Boiling in Mini and Micro-Channels

A Thesis Presented to The Academic Faculty

by

Nurudeen O. Olayiwola

In Partial Fulfillment of the Requirements for the Degree Master of Science in the School of Mechanical Engineering

Georgia Institute of Technology August 2005

Boiling in Mini and Micro-Channels

Approved by:

Dr. S. Mostafa Ghiaasiaan, Chair School of Mechanical Engineering *Georgia Institute of Technology*

Dr. Said I. Abdel Khalik School of Mechanical Engineering *Georgia Institute of Technology*

Dr. Sheldon M. Jeter School of Mechanical Engineering *Georgia Institute of Technology*

Date Approved: June 22, 2005

ACKNOWLEDGEMENT

As customary and indeed appropriate, I would like to thank the Almighty God, for without Him nothing is possible. Secondly I would like to thank my advisor, Dr. S. M Ghiaasiaan. This work would not have been possible without him. Last but not least I would like to thank all my colleagues, my entire family, especially my wife, who has been tremendous and supportive.

TABLE OF CONTENTS

Acknowledgement		iii	
	List of Tables		vi
	List of	Figures	vii
	Nome	nclature	xii
	Summ	Summary	
	Chapte	er	
	1.	Introduction	1
		1.1. General Remarks about Mini and Micro-Channels	
		1.2. Objectives of this work	3
	2.	Review of Literature	5
		2.1. Two phase flow regimes	
		2.2. Forced Flow boiling	17
	3.	Forced Flow Boiling Correlations and Data	20
		3.1. Forced Flow	21
		3.2. General Remarks About Flow Boiling in Micro Channels	31
		3.3. Recent Experimental Studies Dealing with Boiling in Micro-Channels	35
		3.4. Boiling Heat Transfer Correlations for Small Channels	44
		3.5. Available Mini and Micro-Channel data	66
	4.	Results and Discussion	73
		4.1. Introductory Remarks	

	4.2. The Experimental Data of Bao et al [39]	75
	4.3. The Experimental Data of Baird et al [60]	88
	4.4. The Experimental Data of Yan and Lin [61]	100
	4.5. Discussion	109
5	. Summary of results, concluding remarks, Recommendations for future research	113
Appe	endix A: EES codes for evaluated correlations	116
Appendix B: Experimental data		127
	Experimental Data of Bao et al [39]	
	Experimental Data of Baird et al [60]	142
	Experimental Data of Yan and Lin [61]	158
References		159

LIST OF TABLES

Table

3.1:	Values of the constant C to be used in the Klimenko's correlation [11, 12]	25
3.2:	Recommended Values of the fluid dependent parameter $F_{\rm fl}$	27
3.3:	Values of q_0 for different fluids as given by Steiner and Taborek [27]	29
3.4:	A table from Vlasie et al [33]; correlations used by the authors	45
3.5:	The uncertainties in the experiment of Yan and Lin [61]	71
3.8:	The refrigeration loop of Lee and Mudawar [37]	
4.1:	Statistical parameters for data of Bao et al [39]	110
4.2:	Statistical parameters for Baird et al [60]	111
4.3:	Statistical parameters for Yan and Lin [61]	112

LIST OF FIGURES

Figure

2.1.	Flow regimes in a horizontal pipe	6
2.2.	Flow regimes in an inclined pipe	7
2.3.	Flow regimes in vertical channels	8
2.4.	Flow regime map of Hewitt and Roberts [7] for vertical tubes	11
2.5.	Flow regime map of Baker [8] for horizontal tubes	12
2.6.	Regions in flow boiling	19
3.1.	Comparison of the data of Yen et al [56]	40
3.2.	3 zones of Thome et al. [64]	48
3.3.	Relationship between quality and Ftp for Steiner and Taborek [27]	60
3.4.	The test section used by Bao et al. [39]	67
3.5.	The test facility of Baird et al [60]	68
3.6.	The test section of Yan and Lin [61]	70
3.7.	The arrangement of the test channels Yan and Lin [61]	70
3.8.	Refrigeration loop of Lee and Mudawar [37]	72
4.1.	Comparison between the experimental data of Bao et al. [39] and the correlation of Liu and Winterton [20]	79
4.2	Comparison between the experimental data of Bao et al. [39] and the correlation of Kandlikar [21, 22]	79
4.3.	Comparison between the experimental data of Bao et al. [39] and the correlation of Chen [17]	80
4.4.	Comparison between the experimental data of Bao et al. [39] and the correlation of Shah [18]	80
4.5	Comparison between the experimental data of Bao et al. [39] and the correlation of Gungor and Winterton [15]	81

4.6	Comparison between the experimental data of Bao et al. [39] and the correlation of Bjorge et al. [19]	81
4.7	Comparison between the experimental data of Bao et al. [39] and the correlation of Klimenko [11, 12]	82
4.8	Comparison between the experimental data of Bao et al. [39] and the correlation of Steiner and Taborek [27]	82
4.9	Comparison between the experimental data of Bao et al. [39] and the correlation of Tran et al. [34]	83
4.10	Comparison between the experimental data of Bao et al. [39] and the correlation of Lee and Mudawar [37]	83
4.11	Comparison between the experimental data of Bao et al. [39] and the correlation of Haynes and Fletcher [52]	84
4.12	Comparison between the experimental data of Bao et al. [39] and the correlation of Sumith et al. [58]	84
4.13	Comparison between the experimental data and the correlation of Kandlikar and Steinke [68]: Effects of quality.	85
4.14	Comparison between the experimental data and the correlation of Chen [17]: Effects of quality.	85
4.15	Comparison between the experimental data and the correlation of Shah [18]: Effects of quality	86
4.16	Comparison between the experimental data and the correlation of Gungor and Winterton [14, 15]: Effects of quality.	86
4.17	Comparison between the experimental data and the correlation of Klimenko [11, 12]: Effects of quality.	87
4.18	Comparison between the experimental data and the correlation of Steiner and Taborek [27]: Effects of quality.	87
4.19	Comparison between the experimental data of Baird et al. [60] and the correlation of Liu and Winterton [20]	91
4.20	Comparison between the experimental data of Baird et al. [60] and the correlation of Kandlikar [21, 22]	91

4.21.	Comparison between the experimental data of Baird et al. [60] and the correlation of Chen [17]	92
4.22.	Comparison between the experimental data of Baird et al. [60] and the correlation of Shah [18]	92
4.23.	Comparison between the experimental data of Baird et al. [60] and the correlation of Gungor and Winterton [15]	93
4.24	Comparison between the experimental data of Baird et al. [60] and the correlation of Bjorge et al. [19]	93
4.25	Comparison between the experimental data of Baird et al. [60] and the correlation of Klimenko [11, 12]	94
4.26	Comparison between the experimental data of Baird et al. [60]] and the correlation of Steiner and Taborek [27]	94
4.27	Comparison between the experimental data of Baird et al. [60] and the correlation of Tran et al. [34]	95
4.28	Comparison between the experimental data of Baird et al. [60] and the correlation of Lee and Mudawar [37]	95
4.29	Comparison between the experimental data of Baird et al. [60] and the correlation of Haynes and Fletcher [52]	96
4.30	Comparison between the experimental data of Baird et al. [60] and the correlation of Sumith et al. [58]	96
4.31	Comparison between the experimental data and the correlation of Kandlikar and Steinke [68]: Effects of quality.	97
4.32	Comparison between the experimental data and the correlation of Chen [17]: Effects of quality.	97
4.33	Comparison between the experimental data and the correlation of Shah [18]: Effects of quality	98
4.34	Comparison between the experimental data and the correlation of Gungor and Winterton [15]: Effects of quality.	98
4.35	Comparison between the experimental data and the correlation of Klimenko [11, 12]: Effects of quality.	99
4.36	Comparison between the experimental data and the correlation of	

	Steiner and Taborek [27]: Effects of quality.	99
4.37	Comparison between the experimental data of Yan and Lin [61] and the correlation of Liu and Winterton [20]	101
4.38	Comparison between the experimental data of Yan and Lin [61] and the correlation of Kandlikar [21, 22]	101
4.39	Comparison between the experimental data of Yan and Lin [61] and the correlation of Chen [17]	102
4.40	Comparison between the experimental data of Yan and Lin [61] and the correlation of Shah [18]	102
4.41	Comparison between the experimental data of Yan and Lin [61] and the correlation of Gungor and Winterton [15]	103
4.42	Comparison between the experimental data of Yan and Lin [61] and the correlation of Klimenko [11, 12]	103
4.43	Comparison between the experimental data of Yan and Lin [61] and the correlation of Steiner and Taborek [27]	104
4.44	Comparison between the experimental data of Yan and Lin [61] and the correlation of Tran et al. [34]	104
4.45	Comparison between the experimental data of Yan and Lin [61] and the correlation of Lee and Mudawar [37]	105
4.46	Comparison between the experimental data of Yan and Lin [61] and the correlation of Sumith et al. [58]	105
4.47	Comparison between the experimental data and the correlation of Kandlikar [21, 22]: Effects of quality	106
4.48	Comparison between the experimental data and the correlation of Chen [17]: Effects of quality	106
4.49	Comparison between the experimental data and the correlation of Shah [18]: Effects of quality	107
4.50	Comparison between the experimental data and the correlation of Gungor and Winterton [15]: Effects of quality	107
4.51	Comparison between the experimental data and the correlation of Klimenko [11, 12]: Effects of quality	108

4.52 Comparison between the experimental data and the correlation of Steiner and Taborek [27]: Effects of quality.

108

Nomenclature

Greek Letters

- $\boldsymbol{a}_k = \text{void fraction of phase k}$
- \bar{r} = mixture, two phase density (kg/m³)
- $\boldsymbol{r}_h =$ homogeneous density (kg/m³)
- $r_G = \text{gas density } (\text{kg/m}^3)$
- $\boldsymbol{r}_L =$ liquid density (kg/m³)
- \boldsymbol{n}_L = liquid specific volume (m³/kg)
- \boldsymbol{n}_G = gas specific volume (m³/kg)
- s = surface tension (N/m)
- μ = kinematic viscosity (kg/ms)
- a_1 = thermal diffusivity of the liquid
- q = dependant parameter
- t = shear stress (N/m²)

Symbols

- A = area (m²)
- M_k = signal from sensor to show present phase
- t = time (s)
- z = position (m)
- r = radius (m)
- $G = Mass flux (kg/m^2s)$

j = superficial velocity (m/s)

 $\mathbf{x} = \mathbf{quality}$

h = convective heat trans. Coefficient (W/m²K)

T = temperature (K)

e = specific energy (J/kg)

P = pressure (Pa)

 $P_{\rm H}$ = Heated perimeter

$$q'' = heat flux (W/m^2)$$

$$\dot{q}$$
 = heat rate (W/m³)

- U = phase velocity (m/s)
- Re = Reynolds number
- Pr = Prandtl number
- k = conductivity (W/mK)
- D = diameter(m)
- $B_o = boiling number$
- $X_{tt} = Martinelli parameter$
- $N_u = Nusselt numer$
- $D_h = Hydraulic diameter (m)$
- L = length(m)
- h_{mac} = macro heat transfer coefficient (W/m²K)
- h_{fg} = latent heat of vaporization (J/kg)

 $T_{sat} = saturation temperature (K)$

 T_w = wall temperature (K)

 ΔT_b = change in bulk temperature (K)

 ΔT_s

- F_{fl} = Fluid dependent parameter given by Kandlikar [21, 22]
- f = friction factor
- \dot{m} = mass flux (kg/s)
- F= forced convection heat transfer enhancement factor
- S = suppression factor
- $c_{pl} = specific heat (J/kg.K)$
- Co = Convective number
- Bo = Boiling number
- E = Enhancement factor
- Fr = Froude number
- $g = acceleration due to gravity (m^2s)$
- M = mass (kg)
- $B_M =$ fluid specific constant
- $Ra = wall roughness (\mu m)$
- Ra_0 = wall roughness under normalized conditions
- X = martinelli factor
- L = length(m)
- $Re_m = mixture Reynolds number$
- Pe_{*} = modified peclet number

Definition of subscripts

0 = initial

- G = gas phase
- L = liquid phase
- l = liquid only
- tp = two phase

w = wall

- sat = saturated
- nb = nucleate boiling
- cb = convective boiling
- nbo = nucleate boiling only
- mac = macro
- mic = micro
- tur = turbulent
- f = fluid
- g = gas/ vapor
- FC = forced convection
- B = boiling
- b = bulk
- lo = liquid only
- NBD = nucleate boiling
- CBD = convective boiling

- vv = viscous-viscous
- v-t = viscous-turbulent
- PB = pool boiling
- exp = experimental
- corr = correlation

Summary

Boiling heat transfer in Mini and Micro -channels

Cooling systems that consist of mini-channels (hydraulic diameters in the 0.5 mm-2.0 mm range) and micro-channels (hydraulic diameters in the 100 μ m-500 μ m range) can dispose of extremely large volumetric thermal loads that are well beyond the feasible range of conventional cooling methods. Mini/micro-channel systems that utilize boiling fluids are particularly useful due to the superiority of boiling heat transfer mode over convection. Although forced flow boiling in mini and micro-channels has been investigated by several groups in the past, a reliable predictive method is not yet available.

In this study, the capability of a large number of forced flow boiling correlations for application to mini channels is examined by comparing their predictions with three experimental data sets. The tested correlations include well-established methods for conventional boiling systems, as well as correlations recently proposed for mini-channels.

The experimental data all represent mini-channels. Based on these comparisons, the most accurate existing predictive method for mini-channel boiling is identified. The deficiencies of the predictive methods and the potential causes that underlie these deficiencies are also discussed.

xvii

CHAPTER 1: Introduction

1.1 General Remarks about Mini and Micro-Channels

The advantages of using mini and micro-channels in high demand cooling systems could not be over emphasized, especially with the advent of micro technology. This trend is present in many branches of industry. There is for example, a great need in the automotive industry, particularly in the heavy machinery industry, for small and highly efficient cooling systems, that could only be met by microchannel-based devices. Potential applications of mini and micro-channel based systems include the heat exchangers in the home refrigeration systems. These systems currently take up considerable space. There is also an obvious need to reduce the cooling system size in small powerful laptops as well as in other micro computers.

Thus, the main reason mini and micro channels are a focus of attention in various industries is because of their efficiency in heat transfer and the advantage these small scale ducts have the regular size pipes with respect to material cost. When used with a well suited fluid, the small channels provide for higher heat transfer, save space, and reduce material cost. It is worth emphasizing that the use of mini and micro channels enables us to conserve space as well. This is a major factor in the design of many contemporary electronic devices, office spaces, automobiles and a vast array of other applications.

Due to the aforementioned benefits, many researchers have spent a great deal of effort aimed at understanding single and two phase flow and heat transfer

1

phenomena, and the development of reliable modeling procedures for mini and micro-channels. Nevertheless, it is widely accepted that there is still a lack of a comprehensive understanding of the trends and the dominant factors affecting the flow and transport process in mini and micro-channels. Poorly understood basic phenomena are many, and worldwide attempts aimed at their resolution are underway. An example that is relevant to this thesis is the heat transfer mechanism in boiling. Bubble nucleation (nucleate boiling) and evaporation convection both can contribute to boiling heat transfer. However, there is a debate about the dominant component from these two heat transfer component.

1.2 Objectives of this Work

A critical study of the available correlations for forced-flow boiling heat transfer, with respect to their applicability to mini and micro-channels is done in this Thesis. This is to enable us to focus attention in the identification of well grounded starting point in a new phase of studying mini and micro-channels. Boiling in commonly-applied tubes and channels (typically with hydraulic diameters larger that about 3mm) has of course been exhaustively studied in the past, and a number of relatively accurate correlations exist. Some of widely-referenced correlations have indeed limited numbers of data points in their data bases that can be considered mini-channel data. The applicability of these correlations to mini and micro-channels is by no means certain. This is because the hydrodynamic and transport phenomena in mini and micro-channels are likely to be different than large channels due to the effects of the reduction in channel size. As a result, macro-scale models and correlations often do not fully explain all the heat transfer trends in mini and micro-channels. Notwithstanding, these correlations and modeling procedures are widely used to analyze mini and micro-channels. The focus of this thesis is thus on the examination of the most widely-referenced boiling heat transfer correlation with respect to their relevance to mini and micro channels, and identify the most appropriate correlation among them for use in mini and micro-channel analysis and to demonstrate the need of performing more in-depth experiments in the field of mini and micro-channel boiling and heat transfer. To this end, experimental data from several sources will be compared with the predictions of the most widely-used correlations. This comparison will elucidate the shortcomings of the existing models and/or correlations,

and help provide the background for the development of a correlation tailored for the boiling heat transfer in mini and micro-channels. Reliable correlations, once available, will provide for the full use of the advantages of mini and micro-channels.

Chapter 2: Review of Literature

2.1 Two Phase Flow Regimes and Models

In forced-flow boiling, the flow of the fluid in a heated conduit is generally in the form of a complex two-phase flow. Numerous studies have been conducted in the past to understand the characteristics of these types of flow. Many of these studies were done to understand and model the flow patterns. The main purpose of modeling usually is to produce tools for predicting the behavior of these systems, and thereby make the control of these flow types possible. Due to complicated hydrodynamic effects, however, boiling two-phase flow regimes are generally more complicated than adiabatic flows.

The study of most gas-liquid two-phase flow regimes in principle revolves around the combined flow of gas and liquid phases in a duct. A brief review of adiabatic gasliquid two-phase flow regimes is therefore a rational starting point for the discussion of boiling regimes. These flows have been widely studied for a century, and extensive research has been performed in order to understand the regimes in two phase flow. Since buoyancy plays an important role in gas-liquid two-phase flow in commonly-applied channels (i.e., excluding mini and micro-channels), the flow regimes are generally sensitive to the channel orientation. Most of the industrial two-phase flow applications involve either horizontal or vertical channels, however. The bulk of the past studies have therefore been focused on these orientations.

There are several major flow regimes in both vertical and horizontal pipes, which are often separated from each other by regime transition regions in flow regime maps. Horizontal pipes have been observed to depict at least eight major regimes. The transition

5

from one regime to the next is mainly dependent on the hydrodynamic parameters of the channel flow as well as heat transfer patterns. The main flow regimes in a horizontal pipe are as follows; Bubbly flow, Plug flow, Stratified flow, Wavy flow, Slug flow, Semiannular, Annular, and Spray. Figure 2.1 shows the morphological shapes of these flow regimes in a horizontal pipe.

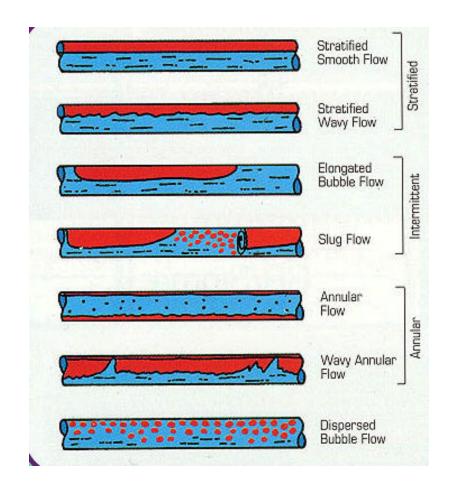


Figure 2.1: Flow regimes in a horizontal pipe.[69]

A relatively small inclination with respect to the horizontal plane usually has a big impact on the flow regimes. Figure 2.2 shows the flow regime categories in inclined pipes. In vertical pipes there are four main flow regimes, as shown in Fig. 2.3. The main observed flow regimes in vertical channels are: Bubbly flow, Slug flow, Churn flow and Annular /dispersed flow.

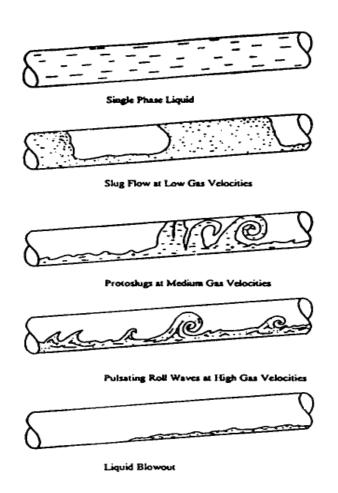


Figure 2.2: Flow regimes in an inclined pipe. [69]

The schematics in Figs (2.1- 2.3) are rather self explanatory with regards to the major morphological characteristics of each major flow regime. Therefore, they will not be discussed further. A flow regime that occurs in both adiabatic and boiling channels, and has similar characteristics in both types of systems, is the annular/dispersed flow. The annular/dispersed flow regime is characterized by the occurrence of a liquid film on the wall, while dispersed droplets are entrained by a gaseous core flow. However, a flow

pattern that can only occur in heated (boiling) channels is the inverted annular regime. This flow regime is characterized by a thin vapor layer on the heated wall, and a liquid core flow that often contains entrained bubbles.

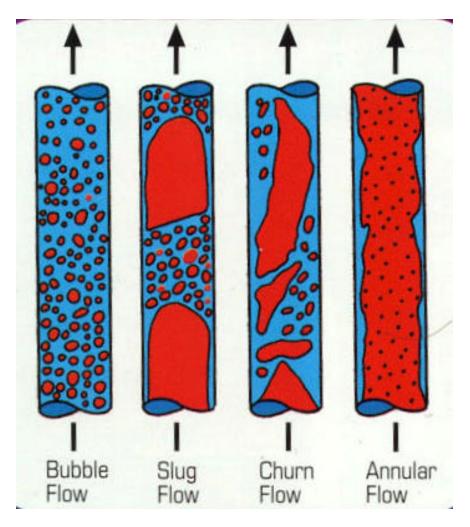


Figure 2.3: Flow regimes in vertical channels. [69]

Despite the importance of two phase flow regimes, attaining a full understanding about them has been very difficult. As correctly stated by Lowe et al [], most of the analysis done has been subjective. The methods used to determine flow regimes can be classified into two categories: Direct methods and indirect methods. The direct methods

involve the use of the human eye in one way or the other. Although in most cases fast movie or video cameras have been used, these methods nevertheless rely on a physical observation of the flow in the pipe and are to some extent subjective. The indirect methods involve using numerical and empirical tools to determine the transition from one regime to another.

Despite all the problems and difficulties, it can be said that the subject of adiabatic gas-liquid flow in commonly used channels is mature, and the predictive methods are reasonably well-developed. The difficulty in studying two-phase flow in ducts is increased when the flow in micro and mini channels is considered. There are a relatively large number of correlations used to evaluate the flow in mini and micro channels. However, the accuracy of these correlations is doubtful. Many correlations were in fact initially developed to study flow patterns in regular ducts.

One of the major factors that play a crucial role in the flow patterns in narrow passages is surface tension, as emphasized by Ghiaasiaan and Abdul-Khalik 2, and Kandlikar 3. It has been argued that the major flow regimes in mini and micro-channels that are larger than a few hundred micro meters in diameter are somewhat similar to the flow regimes in large channels, at least with respect to their overall morphology. As stated by Lin et al. 4, the current procedures and correlations cannot be confidently used to predict heat transfer, pressure drop and flow regimes in micro channels. This fact can be understood by a close look at the continuity, momentum as well as energy balance equations and closure relations. It can be seen that the diameter of the pipe has a significant effect on the flow patterns as well as other important flow regime-dependent parameters.

An important issue about two-phase flow models and correlations is averaging. The local and instantaneous parameters are generally highly fluctuating in two phase flow, and are difficult to measure or predict. As a result of this issue the only practical method for obtaining measurable and easily calculable parameters is averaging. Averaging could be done on time, volume, and flow area. Averaging in fact refers to a low pass filter whereby the fluctuations with high frequency are obscured. Arguments behind averaging, and the basic mathematic al tools for its implementation can be found in many standard textbooks (e.g. Collier and Thome 5 1996; Carey 6 1992) and will not be repeated here. An example of averaging is the in-citu volume fraction of the phase k in a channel, defined as a time and cross section average quantity.

$$\boldsymbol{a}_{k}(t_{0}, z_{0})_{A} = \frac{1}{\Delta tA} \int^{t} dt \int \boldsymbol{M}_{k}(r, \boldsymbol{q}, t) dA$$
(2.1)

where $M_k = 1$ when the point is in phase k, otherwise M_k is 0.

The most commonly used predictive tools for flow regimes are flow regime maps. A flow regime map is usually a two dimensional diagram with each coordinate representing an easily quantifiable flow parameter, or a combination of such parameters. The ranges of occurrence of the major flow regimes are specified on the flow regime map by flow regime transition lines. There are many flow regime maps available in the literature. These maps are used to empirically determine flow regimes based on the macroscopic characteristics of the flow. The following are two of the most widely applied flow regime maps.

The flow regime map of Hewitt and Robert $\boxed{7}$ is among the most widely used for flow in vertical pipes. This map is shown in fig 2.4. The map of Baker [8] is known as a

reliable flow regime map for horizontal flow in pipes. Fig 2.5 shows the Baker [8] flow regime map.

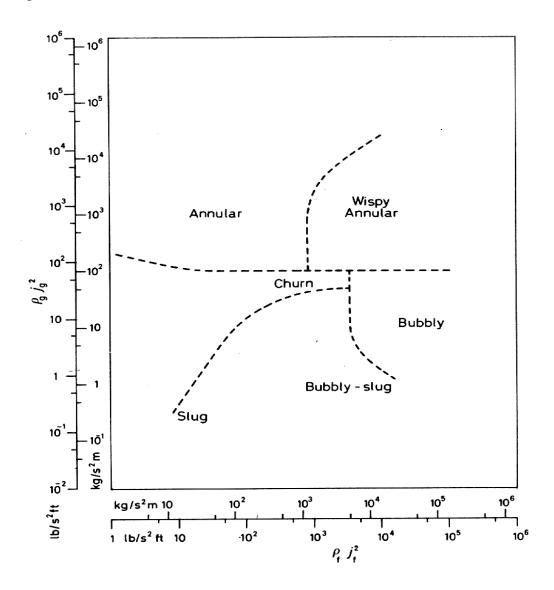


Figure 2.4: Flow regime map of Hewitt and Roberts [7] for vertical tubes.

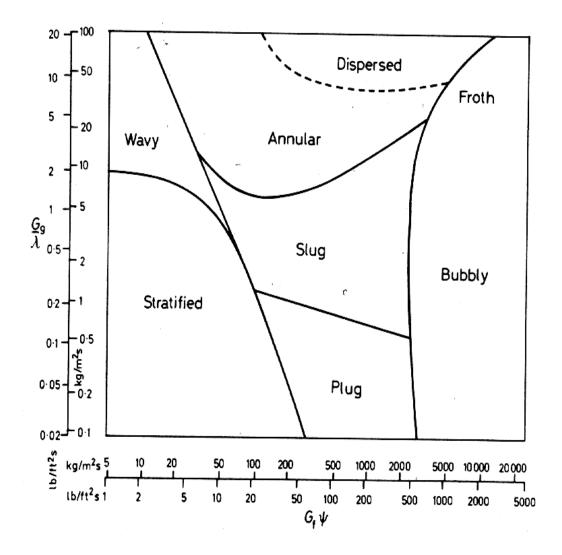


Figure 2.5: Flow regime map of Baker [8] for horizontal tubes.

A brief discussion regarding the two-phase flow conservation equations is now presented.

The emergence of powerful computers and robust numerical techniques in the last few decades has made the numerical solution of properly averaged two-phase conservation equations possible. Model conservation equations are needed before mechanistic modeling of a two-phase system can be attempted, however. Several modeling techniques exist in literature for two phase flow. Some of the most widely used are, Drift Flux Model (DFX), Two Fluid Model (TFM), Multi Fluid Flow Model (MFM) and the Homogeneous Mixture Model (HEM).

Generally, there are three main categories of two-phase flow modeling that are widely used in thermal-hydraulic computer codes. The three categories are briefly described below.

Homogeneous Mixture Model: In this model the two phases are assumed to be well mixed and most of the fundamental properties, like velocity and thermodynamic properties are assumed to be the same at all locations in the flow pipe. The HEM model is derived from this simple modeling technique and it only requires one momentum equation for the entire flow. HEM model is thus practical for certain applications involving little phase separation and velocity slip. The fundamental relations that underlie the HEM model are as follows;

The mixture or homogeneous density is defined as:

$$\bar{\mathbf{r}} = \mathbf{r}_{h} = \frac{G}{j} = \mathbf{a}\mathbf{r}_{G} + (1 - \mathbf{a})\mathbf{r}_{L} = [v_{L} + x(v_{G} - v_{L})]^{-1}$$
(2.2)

The following relation exists between quality and void fraction.

$$\frac{x}{1-x} = \frac{\mathbf{r}_G \mathbf{a}}{\mathbf{r}_L (1-\mathbf{a})} \tag{2.3}$$

The mixture mass conservation equation for channels with uniform flow area can be written as:

$$\frac{D_j}{Dt}\mathbf{r}_h + \mathbf{r}_h \frac{\partial j}{\partial z} = 0$$
(2.4)

The momentum conservation equation is:

$$\frac{\partial}{\partial t}(\mathbf{r}_{h}j) + \frac{\partial}{\partial z}(\mathbf{r}_{h}j^{2}) = -\frac{\partial P}{\partial z} - g\mathbf{r}_{h}\sin\mathbf{q} + \frac{P_{f}\mathbf{t}_{w}}{A}$$
(2.5)

where j is the total volumetric flux. The mixture enthalpy is defined as:

$$\overline{h} = \frac{\left[\mathbf{r}_{G}\mathbf{a}h_{G} + \mathbf{r}_{L}(1-\mathbf{a})h_{L}\right]}{\overline{\mathbf{r}}} = h_{L} + x(h_{G} - h_{L})$$
(2.6)

Thermodynamic equilibrium between the two phases requires that:

$$T_L = T_G \tag{2.7}$$

The HEM indeed treats the two-phase mixture as a pseudo-single phase. The conservation equations become simple, and resemble the familiar single phase flow equations (Collier and Thome [5], 1996). As an example, the energy conservation equation can be presented as,

$$A\frac{\P}{\P t}(\mathbf{r}_{h}e-P)+\frac{\P}{\P z}(A\mathbf{r}_{h}je)-P_{H}q^{''}-A\dot{q}=0$$
(2.8)

where e is the total specific energy.

Multi-Fluid Models: In these models, each phase is represented by its own specific momentum, mass, and energy equations. In other words, each phase is treated as a separate "fluid". In order to reduce the number of unknowns, an assumption of thermal equilibrium is sometimes made between the phases or a saturation condition for one of the phases is assumed. A separate momentum equation is always written for each "fluid", nevertheless.

The Two-Fluid Model is one of the most widely used two phase flow models. In this method, each of the gas (vapor) and liquid phases is represented as a single "fluid". A more complicated model is the three fluid models, where three sets of equations are written; one for the contiguous liquid phase, one for contiguous gas phase, and one for the dispersed phase of either gas bubbles or liquid bubbles. In the development of this model, stratified or annular flow pattern is usually used to demonstrate the various terms. When a single component fluid is considered, one of the phases could be assumed to be saturated with respect to the local pressure. Only one energy equation is required in this situation. The fundamental two fluid model equations are given below.

Equation (2.9) is the mixture mass conservation equation. This is a combination of the liquid and vapor mass conservation equations.

$$\frac{\partial}{\partial t} [\boldsymbol{r}_{L}(1-\boldsymbol{a}) + \boldsymbol{r}_{G}\boldsymbol{a}] + \frac{1}{A} \frac{\partial}{\partial t} (A[\boldsymbol{r}_{L}(1-\boldsymbol{a})\boldsymbol{U}_{L} + \boldsymbol{r}_{G}\boldsymbol{a}\boldsymbol{U}_{G}]) = 0$$
(2.9)

the mixture momentum conservation equation is given by

$$\frac{\partial G}{\partial t} + \frac{1}{A} \frac{\partial}{\partial z} \left(A \frac{G^2}{r} \right) = -\frac{\partial P}{\partial z} - rg \sin q - t_w \frac{P_f}{A}$$
(2.10)

$$\mathbf{r}' = \left[\frac{(1-x)^2}{\mathbf{r}_L(1-\mathbf{a})} + \frac{x^2}{\mathbf{r}_G \mathbf{a}}\right]^{-1}$$
 momentum density (2.11)

The energy conservation equation is given by:

$$\frac{\partial}{\partial t} \left(\overline{\boldsymbol{r}} \overline{\boldsymbol{h}} \right) + \frac{\partial}{\partial t} \left(\frac{G^2}{2\boldsymbol{r}} \right) + \frac{1}{A} \frac{\partial}{\partial z} (AGh) + \frac{1}{A} \frac{\partial}{\partial z} \left(A \frac{G^3}{2\boldsymbol{r}^{m_2}} \right) + g \sin \boldsymbol{q} G - \frac{\partial P}{\partial t}$$

$$= p_H \frac{q_W}{A} + \left[\dot{\boldsymbol{q}}_{v,L} (1 - \boldsymbol{a}) + \dot{\boldsymbol{q}}_{v,G} \boldsymbol{a} \right]$$
(2.12)

where:

$$\overline{h} = \frac{\left[\mathbf{r}_{L}(1-\mathbf{a})h_{L} + \mathbf{r}_{G}\mathbf{a}h_{G}\right]}{\overline{\mathbf{r}}}$$
(2.13)

$$\overline{\boldsymbol{r}} = \boldsymbol{a}\boldsymbol{r}_G + (1-\boldsymbol{a})\boldsymbol{r}_L \tag{2.14}$$

$$h = xh_G + (1 - a)h_L = h_L + h_{LG}$$
(2.15)

$$\mathbf{r}^{"^{2}} = \left[\frac{(1-x)^{3}}{\mathbf{r}_{L}^{2}(1-\mathbf{a})^{2}} + \frac{x^{3}}{\mathbf{r}_{G}^{2}\mathbf{a}^{2}}\right]^{-1}$$
(2.16)

Diffusion Models: This is the third category of models for two phase flow. In this method only one momentum (the mixture momentum equation), in the form of a differential equation, is used. An algebraic equation representing the relative velocity of one phase with respect to the other velocity (or with respect to the mixture) replaces the second momentum equation needed for the closure of the equations. The Drift Flux model is the most well-known diffusion model. DFM is useful in solving two-phase conservation equation, when lowering the computational cost is important.

2.2 Forced flow boiling

Boiling occurs when a liquid changes phase to vapor. Flow boiling is characterized by the process of boiling in a moving liquid. The prevalent cause of flow boiling is heating, and it is this type of boiling that this thesis is concerned with. It is noted, however, that evaporation under forced convection could occur due to different causes, such as variations in temperature, velocity, or even contact angle Som et al. 9. Forced flow boiling has been extensively studied and there is abundant literature available dealing with different aspects of flow boiling.

In flow boiling experiments, for simplicity, the flow channel must be placed under one of two known boundary conditions: known heat flux on the wall, or known wall temperature. The known wall heat flux condition is a better representation of most practical situations and is easier to implement. As a result, much of the experimental data in the literature pertain to this type of boundary condition. Under the condition of known wall heat flux there are several correlations that are currently used widely. These correlations will be highlighted in section 3.4.

As mentioned earlier, evaporation can be caused by the addition of heat to a channel, or by a number of other parameters. Indeed, evaporation can occur in an adiabatic channel with no net heat exchange with surrounding. Adiabatic boiling (evaporation) occurs only due to velocity variations, mass flow rate variations, or variations in void distribution within the channel. For example, evaporation occurs with a decrease in the pressure from the saturation pressure, in a single component flow.

In the more familiar adiabatic flow boiling, boiling occurs on the walls of the channels. Forced flow boiling is accompanied by an increasing void fraction, and gives rise to flow pattern transitions even when the temperature and/or heat flux are kept constant.

The modeling methods for the solution of conservation equations in forced-flow boiling are in principle similar to adiabatic two-phase flow. The closure relations are different than those in adiabatic two-phase flow, however. A convenient way of characterizing the two-phase hydrodynamics of a boiling channel is by correlation of the slip ratio, defined as $S = U_g/U_L$. Many of the widely used slip ratio correlations for boiling of water can be obtained from Butterworth 10. The slip velocity or relative velocity is related to the slip ratio according to:

$$U_r = U_G - U_L = U_L(S - 1)$$
(2.17)

As mentioned earlier, evaporation, even rapid boiling (flashing), can occur if there is sufficient drop in pressure. Various parametric effects on boiling have been performed. For example Klimenko [11], [12] meticulously evaluated the effect of pressure variations.

Most of the past studies of boiling deal with pure fluids. Numerous correlations have been developed for forced -flow boiling of pure liquids. These correlations will be discussed in Section 3.4. Boiling of binary mixtures of liquids is also encountered in some industrial systems. Many investigators, including Kandlikar [13] have studied boiling in binary mixtures.

