}\right)-1$ and $y_{j}=1$. Let $x_{j}=U_{2}\left(t_{j-1}, t_{j}\right)-1$, $\bar{Y}_{j}=1, z_{j}=U_{1}\left(t_{j-1}, t_{j}\right)-1$. Then by Corollary II.2.2,
$E\left(\left[\Sigma_{\tau}(u-1)\right]^{2} \mid A_{s}\right) \leq \sum_{j=1}^{m} U_{1}\left(t_{j}, t\right)\left\{U_{1}\left(t_{j-1}, t_{j}\right)-1+U_{2}\left(t_{j-1}, t_{j}\right)-1\right\}$
Let $H_{3}=H_{1}+H_{2}, U_{3}(a, b)={ }_{a}^{b}\left[1+d H_{3}\right] \geq U_{i}(a, b)$ for $i=1,2$.

$$
\begin{aligned}
E\left(\left[\Sigma_{\tau}(u-1)\right]^{2} \mid A_{s}\right) & \leq 2 \sum_{j=1}^{m}\left[U_{3}\left(t_{j-1}, t\right)-U_{3}\left(t_{j}, t\right)\right] \\
& =2\left[U_{3}(s, t)-1\right] \\
& \leq 2\left[U_{3}(s, t)-1\right] U_{3}(o, s) \\
& =2\left[U_{3}(o, t)-U_{3}(o, s)\right]
\end{aligned}
$$

Choose $G_{2}=2\left[J_{3}^{-1}\right]$. Thus by Lemma III. 1.5, except on a set of measure zero,

$$
E\left(\left\{\sum_{s}^{t}(u-1)\right\}^{2}\left(A_{s}\right) \leq G_{2}(t)-G_{2}(s) \text { and } g \varepsilon \Gamma_{2}\right.
$$

Again, let $\tau \gg\{s, t\}$.

$$
\begin{aligned}
& \quad\left|E\left(\sum_{\tau}(u-1) \mid A_{s}\right)\right|= \\
& \\
& \\
& \quad\left|E\left(\sum_{j=1}^{m}\left(u\left(t_{j-1}, t_{j}\right)-1\right) \mid A_{s}\right)\right| \leq \\
& \sum_{j=1}^{n}\left|E\left(E\left(u\left(t_{j-1}, t_{j}\right)-1 \mid A_{t_{j-1}}\right) \mid A_{s}\right)\right| \leq \\
& \sum_{j=1}^{n} \quad E\left(\left|E\left(u\left(t_{j-1}, t_{j}\right)-1 \mid A_{t_{j-1}}\right)\right| A_{s}\right) \leq \\
& \\
& \\
& \sum_{j=1}^{n}\left(U_{1}\left(t_{j-1}, t_{j}\right)-1\right) \leq
\end{aligned}
$$

$$
\begin{aligned}
& U_{1}(s, t)-1 \leq \\
& \left(U_{1}(s, t)-1\right) U_{1}(o, s)= \\
& U_{1}(o, t)-U_{1}(o, s) .
\end{aligned}
$$

Choose $G_{1}(t)=U_{1}(0, t)-1$ and by Lemma III.1.5,

$$
\left|E\left(\sum_{s}^{t}(u-1) \mid A_{s}\right)\right| \leq G_{1}(t)-G_{1}(s)
$$

except on a set of measure zero. Thus $g \varepsilon \Gamma_{3}$.
Remark
Following line (3.11) in the previous proof, one could have applied Corollary II. 2.2 rather than Lemma II. 2.1 to obtain the following useful result.

Corol1ary III. 2.5
Suppose (u, H, H) is in $c l a s s T_{3}$ and $a \leq b$ in S. Let $U(s, t)=\Pi^{t}[1+d H]$ whenever $a \leq s \leq t \leq b$ and let $M=$ $\exp (H(b)-\stackrel{S}{H}(a))$. Then whenever $\tau \gg \sigma \gg\{a, b\}$, the following conditions hold except on a set of measure zero.
(i) $E\left(\left\{\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)\right\}^{2} \mid A_{a}\right) \leq$

$$
2 M\left\{\Sigma_{\sigma}(U-1)-\Sigma_{\tau}(U-1)\right\}
$$

(ii) $E\left(\left\{\sum_{\sigma}(u-1)-\sum_{a}^{b}(u-1)\right\}^{2} \mid A_{a}\right) \leq$

$$
2 \mathrm{M}\left\{\Sigma_{\sigma}(\mathrm{U}-1)-\sum^{\mathrm{b}}(\mathrm{U}-1)\right\} .
$$

Proof:
With the same notation as the proof of Lemma III.2.4 except that $H_{1}=H_{2}=H$ from the beginning, line (3.11) yields

$$
\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)=\sum_{j=1}^{m} x_{j} y_{j}
$$

Using the same sequences and subdivisions, but applying Corollary II.2.2 rather than Lemma II. 2.1 , one obtains

$$
\begin{align*}
& E\left(\left\{\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)\right\}^{2} \mid A_{a}\right) \leq \tag{3.13}\\
& 2 M \sum_{j=1}^{m}\left[U\left(s_{p(j)}, t_{j-1}\right)-1\right]\left[U\left(t_{j-1}, t_{j}\right)-1\right] \\
&=2 M\left\{\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)\right\}
\end{align*}
$$

rather than (3.11). Hence (i) is proved. Now, for each integer $n \geq 1$, let $\sigma(n)$ be a refinement of σ such that $\left|\left|\Sigma_{\sigma(n)}(u-1)-\sum_{a}^{b}(u-1)\right|\right|<\frac{1}{n^{2}}$. Note that for any subdivision т >> \{a,b\},
$\left|\left|\Sigma_{\tau}(u-1)\right|^{2}=\left|\left|\sum_{j=1}^{m} x_{j} y_{j}\right|\right|^{2} \quad\right.$ where $x_{j}=u\left(t_{j-1}, t_{j}\right)-1, y_{j}=1$.

Let X_{j}, Z_{j} be as in the proof of Lemma III. 2.4 but let $Y_{j}=1$. Then by Lemma II.2.1,

$$
\begin{aligned}
\| \Sigma_{\tau}(-1)| |^{2} & \leq M \Sigma_{\tau}[(U-1)+(U-1)]=2 M \Sigma_{\tau}(U-1) \\
& \leq 2 M(U(a, b)-1)
\end{aligned}
$$

Thus, by the reasoning in the proof of Theorem III.1.6, with $f=\sum_{a}(u-1), f_{n}=\Sigma_{\sigma(n)}(u-1)$, and $h=\Sigma_{\sigma}(u-1)$, we may apply Lemma III. 1.5 to obtain (ii).

Lemma III. 2.6
Suppose g is in class Γ_{3}, u is a member of class T_{3} such that $u(s, t)=\Pi[1+d g]$ for each pair (s, t) in Δ. Then $\sum^{t}(u-1)=g(t)^{s}-g(s)$ for each pair (s, t) in Δ. Proof:

Let $\left(g, G_{1}, G_{2}\right)$ be in class Γ_{3}. For convenience let $G=2 G_{1}+G_{2}$. Suppose the pair (a, b) is in Δ and let $\varepsilon>0$ be given. Let $\sigma \gg\{a, b\}$ be such that if $\tau \gg \sigma$, then

$$
\left|\left.\right|_{a} ^{b}(u-1)-\Sigma_{\tau}(u-1)\right| \left\lvert\,<\frac{\varepsilon}{3}\right.
$$

and

$$
\Sigma^{\mathrm{b}} \mathrm{GdG}-\Sigma_{\tau} G \mathrm{GdG}<\frac{\varepsilon^{2}}{18 \mathrm{M}}
$$

where $M=\exp \left(G_{1}(b)-G_{1}(a)\right)$. Now let $\tau \gg \sigma$ be such that if $\tau=\left\{t_{j}\right\}_{j=0}^{m}$ and $\sigma=\left\{s_{k}\right\}_{k=0}^{n}$ and $p(j)=\sup \left\{k \mid s_{k} \leq t_{j-1}\right\}$,
then

$$
\left|\left|u\left(s_{k-1}, s_{k}\right)-\prod_{p(j)=k-1}^{\Pi}\left[1+d g\left(t_{j-1}, t_{j}\right)\right]\right|\right|<\frac{\varepsilon}{3 n}
$$

for $1 \leq k \leq n$. This amounts to choosing a subdivision of each pair $\left(s_{k-1}, s_{k}\right)$, then uniting those subdivisions to form τ. Then,

$$
\begin{gathered}
\left|\left|\sum_{\sigma}(u-1)-\operatorname{dg}(a, b)\right|\right| \leq \\
\sum_{k=1}^{n}| | u\left(s_{k-1}, s_{k}\right)-\sum_{p(j)=k-1}^{\Pi}\left[1+d g\left(t_{j-1}, t_{j}\right)\right]| | \\
+\| \sum_{k=1}^{n}(p(j)=k-1
\end{gathered}
$$

Now, for $1 \leq j \leq m$, let $r(j)=\sup \left\{i \mid t_{i}=s_{p(j)}\right\}$. Then let
$x_{j}=\operatorname{dg}\left(t_{j-1}, t_{j}\right) \quad$ and $\quad y_{j}=\prod_{i=r(j)}^{j-1}\left[1+\operatorname{dg}\left(t_{i-1}, t_{i}\right)\right]-1$
Then $\sum_{k=1}^{n}\left\{\underset{p(j)=k-1}{n}\left[1+d g\left(t_{j-1}, t_{j}\right)\right]-1\right\}=\sum_{k=1}^{n} p(j)=\sum_{k-1}^{\sum} x_{j}\left(y_{j}+1\right)$.

Thus

$$
\left|\left|\Sigma_{\sigma}(u-1)-\operatorname{dg}(a, b)\right|\right| \leq \frac{\varepsilon}{3}+\left|\left|\sum_{j=1}^{m} x_{j} y_{j}\right|\right|
$$

Now let $X_{j}=\mathrm{dG}_{2}\left(\mathrm{t}_{\mathrm{j}-1}, \mathrm{t}_{\mathrm{j}}\right), \mathrm{Y}_{\mathrm{j}}=\underset{\substack{\mathrm{m} \\ \mathrm{m}(\mathrm{i})}}{\mathrm{m}}\left[1+\mathrm{dG}\left(\mathrm{t}_{\mathrm{i}-1}, \mathrm{t}_{\mathrm{i}}\right)\right]-1$, $Z_{j}=d G_{1}\left(t_{j-1}, t_{j}\right)$ and $A_{j}=A_{t_{j-1}}$ for $1 \leq j \leq m$. Then by Lemma II.2.1,

$$
\left\|\sum_{j=1}^{m} x_{j} y_{j}\right\|^{2} \leq M \sum_{j=1}^{m} Y_{j}\left[x_{j}+Z_{j}\right], M=\exp (G(b)-G(a))
$$

Now $Y_{j}=\sum_{i=r(j)}^{j-1} d G\left(t_{i-1}, t_{i}\right) \underset{k=r(j)}{i-1}\left[1+d G\left(t_{k-1}, t_{k}\right)\right]$

$$
\leq \operatorname{MdG}\left(t_{r(j)}, t_{j-I}\right)
$$

and $X_{j}+Y_{j} \leq d G\left(t_{j-1}, t_{j}\right)$.
Thus $\left\|\sum_{j=1}^{m} x_{j} y_{j}\right\| \|^{2} \leq M^{2} \sum_{j=1}^{m} d G\left(t_{r(j)}, t_{j-1}\right) d G\left(t_{j-1}, t_{j}\right)$

$$
\begin{aligned}
& =M^{2}\left\{\Sigma_{\tau} G d G-\Sigma_{\sigma} G d G\right\} \\
& <\frac{\varepsilon^{2}}{9}
\end{aligned}
$$

Thus $\left\|\Sigma_{\sigma}(u-1)-\operatorname{dg}(a, b)\right\|<\frac{2 \varepsilon}{3}$, and already

$$
\left\|\Sigma_{a}^{b}(u-1)-\Sigma_{\sigma}(u-1)\right\|<\frac{\varepsilon}{3} \text {, so }
$$

$$
\left.\left|\left.\right|_{a} ^{\sum^{b}}(u-1)-\operatorname{dg}(a, b)\right|\right\}<\varepsilon \text {. }
$$

b
Since $\varepsilon>0$ was arbitrary, it follows that $\Sigma(u-1)=d g(a, b)$. Remark

The situation with ε° is now as follows: There is a function, call it δ, from T_{3} to $\Gamma_{3}{ }^{\circ}$ given by

$$
\delta[u](t)=\sum_{0}^{t}(u-1), \quad \text { for each } t \text { in } S
$$

We also know that $\delta \cdot \varepsilon^{\circ}(\mathrm{g})=\mathrm{g}$ for any g in $\Gamma_{3}{ }^{\circ}$. It remains to show that ε° maps $\mathrm{r}_{3}{ }^{\circ}$ onto T_{3}. We demonstrate this by showing that $\varepsilon \cdot \delta[u]=u$ for each $u \varepsilon T_{3}$.
Lemma III. 2.7

Suppose u is in class T_{3} and g is a member of class $\Gamma_{3}{ }^{\circ}$ such that $g(t)=\sum_{0}{ }^{t}(u-1)$ for each t in S. Then $\Pi[1+d g]=u(s, t)$ for each pair (s, t) in Δ. | Proof: |
| :--- |

Let $\left(u, H_{1}, H_{2}\right)$ be in class T_{3}. For convenience, assume $\mathrm{H}_{1}=\mathrm{H}_{2}=\mathrm{H}$ (if not, let $\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}$, then $(u, H, H) \& T_{3}$, and let $U(s, t)=\pi[1+d H]$ for (s, t) in Δ. Suppose the pair (abb) is in Δ and let $\varepsilon>0$ be given. Let $\sigma \gg\{a, b\}$ be such that if $\tau \gg \sigma$, then

$$
\left|\left.\right|_{a} ^{m}[1+d g]-\Pi_{\tau}[1+d g]\right| \left\lvert\,<\frac{\varepsilon}{3}\right.
$$

and

$$
M_{2}\left\{\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)\right\}<\frac{\varepsilon^{2}}{9}
$$

where

$$
\begin{aligned}
& M_{1}=\exp (2 H(b)-2 H(a)) \text { and } \\
& M_{2}=4 M_{1}^{2} \exp \left(\left(1+2 M_{1}\right) d H(a, b)\right)
\end{aligned}
$$

Now let $\tau \gg \sigma$ be such that if $\tau=\left\{t_{j}\right\}_{j=0}^{m}$, $\sigma=\left\{s_{k}\right\}_{k=0}^{n}$, $p(j)=\sup \left\{k \mid s_{k} \leq t_{j-1}\right\}$ and $r(j)=\sup \left\{i \mid t_{i}=s_{p(j)}\right\}$, then
$E\left(\left\{\underset{p(j)}{\sum_{=k-1}}\left(u\left(t_{j-1}, t_{j}\right)-1\right)-d g\left(s_{k-1}, s_{k}\right)\right\}^{2} \mid A_{s_{k-1}}\right) \leq \frac{\varepsilon^{2}}{9 n^{2} M_{2} M_{3}}$
where M_{3} is the constant guaranteed by Lemma III.I.I part (i) such that $E\left(\left\{\pi_{\rho}[1+d g]\right\}^{2}\right) \leq M_{3}$ for any subdivision ρ of (a, b). As in the proof of the preceding lemma, this amounts to choosing a subdivision of each pair $\left(s_{k-1}, s_{k}\right)$ (such a subdivision exists by Corollary III.2.5) and uniting those subdivisions to form τ. For $l \leq j \leq m, \operatorname{let} x_{j}=u\left(t_{j-1}, t_{j}\right)-1$ and $y_{j}=u\left(a, t_{j-1}\right)$. For $1 \leq k \leq n$, let $u_{k}=1+$ $p(j)=\sum_{k-1}^{x_{j}}$. Then let $z_{j}=\prod_{i=1}^{p(j)} u_{i}$ for $1 \leq j \leq m$. Now
$(3.14)\left|\left|u(a, b)-\prod_{a}^{b}[1+d g]\right|\right| \leq\left|\left|u(a, b)-\prod_{k=1}^{n} u_{k}\right|\right|+$

$$
\left|\prod_{k=1}^{n} u_{k}-\Pi_{\sigma}[1+d g]\right|\left|+\left|\left|\Pi_{\sigma}[1+d g]-\pi_{a}^{b}[1+d g]\right|\right|\right.
$$

By the choice of σ, the last term on the right-hand side of (3.10) is less than $\frac{E}{3}$. Note that

$$
u(a, b)-1=\sum_{j=1}^{m}\left[u\left(a, t_{j}\right)-u\left(a, t_{j-1}\right)\right]=\sum_{j=1}^{m} x_{j} y_{j}
$$

Also,

$$
\prod_{k=1}^{n} u_{k}-1=\sum_{k=1}^{n}\left(\sum_{p(j)=k-1}^{\sum} x_{j}\right) \prod_{i=1}^{k-1} u_{i}=\sum_{j=1}^{n} x_{j} z_{j}
$$

Thus

$$
u(a, b)-\prod_{k=1}^{n} u_{k}=\sum_{j=1}^{m} x_{j}\left(y_{j}-z_{j}\right)
$$

We suppose, without loss of generality, that σ and τ do not contain repetitions, ie., $s_{k-1}<s_{k}$ and $t_{j-1}<t_{j}$ for $1 \leq j \leq m \underset{r(k)}{\text { and }} 1 \leq k \leq n$. Define $w_{0}=0$ and for $1 \leq k \leq n, w_{k}=\sum_{j=1}^{r(k)} x_{j}\left(y_{j}-z_{j}\right)$. Note that

$$
w_{n}=u(a, b)-\prod_{k=1}^{n} u_{k} \text { and }
$$

$$
\begin{aligned}
w_{k} & =u\left(a, s_{k}\right)-\prod_{i=1}^{k} u_{i} \\
& =y_{r(k)+1}{ }^{-z} r(k)+1
\end{aligned}
$$

For $1 \leq j \leq m$, define $X_{j}=z_{j}=U\left(t_{j-1}, t_{j}\right)-1, Y_{j}=M_{I}^{1 / 2}$, and $A_{j}=A_{t_{j-1}}$ and for $1 \leq k \leq n$ define $W_{k}=E\left(w_{k}^{2}\right)$.