As previously stated, flow boiling could occur in both saturated and sub-cooled conditions. Sub-cooled flow boiling typically occurs when the wall temperature is significantly greater than the bulk liquid saturation temperature. Research in the area of sub-cooled boiling has shown the occurrence of three important thresholds: (1) The onset of nucleate boiling (ONB), (2) the point of net vapor generation (NVG), or the onset of

significant void (OSV), and (3) the location where the equilibrium quality becomes zero. The heat transfer region upstream the ONB point is single phase flow heat transfer, the regime between the ONB and the net vapor generation point is called partial boiling, and fully developed boiling occurs downstream the net vapor generation boiling point. Downstream the point where the bulk fluid becomes saturated, the heat transfer regime is called bulk boiling. Kandlikar 13 states that in the fully developed region of sub cooled boiling, the effect of convective heat transfer is insignificant and the heat transfer is mainly due to nucleate boiling. Most other researchers have argued that convective boiling both contribute to nucleate boiling heat transfer, however. The map of different regions in flow boiling under low quality is shown in Fig. 2.6.

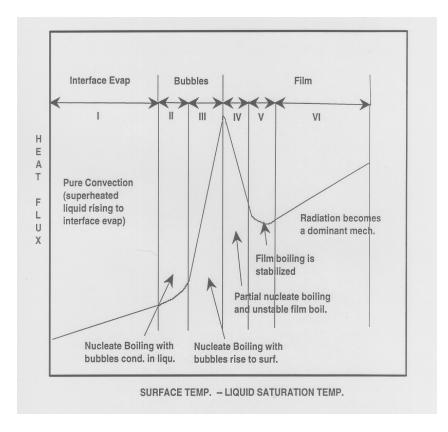


Figure 2.6: Regions in flow boiling.

CHAPTER 3.

Forced-Flow Boiling Correlations

A large number of correlations have been proposed for heat transfer in flow boiling. Reviews and compilations of boiling heat transfer correlations and textbooks dealing with boiling and two phase flow are numerous, and include Collier and Thome [5], Tong 14 and Carey [6], among others. However, there are several recently-published correlations that are not discussed in the aforementioned books. Many of these correlations were generated empirically, often without solid theoretical foundations, or sufficiently wide experimental databases. However several researchers have developed correlations that over time have been proven to be relatively accurate. The most recent correlations indeed include experimental data obtained recently with highly sophisticated test facilities. Some of these correlations have experimental data obtained with mini channels in their databases, and are thus more likely to apply to mini and micro-channels. A brief review of the latter group of correlations is provided in this chapter.

3.1 Flow boiling Correlations

As mentioned above, flow boiling correlations are numerous. However, user experience has led to the identification of the most accurate among them. For example, Gungor and Winterton 15 give a list of investigators who have presented relatively successful correlations for both sub-cooled and saturated boiling. They have also developed a table that qualifies their listed correlations with respect to their accuracy. Most of the forthcoming correlations are in fact included among the correlations listed by Gungor and Winterton [15].

Generally speaking, the forced flow boiling correlations can be divided into three groups, Thome $\boxed{16}$. The oldest, and probably the most successful group, at least with respect to forced flow boiling in macro-scale, are based on what can be referred to as the Chen summation rule. In these correlations, in view of the fact that nucleate boiling and forced convection mechanisms both contribute to the total heat transfer, the heat transfer coefficient is presented as the summation of two terms, one accounting for nucleate boiling, the other for forced convection.

The second group of correlations can be called asymptotic models, (Thome [16]). These correlations also explicitly account for additive nature of nucleate boiling and forced convection contributions, and are formulated such that at the limit of x_e ? 0, they asymptotically approach pure nucleate boiling, while at x_e ? 1 they approach pure convection. The most widely used generic form of these correlations is

$$h_{TP} = \left(h_{nb}^{n} + h_{cb}^{n}\right)^{\frac{1}{n}}$$
(3.1)

where n is often an integer.

Finally, the third group of correlations can be referred to as flow pattern dependent. In these correlations, as the name suggests, the heat transfer process is modeled semi-mechanistically, with attention to the two-phase flow pattern. It should be mentioned, however, that the latter group of correlations are less popular in comparison with the aforementioned two groups of correlations, primarily due to their complexity and the difficulties associated with the prediction of two-phase flow regimes in boiling systems. The forthcoming correlations in fact all belong to the first two categories.

Chen 17 presented one of the most successful and widely-referenced correlations for heat transfer in flow boiling. Like most of the successful forced flow boiling correlations that deal with macro-scale, the correlation of Chen [17] is a summation type correlation and assumes that forced flow boiling and nucleate boiling heat transfer mechanisms both contribute to the total heat transfer. However the contribution of nucleate boiling is diminished while the forced convection effect increases as the flow quality in increased. The correlation of Chen [17] is

$$h = 0.00122 \frac{k_l^{0.79} c_{pl}^{0.45} \mathbf{r}_l^{0.49}}{\mathbf{s}^{0.5} \mathbf{m}_l^{0.29} H_{fg}^{0.24} \mathbf{r}_g^{0.24}} (T_W - T_S)^{0.24} \Delta P^{0.75} S$$

+ $0.023 \left[\frac{DG(1-x)}{\mathbf{m}_l} \right]^{0.8} \left(\frac{c_{pl} \mathbf{m}_l}{k_l} \right) \frac{k_l}{D} F$ (3.2)

Where S is the suppression factor and F is a parameter that accounts for the two-phase nature of flow.

More recently, Gungor and Winterton [15] attempted to improve Chen's [17] correlation and developed the following summation type correlation that is meant to be applicable to both sub-cooled and saturated flow boiling, using an extensive databank:

$$h_{tp} = Eh_l + Sh_{pool} \tag{3.3}$$

$$h_l = 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{0.4} \left(\frac{k_l}{d}\right)$$
 (3.4)

$$\operatorname{Re} = \frac{G(1-x)d}{\mathbf{m}}$$
(3.5)

$$E = f(X_{tt}, Bo)$$
(3.6)

The parameter h_{pool} represents the pool boiling heat transfer coefficient. Parameter E is an enhancement factor and S is a suppression factor that accounts for the suppression of nucleate boiling as quality is increased. Empirical expressions for E and S are provided by Gungor and Winterton [15]

Shah 18 developed the following correlation dealing with saturated boiling;

$$q = \left[230(\dot{m}h_{lv})^{-0.5}h_{lo}(\Delta T_{sat})\right]^2$$
(3.7)

where h_{lo} is obtained from the Dittus-Boelter [23] correlation, assuming that all coolant is saturated liquid:

$$h_{lo} \frac{d}{k_{lo}} = 0.023 \operatorname{Re}_{lo}^{0.8} \operatorname{Pr}_{lo}^{0.4}$$
(3.8)

In 1982, Bjorge et al 19 proposed the following asymptotic type correlation for saturated flow boiling:

$$q = q_{FC} + q_B \left[1 - \left(\frac{(T_w - T_{sat,ib})}{T_w - T_{sat}} \right)^3 \right]$$
(3.9)

where q_{FC} is the forced convection heat flux, subscript ib represents the point of incipient boiling (the same as the point of onset of nucleate boiling, ONB), and q_B is the nucleate boiling contribution to the total heat flux. The form of the correlation of Bjorge et al [19] is such that any reasonable correlation can be used for calculating q_{FC} and q_B . Klimenko [11, 12] also presented a correlation for flow boiling. This correlation is applicable for both vertical and horizontal channels. According to Klimenko [11, 12],

$$h_{tp} = h_{NB}$$
 for $N_{CB} < 1.2 \times 10^4$ (3.10)

$$h_{tp}$$
 = the larger of h_{NB} and h_{CB} (3.11)

for 1.2 x $10^4 = N_{CB} = 2 x 10^4$ and

$$h_{tp} = h_{CB} \text{ for } N_{CB} > 2 \times 10^4$$
 (3.12)

where:

$$h_{NB} = C \left(\frac{k_l}{b}\right) P e_*^{0.6} \left(\frac{pb}{s}\right)^{0.54} \Pr^{-.033} \left(\frac{k_w}{k_l}\right)^{0.12}$$
(3.13)

$$h_{CB} = 0.087 \left(\frac{k_l}{b}\right) \operatorname{Re}_m^{0.6} \operatorname{Pr}_l^{0.167} \left(\frac{\boldsymbol{r}_v}{\boldsymbol{r}_l}\right)^{0.2} \left(\frac{k_w}{k_l}\right)^{0.09}$$
(3.14)

$$N_{CB} = \frac{Gh_{fg}}{q} \left[1 + x \left(\frac{\boldsymbol{r}_l}{\boldsymbol{r}_v} - 1 \right) \right] \left(\frac{\boldsymbol{r}_v}{\boldsymbol{r}_l} \right)^{\frac{1}{3}}$$
(3.15)

 Pe_* is a modified Peclet number, defined as shown in Equation (3.16) and Re_m is the mixture Reynolds number defined as shown in Equation (3.17).

$$Pe = \frac{qb}{c_p r_g a_l} \tag{3.16}$$

$$\operatorname{Re}_{m} = \frac{U_{m}b}{m_{l}}$$
(3.17)

where a_1 is the liquid thermal diffusivity Re_m is the two phase mixture velocity given in Equation (3.17) and **m** is defined as the kinematic viscosity of liquid at saturation.

$$U_m = \frac{G}{\mathbf{r}_l} \left[1 + x \frac{\mathbf{r}_l}{\mathbf{r}_g} - 1 \right]$$
(3.18)

The above correlations are valid for cases in which $\frac{D}{b} > 1.5$, where b is the Laplace constant, defined as

$$b = \left[\frac{s}{g\Delta r}\right]^{\frac{1}{2}}$$
(3.19)

The coefficient C in Equation (3.15) is a constant that depends on the fluid. Table 3.1 depicts the values of this constant for several fluids.

Fluid	С	Pŋ
Freon	7.6 x 10 ⁻³	3.8 ± 2.5
Organic Fluids	6.8 x 10 ⁻³	3.5 ± 1.3
Cryogenic fluids	6.1 x 10 ⁻³	1.6 ± 1.0
Water	4.9×10^{-3}	1.2 ± 0.4

Table 3.1: The values of the constant C to be used in the correlation of Klimenko [11, 12]

Liu and Winterton have 20 recently proposed the following frequently referenced correlation for heat transfer in flow boiling:

$$h_{tp} = \sqrt{(Eh_l)^2 + (Sh_{pool})^2}$$
(3.20)

where

$$E = \left[1 + x \operatorname{Pr}_{l}\left(\frac{\boldsymbol{r}_{l}}{\boldsymbol{r}_{v}} - 1\right)\right]^{0.35}$$
(3.21)

$$S = \frac{1}{1 + 0.055E^{0.1} \operatorname{Re}_{l}^{0.16}}$$
(3.22)

A comparison between Equations (3.21) and (3.6) confirms that the former correlation indeed a modification of the latter.

Kandlikar and co-workers 21, 22 have developed widely-referenced correlations for flow boiling. Kandlikar [21, 22] correlation of 1990 is:

$$h = \max\{h_{NBD}, h_{CBD}\}$$
(3.23)

$$h_{NBD} = 0.6683 Co^{-0.2} (1-x)^{0.8} f_2 (Fr_{lo}) h_{lo} + 1058 Bo^{0.7} (1-x)^{0.8} F_{fl} h_{lo}$$
(3.24)

$$h_{CBD} = 1.136Co^{-0.9} (1-x)^{0.8} f_2(Fr_{lo})h_{lo} + 667.2Bo^{0.7} (1-x)^{0.8} f_2(Fr_{lo})h_{lo}$$
(3.25)

where

$$f_2(Fr_{l_0}) = \min\{1, 25Fr_{l_0}\}$$
(3.26)

The parameter Fr_{lo} is the Froude number defined as

$$Fr_{lo} = \frac{G^2}{\mathbf{r}^2 g D_H}$$
(3.27)

The parameter h_{lo} is calculated from Dittus-Boelter 23 or the correlations of Gnielinski 24 and Petukov 25, depending on the magnitude of the Re_{lo}, and F_{fl} a fluid dependent parameter, the values of which for selected fluids are listed in Table 3.2 below. For the

fluids that are not listed in the table, Forster and Zuber 26 correlation for nucleate boiling heat transfer may be used in order to calculate h_{CBD} . The parameters *Co* and *Bo* are convection number and boiling number, respectively, and are defined as:

$$Bo = \frac{q}{Gh_{l_{\nu}}} \tag{3.28}$$

$$Co = \left(\frac{\mathbf{r}_{v}}{\mathbf{r}_{l}}\right)^{0.5} \left[\frac{(1-x)}{x}\right]^{0.8}$$
(3.29)

Table 3.2: Recommended values of the fluid dependent parameter $F_{\rm fl}$

Water	1.0
R-11	1.3
R-12	1.5
R-13 B1	1.31
R-22	2.20
R-113	1.30
R-114	1.24
R-134a	1.63
R-152a	1.10
R-32/R-132	3.30
60%-40% wt.	
Kerosene	0.488

Steiner and Taborek 27 also developed the following widely-used asymptotic type correlation,

$$h_{tp} = (h_{nb}^{n} + h_{cb}^{n})^{\frac{1}{n}}$$
(3.30)

where

$$h_{nb} = h_{nbo} F_{nb} \tag{3.31}$$

$$F_{nb} = F_p \left(\frac{q}{q_o}\right)^m \left(\frac{D}{D_o}\right)^{-0.4} \left(\frac{Ra}{Ra_0}\right)^{0.133} F(m)$$
(3.32)

$$h_{cb} = h_{lo} F_{tp} \tag{3.33}$$

In the above expression, D_0 is diameter at normalized condition Ra is the wall roughness given in μ m and Ra₀ is the wall roughness under normalized condition. The parameter q_0 is given for different fluids in Table 3.3 Thome 28. More details about this correlation will be provided later in section 3.4.

Table 3.3: Values of q_0 for different fluids as given by Steiner and Taborek [27]. Standard Nucleate Flow Boiling Coefficients $a_{nb,0}$ in $W/m^{2_2} \cdot K$ at $p_r = 0.1$ for q_0 in W/m^2 and $R_{p,0} = 1 \mu m$ with p_{crit} in bar (http://www.knovel.com/knovel2/Toc.jsp?BookID=725)

Fluid	Pcrit	М	q_0	$\alpha_{nb,0}$
Methane	46.0	16.04	20,000	8,060
Ethane	48.8	30.07	20,000	5,210
Propane	42.4	44.10	20,000	4,000
<i>n</i> -Butane	38.0	58.12	20,000	3,300
<i>n</i> -Pentane	33.7	72.15	20,000	3,070
Isopentane	33.3	72.15	20,000	2,940
<i>n</i> -Hexane	29.7	86.18	20,000	2,840
<i>n</i> -Heptane	27.3	100.2	20,000	2,420
Cyclohexane	40.8	84.16	20,000	2,420
Benzene	48.9	78.11	20,000	2,730
Toluene	41.1	92.14	20,000	2,910
Diphenyl	38.5	154.2	20,000	2,030
Methanol	81.0	32.04	20,000	2,770
Ethanol	63.8	46.07	20,000	3,690
n-Propanol	51.7	60.10	20,000	3,170
Isopropanol	47.6	60.10	20,000	2,920
n-Butanol	49.6	74.12	20,000	2,750
Isobutanol	43.0	74.12	20,000	2,940
Acetone	47.0	58.08	20,000	3,270
R-11	44.0	137.4	20,000	2,690
R-12	41.6	120.9	20,000	3,290
R-13	38.6	104.5	20,000	3,910
R-13B1	39.8	148.9	20,000	3,380
R-22	49.9	86.47	20,000	3,930
R-23	48.7	70.02	20,000	4,870
R-113	34.1	187.4	20,000	2,180
R-114	32.6	170.9	20,000	2,460
R-115	31.3	154.5	20,000	2,890
R-123	36.7	152.9	20,000	2,600
R-134a	40.6	102.0	20,000	3,500
R-152a	45.2	66.05	20,000	4,000
R-226	30.6	186.5	20,000	3,700
R-227	29.3	170.0	20,000	3,800
RC318	28.0	200.0	20,000	2,710
R-502	40.8	111.6	20,000	2,900
Chloromethane	66.8	50.49	20,000	4,790
Tetrachloromethane	45.6	153.8	20,000	2,320
Tetrafluoromethane	37.4	88.00	20,000	4,500
Helium ^a	2.275	4.0	1,000	1,990
Hydrogen (para)	12.97	2.02	10,000	12,220
Neon	26.5	20.18	10,000	8,920
Nitrogen	34.0	28.02	10,000	4,380
Argon	49.0	39.95	10,000	3,870
Oxygen	50.8	32.00	10,000	4,120
Water	220.6	18.02	150,000	25,580
Ammonia	113.0	17.03	150,000	36,640
Carbon dioxide ^b	73.8	44.01	150,000	18,890
Sulfur hexafluoride	37.6	146.1	150,000	12,230

^{*a*}Physical properties at $p_r = 0.3$ rather than 0.1.

^bCalculated with properties at T_{crit} .

A simple correlation, proposed by Gungor and Winterton [15] in 1987 should also be mentioned here. This correlation can be represented as:

$$\frac{h_{tp}}{h_l} = 1 + 3000Bo^{0.86} + 1.12 \left(\frac{x}{1-x}\right)^{0.75} \left(\frac{\mathbf{r}_l}{\mathbf{r}_v}\right)^{0.41}$$
(3.34)

It must be emphasized that the applicability of the afore-mentioned widely-used forced flow boiling correlations to micro-channels is questionable. These correlations are all essentially empirical and are based on data that at best include only limited minichannel boiling data. The issue has been noted and emphasized by some investigators. For example, Agostini et al 29 have noted that old and classical correlations generally under predict the performance of mini-channels.

3.2 General Remarks About Flow Boiling in Micro Channels

In the contemporary literature on mini and micro channels, there is considerable interest in boiling heat transfer. This is due to the wide potential applications of microchannels and the savings that would arise from using mini and micro-channels in many industrial systems. Some examples of micro-channel utilization are fuel cells, refrigeration units, chemical process equipment, and microelectronics cooling.

The precise definition of micro-channels is the subject of disagreement. One of the earliest definitions is due to Suo and Griffith 30, according to which a cylindrical channel with diameter D is a micro-channel if D = 0.3b (Ghiaasiaan and Abdul-Khalik 31, 2001), where b is the Laplace length scale, and has been defined earlier in equation (23). More recently, however, other definitions have been proposed, and currently the most popular classification method appears to be as follows:

Micro-channels: $50 \ \mu m = D = 0.5 \ mm$

Mini-channels: 0.5 mm = D = 3 mm

Macro channels D = 3 mm

However, direct experimental observations, Ghiaasiaan and Abdul-Khalik [31], have shown that with air-water and steam-water type fluid pairs, near circular channels with $0.1 \text{ mm} = D_H = 1 \text{ mm}$ should be considered as a single category, while channels with 10 $\mu m = D_H = 100 \mu m$ and $D_H = 1 \text{ mm}$ should constitute two other size categories. In this sense, the recommendations of Mehendale et al 32, are more reasonable, according to which

Micro-channels: $1 \ \mu m = D = 100 \ \mu m$ (micro heat exchangers) Mini (meso) channels: $100 \ \mu m = D = 1 \ mm$ (meso heat exchangers) Macro channels 1 mm = D = 6 mm (compact heat exchangers) Conventional channels D> 6 mm (conventional)

Following the aforementioned popular definitions, the term micro-channels is applied here to conduits with hydraulic diameters of 100 μ m ~ 0.5 mm range. Minichannels are characterized here as channels with hydraulic diameter between 0.5 mm and 3 mm. We will limit our consideration of boiling heat transfer data to 2 mm, however.

Most studies dealing with mini and micro-channels have shown that nucleate and convective boiling both contribute to heat transfer. This observation is in principle consistent with what has been well known about boiling in conventional large channels. The trends in the micro-channel boiling data, however, have not been consistent and as will be discussed later, indicate that there are major differences between micro-channels and conventional channels. Studies carried out in large channels include the use of available sophisticated technology, which is utilized to obtain valuable information about the heat transfer coefficient, bulk fluid temperature, wall temperature, and quality. In the case of micro-channels, such detailed measurements are of course very difficult. Vlassie et al 33 have observed that the majority of flow boiling experiments have measured local boiling heat transfer coefficient or heat flux as a function of x, the equilibrium vapor quality. In a study, Tran et al 34 observed that local heat transfer coefficient in the evaporation of R-113 in their small diameter horizontal channel was dependent on the heat flux, with little dependence on mass flux or quality. This trend suggests the predominance of nucleate boiling. In the work of Lin et al 35, on the other hand, the observed results showed that the heat transfer coefficient increases with a decrease in quality. This trend indicates the predominance of forced convection.

There are many technical difficulties that make the study of boiling in mini and micro-channels challenging. Agostini et al 36 has highlighted one of the major difficulties in the study of boiling in mini and micro channels. They stated that the lack of detailed information about geometry and other tube characteristics is a challenge for a full understanding of the characteristics of mini and micro channels. Furthermore, they point out some flaws in using the available correlations. (These correlations are also examined in this project). The discrepancy between micro-channel data and these classical correlations is of course primarily due to the fact that they were developed in principle for channels with D > 3 mm.

It must be mentioned that there is considerable controversy even with respect to single phase flow heat transfer in micro-channels. While some researchers have reported that macro scale correlations for turbulent flow disagree with micro-channel experimental data, others have observed reasonable agreement.

Agostini et al [29], for example observed agreement between their data and with Gnielinski [24] correlation. This widely-respected correlation has been shown to accurately predict the heat transfer coefficient in both regular ducts and mini channels. The correlation is given in the forthcoming Equation [31], and its range of validity is listed below.

$$Nu = \frac{\frac{f}{2}(\text{Re}-1000)\text{Pr}}{1+12\sqrt{\left(\frac{f}{2}(\text{Pr}-1)\right)}}$$
(3.35)

The range of validity of Gnielinski [24] correlation is $2300 < \text{Re} < 10^6$; and $0.6 < \text{Pr} < 10^5$.

Lee and Mudawar 37 recently performed a careful and detailed review of the past experimental studies dealing with boiling in mini and micro-channels. They noted that the past researchers could be divided into two groups. The first group believes that in micro-channels nucleate boiling is the dominant heat transfer mechanism. This conclusion was based on the observation that in their experiments the local heat transfer coefficient was a function of heat flux, but was insensitive to mass flux and quality. Among the authors in this group are Lazarek and Black 38, Wambsgass et al [34], Tran et al [34], Bao et al 39, Mehendale and Jacobi [32] and Yu et al 40. The second group of authors has reported on observations that indicate the predominance of annular flow regime, hence the convective boiling mechanism. Observations supporting this view include decreasing local heat transfer coefficient with increasing quality, and increasing local heat transfer coefficient with increasing mass flux. Authors in this group include Kew and Cornwell 41, Ravigugurajan 42, Lee and Lee 43, Lin, Kew and Cornwell 44, Warrier et al 45, Wen et al 46, and Huo et al 47. Lee and Mudawar [37], however, noted that the observations of both groups are in fact reasonable, since they hold under different ranges of parameters. They also developed an empirical prediction method for boiling heat transfer in micro-channels, which will be discussed later.

3.3 Recent Experimental Studies Dealing with Boiling in Micro-Channels

Some important, recent investigations dealing with flow boiling in mini and micro-channels are now reviewed in some detail.

Ravigururajan [42] studied the effect of micro-channel geometry on two-phase flow heat transfer. Using R-124 refrigerant purified with 10 μ m filter, he performed steady-state experiments in a micro-channel with rectangular cross section that was 1 mm wide and 270 μ m deep. Since experimentation with a single micro-channel is difficult, Ravigururajan [42] constructed 54 identical, parallel micro-channels, with a length of 20.5 cm that were connected at both ends to common plenums. He reported liquid singlephase, and liquid-vapor two-phase heat transfer coefficients, as well as pressure drop data. However, it is not clear what types of measurements were performed in this study, and how the channel inner wall temperature was measured. It is also not clear how the effects of channel exit pressure losses were accounted for.

Hapke et al. [48] performed Onset Nucleate Boiling (ONB) experiments, using degassed de-ionized water, in a vertical micro tube with 0.5 mm inner diameter. They noted that, for the same heat flux in comparison with well established ONB correlations for macro-scale, their data indicated that ONB occurred at a larger wall temperature. Their data primarily covered the laminar flow regime. They argued that, near the ONB point, heat transfer is augmented by fluctuations in mass flux and pressure, early laminar-turbulent transition and by the heterogeneously-generated bubbles themselves. They attempted to derive empirical correlations for the prediction of ONB, based on their own experimental data.

The ONB, as well as the Onset of Significant Void (OSV) and Onset of Flow Instability (OSI) had been studied earlier by Kennedy et al 49, Chedester and Ghiaasiaan 50 and Ghiaasiaan and Chedester [50]. Kennedy et al [49] experimentally studied the ONB and OFI phenomenon in heated micro-channels with 1.17 mm and 1.45 mm inner diameters, using water. They noted that the widely used macro scale correlations for ONB overall over-predicted the ONB heat flux for micro-channels. Ghiaasiaan and Chedester [50] speculated that a major contributor to the different behavior of macro scale systems and micro-channels is the significance of thermo capillary effect in the latter. Thermo capillary effect refers to the non-uniformity of surface tension distribution over the liquid-vapor inter-phase for the heterogeneously-generated micro-bubbles, itself a result of the non-uniformity of the interfacial temperature distribution. Ghiaasiaan and Chedester [50] developed an ONB model, based on the modification of the ONB model of Davis and Anderson 51, empirically accounting for the effect of thermo capillary phenomenon. Chedester and Ghiaasiaan [50] developed a model for OSV in microchannels using a similar argument.

Bao et al [39] performed flow boiling experiments using R-11 and HCFC-123 refrigerants as the working fluids, in a horizontal test section that had an inner diameter of 1.95 mm. The heated segment of the test section was 270 mm long, and was preceded by 400 mm long unheated segment that was meant to eliminate the hydrodynamic entrance effects. Temperature measurements were performed in metallic heating blocks that encased the test section, within 2 mm from the micro-channel inner surface. The mass flux and heat flux ranges were 50-1800 kg/m²s and 5-200 kW/m², respectively. The vapor quality range for their reported data was 0.3 to 0.9. The experiment thus covered

both sub-cooled and saturated boiling, under low flow conditions. They observed little effect of mass flux under sub-cooled boiling conditions, suggesting negligible convective contribution to heat transfer.

For saturated boiling conditions, Bao et. al [39] noted that mass flux and quality both had little effect on the heat transfer coefficient, once again suggesting that nucleate boiling was the main component of heat transfer, while the convective heat transfer had little contribution. In the saturated boiling region, furthermore, the heat transfer coefficient was a strong function of heat flux. Bao et al [39] compared their experimental data with several forced-flow boiling correlations. Neither correlation could predict their entire data reasonably well, however.

Haynes and Fletcher 52 more recently reported on an experimental study of subcooled and saturated flow boiling, using R-11 and HCFC-123 refrigerants, in heated micro-tubes with 0.92 and 1.95 mm inner diameters. The experimental rig was the same as the one used earlier by Bao et al [39]. The mass and heat flux ranges in these experiments were 110-1840 kg/m²s and 11-170 kW/m², respectively, implying that the test series were in the low-flow and low-heat flux category. The Reynolds number at inlet varied in the 450 to 12,000 range. They noted that in laminar developing flow, their liquid single phase heat transfer coefficients agreed with theory within only 10%. They noted the same level of agreement between their data and well established correlations for transitional and turbulent flow. Overall, Haynes and Fletcher [52] produced more than 2000 data points. For saturated boiling, they compared their data with several correlations, with the correlation of Gorenflo 53 providing the best result. They noted a weak contribution of convection in the saturated boiling regime. They proposed the following composite correlation for sub-cooled boiling:

$$q'' = h_{lo} \left(Tw - \overline{T}_l \right) + h_{pb} \left(Tw - T_{sat} \right)$$
(3.36)

where T_l is the local average temperature and h_{bb} represents the pool boiling contribution and can be calculated using the correlation of Gorenflo [53].

Bubble nucleation and nucleate boiling in micro-channels with hydraulic diameters in the = 100μ m range have also been investigated in the past. Included among these studies are Koo et al 54 and Zhang et al 55. Although micro-channels in this size range are not the focus of this investigation, a brief review of the latter studies is provided. Koo et al [54] developed a simple model that addressed the flow field and conduction in the solid structure. The fluid flow model considered a liquid single-phase flow regime followed by a dispersed droplet regime, and utilized the correlation of Kandlikar for boiling. Zhang et al [55] conducted experiments, using deionized water, in single heated micro-channels that are 10-150 μ m wide, and 10-200 μ m deep, and had a length of 2 cm. By inserting etches with controlled parameters on the channel walls, Zhang et al [55] could examine the effect of wall roughness (wall crevice) on bubble nucleation. They demonstrated that bubble nucleation is heterogeneous when crevices are present. For very small channels ($D_h = 50 \ \mu m$) onset of boiling was accompanied by sudden eruption of bubbles that lead to the development of dispersed flow regime, but needed high wall superheats (T_w -T_{sat} = 20°C), to occur. For $D_H = 100 \ \mu m$, onset of nucleate boiling occurred at $T_w - T_{sat}$ ~ 5°C, however. The aforementioned "eruption boiling" was apparently due to the absence of viable cavities on the channel walls.

An extensive and carefully designed experimental study of boiling and pressure drop in heated micro-tubes was recently reported by Yen et al 56. These authors used insulated stainless steel test sections which were 28 cm in length, with inner diameters equal to 0.19, 0.13 and 0.51 mm. Heating was provided by Jules heating of the test section itself, and in all tests the inlet liquid was about 10 K sub-cooled. Tests were performed with HCFC123 and FC72 as the working fluids. A multitude of thermocouples were used to measure the test section wall temperatures, and coolant inlet pressure and temperature. By careful control of various parameters, the uncertainty in the inferred heat transfer coefficients were maintained within $\pm 10\%$. The pressure distribution in the test section in each experiment was obtained by assuming linear pressure variation in the subcooled and saturated fluid lengths of the test section. Yen et al. [56] studied the inner surfaces of their test sections using a scanning electron microscope (SEM). The cavities were typically $3 \sim 4 \,\mu m$ across, and groves were $1 \sim 3 \mu m$ wide. Their experiments targeted relatively low flow and low wall heat flux conditions. (G = $50 - 300 \text{ kg/m}^2$; q" = $1 \sim 13 \text{ kW/m}^2$). With respect to liquid single phase flow, Yen et al. [56] noticed that the laminar flow theory for tubes agreed with their data well.

A very interesting observation by Yen et al [56] was the occurrence of highly superheated liquid in the experiments (i.e., occurrence of superheated liquid before bubble nucleation takes place). Superheats up to 70 K were noted, and the maximum superheat increased with decreasing channel diameter, but was insensitive to heat flux. Based on an extrapolation of the data, the data of Yen et al [56] show that the liquid superheat needed for bubble nucleation becomes equal to the liquid spinodal temperature at a capillary diameter of about 0.1 mm. Their observations are consistent with the

39

observations of Roach et al. 57 in their experimental study of critical heat flux in microchannels, under low flow conditions as discussed in detail by Ghiaasiaan and Abdul-Khalik [31].

With respect to boiling heat transfer (i.e., heat transfer in saturated flow region), Yen et al [56] compared their data with several correlations. The results are shown in Fig 3.1, borrowed from Yen et al. [56] and as noted they shown that all the tested correlations failed to agree with the data. However, Yen at al. [56] noticed that the correlation of

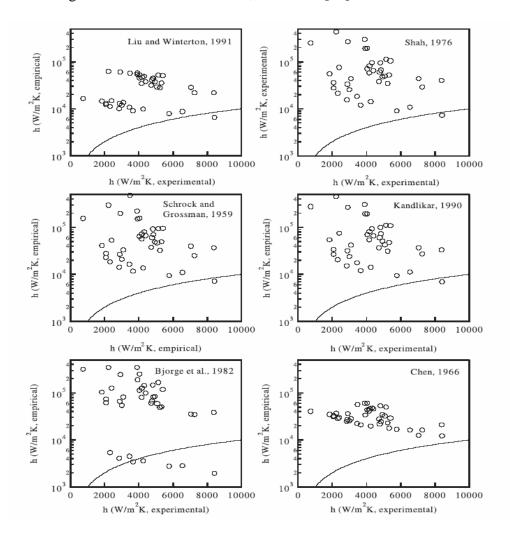


Fig 3.1: Comparison of the data of Yen et al. [56] obtained using HCFC123, with the predictions of several forced-flow boiling correlations.

Kandlikar [21, 22] agreed with their data well, provided that the term representing forced convection in the latter correlations was completely ignored. Based on this, Yen et al [56], concluded that boiling in micro-channels under low flow and low heat flux conditions is dominated by nucleate boiling. The boiling heat transfer coefficient monotonically decreased with increasing local quality up to a quality of about 0.3 and became insensitive to quality for higher qualities.

Lee and Mudawar [37] recently published an extensive experimental investigation into boiling in micro-channels, under high mass flux and high heat flux conditions, using R-134a as the coolant. Their test section consisted of 53 parallel, and presumably identical, rectangular channels (231 μ m x 713 μ m) constructed into an oxygen-free copper block. The channels were 2.5 cm long, and were all connected to large plena at inlet and outlet. This arrangement, namely multiple parallel channels connected to common plena, can cause parallel-channel flow oscillations, although Lee and Mudawar [37] have indicated that there oscillations were kept small. Temperature measurements and heat transfer calculations were made for the point half way along the heated channel, using parameters that properly represented the average among the 53 channels.

Lee and Mudawar [37] noted important differences between their data with R-134a, and the data previously generated using the same test section with water. Whereas proper bubbly flow had been observed with water, with R-134a the bubbly flow regime in fact contained bubbles as well as vapor slugs. The difference was attributed to the low surface tension of R-134a. Based on their data and their trends, Lee and Mudawar [37] concluded that three distinct boiling regimes must be considered in micro-channels: a low quality regime (0 = $x_e = 0.05$); a medium quality regime (0.05 = $x_e = 0.55$) where the flow

41

field is dominated by elongated bubbles that are sometimes separated from one another by very thin liquid regions; and a high quality regime (x_e =0.55) where annular flow regime characterized by very thin liquid film occurs. In the low quality range, heat transfer is predominantly by nucleate boiling. Lee and Mudawar [37] compared their data with several macro and small channel correlations. Macro channel correlations generally over-predict the data at high qualities, but under-predicted the data at low qualities. The small channel correlations, on the other hand, all performed poorly, in particular for the data in the high quality (annular flow regime) range. Lee and Mudawar [37] developed three separate correlations for the aforementioned three regimes. These correlations will be presented in the next section. However, they did not compare their correlations with other investigators' data.

An important shortcoming in the experiments of Lee and Mudawar [37], as well as many other investigators who have used multiple parallel channels, must be emphasized. In the experiments of Lee and Mudawar [37], the parallel channels were connected at both ends to common manifolds. With the configuration parallel channel instabilities and oscillations, and perhaps more importantly non-uniform flow distribution among the channels is inevitable. The data produced in the studies of this type, which are usually present for "average channel", must therefore be treated with caution.

Sumith et al 58 performed an experimental study of forced flow boiling in a vertical tube that had an inner diameter of 1.45 mm, and a length of 100 mm. The working fluid was de-ionized water. By comparing their data with the predictions of the correlation of Stephan and Abdulsalam 59, they noticed that their measured heat fluxes

were actually higher than what would be expected in a macro channel. The compared their data with the correlations of Chen [17], Klimenko [11,12] and Liu and Winterton [20]. The correlations all performed poorly at low heat fluxes, but their argument with data improved considerably at high heat fluxes. The low heat flux data corresponds to slug and slug-annular flow regimes. The high heat flux data, on the other hand, represented forced convective evaporation, and corresponded to annular-dispersed two-phase flow regime. Based on the parametric trends in their data, Sumith et al. [58] evolved an empirical correlation which will be presented later in section 3.4.

3.4 Boiling Heat Transfer Correlations for Small Channels

In this section we will revisit some of the available correlations with additional details that describe the methods that were used to develop these correlations, as well as the range of applicability of each correlation. With a few exceptions, the correlations revisited in this section will be tested against mini and micro-channel flow boiling data later. Although some of the correlations that are discussed in this section have been reviewed in section 3.1, their review in this section will be based on a different point of view. In Chapter 4, we will show a comparison of most of these correlations with actual available experimental data from Bao et al [39] and Baird et al 60, and Yan and Lin 61,

Agostini et al [29], conducted an experimental study to evaluate the friction factor in mini channels. The experimental set up included a liquid pump, glycol-water mixture, and a channel made of extruded Al. The test section was a rectangular channel (3.28 mm x 1.4 mm) with a hydraulic diameter of 2.01 mm, and was thermally insulated.

It must be mentioned that comparison between widely-used correlations and mini and micro-channel experimental data have been performed before by some investigators. As mentioned before, Vlassie et al [33] have provided a table shown in Figure 3, this highlights the available correlations used in the analysis of mini and micro-channels. These were correlations that Vlassie et. al. [33] themselves compared with the data that had been generated by Kew and Cornwell 62. These correlations were as follows: (i) Liu and Winterton [20]; (ii). Cooper 63; (iii) Lazarek and Black [38]; (iv) Kew and Cornwell [62], and (v) Tran et al [34]. Lee and Mudawar [37] have also compiled flow boiling correlations, and have compared the predictions of the compiled correlations with their experimental data. Furthermore, Lee and Mudawar [37] developed a set of three correlations for micro-channels flow boiling in low, medium and high quality ranges. These correlations will also be reviewed. Thus, as can be noted, the above-mentioned studies either compared the correlations with large-channel data, or compared the predictions of correlations with one mini and micro-channel data set only.

Reference	Equation number	Correlation (in SI units)
Liu and Winterton [29]	(6)	$h^2 = \left(S \cdot h_{apb}\right)^2 + \left(F \cdot h_L\right)^2$
Cooper [30]	(7)	$h = 55 \cdot p_r^{0.12} \cdot (-\log_{10} \cdot p_r)^{-0.55} M^{-0.5} \cdot q^{0.67}$
Cooper [31]	(8)	$h = 35 \cdot p_t^{0.12} \cdot (-\log_{10} \cdot p_t)^{-0.55} M^{-0.5} \cdot q^{0.67}$
Lazarek and Black [7]	(9)	$Nu = 30 \cdot \text{Re}^{0.857} \cdot Bo^{0.714}$
Kew and Cornwell [13] (modified Lazarek and Black)	(10)	$Nu = 30 \cdot \text{Re}^{0.857} \cdot Bo^{0.714} \cdot (1-x)^{-0.143}$
Tran et al. [14]	(11)	$h = 840 \cdot 10^3 \cdot (Bo^2 \cdot We_1)^{0.3} (\rho_1 / \rho_v)^{-0.4}$

Table 3.4: A table from Vlasie et al [33]; correlations used by the authors

In this review, the following correlations will thus be discussed: (i) Liu and Winterton [20]; (ii) Kandlikar [13]; (iii) Chen [17]; (iv) Shah [18]; (v) Thome et al [64]; (vi) Gungor and Winterton [15]; (vii) Bjorge et al [19]; (viii) Klimenko [11, 12]; (ix) Steiner and Taborek [27]; (x) Tran et al [34]; (xi) Yen et al [56]; (xii) Lee and Mudawar [37]; (xiii) Haynes and Fletcher [52]; Sumith et.al [58]

The method of Thome et al. 64 formulated a model to predict local dynamic heat transfer coefficients. The focus of this model is on what happens at a fixed point on the wall of a channel subject to a vapor-liquid flow regime dominated by elongated bubbles and a constant wall heat flux boundary condition. They concluded that nucleate boiling is not the major player in boiling in mini and micro-channels. Based on a three zones evaporation model, Thome et al showed that transient evaporation of the thin liquid film

surrounding elongated bubbles is the dominant heat transfer mechanism. The input parameters for their model are the local equilibrium quality x_e, heat flux, tube diameter, mass flow rate, and fluid thermo-physical properties at local saturation pressure. The model assumes that bubbles nucleate quickly and grow to become of the order of the channel size. These bubbles trap a liquid film between them and the inner tube wall. Thome et al [64] showed that the thickness of the film plays a major role in heat transfer. The 3 zones considered by Thome et al. [64] are as follows: liquid slug; elongated bubble; and vapor slug, as shown in Fig. 3.2. A fixed point on the channel wall is thus periodically subjected to the passage of these three zones, in sequence. The average heat transfer coefficient for the fixed point is then obtained based on some empirical model for each zone. Thome et al. [64] used the homogenous model to obtain the void fraction, and a two-phase mixture velocity, based on several assumptions about the conditions of the liquid, gas and channel. For the liquid and vapor slugs zone, heat transfer coefficient was calculated from a local Nusselt number correlation for forced convection, applied to the respective lengths, with the liquid flow assumed to be hydro-dynamically and thermally developed. For laminar forced convection (Re< 2300), Thome et al [64] used the following correlation that was borrowed from Shah [18]:

$$Nu_{lam}(z) = 0.455\sqrt[3]{\text{Pr}} \sqrt{\frac{d \text{ Re}}{L(z)}}$$
(3.37)

$$Nu = 2Nu_{lam}(z) \tag{3.38}$$

$$Nu_{trans}(z) = \frac{\left(\frac{\mathbf{x}}{8}\right) \operatorname{Re} - 1000 \operatorname{Pr}}{1 + 12.7 \sqrt{\left(\frac{\mathbf{x}}{8}\right) \operatorname{Pr}^{2/3} - 1}} \left[1 + \frac{1}{3} \left(\frac{d}{L(z)}\right)^{\frac{2}{3}}\right]$$
(3.39)

The friction factor to be used in Equation 39 is found from

/

$$\mathbf{x} = (1.82 \log_{10} \text{Re} - 1.64)^{-2}$$
(3.40)

A large number of assumptions are made for the derivation of this model, including: a) Onset of nucleate boiling occurs at the axial location where the fluid is saturated liquid, b) Bubbles that grow and depart at the ONB point act as "shutters", that divide the flow field into liquid slugs separated by bubbles. The bubbles keep growing at the expense of the liquid slugs, however, c) The bubble ebullition process does not include a waiting period, but has a growth period that can be modeled according to Plesset and Zwick 65. The bubble departs when it forms a sphere with a diameter equal to the heated tube diameter.

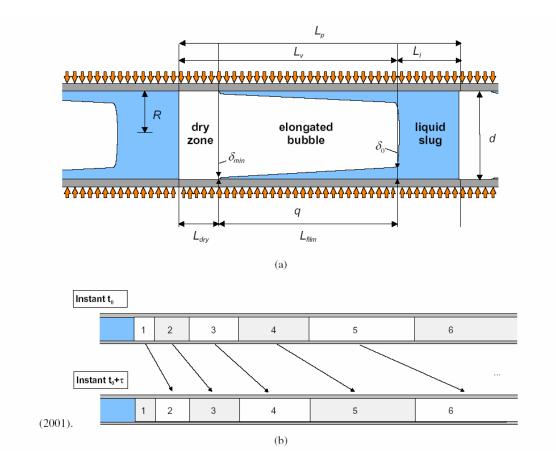


Figure 3.2: The three zones of Thome et al [64]

The phenomenological picture, for a fixed point on the channel wall downstream from the ONB point, according to Thome et al. [64] is thus as follows. Liquid slugs and elongated bubbles pass over the point, in turn. During the passage of the liquid slug, wall heat transfer can be found from correlations representing fully-developed pipe flow. During the passage of an elongated bubble the fixed point is covered by a thin liquid film formed from the liquid slug. The heat transfer is governed by the heat conduction and surface evaporation in the liquid film. Should the liquid film be disrupted before the arrival of the next liquid film, furthermore, for a period of the time the fixed point will be subject to single-phase vapor forced convection, and the latter is represented by fullydeveloped pipe flow. The model of Thome et al. [64] is thus a "three zone" model, and the time average heat transfer coefficient at a fixed point should accordingly be obtained from:

$$h(z) = \frac{t_1}{t} h_1(z) + \frac{t_{film}}{t} h_{film}(z) + \frac{t_{dry}}{t} h_v(z)$$
(3.41)

where t_l , t_{film} and t_{dry} represent the time periods during which the fixed point is covered by a liquid slug, the liquid film underneath an elongated bubble, and pure vapor , respectively, and $t = t_l + t_{film} + t_{dry}$. (Note that t_{dry} can be equal to zero).

Despite its interesting phenomelogical background, the model of Thome et al [64] does not appear to be a promising predictive tool. The model needs three adjustable coefficients that are difficult to predict. The parameters that need adjustment are the minimum liquid film thickness at dry out; a correction factor for the prediction of initial film thickness; and a pair frequency, which is a function of the bubble formation process. Thome et al. [64] applied their model to the data from several different sources, and found out that the aforementioned adjustable parameters varied from case to case. They developed a "general model" as well, where the adjustable coefficients were chosen to provide the best possible fit to the entire data base they had used. Furthermore, as mentioned earlier, the model is limited to the elongated bubbles regime.

The correlation of Liu and Winterton [20]:

This is a widely used correlation for the prediction of flow boiling heat transfer coefficient. Like most correlations dealing with forced flow boiling, the correlation is in fact the addition of two heat transfer coefficients, one representing nucleate boiling and the other convection heat transfer. The nucleate boiling heat transfer component is calculated using Cooper's [63] correlations while the Dittus-Boelter [23] correlation is used to evaluate the convective heat transfer component.

Liu and Winterton [20] employed a method suggested by Kutateladize 66 to combine the effects of nucleate boiling and convection. A forced convection enhancement factor F and a nucleate boiling suppression factor S are defined where:

$$h_{TP} = \sqrt{\left(\left[\frac{h_{exp}}{h_{pool}}\right]^2 - \left[\frac{Fh_l}{h_{pool}}\right]^2\right)}$$
(3.42)

where F and S themselves are correlated as:

$$F = \left[1 + x \operatorname{Pr}_{l}\left(\frac{\boldsymbol{r}_{l}}{\boldsymbol{r}_{v}} - 1\right)\right]^{0.35}$$
(3.43)

$$S = \left(1 + 0.055 F^{0.1} \operatorname{Re}_{l}^{0.16}\right)^{-1}$$
(3.44)

When applied to saturated flow, heat flux is calculated from

$$q = h_{TP}(T_w - T_s) \tag{3.45}$$

where:

$$h_{TP} = \sqrt{(Fh_l)^2 + (Sh_{pool})^2}$$
(3.46)

If the heated tube is horizontal and the Froude number defined in equation 3.47 is less than 0.05, Fh_i and Sh_{pool} in equation 3.50 must be multiplied by respectively by the expressions in equations 3.48 and 3.49.

$$Fr = \frac{G^2}{r_l^2 g D_h}$$
(3.47)

$$e_{f} = Fr^{0.1-2Fr}$$
(3.48)

$$e_s = \sqrt{Fr} \tag{3.49}$$

In sub-cooled boiling, the correlation is as follows:

$$q = \sqrt{\left(Fh_{l}\Delta T_{b}\right)^{2} + \left(Sh_{pool}\Delta T_{s}\right)^{2}}$$

$$\Delta T_{b} = T_{w} - T_{s}$$

$$\Delta T_{s} = T_{w} - T_{s}$$
(3.50)
(3.51)

The correlation of Kandlikar [21, 22]

The correlation of Kandlikar [21], [22] was presented earlier in equations (3.23) to (3.29). The correlation is recommended for application to channels with water and refrigerants as the working fluid. The all-liquid forced convection heat transfer coefficient h_{lo} is calculated from Gnielinski [24], or Petukov and Popov's[25] correlation, depending on the value of Re_{l0} . The parameter F_{fl} is the fluid surface parameter given by Kandlikar [21, 22] and its values for several fluid-solid pairs were given earlier in Table 3.2. Recently (Kandlikar ,2003) Kandlikar [21, 22] examined the applicability of this correlation to boiling in mini-channels (i.e. channels with $D_{ff} = 400 \ \mu m^{\sim} 2.97 \ mm$). He noted that the parameter $f_2(Fr_{lo})$ in his correlation is meant to account for the effect of flow stratification in horizontal channels , and therefore $f_2(Fr_{lo})=1$ is appropriate for mini-channels where stratification does not occur. Comparing his correlation with the data from four different sources, he arrived at the following major conclusions:

- a) The correlation does quite well when Re_{lo} is less than 1600, provided that h_o is obtained from appropriate laminar flow forced convection correlations.
- b) For $1600 < \text{Re}_{\text{lo}} = 3000$, where transition from laminar to turbulent flow takes place, deviation occurs between the correlation and data. An appropriate interpolation technique is needed for the calculation of h_0 , and there is the need for more experimental data.

c) For Re_{lo} greater than 3000 the correlation is probably adequate, as long as h_o is calculated using a turbulent channel flow correlation.

The correlation of Chen [17]

Chen's [17] correlation is one of the most widely referenced correlations in the field of boiling. The heat transfer coefficient is obtained from:

$$h = h_{mic} + h_{mac} \tag{3.52}$$

where h_{mic} and h_{mac} represent the micro (nucleate boiling) and macro (conventional) convective terms.

Chen [17] was interested in saturated boiling. The approach by Chen [17] was to treat the forced convection (macro heat transfer) by a modified Dittus-Boelter [23] equation according to:

$$h_{mac} = 0.023 (\text{Re})^{0.8} (\text{Pr})^{0.4} \left(\frac{k}{D}\right)$$
 (3.53)

where *Pr*, and *Re* represent effective values associated with the two-phase fluid. For the two-phase part of the flow field, the equation is written as equation,

$$h_{mac} = 0.023 (\text{Re}_{l})^{0.8} (\text{Pr}_{l})^{0.4} \left(\frac{k_{l}}{D}\right) F$$
(3.54)

Where Pr_l and Re_l are the liquid Prandtl and Reynolds numbers, respectively. The Parameter *F* is the ratio of the two-phase Reynolds number to the liquid Reynolds number based on liquid fraction of the flow, namely Re_l , and is meant to account for the macro contribution to the convection heat transfer. The micro contribution (i.e., the nucleate boiling contribution) is given by the correlation of Forster and Zuber [26], modified for the bubble nucleate suppression due to forced convection. This correlation was given earlier in Equation 3.2, and is repeated below for convenience:

$$h = 0.00122 \frac{k_l^{0.79} c_{pl}^{0.45} \mathbf{r}_l^{0.49}}{\mathbf{s}^{0.5} \mathbf{m}_l^{0.29} H_{fg}^{0.24} \mathbf{r}_g^{0.24}} (T_W - T_S)^{0.24} \Delta P^{0.75} S + 0.023 \left[\frac{DG(1-x)}{\mathbf{m}_l} \right]^{0.8} \left(\frac{c_{pl} \mathbf{m}_l}{k_l} \right) \frac{k_l}{D} F$$
(3.55)

where:

$$\Delta T = T_w - T_s \tag{3.56}$$

$$\Delta P = T_{sat}(T_w - P) \tag{3.57}$$

The parameter S is a suppression factor and is defined as $S = \left(\frac{\Delta T_e}{\Delta T}\right)^{0.99}$. The following

equations are used to evaluate ΔT_e and S:

$$\left(\Delta T_{e}\right)^{0.99} = \left(\frac{T_{e}}{Ir_{vj}}\right)_{T_{e},I}^{0.75} \left(\Delta T_{e}\right)^{0.24} \left(\Delta P_{e}\right)^{0.75}$$
(3.58)

$$S = \left(\frac{\Delta T_e}{\Delta T}\right)^{0.24} \left(\frac{\Delta P_e}{\Delta P}\right)^{0.75}$$
(3.59)

Chen [17] subsequently obtained the numerical values for F and S, and represented F and

S graphically, as functions of $\frac{1}{X_{tt}}$ and Re₁ $F^{1.25}$, respectively. These graphical

representations were subsequently fitted to the empirical expressions of Equations (3.7) and (3.8), respectively.

The correlation of Shah [18]

In 1976, Shah [18] also developed a correlation for saturated flow boiling; the fluids for which the correlation is recommended are R-11, R-12, R-113 and water (in the pressure range of 15 to 2500 psia). The correlation is:

$$\frac{h_{tp}}{h_l} = f(Co, Bo, Fr_l)$$
(3.60)

Where h_l is obtained from the Dittus-Boelter [23] correlation, and:

$$Co = \left(\frac{1}{x} - 1\right)^{0.8} \left(\frac{\boldsymbol{r}_{v}}{\boldsymbol{r}_{l}}\right)^{0.5}$$
(3.61)

$$Bo = \frac{q}{Gh_{fg}} \tag{3.62}$$

$$Fr_l = \frac{G^2}{r_l^2 gD}$$
(3.63)

This correlation was proposed for a wide range of pipe orientations as well as annular flow channels.

In 1982, Shah [18] published the following widely-applied macro-channel correlation

$$h_{tp} = Max(E,S)h_{sp} \tag{3.64}$$

$$h_{sp} = Nu \frac{k_f}{D_h}$$
(3.65)

where Nu represents the Nusselt number when all the fluid mixture is liquid, and D_h is the flow passage hydraulic diameter.

$$Nu_{tur} = 0.023 \operatorname{Re}_{f}^{0.8} \operatorname{Pr}_{f}^{0.4}$$
(3.66)

For
$$0.1 < N, S = 1.8 / N^{0.8}, E = 230Bo^{0.5} \text{ for } Bo > 3 \times 10^{-5}$$

or $E = 1 + 46Bo^{0.5} \text{ for } Bo < 3 \times 10^{-5}$ (3.67)

For
$$0.1 < N \le 1.0, S = 1.8 / N^{0.8}$$

 $E = FBo^{0.5} \exp(2.47N^{-0.1})$
(3.68)

The parameter N is defined as follows. For vertical tubes, and for horizontal tubes with

 $Fr_l > 0.04$, N = Co. For horizontal tubes when $Fr_l < 0.04$,

$$N = 0.38 F r_l^{-0.3} Co ag{3.69}$$

where $Pr = \frac{P}{Pcr}$ with Pcr representing the fluids critical pressure, and M is the molecular

mass number of the fluid.

This correlation is not applicable to metallic fluids and Re numbers greater 10,000. Shah [18] (82) also suggests caution when using this correlation for annular channels with a clearance less than 4 mm. Shah [18]suggests that to use this correlation with annuli with clearance less than 4 mm, the heated perimeter should be used. The overall standard deviation of the correlation of Shah [18] is $\pm 30\%$.

The correlation of Gungor and Winterton [14, 15]

Gungor and Winterton [15] modified the correlation of Chen [17] and developed a correlation for flow boiling inside horizontal and vertical tubes, as well as annuli. The correlation is:

$$h_{tp} = Eh_l + Sh_{pool} \tag{3.70}$$

where E is calculated from:

$$E = 1 + 24000Bo^{1.16} + 1.23 \left(\frac{1}{X_{tt}}\right)^{0.86}$$
(3.71)

The parameter X_{tt} is the turbulent-turbulent Martinelli factor, and is defined as:

$$X_{tt} = \left(\frac{1 - x_g}{x_g}\right)^{0.9} \left(\frac{\boldsymbol{r}_g}{\boldsymbol{r}_l}\right)^{0.5} \left(\frac{\boldsymbol{m}_l}{\boldsymbol{m}_g}\right)^{0.1}$$
(3.72)

The correlation of Cooper [63] is used to evaluate h_{pool} , and this is the main difference with Chen's [17] correlation (recall that the correlation by Foster and Zuber [26] was used by Chen [17] in his original correlation). The correlation of Cooper [63] is repeated here for convenience.

$$h_{pool} = 55P_r^{0.12} \left(-\log P_r\right)^{-0.55} M^{-0.5} q^{"0.67}$$
(3.73)

The correlation of Bjorge et al. [19]

Bjorge et al [19] developed the following simple, empirical correlation:

$$q = q_{FC} + q_B \left[1 - \left(\frac{(T_w - T_{sat})_{ib}}{(T_w - T_{sat})} \right)^3 \right]$$
(3.74)

The correlation is evidently the superposition of convection and boiling components. The forced convection component is found from:

$$q_{FC} = \frac{\text{Re}_{l}^{0.9} \text{Pr}_{l} F(X_{tt}) k_{l}}{F_{2} D} (T_{W} - T_{sat})$$
(3.75)

where

$$F(X_{tt}) = 0.15 \left[\frac{1}{X_{tt}} + 2.0 \left(\left(\frac{1}{X_{tt}} \right) \right)^{0.32} \right]$$
(3.76)

where X_{tt} is the turbulent-turbulent Martinelli factor, and

$$\operatorname{Re}_{l} = \frac{GD(1-x)}{\mathbf{m}_{l}}$$
(3.77)

The parameter F_2 is defined as:

$$F_2 = 5\Pr_l + 5\ln(1 + \Pr_l) + 2.5\ln(0.0031\operatorname{Re}_l^{0.812}) \text{ for } \operatorname{Re}_l > 1125$$
(3.78)

$$F_2 = 5\Pr_l + 5\ln[1 + \Pr_l(0.0964\operatorname{Re}_l^{0.585} - 1)] \text{ for } 50 < \operatorname{Re}_l < 1125$$
(3.79)

While for $\text{Re}_{\text{l}} < 50$

$$F_2 = 0.0707 \operatorname{Pr}_l \operatorname{Re}_l^{0.5}$$
(3.80)

For sub-cooled and low quality regions. Bjorge et al [19] recommend the following equation to evaluate the forced convection contribution, shown in Equation 3.82.

$$\left(\frac{h_{FC}D}{k_b}\right) = 0.023 \left(\frac{GD}{\mathbf{m}_f}\right)^{0.8} \left(\frac{\mathbf{m}_f C_{pb}}{k_b}\right)^{1/3}$$
(3.81)

$$q_{FC} = h_{FC}[(T_w - T_{sat}) + (\Delta T_{sc})]$$
(3.82)

Properties with subscript b are to be calculated at liquid bulk temperature. The subscript f indicates the evaluation of the property at the film temperature defined as:

$$T_f = \frac{T_w - T_b}{2} \tag{3.86}$$

$$\frac{q_B}{\boldsymbol{m}_f h_{fg}} \left(\frac{\boldsymbol{s}}{g(\boldsymbol{r}_l - \boldsymbol{r}_v)} \right)^{\frac{1}{2}} = B_M \frac{k_l^{1/2} \boldsymbol{r}_l^{17/8} C_{pl}^{19/8} \boldsymbol{r}_v^{1/8}}{\boldsymbol{m}_l h_{fg} (\boldsymbol{r}_l - \boldsymbol{r}_v)^{9/8} \boldsymbol{s}^{5/8} T_{sat}^{1/8}} \Delta T_{sat}^3$$
(3.83)

where B_M is a dimensionless constant given as 1.89 * 10⁻¹⁴ in SI units and 0.0000213 in engineering units, for water. The wall superheat at the boiling incipience is found from

$$\Delta T_{sat,ib} = \frac{8sT_{sat}bu_{fg}h_{FC}}{k_l h_{fg}}$$
(3.84)

The correlation is valid for qualities above 5 %.

The correlation of Klimenko [11], [12]

Klimenko [11], [12] also developed a highly respected correlation for forced convection boiling heat transfer. He recommended his correlation for both horizontal and vertical pipes. The original correlation from 1988 [11] was later revised in 1990 [12]. The new correlation is not applicable for dry out situations discussed in sufficient detail in section 3.1, and will not be repeated here. The range of applicability of the correlation is also given in Table 3. Klimenko [11, 12] stated that this correlation was tested with 3000 data points and agreed with the data with a standard deviation of 14.4%.

The correlation of Steiner and Taborek [27]

Steiner and Taborek [27], developed a correlation that falls into the category of asymptotic correlations. This correlation is based on the power type addition of Kutateladze [65]. The power-type addition sums the nucleate and convective boiling components, and has been used by many investigators. For example, Churchill $\overline{67}$ used the method of power-type summation to develop a correlation for transition between forced convection and natural convection boiling heat transfer. The factor F_{nb} , shown in the forthcoming Equation (3.85), determines which component is more dominant between the two convection modes. The general form of the correlation of Steiner and Taborek [27] was given earlier in section 3.1, and is repeated here for convenience:

$$h_{tp} = \left(h_{nb}^{\ \ n} + h_{cb}^{\ \ n}\right)^{\frac{1}{n}}$$
(3.85)

where

$$h_{nb} = h_{nbo} F_{tp} \tag{3.86}$$

The quantity h_{nbo} is the nucleate pool boiling heat transfer coefficient. The factor F_{nb} is given by:

$$F_{nb} = F_{tp} \left(\frac{q}{q_o}\right)^m \left(\frac{D}{D_o}\right)^{-0.4} \left(\frac{R_a}{R_{ao}}\right)^{0.133} F(m)$$
(3.87)

$$h_{cb} = h_{lo} F_{tb} \tag{3.88}$$

The parameter h_{lo} is the purely convective heat transfer coefficient for total liquid flow. The parameter F_{tp} is the two phase flow multiplier, and is defined as:

$$F_{tp} = \left[\left(1 - x \right)^{1.5} + 1.9 (x)^{0.6} \left(\frac{\boldsymbol{r}_l}{\boldsymbol{r}_G} \right)^{0.35} \right]^{1.1} \text{ for } \mathbf{x} = 0.6$$
(3.89)

The above expression ensures that F_{tp} ? 1 as x? 0. (see Fig. 3.3). For x > 0.6, one must

ensure that F_{tp} ? $\frac{h_{go}}{h_{lo}}$ as for x ? 1 and this is provided by the equation below,

$$\frac{h_{cb}}{h_{lo}} = F_{tp} = \left\{ \begin{bmatrix} (1-x)^{1.5} + 1.9(x)^{0.6} (1-x)^{0.01} \times \left(\frac{\mathbf{r}_l}{\mathbf{r}_G}\right)^{0.35} \end{bmatrix}^{-2.2} \\ + \left\{ \left(\frac{h_{go}}{h_{lo}}\right) (x)^{0.01} \times \left[1 + 8(1-x)^{0.7} \left(\frac{\mathbf{r}_l}{\mathbf{r}_G}\right)^{0.67} \right] \right\}^{-2} \right\}^{-2} \right\}^{-2}$$
(3.90)

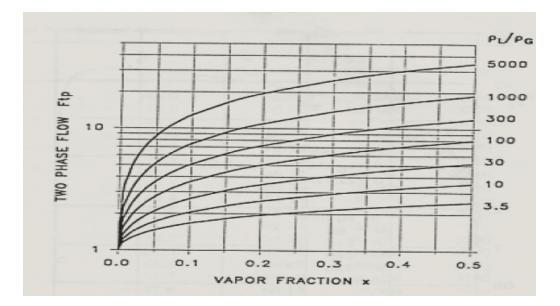


Figure 3.3: Relationship between quality and Ftp for Steiner and Taborek [27]

The correlation of Kandlikar and Steinke [68]

Kandlikar [21, 22] also proposed a correlation for flow boiling in vertical and horizontal channels. The correlation of Kandlikar [21, 22] in its original form was given and discussed in section 3.1. Kandlikar and Steinke [68] examined the applicability of the correlation to mini-channels, and argued that, for mini-channels $f_{\rm e}({\rm Fr}_{\rm lo}) = 1$. They also indicated that for Re_{lo} < 1600, h_{lo} must be found from an appropriate laminar flow regime correlation, which for Re_{lo} the correlation of Gnielinski [24] for single-phase turbulent flow is probably adequate. For the transition range 1600 < Re_{lo} < 3000, there appears to be the need for more experimental data

Thus the heat transfer coefficient h_{tp} is the large of h_{nbd} and h_{cbd} , where:

$$h_{NBD} = 0.6683Co^{-0.2}h_{lo} + 1058.0Bo^{0.7}F_{fl}h_{lo}$$
(3.91)

$$h_{CBD} = 1.1360 Co^{-0.9} h_{lo} + 667.2 Bo^{0.7} F_{fl} h_{lo}$$
(3.92)

The parameter F_{fl} values for certain fluids were listed earlier in Table 3.2, and for other fluids, Forster and Zuber [26] correlation for boiling heat transfer may be used. The latter correlation can also be used for boiling when F_{rl} is less than 0.04. The first term in the equation for h_{NBD} must be multiplied by $e_f = (25F_{rl})^{0.3}$ when F_{rl} is less than 0.04.

This correlation was developed by Kandlikar [21, 22] using a data set of 5000 points. The correlations of Chen [17], Shah [18] and Gungor and Winterton [15], when compared with the same 5000 data points, had standard deviations of 29.6%, 17.9% and 20.7%, respectively.

The correlation of Tran et. al. [34]

The correlation of Tran et. al [34] were developed based on their own date that were obtained in a circular channel with 2.46 mm diameter, and a rectangular channel with a hydraulic diameter of 2.40 mm, using refrigerant R12. Their correlation can be represented as

$$h_{tp} = \left[8.4 \times 10^5 (Bo^2 We_{fo})^{0.3} \left(\frac{v_g}{v_f} \right)^{-0.4} \right]$$
(3.93)

where term We_{fo} is given in equation (3.103)

$$We_{fo} = \frac{\mathbf{n}_f G^2 D_h}{\mathbf{s}}$$
(3.94)

The correlation of Lee and Mudawar [37]

A detailed discussion of the experimental investigation of Lee and Mudawar [37] has already been given in the previous section. They divided the entire boiling heat transfer regimes in Microchannels into low, medium and high quality zones, and for each zone they developed a separate correlation. Their correlations are as follows:

for
$$x_e = 0.0$$
 to 0.05

$$h_{tp} = 3.856X^{0.267} h_{sp,f}$$
(3.95)

where X is the Martinelli's factor:

$$X^{2} = \frac{\left(dp / dz\right)_{f}}{\left(dp / dz\right)_{g}}$$
(3.96)

$$h_{sp,f} = \frac{Nuk_f}{D_h}$$
(3.97)

The test section of Lee and Mudawar [37] was composed of rectangular channels with three sides heated. They used an appropriate correlation for Nu for their data. For circular

channels, evidently $Nu = \frac{48}{11}$ can be assumed for known wall heat flux conditions.

In defining the Martinelli's factor, Lee and Mudawar [37] considered the viscous-viscous and viscous-turbulent regimes both, thereby defined:

$$X_{vv} = \left(\frac{\boldsymbol{m}_f}{\boldsymbol{m}_g}\right)^{0.5} \left(\frac{1-x_e}{x_e}\right)^{0.5} \left(\frac{v_f}{v_g}\right)^{0.5}$$
(3.98)

$$X_{vt} = \left(\frac{f_f \operatorname{Re}_g^{0.25}}{0.079}\right)^{0.5} \left(\frac{1 - x_e}{x_e}\right)^{0.5} \left(\frac{v_f}{v_g}\right)^{0.5}$$
(3.99)

$$\operatorname{Re}_{g} = \frac{Gx_{e}D_{h}}{\mathbf{m}_{g}}$$
(3.100)

For $x_e = 0.05 - 0.55$:

$$h_{tp} = 436.48Bo^{0.522}We_{fo}^{0.351}X^{0.665}h_{sp,f}$$
(3.101)

$$Bo = \frac{q''}{Gh_{fg}} \tag{3.102}$$

$$We_{fo} = \frac{v_f G^2 D_h}{s}$$
(3.103)

For $x_e=0.55$ to 1.0:

$$h_{tp} = \max\{(108.6X^{1.665}h_{sp,g}), h_{sp,g}\}$$
(3.104)

In laminar flow,

$$h_{sp,g} = \frac{Nu_3k_g}{D_h} \tag{3.105}$$

and for turbulent flow,

$$h_{sp,g} = 0.023 \operatorname{Re}_{g}^{0.8} \operatorname{Pr}_{g}^{0.4}$$
(3.106)

Haynes and Fletcher [52]

This correlation was developed based on the authors' own experimental data representing sub-cooled and saturated forced flow boiling of refrigerants R-11 and HCFC-123 in copper tubes with diameters 0.92 and 1.95 mm, under low-flow (110 ~ 1840 kg/m²s ; 450 = $\text{Re}_{\text{lo}} = 1200$) and low heat flux (11~170 KW/m²) conditions. The correlation is

$$h = h_{FC} + h_{PB} \frac{\Delta T_{sat}}{\Delta T_{mean}}$$
(3.107)

The forced convection component is to be found from macro scale forced –flow correlations with due attention to laminar and turbulent regimes based on Re_{lo} . The pool boiling heat transfer coefficient is found from the boiling component of the correlation of Gorenflo [53] [1993]. To use Gorenflo's [53] method, the reference heat transfer coefficients

 $h_0 = 2.8 \text{kW/m}^2 \text{K}$ and $h_0 = 2.6 \text{ kW/m}^2 \text{K}$ were used for R-11 and HCFC-123 respectively. The correlation of Gorenflo [53] is given below in Equation (3.108).

$$h_{nb} = h_0 F_{PF} \left(\frac{q}{q_0}\right)^n \left(\frac{R_p}{R_{po}}\right)^{0.133}$$
(3.108)

where F_{PF}, the pressure correction factor is given as:

$$F_{PF} = 1.2 p_r^{0.27} + 2.5 p_r + \frac{p_r}{1 - p_r}$$
$$n = 0.9 - 0.3 p_r^{0.3}$$

The fluid specific value for h_0 is given by Gorenflo [53].

The value for R_p is set to 0.4 μ m when unknown. The Equation (109) for F_{PF} is for all fluids except for helium and water. For these two fluids the following equation is to be implemented

$$F_{PF} = 1.73 p_r^{0.27} + \left(6.1 + \frac{0.68}{1 - p_r}\right) p_r^2$$
(3.109)

 $n = 0.9 - 0.3 p_r^{0.15} \tag{3.110}$

3.5 Available Mini and Micro-Channel data

Despite the importance of a full understanding of flow boiling in mini and micro channels, there is relatively little data available. Furthermore, unfortunately most researchers are often reluctant to provide their data for others to use for testing with available correlations.

As mentioned by Dupont et al [64], only Bao et al [39] and Baird et al [60] made their data available for testing by the former author's correlations. The data of Bao et al [39] and Baird et al. [60] were also used by Dupont et.al [64], in the development of their 3 zone model.

Due to the unavailability of data, some data sets were electronically extracted for the present study. The method used is explained below. The graphs shown by the authors in their publications were scanned using an Epson TWAIN scanner. Each image was then digitized with grids placed on it. This was done so as to be able to obtain reasonably accurate data points. Unfortunately, most of data extracted in this way were found to be unsuitable for use, due to the lack of confidence in the obtained points as well as other missing essential parameters that were not provided in the papers.

It must therefore be emphasized that there are not enough data to conclusively test the available correlations, and more extensive work is required to obtain accurate and reliable data in mini and micro-channels. This is necessary so that accurate and efficient correlations could be developed to deal with different effects and causes important to flow boiling in min and micro-channels. Future experiments should not only deal with boiling of water in mini and micro-channels, but should also utilize different fluids.

66

The following is a brief description of the experimental procedures use to acquire the available data.

Bao et al. [39]

Bao et al. [39] used the test facility shown in figure 3.4 to perform their experiments. Their test section was composed of a smooth tube made from copper, with an inner diameter of 1.95 mm. The heated length of their test section was 270 mm. A boiler was used to create the vapor with the required pressure in the fluid. The test fluids were, R11 and HCFC123; the range of heat flux was 5-200 kW/m²; and the range of mass flux was 50-1800 kg/m²s. The quality varied in the 0-0.9 range. The pressure range was 200-800 kPa, and the experimental heat transfer coefficients calculate to be in the 1-18 kW/m²K range.

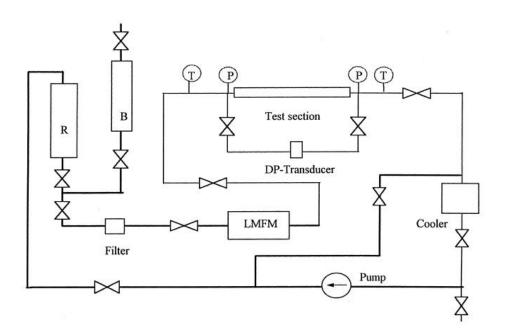


Figure 3.4: The test section used by Bao et al. [39], (LMFM: liquid mass flow meter).

Baird et al. [60]

These experiments were performed using a new and sophisticated test section shown in Figure 3.5. The test section setup allowed for a good control and easy measurement of local heat transfer parameters. The two fluids used in these experiments are R11 and HCFC123, and their study let to the collection of more than 2000 data points. The channel diameters were 1.95 mm and 0.92 mm, fabricated from copper. The heated length in the experiments was 30 mm, with an entrance length of 270 mm and exit length of 150 mm. The test mass fluxes were in the range 70-600 kg/m²; the heat flux range was 15-110 kWm²; and pressure set range was between 120-410 kPa.

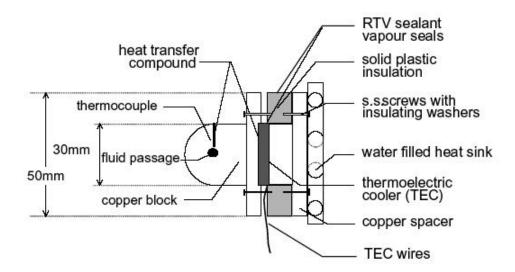


Figure 3.5: The test facility of Baird et al [60]

The test section was divided into separate regions, which were independently cooled. A TEC (Thermoelectric Cooler) was used because of its ease in obtaining temperature readings in small conduits.

Copper blocks were attached to each section and the temperature of each block in the different zones was assumed to be equal to the bulk fluid temperature. In order to

eliminate the hydrodynamic entrance and exit effects, two unheated sections with the actual test flow area were connected to the two ends of the test section.

The local fluid properties and temperature were calculated as a function of the local fluid enthalpy and an estimated pressure at each location. Baird et al [60] assert that there is further work needed in the area, so as to obtain more information about the trends in mini and micro-channels.

Yan and Lin [61]

Yan and Lin [61] performed an experimental investigation to measure the heat transfer coefficients associated with boiling of R134a in a tube with an inner diameter of 2 mm. Their experimental setup in shown in Figure 3.6. It consists of 3 loops, a DC power supply and a data acquisition system. The working fluid was a mixture of water and glycol. By varying the ratio of the two components, they could vary the properties of the test fluid.