Temporarily fix k. For $r(k-1) \leq j \leq r(k)$, let $v_{j}=y_{j}-z_{j}$. Thus $v_{r(k-1)+1}=w_{k-1}$. Also, $\underset{j-1}{ } z_{j}-z_{j-1}=0$ and $y_{j}^{-y_{j-1}}=x_{j-1} y_{j-1}$, thus $v_{j}=w_{k-1}+\underset{i=r(k-1)+1}{\sum} x_{i} y_{i}$. Let $v_{j}=E\left(v_{j}^{2}\right)$. Then by Lemma II.2.1,

$$
\begin{aligned}
& V_{j} \leq W_{k-1}^{j} \underset{i=r(k-1)+1}{\pi}\left[1+Z_{i}\right]+ \\
& \underset{i=r(k-1)+1}{M_{i}^{j}}\left[1+Z_{j}\right] \underset{i=r(k-1)+1}{\sum}\left[X_{j}+Z_{j}\right] Y_{j} \\
& \leq W_{k-1} U\left(s_{k-1}, t_{j-1}\right)+2 M_{1} \underset{i=r(k-1)+1}{\sum \sum}\left(U\left(t_{i-1}, t_{i}\right)-1\right) \\
& \leq \mathrm{U}\left(\mathrm{~s}_{\mathrm{k}-1}, \mathrm{~s}_{\mathrm{k}}\right) \mathrm{W}_{\mathrm{k}-1}+2 \mathrm{M}_{1}\left(\mathrm{U}\left(\mathrm{~s}_{\mathrm{k}-1}, \mathrm{t}_{\mathrm{j}-1}\right)-1\right)
\end{aligned}
$$

We may then apply Lemma II.2.1 to the equation

$$
w_{k}=w_{k-1}+\underset{j=r(k-1)+1}{\left.\sum_{j}^{\Sigma}\right)} \quad x_{j} v_{j} \quad \text { to obtain }
$$

$$
\begin{aligned}
& W_{k} \leq W_{k-1}^{r(k)} \underset{j=r(k)}{r(k)}\left[1+Z_{j}\right]+\underset{j=1}{[(k-1)+1}\left[1+Z_{j}\right] . \\
& \underset{\sum_{\sum}^{r(k)}}{r(k-1)+1}\left[X_{j}+Y_{j}\right]\left[V_{j}\right] \\
& \leq U\left(s_{k-1}, s_{k}\right) W_{k-1}+2 U\left(s_{k-1}, s_{k}\right)\left[U\left(s_{k-1}, s_{k}\right)-1\right] M_{1} W_{k-1} \\
& +4 M_{1}^{2} \underset{j=r(k-1)+1}{\sum_{k}(k)}\left(U\left(s_{k-1}, t_{j-1}\right)-1\right)\left(U\left(t_{j-1}, t_{j}\right)-1\right)
\end{aligned}
$$

Define $\left.N(s, t)=\exp \left(1+2 M_{1}\right) d H(s, t)\right)$. Thus, for any k, $1 \leq \mathrm{k} \leq \mathrm{n}$,

$$
\begin{align*}
& W_{k} \leq M\left(s_{k-1}, s_{k}\right) W_{k-1}+ \tag{3.15}\\
& 4 M_{1}^{2} \sum_{j=r(k-1)+1}^{r(k)}\left(U\left(s_{k-1}, t_{j-1}\right)-1\right)\left(U\left(t_{j-1}, t_{j}\right)-1\right) .
\end{align*}
$$

Here we have used the fact that if $a \geq 0$ and $b \geq 1$, then $e^{a b}-1 \geq b\left(e^{a}-1\right)$, hence $e^{(1+b) a} \geq e^{a} b\left(e^{a}-1\right)+e^{a}$ and $U(s, t) \leq$ $\exp (\mathrm{dH}(\mathrm{s}, \mathrm{t}))$ for $\mathrm{s} \leq \mathrm{t}$. We have also used, several times, the fact that if ρ is a subdivision of (s, t), then $\sum_{k=1}^{n}\left[U\left(r_{k-1}, r_{k}\right)-1\right] \leq U(s, t)-1$. We now app1y Lemma I. 2.2 to $\mathrm{k}=1$ inequality (3.15)) to obtain
(3.16)
$W_{n} \leq \sum_{k=1}^{n}\left\{4 M_{1}^{2} \underset{j=r(k-1)+1}{r(k)}\left(U\left(s_{k-1}, t_{j-1}\right)-l\right)\left(U\left(t_{j-1}, t_{j}\right)-1\right)\right\} M\left(s_{k}, b\right)$

$$
\begin{aligned}
\leq 4 M_{1}^{2} M(a, b) & \sum_{j=1}^{m}\left(U\left(t_{p(j)}, t_{j-1}\right)-1\right)\left(U\left(t_{j-1} t_{j}\right)-1\right) \\
& \leq M_{2}\left\{\Sigma_{\sigma}(u-1)-\Sigma_{\tau}(u-1)\right\} \\
& <\frac{\varepsilon^{2}}{9} .
\end{aligned}
$$

But $W_{n}=E\left(w_{n}^{2}\right)=\left\|u(a, b)-\prod_{k=1}^{n} u_{k}\right\|^{2}$. Thus the first term on the right-hand side of (3.14) is less than $\frac{\varepsilon}{3}$. Now, $\left|\left|\prod_{k=1}^{n} u_{k}-\Pi_{\sigma}[1+d g]\right|\right|=\left|\left|\sum_{k=1}^{n} a_{k} b_{k} c_{k}\right|\right|$

$$
\leq \sum_{k=1}^{n}| | a_{k} b_{k} c_{k}| |
$$

 and $b_{k}=\sum_{j=r(k-1)+1}^{\sum} x_{j}-d g\left(s_{k-1}, s_{k}\right)$. With the notation above,

$$
u_{k}=1+\sum_{j=r(k-1)+1}^{r(k)} x_{j} .
$$

Applying Corollary II. 2.2 (with $y_{j} \equiv 1$), one obtains

$$
\begin{aligned}
& \leq \mathrm{U}\left(\mathrm{~s}_{\mathrm{k}-1}, \mathrm{~s}_{\mathrm{k}}\right)\left[1+2\left(\mathrm{U}\left(\mathrm{~s}_{\mathrm{k}-1}, \mathrm{~s}_{\mathrm{k}}\right)-1\right)\right]
\end{aligned}
$$

Thus $E\left(u_{k}^{2} \mid A_{s_{k-1}}\right) \leq M\left(s_{k-1}, s_{k}\right)$, and

$$
E\left(c_{k}^{2} \mid A_{s_{k}}\right) \leq M\left(s_{k}, b\right) \leq M(a, b) \leq M_{2}
$$

The subdivision τ was chosen such that

$$
E\left(b_{k}^{2} \mid A_{s_{k-1}}\right)<\frac{\varepsilon^{2}}{9 n^{2} M_{2} M_{3}}
$$

and M_{3} was chosen so that

$$
E\left(c_{k}^{2}\right) \leq M_{3}
$$

Thus $\left\|a_{k} b_{k} c_{k} \mid\right\|^{2}<\frac{\varepsilon^{2}}{9 n^{2}}$ and

$$
\sum_{k=1}^{n}| | a_{k} b_{k} c_{k}| |<\frac{\varepsilon}{3}
$$

Thus the second term on the right-hand side of (3.14) is less than $\frac{\varepsilon}{3}$, and the entire right-hand side is less than ε. Since $\varepsilon>0$ was arbitrary, the left-hand side of (3.14) must be zero and the lemma is proved.

Remark

The preceding sequence of lemmas can be combined in the following theorem which provides the desired pairing between generators and evolutions:

Theorem III. 2.8
The following are equivalent:
(i) The pair (g, u) is a member of the function ε°.
(ii) g is a member of $r_{3}{ }^{\circ}$ and $u(s, t)=\pi_{s}{ }^{t}[1+d g]$ for each pair (s, t) in Δ.
(iii) u is in class T_{3} and $g(t)=\sum_{0}^{t}(u-1)$ for each t in S.

3. Solution of the Stochastic Integral Equation

In this section we show that the product integral generates a solution of integral equation (3.1) and that the solution is essentially unique.

Theorem III.3.1

Suppose g is a member of Γ_{3} and $u(s, t)=\pi[1+d g]$ for each pair in Δ. Then for each pair (s, t) in $\Delta, u(s, t)$ t is a version of $1+(L) s^{f} u(s, \cdot) d g$. Proof:

Fix (s, t) in Δ and let $\varepsilon>0$ be given. Let $\rho=\left\{r_{k}\right\}_{k=0}^{n}$ be a subdivision of (s, t) such that $M_{1}^{5}\left\{\Pi_{a}^{b}[1+d G]-\pi_{\rho}[1+G]\right\}$ $<\frac{\varepsilon^{2}}{4 M_{2}}$, where $\left(g, G_{1}, G_{2}\right) \varepsilon \Gamma_{3}, G=2 G_{1}+G_{2}, M_{1}=\exp (G(b)-G(a))$ and $M_{2}=\exp \left(G_{1}(b)-G_{1}(a)\right)[1+G(b)-G(a)]$. Now for each k, $1 \leq k \leq n$, define g^{k} by $g^{k}(t)=g(t)$ for $t \leq r_{k}, g^{k}(t)=$
$g\left(r_{k}\right)$ for $t \geq r_{k}$. Note that $\left(g^{k}, G_{1}, G_{2}\right) \varepsilon \Gamma_{3}$ for $1 \leq k \leq n$, $\pi_{s}^{t}\left[1+d g^{k}\right]=\int_{s}^{\mathrm{m}^{\mathrm{k}}}[1+\mathrm{dg}]$ and $\prod_{i=1}^{\mathrm{n}}\left[1+d g^{k}\left(r_{k-1}, r_{i}\right)\right]=$ k
$\prod_{i=1}^{\pi}\left[1+d g\left(r_{k-1}, r_{i}\right)\right] . \quad$ Applying part (v) of Theorem III.1.6 to each g^{k} yields
(3.17) $\left|\left\lvert\, u\left(s, r_{k}\right)-\prod_{i=1}^{k}\left[1+d g\left(r_{i-1}, r_{i}\right)| |^{2}<\frac{\varepsilon^{2}}{4 M_{2}}\right.\right.\right.$ for $1 \leq k \leq n$.

Note that

$$
\begin{aligned}
& \text { (3.18) }\left|\left|u(s, t)-1-(L) \int_{s}^{t} u(s, \cdot) d g\right|\right| \leq\left|\left|u(s, t)-\pi_{\rho}[1+d g]\right|\right| \\
& \quad+\| \pi_{\rho}[1+d g]-1-\sum_{k=1}^{n} \operatorname{dg}\left(r_{k-1}, r_{k}\right) \prod_{i=1}^{k-1}\left[1+d g\left(r_{i-1}, r_{i}\right)\right]| | \\
& \quad+\| \sum_{k=1}^{n} \operatorname{dg}\left(r_{k-1}, r_{k}\right)\left\{u\left(s, r_{k-1}\right)-\prod_{i=1}^{k-1}\left[1+d g\left(r_{i-1}, r_{i}\right)\right]| |\right.
\end{aligned}
$$

The first term of the right-hand side of (3.18) is less than $\frac{\varepsilon}{2}$ by inequality (3.17), noting that $M_{2} \geq 1$. The second term of the right-hand side of (3.14) is identically zero by Lemma I.2.1, part (i) (see also equation (1.1)). Indeed, it was this last observation which formed the basis of our investigation of the product integral as a solution of the integral equation.

To find a bound for the third term, let $x_{k}=\operatorname{dg}\left(r_{k-1}, r_{k}\right)$, $y_{k}=u\left(s, r_{k-1}\right)-\prod_{i=1}\left[1+d g\left(r_{i-1}, r_{i}\right)\right], X_{k}=d G_{2}\left(r_{k-1}, r_{k}\right)$, $Z_{k}=d G_{1}\left(r_{k-1}, r_{k}\right)$ and $Y_{k}=\frac{\varepsilon^{2}}{4 M_{2}}$ for $1 \leq k \leq n$. Then these sequences satisfy the hypotheses of Lemma II.2.1. By that lemma, the third term of (3.18) satisfies the bound

$$
\begin{aligned}
\left|\left|\sum_{k=1}^{n} x_{k} y_{k}\right|\right|^{2} & \leq \prod_{k=1}^{n}\left[1+z_{k}\right] \sum_{k=1}^{n}\left(x_{k}+z_{k}\right) \frac{\varepsilon^{2}}{4 M_{2}} \\
& \leq \frac{\varepsilon^{2}}{4}
\end{aligned}
$$

The last inequality follows from the fact that

$$
\begin{aligned}
& \prod_{k=1}^{n}\left[1+Z_{k}\right] \sum_{k=1}^{n}\left(X_{k}+Z_{k}\right) \leq \exp \left(G_{1}(b)-G_{1}(a)\right)\left[d G_{1}(a, b)+d G_{2}(a, b)\right] \\
& \leq M_{2} .
\end{aligned}
$$

Thus the third term on the right-hand side of (3.18) is less than $\frac{\varepsilon}{2}$. Since $\varepsilon>0$ was arbitrary, the left-hand side of (3.18) must be zero and the theorem is proved.

Definition III.3.2
If a is in S, z is in $L^{2}\left(\Omega, A_{a}, P\right)$ and g is in class Γ_{3}, then a solution of

$$
\begin{equation*}
f(t)=z+(L) \int_{a}^{t} f d g, \quad t \geq a \tag{3.19}
\end{equation*}
$$

of class Γ_{o} is a function f in $c l a s s \Gamma_{o}$ such that for every $t \geq a, f(t)$ is a version of $z+(L) \int^{t} f d g$.

Theorem III.3.3
If a is in S and g is in class Γ_{3}, then any solution of

$$
\begin{equation*}
f(t)=(L) \int_{a}^{t} f d g, t \geq a \tag{3.20}
\end{equation*}
$$

of class Γ_{o} is equivalent to zero for each t.
Proof:
Suppose $\left(g, G_{1}, G_{2}\right) \varepsilon \Gamma_{3}$ and $(a, b) \varepsilon \Delta$. Let $G=2 G_{1}+G_{2}$.
If f satisfies (3.20) and $N_{t}(f)$ is as in Corollary II. 2.5 , then $\left||f(t)|^{2} \leq M(L) \int_{a}^{t} N_{a, s}(f) d G(s), a \leq t \leq b\right.$. For $a \leq s \leq t \leq b,\left||f(s)|^{2} \leq M(L) \int_{a}^{s} N_{a},(f) d G \leq M(L) \int_{a}^{t} N_{a} \cdot(f) d G\right.$, thus

$$
N_{a, t}(f) \leq M(L) \int_{a}^{t} N_{a,} \text { (f)dG. }
$$

Then by a usual Gronwall lemma, e.g. Herod [33], $N_{a, t}(f) \equiv 0$. Thus $||f(t)||=0$ for $a \leq t \leq b$. Since b was arbitrary, $||f(t)||=0$ for all $t \geq a$.

Theorem III.3.4
Suppose a is in S, z is in $L^{2}\left(\Omega, A_{a}, P\right), g$ is in class Γ_{3} and $u(s, t)=\Pi[1+d g]$ for each pair (s, t) in Δ. Then $f(t)=u(s, t) z$ is a solution of integral equation (3.19).

Moreover, if f_{1} is another solution, then $f_{1}(t)=f(t)$ except on a set of measure zero for each $t \geq a$. Proof:
Let f be as stated above, then (L) $\int^{t} f d g=$
$\left[(L) \int_{a}^{t} u(s) d g,\right] z$ since this relation holds for every approximating sum [(L) $\Sigma u(s) d g]$,$z . In view of Theorem III.3.1,$ f must be a solution of (3.19). Now suppose f and f_{1} are two solutions of (3.19), then $f_{2}=f-f_{1}$ is a solution of (3.20). Thus $\left\|f(t)-f_{1}(t)\right\|=0$ for each $t \geq a$ and the theorem is proved.

Remark
The fact that any solution of (3.19) can be determined only up to a set of measure zero, possibly a different set for each t, motivates the search in the next section for a "well-behaved" version of the product integral.
4. Separable Versions of the Product Integral and Uniform Convergence of Paths
Using the notion of separability (see Doob [17]) and a theorem of Orey [16] on F-processes (see Theorem II.3.4), we produce a sequence of approximations of the product integral whose path converge uniformly except on a set of measure zero to a separable version of the product integral. For the remainder of this section, fix $S=[a, b],(g, G, G)$ in class Γ_{3}, let u be the function in class T_{3} such that $u(s, t)={ }_{s}^{\pi}[1+d g]$ whenever $a \leq s \leq t \leq b$ and suppose
(u, G, G) is in class T_{3}. $\operatorname{Let} U(s, t)=\Pi^{t}[1+d G]$ whenever $a \leq s \leq t \leq b$. If $\rho=\left\{r_{k}\right\}_{k=0}^{n}$ is a subdivision of the pair $(a, b), \operatorname{let} u_{\rho}(a, t)=\prod_{k=0}\left[1+\operatorname{dg}\left(r_{k-1}, r_{k}\right)\right] \cdot\left[1+\operatorname{dg}\left(r_{m}, t\right)\right]$ whenever $r_{m} \leq t \leq r_{m+1}$. Define $h_{\rho}(t)=u(a, t)-u_{\rho}(a, t)$ and $k_{\rho}(t)=$ $\left[h_{\rho}(t)\right]^{2}$ for $a \leq t \leq b$.

Now suppose $\rho \gg\{a, b\}$ and $f i x(s, t)$ in Δ such that $r_{m} \leq s \leq t \leq r_{m+1}$. Abbreviate r_{m} by r. Then

$$
\begin{gathered}
\left|E\left(h(t)-h(s) \mid A_{s}\right)\right|= \\
\left|E\left(u(a, s)[u(s, t)-1]+u_{\rho}(a, r) d g(s, t) \mid A_{s}\right)\right| \\
\leq|u(a, s)|(U(s, t)-1)+\left|u_{\rho}(a, r)\right| d G(s, t)
\end{gathered}
$$

except on a set of measure zero. Let $M_{1}=U(a, b)$. Then

$$
\begin{gathered}
E\left(\left|E\left(h_{\rho}(s) d h_{\rho}(s, t) \mid A_{s}\right)\right|\right) \\
\leq E\left(\left|h_{\rho}(s)\right|\left\{|u(a, s)|+\left|u_{\rho}(a, s)\right|\right\}\right)(U(s, t)-1+d G(s, t)) \\
\leq 4 \sqrt{M_{1}} \sqrt{E\left(k_{\rho}(s)\right)}(U(s, t)-1)
\end{gathered}
$$

Lemma III. 4.1
Let $\varepsilon>0$ be given. Then there is a subdivision ρ of the pair (abb) such that if $\tau \gg \rho$ and $\left.\tau=\left\{t_{j}\right\}\right\}_{j=0}^{m}$, then
(3.21) $\sum_{j=1}^{m} E\left(\left|E\left(h_{\rho}\left(t_{j-1}\right)\left[h_{\rho}\left(t_{j}\right)-h_{\rho}\left(t_{j-1}\right)\right] \mid A_{t_{j-1}}\right)\right|\right)<\varepsilon$.

Proof:

$$
\text { Let } \varepsilon_{1}=\varepsilon /\left(4 \sqrt{\mathrm{M}_{1}}[U(\mathrm{a}, \mathrm{~b})-1]\right) \text {. By Lemma II.3.3 (see }
$$

also the proof of Theorem III.3.1), choose ρ such that $\left(k_{\rho}(s)\right)<\varepsilon_{1}^{2}$ for each $s, a \leq s \leq b$. Then

$$
\begin{gathered}
E\left(\left|E\left(h_{\rho}\left(t_{j-1}\right)\left[h_{\rho}\left(t_{j}\right)-h_{\rho}\left(t_{j-1}\right)\right] \mid A_{t_{j-1}}\right)\right|\right) \\
\leq 4 \sqrt{M_{1}} \varepsilon_{1}\left[U\left(t_{j-1}, t_{j}\right)-1\right]
\end{gathered}
$$

Thus the left-hand side of (3.17) does not exceed

$$
\frac{4 \sqrt{M_{1}} \Sigma_{\tau}(\mathrm{U}-1) \varepsilon}{4 \sqrt{\mathrm{M}_{1}}[\mathrm{U}(\mathrm{a}, \mathrm{~b})-1]}
$$

The conclusion follows from the identity $\Sigma_{\tau}(u-1) \leq U(a, b)-1$. Lemma III. 4.2