In order to minimize error and to obtain accurate measurements, 28 parallel pipes with hydraulic diameter of 2 mm were placed side by side, as shown in Figure3.7. Thermocouples were connected to the pipes to obtain their temperatures. The test setup in its entirety was calibrated in order to minimize experimental errors and obtain reliable data. Table 3.5 shows a summary of the important uncertainties in the experiment of Yan and Lin [61]. Many fundamental assumptions were made in the data acquisition process however, and these assumptions are mainly applicable to flow channels with geometrically regular cross-sections.

69

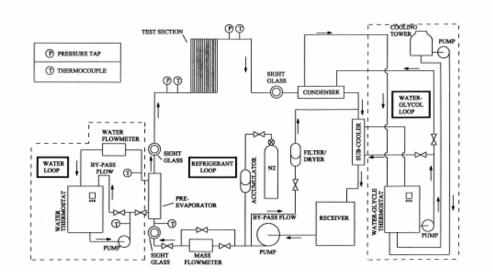


Figure 3.6: The test section of Yan and Lin [61].

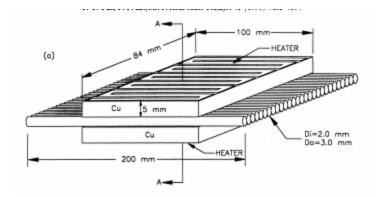


Figure 3.7: The arrangement of the test channels of Yan and Lin [61].

Table 3.5: The uncertainties in the experiment of Yan and Lin [61].

Parameter	Uncertainty
Length, width and thickness (m) Area (m²)	$^{\pm 0.5\%}_{\pm 1\%}$
Temperature, T ΔT	$\pm 0.1^{\circ}C$ $\pm 0.14^{\circ}C$
Pressure, P Measured pressure drop, $\Delta P_{m_{t}}$	±0.001 MPa ±40 Pa
Water flow rate in pre-evaporator, W_{mp} Mass flux of refrigerant, G	$^{\pm2\%}_{\pm2\%}$
Heat transfer rate of test section, Q_h Heat transfer of pre-evaporator, Q_{mp}	±0.5% ±4%
Vapor quality, X	± 0.03
	$^{\pm6\%}_{\pm6\%}_{\pm10\%}$

Lee and Mudawar [37] [2004]

Lee and Mudawar [37] recently performed an experiment to study two phase flow and heat transfer. The size of the channel used was 231 μ m by 713 μ m; 53 of these channels were placed side by side. Proper insulation was provided by the use of a transparent cover, this also allowed for visualization of the flow within the channels. The calculation of uncertainty are shown in the Table 3.5 below. An isenthalpic throttling valve was used to set the enthalpy of the refrigerant. The refrigerant was used to supply the two phase mixture. The mass flow rate was calculated using conventional methods. The outlet quality coming from the evaporator was calculated from the Equation 3.111 given below.

$$x_{e,out} - x_{e,in} = \frac{4q^{'}L}{Gd_h h_{fg}}$$
(3.111)

The experimental conditions were within the following ranges; $x_{e,in}$ 0.001-0.25, $x_{e,out}$ 0.49. The flow rate was in the range of G = 127-634 kg/m².s; heat flux q[°] was in the range from 159 to 938 kW/m², the pressure range was the range of 1.44 to 6.60 bar. The test facility is shown in figure 3.8 below.

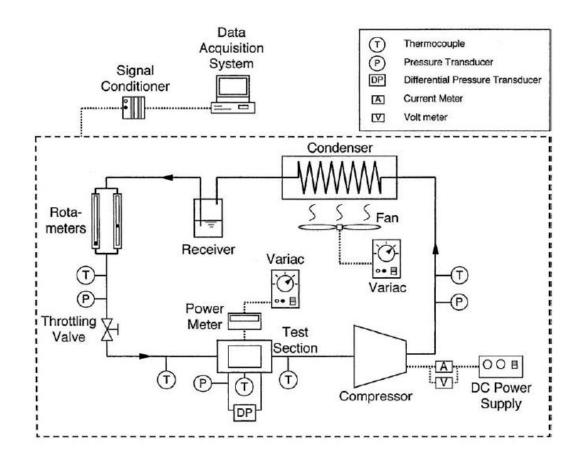


Figure 3.8: The refrigeration loop for Lee and Mudawar [37]

Chapter 4: Results and Discussion

4.1 Introductory Remarks

Three sets of data are used for the assessment of forced flow boiling correlations with respect to their applicability to mini-channels. These data include the data of Bao et al. [39]; Baird et al. [60], and Yan and Lin [61]. These data all correspond to the mini-channel size range. The experimental test facilities of these investigators were discussed in Section 3.5. The source of data was limited to the three reported, mainly due to challenge of obtaining data from different sources. Most authors were not forthcoming in providing their data. Furthermore, the presented data were selected for comparison because they had the most detailed fundamental parameters needed for a critical comparison with individual correlations. All the data points used here are tabulated in Tables B-1 through B-3 in Appendix B.

The predictive methods that are examined include the correlations of Liu and Winterton [20]; Kandlikar[21,22]; Kandlikar and Steinke [68]; Chen [17]; Shah [18]; Gungor and Winterton [15]; Bjorge et al [19]; Klimenko [11,12]; Steiner and Taborek [27]; Tran et al. [34]; Lee and Mudawar [37]; Haynes and Fletcher [52]; and Sumith et al. [58]. These correlations have been discussed in some detail in section 3.4. Among them, only the correlation of Tran et al. [34], Lee and Mudawar [37], and the correlation of Kandlikar [21,22] with the modifications suggested by Kandlikar and Steinke [68], are specifically based on mini-channel data. However, as must be noted that most of the other correlations are based on vast data bases that include mini-channel data points as well.

In what follows, the data of Bao et al. [39] is used for comparison with correlations in section 4.2. In section 4.3, the data of Baird et al. [60] is utilized for this

purpose. Finally, in section 4.4, the data of Yan and Lin [61] are utilized. Concluding remarks regarding the suitability of the correlations for mini-channel boiling will be presented in section 4.5.

In the forthcoming discussions, the following statistic is used:

$$\mathbf{x} = \frac{h_{corr} - h_{\exp}}{h_{\exp}} \tag{4.1}$$

Where h_{eorr} and h_{exp} represent the predicted and experimental heat transfer coefficients, respectively. The mean, \overline{x} , and standard deviation, $s_{?}$, of this statistic will be used to facilitate the quantitative assessment of the performance of correlations.

4.2 The Experimental Data of Bao et al. [39]

Figure 4.1 compares the predictions of the correlation of Liu and Winterton [20] with the data. As noted the correlation under-predicts the overwhelming majority of the data points. For this correlation, $\bar{x} = -57.38$ %, and s₂ = 39.20 %.

The correlation of Kandlikar [21, 22], with modifications suggested by Kandlikar and Steinke [68] is compared with the data in Fig. 4.2. There is remarkably good agreement between the correlation and the data, and $\overline{x} = -14.30$ %, and s₂ = 31 % only.

The correlation of Chen [17], depicted in Fig. 4.3, agrees with the data reasonably well at low heat fluxes, but under-predicts the data monotonically, and rather significantly as the heat flux is increased. For this correlation $\bar{x} = -52.40$ %, and $s_2 = 22.90$ %.

In Fig. 4.4, the predictions by the correlation of Shah [18] are compared with the data. Evidently, the correlation performs poorly, and systematically under-predicts the data. The average under-prediction leads to $\overline{x} = -40$ %.

The correlation Gungor and Winterton [15] is compared with the data in Fig. 4.5. The correlation is in excellent agreement with the data ($\overline{x} = -6.44$ % only). There is also very little scatter, s₂ = 17 %.

Figure 4.6 displays the predictions of the correlation of Bjorge et al. [19]. This correlation over-predicts the data significantly ($\bar{x} = 26.1$ %), and leads to a wide scatter (s $_2 = 28.25$ %).

The correlation of Klimenko [11, 12] is compared with data in Fig. 4.7. Overall, the correlation performs reasonably well in predicting the average data ($\bar{x} = -33.93$ %), although the scatter of the comparison points is rather large (s $_2 = 33.99$ %).

The correlation of Steiner and Taborek [27] is depicted in Fig. 4.8. Some of the experimental data that were outside the range of applicability of the correlation, as emphasized by the authors themselves have been left out. As noted, although the correlation does very well in terms of average of discrepancies (\bar{x} =

-3.90 %), very large scatter is evidently occurs (s $_{?} = 81.80$ %).

The correlations of Tran et al. [34] and Lee and Mudawar [37] are compared with the data in Figures 4.9 and 4.10, respectively. Both correlations do poorly. The correlation of Tran et al [34], in particular, over-predicts the data consistently. An opposite trend is observed with respect to the correlation of Lee and Mudawar [37]. It should be emphasized that these two correlations are both based on experimented data obtained with rectangular cross-section channels. Furthermore, both correlations were developed based on only one set of data, namely, the data of the authors of the correlations.

The predictions of the correlation of Haynes and Fletcher [52] are compared with the data in Fig. 4.11. In this case, the average error, and scatter are both relatively small ($\bar{x} = -37.40$ %, and $s_{?} = 15.34$ %). However, the correlation evidently systematically under-predicts the data.

Finally, the predictions of the correlation of Sumith et al [58] are compared with the data in Fig. 4.12. In this case, the average error, and scatter are both relatively small $(\bar{x} = 128 \text{ \%}, \text{ and s}_2 = 28.70 \text{ \%}).$

The above comparisons utilize the data, without consideration of the flow and boiling regimes. Empirical correlations are often based on certain implied assumptions regarding the flow and boiling regimes. (Please see the discussion in section 3.3.) Comparison between the data and correlations with due attention to flow and heat transfer regimes would require detailed information about the experimented data. However, in view of the fact that mass flux, G and quality, x, are the most important flow property with respect to the most important regime change, namely the transition from bubbly or slug flow to annular-dispersed regime, examination of the correlation predictions as a function of quality can provide useful information about the performance of the correlations. One should recall that at low qualities the two-phase flow regime is typically bubbly or slug, and nucleate boiling prevails. At high qualities, on the other hand, the flow regime is likely to be annular-dispersed, and forced convective evaporation is the dominant mechanism.

Figures 4.13 through 4.18 depict the variations of $\frac{h_{corr}}{h_{exp}}$ as a function of x, with G as a parameter, for most of the aforementioned correlations. The correlation of Kandlikar and Steinke 68 (Fig. 4.13) performs best when x < 0.3, where nucleate boiling is predominant, and its performance deteriorates as x is increased and hence forced convection becomes more prevalent.

The correlation of Chen [17], depicted in Fig. 4.14, performs more or less similarly throughout.

The correlation of Shah [18], displayed in Fig. 4.15 shows the following interesting trends. With respect to its average deviation from data, it behaves

77

approximately the same over the entire quality range. The scatter, however, is diminished noticeably as x is increased.

The correlation of Gungor and Winterton [15] is displayed in Fig. 4.16. The correlation does reasonably well for x < 0.5, but increasingly under-predicts the data for higher qualities.

Figures 4.17 and 4.18 display the correlations of Klimenko [11, 12], and Steiner and Taborek [27], respectively. Both correlations appear to perform similarly over the entire quality range.

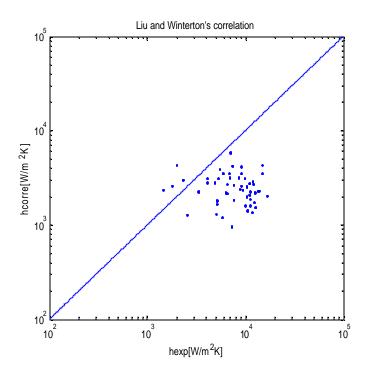


Figure 4.1: Comparison between the experimental data of Bao et al. [39] and the correlation of Liu and Winterton [20]

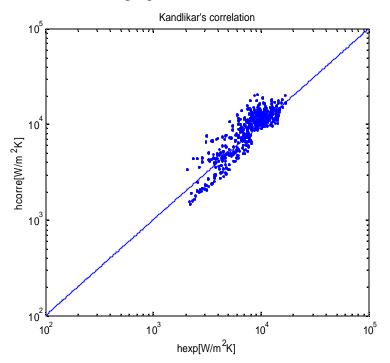


Figure 4.2: Comparison between the experimental data of Bao et al. [39] and the correlation of Kandlikar [21,22]

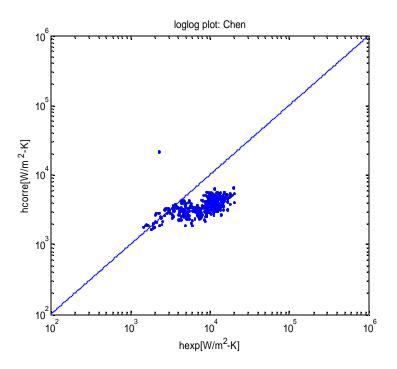


Figure 4.3: Comparison between the experimental data of Bao et al. [39] and the correlation of Chen [17]

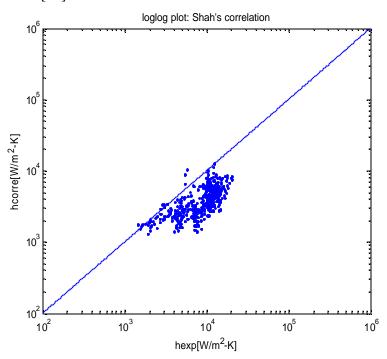


Figure 4.4: Comparison between the experimental data of Bao et al. [39] and the correlation of Shah [18]

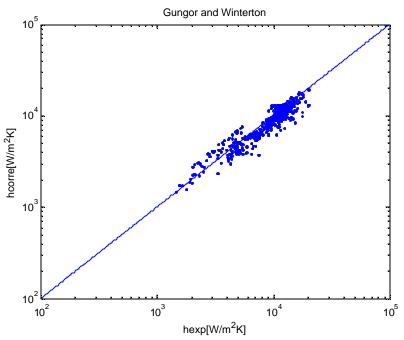


Figure 4.5: Comparison between the experimental data of Bao et al. [39] and the correlation of Gungor and Winterton [15]

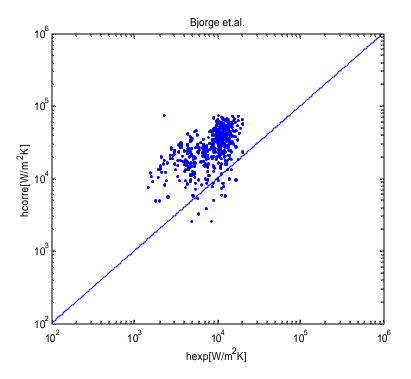


Figure 4.6: Comparison between the experimental data of Bao et al. [39] and the correlation of Bjorge et al. [19]

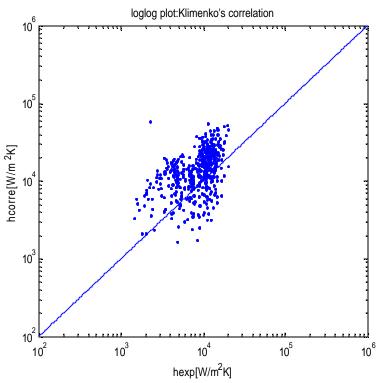


Figure 4.7: Comparison between the experimental data of Bao et al. [39] and the correlation of Klimenko [11, 12]

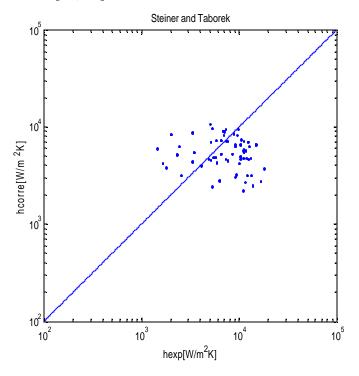


Figure 4.8: Comparison between the experimental data of Bao et al. [39] and the correlation of Steiner and Taborek [27]

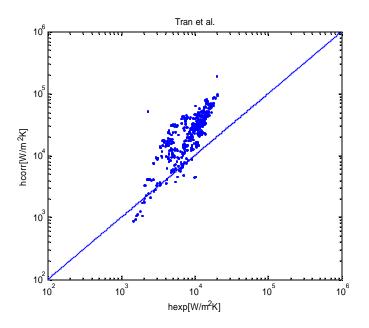


Figure 4.9: Comparison between the experimental data of Bao et al. [39] and the correlation of Tran et al. [34]

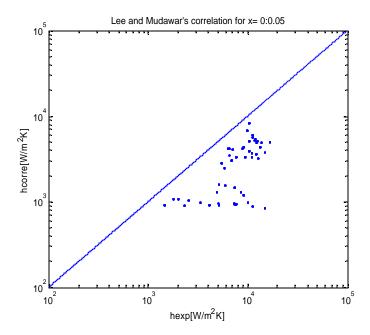


Figure 4.10: Comparison between the experimental data of Bao et al. [39] and the correlation of Lee and Mudawar [37]

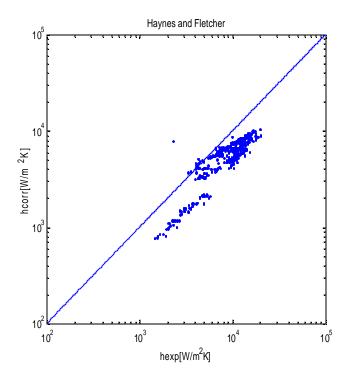


Figure 4.11: Comparison between the experimental data of Bao et al. [39] and the correlation of Haynes and Fletcher [52]

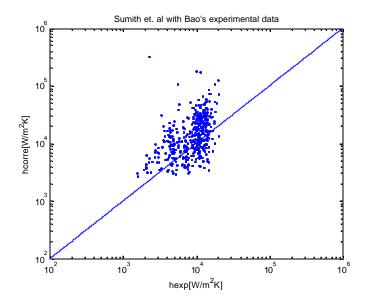


Figure 4.12: Comparison between the experimental data of Bao et al. [39] and the correlation of Sumith et al. [58]

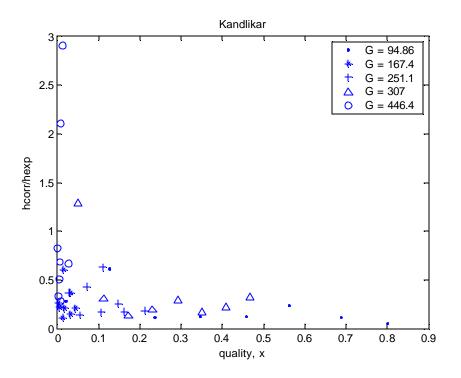


Figure 4.13: Comparison between the experimental data of Bao et al [39] and the correlation of Kandlikar and Steinke [68]: Effects of quality and Mass flux.

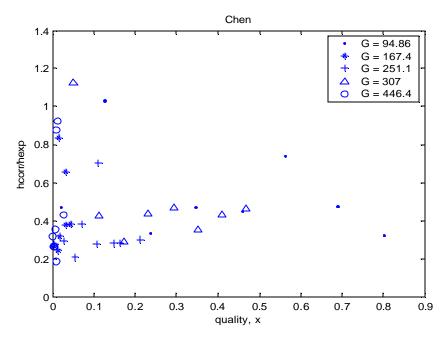


Figure 4.14: Comparison between the experimental data of Bao et al [39] and the correlation of Chen[17]: Effects of quality.

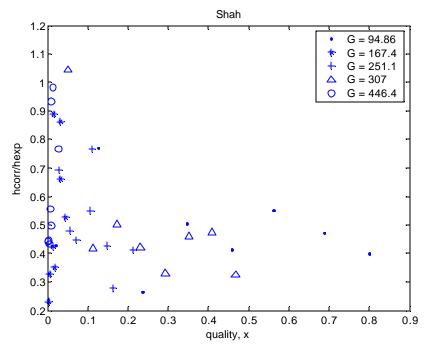


Figure 4.15: Comparison between the experiment al data of Bao et al [39]and the correlation of Shah [18]: Effects of quality.

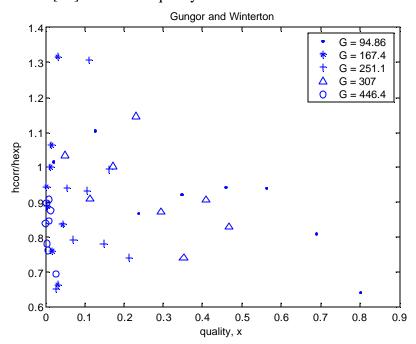


Figure 4.16: Comparison between the experimental data of Bao et al [39] and the correlation of Gungor and Winterton [15]: Effects of quality.

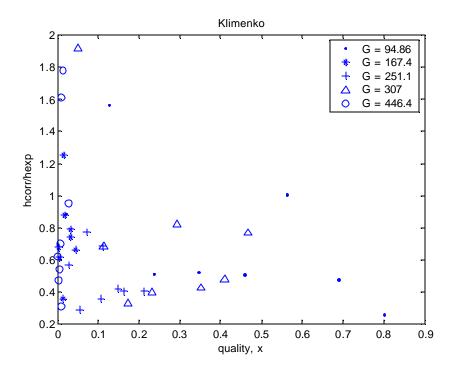


Figure 4.17: Comparison between the experimental data of Bao et al [39] and the correlation of Klimenko [11, 12]: Effects of quality.

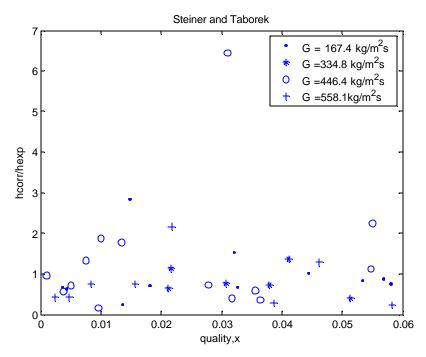


Figure 4.18: Comparison between the experimental data of Bao et al [39] and the correlation of Steiner and Taborek [27]: Effects of quality

4.3 The Experimental Data of Baird et al. [60]

The plots in figures 4.19 through 4.36 show the performance of aforementioned correlations in comparison with the experimental data set of Baird et al [60].

Figure 4.19 shows the predictions of the correlation of Liu and Winterton [20] as compared with the data. In this particular situation, the correlation predicts the data with large scatter, as can be seen in the plot. For this correlation $\overline{x} = -44.09$ % and s₂ = 22 %.

The correlation of Kandlikar [21, 22] is compared with this data set in Figure 4.20. The correlation overall appears to under predict the data, with \overline{x} = -23.40 % and s? = 42 %.

In figure 4.21, the correlation of Chen [17] is compared with the data. This correlation shows good agreement with the data with respect to average heat transfer coefficients; however, there is still considerable scatter. The statistical values are $\bar{x} = -41.30$ % and s₂ = 29.90 %.

The correlation of Shah [18] is compared with the data in figure 4.22. This correlation shows similar performance with that of Chen [17] seen in figure 4.21. The statistical parameters for Shah [18] are $\bar{x} = -49.30$ % and s $_2 = 21.10$ %.

In figure 4.23, the predictions of the correlation of Gungor and Winterton [15] are evaluated against the data. This correlation slightly under predicted the data. The values for $\overline{x} = -10.78$ % and s₂ = 39.67 %. Figure 4.24 shows the performance of the correlation of Bjorge et al [19]. The correlation under predicts the data significantly ($\overline{x} = 58.40$ %) and s₂ = 20 %.

Overall, the correlation of Klimenko [11, 12], depicted in figure 4.25, shows close agreement with the data at certain points; however, there is still an over prediction trend with this correlation ($\bar{x} = 105$ %) and (s $_2 = 106$ %).

The correlation of Steiner and Taborek [27] is displayed in Figure 4.26, and shows significant scatter with this data set. However, there were a few agreements with the data. The average error is $\overline{x} = 60$ %, while the scatter leads to s₂ = 79 %. The comparison is shown in figure 4.26.

Figure 4.27 shows the comparison of the correlation of Tran et al [34] with the data. The correlation of Tran et al [34] shows an under prediction of the data. For this correlation, $\overline{x} = -11$ % and s₂ = 66.80 %

Finally, the correlation of Lee and Mudawar [37] shows poor agreement with data, with wide scatter. Figure 4.28 shows the correlation's performance in comparison with the data. Statistical evaluation shows $\bar{x} = 125$ % and s₂ = 181 %.

The correlation of Haynes and Fletcher [52] and Sumith et al [58] are compared with the data of Baird et al [60] in Figures 4.29 and 4.30, respectively. As noted, overall, both correlations do relatively poorly. The correlation of Haynes and Fletcher under-predicts most of the data, with large scatter (? =-40.34 and s $_{?}$ 62.89). On the other hand, the correlation of Sumith et al [58] over-predicts data (? = 92 %), also with relatively large scatter (s $_{?}$ = 86.34 %).

It must be noted that the two data sets of Bao et al [39] and Baird et al [60] were obtained under different experimental conditions. Hence, the discrepancies in the predictions of the correlations are not alarming as can be expected. Bao et al [39] used wall heat flux $3-58 \text{ kW/m}^2$ while Baird et al [60] operated at higher heat flux range [15-110 kW/m²]. The effect of the heat flux was also previously mentioned by Baird et al [60].

The effect of quality on the accuracy of the predictions of some of the depicted correlations is depicted in Figures 4.30 through 4.35. The reason and justification for the depictions were given in the previous section. As noted, the correlation of Kandlikar and Steinke [21, 22, 68], under predict the data consistently at high quality where annular-dispersed flow regime is likely, and as shown large scatter at low qualities. The correlation of Chen [17], Gungor and Winterton [15], and Steiner and Taborek [27], depicted in Figures 4.32, 4.34 and 4.36, respectively, show a relatively uniform scatter over the entire range of quality. The correlation of Shah [18] (Figure 4.33 has a fairly similar average discrepancy with average experimental data for all x range. The correlation of Klimenko [11, 12] does poorly.

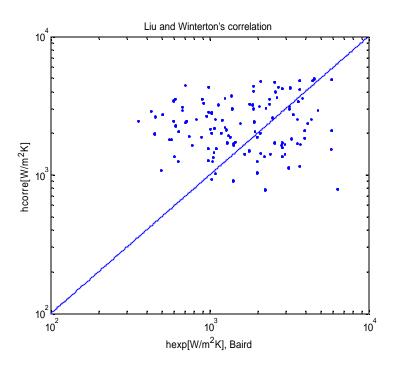


Figure 4.19: Comparison between the experimental data of Baird et al. [60] and the correlation of Liu and Winterton [20]

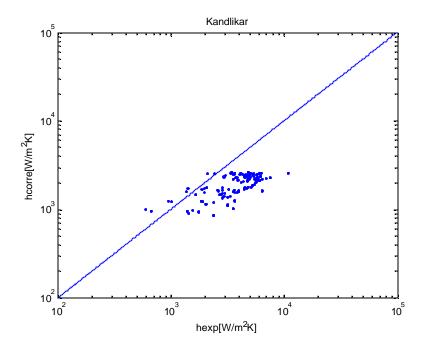


Figure 4.20: Comparison between the experimental data of Baird et al. [60] and the correlation of Kandlikar [21, 22].

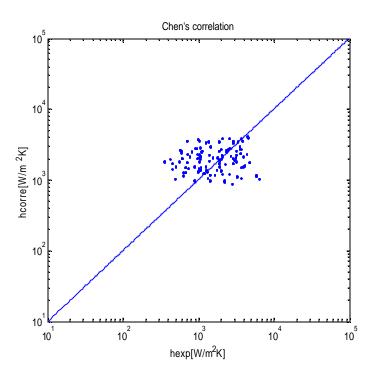


Figure 4.21: Comparison between the experiment al data of Baird et al. [60] and the correlation of Chen [17]

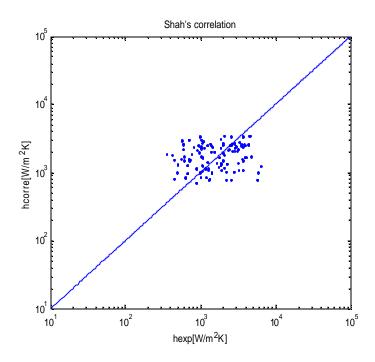


Figure 4.22: Comparison between the experimental data of Baird et al. [60] and the correlation of Shah [18].

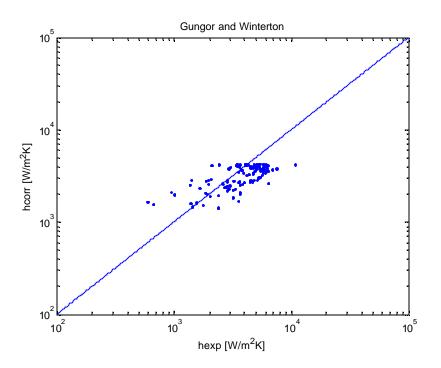


Figure 4.23: Comparison between the experimental data of Baird et al. [60] and the correlation of Gungor and Winterton [15].

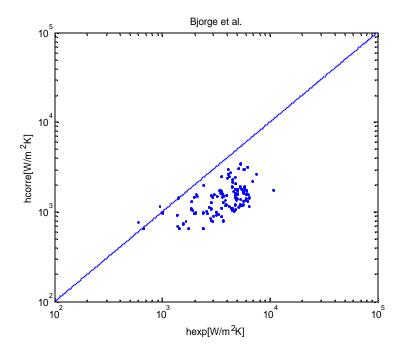


Figure 4.24: Comparison between the experimental data of Baird et al. [60] and the correlation of Bjorge et al [19]

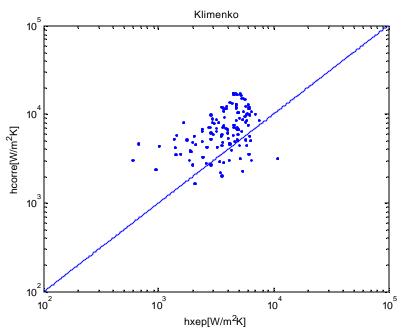


Figure 4.25: Comparison between the experimental data of Baird et al. [60] and the correlation of Klimenko [11, 12]

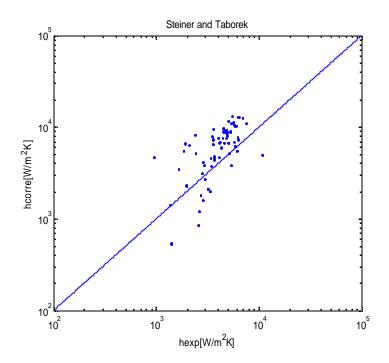


Figure 4.26: Comparison between the experimental data of Baird et al. [60] and the correlation of Steiner and Taborek [27]

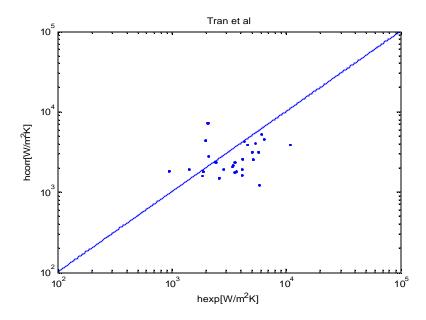


Figure 4.27: Comparison between the experimental data of Baird et al. [60] and the correlation of Tran et al [34]

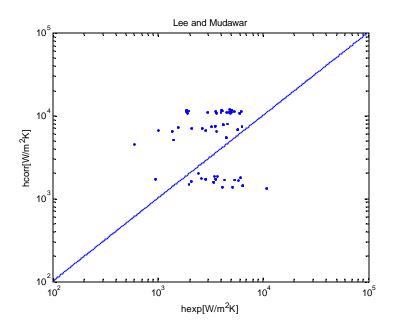


Figure 4.28: Comparison between the experimental data of Baird et al. [60] and the correlation of Lee and Mudawar [37]

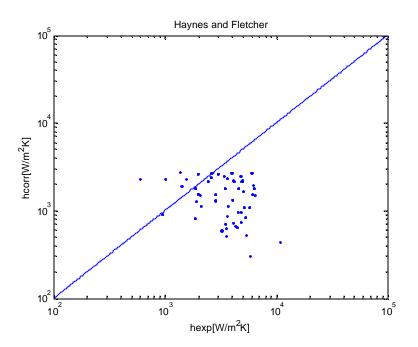


Figure 4.29: Comparison between the experimental data of Baird et al. [60] and the correlation of Haynes and Fletcher [52]

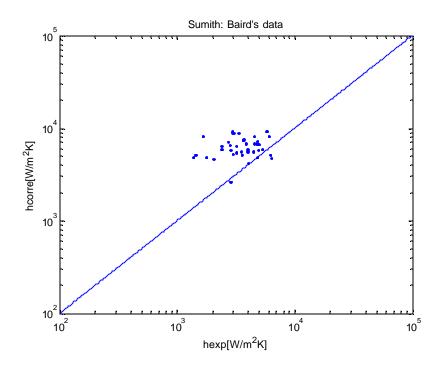


Figure 4.30: Comparison between the experimental data of Baird et al. [60] and the correlation of Sumith et al [58]

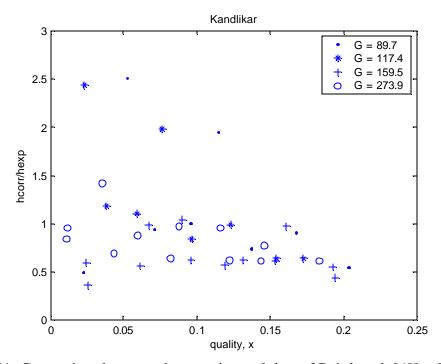


Figure 4.31: Comparison between the experimental data of Baird et al. [60] and the correlation of Kandlikar [21, 22]: Effects of quality

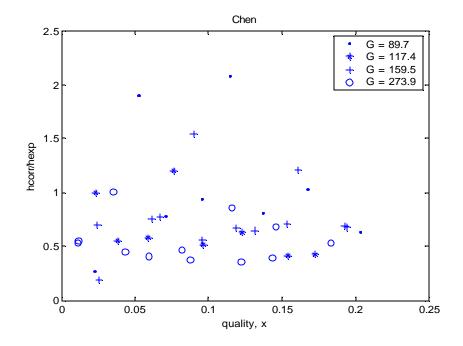


Figure 4.32: Comparison between the experimental data of Baird et al. [60] and the correlation of Chen [17]: Effects of quality

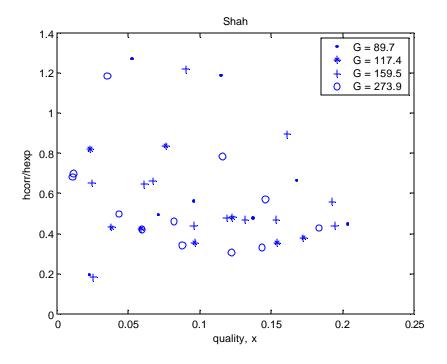


Figure 4.33: Comparison between the experimental data of Baird et al. [60] and the correlation of Shah [18]: Effects of quality

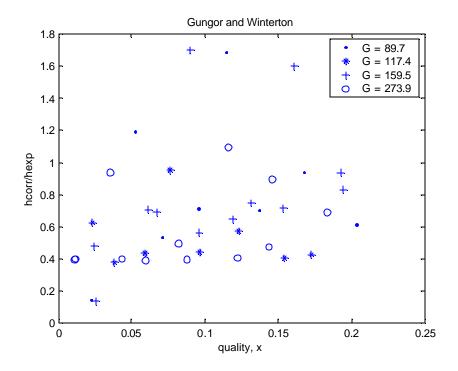


Figure 4.34: Comparison between the experimental data of Baird et al. [60] and the correlation of Gungor and Winterton [15]: Effects of quality

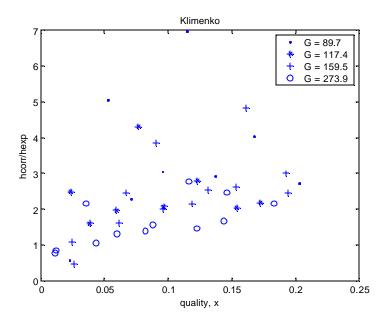


Figure 4.35: Comparison between the experimental data of Baird et al. [60] and the correlation of Klimenko [11, 12]: Effects of quality

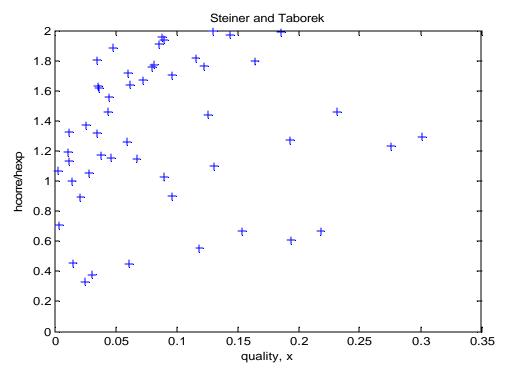


Figure 4.36: Comparison between the experimental data of Baird et al. [60] and the correlation of Steiner and Taborek [27]: Effects of quality

4.4 The Experimental Data of Yan and Lin [61]

The data of Yan and Lin [61] are compared with the predictions of all the aforementioned correlations in Figures 4.37 through 4.46. The effect of quality, x, on the predictions of several of these correlations, furthermore, is depicted in Figures 4.47 through 4.52. The statistical parameters \overline{x} and s₂ for all these comparisons are summarized in Table 4.3.