Let $\varepsilon>0$ be given. Then there is a subdivision ρ of the pair (a, b) such that if $\tau \gg \rho$ and $\tau=\left\{t_{j}\right\}_{j=0}^{m}$, then

$$
\begin{equation*}
\sum_{j=1}^{m} E\left(E\left(\left[d h_{\rho}\left(t_{j-1}, t_{j}\right)\right]^{2} \mid A_{t_{j-1}}\right)\right)<\varepsilon . \tag{3.22}
\end{equation*}
$$

Proof:
Suppose that $\rho \gg\{a, b\}$ and $r=r_{k} \leq s \leq t \leq r_{k+1}$ for
some k. Then

$$
\begin{gathered}
h_{\rho}(t)-h_{\rho}(s)=u(a, r)[u(r, s)-1][u(s, t)-1]+ \\
{\left[u(a, r)-u_{\rho}(a, r)\right][u(s, t)-1]+u_{\rho}(a, r)[u(s, t)-1-d g(s, t)]}
\end{gathered}
$$

and
(3.23) $\quad\left[d h_{\rho}(s, t)\right]^{2}=u^{2}(a, r)[u(r, s)-1]^{2}[u(s, t)-1]^{2}+$ $h_{\rho}^{2}(r)[u(s, t)-1]^{2}+u_{\rho}^{2}(a, r)[u(s, t)-1-d g(s, t)]^{2}+$
$2 u(a, r) h_{\rho}(r)[u(r, s)-1][u(s, t)-1]^{2}+2 u(a, r) u_{\rho}(a, r)[u(r, s)-1]$.
$[u(s, t)-1-d g(s, t)]+2 u(a, r) h_{\rho}(r)[u(s, t)-1][u(s, t)-1-d g(s, t)]$

The six terms on the right-hand side of (3.23) will be denoted $T_{i}(r, s, t), i=1,2,3,4,5,6$, respectively. Note that
$E\left(E\left(\left[d h_{\rho}(s, t)\right]^{2} \mid A_{s}\right)\right)=\sum_{i=1}^{6} E\left(E\left(T_{i}(r, s, t) \mid A_{s}\right)\right)$.

Step 1

$$
\begin{aligned}
E\left(E\left(T_{1}(r, s, t) \mid A_{s}\right)\right) & \left.\leq E\left(u^{2}(a, r)(u(r, s)-1)^{2}\right)\right)\{U(s, t)-1\} \\
& \leq E\left(u^{2}(a, r)\right)(U(r, s)-1)(U(s, t)-1)
\end{aligned}
$$

(3.24) So $E\left(E\left(T_{1}(r, s, t) \mid A_{s}\right)\right) \leq M(U(r, s)-1)(U(s, t)-1)$
where $M=\exp (G(b)-G(a))$
Step 2

$$
\begin{equation*}
E\left(E\left(T_{2}(r, s, t) \mid A_{s}\right)\right) \leq E\left(h_{\rho}^{2}(r)\right)(U(s, t)-1) \tag{3.25}
\end{equation*}
$$

Step 3

$$
E\left(E\left(T_{3}(r, s, t) \mid A_{s}\right)\right) \leq E\left(u_{\rho}^{2}(a, r)\right) M(U(s, t)-1-d G(s, t))
$$

$$
\begin{equation*}
\leq M^{2}(U(s, t)-1-d G(s, t)) \tag{3.26}
\end{equation*}
$$

Step 4

$$
E\left(E\left(T_{4}(r, s, t) \mid A_{s}\right)\right) \leq 2 E\left(\left|u(a, r) h_{\rho}(r)(u(r, s)-1)\right|\right)(U(s, t)-1)
$$

$$
\leq 2 \sqrt{E\left(h^{2}(r)\right.} \sqrt{E\left(u^{2}(a, r)(u(r, s)-1)^{2}\right)}(U(s, t)-1) .
$$

But $E\left(u^{2}(a, r)(u(r, s)-1)^{2}\right)=E\left(u^{2}(a, r) E\left((u(r, s)-1)^{2} \mid A_{r}\right)\right)$

$$
\begin{aligned}
& \leq E\left(u^{2}(a, r)\right)(U(r, s)-1) \\
& \leq M(M-1) .
\end{aligned}
$$

(3.27) So $E\left(E\left(T T_{4}(r, s, t) \mid A_{s}\right)\right) \leq \sqrt{E\left(h^{2}(r)\right.}(2 \sqrt{M(M-T)})(U(s, t)-1)$

Step 5

$$
\begin{aligned}
& E\left(E\left(T_{5}(r, s, t) \mid A_{s}\right)\right)=E\left(E\left(T_{5}(r, s, t) \mid A_{r}\right)\right) \\
& \leq 2 E\left(\left|u(a, r) u_{\rho}(a, r)\right| E\left(|u(r, s)-1||u(s, t)-1-d g(s, t)| \mid A_{r}\right)\right) \\
& \leq E\left(| u (a , r) u _ { \rho } (a , r) | E \left(\left\{(u(r, s)-1)^{2}(u(s, t)-1)^{2}+(u(s, t)-1-\right.\right.\right. \\
& \left.\left.\left.\quad \operatorname{dg}(s, t))^{2}\right\} \mid A_{r}\right)\right)
\end{aligned}
$$

(3.28)

$$
\leq M\{(U(r, s)-1)(U(s, t)-1)+M(U(s, t)-1-d G(s, t))\} .
$$

Step 6
$E\left(E\left(T_{6}(r, s, t) \mid A_{s}\right)\right) \leq 2 E\left(\left|u(a, r) h_{\rho}(r)\right| E(|u(s, t)-1| \mid u(s, t)-1-\right.$

$$
\begin{gathered}
\left.d g(s, t)\left|\mid A_{s}\right)\right) \\
\leq 2 E\left(\left|u(a, r) h_{\rho}(r)\right| .\right. \\
\sqrt{\left.E\left((u(s, t)-1)^{2} \mid A_{s}\right) E\left((u(s, t)-1-d g(s, t))^{2} \mid A_{s}\right)\right)}
\end{gathered}
$$

$$
\leq 2 \sqrt{M} \sqrt{E\left(h_{\rho}^{2}(r)\right)} \sqrt{U(s, t)-1} \sqrt{(U(s, t)-1-d G(s, t)) M}
$$

$(3.29) \leq 2 M \sqrt{E\left(h^{2}(r)\right.} \quad(U(s, t)-1)$.

Now let $\varepsilon>0$ be given. Choose $\rho \gg\{a, b\}$ such that if $\tau \gg \rho$, then each of the following conditions holds:

$$
\begin{equation*}
E\left(h_{\rho}^{2}(s)\right)<\min \left\{\varepsilon, \varepsilon^{2}\right\} / 144 M^{4} \tag{3.30}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\Sigma_{\tau}(U-1)-\Sigma_{\rho}(U-1)\right\}<\varepsilon / 12 M \tag{3.31}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\Sigma_{\tau}(\mathrm{U}-1)-\operatorname{dG}(\mathrm{a}, \mathrm{~b})\right\}<\varepsilon / 12 \mathrm{M}^{2} . \tag{3.32}
\end{equation*}
$$

Note that $\Sigma_{\tau}(U-1) \leq U(a, b)-1<M$. It now follows that if τ is a refinement of $\rho \underset{6}{\text { with }} \tau=\left\{t_{j}\right\}_{j=0}^{m}$ and $p(j)=$ $\sup \left\{k \mid r_{k} \leq t_{j-1}\right\}$, then $\sum_{i=1} \sum_{j=1} E\left(E\left(t_{i}\left(r_{p(j)}, t_{j-1}, t_{j}\right) A_{t_{j-1}}\right)\right)$ $<\sum_{i=1}^{6} \varepsilon / 6=\varepsilon$.

Theorem III. 4. 3
Suppose $a \leq b$ in S, g is in class Γ_{3}, and u is the function in class T_{3} such that $u(s, t)=\pi_{s}^{t}[1+d g]$ whenever (s, t) is in Δ. Then for each positive integer n, there is a subdivision $\sigma(n)$ of the pair (abb) such that if $\tau \gg \sigma(n)$ and $\tau=\left\{t_{j}\right\}_{j=0}^{n}$, then

$$
\begin{equation*}
\sum_{j=1}^{m} E\left(\left|E\left(d k_{n}\left(t_{j-1}, t_{j}\right) \mid A_{t_{j-1}}\right)\right|\right)<1 / n^{4} \quad \text { and } \tag{3.33}
\end{equation*}
$$

(3.34) $E\left(k_{n}(b)\right)<\frac{1}{n^{4}}$, where $k_{n}=k_{\sigma(n)}$.

Proof:
Fix $n>1$ and let h and k denote $h_{\sigma(n)}$ and $k_{\sigma}(n)$ respectively. Note that for $s \leq t, k(t)-k(s)=h^{2}(t)-h^{2}(s)=$ $2 h(s)\left(h(t)-h(s)+(h(t)-h(s))^{2}\right.$. Also,

$$
\begin{aligned}
E\left(\left|E\left(d k(s, t) \mid A_{s}\right)\right|\right)= & 2 E\left(\left|E\left(h(s) d h(s, t) \mid A_{s}\right)\right|\right)+ \\
& E\left(E\left([d h(s, t)]^{2} \mid A_{s}\right)\right) .
\end{aligned}
$$

Conclusion (3.33) of the theorem follows immediately from Lemma III.4.1 and Lemma III.4.2. Thus k_{n} is an F-process with F-bound $1 / n^{4}$. Conclusion (3.34) follows from part (v) of Theorem III.1.6.