As noted, with the exception of the correlation Gungor and Winterton [15], depicted in Figure 4.41, and to a lesser extent the correlation of Lee and Mudawar [37], depicted in Figure 4.45, all the correlations disagree with the data and/or display significant scatter. The correlation of Gungor and Winterton predicts the data quite well, although a distinct effect of mass flux can be seen (Figure 4.41). The rather distinct effect of mass flux can indeed be noted in the data of Yan and Lin [61], as well as in most of the comparison with various correlations depicted in the section. Figure 4.50 provides very interesting insight into the data of Yan and Lin [61], as predicted by the correlation of

Gungor and Winterton. As noted, for the data points with G = 100 kg/m²s, $\frac{h_{corr}}{h_{exp}} \approx 0.78$ is

predicted for all qualities. For G = 200 kg/m²s, furthermore, $\frac{h_{corr}}{h_{exp}} \approx 1.18$ is predicted for

all qualities. The $\frac{h_{corr}}{h_{exp}} \approx \text{constant trends are of course consistent with Figure 4.41, and}$ indicates an interesting coincidence

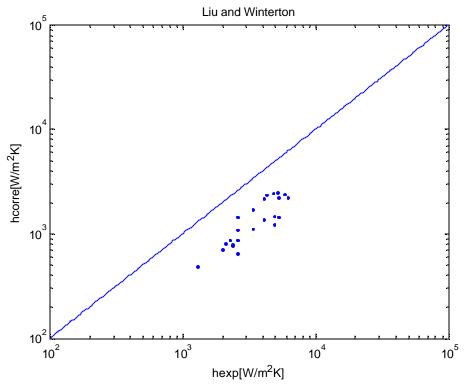


Figure 4.37: Comparison between the experimental data of Yan and Lin [61] and the correlation of Liu and Winterton [20]

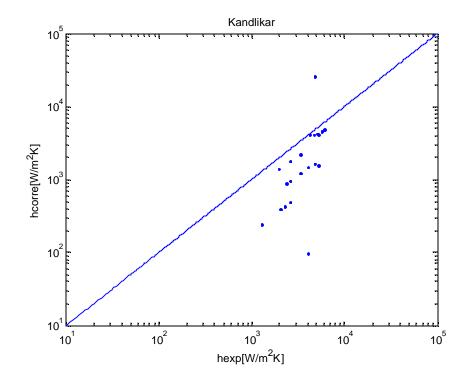


Figure 4.38: Comparison between the experimental data of Yan and Lin [61] and the correlation of Kandlikar [21, 22]

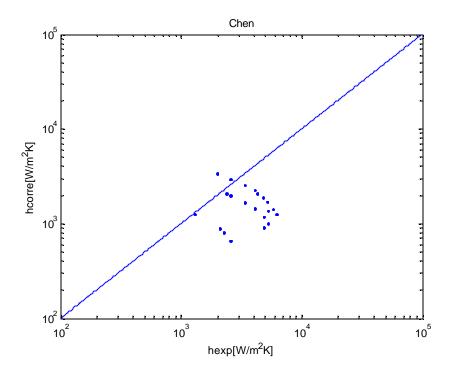


Figure 4.39: Comparison between the experimental data of Yan and Lin [61] and the correlation of Chen [17]

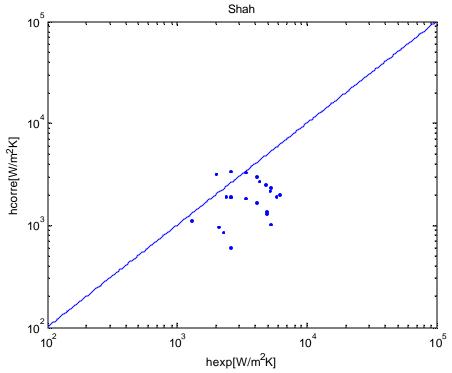


Figure 4.40: Comparison between the experimental data of Yan and Lin [61] and the correlation of Shah [18]

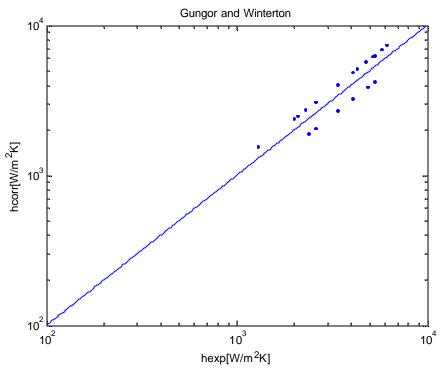


Figure 4.41: Comparison between the experimental data of Yan and Lin [61] and the correlation of Gungor and Winterton [15]

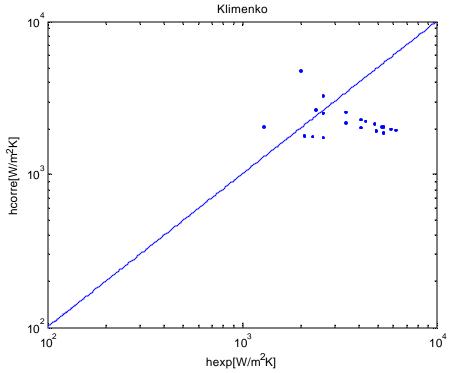


Figure 4.42: Comparison between the experimental data of Yan and Lin [61] and the correlation of Klimenko [11, 12]

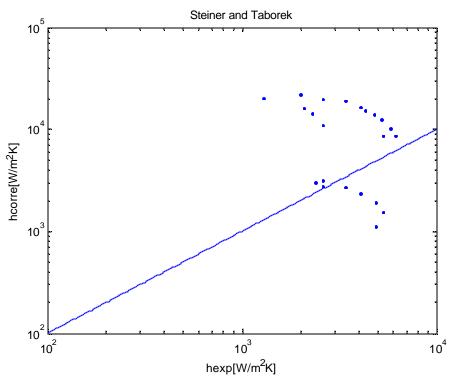


Figure 4.43: Comparison between the experimental data of Yan and Lin [61] and the correlation of Steiner and Taborek [27]

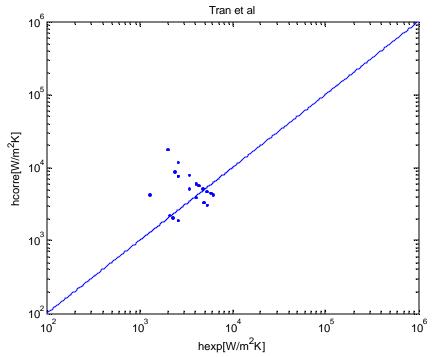


Figure 4.44: Comparison between the experimental data of Yan and Lin [61] and the correlation of Tran et al. [34]

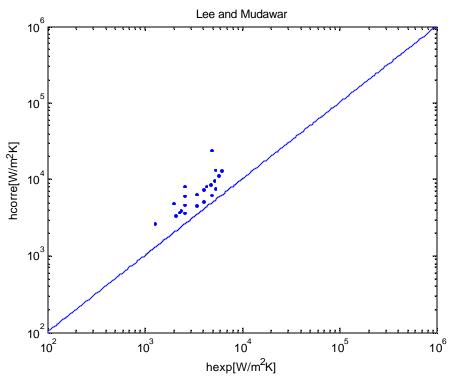


Figure 4.45: Comparison between the experimental data of Yan and Lin [61] and the correlation of Lee and Mudawar [37]

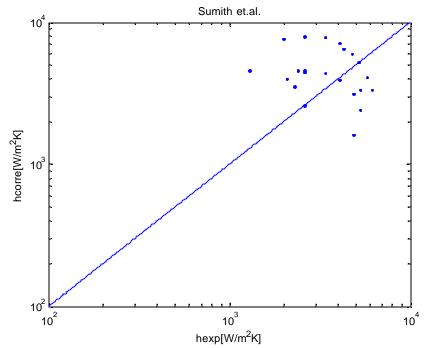


Figure 4.46: Comparison between the experimental data of Yan and Lin [61] and the correlation of Sumith et al. [58]

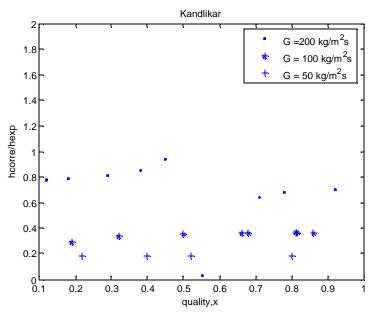


Figure 4.47: Comparison between the experimental data of Yan and Lin [61]and the correlation of Kandlikar [21, 22]: Effects of quality

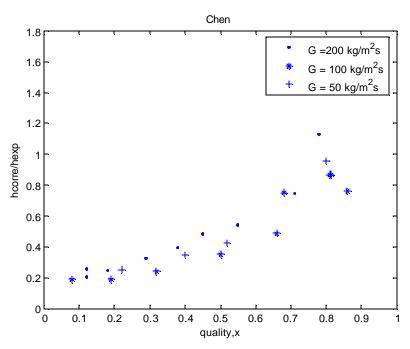


Figure 4.48: Comparison between the experimental data of Yan and Lin [61]and the correlation of Chen [17]: Effects of quality

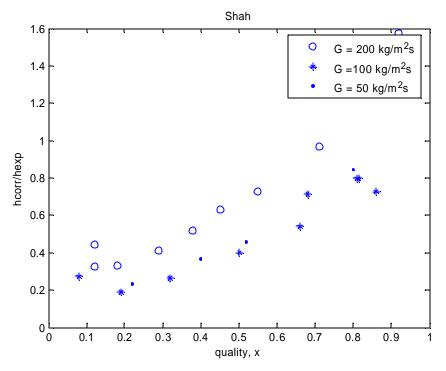


Figure 4.49: Comparison between the experimental data of Yan and Lin [61]and the correlation of Shah [18]: Effects of quality

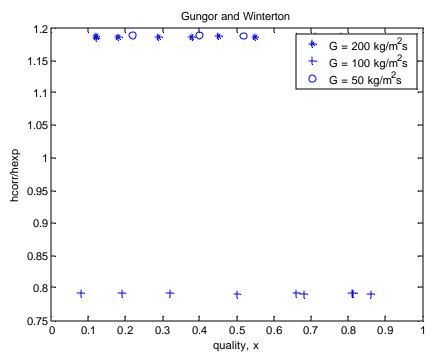


Figure 4.50: Comparison between the experimental data of Yan and Lin [61]and the correlation of Gungor and Winterton [15]: Effects of quality

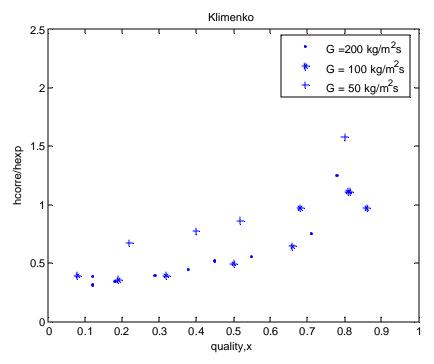


Figure 4.51: Comparison between the experimental data of Yan and Lin [61] and the correlation of Klimenko [11, 12]: Effects of quality

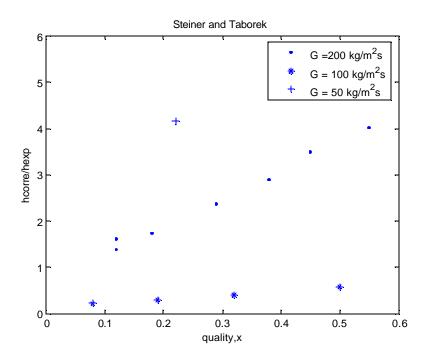


Figure 4.52: Comparison between the experimental of Yan and Lin [61] data and the correlation of Steiner and Taborek [27]: Effects of quality

4.5: Discussion

In the previous three sections various correlations for forced-flow boiling were compared with three separate experimental data, from three different research groups, all representing forced-flow boiling in mini and micro-channels. These comparisons lead to the following general observations.

- Forced-flow boiling heat transfer coefficients in mini-channels can be predicted within the correct order of magnitude by several macro-scale correlations, including the correlations of Gungor and Winterton [15], Chen [17], Steiner and Taborek [27], and Liu and Winterton [20].
- Among the tested correlations, the correlations of Gungor and Winterton [15], and the correlation of Kandlikar [21, 22] as modified by Kandlikar and Steinke [68], appear to provide the closet estimates of the experimental data.
- 3. The examination of the effect of quality on the $\frac{h_{corr}}{h_{exp}}$ values for various

correlations shows that the performance of some of the correlations (e.g. Kandlikar [21, 22] and Gungor and Winterton [15]) depends strongly on the flow boiling regimes, For example the correlation of Kandlikar [21, 22] appears to do better at low qualities where nucleate boiling is predominant. In the comparison, the correlation of performs rather poorly at high qualities where annular dispersed flow regime and forced convective evaporation predominates.

 The correlations that have been developed based on one set of data, even though the data were obtained with mini channels (Tran et al [34], Lee and Mudawar [37]), performed poorly. This observation confirms that empirical correlations for forced flow boiling in mini and micro-channels must be based on an extensive data base.

Summary of the statistical parameter the data of Bao et. al [39]		•
	(%) _	s? (%)
Liu and Winterton [20]	-57.38%	39.20%
Kandlikar [21,22]	-14.30%	31%
Chen [17]	-52.40%	22.90%
Shah [18]	-140%	93%
Gungor and Winterton [15]	-6.44%	17%
Bjorge et al [19]	26.10%	28.25%
Klimenko [11,12]	33.93%	33.99%
Steiner and Taborek [27]	-3.90%	81.80%
Tran et al [34]	88.40%	1.60%
Lee and Mudawar [37]	-70%	23.22%
Hayes and Fletcher [52]	-37.40%	15.34%
Sumith et. al [58]	128%	28.70%

Table 4.1: Statistical parameters for data of Bao et al [39]

Summary of the statistical parameters related to the comparison between the data of Baird et al [60] and various correlations.			
	$\overline{\mathbf{x}}$ (%)	s? (%)	
Liu and Winterton [20]	-44.09%	22%	
Kandlikar [21,22]	-23.40%	42.00%	
Chen [17]	-41.30%	29.90%	
Shah [18]	-49.30%	21.10%	
Gungor & Winterton [15]	-11%	39.67%	
Bjorge [19]	-64.90%	20%	
Klimenko [11,12]	105%	106%	
Steiner & Taborek [27]	60%	79%	
Tran et al [34]	-11%	66.80%	
Lee and Mudawar [37]	125.00%	181.00%	
Hayes and Fletcher [52]	-40%	62.80%	
Sumith et. al [58]	92%	86.34%	

Table 4.2: Statistical parameters for data of Baird et al [60]

Summary of the statistical parameters related to the comparison between the data of Yan and Lin [61] and various correlations.				
	\overline{x} (%)	s? (%)		
Liu and Winterton [20]	-61.84%	9%		
Kandlikar [21,22]	-52.22%	27.10%		
Chen [17]	-44.90%	37.28%		
Shah [18]	-39.95%	34.32%		
Gungor & Winterton [15]	105%	39.40%		
Klimenko [11,12]	-24%	48%		
Steiner & Taborek [27]	76%	145%		
Tran et al [34]	100%	190.00%		
Lee and Mudawar [37]	95.20%	48.10%		
Sumith et. al [58]	53%	94.00%		

Table 4.3: Statistical parameters for data of Yan and Lin [61]

CHAPTER 5

Conclusions and Recommendations

5.1 Concluding Remarks

Forced flow boiling in mini channels was the subject of this research. Mini and micro-channel networks can provide extremely large volumetric interfacial area concentrations. They can thus sustain enormous volumetric transfer rates. The advances in micro manufacturing has now made the manufacture of mini and micro-channel networks feasible at reasonable cost and effort. As a result, the applications of mini and micro-channels in advanced, high performance systems will undoubtedly accelerate in the future.

At present, the most important applications of mini and micro-channel networks is in miniature heat exchangers, refrigeration systems and the heat sinks of performance electronic, magnetic and infrared systems. The most efficient heat transfer method in these systems can be achieved by forced flow nucleate boiling in a mini or microchannel.

The applicability of several widely-referenced correlations for forced flow boiling to mini and micro-channel data was thus examined in this study. Three sets of experimental data, (Bao et al [39]; Baird et al [60]; Yan and Lin [61]). The tested correlations included those proposed by Liu and Winterton [20], Chen [17]; Kandlikar [21, 22]; Gungor and Winterton [15]; Bjorge et al [19]; Klimenko [11, 12], Steiner and Taborek [27]; Tran et al [34]; Lee and Mudawar [37]; Haynes and Fletcher [52]; and Sumith et al [58]. The investigation is novel in its breadth. Previously published studies

113

are either focused on the development of a correlation based on single set of mini channel experimental data (Tran et al [34]; Lee and Mudawar [37]; Sumith et al [58]), or are aimed at the comparison and validation of a specific correlation against data from several sources, (Kandlikar and Steinke [68]).

The following conclusions can be made on the results of this study:

- The performance of each correlation varies from data set to set, and none of the tested correlations provides a reasonably accurate prediction of all the three data sets.
- 2. Overall, the correlations of Gungor and Winterton [15] and Kandlikar and Steinke [68] provide the closest agreement with data. The correlation of Gungor and Winterton [15], furthermore leads to relatively small scatter.
- 3. The aforementioned correlations provide a reasonable estimate of the experimental data, with a better than average order of magnitude
- 4. Given that the utilized experimental data all represented mini channels, $(D_h = 1 \text{ mm})$, the comparison provides a little insight about microchannels ($D_h = 100 \text{ }\mu\text{m}$). The above conclusions, therefore do not apply to micro-channels

114

5.2: Recommendations for Future Research

Based on this investigation, the following follow-up studies are recommended.

- The correlation-data comparisons reported in this study were based on micro channel data sets. More experimental data dealing with mini channel boiling are available, however, (e.g. Lee and Mudawar [37]). It is therefore recommended that more experimental data be collected and included in the data bank for comparison with correlations. Data representing various refrigerants, in particular, would be useful.
- 2. Flow boiling data representing micro-channels is rare, and reported studies are virtually all based on multi-channel system where various modes of instability and oscillations are likely. Experiments where forced flow boiling heat transfer in micro-channels is measured, are highly recommended.

Appendix A: EES codes for evaluated correlations

A.1

Liu and Winterton corr1 sat D = 0.00195 $q = \sqrt{(F \cdot h_{I} \cdot del_{Tb})^{2} + (S \cdot h_{pool} \cdot del_{Ts})^{2}}$ $h_1 = 0.023 \cdot Re_1^{0.8} \cdot Pr_1^{0.4} \cdot \frac{k_1}{D}$ THIS IS FROM DITTUS-BOELTER $Re_1 = \frac{G \cdot D}{miu_1}$ $Pr_{I} = Pr(R11', P=P, x=0)$ $k_1 = \mathbf{k} (R11', P = P, x = 0)$ $h_f = h(R11', P = P, x = 0)$ $h_g = h('R11', P=P, x=1)$ $h_{fg} = h_g - h_f$ miu₁ = **Visc** ('R11', P=P, x=0) $del_{Tb} = Tw - Tb$ $del_{Ts} = Tw - Ts$ Ts = \mathbf{T}_{sat} ('R11', P=P) $F = \left[1 + x \cdot Pr_{I} \cdot \left(\frac{\rho}{\rho_{g}} - 1\right)\right]^{0.35}$ $S = \frac{1}{1 + 0.055 \cdot F^{0.1} \cdot Re_1^{0.16}}$ Since the temperature difference is know we will do the following h_{pool} = 55 · $P_r^{0.12}$ · PR2 · $M^{-0.5}$ · $qp^{0.67}$ $PR = log(P_r)$ PR1 = -PR $PR2 = PR1^{-0.55}$ q = qp $P_r = \frac{P}{P_{cr}}$ $P_{cr} = 0.442 \cdot 10^7 P_r$ is the reduced pressure given by Absolute Press/Critical Pressure M = 137.4 $\rho_g = \rho ('R11' , P = P , x = 1)$ $\rho = \rho (R 11', P = P, x = 0)$ $h_{tp} = \frac{q}{del_{Ts}}$

```
"Correlation of Kandlikar"
" For this correlation the h_tp is the larger between h_NBD and h_CBD"
" for R11 the value of"
PROCEDURE lamturb(Re_l,k_l,D,Pr_l,f,:h_l)
if Re_I < 1600 THEN
h_l = (k_l/D)^{*}4.36
else
h_l = ((Re_{-1-1000})*Pr_{-1}*(f/2)*(k_{-1}/D))/(1+12.7*(Pr_{-1}^{(2/3)-1})*(f/2)^{(0.5)})
ENDif
F fl =1.30
D=0.00195
" Co is the convection number"
Co = (((rho g/rho l)^0.5)^*(((1-x)/x))^(0.8))
h_NBD =((0.6683*(Co^(-.2))*h_l1)*(1-x)^0.8)+ ((1058*Bo_N^(0.7))*F_fl*h_l1*(1-x)^0.8)
h_CBD = (1.1360^{*}(Co^{-0.9}))^{(1-x)^{0.8}}h_{11} + ((667.2^{*}Bo_C^{-0.7}))^{(1-x)^{0.8}}F_{11} + (1)^{(1-x)^{-0.8}}h_{11} +
h_tp = max(h_NBD,h_CBD)
Re_I = (G*D)/miu_I
call lamturb(Re I,k I,D,Pr I,f:h I)
"h_l = 0.023*Re_l^(0.8)*(Pr_l^0.4)*(k_l/D)"
"h_l1= ((Re_l-1000)*Pr_l*(f/2)*(k_l/D))/(1+12.7*(Pr_l^(2/3)-1)*(f/2)^(0.5))"
f = (1.58*ln(Re_{-1})-3.28)^{-2}
Bo_N = (q_N/(G^{h_fg}))
q N = h NBD^*(del Ts)
q_C = h_CBD^*(del_Ts)
Bo_C = q_C/(G^{h_fg})
del_Ts = (T_w - Ts)
Ts = t sat(R11,p=P)
k_{l} = conductivity(R11,p=P,x=0)
Pr_l = prandtl(R11,p=P,x=0)
rho_l = density(R11,p=P,x=0)
rho_g = density(R11,p=P,x=1)
miu_g = viscosity(R11,p=P,x=1)
miu_l = viscosity(R11,p=P,x=0)
h_f = enthalpy(R11,p=P,x=0)
h_g = enthalpy(R11,p=P,x=1)
h_fg = (h_g-h_f)
cp_l = specheat(R11,p=P,x=0)
Ps = p sat(R11,t=T w)
M =molarmass(R11)
```

Chen's correlation

$$\begin{split} \mathsf{D} &= \ 0.00195 \\ \mathsf{Re}_{1} &= \ \frac{\mathsf{G} \cdot (1 - \mathbf{x}) \cdot \mathsf{D}}{\mathsf{m}\mathsf{u}_{1}} \\ \mathsf{X}_{tt} &= \left[\frac{1 - \mathbf{x}}{\mathbf{x}} \right]^{0.9} \cdot \left[\frac{\mathsf{P}_{0}}{\mathsf{P}_{1}} \right]^{0.5} \cdot \left[\frac{\mathsf{m}\mathsf{i}\mathsf{u}_{1}}{\mathsf{m}\mathsf{i}\mathsf{u}_{9}} \right]^{0.1} \\ \mathsf{F} &= \left[\frac{1}{\mathsf{X}_{tt}} + \ 0.213 \right]^{0.736} \\ \mathsf{Re}_{tp} &= \ \mathsf{Re}_{1} \cdot \mathsf{F}^{1.25} \\ \mathsf{S} &= \ \frac{1}{1 + \ 0.00000253 \cdot \mathsf{Re}_{tp}^{1.17}} \\ \mathsf{h}_{1} &= \ 0.023 \cdot \mathsf{Re}_{1}^{0.8} \cdot \mathsf{Pr}_{1}^{0.4} \cdot \frac{\mathsf{k}_{1}}{\mathsf{D}} \\ \mathsf{del}_{\mathsf{TS}} &= \ \mathsf{T}_{\mathsf{w}} - \ \mathsf{T}_{\mathsf{s}} \quad \mathsf{this is delta } \mathsf{T}_{\mathsf{sat}} \\ \mathsf{del}_{\mathsf{PS}} &= \mathsf{PS} - \mathsf{P} \quad \mathsf{this is delta } \mathsf{F}_{\mathsf{sat}} \\ \mathsf{del}_{\mathsf{PS}} &= \ \mathsf{N}_{\mathsf{s}} - \mathsf{P} \quad \mathsf{this is delta } \mathsf{F}_{\mathsf{sat}} \\ \mathsf{h}_{\mathsf{pool}} &= \ 0.00122 \cdot \frac{\mathsf{k}_{1}^{0.79} \cdot \mathsf{cp}_{1}^{0.45} \cdot \mathsf{p}^{0.49}}{\sigma^{0.5} \cdot \mathsf{miu}_{1}^{0.24} \cdot \mathsf{p}_{\mathsf{p}}^{0.24}} \cdot \ \mathsf{del}_{\mathsf{TS}}^{0.24} \cdot \ \mathsf{del}_{\mathsf{PS}}^{0.75} \\ \mathsf{h}_{\mathsf{tp}} &= \ \mathsf{h}_{\mathsf{pool}} \cdot \mathsf{S} + \mathsf{h}_{1} \cdot \mathsf{F} \\ \mathsf{k}_{\mathsf{i}} &= \ \mathsf{k} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{Pr}_{\mathsf{i}} &= \ \mathsf{P} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 1) \\ \mathsf{T}_{\mathsf{s}} &= \ \mathsf{T}_{\mathsf{sat}} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 1) \\ \mathsf{m}\mathsf{i}\mathsf{u}_{\mathsf{q}} &= \ \mathsf{Visc} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{P} = \mathsf{P}, \mathsf{x} = 0) \\ \mathsf{h}_{\mathsf{f}} &= \ \mathsf{h} \ (\mathsf{R11}^{\mathsf{1}}, \mathsf{R} = \mathsf{R}, \mathsf{R} = \mathsf{R} \ \mathsf$$

Shah

$$Bo = \frac{h_{tp} \cdot del_{Ts}}{G \cdot h_{fg}}$$

$$Bo_{ch} = Bo - 0.0003$$

$$h_{f} = h ('R11', P = P, x = 0)$$

$$h_{g} = h ('R11', P = P, x = 1)$$

$$h_{fg} = h_{g} - h_{f}$$

$$h_{tp} = h_{I} \cdot \chi$$

$$Co = \left[\frac{1}{x} - 1\right]^{0.8} \cdot \left[\frac{\rho_{g}}{\rho}\right]^{0.5}$$

$$N = Co$$

$$h_{I} = 0.023 \cdot Re_{I}^{0.8} \cdot Pr_{I}^{0.4} \cdot \frac{k_{I}}{D}$$

$$\chi = Max (\chi_{nb}, \chi_{cb})$$

$$\chi_{nb} = 230 \cdot Bo^{0.5} \text{ when Bo > 0.3 *10^{-4}}$$

$$\chi_{cb} = \frac{1.8}{N^{0.8}}$$

$$grav = 9.8$$

$$Pr_{I} = Pr ('R11', P = P, x = 0)$$

$$\rho = \rho ('R11', P = P, x = 0)$$

$$\rho = \rho ('R11', P = P, x = 0)$$

$$\rho = \rho (R11', P = P, x = 1)$$

$$del_{Ts} = Tw - Ts$$

$$Ts = T_{sat} ('R11', P = P)$$

$$Re_{I} = \frac{G \cdot (1 - x) \cdot D}{miu_{I}}$$

$$miu_{I} = Visc ('R11', P = P, x = 0)$$

$$M = MolarMass ('R11')$$

$$Fr_{I} = \frac{G^{2}}{\rho^{2} \cdot grav \cdot D}$$

$$D = 0.00195$$

Gungor and Winterton

$$\begin{aligned} h_{tp} &= E \cdot h_{I} + S \cdot h_{pool} \\ E &= 1 + 24000 \cdot Bo^{1.16} + 1.37 \cdot \left[\frac{1}{X_{tt}}\right]^{0.86} \end{aligned}$$

E=1

in subcooled region

$$X_{tt} = \left[\frac{1-x}{x}\right]^{0.9} \cdot \left[\frac{\rho_g}{\rho}\right]^{0.5} \cdot \left[\frac{miu}{miu_g}\right]^{0.1}$$
$$S = \frac{1}{(1 + 1.15 \cdot 10^{-6}) \cdot E^2 \cdot Re_1^{1.17}}$$

h_{pod} according to Cooper is given below

$$\begin{split} h_{1} &= 0.023 \cdot \left[\frac{G \cdot (1 - x) \cdot D}{miu_{1}} \right]^{0.8} \cdot \left[\frac{cp_{1} \cdot miu_{1}}{k_{1}} \right]^{0.4} \cdot \frac{k_{1}}{D} \\ h_{pod} &= 55 \cdot P_{r}^{0.12} \cdot PR2 \cdot M^{-0.5} \cdot qp^{0.67} \\ P_{\alpha} &= 0.442 \cdot 10^{7} \\ P_{\alpha} &= 0.442 \cdot 10^{7} \\ P_{r} &= \frac{P}{P_{cr}} \\ PR &= \log (P_{r}) \\ PR1 &= -PR \\ PR2 &= PR1^{-0.55} \\ qp &= h_{tp} \cdot del_{Ts} \\ del_{Ts} &= Tw - Ts \\ Bo &= \frac{qp}{G \cdot h_{fg}} \\ M &= MolarMass (R11') \\ D &= 0.00195 \\ Re_{1} &= \frac{G \cdot (1 - x) \cdot D}{miu_{1}} \\ k_{1} &= k (R11', P=P, x=0) \\ \rho &= \rho (R11', P=P, x=0) \\ \rho &= \rho (R11', P=P, x=1) \\ Ts &= T_{sat} (R11', P=P, x=0) \\ h_{f} &= h (R11', P=P, x=0) \\ h_{f} &= h (R11', P=P, x=0) \\ h_{g} &= h (R11', P=P, x=0) \\ h$$

A.6. Bjorge et al

"checking the T_sat,ib" "the result of this code shows that r tang is greater than r max" "then the equation that will be used for del_T_ib is the one used in this code" B M = $1.89*10^{-14}$) "this is really the value for water" grav = 9.8 $r max = 10^{(-6)}$ $r_tang = (4*sigma*T_s*v_fg)/(h_fg*del_Tib)$ r comp = r tang- r maxN=(h FC*r max)/k l Gamma = (k l*h fg)/(8*sigma*v fg*h FC*T s)v f = volume(R11,x=0,t=T f) $v_g = volume(R11,t=T_f,x=1)$ v fg=v_g-v_f temp1=N*del Tsc $del_Tib = (1/(1-N))*((1/(4*Gamma*N))-(((temp1))))$ del Tsc = T s- T b $(q_b/(miu_l*h_fg))*((sigma)/(grav*(rho_l-rho_g)))^0.5 =$ $1-rho_g^{(9/8)}*((sigma)^{(5/8)})*((T_s)^{(1/8)}))*(del_Ts^3)$ T=T f D = 1.95/1000 $h_FC = ((k_b)*((0.023*(((G*D)/miu_f)^{(0.8)})*((miu_f*cp_b)/k_b)^{(0.333)})))/D$ $q FC = h FC^*(del Ts+del Tsc)$ $h_s = q/(T_w-T_s)$ "using T_w-T_saturation" $h_mf = q/(T_w-T_f)$ "this is the heat transfer coefficient" "Finishing off this code, we will add the complete evaluation in subcooled region" $q = ((q_FC)^{(2)} + ((q_b^{(2)})^{(1-((del_Tib/del_Ts))^3)^{(2)}))^{(0.5)}$ "_____ -----"

 $k_b = conductivity(R11,p=P,t=T_b)$ "this is conductivity when the bulk temperature is used"

```
k_1 = \text{conductivity}(R11,p=P,x=0)

rho_1 = \text{density}(R11,p=P,x=0)

rho_g = \text{density}(R11,p=P,x=1)

T_s = t_sat(R11,p=P)

miu_f = viscosity(R11,p=P,x=1)

miu_1 = viscosity(R11,p=P,t=T_f)

"enthalpy for liquid only"

h_f = \text{enthalpy}(R11,p=P,x=0)

h_g = \text{enthalpy}(R11,p=P,x=1)

h_fg = h_g \cdot h_f

cp_1 = \text{specheat}(R11,p=P,x=0)

cp_b = \text{specheat}(R11,p=P,t=T_b)

del_Ts = T_w \cdot T_s

M = \text{molarmass}(R11)
```

Klimenko D=0.00195 $h_{tp} = h_{nb}$ for $N_{cb} < 1.2^{*}10^{4}$ $h_{tp} = h_{cb}$ for $N_{cb} > 2 * 10^4$ $h_{tp} = Max (h_{nb}, h_{cb}) \text{ for } 1.2^{*10^4} < N_{cb<} = 2^{*10^4}$ $N_{cb} = \frac{G \cdot h_{fg}}{h_{tp} \cdot del_{Ts}} \cdot \left[1 + x \cdot \left(\frac{\rho}{\rho_{g}} - 1\right)\right] \cdot \left[\frac{\rho_{g}}{\rho}\right]^{\left(1 / 3\right)}$ $h_{nb} = C \cdot \frac{k_{l}}{b} \cdot Pe_{star} \stackrel{0.6}{\circ} \cdot \left[\frac{P \cdot b}{\sigma}\right]^{0.54} \cdot Pr_{l} \stackrel{-0.33}{\circ} \cdot \left[\frac{k_{w}}{k_{l}}\right]^{0.12}$ $h_{cb} = 0.087 \cdot \frac{k_{l}}{b} \cdot Re_{m}^{0.6} \cdot Pr_{l}^{0.167} \cdot \left[\frac{\rho_{g}}{\rho}\right]^{0.2} \cdot \left[\frac{k_{w}}{k_{l}}\right]^{0.09}$ $Re_m = \frac{Wm \cdot b}{miu}$ Wm = $\frac{G}{\rho} \cdot \left[1 + x \cdot \left(\frac{\rho}{\rho_g} - 1 \right) \right]$ kwis for wall thermal conductivity b is the Laplace constant given in Thesis $b = \left[\frac{\sigma}{\text{grav} \cdot \text{del}_{\rho}}\right]^{0.5}$ $C = 7.6 \cdot 10^{-3}$ $q = h_{tp} \cdot (T_w - T_s)$ $Pe_{star} = \frac{q \cdot b}{h_{fo} \cdot o_{fo} \cdot a_{1}}$ this modified Peclet number as given by Klimenko $Pr_{1} = 1.6$ cp = **Cp** ('R11', x = 0, P = P) a1 = $\frac{k_1}{\rho \cdot c\rho_1}$ grav = 9.8 $k_w = \mathbf{k} (R11', P = P, T = T_w)$ $k_{|} = \mathbf{k} (|\mathbf{R}11|, \mathbf{P} = \mathbf{P}, \mathbf{x} = \mathbf{0})$ $\rho = \rho (R 11', P = P, x = 0)$ $\rho_{g} = \rho(R11', P=P, x=1)$ $T_s = T_{sat} ('R11' , P = P)$ miu₁ = **Visc** ('R11', P=P, x=0) $h_f = h(R11', P = P, x = 0)$ $h_g = h('R11', P=P, x=1)$ $h_{fg} = h_g - h_f$ $del_{Ts} = T_w - T_s$ $del_{\rho} = \rho - \rho_{g}$