Theorem III. 4.4
Suppose $a \leq b$ in $S, \underset{t}{g}$ is in class Γ_{3}, u is that member of T_{3} such that $u(s, t)=\pi[1+d g]$ whenever $s \leq t$ in S, and $\{\sigma(n)\}_{n=1}^{\infty}$ is a sequence of subdivisions of (a,b) which satisfy the conclusions of Theorem III.4.3. Suppose, without loss of generality that $\sigma(n+1) \gg \sigma(n)$ for each n. For each n, let u_{n} denote a separable version of $u_{\sigma(n)}$, and let u_{o} denote a separable version of u. Then for each n,

$$
P\left[\sup _{a \leq s \leq b}\left[u_{0}(0, s)-u_{n}(0, s)\right]^{2} \geq \frac{1}{n^{2}}\right] \leq 2 / n^{2} .
$$

Proof:
Apply Theorem III.4.3 and Theorem II. 3.4 (Orey [16], Theorem 2.1, p. 303). Now by an application of the Bore1Cantelli lemma the following theorem holds. Theorem III. 4.5

With the assumptions and definitions of Theorem III.4.4, the paths of the processes $u_{n}(a, \cdot)$ converge uniformly to the paths of the process $u_{0}(a, \cdot)$ except on a set of measure zero.

CHAPTER IV

APPLICATIONS AND EXAMPLES

We now offer several examples which demonstrate the applicability of the stochastic left Cauchy-Stieltjes integral and the use of the product integral as the representation of the solution to the linear stochastic integral equation

$$
\begin{equation*}
z(t)=z(a)+(L) \int_{a}^{t} z d g . \tag{4.1}
\end{equation*}
$$

Section 1 shows that g may be chosen as a separable Brownian motion process and that the product integral generates the same solution of (4.1) (with a stochastic left CauchyStieltjes integral) as previous methods yield in the case where the integral in (4.1) is an Itô or belated integral. Section 2 demonstrates the applicability of the integral equation (4.1) to a situation where g has both fixed and moving discontinuities. Section 3 shows a situation where g has only moving discontinuities, but G_{1} and G_{2} cannot assume the form $G(t)=K t$ for some constant K.

1. Brownian Motion

Let S be the interval $[0,1]$ and $1 e t b$ denote a separable Brownian motion process with $\sigma^{2}=1$. Thus
(i) $b(t)-b(s)$ is normally distributed with mean 0 and standard deviation $\sqrt{\mid t-s} \mid$.
(ii) A_{s} is the σ-algebra generated by $b(t)$ for $t \leq s$.
(iii) $b(t)-b(s)$ is independent of A_{s} for $s \leq t$. (iv) We assume that $\mathrm{b}(0) \equiv 0$.
(v) The paths of b are almost surely continuous.

Let I denote the identity function on $[0,1]$. Then $(b, 0, I)$ is an element of Γ_{3}. The computation on pages 33 and 34 of McShane [13] is sufficient to show that (L) \int bdb $=$ $\left\{b^{2}(t)-b^{2}(s)-(t-s)\right\} / 2$ and that $(R) \int_{s}^{t} b d b=\left\{b^{2}(t)^{s}-b^{2}(s)+\right.$ ($t-s)\} / 2$. It is interesting to note that the value of the right integral could have been derived from the value of the left integral by formula (i) (integration-by-parts) of Lemma II.1.4.

Before investigating the product integral, we need to record these well-known facts.

Lemma IV.1.1
With S and b as defined above, the following hold for $\mathrm{s} \leq \mathrm{t}$ and any positive integer n .
(i) $E\left(\{d b(s, t)\}^{2 n} \mid A_{s}\right)=1 \cdot 3 \cdot 5 \cdots(2 n-1)(t-s)^{n}$,
(ii) $E\left(\{d b(s, t)\}^{2 n-1} \mid A_{s}\right)=0$,
(iii) $E\left(\exp (d b(s, t)) \mid A_{s}\right)=\exp ((t-s) / 2)$.

It is well known in the theory of Ito stochastic integrals (see McKean [34], page 33) that the solution of the Ito integral equation

$$
\begin{equation*}
z(t)=1+\int_{s}^{t} z d b \tag{4.2}
\end{equation*}
$$

is $z(t)=\exp (b(t)-b(s)-(t-s) / 2)$. We now show that this solution also holds when the integral in (4.2) is a stochastic left Cauchy integral and z is the product integral solution. For $s \leq t$ in S, define $u(s, t)=\exp (b(t)-b(s)-(t-s) / 2)$. Then u is in class T_{1} (see definition III.2.1). Lemma IV.1.1 also shows that u is in class T_{3}. Rather than showing directly that $u(s, t)=\pi[1+d b]$, we take the easier route of showing that $\mathrm{db}(\mathrm{s}, \mathrm{t})=\Sigma(\mathrm{u}-1)$ and invoking Theorem III.2.8.

Proposition IV.1. 2
With u and b as defined above, $\Sigma^{t}(u-1)=d b(s, t)$ whenever $s \leq t$ in S.
Proof:
Let $a \leq c$ in S be given and let $\tau=\left\{t_{j}\right\}_{j=0}^{n}$ be a subdivision of the pair (a, c). Then $u\left(t_{j-1}, t_{j}\right)=$ $\exp \left(d b\left(t_{j-1}, t_{j}\right)-\left(t_{j}-t_{j-1}\right) / 2\right)$ for $1 \leq j \leq n$. Let x_{j} and y_{j} denote $d b\left(t_{j-1}, t_{j}\right)$ and $\left(t_{j}-t_{j-I}\right) / 2$ respectively for $1 \leq j \leq n$. It is sufficient to show that

$$
D_{\tau}=E\left(\left\{\sum_{j=1}^{n}\left[\exp \left(x_{j}-y_{j}\right)-1-x_{j}\right]\right\}^{2}\right)
$$

converges to zero along the directed set of subdivisions. We note that $\exp \left(x_{j}-y_{j}\right)-1-x_{j}=\sum_{k=1}^{4} T_{j}^{k}$ where

$$
\begin{aligned}
& T_{j}^{1}=-y_{j}+x_{j}^{2} / 2 \\
& T_{j}^{2}=-x_{j} y_{j}-x_{j}^{2} y_{j} / 2 \\
& T_{j}^{3}=\left(1+x_{j}+x_{j}^{2} / 2\right) \sum_{M=2}^{\infty}\left(-y_{j}\right)^{m} / m! \\
& T_{j}^{4}=\exp \left(-y_{j}\right) \sum_{m=3}^{\infty} x_{j}^{m} / m!
\end{aligned}
$$

Let $D_{\tau}^{k}=E\left\{\sum_{j=1}^{m} T_{j}^{k}\right\}$ for $k=1,2,3,4$ and note that
$D_{\tau} \leq 4 \sum_{k=1}^{4} D_{\tau}^{k}$. We now approximate D_{τ}^{k} for $k=1,2,3,4$.
Note that

$$
D_{\tau}^{1}=E\left(\left\{\sum_{j=1}^{n} x_{j}^{2} / 2-y_{j}\right\}^{2}\right)
$$

Noting that $E\left(x_{j}^{2} / 2-y_{i}\right)=0$ and $E\left(\left[x_{j}^{2} / 2-y_{j}\right]^{2}\right)=E\left(x_{j}^{4} / 4\right)-$ $2 y_{j} E\left(x_{j}^{2} / 2\right)+y_{j}^{2}=3\left(t_{j}-t_{j-1}\right)^{2} / 4-y_{j}\left(t_{j}-t_{j-1}\right)+y_{j}^{2}=3 y_{j}^{2}-2 y_{j}^{2}+y_{j}^{2}=$ $2 y_{j}^{2}$, one has, from Lemma II.2.1,

$$
D_{\tau}^{1}=\sum_{j=1}^{n} 2 y_{j}^{2}
$$

Now consider

$$
D_{\tau}^{2}=E\left(\left\{\sum_{j=1}^{n}-y_{j}\left(x_{j}+x_{j}^{2} / 2\right)\right\}^{2}\right)
$$

Let $Y_{j}=y_{j}^{2}$. Note that $E\left(\left(x_{j}+x_{j}^{2} / 2\right)^{2}\right)=E\left(x_{j}^{2}+x_{j}^{3}+x_{j}^{4} / 4\right)=$
$\left(t_{j}-t_{j-1}\right)+3 / 4\left(t_{j}-t_{j-1}\right)^{2} \leq 7 / 4\left(t_{j}-t_{j-1}\right)=7 / 2 y_{j}$. Then choose $X_{j}=7 / 2 y_{j}, z_{j}=y_{j}$. It follows from Lemma II. 2.1 that

$$
D_{\tau}^{2} \leq \exp (1 / 2) \sum_{j=1}^{n} 9 / 2 y_{j}^{3}
$$

For $k=3$,

$$
\begin{gathered}
D_{\tau}^{3}=E\left(\left\{\sum_{j=1}^{n}\left(1+x_{j}+x_{j}^{2} / 2\right) \sum_{m=2}^{\infty} y_{j}^{m} / m!\right\}^{2}\right) \\
\text { Let } Y_{j}=y_{j}^{4} e^{2} \geq y_{j}^{4} \exp \left(2 y_{j}\right) \geq\left(\exp \left(y_{j}\right)-1-y_{j}\right)^{2} \text {. Let } \\
X_{j}=15 / 4 \geq 1+2\left(t_{j}-t_{j-1}\right)+3 / 4\left(t_{j}-t_{j-1}\right)^{2}=E\left(\left[1+x_{j}+x_{j}^{2} / 2\right]^{2}\right) . \\
\text { Also, let } z_{j}=3 / 2 \geq\left|E\left(1+x_{j}+x_{j}^{2} / 2\right)\right| . \text { Then by Lemma II.2.1, } \\
\qquad D_{\tau}^{3} \leq 21 / 4 \exp (2) \sum_{j=1}^{n} y_{j}^{4} .
\end{gathered}
$$

Finally, consider

$$
D_{\tau}^{4}=E\left(\left\{\sum_{j=1}^{n} \exp \left(-y_{j}\right)\left[\exp \left(x_{j}\right)-1-x_{j}-x_{j}^{2} / 2\right]\right\}^{2}\right)
$$