A.8: "Steiner and Taborek" PROCEDURE lamturb(Re_l:f) if Re_I < 2300 THEN f = 64/Re Ielse $f = (0.7904*ln(Re_l)-1.64)^{(-2)}$ **END**if $h_tp = ((h_nb^n)+(abs(h_cb))^n)^{(1/n)}$ n = 3 $h_nb = h_nbo*F_nb$ $F_nb = F_pf *((h_nb*del_Ts)/q_o)^nf *(D/D_o)^(-0.4)*((R_a/R_a0)^(0.133))*(FM)$ $nf = 0.8-0.1*exp(1.75*P_r)$ D o = 0.01 R a0 = $1*10^{-6}$ R_a = 1*10^(-6) "this is according to the recommendation of Steiner and Taborek" "q = (2*sigma*Ts*h_LO)/(r_cr*rho_g*h_fg)" "q_ONB = (2*sigma*Ts*h_LO)/(r_cr*rho_g*del_hv)" "this is the given equation to determine the minimum q" r cr = 0.3 *10^(-6) del_Ts= abs(Tw-Ts) $Ts = t_sat(R11,p=P)$ h_LO =(((((f/8)*(Re_l-1000)*(Pr_l))/(1+12.7*(f/8)^(1/2)*(Pr_l^(2/3)-1))))*k_l)/D Re $I = (G^*D)/miu I$ call lamturb(Re I:f) $k_l = conductivity(R11,p=P,x=0)$ $Pr_l = prandtl(R11,p=P,x=0)$ rho I = density(R11,p=P,x=0)rho_g = density(R11,p=P,x=1) $miu_g = viscosity(R11,p=P,x=1)$ $miu_l = viscosity(R11,p=P,x=0)$ $h_f = enthalpy(R11,p=P,x=0)$ $h_g = enthalpy(R11,p=P,x=1)$ h fg = h g - h f $cp_l = specheat(R11, p=P, x=0)$ "h LO could be obtained from the Dittus-Boelter of Gnielinski" "del_hv is the latent heat of vaporization" $P_r = P/P_cr$ "reduced pressure value" P cr =0.0442*10^7 h nbo = 2690 $F_pf = (2.816^{(P_r)} - 0.45 + (3.4 + (1.7/(1 - (P_r)^7)))^{(P_r^3)})$ $h_cb = h_LO^*F_tp$ F_M1 =0.377+0.199*(In(M)) + 0.000028427*M^2 " this is given by Steiner and Taborek" $FM = max(F_M1, 2.5)$ q_o = 20000 [W/m^2] "for x <= 0.6" $F tp = (((1-x)^{1.5})+(1.9^{x}x^{0.6}))^{(1.0)}((rho l/rho g)^{0.35}))^{1.1}$ M = molarmass(R11)"otherwise Ftp for x? 1 is given by the equation below" " $F_tp = ((((1-x)^{(1.5)}) + (1.9^{(x^0.6)}((1-x)^{(0.01)})^{(rho_l/rho_g)^{(0.35)}}))^{(-2.2)})$ +((h_Go/h_lo)*(x^0.01)*(1+(8*(1-x)^(0.7))*(rho_l/rho_G)^(0.67)))^(-2) " D= 0.00195

$$\begin{split} h_{tp} &= 8.4 \cdot 10^{5} \cdot (Bo^{2} \cdot We_{fo})^{0.3} \cdot \left[\frac{v_{g}}{v_{f}}\right]^{-0.4} \\ We_{fo} &= \frac{v_{f} \cdot G^{2} \cdot D}{\sigma} \\ D &= 0.00195 \\ v_{f} &= v ('R11', P = P, x = 0) \\ v_{g} &= v ('R11', P = P, x = 1) \\ Bo &= \frac{h_{tp} \cdot del_{Ts}}{G \cdot h_{fg}} \\ del_{Ts} &= Tw - Ts \\ Ts &= T_{sat} ('R11', P = P, x = 0) \\ h_{f} &= h ('R11', P = P, x = 0) \\ h_{g} &= h ('R11', P = P, x = 1) \\ h_{fg} &= h_{g} - h_{f} \end{split}$$

Correlation of Lee and Mudawar

this is for $x{\,\rm e}~0$ to 0.05

 $Procedure \quad \textbf{myeffe} \ (Re_{f}, miu_{l}, miu_{g}, \rho, \rho_{g}, x_{e}, f_{f}, Pr_{l} \colon X_{t}, Nuf)$

If ($Re_f < 2300$) Then

$$\begin{split} X_t &:= \left[\frac{miu_1}{miu_g}\right]^{0.5} \cdot \left[\frac{\rho_g}{\rho}\right]^{0.5} \cdot \left[\frac{1 - x_e}{x_e}\right]^{0.5} \\ Nuf &:= 4.36 \end{split}$$

Else

$$X_{t} \coloneqq \left[\frac{f_{f} \cdot Re_{f}^{0.25}}{0.079}\right]^{0.5} \cdot \left[\frac{1 - x_{e}}{x_{e}}\right]^{0.5} \cdot \left[\frac{\rho_{g}}{\rho_{I}}\right]^{0.5}$$

Nuf := 0.023 · Re_{f}^{0.8} · Pr_{I}^{0.4}

Endlf

End myeffe

D = 0.00195

$$Re_{g} = \frac{G \cdot x_{e} \cdot D}{miu_{g}}$$

$$Re_{f} = \frac{G \cdot (1 - x_{e}) \cdot D}{miu}$$

Call myeffe (Ref, miu_1, miu_g, $\rho_i,~\rho_g,~x_e$, $f_f,~Pr_i$: x_t , Nuf)

$$\begin{split} h_{tp} &= 3.85 \, \cdot \, x_{t}^{0.267} \, \cdot \, h_{sp,f} \\ h_{sp,f} &= \frac{k_{i} \, \cdot \, Nuf}{D} \\ f_{f} &= \frac{64}{Re_{f}} \\ x_{e} &= x \\ k_{i} &= \mathbf{k} \, ('R11', P = P, x = 0) \\ Pr_{i} &= \mathbf{Pr} \, ('R11', P = P, x = 0) \\ \rho_{g} &= \rho \, ('R11', P = P, x = 0) \\ \rho_{g} &= \rho \, ('R11', P = P, x = 1) \\ miu_{g} &= \mathbf{Visc} \, ('R11', P = P, x = 1) \\ miu_{g} &= \mathbf{Visc} \, ('R11', P = P, x = 0) \\ enthalpy for liquid only \\ h_{f} &= \mathbf{h} \, ('R11', P = P, x = 0) \\ h_{g} &= \mathbf{h} \, ('R11', P = P, x = 0) \\ h_{fg} &= \mathbf{h} \, ('R11', P = P, x = 1) \\ h_{fg} &= \mathbf{h} \, (R11', P = P, x = 1) \\ h_{fg} &= h_{g} - h_{f} \\ del_{Ts} &= Tw - Ts \\ Ts &= \mathbf{T}_{sat} \, ('R11', P = P) \end{split}$$

$$\begin{split} & \text{PROCEDURE lamturb}(\text{Re},\text{Pr},f,k_{\text{I,D}:h,\text{FC}}) \\ & \text{if } \text{Re}_{\text{I}} < 2300 \text{ THEN} \\ & \text{Nu} = 4.34 \\ & \text{else} \\ & \text{Nu} = ((\text{Re-1000})^{*}\text{Pr}^{(\text{f}/2)})/(1.07 + 12.7^{*}(\text{Pr}^{(2/3)} - 1)^{*}((\text{f}/2)^{(0.5)})) \\ & \text{ENDif} \end{split}$$

D = 0.00195

 $N_{u} = ((\text{Re-1000})^{*}\text{Pr}^{(f/2)})/(1.07+12.7^{*}(\text{Pr}^{(2/3)}-1)^{*}((f/2)^{(0.5)}))$

 $N_{u} = 4.34$

 $f = 2 \cdot 0.0396 \cdot Re^{-0.25}$

$$T_m = \frac{T_b + T_w}{2}$$

 $T_s = T_{sat} (R11', P=P)$

 $k_1 = \mathbf{k} (R11', P=P, x=0)$

$$Re = \frac{G \cdot D}{miu}$$

call lamturb(Re,Pr,f,k I,D: h,FC)

$$h = h_{FC} + h_{pb} \cdot \frac{del_{Ts}}{del_{Tm}}$$

$$hFC = \frac{N_u \cdot k_l}{D}$$

miu = **Visc** ('R11', P=P, x=0)

$$Pr = Pr ('R1 1', P = P, x = 0)$$

 h_{pb} = we need Gorenflo's correlation for pool boiling

 $h_{pb} = f_{gorenflo}^*(q_{nb})$

see page 3677 of Haynes and Flethcer

$$\begin{split} h_{pb} &= h_{o} \cdot F_{PF} \cdot \left[\frac{q_{pb}}{q_{o}}\right]^{n} \cdot \left[\frac{R_{p}}{R_{po}}\right]^{0.133} \\ q_{pb} &= h_{pb} \cdot \left[\left|T_{w} - T_{s}\right|\right] \cdot S \\ S &= 1 \\ F_{PF} &= 1.2 \cdot P_{r}^{0.27} + 2.5 \cdot P_{r} + \frac{P_{r}}{1 + P_{r}} \\ R_{p} &= 0.4 \\ R_{po} &= R_{p} \\ q_{o} &= 20000 \\ h_{o} &= 2800 \\ P_{ro} &= 0.1 \cdot 10^{6} \\ P_{r} &= \frac{P}{P_{ro}} \\ n &= 0.9 - 0.3 \cdot P_{r}^{0.3} \\ del_{Ts} &= T_{w} - T_{s} \\ del_{Tm} &= T_{w} - T_{b} \end{split}$$

A.12: Sumith et al

Correlation of Sumith et.al

 $Procedure\ lamturb(Re_{g,G,x,D,miu,l,miu,g,Pr,l,Re,lo,k,l,X,tt,C,3,h,lf,delta,m,Fr,G,rho,g,Re,l:h,tp)$

if Re_g > 2000 THEN $h_{tp} = 2.83^{*}(((1/X_{tt})+0.213)^{(0.736)})^{*}h_{lo}$ ELSE $h_{tp} = C_3 h_{lf}$ **ENDif** $h_{tp} = 2.83 \cdot \left[\frac{1}{X_{tt}} + 0.213 \right]^{0.736} \cdot h_b$ $h_{tp} = C_3 \cdot h_{lf}$ $\operatorname{Re}_{g} = \frac{G \cdot x \cdot D}{\operatorname{miu}_{g}}$ $h_{lo} = 0.023 \cdot Re_1^{0.8} \cdot Pr_1^{0.4}$ $Re_{lo} = \frac{G \cdot D}{miu_l}$ $call \ lamturb (Re_{g,G,x,D,miu,l,miu,g,Pr,l,Re,lo,k,l,X,tt,C,3,h,lf,delta,m,Fr,G,rho,g,Re,l:h,tp)$ $X_{tt} = \left[\frac{1 - x}{x}\right]^{0.9} \cdot \left[\frac{\rho_g}{\rho}\right]^{0.5} \cdot \left[\frac{miu_l}{miu_g}\right]^{0.1}$ $C_3 = 2.36$ D = 0.00195 [m] $h_{\text{lf}} = \frac{k_{\text{l}}}{\delta m}$ $\delta_{m} = D \cdot 0.082 \cdot exp (-0.0594 \cdot Re_{I}^{0.21} \cdot Fr_{G}^{0.25} \cdot x^{0.12})$ $Re_{1} = \frac{G \cdot (1 - x) \cdot D}{miu_{1}}$ $Fr_{G} = \frac{G \cdot x}{\rho_{0}} \cdot (G \cdot D)^{0.5}$ $G = 9.81 [m/s^2]$ $miu_{q} = Visc ('R11', P = P, x = 1)$ $Pr_1 = Pr(R11', P = P, x = 0)$ $miu_1 = Visc(R11', P = P, x = 0)$ $\rho_{\alpha} = \rho (|R11|, P = P, x = 1)$ $\rho_{I} = \rho(R11', P=P, x=0)$

 $k_1 = \mathbf{k} (R11', P = P, x = 0)$

Appendix B: Tabulated data from Bao et al [39], Baird et al [60] and Yan and Lin [61]

Table B.1: Tabulated data of Bao et al [39]

L HT	0.027	m/block	Notes	First value for $q_{\mbox{wall}}$ in each block is average over the test section
d	0.00195	m		

		Measu	red Quan	tities		Derived Quantities				
R11		G	q _{wall}	T _{wall}	р	enthalpy	T _f	quality	∆T local	h
r		kg m ⁻² s ⁻¹	kW m ⁻	°C	MPa	kJ kg⁻¹	°C	(-)	°C	kW m ⁻ ² K ⁻¹
p1q1g		167.4	11.07		0.21518	226.1057	29.88	-0.089		
	1	167.4	13.09	50.52	0.21518	228.2710	32.32	-0.076	18.198	0.719
	2	167.4	10.16	51.85	0.21517	232.1172	36.64	-0.054	15.211	0.668
	3	167.4	12.00	52.66	0.21516	235.7834	40.74	-0.032	11.925	1.007
	4	167.4	10.27	53.28	0.21515	239.4667	44.83	-0.011	8.449	1.215
	5	167.4	11.78	53.42	0.21514	243.1137	46.85	0.010	6.572	1.793
	6	167.4	9.83	53.59	0.21512	246.6894	46.85	0.031	6.744	1.458
	7	167.4	11.55	53.77	0.21505	250.2262	46.84	0.051	6.939	1.664
	8	167.4	10.88	53.69	0.21495	253.9369	46.82	0.073	6.871	1.584
	9	167.4	10.15	53.27	0.21483	257.4159	46.80	0.093	6.467	1.569
	10	167.4	10.95	52.49	0.21470	260.9050	46.78	0.114	5.714	1.916
	1	167.4	16.94	51.99	0.22110	228.7463	32.85	-0.078	19.141	0.885
	2	167.4	14.68	53.31	0.22109	233.9755	38.72	-0.048	14.598	1.005
	3	167.4	15.50	54.24	0.22108	238.9672	44.27	-0.019	9.962	1.556
	4	167.4	14.12	54.76	0.22107	243.8673	47.76	0.010	6.998	2.018
	5	167.4	16.27	54.75	0.22103	248.8941	47.76	0.039	6.994	2.326
	6	167.4	13.86	54.85	0.22093	253.8772	47.74	0.068	7.105	1.951
	7	167.4	15.74	55.04	0.22081	258.7723	47.72	0.097	7.319	2.150
	8	167.4	15.06	54.95	0.22066	263.8667	47.70	0.126	7.252	2.077
	9	167.4	13.98	54.52	0.22048	268.6711	47.67	0.155	6.843	2.043
	10	167.4	15.06	53.68	0.22029	273.4741	47.64	0.183	6.040	2.493
	1	167.4	22.06	53.54	0.21549	229.5978	33.81	-0.069	19.732	1.118
	2	167.4	20.98	54.64	0.21548	236.7169	41.78	-0.027	12.870	1.630
	3	167.4	21.68	55.38	0.21547	243.7738	46.90	0.014	8.484	2.556
	4	167.4	21.47	55.78	0.21541	250.9105	46.89	0.055	8.893	2.414
	5	167.4	21.75	56.05	0.21528	258.0584	46.87	0.097	9.177	2.370
	6	167.4	19.23	56.22	0.21511	264.8371	46.85	0.136	9.378	2.051
	7	167.4	21.65	56.43	0.21491	271.5988	46.81	0.175	9.620	2.250
	8	167.4	21.51	56.26	0.21467	278.7376	46.78	0.217	9.480	2.270
	9	167.4	19.09	55.84	0.21440	285.4541	46.74	0.256	9.107	2.097
	10	167.4	21.66	54.73	0.21411	292.1947	46.69	0.295	8.043	2.693
	1	167.4	32.16	56.51	0.22761	231.7231	36.19	-0.066	20.321	1.582
	2	167.4	30.15	57.74	0.22760	242.0293	47.66	-0.006	10.080	2.991
	3	167.4	32.86	58.20	0.22753	252.4520	48.74	0.055	9.462	3.473
	4	167.4	31.43	58.70	0.22737	263.0861	48.71	0.117	9.989	3.146
	5	167.4	31.74	59.01	0.22716	273.5352	48.68	0.178	10.329	3.073

	6	167.4	28.71	59.14	0.22690	283.5341	48.64	0.237	10.498	2.735
	7	167.4	31.97	59.35	0.22660	293.5706	48.60	0.295	10.753	2.973
	8	167.4	31.83	59.14	0.22625	304.1234	48.54	0.357	10.599	3.003
	9	167.4	28.48	58.69	0.22586	314.0988	48.49	0.415	10.202	2.792
	10	167.4	31.99	57.39	0.22544	324.1006	48.42	0.474	8.970	3.566
	1	167.4	42.89	57.24	0.22114	233.4322	38.11	-0.051	19.129	2.242
	2	167.4	42.85	58.17	0.22113	247.6133	47.77	0.032	10.395	4.122
	3	167.4	44.75	58.53	0.22102	262.1032	47.76	0.116	10.778	4.152
	4	167.4	43.03	59.02	0.22077	276.6227	47.72	0.201	11.306	3.806
	5	167.4	43.71	59.26	0.22046	290.9693	47.67	0.284	11.594	3.770
	6	167.4	39.83	59.30	0.22008	304.7864	47.61	0.365	11.689	3.407
	7	167.4	43.84	59.44	0.21965	318.6256	47.55	0.445	11.899	3.685
	8	167.4	43.40	59.10	0.21915	333.0558	47.47	0.529	11.627	3.733
	9	167.4	39.77	58.28	0.21862	346.8120	47.39	0.610	10.890	3.652
	10	167.4	45.05	56.54	0.21804	360.8405	47.30	0.691	9.240	4.875
	1	167.4	56.97	58.61	0.22581	235.7883	40.74	-0.041	17.877	3.187
	2	167.4	58.67	59.35	0.22570	254.9167	48.46	0.071	10.890	5.387
	3	167.4	59.46	59.73	0.22544	274.4570	48.42	0.185	11.308	5.259
	4	167.4	57.83	60.22	0.22510	293.8587	48.37	0.298	11.845	4.883
	5	167.4	58.62	60.44	0.22467	313.1212	48.31	0.410	12.129	4.833
	6	167.4	53.76	60.37	0.22417	331.7103	48.23	0.519	12.139	4.429
	7	167.4	58.09	60.43	0.22361	350.2119	48.15	0.627	12.285	4.729
	8	167.4	58.62	59.65	0.22299	369.5165	48.05	0.739	11.596	5.055
	9	167.4	58.89	58.28	0.22233	388.9524	47.95	0.853	10.322	5.705
	10	167.4	56.44	57.95	0.22169	408.0284	47.86	0.964	10.089	5.595
	1	309.7	30.72	54.17	0.22119	229.5810	33.79	-0.073	20.384	1.507
	2	309.7	30.48	55.24	0.22118	235.0535	39.92	-0.041	15.319	1.990
	3	309.7	30.38	56.12	0.22116	240.4951	45.97	-0.010	10.157	2.991
	4	309.7	29.74	56.67	0.22103	245.8699	47.76	0.022	8.916	3.335
	5	309.7	31.01	56.93	0.22071	251.3011	47.71	0.053	9.220	3.363
	6	309.7	27.49	57.21	0.22026	256.5319	47.64	0.084	9.573	2.872
	7	309.7	30.33	57.57	0.21971	261.7014	47.56	0.115	10.016	3.028
	8	309.7	30.71	57.44	0.21905	267.1586	47.45	0.147	9.981	3.077
	9	309.7	27.16	57.17	0.21830	272.3331	47.34	0.177	9.833	2.763
	10	309.7	30.32	56.07	0.21745		47.21	0.208	8.863	3.421
	1	307.0	56.34	58.95	0.23306	232.0882	36.60	-0.068	22.351	2.521
	2	307.0	55.00	60.13	0.23305	242.1334	47.78	-0.009	12.351	4.453
	3	307.0	57.57	60.38	0.23281	252.2889	49.52	0.050	10.869	5.296
	4	307.0	55.87	60.79	0.23224	262.5226	49.43	0.110	11.363	4.916
	5	307.0	57.02	60.95	0.23148	272.7066	49.32	0.170	11.627	4.904
	6	307.0	52.02	60.94	0.23056	282.5440	49.18	0.228	11.756	4.425
	7	307.0	57.44	61.09	0.22949	292.4198	49.03	0.287	12.068	4.760
	8	307.0	57.20	60.88	0.22827	302.7629	48.85	0.348	12.032	4.754
	9	307.0	52.13	60.44	0.22695	312.6264	48.65	0.406	11.790	4.422
	10	307.0	56.76	59.09	0.22569	322.4502	48.46	0.464	10.624	5.343
	1	170.2	39.11	68.80	0.34284	233.7857	38.46	-0.137	30.343	1.289
	2	170.2	40.73	70.00	0.34283	246.7755	52.85	-0.058	17.150	2.375
	3	170.2	39.52	71.15	0.34283	259.8317	63.33	0.021	7.813	5.058
	4	170.2	39.89	71.58	0.34275	272.7520	63.33	0.099	8.250	4.835
1	5	170.2	40.47	71.83	0.34258	285.8269	63.31	0.178	8.527	4.746

	6	170.2	36.52	71.95	0.34236	298.3525	63.28	0.254	8.669	4.212
	7	170.2	41.57	72.29	0.34210	311.0579	63.25	0.331	9.040	4.599
	8	170.2	40.31	72.48	0.34179	324.3808	63.22	0.411	9.259	4.354
	9	170.2	36.59	72.44	0.34145	336.8935	63.18	0.487	9.253	3.955
	10	170.2	37.60	71.66	0.34108	348.9652	63.14	0.560	8.521	4.413
	1	251.1	36.74	69.59	0.36011	231.1867	35.54	-0.164	34.050	1.079
	2	251.1	43.13	70.07	0.36009	239.9943	45.37	-0.110	24.704	1.746
	3	251.1	41.40	71.30	0.36008	249.3159	55.63	-0.054	15.677	2.641
	4	251.1	38.07	72.42	0.36007	258.0793	65.14	-0.001	7.281	5.228
	5	251.1	40.16	72.76	0.35995	266.7053	65.17	0.052	7.595	5.288
	6	251.1	36.20	72.91	0.35966	275.1251	65.14	0.103	7.779	4.654
	7	251.1	41.41	73.22	0.35928	283.6826	65.10	0.155	8.125	5.096
	8	251.1	40.67	73.33	0.35881	292.7331	65.05	0.211	8.278	4.913
	9	251.1	37.02	73.35	0.35827	301.3001	64.99	0.263	8.363	4.427
	10	251.1	36.67	72.86	0.35767	309.4264	64.93	0.313	7.938	4.620
	1	334.8	35.95	68.21	0.35225	228.9799	33.07	-0.172	35.142	1.023
	2	334.8	43.14	68.40	0.35223	235.5209	40.39	-0.132	28.005	1.540
	3	334.8	42.53	69.31	0.35221	242.6061	48.26	-0.089	21.053	2.020
	4	334.8	39.38	70.48	0.35220	249.3806	55.70	-0.048	14.780	2.664
	5	334.8	38.83	71.25	0.35218	255.8485	62.73	-0.009	8.524	4.555
	6	334.8	36.36	71.42	0.35204	262.0669	64.33	0.029	7.096	5.124
	7	334.8	41.38	71.80	0.35169	268.4967	64.29	0.068	7.509	5.511
	8	334.8	40.70	71.95	0.35119	275.2850	64.24	0.109	7.716	5.275
	9	334.8	36.94	72.04	0.35058	281.7061	64.17	0.148	7.865	4.697
	10	334.8	36.71	71.56	0.34987	287.7975	64.10	0.186	7.469	4.915
	1	337.6	51.53	70.25	0.35534	229.5265	33.68	-0.171	36.576	1.409
	2	337.6	61.99	70.19	0.35532	238.8376	44.08	-0.114	26.103	2.375
	3	337.6	56.88	71.47	0.35530	248.5880	54.83	-0.055	16.635	3.420
	4	337.6	55.65	72.23	0.35529	257.8182	64.67	0.001	7.553	7.368
	5	337.6	56.84	72.50	0.35506	267.0448	64.65	0.057	7.851	7.240
	6	337.6	52.38	72.42	0.35454	276.0031	64.59	0.112	7.829	6.690
	7	337.6	58.84	72.66	0.35385	285.1253	64.52	0.167	8.143	7.226
	8	337.6	57.63	72.77	0.35300	294.6785	64.43	0.226	8.340	6.910
	9	337.6	53.48	72.70	0.35202	303.7919	64.33	0.281	8.371	6.389
	10	337.6	53.44	72.21	0.35094	312.5618		0.335	7.997	6.683
	1	334.8	82.58	72.46	0.35589	231.9809	36.43	-0.156	36.029	2.292
	2	334.8	89.15	72.88	0.35587	246.1829	52.20	-0.070	20.688	4.309
	3	334.8	86.90	73.42	0.35586	260.7427	64.73	0.018	8.684	10.008
	4	334.8	87.14	73.60	0.35551	275.1369	64.70	0.106	8.901	9.791
	5	334.8	87.23	73.77	0.35471	289.5580	64.61	0.194	9.157	9.526
	6	334.8	81.26	73.47	0.35371	303.4922	64.51	0.279	8.965	9.064
	7	334.8	89.69	73.77	0.35253	317.6296	64.38	0.365	9.385	9.557
	8	334.8	87.80	73.92	0.35121	332.3080	64.24	0.455	9.681	9.069
	9	334.8	82.89	73.64	0.34980	346.4246	64.09	0.541	9.551	8.679
	10	334.8	83.59	73.10	0.34847	360.1937	63.94	0.625	9.160	9.126
	1	334.8	101.81	72.53	0.35342	233.3754	38.00	-0.146	34.531	2.948
	2	334.8	104.67	73.51	0.35340	250.4516	56.87	-0.043	16.643	6.289
	3	334.8	105.01	73.75	0.35309	267.7930	64.44	0.063	9.315	11.274
	4	334.8	104.98	73.92	0.35233	285.1598	64.36	0.168	9.557	10.985
1	5	334.8	104.91	74.14	0.35130	302.5178	64.25	0.274	9.893	10.605

6	334.8	98.23	73.81	0.35007	319.3176	64.12	0.376	9.695	10.132
7	334.8	107.38	74.27	0.34867	336.3225	63.97	0.480	10.307	10.419
8	334.8	105.12	74.47	0.34731	353.8972	63.82	0.587	10.652	9.869
9	334.8	98.07	73.99	0.34602	370.7013	63.68	0.689	10.310	9.512
10	334.8	103.71	72.47	0.34462	387.3886	63.53	0.791	8.946	11.593
1	449.3	103.12	71.24	0.34813	230.2463	34.49	-0.162	36.747	2.806
2	449.3	105.25	72.54	0.34809	243.0904	48.79	-0.084	23.743	4.433
3	449.3	104.00	73.23	0.34806	255.9886	62.88	-0.006	10.351	10.047
4	449.3	105.13	73.39	0.34756	268.8792	63.85	0.073	9.546	11.014
5	449.3	104.72	73.60	0.34640	281.8147	63.72	0.151	9.881	10.598
6	449.3	98.54	73.11	0.34489	294.3435	63.56	0.228	9.554	10.313
7	449.3	107.88	73.43	0.34307	307.0670	63.36	0.306	10.072	10.711
8	449.3	105.79	73.57	0.34099	320.2380	63.13	0.387	10.433	10.140
9	449.3	98.88	73.16	0.33872	332.8543	62.88	0.464	10.280	9.619
10	449.3	103.11	71.97	0.33630	345.3052	62.62	0.540	9.355	11.022
1	446.4	122.83	72.54	0.35030	231.4363	35.83	-0.156	36.713	3.346
2	446.4	126.11	73.60	0.35027	246.8778	52.96	-0.062	20.637	6.111
3	446.4	125.35	73.91	0.35024	262.4757	64.14	0.032	9.774	12.825
4	446.4	126.05	73.99	0.34959	278.0699	64.07	0.127	9.924	12.702
5	446.4	125.61	74.18	0.34807	293.6801	63.90	0.222	10.276	12.224
6	446.4	118.37	73.57	0.34621	308.8142	63.70	0.315	9.874	11.989
7	446.4	128.93	73.94	0.34405	324.1538	63.47	0.409	10.475	12.307
8	446.4	126.59	74.04	0.34165	340.0030	63.21	0.506	10.835	11.684
9	446.4	118.61	73.42	0.33913	355.2122	62.93	0.599	10.490	11.307
10	446.4	124.82	71.87	0.33675	370.3114	62.67	0.691	9.200	13.567
1	447.6	143.46	73.84	0.35378	232.9221	37.49	-0.149	36.353	3.946
2	447.6	147.92	74.73	0.35374	250.9500	57.41	-0.040	17.315	8.543
3	447.6	147.11	74.82	0.35316	269.2036	64.45	0.071	10.368	14.190
4	447.6	147.65	74.87	0.35178	287.4407	64.30	0.182	10.572	13.967
5	447.6	147.01	75.09	0.34993	305.6717	64.10	0.294	10.993	13.374
6	447.6	138.71	74.39	0.34774	323.3496	63.87	0.402	10.521	13.184
7	447.6	149.84	74.77	0.34529	341.2024	63.60	0.511	11.173	13.411
8	447.6	149.09	74.51	0.34265	359.6973	63.31	0.624	11.199	13.313
9	447.6	139.92	73.70	0.34015	377.5785	63.04	0.733	10.658	13.128
10	447.6	146.17	72.20	0.33775	395.2790	62.78	0.841	9.422	15.513
1	446.4	84.52	70.29	0.35209	229.5922	33.75	-0.168	36.532	2.314
2	446.4	86.17	71.77	0.35206	240.1798	45.57	-0.104	26.198	3.289
3	446.4	84.22	72.96	0.35201	250.7490	57.19	-0.040	15.766	5.342
4	446.4	84.92	73.40	0.35199	261.2404	64.32	0.024	9.077	9.356
5	446.4	85.18	73.65	0.35151	271.7916	64.27	0.088	9.376	9.086
6	446.4	79.82	73.31	0.35042	282.0263	64.15	0.150	9.160	8.714
7	446.4	87.77	73.62	0.34903	292.4216	64.01	0.214	9.619	9.125
8	446.4	86.24	73.71	0.34738	303.2151	63.83	0.280	9.878	8.730
9	446.4	79.91	73.41	0.34552	313.5208	63.63	0.344	9.782	8.170
10	446.4	83.48	72.26	0.34349	323.6557	63.41	0.406	8.852	9.430
1	449.3	48.76	67.95	0.35720	227.2318	31.09	-0.186	36.857	1.323
2	449.3	53.04	68.72	0.35716	233.5069	38.14	-0.148	30.583	1.734
3	449.3	53.43	69.70	0.35711	240.0699	45.45	-0.108	24.250	2.204
4	449.3	51.23	70.85	0.35707	246.5216	52.57	-0.069	18.288	2.801
5	449.3	49.68	71.82	0.35703	252.7418	59.36	-0.031	12.457	3.988

6	449.3	46.77	72.01	0.35700	258.6871	64.86	0.005	7.157	6.535
7	449.3	52.79	72.43	0.35671	264.8240	64.82	0.042	7.605	6.941
8	449.3	51.72	72.59	0.35602	271.2657	64.75	0.082	7.839	6.597
9	449.3	47.36	72.52	0.35514	277.3733	64.66	0.120	7.862	6.024
10	449.3	48.52	71.73	0.35409	283.2837	64.55	0.156	7.185	6.753
1	446.4	28.47	64.29	0.34558	225.9914	29.70	-0.186	34.588	0.823
2	446.4	20.02	66.61	0.34555	228.9994	33.09	-0.167	33.523	0.597
3	446.4	27.27	66.79	0.34552	231.9329	36.38	-0.150	30.409	0.897
4	446.4	27.11	67.01	0.34549	235.3065	40.16	-0.129	26.853	1.010
5	446.4	26.39	67.50	0.34545	238.6250	43.85	-0.109	23.650	1.116
6	446.4	23.49	68.02	0.34540	241.7184	47.28	-0.090	20.742	1.132
7	446.4	26.60	68.91	0.34536	244.8250	50.71	-0.072	18.207	1.461
8	446.4	25.70	69.53	0.34531	248.0691	54.27	-0.052	15.267	1.683
9	446.4	22.51	70.03	0.34527	251.0595	57.53	-0.034	12.499	1.801
10	446.4	21.85	69.76	0.34523	253.8108	60.53	-0.017	9.233	2.366
1	558.1	125.14	78.47	0.42842	228.9239	32.97	-0.220	45.502	2.750
2	558.1	128.42	80.02	0.42836	241.5056	47.02	-0.142	33.008	3.890
3	558.1	126.30	81.06	0.42829	254.1447	60.86	-0.064	20.196	6.254
4	558.1	126.69	81.44	0.42825	266.6981	71.89	0.014	9.557	13.257
5	558.1	127.04	81.59	0.42755	279.2883	71.82	0.092	9.769	13.005
6	558.1	119.71	80.85	0.42592	291.5320	71.67	0.168	9.179	13.042
7	558.1	131.05	81.11	0.42384	303.9744	71.48	0.246	9.632	13.605
8	558.1	128.73	81.17	0.42136	316.8645	71.25	0.327	9.920	12.976
9	558.1	121.48	80.65	0.41859	329.2797	70.99	0.405	9.661	12.575
10	558.1	123.77	79.77	0.41559	341.4492	70.70	0.481	9.064	13.655
1	563.6	125.32	77.03	0.40620	228.8106	32.85	-0.208	44.178	2.837
2	563.6	128.37	78.56	0.40614	241.2750	46.77	-0.131	31.795	4.038
3	563.6	126.29	79.54	0.40607	253.7866	60.48	-0.054	19.055	6.628
4	563.6	127.01	79.85	0.40603	266.2315	69.79	0.023	10.058	12.628
5	563.6	127.01	80.02	0.40527	278.7117	69.72	0.100	10.297	12.334
6	563.6	119.87	79.26	0.40351	290.8412	69.55	0.175	9.705	12.352
7	563.6	131.02	79.51	0.40130	303.1681	69.34	0.252	10.175	12.877
8	563.6	128.85	79.54	0.39867	315.9359	69.08	0.332	10.456	12.322
9	563.6	121.49	79.00	0.39575	328.2353	68.80	0.409	10.204	11.906
10	563.6	124.17	78.07	0.39259	340.3047		0.484	9.581	12.960
1	558.1	125.42	75.00	0.37905	228.8713	32.93	-0.190	42.067	2.981
2	558.1	128.42	76.45	0.37899	241.4666	46.99	-0.113	29.457	4.360
3	558.1	126.33	77.31	0.37893	254.1074	60.84	-0.036	16.469	7.671
4	558.1	127.50	77.53	0.37834	266.7025	67.06	0.041	10.464	12.184
5	558.1	126.95	77.72	0.37694	279.3280	66.92	0.119	10.800	11.754
6	558.1	120.16	76.93	0.37500	291.5893	66.73	0.195	10.205	11.775
7	558.1	131.02	77.19	0.37261	304.0526	66.48	0.272	10.705	12.239
8	558.1	129.04	77.18	0.36982	316.9567	66.19	0.352	10.989	11.742
9	558.1	121.46	76.64	0.36673	329.3864	65.87	0.429	10.766	11.281
10	558.1	124.74	75.63	0.36342	341.6030	65.53	0.505	10.100	12.351
1	558.1	125.46	73.02	0.35069	228.8792	32.95	-0.172	40.071	3.131
2	558.1	128.36	74.37	0.35062	241.4737	47.01	-0.095	27.366	4.691
3	558.1	126.57	75.07	0.35057	254.1236	60.86	-0.019	14.209	8.908
4	558.1	127.83	75.22	0.34989	266.7471	64.10	0.058	11.120	11.496
5	558.1	127.05	75.41	0.34828	279.3941	63.92	0.136	11.484	11.063

6	558.1	120.33	74.61	0.34615	291.6691	63.69	0.211	10.915	11.024
7	558.1	131.03	74.85	0.34356	304.1415	63.41	0.288	11.434	11.459
8	558.1	129.21	74.81	0.34056	317.0543	63.09	0.368	11.721	11.024
9	558.1	121.40	74.24	0.33726	329.4895	62.72	0.444	11.518	10.540
10	558.1	125.41	73.12	0.33372	341.7364	62.33	0.520	10.789	11.624
1	558.1	125.69	70.29	0.32021	228.8913	32.98	-0.151	37.317	3.368
2	558.1	128.40	71.57	0.32015	241.4994	47.05	-0.075	24.523	5.236
3	558.1	126.94	72.14	0.32010	254.1691	60.79	0.001	11.354	11.180
4	558.1	128.04	72.29	0.31931	266.8212	60.70	0.078	11.588	11.049
5	558.1	127.04	72.50	0.31747	279.4786	60.49	0.155	12.016	10.573
6	558.1	120.69	71.68	0.31510	291.7712	60.21	0.230	11.468	10.524
7	558.1	130.91	71.93	0.31226	304.2557	59.88	0.306	12.055	10.860
8	558.1	129.33	71.84	0.30899	317.1692	59.50	0.385	12.343	10.478
9	558.1	121.39	71.20	0.30542	329.6103	59.07	0.461	12.128	10.009
10	558.1	126.30	69.93	0.30159	341.9009	58.61	0.537	11.311	11.166
1	558.1	125.15	68.29	0.29027	228.8711	32.97	-0.129	35.328	3.542
2	558.1	128.75	69.28	0.29020	241.4694	47.02	-0.054	22.256	5.785
3	558.1	127.56	69.62	0.29016	254.1875	57.22	0.021	12.405	10.283
4	558.1	128.20	69.76	0.28925	266.8786	57.11	0.097	12.648	10.136
5	558.1	127.09	69.97	0.28715	279.5462	56.85	0.174	13.124	9.684
6	558.1	120.94	69.12	0.28450	291.8534	56.51	0.249	12.602	9.597
7	558.1	130.78	69.36	0.28137	304.3440	56.12	0.325	13.236	9.880
8	558.1	129.46	69.17	0.27780	317.2572	55.66	0.403	13.507	9.585
9	558.1	121.28	68.43	0.27390	329.6989	55.16	0.479	13.267	9.142
10	558.1	127.33	66.93	0.26974	342.0351	54.62	0.554	12.306	10.347
1	167.4	36.02	78.04	0.46110	228.0469	31.97	-0.245	46.072	0.782
2	167.4	18.09	81.87	0.46109	236.9975	42.00	-0.189	39.865	0.454
3	167.4	32.70	81.13	0.46108	245.3995	51.30	-0.136	29.827	1.096
4	167.4	35.42	80.44	0.46107	256.6673	63.59	-0.066	16.854	2.102
5	167.4	30.31	81.02	0.46107	267.5385	74.83	0.002	6.195	4.892
6	167.4	27.40	81.18	0.46101	277.0834	74.82	0.062	6.356	4.311
7	167.4	32.16	81.58	0.46088	286.9355	74.81	0.123	6.768	4.752
8	167.4	30.98	81.71	0.46072	297.3800	74.80	0.188	6.915	4.480
9	167.4	27.88	81.65	0.46055	307.1167	74.78	0.249	6.870	4.059
10	167.4	26.61	80.98	0.46036	316.1305		0.306	6.213	4.283
1	167.4	49.98	82.05	0.47728	230.3679	34.58	-0.239	47.472	1.053
2	167.4	62.61	81.86	0.47727	248.9921	55.24	-0.122	26.628	2.351
3	167.4	57.47	83.00	0.47727	268.8543	76.22	0.002	6.774	8.484
4	167.4	57.77	83.37	0.47717	287.9145	76.22	0.122	7.154	8.074
5	167.4	57.31	83.67	0.47698	306.9486	76.20	0.241	7.473	7.669
6	167.4	53.36	83.49	0.47675	325.2546	76.18	0.356	7.311	7.299
7	167.4	59.85	83.94	0.47648	343.9807	76.16	0.474	7.781	7.692
8	167.4	57.68	84.22	0.47616	363.4208	76.13	0.596	8.088	7.131
9	167.4	53.30	84.09	0.47582	381.7777	76.10	0.711	7.986	6.674
10	167.4	53.55	83.22	0.47546	399.4509	76.07	0.822	7.153	7.486
1	279.0	32.95	73.24	0.45264	225.6430	29.26	-0.255	43.976	0.749
2	279.0	22.85	76.29	0.45262	231.1805	35.50	-0.220	40.788	0.560
3	279.0	30.69	76.94	0.45261	236.4934	41.44	-0.187	35.495	0.865
4	279.0	29.93	77.39	0.45259	242.5095	48.12	-0.150	29.271	1.023
5	279.0	30.77	77.85	0.45258	248.5340	54.74	-0.112	23.104	1.332