Let $Y_{j}=1$ and $z_{j}=1 / 2 y_{j}^{2} \geq \exp \left(y_{j}\right)-1-y_{j}$. We have the following inequality:

$$
\begin{aligned}
& E\left(\left\{\sum_{m=3}^{\infty}\left[d b\left(t_{j-1}, t_{j}\right)\right]^{m} / m!\right\}^{2}\right) \\
& =E\left(\sum_{k=0}^{\infty} \sum_{j=1}^{k} x_{j}^{k+6} /(j+3)!(k-j+3)!\right) \\
& =E\left(\sum_{k=0}^{\infty} \sum_{j=1}^{2 k} x_{j}^{2 k+6} /(j+3)!(2 k-j+3)!\right) \\
& =\sum_{k=0}^{\infty} \sum_{j=1}^{2 k}\left(1 \cdot 3 \cdot 5 \cdots(2 k+5)\left(t_{j}-t_{j-1}\right)^{k+3} /(j+3)!(2 k-j+3)!\right. \\
& =\sum_{k=0}^{\infty} \sum_{j=1}^{\sum}(2 k+6)!\left(t_{j}-t_{j-1}\right)^{k+3} /(j+3)!(2 k-j+3)!2^{k+3}(k+3)! \\
& \leq \sum_{k=0}^{\infty} 2^{2 k+6}\left(t_{j}-t_{j-1}\right)^{k+3} / 2^{k+3}(k+3)! \\
& =\exp \left(2\left(t_{j}-t_{j-1}\right)\right)-1-2\left(t_{j}-t_{j-1}\right)-2\left(t_{j}-t_{j-1}\right)^{2} \\
& \leq 8 \exp (2)\left(t_{j}-t_{j-1}\right)^{3 / 6} .
\end{aligned}
$$

Choose $X_{j}=\left(8 e^{2} / 3\right) y_{j}^{3}$. Then by Lemma II.2.1,

$$
D_{\tau}^{4} \leq \sum_{i=1}^{n}\left\{(1 / 2) y_{j}^{2}+\left(8 e^{2} / 3\right) y_{j}^{3}\right\}
$$

Since $\sum_{j=1}^{n}\left(y_{j}\right)^{m}, m \geq 2$, can be made arbitrarily small for sufficiently fine subdivisions, it follows that D_{τ}^{k}, $k=1,2,3,4$, and hence D_{τ} can be made arbitrarily small for sufficiently fine subdivisions. Thus for every $\varepsilon>0$, there is a subdivision of the pair (a,b) such that if τ is a refinement of σ, then

$$
\left|\left|\Sigma_{\tau}(u-1)-d b(a, c)\right|\right|<\varepsilon
$$

Hence $\sum^{\sum^{t}(u-1)=d b(s, t) \text { whenever } s \leq t \text { in }[0,1] .}$
Then by Theorem III. 2.8 , the pair (b, $u)$ is in the mapping ε°. Hence u is the solution of (4.1) where the integral is interpreted as the stochastic left Cauchy integral.

2. A Process with Fixed and Moving Discontinuities

We consider a hypothetical economic example in which an investment receives random increments at fixed times and random decrements at exponentially distributed times. Let $\mathrm{S}=$ $[0, \infty)$ and let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-negative independent, identically-distributed random variables with $E\left(I_{n}\right)=$ $I_{o} \varepsilon(0, \infty)$ and $E\left(I_{n}^{2}\right)=J_{o}$ for $n \geq 1$. We consider I_{n} as the interest paid at time $t=n$ for each $n \varepsilon N$. Let $\left\{S_{n}\right\}_{n=1}^{\infty}$
be a non-decreasing sequence of random variables in S such that the sequence $R_{n}=S_{n-1}-S_{n}, S_{o} \equiv 0$ is independent and identically distributed with an exponential distribution of parameter λ. Thus $N(t)=\max \left\{n \mid S_{n} \leq t\right\}$ is a Poisson process with mean $1 / \lambda$. Let $\left\{D_{n}\right\}_{n=1}^{\infty}$ be a sequence of independent, identically distributed random variables with range in $(0,1)$, $E\left(D_{n}\right)=D_{o} \varepsilon(0,1)$ and $E\left(D_{n}^{2}\right)=C_{o}$ for $n \varepsilon N$. We consider D_{n} as the devaluation at time S_{n}.

$$
\text { Let } g(t)=\sum_{n<t}^{\sum} I_{n}-\sum_{n=1}^{N(t)} D_{n} \text {. If } z(t) \text { represents the }
$$

value of a one dollar investment at time t, then $z\left(n^{+}\right)=$ $\left(1+I_{n}\right) z(n)$ for each $n \varepsilon N$ and $z(s)=\left(1-D_{n}\right) z\left(S^{-}\right)$if $s=S_{n}$. Thus z is the solution of the integral equation

$$
z(t)=1+(L) \int_{0}^{t} z d g,
$$

except on a set of measure zero.
We now show that g is in class Γ_{3}. Let L be defined by $L(t)=\max \{n \in Z \mid n<t\}$ for $t \varepsilon S$. Thus $L(t)=\mathbb{L} t^{-} \mathbb{I}$. If $\mathrm{s} \leq \mathrm{t}$ in S , then

$$
\begin{aligned}
& E\left(g(t)-g(s) \mid A_{s}\right)=E(g(t)-g(s)) \\
& =E\left(\sum_{s \leq n<t} I_{n}\right)-E\left(\begin{array}{c}
N(t) \\
\sum_{n=N}(s)+1 \\
\left.D_{n}\right) \\
= \\
I_{o}(L(t)-L(s))-\lambda(t-s) D_{o} .
\end{array}\right.
\end{aligned}
$$

Thus

$$
\left|E\left(g(t)-g(s) \mid A_{s}\right)\right| \leq I_{0} d L(s, t)+\lambda D_{0}(t-s) .
$$

We may set $G_{1}(t)=I_{0} L(t)+\lambda D_{0} t$ and note that G_{1} satisfies condition (iii) of Definition III.2.1. The calculation of G_{2} is more complicated. For $s \leq t$ in S,

$$
\begin{aligned}
& E\left(\left(\underset{s \leq n<t}{\sum} I_{n}\right)^{2}\right)=E\left(\underset{S<n<t}{\sum} I_{n}^{2}+2 \sum_{s \leq m<n<t} I_{m} I_{n}\right) \\
& =\sum_{s<n<t} J_{0}+2 \sum_{s \leq m<n<t} I_{0}^{2} \\
& \leq \sum_{n=L}^{L(t)} \mathrm{L}_{\mathrm{L}}+1 \mathrm{~J}+2 \underset{\mathrm{n}=\mathrm{L}(\mathrm{~s})+1}{\mathrm{~L}(\mathrm{t})} \sum_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{I}_{0}^{2} .
\end{aligned}
$$

Noting that $\sum_{n=i}^{j} n=(j(j+1)-i(i+1)) / 2$, we have
(4.3) $E\left(\left(\sum_{s \leq n<t} I_{n}\right)^{2}\right) \leq J_{0}(L(t)-L(s))+I_{0}^{2}(L(t)(L(t)+1)-$

$$
L(s)(L(s)+1)) .
$$

Let $G_{2}^{1}(t)=J_{o} L(t)+I_{0}^{2} L(t)(L(t)+1)$. Also, for $s \leq t$ in S,

$$
\begin{aligned}
& \text { (4.4) } 2 E\left(\left\{\underset{s<n<t}{\sum} I_{n}\right\} \cdot\left\{\begin{array}{c}
N(t) \\
k=N(s)+1
\end{array} D_{k}\right\}\right)=2 I_{o}[L(t)-L(s)] \cdot \lambda\left|D_{o}\right|(t-s) \\
& \leq 2 I_{o} L(t) \lambda t\left|D_{0}\right|-2 I_{o} L(s) \lambda s\left|D_{o}\right| \text {. }
\end{aligned}
$$

Let $G_{2}^{2}(t)=2 I_{0} L(t) \lambda t\left|D_{0}\right|$ for t in S.
Temporarily fix $s \leq t$ in S and let
(4.5) $\Omega_{m, n}=\{\omega \varepsilon \Omega \mid N(s)=m, N(t)-N(s)=n\} \quad$ and
(4.6) $\Omega_{\mathrm{n}}=\left\{\omega_{\varepsilon \Omega} \mid N(t)-N(s)=n\right\} \quad$ for $m, n \varepsilon N$.

Then we may calculate

$$
\begin{aligned}
& E\left(\left(\underset{k=N(s)+1}{N(t)} D_{k}\right)^{2}\right)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{\Omega_{m, n}}^{\int}\left(\sum_{k=m+1}^{m+n} D_{k}\right)^{2} d P \\
= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \int_{\Omega_{m, n}}^{\int} \sum_{k=1}^{n} D_{m+k}^{2}+2 \sum_{k=1}^{n} \sum_{j=1}^{\sum-1} D_{m+k} \cdot D_{m+j} d P
\end{aligned}
$$

(4.7)

$$
=\sum_{n=0}^{\infty} \int_{\Omega_{n}} \sum_{k=1}^{n} D_{k}^{2}+2 \sum_{k=1}^{n} \sum_{j=1}^{k-1} D_{k} D_{j} d P .
$$

Since the characteristic function $X_{\Omega_{n}}$ and D_{k} are independent for $k \leq n$, we have

$$
\begin{aligned}
& E\left(\left(\underset{k=N(s)+1}{N(t)} D_{k}\right)^{2}\right)=\sum_{n=0}^{\infty}\left[n C_{o}+n(n-1) D_{o}^{2}\right] \cdot P\left(\Omega_{n}\right) \\
& =C_{0} E(N(t)-N(s))+D_{o}^{2} E\left((N(t)-N(s))^{2}\right)-D_{o}^{2} E(N(t)-N(s))
\end{aligned}
$$

$=C_{0} \lambda(t-s)+D_{o}^{2} \lambda^{2}(t-s)^{2}$
$\leq \lambda C_{o}(t-s)+\lambda^{2} D_{o}^{2}\left(t^{2}-s^{2}\right)$.

Let $G_{2}^{3}(t)=C_{0} \lambda t+D_{0}^{2} \lambda^{2} t^{2}$ for t in S and let

$$
G_{2}(t)=\sum_{j=1}^{3} G_{2}^{j}(t)
$$

for t in S. Thus g is in class Γ_{3}.
It now follows that $z(t)$ is given by the product integral $\prod_{0}^{\pi}[1+\mathrm{dg}]$, hence

$$
z(t)=\prod_{n=1}^{L(t)}\left[1+I_{n}\right] \cdot \prod_{k=1}^{N(t)}\left[1-D_{k}\right]
$$

As an estimate of the value of the investment at some later time, we compute $E(z(t))$. Fix $t>0$ and let the sets $\Omega_{m}=\{w \in \Omega \mid N(t)=m\}$ and let χ_{m} denote the characteristic function of Ω_{m}. Then

$$
\begin{aligned}
E(z(t)) & =\left[1+I_{o}\right]^{L(t)} \cdot \sum_{m=0}^{\infty} \int_{\Omega_{m}}^{\infty} \prod_{k=1}^{m}\left[1-D_{k}\right] d P \\
& =\left[1+I_{o}\right]^{L(t)} \cdot \sum_{m=0}^{\infty} \int_{\Omega} \chi_{m} \prod_{k=1}^{m}\left[1-D_{k}\right] d P
\end{aligned}
$$

$$
\begin{aligned}
& =\left[1+I_{0}\right]^{L(t)} \cdot \sum_{m=0}^{\infty} E\left(\prod_{k=1}^{m}\left[1-D_{k}\right]\right) P\{N(t)=m\} \\
& =\left[1+I_{0}\right]^{L(t)} \cdot \sum_{m=0}^{\infty}\left[1-D_{0}\right]^{m} P\{N(t)=m\}
\end{aligned}
$$

The summation in the last expression is

$$
E\left(\left(1-D_{0}\right)^{N(t)}\right)
$$

The computation on pp. 74-75 of Çinlar [35] shows that the expectation is $e^{-\lambda D_{0} t}$. Hence

$$
E(z(t))=\left[1+I_{o}\right]^{L(t)} \cdot e^{-\lambda D_{0} t}
$$

One can evaluate the long-term expected gain or loss on the investment by noting that for $t>0$,

$$
E(z(t+1)) / E(z(t))=\left[1+I_{0}\right] e^{-\lambda D_{o}}
$$

$$
\text { 3. Jumps Uniformly Distributed in }[0,1]
$$

Suppose $S=[0,1), \Omega=S, P$ is Lebesgue measure in Ω and g is given by

$$
g(t)=g(t, w)=\left\{\begin{array}{l}
0 \text { if } t<w \\
1 \text { if } t \geq w
\end{array}\right.
$$

Then g is in class Γ_{3}. To see this, note that if A_{t} is the σ-algebra generated by $\{g(s) \mid s \leq t\}$, then $E\left(g(t) \mid A_{S}\right)=$ $E(g(t) \| g(s))$ since g is a Markov process. Also note that $g(t)-g(s) \geq 0$ and $g(t)-g(s)=[g(t)-g(s)]^{2}$ for $s \leq t$. Therefore it is sufficient to show that

$$
E(g(t)-g(s) \mid g(s)) \leq G(t)-G(s)
$$

for some non-decreasing $G: S \rightarrow R$. If $s \leq t$ in S, then

$$
E(g(t)-g(s) \mid g(s))=[1-g(s)](t-s)(1-s)
$$

Since for each s in S, there is a positive probability that $g(s)=0$, and $g(s) \geq 0$ for s in S, it is necessary and sufficient that $(t-s) /(l-s) \leq G(t)-G(s)$. It follows that $\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right) /\left(1-t_{i-1}\right) \leq \sum_{i=1}^{n} G\left(t_{i}\right)-G\left(t_{i-1}\right)$, whenever $0=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=t<1$. Since the condition above holds for any subdivision of $(0, t)$, it must follow that $G(t) \geq \int_{0}^{t} d x /(1-x)$ for $t \leq 1$ (here we assume that $G(0)=0$). We also note that

$$
(t-s) /(1-s) \leq \int_{s}^{t} d x /(1-x) \text { for } s \leq t
$$

Therefore the minimal choice of G is

$$
G(t)=\int_{0}^{t} \mathrm{dx} /(1-\mathrm{x}), \quad 0 \leq \mathrm{t} \leq 1 .
$$

We note that $\lim _{t \rightarrow 1} G(t)=+\infty$. It is clear from thework above that ($\mathrm{g}, \mathrm{G}, \mathrm{G}$) is in class Γ_{3} and u defined by

$$
u(s, t)=\left\{\begin{array}{l}
1 \text { if } s \leq t \leq w \text { or } w \leq s \leq t, \\
2 \text { if } s \leq w \leq t
\end{array}\right.
$$

is the corresponding product integral in class T_{3}.

LIST OF REFERENCES

1. P. G. Hoe1, S. C. Port, and C. J. Stone, Introduction to Stochastic Processes, Houghton Mifflin, Boston, 1972.
2. W. J. Padgett and C. P. Tsokos, A new stochastic formulation of a population growth problem, Math. Biosciences 17, 105-120 (1973).
3. P. A. P. Moran, The Theory of Storage, Methuen, London, 1959.
4. D. G. Kendall, Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain, Ann. Math. Statist. 24, 338-354 (1953).
5. J. W. Cohen, The Single Server Queue, North-Holland, Amsterdam, 1969.
6. R. B. Cooper, Introduction to Queueing Theory, MacMillan, New York, 1972.
7. E. Çinlar and M. Pinsky, A stochastic integral in storage theory, Z. Wahrscheinlichkeitstheorie verw. Geb. 17, 227-240 (1971).
8. E. Çinlar and M. Pinsky, On dams with additive inputs and a general release rule, J. Appl. Prob. 9, 422-429 (1972).
9. E. Çinlar, On dams with continuous semi-Markovian inputs, J. Math. Anal. Appl. 35, 434-448 (1971).
10. J. S. MacNerney, A non1inear integral operation, Ilて. J. Math. 8, 621-638 (1964).
11. E. J. McShane, Stochastic integrals and stochastic functional equations, SIAM J. of Appl. Math. 17, 287306 (1969).
12. E. J. McShane, Stochastic differential equations and models of random processes, Proc. Sixth Berkeley Symp. on Stat. and Prob. 3, 263-294 (1972).
13. E. J. McShane, Stochastic Calculus and Stochastic Models, Academic Press, New York, 1974.
14. J. S. MacNerney, Integral equations and semigroups, ILL. J. Math. 7, 148-173 (1963).
15. K. L. Chung, A Course in Probability Theory, Harcourt, Brace and World, New York, 1968.
16. S. Orey, F-Processes, Proc. Fifth Berkeley Symp. on Stat. and Prob. 2, 310-313 (1965).
17. J. L. Doob, Stochastic Processes, John Wiley \& Sons, New York, 1953.
18. J. W. Neuberger, Product integral formulae for nonlinear expansive semigroups and non-expansive evolution systems, J. Math. and Mech. 19, 403-409 (1969/70).
19. J. V. Herod, A pairing of a class of evolution systems with a class of generators, Trans. Amer. Math. Soc. 157, 247-260 (1971).
20. J. V. Herod, Generators for evolution systems with quasicontinuous trajectories, Pac. J. Math. 53, 153161 (1974).
21. J. A. Reneke, Product integral solutions for hereditary systems, Trans. Amer. Math. Soc. 181, 483-493 (1973).
22. B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16, 297-322 (1966).
23. G. F. Webb, Product integral representation of time dependent nonlinear evolution equations in Banach spaces, Pacific J. Math. 32, 269-281 (1970).
24. G. F. Webb, Nonlinear evolution equations and product integration in Banach spaces, Trans. Amer. Math. Soc. 148, 273-282 (1970).
25. R. H. Martin, Product integral approximations of solutions to linear operator equations, Proc. Amer. Math. Soc. 41, 506-512 (1973).
26. M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. of Math. 43, 265-298 (1971).
27. H. Brezis and A. Pazy, Accretive sets and differential equations in Banach spaces, Is rael J. of Math. 8, 367-383 (1970).
28. J. A. Goldstein, Abstract evolution equations, Trans. Amer. Math. Soc. 141, 159-185 (1969).
29. D. L. Lovelady, Product integrals for an ordinary differential equation in a Banach space, Pac. J. Math. 48, 163-168 (1973).
30. G. Schmidt, On multiplicative Lebesgue integration and families of evolution operators, Math. Scand. 29, 113-133 (1971).
31. G. Birkhoff, On product integration, J. Math. and Phys. 16, 104-132 (1937).
32. G. Maruyama, Continuous Markov processes and stochastic equations, Rend. Circ. Matem. Palermo Ser. II, IV, 48-90 (1955).
33. J. V. Herod, A Gronwall inequality for linear Stieltjes integrals, Proc. Amer. Math. Soc. 23, 34-36 (1969).
34. H.McKean, Stochastic Integrals, Academic Press, New York, 1969.
35. E. Çinlar, Introduction to Stochastic Processes, Preńtice-Hall, Englewood Cliffs, N.J., 1975.

VITA

Joe Wheeler Sullivan was born October 31, 1945, in Montgomery, Alabama. He completed his secondary education in Montgomery and entered the Georgia Institute of Technology as a freshman in September, 1963. He received the degree Bachelor of Science in Applied Mathematics in June, 1967 and continued at Georgia Tech as a graduate student and teaching assistant.

Mr. Sullivan received the degree Master of Science in Applied Mathematics in September, 1971, at which time he entered the Ph.D. program in mathematics. He served as a graduate teaching assistant at Georgia Tech until June, 1975. In September, 1975, he was appointed Adjunct Instructor in Mathematics at Dekalb Community College, C1arkston, Georgia.

He is married to the former Cheryl Ann Granade of Atlanta, Georgia.