6	279.0	26.13	78.58	0.45256	254.1809	60.90	-0.077	17.685	1.477
7	279.0	30.27	79.63	0.45255	259.7780	66.94	-0.042	12.687	2.386
8	279.0	28.18	80.33	0.45254	265.5792	73.14	-0.006	7.186	3.922
9	279.0	26.33	80.47	0.45245	270.9899	74.07	0.028	6.403	4.113
10	279.0	24.46	80.05	0.45226	276.0314	74.05	0.059	5.993	4.082
1	279.0	47.01	79.95	0.46449	227.1825	31.00	-0.252	48.954	0.960
2	279.0	59.16	79.65	0.46447	237.7190	42.80	-0.186	36.849	1.605
3	279.0	58.04	80.47	0.46446	249.3507	55.63	-0.113	24.836	2.337
4	279.0	53.07	81.72	0.46444	260.3780	67.58	-0.044	14.136	3.754
5	279.0	53.49	82.28	0.46443	270.9537	75.12	0.022	7.162	7.468
6	279.0	49.93	82.16	0.46427	281.2176	75.11	0.086	7.057	7.075
7	279.0	57.15	82.41	0.46387	291.8452	75.07	0.153	7.337	7.790
8	279.0	54.78	82.63	0.46335	302.9543	75.03	0.222	7.603	7.205
9	279.0	51.14	82.47	0.46274	313.4667	74.97	0.288	7.493	6.825
10	279.0	50.16	81.85	0.46205	323.5212	74.92	0.351	6.936	7.232
1	290.2	58.53	81.09	0.45939	228.0296	31.95	-0.244	49.138	1.191
2	290.2	75.85	80.17	0.45937	240.8523	46.28	-0.164	33.891	2.238
3	290.2	68.97	81.34	0.45935	254.6709	61.43	-0.077	19.914	3.463
4	290.2	67.37	82.06	0.45934	267.6808	74.68	0.004	7.379	9.130
5	290.2	67.81	82.36	0.45915	280.5802	74.66	0.084	7.698	8.809
6	290.2	63.20	82.07	0.45869	293.0818	74.62	0.163	7.450	8.483
7	290.2	71.28	82.32	0.45808	305.9142	74.57	0.243	7.750	9.197
8	290.2	68.56	82.59	0.45735	319.2580	74.50	0.326	8.082	8.483
9	290.2	64.23	82.40	0.45654	331.9294	74.43	0.406	7.968	8.061
10	290.2	63.97	81.73	0.45567	344.1627	74.36	0.482	7.374	8.676
1	279.0	78.66	82.30	0.46677	230.1686	34.36	-0.234	47.945	1.641
2	279.0	92.12	82.02	0.46675	247.1177	53.19	-0.128	28.839	3.194
3	279.0	86.29	82.97	0.46674	264.8239	72.34	-0.018	10.634	8.114
4	279.0	87.09	83.19	0.46653	282.0311	75.30	0.090	7.891	11.036
5	279.0	86.49	83.44	0.46603	299.2580	75.26	0.198	8.180	10.573
6	279.0	80.99	83.03	0.46537	315.8799	75.20	0.302	7.832	10.342
7	279.0	90.18	83.37	0.46459	332.8683	75.14	0.409	8.239	10.945
8	279.0	87.08	83.73	0.46382	350.4607	75.07	0.519	8.659	10.057
9	279.0	81.70	83.50	0.46309	367.2120	75.01	0.624	8.492	9.621
10	279.0	82.74	82.66	0.46230	383.5326	74.94	0.726	7.723	10.714
1	334.8	49.38	78.41	0.46491	226.6286	30.37	-0.256	48.036	1.028
2	334.8	55.14	79.06	0.46489	235.2729	40.08	-0.201	38.984	1.414
3	334.8	57.58	79.72	0.46487	244.5954	50.41	-0.143	29.309	1.965
4	334.8	53.65	80.94	0.46485	253.7943	60.47	-0.086	20.470	2.621
5	334.8	51.94	81.88	0.46483	262.5271	69.88	-0.031	11.998	4.329
6	334.8	48.95	81.92	0.46482	270.8716	75.16	0.021	6.761	7.241
7	334.8	56.09	82.24	0.46461	279.5589	75.14	0.075	7.099	7.901
8	334.8	54.18	82.44	0.46411	288.6784	75.09	0.133	7.345	7.376
9	334.8	50.22	82.33	0.46348	297.3127	75.04	0.187	7.293	6.887
10	334.8	49.44	81.70	0.46274	305.5549	74.98	0.239	6.727	7.350
1	334.8 334.8	62.40 73.55	79.63 79.73	0.46243	227.7939	31.69	-0.247 -0.177	47.943 35.457	1.302
23	334.8 334.8	73.55 70.25	79.73 80.94	0.46241	239.0372	44.27 57.36	-0.177	35.457	2.074
	334.8 334.8	70.25 67.28	80.94 81.98	0.46239	250.9297 262.3040		-0.102 -0.031	23.583	2.979 5.455
4				0.46237		69.65 74.03		12.335	5.455
5	334.8	68.01	82.39	0.46218	273.4927	74.93	0.039	7.467	9.107

	6	334.8	63.62	82.13	0.46175	284.3781	74.89	0.107	7.241	8.785
	7	334.8	71.67	82.38	0.46112	295.5668	74.83	0.177	7.550	9.494
	8	334.8	69.27	82.61	0.46033	307.2230	74.77	0.250	7.847	8.827
	9	334.8	64.69	82.45	0.45942	318.3012	74.69	0.320	7.769	8.326
	10	334.8	64.46	81.80	0.45842	328.9815	74.60	0.387	7.199	8.954
	1	334.8	79.81	81.12	0.46331	229.1483	33.21	-0.239	47.910	1.666
	2	334.8	93.10	81.00	0.46329	243.4485	49.15	-0.150	31.853	2.923
	3	334.8	86.44	82.30	0.46328	258.2973	65.34	-0.057	16.956	5.098
	4	334.8	86.79	82.76	0.46327	272.6244	75.02	0.033	7.744	11.208
	5	334.8	86.72	83.02	0.46296	286.9747	74.99	0.123	8.024	10.808
	6	334.8	81.41	82.56	0.46224	300.8795	74.93	0.210	7.631	10.669
	7	334.8	90.58	82.84	0.46134	315.1031	74.85	0.299	7.989	11.338
	8	334.8	87.83	83.12	0.46030	329.8584	74.76	0.391	8.361	10.505
	9	334.8	82.40	82.93	0.45916	343.9369	74.66	0.480	8.263	9.971
	10	334.8	82.88	82.23	0.45795	357.6060	74.56	0.565	7.675	10.799
	1	337.6	97.44	82.13	0.46031	230.5412	34.78	-0.229	47.348	2.058
	2	337.6	109.12	82.14	0.46029	247.4834	53.59	-0.123	28.552	3.822
	3	337.6	104.23	82.92	0.46027	264.9823	72.51	-0.014	10.411	10.012
	4	337.6	105.14	83.07	0.45996	282.1549	74.73	0.094	8.339	12.608
	5	337.6	104.44	83.29	0.45923	299.3446	74.67	0.201	8.625	12.109
	6	337.6	98.19	82.75	0.45829	315.9641	74.59	0.306	8.167	12.022
	7	337.6	108.42	83.10	0.45717	332.9101	74.49	0.412	8.607	12.596
	8	337.6	105.45	83.40	0.45593	350.4522	74.38	0.522	9.020	11.690
	9	337.6	99.13	83.11	0.45476	367.2327	74.28	0.627	8.834	11.221
	10	337.6	100.81	82.26	0.45367	383.6323	74.18	0.729	8.077	12.481
	1	334.8	121.08	83.17	0.46439	232.5112	36.99	-0.218	46.182	2.622
	2	334.8	131.50	83.34	0.46437	253.4004	60.05	-0.088	23.294	5.645
	3	334.8	128.16	83.72	0.46436	274.8753	75.12	0.046	8.603	14.897
	4	334.8	128.90	83.76	0.46393	296.1348	75.08	0.179	8.687	14.838
	5	334.8	128.03	83.99	0.46296	317.3830	74.99	0.312	8.995	14.233
	6	334.8	120.69	83.35	0.46180	337.9528	74.89	0.441	8.455	14.276
	7	334.8	131.80	83.82	0.46051	358.8350	74.78	0.572	9.036	14.587
	8	334.8	130.03	84.01	0.45926	380.4895	74.67	0.708	9.336	13.928
	9	334.8	128.97	83.75	0.45806	401.9101	74.57	0.842	9.185	14.042
	10	334.8	116.20	86.01	0.45693	422.1866	74.47	0.969	11.547	10.063
	1	446.4	50.99	77.18	0.46239	225.8260	29.47	-0.259	47.710	1.069
	2	446.4	51.95	78.40	0.46235	232.2114	36.65	-0.219	41.750	1.244
	3	446.4	57.39	78.64	0.46231	238.9934	44.22	-0.177	34.419	1.667
	4	446.4	54.30	79.53	0.46226	245.9210	51.87	-0.134	27.653	1.964
	5	446.4	53.54	80.42	0.46222	252.6099	59.19	-0.092	21.228	2.522
	6	446.4	48.24	81.01	0.46218	258.9227	66.02	-0.052	14.989	3.218
	7	446.4	54.58	81.73	0.46214	265.3003	72.84	-0.012	8.892	6.139
	8	446.4	53.80	81.93	0.46191	272.0228	74.90	0.030	7.025	7.658
1	9	446.4	50.13	81.79	0.46138	278.4691	74.86	0.070	6.931	7.232
	10	446.4	49.10	81.20	0.46067	284.6242	74.79	0.109	6.405	7.666
	1	446.4	64.14	78.44	0.46495	226.6264	30.37	-0.256	48.075	1.334
1	2	446.4	70.18	79.22	0.46492	234.9576	39.73	-0.203	39.492	1.777
	3	446.4	71.09	80.11	0.46487	243.7198	49.45	-0.149	30.661	2.318
	4	446.4	67.97	81.30	0.46483	252.3455	58.90	-0.095	22.401	3.034
	5	446.4	66.61	82.20	0.46479	260.6938	67.92	-0.043	14.276	4.666

6	446.4	62.50	82.18	0.46476	268.7024	75.15	0.007	7.031	8.888
7	446.4	70.69	82.48	0.46444	276.9636	75.12	0.059	7.354	9.612
8	446.4	68.68	82.59	0.46369	285.6081	75.06	0.114	7.537	9.112
9	446.4	64.57	82.28	0.46272	293.8733	74.97	0.166	7.312	8.831
10	446.4	64.00	81.62	0.46156	301.8484	74.87	0.216	6.746	9.487
1	446.4	85.18	79.82	0.46510	227.7215	31.60	-0.249	48.219	1.767
2	446.4	93.11	80.60	0.46507	238.7805	43.98	-0.180	36.617	2.543
3	446.4	90.11	81.93	0.46502	250.1451	56.50	-0.109	25.426	3.544
4	446.4	88.24	82.84	0.46498	261.2079	68.47	-0.039	14.373	6.140
5	446.4	88.84	83.21	0.46496	272.1923	75.17	0.029	8.041	11.049
6	446.4	83.54	82.77	0.46454	282.8848	75.13	0.096	7.635	10.941
7	446.4	92.64	83.02	0.46354	293.8130	75.04	0.165	7.972	11.622
8	446.4	90.38	83.11	0.46227	305.1658	74.93	0.236	8.177	11.054
9	446.4	85.19	82.72	0.46079	316.0560	74.81	0.305	7.912	10.767
10	446.4	85.46	81.98	0.45915	326.6412	74.66	0.372	7.324	11.670
1	446.4	100.25	80.85	0.46284	228.7642	32.78	-0.241	48.066	2.086
2	446.4	107.82	81.70	0.46281	241.6701	47.19	-0.160	34.516	3.124
3	446.4	104.00	82.89	0.46276	254.8089	61.57	-0.078	21.319	4.879
4	446.4	104.02	83.37	0.46273	267.7125	74.97	0.002	8.400	12.384
5	446.4	104.37	83.57	0.46230	280.6389	74.94	0.083	8.635	12.087
6	446.4	98.04	83.00	0.46129	293.1942	74.85	0.162	8.150	12.029
7	446.4	108.16	83.27	0.45998	305.9845	74.73	0.243	8.533	12.676
8	446.4	105.49	83.41	0.45840	319.2370	74.60	0.326	8.815	11.968
9	446.4	99.77	82.95	0.45663	331.9691	74.44	0.406	8.512	11.721
10	446.4	100.62	82.18	0.45473	344.3986	74.27	0.484	7.912	12.718
1	457.6	123.28	81.79	0.45666	229.8864	34.05	-0.231	47.743	2.582
2	457.6	130.76	82.60	0.45662	245.2589	51.15	-0.135	31.452	4.157
3	457.6	127.25	83.38	0.45657	260.8717	68.11	-0.037	15.272	8.332
4	457.6	128.28	83.52	0.45613	276.3345	74.40	0.059	9.123	14.062
5	457.6	128.02	83.65	0.45506	291.8437	74.30	0.157	9.344	13.700
6	457.6	120.61	82.90	0.45361	306.8886	74.17	0.251	8.722	13.828
7	457.6	132.20	83.20	0.45185	322.1869	74.02	0.347	9.186	14.392
8	457.6	129.39	83.38	0.44984	338.0164	73.84	0.446	9.541	13.562
9	457.6	122.52	82.91	0.44769	353.2598	73.65	0.542	9.257	13.235
10	457.6	124.03	82.17	0.44546	368.1789		0.636	8.719	14.225
1	558.1	81.94	78.40	0.46562	226.8069	30.57	-0.255	47.831	1.713
2	558.1	85.04	79.77	0.46556	235.0927	39.88	-0.203	39.898	2.131
3	558.1	86.59	80.75	0.46549	243.6090	49.33	-0.150	31.426	2.755
4	558.1	84.01	81.92	0.46543	252.0741	58.60	-0.097	23.315	3.603
5	558.1	82.73	82.80	0.46536	260.3475	67.55	-0.045	15.257	5.422
6	558.1	77.79	82.71	0.46532	268.3124	75.20	0.005	7.509	10.360
7	558.1	86.95	83.04	0.46485	276.4870	75.16	0.056	7.879	11.036
8	558.1	85.00 80.17	83.13 82.75	0.46374	285.0197	75.06	0.110	8.067	10.537
9	558.1	80.17	82.75	0.46231	293.2156	74.94	0.162	7.816	10.257
10	558.1	80.02	82.08	0.46061	301.1641	74.79	0.212	7.291	10.975
1	558.1	124.38	80.93	0.46029	228.8320	32.86	-0.239	48.076	2.587
2	558.1	128.78	82.37	0.46022	241.3941	46.88	-0.161	35.490	3.629 5.570
3	558.1	126.45	83.46	0.46016	254.0588	60.76	-0.082	22.703	5.570
4	558.1	126.27	83.95 84.10	0.46011	266.5986	74.22	-0.003	9.725	12.983
5	558.1	126.84	84.10	0.45948	279.1582	74.69	0.075	9.407	13.483

6	558.1	119.61	83.33	0.45802	291.3875	74.56	0.152	8.771	13.637
7	558.1	130.98	83.61	0.45611	303.8221	74.39	0.231	9.221	14.205
8	558.1	128.52	83.69	0.45380	316.6985	74.19	0.312	9.504	13.523
9	558.1	121.50	83.17	0.45120	329.1043	73.96	0.390	9.210	13.192
10	558.1	123.20	82.36	0.44838	341.2465	73.71	0.467	8.647	14.248
1	558.1	167.06	83.12	0.45699	230.9991	35.30	-0.224	47.829	3.493
2	558.1	173.54	84.16	0.45693	247.8998	54.05	-0.118	30.115	5.763
3	558.1	170.78	84.60	0.45688	264.9853	72.51	-0.012	12.089	14.127
4	558.1	171.73	84.61	0.45609	281.9808	74.39	0.095	10.217	16.809
5	558.1	171.69	84.64	0.45423	299.0213	74.23	0.202	10.408	16.495
6	558.1	162.09	83.57	0.45185	315.5832	74.02	0.306	9.556	16.961
7	558.1	176.56	83.86	0.44905	332.3870	73.77	0.412	10.096	17.489
8	558.1	173.79	83.95	0.44593	349.7715	73.49	0.521	10.458	16.618
9	558.1	164.32	83.32	0.44267	366.5486	73.20	0.626	10.122	16.234
10	558.1	168.11	82.36	0.43937	383.0439	72.90	0.730	9.460	17.771
1	558.1	141.34	81.74	0.45666	229.7084	33.85	-0.232	47.892	2.951
2	558.1	145.32	83.17	0.45660	243.9328	49.69	-0.143	33.479	4.341
3	558.1	143.63	83.88	0.45653	258.2707	65.32	-0.054	18.564	7.737
4	558.1	144.23	84.08	0.45650	272.5544	74.43	0.036	9.650	14.946
5	558.1	144.27	84.19	0.45569	286.8699	74.36	0.125	9.835	14.670
6	558.1	135.93	83.34	0.45383	300.7733	74.19	0.213	9.149	14.856
7	558.1	148.67	83.61	0.45153	314.8950	73.99	0.302	9.622	15.451
8	558.1	146.02	83.69	0.44885	329.5174	73.75	0.394	9.941	14.688
9	558.1	138.02	83.12	0.44593	343.6115	73.49	0.483	9.627	14.336
10	558.1	140.70	82.21	0.44283	357.4418	73.21	0.570	8.998	15.638
1	558.1	99.37	79.58	0.46402	227.7858	31.68	-0.248	47.899	2.075
2	558.1	102.91	81.08	0.46395	237.8231	42.92	-0.185	38.165	2.697
3	558.1	102.11	82.32	0.46389	247.9963	54.15	-0.121	28.173	3.624
4	558.1	100.43	83.24	0.46382	258.0460	65.07	-0.059	18.168	5.528
5	558.1	100.64	83.68	0.46378	268.0230	75.07	0.004	8.619	11.677
6	558.1	94.84	83.21	0.46326	277.7227	75.02	0.065	8.190	11.580
7	558.1	104.83	83.48	0.46201	287.6305	74.91	0.127	8.571	12.231
8	558.1	102.47	83.58	0.46036	297.9168 307.8032	74.77	0.192	8.816	11.622
9	558.1	96.77 07.42	83.14	0.45840		74.60	0.255	8.548	11.322
10	558.1	97.43	82.39	0.45616	317.4397		0.316	7.995	12.187
	920.8	66.59	65.70 72 77	0.43526	227.7585	31.66	-0.232	34.045	1.956
2	920.8	45.01	73.77	0.43510	231.1146	35.43	-0.211	38.342	1.174
3	920.8 920.8	46.74 49.58	76.71 76.74	0.43494 0.43479	233.8737 236.7704	38.53 41.76	-0.194 -0.175	38.188	1.224
	920.8 920.8	49.58 59.40	76.74 74.57	0.43463	230.7704 240.0478	41.76	-0.175 -0.155	34.987 29.173	1.417 2.036
5	920.8 920.8	59.40 52.02	74.57 75.31	0.43448	240.0478	45.40 49.11	-0.135 -0.134	29.173	2.036
7	920.8 920.8	52.02 54.88	76.26	0.43448	245.5987	49.11 52.64	-0.134 -0.114	23.614	2.324
8	920.8 920.8	54.88 54.51	77.38	0.43433	240.0133	52.04 56.25	-0.094	21.132	2.579
9	920.8 920.8	54.51 52.01	77.30 78.35	0.43417	249.9030	56.25 59.74	-0.094 -0.074	18.617	2.579
10	920.8 920.8	46.18	78.35 79.34	0.43402	256.0591	62.94	-0.074 -0.055	16.400	2.794
10	837.1	66.65	67.94	0.43533	227.8587	31.77	-0.055	36.172	1.843
2	837.1	43.66	76.06	0.43535	231.5078	35.87	-0.231	40.185	1.043
3	837.1	43.00 45.10	78.30	0.43506	231.5078	39.16	-0.208	40.185 39.142	1.152
4	837.1	43.10 53.15	76.67	0.43493	234.4438	42.79	-0.190	33.886	1.568
5	837.1	58.92	74.37	0.43493	237.0939	46.90	-0.170	27.471	2.145
1 3	037.1	J0.9Z	14.31	0.43400	241.4013	40.90	-0.147	21.411	2.140

6 837.1 55.44 75.93 0.43467 246.1486 51.03 0.123 2.651 8 837.1 55.01 77.52 0.43441 225.4349 59.00 0.078 18.520 2.970 9 837.1 50.04 77.52 0.43441 225.4349 59.00 0.078 18.520 2.970 9 837.1 50.04 769.0 66.69 71.25 0.42849 228.1021 32.05 0.226 43.16 0.968 2 759.0 41.84 79.67 0.42838 223.0619 35.05 0.201 41.479 1.037 4 759.0 55.23 78.43 0.42826 2386 46.0 0.133 27.175 2.197 6 759.0 55.17 77.38 0.42774 225.0705 61.87 0.083 3.04 3.012 9.22.82 2.368 7 789.0 48.78 79.76 0.42751 225.4868 66.87 0.012 9.32.52										
8 837.1 50.10 77.52 0.43441 252.4349 69.00 -0.078 18.520 2.970 9 837.1 50.48 79.03 0.43428 255.9248 62.79 -0.056 16.239 3.109 10 837.1 47.33 79.60 0.43415 225.1021 32.05 -9.262 39.205 1.701 2 755.0 41.34 79.67 0.42838 223.619 36.50 -0.211 43.169 0.669 5 755.0 59.70 75.77 0.42838 223.619 36.50 -0.211 43.169 0.681 5 755.0 59.70 75.77 0.42874 247.0903 53.17 7.108 2.863 2.368 7 759.0 59.71 7.73 0.42771 225.869 63.7 -0.035 1.344 357 8 759.0 48.78 79.76 0.42751 226.482 69.83 -012 9.433 1.123 1.031 1.123 <	6	837.1	54.36	74.57	0.43467	245.1486	51.03	-0.123	23.539	2.309
9 837.1 50.48 79.03 0.43415 255.9248 62.79 -0.066 16.299 3.109 1 755.0 66.69 71.25 0.42849 222.1021 32.05 -0.226 39.205 1.714 2 755.0 41.84 79.67 0.42837 232.0619 36.50 -0.122 41.497 1.037 4 759.0 55.73 76.33 0.42816 238.7434 43.95 -0.159 34.475 1.602 5 759.0 55.17 77.38 0.42794 242.9399 46.60 -0.132 2.717 8 755.0 55.17 77.38 0.42772 225.0705 61.87 -0.083 19.852 2.779 8 755.0 54.24 78.67 0.42771 226.4862 69.33 -0.129 9.29 49.13 1.171 3 502.3 48.77 78.11 0.42265 226.9591 30.01 -0.229 44.331 1.121 2	7	837.1	55.44	75.93	0.43454	248.7808	55.02	-0.101	20.913	2.651
10 837.1 47.33 79.60 0.43415 259.1006 66.28 -0.026 33.221 3.553 1 759.0 41.84 79.67 0.42838 228.1021 32.05 -0.226 39.205 1.701 3 759.0 41.84 79.67 0.42838 232.0619 36.50 -0.201 43.169 0.669 4 759.0 55.23 78.43 0.42216 238.743 43.55 -0.159 34.475 1.602 5 759.0 55.17 77.38 0.42783 251.075 57.3 -0.088 1.698 3.191 9 759.0 54.13 76.03 0.42761 258.689 65.97 -0.058 1.698 3.191 9 759.0 48.78 79.74 0.42260 224.9591 3.01 0.220 4.311 1.123 2 502.3 54.10 77.55 0.42265 240.432 48.33 -0.18 23.692 2.355 2.3552 2.3552	8	837.1	55.01	77.52	0.43441	252.4349	59.00	-0.078	18.520	2.970
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	837.1	50.48	79.03	0.43428	255.9248	62.79	-0.056	16.239	3.109
2 759.0 41.84 79.67 0.42838 222.0619 36.50 -0.201 43.169 0.969 3 7759.0 450.30 81.46 0.42827 236.1584 39.96 -0.162 41.497 10.37 5 7759.0 55.17 76.33 0.42164 238.7434 43.95 -0.153 27.175 2.167 6 759.0 54.17 77.38 0.42763 251.0785 57.53 -0.083 19.852 2.779 8 759.0 49.87 79.91 0.42761 258.0689 65.97 -0.058 16.998 3.191 9 759.0 49.87 79.91 0.42761 258.4689 65.97 -0.035 13.944 3.576 10 759.0 48.78 79.71 0.42866 228.951 3.01 0.220 44.331 1.121 3 502.3 54.10 77.55 0.42865 24.04136 45.81 -0.492 3.592 5 502.3	10	837.1	47.33	79.60	0.43415	259.1606	66.28	-0.036	13.321	3.553
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	759.0	66.69	71.25	0.42849	228.1021	32.05	-0.226	39.205	1.701
4 759.0 55.23 78.43 0.42816 228.7434 43.95 -0.159 34.475 1.602 5 7759.0 56.17 76.03 0.42794 247.090 53.17 -0.133 27.175 2.197 8 759.0 55.17 77.38 0.42794 247.090 51.17 -0.035 13.844 3.576 9 759.0 49.87 79.91 0.42761 255.0706 61.87 -0.035 13.944 3.576 10 759.0 49.78 77.34 0.42261 228.693 3.01 -0.220 4.431 1.123 2 502.3 45.87 78.11 0.42860 224.632 36.93 -0.188 39.183 1.171 3 502.3 54.10 77.55 0.42844 225.7835 53.00 -0.109 2.592 2.205 5 502.3 54.10 77.55 0.42839 286.114 65.69 -0.037 12.972 3.978 6	2	759.0	41.84	79.67	0.42838	232.0619	36.50	-0.201	43.169	0.969
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	759.0	43.03	81.46	0.42827	235.1584	39.96	-0.182	41.497	1.037
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	759.0	55.23	78.43	0.42816	238.7434	43.95	-0.159	34.475	1.602
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	759.0	59.70	75.77	0.42805	242.9369	48.60	-0.133	27.175	2.197
8 759.0 54.24 78.87 0.42772 255.0705 61.87 -0.058 16.998 3.191 9 759.0 48.87 79.91 0.42761 256.8689 65.97 0.012 9.929 4.913 1 502.3 49.79 77.34 0.42866 228.9591 33.01 -0.220 44.331 1.123 2 502.3 46.87 78.11 0.42860 234.2332 38.93 -0.188 39.168 39.168 39.168 39.168 39.168 39.168 39.168 39.168 39.168 39.168 45.81 -0.149 26.60 2.316 4 502.3 56.10 77.55 0.42850 246.9329 53.00 -0.107 2.727.2378 65.023 35.69 79.75 0.42835 264.4167 71.89 -0.001 7.860 6.831 8 502.3 51.76 80.26 0.42805 227.03830 71.87 0.008 8.392 6.492 54.59 0.0073 8.736	6	759.0	54.13	76.03	0.42794	247.0903	53.17	-0.108	22.863	2.368
9 759.0 49.87 79.91 0.42761 258.8689 65.97 -0.035 13.944 3.576 10 759.0 48.78 79.76 0.42751 262.4682 69.83 -0.102 9.929 4.913 1 502.3 45.87 78.11 0.42860 234.2332 38.93 -0.188 39.183 1.171 3 502.3 56.23 74.41 0.42865 246.9329 53.00 -0.109 23.522 22.05 5 502.3 51.60 78.66 0.42839 258.6114 65.69 -0.037 18.164 2.972 6 502.3 54.52 80.26 0.42805 276.0330 71.87 0.036 8.399 6.492 9 502.3 51.76 80.54 0.42805 276.2431 71.80 0.017 7.866 5.925 10 502.3 51.76 80.54 0.42735 276.2431 71.80 0.073 8.736 5.925 10	7	759.0	55.17	77.38	0.42783	251.0785	57.53	-0.083	19.852	2.779
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	759.0	54.24	78.87	0.42772	255.0705	61.87	-0.058	16.998	3.191
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	759.0	49.87	79.91	0.42761	258.8689	65.97	-0.035	13.944	3.576
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	759.0	48.78	79.76	0.42751	262.4682	69.83	-0.012	9.929	4.913
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	502.3	49.79	77.34	0.42866	228.9591	33.01	-0.220	44.331	1.123
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	502.3	45.87	78.11	0.42860	234.2332	38.93	-0.188	39.183	1.171
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	502.3	66.23	74.41	0.42855	240.4136	45.81	-0.149	28.600	2.316
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	502.3	52.01	76.59	0.42850	246.9329	53.00	-0.109	23.592	2.205
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	502.3		77.55	0.42844	252.7835	59.39	-0.073	18.164	2.978
8 502.3 54.52 80.26 0.42805 270.3830 71.87 0.036 8.399 6.492 9 502.3 51.76 80.54 0.42735 276.2431 71.80 0.073 8.736 5.925 10 502.3 48.35 80.58 0.42645 281.7627 71.72 0.108 8.862 5.456 2 591.6 54.05 74.43 0.42860 227.9244 31.85 -0.227 41.355 1.258 3 591.6 54.05 74.43 0.42839 243.3482 49.05 -0.131 27.489 1.935 5 591.6 54.51 77.60 0.42832 248.3897 54.59 -0.100 23.007 2.369 6 591.6 54.51 77.60 0.42812 263.4681 70.90 -0.006 8.697 2.772 7 591.6 55.35 79.94 0.42812 263.4681 70.90 -0.006 9.041 6.122 9	6	502.3	51.60	78.66	0.42839	258.6114	65.69	-0.037	12.972	3.978
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	502.3	53.69	79.75	0.42835	264.4167	71.89	-0.001	7.860	6.831
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	502.3	54.52	80.26	0.42805	270.3830	71.87	0.036	8.399	6.492
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	502.3	51.76	80.54	0.42735	276.2431	71.80	0.073	8.736	5.925
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	502.3	48.35	80.58	0.42645	281.7627	71.72	0.108	8.862	5.456
3 591.6 58.08 74.57 0.42846 238.1396 43.28 -0.163 31.285 1.857 4 591.6 53.19 76.54 0.42839 243.3482 49.05 -0.131 27.489 1.935 5 591.6 54.51 77.60 0.42832 248.3897 54.59 -0.100 23.007 2.369 6 591.6 54.29 79.62 0.42812 263.3676 60.02 -0.069 18.697 2.772 9 591.6 55.35 79.94 0.42812 263.4681 70.90 -0.006 9.041 6.122 9 591.6 52.66 80.13 0.42779 268.5243 71.84 0.025 8.284 6.357 10 591.6 48.81 80.23 0.42703 273.2742 71.77 0.055 8.454 5.773 1 421.3 59.94 76.30 0.43561 235.3740 40.20 -0.185 36.101 1.660 3 421.3 50.77 78.50 0.43550 257.3898 64.38 -0.048	1	591.6	52.03	73.20	0.42860	227.9244	31.85	-0.227	41.355	1.258
4 591.6 53.19 76.54 0.42839 243.3482 49.05 -0.131 27.489 1.935 5 591.6 54.51 77.60 0.42832 248.3897 54.59 -0.100 23.007 2.369 6 591.6 51.83 78.72 0.42825 253.3676 60.02 -0.069 18.697 2.772 7 591.6 54.29 79.62 0.42812 263.4681 70.90 -0.006 9.041 61.22 9 591.6 52.66 80.13 0.42779 268.5243 71.84 0.025 8.284 6.357 10 591.6 48.81 80.23 0.42703 273.2742 71.77 0.055 8.454 5.773 1 421.3 59.94 76.30 0.43561 235.3740 40.20 -0.185 36.101 1.660 3 421.3 50.27 76.25 0.43557 243.2746 48.97 -0.136 27.283 2.209 4 421.3 51.93 79.09 0.43553 250.6488 57.06 -0.090	2	591.6	54.05	74.43	0.42853	232.8905	37.43	-0.196	37.002	1.461
5 591.6 54.51 77.60 0.42832 248.3897 54.59 -0.100 23.007 2.369 6 591.6 51.83 78.72 0.42825 253.3676 60.02 -0.069 18.697 2.772 7 591.6 54.29 79.62 0.42818 258.3354 65.39 -0.038 14.224 3.817 8 591.6 55.35 79.94 0.42812 263.4681 70.90 -0.006 9.041 6.122 9 591.6 52.66 80.13 0.42779 268.5243 71.84 0.025 8.284 6.357 10 591.6 48.81 80.23 0.42703 273.2742 71.77 0.055 8.454 5.773 1 421.3 59.94 76.30 0.43561 235.3740 40.20 -0.185 36.101 1.660 3 421.3 51.93 79.09 0.43553 250.6488 57.06 -0.090 22.037 2.356 5 421.3 50.77 80.50 0.43550 257.3989 64.38 -0.048	3	591.6	58.08	74.57	0.42846	238.1396	43.28	-0.163	31.285	1.857
6591.651.8378.720.42825253.367660.02-0.06918.6972.7727591.654.2979.620.42818258.335465.39-0.03814.2243.8178591.655.3579.940.42812263.468170.90-0.0069.0416.1229591.652.6680.130.42779268.524371.840.0258.2846.35710591.648.8180.230.42703273.274271.770.0558.4545.7731421.344.7778.170.43563228.491932.48-0.22745.6920.9802421.359.9476.300.43561235.374040.20-0.18536.1011.6603421.360.2776.250.43557243.274648.97-0.13627.2832.2094421.351.9379.090.43553250.648857.06-0.09022.0372.3565421.350.7780.500.43550257.398964.38-0.04816.1153.1516421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43466278.675872.470.0848.3126.6759421.355.4880.960.43299292.423972.320.1708.6345.67110421.348.9680.960.43299 <td>4</td> <td>591.6</td> <td>53.19</td> <td>76.54</td> <td>0.42839</td> <td>243.3482</td> <td>49.05</td> <td>-0.131</td> <td>27.489</td> <td>1.935</td>	4	591.6	53.19	76.54	0.42839	243.3482	49.05	-0.131	27.489	1.935
7591.654.2979.620.42818258.335465.39-0.03814.2243.8178591.655.3579.940.42812263.468170.90-0.0069.0416.1229591.652.6680.130.42779268.524371.840.0258.2846.35710591.648.8180.230.42703273.274271.770.0558.4545.7731421.344.7778.170.43563228.491932.48-0.22745.6920.9802421.359.9476.300.43561235.374040.20-0.18536.1011.6603421.360.2776.250.43557243.274648.97-0.13627.2832.2094421.351.9379.090.43553250.648857.06-0.09022.0372.3565421.350.7780.500.43550257.398964.38-0.04816.1153.1516421.353.4780.280.43547264.250171.73-0.0058.5556.2507421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43366278.675872.470.0848.3126.6759421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299	5	591.6	54.51	77.60		248.3897	54.59	-0.100	23.007	2.369
8 591.6 55.35 79.94 0.42812 263.4681 70.90 -0.006 9.041 6.122 9 591.6 52.66 80.13 0.42779 268.5243 71.84 0.025 8.284 6.357 10 591.6 48.81 80.23 0.42703 273.2742 71.77 0.055 8.454 5.773 1 421.3 59.94 76.30 0.43561 235.3740 40.20 -0.185 36.101 1.660 3 421.3 60.27 76.25 0.43557 243.2746 48.97 -0.136 27.283 2.209 4 421.3 51.93 79.09 0.43550 257.3989 64.38 -0.048 16.115 3.151 6 421.3 53.47 80.28 0.43547 264.2501 71.73 -0.005 8.555 6.250 7 421.3 55.48 80.78 0.43562 271.3967 72.52 0.039 8.022 6.889 8	6	591.6	51.83	78.72	0.42825	253.3676	60.02	-0.069	18.697	2.772
9591.652.6680.130.42779268.524371.840.0258.2846.35710591.648.8180.230.42703273.274271.770.0558.4545.7731421.344.7778.170.43563228.491932.48-0.22745.6920.9802421.359.9476.300.43561235.374040.20-0.18536.1011.6603421.360.2776.250.43557243.274648.97-0.13627.2832.2094421.351.9379.090.43553250.648857.06-0.09022.0372.3565421.350.7780.500.43550257.398964.38-0.04816.1153.1516421.353.4780.280.43547264.250171.73-0.0058.5556.2507421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43466278.675872.470.0848.3126.6759421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563<			54.29				65.39	-0.038		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	591.6	55.35	79.94	0.42812	263.4681	70.90			6.122
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9		52.66		0.42779			0.025		
2421.359.9476.300.43561235.374040.20-0.18536.1011.6603421.360.2776.250.43557243.274648.97-0.13627.2832.2094421.351.9379.090.43553250.648857.06-0.09022.0372.3565421.350.7780.500.43550257.398964.38-0.04816.1153.1516421.353.4780.280.43547264.250171.73-0.0058.5556.2507421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43466278.675872.470.0848.3126.6759421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.550.9878.840.43560259.400666.54-0.03612.2984.146	10	591.6	48.81	80.23	0.42703	273.2742	71.77	0.055	8.454	5.773
3421.360.2776.250.43557243.274648.97-0.13627.2832.2094421.351.9379.090.43553250.648857.06-0.09022.0372.3565421.350.7780.500.43550257.398964.38-0.04816.1153.1516421.353.4780.280.43547264.250171.73-0.0058.5556.2507421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43466278.675872.470.0848.3126.6759421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146	1	421.3	44.77	78.17	0.43563	228.4919	32.48	-0.227	45.692	0.980
4421.351.9379.090.43553250.648857.06-0.09022.0372.3565421.350.7780.500.43550257.398964.38-0.04816.1153.1516421.353.4780.280.43547264.250171.73-0.0058.5556.2507421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43466278.675872.470.0848.3126.6759421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.550.9878.840.43560259.400666.54-0.03612.2984.146	2	421.3	59.94	76.30	0.43561	235.3740	40.20	-0.185	36.101	1.660
5421.350.7780.500.43550257.398964.38-0.04816.1153.1516421.353.4780.280.43547264.250171.73-0.0058.5556.2507421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43466278.675872.470.0848.3126.6759421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146	3	421.3	60.27	76.25	0.43557	243.2746	48.97	-0.136	27.283	2.209
6421.353.4780.280.43547264.250171.73-0.0058.5556.2507421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43466278.675872.470.0848.3126.6759421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146	4	421.3	51.93	79.09		250.6488	57.06	-0.090	22.037	2.356
7421.355.2780.550.43522271.396772.520.0398.0226.8898421.355.4880.780.43466278.675872.470.0848.3126.6759421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146	5	421.3		80.50	0.43550	257.3989	64.38	-0.048	16.115	3.151
8 421.3 55.48 80.78 0.43466 278.6758 72.47 0.084 8.312 6.675 9 421.3 52.36 80.98 0.43390 285.7642 72.40 0.129 8.574 6.107 10 421.3 48.96 80.96 0.43299 292.4239 72.32 0.170 8.634 5.671 1 312.5 54.38 71.83 0.43565 230.3592 34.58 -0.216 37.243 1.460 2 312.5 56.70 74.04 0.43563 240.2022 45.57 -0.155 28.467 1.992 3 312.5 54.49 76.32 0.43562 250.0547 56.41 -0.094 19.906 2.737 4 312.5 50.98 78.84 0.43560 259.4006 66.54 -0.036 12.298 4.146										
9421.352.3680.980.43390285.764272.400.1298.5746.10710421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146					0.43522					
10421.348.9680.960.43299292.423972.320.1708.6345.6711312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146										
1312.554.3871.830.43565230.359234.58-0.21637.2431.4602312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146			52.36		0.43390	285.7642				
2312.556.7074.040.43563240.202245.57-0.15528.4671.9923312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146	10									
3312.554.4976.320.43562250.054756.41-0.09419.9062.7374312.550.9878.840.43560259.400666.54-0.03612.2984.146	1		54.38		0.43565	230.3592	34.58	-0.216	37.243	
4 312.5 50.98 78.84 0.43560 259.4006 66.54 -0.036 12.298 4.146										
5 312.5 52.87 79.45 0.43559 268.6038 72.56 0.022 6.891 7.673										
	5	312.5	52.87	79.45	0.43559	268.6038	72.56	0.022	6.891	7.673

	6	312.5	53.72	79.44	0.43539	278.0492	72.54	0.080	6.902	7.782
	7	312.5	54.62	80.05	0.43491	287.6495	72.50	0.140	7.555	7.230
	8	312.5	56.91	80.26	0.43430	297.5325	72.44	0.202	7.820	7.277
	9	312.5	50.33	81.15	0.43357	307.0354	72.37	0.261	8.772	5.738
	10	312.5	49.68	80.78	0.43276	315.8975	72.30	0.316	8.485	5.855
	1	195.3	57.23	72.85	0.43567	233.6775	38.31	-0.195	34.543	1.657
	2	195.3	53.49	76.51	0.43566	249.3749	55.67	-0.098	20.844	2.566
	3	195.3	50.75	78.76	0.43565	264.1541	71.63	-0.006	7.129	7.119
	4	195.3	54.03	79.51	0.43555	279.0107	72.55	0.086	6.951	7.773
	5	195.3	52.90	79.83	0.43529	294.1724	72.53	0.180	7.304	7.243
	6	195.3	54.17	79.57	0.43500	309.3534	72.50	0.275	7.063	7.670
	7	195.3	54.72	80.11	0.43470	324.7926	72.48	0.370	7.637	7.166
	8	195.3	54.95	80.32	0.43434	340.3427	72.44	0.467	7.877	6.976
	9	195.3	57.78	80.17	0.43393	356.3260	72.41	0.566	7.768	7.439
	10	195.3	44.00	82.49	0.43349	370.7570	72.37	0.656	10.123	4.347
	1	150.7	58.95	73.63	0.43568	236.4435	41.39	-0.178	32.237	1.829
	2	150.7	48.06	78.20	0.43567	256.1113	62.99	-0.056	15.206	3.161
	3	150.7	54.26	78.83	0.43562	274.9167	72.56	0.061	6.273	8.650
	4	150.7	53.99	79.60	0.43548	294.8112	72.55	0.184	7.055	7.653
	5	150.7	52.89	79.92	0.43530	314.4546	72.53	0.306	7.387	7.161
	6	150.7	54.38	79.63	0.43506	334.1698	72.51	0.428	7.125	7.633
	7	150.7	54.83	80.27	0.43479	354.2398	72.48	0.553	7.790	7.038
	8	150.7	54.78	80.63	0.43448	374.3840	72.46	0.678	8.171	6.705
	9	150.7	53.21	80.56	0.43415	394.2312	72.43	0.801	8.132	6.543
	10	150.7	48.74	80.69	0.43383	412.9686	72.40	0.917	8.290	5.880
	1	1841.6	93.68	58.46	0.35145	226.0816	29.80	-0.189	28.663	3.268
	2	1841.6	84.35	62.61	0.35092	228.7585	32.82	-0.173	29.794	2.831
	3	1841.6	89.95	63.29	0.35040	231.3794	35.76	-0.156	27.524	3.268
	4	1841.6	86.95	64.92	0.34988	234.0394	38.74	-0.140	26.182	3.321
	5	1841.6	89.74	65.27	0.34935	236.6961	41.71	-0.123	23.568	3.808
	6	1841.6	86.94	66.30	0.34883	239.3528	44.66	-0.107	21.641	4.017
	7	1841.6	89.06	67.97	0.34831	241.9992	47.59	-0.091	20.384	4.369
	8	1841.6	89.85	69.12	0.34779	244.6894	50.56	-0.074	18.569	4.838
	9	1841.6	86.16	69.82	0.34728	247.3359	53.46	-0.058	16.360	5.266
	10	1841.6	82.21	70.60	0.34676	249.8676	56.23	-0.042	14.363	5.724
	1	1573.8	88.90	61.74	0.35181	226.8013	30.61	-0.185	31.126	2.856
	2	1573.8	88.03	63.83	0.35142	229.9145	34.12	-0.166	29.716	2.962
	3	1573.8	90.80	64.29	0.35102	233.0612	37.65	-0.147	26.642	3.408
	4	1573.8	87.21	66.10	0.35062	236.1935	41.14	-0.127	24.959	3.494
	5	1573.8	89.37	66.79	0.35023	239.3008	44.60	-0.108	22.192	4.027
	6	1573.8	86.68	68.00	0.34983	242.3986	48.03	-0.089	19.967	4.341
	7	1573.8	88.42	69.80	0.34944	245.4798	51.42	-0.070	18.373	4.813
	8	1573.8	89.26	70.78	0.34904	248.6063	54.85	-0.051	15.927	5.604
	9	1573.8	85.94	71.06	0.34865	251.6892	58.22	-0.032	12.846	6.690
	10	1573.8	83.10	71.36	0.34826	254.6637	61.45	-0.014	9.908	8.387
	1	1300.3	84.03	66.02	0.35214	228.3891	32.40	-0.176	33.624	2.499
	2	1300.3	91.91	66.10	0.35186	232.1361	36.61	-0.153	29.494	3.116
	3	1300.3	91.46	66.49	0.35157	236.0413	40.97	-0.129	25.511	3.585
	4	1300.3	87.16	68.57	0.35129	239.8454	45.20	-0.106	23.369	3.730
1	5	1300.3	88.61	69.57	0.35101	243.5887	49.34	-0.083	20.227	4.381

6 1300.3 85.95 70.77 0.35073 247.3061 53.43 -0.060 17.3	
	3 4.956
7 1300.3 87.59 72.26 0.35044 251.0019 57.47 -0.037 14.7	6 5.924
8 1300.3 89.59 72.56 0.35016 254.7753 61.57 -0.014 10.9	8 8.153
9 1300.3 86.22 72.39 0.35002 258.5194 64.11 0.008 8.20	1 10.411
10 1300.3 83.53 72.41 0.34856 262.1346 63.95 0.031 8.4	9 9.875
1 591.6 89.62 71.44 0.42171 231.2304 35.57 -0.202 35.8	6 2.498
2 591.6 88.64 74.63 0.42164 239.5748 44.88 -0.151 29.74	8 2.980
3 591.6 87.24 76.65 0.42157 247.8079 53.96 -0.100 22.6	4 3.844
4 591.6 86.11 78.67 0.42150 255.9224 62.79 -0.049 15.8	2 5.422
5 591.6 86.16 79.37 0.42145 263.9867 71.25 0.000 8.1	8 10.614
6 591.6 85.83 79.40 0.42092 272.0377 71.20 0.050 8.1	3 10.475
7 591.6 88.44 79.69 0.41969 280.1956 71.09 0.101 8.5	7 10.288
8 591.6 89.56 79.48 0.41805 288.5281 70.94 0.154 8.5	5 10.481
9 591.6 85.25 79.01 0.41607 296.7112 70.75 0.205 8.2	6 10.326
10 591.6 83.88 78.41 0.41380 304.6287 70.54 0.255 7.8	5 10.652
1 390.7 91.11 73.40 0.42185 233.1059 37.67 -0.191 35.7	0 2.550
2 390.7 84.22 77.46 0.42182 245.5343 51.46 -0.114 25.9	9 3.239
3 390.7 87.25 78.35 0.42179 257.6889 64.70 -0.039 13.6	6.391
4 390.7 87.55 79.24 0.42151 270.0797 71.26 0.038 7.9	7 10.976
5 390.7 87.10 79.49 0.42085 282.4603 71.20 0.115 8.2	0 10.506
6 390.7 86.08 79.52 0.41992 294.7367 71.11 0.191 8.4	1 10.235
7 390.7 88.44 79.95 0.41876 307.1080 71.00 0.268 8.9	1 9.881
8 390.7 89.59 79.88 0.41741 319.7276 70.88 0.347 9.0	9 9.944
9 390.7 85.08 79.57 0.41592 332.1087 70.73 0.424 8.8	1 9.634
10 390.7 83.66 79.04 0.41432 344.0699 70.58 0.498 8.4	8 9.892
1 362.7 89.54 73.41 0.42185 234.5481 39.28 -0.182 34.1	1 2.623
2 362.7 85.39 76.69 0.42183 247.9021 54.06 -0.099 22.6	3 3.773
3 362.7 87.64 77.35 0.42181 261.1114 68.38 -0.018 8.9	4 9.766
4 362.7 87.41 78.15 0.42152 274.4751 71.26 0.065 6.8	
5 362.7 87.12 78.20 0.42083 287.7991 71.20 0.148 7.0	
6 362.7 86.81 78.02 0.41990 301.0779 71.11 0.230 6.9	
7 362.7 89.16 78.53 0.41878 314.5127 71.00 0.314 7.5	
8 362.7 89.06 78.88 0.41750 328.1187 70.88 0.398 7.9	
9 362.7 88.98 78.63 0.41610 341.7108 70.75 0.483 7.8	
10 362.7 79.53 80.08 0.41464 354.5752 70.61 0.563 9.4	
1 446.4 89.38 72.14 0.42183 232.9693 37.52 -0.191 34.6	
2 446.4 87.25 75.24 0.42179 243.9254 49.69 -0.124 25.5	
3 446.4 86.74 76.55 0.42174 254.7177 61.49 -0.057 15.0	
4 446.4 87.06 77.58 0.42171 265.4984 71.28 0.010 6.3	
5 446.4 87.05 77.68 0.42130 276.2984 71.24 0.077 6.4	
6 446.4 86.77 77.51 0.42033 287.0801 71.15 0.144 6.3	
7 446.4 89.11 77.99 0.41908 297.9896 71.03 0.212 6.9	
8 446.4 89.18 78.26 0.41759 309.0491 70.89 0.281 7.3	
9 446.4 88.56 77.99 0.41589 320.0743 70.73 0.349 7.2	
10 446.4 80.16 79.20 0.41405 330.5396 70.56 0.415 8.6	
1 457.6 35.17 63.90 0.42184 228.9609 33.02 -0.216 30.8	
2 457.6 23.03 68.20 0.42180 232.4826 36.97 -0.194 31.2	
3 457.6 33.12 68.38 0.42175 235.8801 40.77 -0.173 27.6	
4 457.6 29.33 69.90 0.42171 239.6590 44.97 -0.150 24.9	
5 457.6 31.92 70.72 0.42166 243.3651 49.07 -0.127 21.6	2 1.474

6	457.6	29.24	72.23	0.42162	247.0662	53.14	-0.104	19.086	1.532
7	457.6	30.26	74.10	0.42157	250.6670	57.08	-0.082	17.017	1.778
8	457.6	30.89	75.57	0.42153	254.3676	61.11	-0.059	14.461	2.136
9	457.6	26.75	77.07	0.42148	257.8558	64.88	-0.038	12.196	2.194
10	457.6	24.10	77.31	0.42144	260.9331	68.19	-0.018	9.118	2.643
1	251.1	28.96	71.30	0.42187	229.2192	33.31	-0.215	37.997	0.762
2	251.1	25.97	73.21	0.42186	235.2761	40.10	-0.177	33.111	0.784
3	251.1	36.56	72.58	0.42184	242.1714	47.75	-0.135	24.826	1.473
4	251.1	28.25	74.99	0.42183	249.3178	55.61	-0.090	19.383	1.457
5	251.1	27.68	76.33	0.42182	255.4851	62.32	-0.052	14.010	1.976
6	251.1	29.24	76.50	0.42181	261.7617	69.08	-0.014	7.421	3.940
7	251.1	30.65	76.90	0.42173	268.3652	71.28	0.027	5.623	5.450
8	251.1	30.04	77.25	0.42153	275.0573	71.26	0.069	5.984	5.020
9	251.1	29.09	77.26	0.42127	281.5780	71.24	0.109	6.021	4.831
10	251.1	24.77	77.20	0.42094	287.5174	71.21	0.146	5.994	4.133
1	178.6	28.33	71.94	0.42189	229.8430	34.01	-0.211	37.926	0.747
2	178.6	28.68	73.57	0.42187	238.6851	43.89	-0.156	29.673	0.967
3	178.6	34.16	73.94	0.42186	248.4309	54.64	-0.096	19.298	1.770
4	178.6	25.90	76.27	0.42186	257.7449	64.76	-0.038	11.511	2.250
5	178.6	29.72	76.40	0.42185	266.3708	71.29	0.015	5.110	5.817
6	178.6	30.09	76.38	0.42178	275.6471	71.28	0.072	5.100	5.900
7	178.6	30.07	77.02	0.42161	284.9768	71.27	0.130	5.751	5.228
8	178.6	30.25	77.27	0.42140	294.3307	71.25	0.188	6.024	5.021
9	178.6	29.08	77.30	0.42117	303.5312	71.23	0.245	6.071	4.790
10	178.6	24.79	77.25	0.42096	311.8851	71.21	0.297	6.039	4.105
1	122.8	27.75	73.91	0.42190	231.3275	35.68	-0.202	38.234	0.726
2	122.8	30.30	75.39	0.42189	244.4194	50.23	-0.121	25.158	1.204
3	122.8	29.22	76.42	0.42188	257.8432	64.87	-0.038	11.559	2.528
4	122.8	29.76	77.10	0.42186	271.1444	71.29	0.044	5.810	5.121
5	122.8	29.16	77.47	0.42179	284.4325	71.29	0.127	6.186	4.715
6	122.8	30.08	77.42	0.42169	297.7945	71.28	0.209	6.148	4.893
7	122.8	30.09	78.05	0.42156	311.3651	71.26	0.293	6.782	4.436
8	122.8	30.22	78.31	0.42141	324.9668	71.25	0.377	7.065	4.278
9	122.8	28.71	78.37	0.42124	338.2584	71.23	0.459	7.132	4.026
10	122.8	24.97	78.18	0.42105	350.3646	71.22	0.534	6.959	3.588
1	94.9	26.38	74.67	0.42190	232.1206	36.57	-0.197	38.103	0.692
2	94.9	30.84	75.56	0.42189	248.8260	55.07	-0.094	20.487	1.505
3	94.9	29.68	76.28	0.42189	266.4951	71.30	0.016	4.986	5.954
4	94.9	30.15	76.85	0.42186	283.9619	71.29	0.124	5.561	5.422
5	94.9	29.11	77.30	0.42179	301.2624	71.29	0.231	6.012	4.843
6	94.9	30.07	77.29	0.42169	318.5383	71.28	0.337	6.016	4.997
7	94.9	29.86	77.95	0.42157	336.0334	71.27	0.446	6.687	4.466
8	94.9	30.23	78.14	0.42144	353.5774	71.25	0.554	6.884	4.392
9	94.9	29.81	78.10 78.27	0.42129	371.1065	71.24	0.662	6.864	4.343
10	94.9	24.01	78.37	0.42113	386.8185	71.22	0.759	7.145	3.360
1	446.4	34.80 22.87	64.81	0.42184	228.4197	32.41	-0.220	32.408	1.074
23	446.4 446.4	22.87 32.01	69.02 69.06	0.42181 0.42177	231.9971 235.4010	36.43 40.24	-0.197 -0.176	32.591 28.822	0.702
4	446.4 446.4	32.01 31.25	69.06 69.90		235.4010	40.24 44.60	-0.176	28.822 25.302	1.111 1.235
				0.42173					
5	446.4	30.94	70.99	0.42169	243.1824	48.87	-0.128	22.123	1.398

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
8 446.4 30.23 75.72 0.42156 254.4173 61.16 -0.059 14.561 2.076 9 446.4 27.29 76.92 0.42151 257.9853 65.02 -0.037 11.898 2.294 10 446.4 24.21 77.11 0.42147 261.1799 68.45 -0.017 8.659 2.796 1 446.4 38.60 72.22 0.42180 232.8476 37.38 -0.192 34.843 1.113 3 446.4 47.63 71.54 0.42176 238.2087 43.36 -0.159 28.173 1.691 4 446.4 40.48 73.66 0.42171 243.6744 49.41 -0.125 24.244 1.670 5 446.4 1.84 74.91 0.42163 253.7639 60.45 -0.063 15.722 2.449 7 446.4 43.21 76.75 0.42155 263.755 71.26 0.000 5.489 78.72 9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6 446.4 38.50 76.17 0.42163 253.7639 60.45 -0.063 15.722 2.449 7 446.4 41.46 76.75 0.42158 258.7236 65.81 -0.032 10.934 3.792 8 446.4 43.21 76.75 0.42155 263.9755 71.26 0.000 5.489 7.872 9 446.4 41.04 77.07 0.42133 269.2017 71.24 0.033 5.828 7.043 10 446.4 35.04 77.64 0.42083 273.9210 71.20 0.062 6.442 5.439 1 457.6 62.20 72.46 0.42180 235.1022 39.90 -0.178 32.554 1.911 3 457.6 51.20 75.58 0.42171 240.90242 55.29 -0.092 20.290 2.524 4 457.6 53.34 76.48 0.42162 261.9203 69.25 -0.012 7.233 7.375 7
7 446.4 41.46 76.75 0.42158 258.7236 65.81 -0.032 10.934 3.792 8 446.4 43.21 76.75 0.42155 263.9755 71.26 0.000 5.489 7.872 9 446.4 41.04 77.07 0.42133 269.2017 71.24 0.033 5.828 7.043 10 446.4 35.04 77.64 0.42083 273.9210 71.20 0.062 6.442 5.439 1 457.6 62.20 72.46 0.42183 228.6310 32.65 -0.218 41.890 1.068 2 457.6 58.33 73.10 0.42175 242.3960 48.00 -0.133 25.094 2.324 4 457.6 51.20 75.58 0.42171 249.0242 55.29 -0.092 20.290 2.524 5 457.6 54.28 76.08 0.42162 261.9203 69.25 -0.012 7.233 7.375 7
8 446.4 43.21 76.75 0.42155 263.9755 71.26 0.000 5.489 7.872 9 446.4 41.04 77.07 0.42133 269.2017 71.24 0.033 5.828 7.043 10 446.4 35.04 77.64 0.42083 273.9210 71.20 0.062 6.442 5.439 1 457.6 64.74 74.54 0.42183 228.6310 32.65 -0.218 41.890 1.068 2 457.6 62.20 72.46 0.42180 235.1022 39.90 -0.178 32.554 1.911 3 457.6 58.33 73.10 0.42175 242.3960 48.00 -0.133 25.094 2.324 4 457.6 51.20 75.58 0.42171 249.0242 55.29 -0.092 20.290 2.524 5 457.6 54.28 76.08 0.42162 261.9203 69.25 -0.012 7.233 7.375 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 457.6 56.15 77.36 0.42079 275.1549 71.19 0.070 6.166 9.106 9 457.6 53.42 77.64 0.41999 281.7852 71.12 0.111 6.524 8.188 10 457.6 48.29 78.07 0.41901 287.9401 71.03 0.150 7.047 6.853 1 446.4 55.91 78.35 0.42184 229.4579 33.58 -0.213 44.774 1.249 2 446.4 85.13 74.44 0.42180 238.2064 43.36 -0.159 31.078 2.739 3 446.4 67.87 76.59 0.42176 247.6967 53.84 -0.100 22.751 2.983 4 446.4 67.56 77.86 0.42171 256.0974 62.98 -0.049 14.885 4.539 5 446.4 70.45 77.52 0.42169 264.6579 71.28 0.004 6.247 11.277 6
9 457.6 53.42 77.64 0.41999 281.7852 71.12 0.111 6.524 8.188 10 457.6 48.29 78.07 0.41901 287.9401 71.03 0.150 7.047 6.853 1 446.4 55.91 78.35 0.42184 229.4579 33.58 -0.213 44.774 1.249 2 446.4 85.13 74.44 0.42180 238.2064 43.36 -0.159 31.078 2.739 3 446.4 67.87 76.59 0.42176 247.6967 53.84 -0.100 22.751 2.983 4 446.4 67.56 77.86 0.42171 256.0974 62.98 -0.049 14.885 4.539 5 446.4 70.45 77.52 0.42169 264.6579 71.28 0.004 6.247 11.277 6 446.4 69.22 77.46 0.42135 273.3212 71.24 0.058 6.218 11.132
10457.648.2978.070.41901287.940171.030.1507.0476.8531446.455.9178.350.42184229.457933.58-0.21344.7741.2492446.485.1374.440.42180238.206443.36-0.15931.0782.7393446.467.8776.590.42176247.696753.84-0.10022.7512.9834446.467.5677.860.42171256.097462.98-0.04914.8854.5395446.470.4577.520.42169264.657971.280.0046.24711.2776446.469.2277.460.42135273.321271.240.0586.21811.132
1 446.4 55.91 78.35 0.42184 229.4579 33.58 -0.213 44.774 1.249 2 446.4 85.13 74.44 0.42180 238.2064 43.36 -0.159 31.078 2.739 3 446.4 67.87 76.59 0.42176 247.6967 53.84 -0.100 22.751 2.983 4 446.4 67.56 77.86 0.42171 256.0974 62.98 -0.049 14.885 4.539 5 446.4 70.45 77.52 0.42169 264.6579 71.28 0.004 6.247 11.277 6 446.4 69.22 77.46 0.42135 273.3212 71.24 0.058 6.218 11.132
2 446.4 85.13 74.44 0.42180 238.2064 43.36 -0.159 31.078 2.739 3 446.4 67.87 76.59 0.42176 247.6967 53.84 -0.100 22.751 2.983 4 446.4 67.56 77.86 0.42171 256.0974 62.98 -0.049 14.885 4.539 5 446.4 70.45 77.52 0.42169 264.6579 71.28 0.004 6.247 11.277 6 446.4 69.22 77.46 0.42135 273.3212 71.24 0.058 6.218 11.132
3 446.4 67.87 76.59 0.42176 247.6967 53.84 -0.100 22.751 2.983 4 446.4 67.56 77.86 0.42171 256.0974 62.98 -0.049 14.885 4.539 5 446.4 70.45 77.52 0.42169 264.6579 71.28 0.004 6.247 11.277 6 446.4 69.22 77.46 0.42135 273.3212 71.24 0.058 6.218 11.132
4 446.4 67.56 77.86 0.42171 256.0974 62.98 -0.049 14.885 4.539 5 446.4 70.45 77.52 0.42169 264.6579 71.28 0.004 6.247 11.277 6 446.4 69.22 77.46 0.42135 273.3212 71.24 0.058 6.218 11.132
5 446.4 70.45 77.52 0.42169 264.6579 71.28 0.004 6.247 11.277 6 446.4 69.22 77.46 0.42135 273.3212 71.24 0.058 6.218 11.132
6 446.4 69.22 77.46 0.42135 273.3212 71.24 0.058 6.218 11.132
7 446 4 70 58 78 02 0 42055 281 9925 71 17 0 112 6 853 10 299
8 446.4 72.35 78.14 0.41951 290.8578 71.07 0.167 7.065 10.241
9 446.4 68.38 78.50 0.41825 299.5868 70.95 0.222 7.545 9.063
10 446.4 63.81 78.93 0.41683 307.7864 70.82 0.273 8.111 7.867
1 446.4 84.22 75.64 0.42184 231.4319 35.79 -0.201 39.849 2.113
2 446.4 94.58 75.94 0.42180 242.5225 48.14 -0.132 27.797 3.402
3 446.4 88.02 77.41 0.42176 253.8490 60.54 -0.062 16.865 5.219
4 446.4 87.15 78.63 0.42173 264.7149 71.28 0.005 7.349 11.859
5 446.4 88.95 78.39 0.42132 275.6382 71.24 0.072 7.150 12.441
6 446.4 88.13 78.22 0.42037 286.6218 71.15 0.141 7.069 12.467
7 446.4 89.98 78.81 0.41912 297.6696 71.04 0.210 7.776 11.571
8 446.4 91.95 79.01 0.41762 308.9545 70.90 0.280 8.111 11.336
9 446.4 86.56 79.46 0.41593 320.0271 70.74 0.349 8.729 9.916
10 446.4 83.02 79.82 0.41408 330.5461 70.56 0.415 9.261 8.965
1 446.4 100.68 77.59 0.42183 232.5747 37.08 -0.194 40.517 2.485
2 446.4 110.60 77.67 0.42178 245.6804 51.62 -0.113 26.047 4.246
3 446.4 106.67 78.19 0.42175 259.1575 66.28 -0.030 11.909 8.957
4 446.4 104.84 79.20 0.42135 272.2769 71.25 0.052 7.951 13.186
5 446.4 106.09 78.88 0.42041 285.3606 71.16 0.133 7.725 13.734

6	446.4	105.09	78.66	0.41912	298.4601	71.04	0.215	7.622	13.788
7	446.4	107.48	79.27	0.41753	311.6460	70.89	0.297	8.379	12.828
8	446.4	109.53	79.51	0.41571	325.1069	70.72	0.381	8.793	12.456
9	446.4	102.25	79.97	0.41372	338.2430	70.53	0.462	9.445	10.826
10	446.4	101.40	79.81	0.41161	350.8746	70.33	0.541	9.488	10.687
1	446.4	119.16	79.75	0.42183	233.6785	38.31	-0.187	41.435	2.876
2	446.4	132.35	78.95	0.42179	249.2795	55.57	-0.091	23.385	5.660
3	446.4	128.15	78.91	0.42176	265.4382	71.28	0.009	7.632	16.791
4	446.4	125.67	79.85	0.42120	281.1821	71.23	0.107	8.615	14.586
5	446.4	126.67	79.45	0.41992	296.8339	71.11	0.204	8.341	15.186
6	446.4	125.44	79.19	0.41829	312.4719	70.96	0.301	8.230	15.243
7	446.4	128.48	79.86	0.41638	328.2224	70.78	0.400	9.081	14.149
8	446.4	129.59	80.22	0.41426	344.2303	70.58	0.499	9.642	13.440
9	446.4	120.26	80.24	0.41203	359.7280	70.37	0.596	9.874	12.180
10	446.4	125.26	78.64	0.40996	374.9573	70.17	0.690	8.469	14.790
1	446.4	142.06	80.93	0.42183	235.1395	39.94	-0.178	40.990	3.466
2	446.4	156.43	79.94	0.42179	253.6546	60.33	-0.064	19.605	7.979
3	446.4	151.86	79.69	0.42130	272.7774	71.24	0.055	8.449	17.973
4	446.4	149.29	80.63	0.42012	291.4570	71.13	0.171	9.496	15.720
5	446.4	150.09	80.19	0.41848	310.0267	70.98	0.286	9.216	16.285
6	446.4	148.43	79.94	0.41652	328.5435	70.79	0.401	9.146	16.230
7	446.4	150.99	80.66	0.41432	347.1162	70.58	0.517	10.079	14.981
8	446.4	151.95	80.41	0.41198	365.9069	70.36	0.634	10.052	15.116
9	446.4	155.82	78.89	0.40976	384.9971	70.15	0.752	8.744	17.821
10	446.4	138.63	82.08	0.40769	403.2610	69.95	0.865	12.130	11.428
1	446.4	163.64	81.16	0.42183	236.4598	41.42	-0.170	39.742	4.117
2	446.4	178.07	80.22	0.42179	257.6553	64.66	-0.039	15.555	11.448
3	446.4	173.44	79.83	0.42117	279.4591	71.23	0.096	8.600	20.167
4	446.4	170.86	80.78	0.41971	300.8155	71.09	0.229	9.688	17.636
5	446.4	170.51	80.31	0.41781	321.9900	70.91	0.360	9.401	18.137
6	446.4	168.93	79.62	0.41561	343.0447	70.71	0.491	8.910	18.959
7	446.4	182.08	79.50	0.41321	364.8174	70.48	0.627	9.020	20.186
8	446.4	255.32	83.04	0.41075	391.9488	70.25	0.795	12.796	19.953
9	446.4	131.72	127.05	0.40853	415.9561	70.03	0.943	57.015	2.310
10	446.4	101.80	153.01	0.40693	430.4405	64.20	1.033	75.102	1.355

Table B.2: Baird et al [60]

	_	Measur	ed Qua	ntities			Derived Quantities			
R11		G ka m ⁻²	\mathbf{q}_{wall}	T_{wall}	р	enthalpy	T _f	quality	ΔT local	h kW m ⁻²
		kg m ⁻² s ⁻¹ ł	kW m⁻²	°C	MPa	kJ kg⁻¹	°C	(-)	°C	K ^{VV} ¹¹
csub_002	csub_002		20.03	46.09	0.18257	221.2685	24.41	-0.090	21.682	
	1	159.6	23.76	46.09	0.18257	225.3915	29.08	-0.067	17.009	1.397
	2	159.6	19.19	46.17	0.18255	232.8452	37.47	-0.024	8.704	2.205
	3	159.6	30.33	46.18	0.18246	241.4384	41.44	0.026	4.738	6.401
	4	159.6	11.16	47.05	0.18228	248.6375	41.41	0.067	5.641	1.978
	5	159.6	17.67	47.31	0.18207	253.6403	41.37	0.096	5.938	2.976
	6	159.6	17.92	47.68	0.18181	259.8166	41.33	0.131	6.353	2.821
	7	159.6	11.42	48.16	0.18150	264.9081	41.27	0.161	6.890	1.657
	8	159.6	20.17	48.03	0.18116	270.3901	41.21	0.193	6.816	2.960
	9	159.6	19.08	47.86	0.18076	277.2016	41.14	0.232	6.721	2.839
	10	159.6	24.81	47.78	0.18031	284.8180	41.06	0.276	6.722	3.691
	11	159.6	24.81	47.77	0.18008	289.1234	41.02	0.301	6.751	3.675
csub_003	csub_003		11.37	43.92	0.18245	220.9188	24.01	-0.092	19.907	
	1	175.1	16.55	43.92	0.18244	223.5365	26.98	-0.077	16.936	0.977
	2	175.1	10.85	44.14	0.18243	227.8705	31.88	-0.052	12.259	0.885
	3	175.1	16.79	44.34	0.18241	232.2423	36.79	-0.027	7.550	2.224
	4	175.1	4.56	45.01	0.18237	235.6190	40.56	-0.008	4.444	1.026
	5	175.1	7.99	45.24	0.18233	237.6030	41.42	0.004	3.822	2.090
	6	175.1	7.98	45.43	0.18223	240.1277	41.40	0.018	4.026	1.982
	7	175.1	5.84	45.52	0.18212	242.3131	41.38	0.031	4.138	1.412
	8	175.1	12.82	45.30	0.18200	245.2639	41.36	0.048	3.935	3.257
	9	175.1	11.00	45.18	0.18181	249.0310	41.33	0.070	3.855	2.854
	10	175.1	15.37	45.15	0.18157	253.2009	41.29	0.094	3.869	3.972
	11	175.1	15.37	45.15	0.18146	255.6308	41.26	0.108	3.887	3.954
csub_004	csub_004		12.28	42.87	0.18115	220.2808	23.29	-0.095	19.580	
	1	284.1	18.81	42.87	0.18114	222.1140	25.37	-0.084	17.497	1.075
	2	284.1	10.78	43.28	0.18111	224.9985	28.64	-0.068	14.645	0.736
	3	284.1	16.11	43.60	0.18108	227.6205	31.60	-0.053	11.997	1.343
	4	284.1	5.09	44.20	0.18105	229.6879	33.93	-0.041	10.275	0.496
	5	284.1	9.12	44.36	0.18102	231.0737	35.48	-0.033	8.884	1.027
	6	284.1	8.81	44.54	0.18094	232.8219	37.44	-0.023	7.096	1.242
	7	284.1	6.11	44.63	0.18084	234.2761	39.07	-0.014	5.561	1.098
	8	284.1	13.75	44.29	0.18062	236.2118	41.12	-0.003	3.173	4.333
	9	284.1	12.20	44.03	0.18036	238.7411	41.07	0.012	2.965	4.113
	10	284.1	17.15	43.93	0.17991	241.6019	40.99	0.029	2.937	5.839
	11	284.1	17.15	43.91	0.17968	243.2738	40.95	0.038	2.965	5.785
csub_005	csub_005		11.98	42.71	0.18553	220.0836	23.06	-0.099	19.647	

	1	455.1	19.88	42.71	0.18543	221.2931	24.44	-0.092	18.271	1.088
	2	455.1	10.60	43.24	0.18524	223.1475	26.54	-0.082	16.700	0.635
	3	455.1	15.93	43.65	0.18506	224.7620	28.37	-0.072	15.279	1.043
	4	455.1	5.17	44.31	0.18477	226.0459	29.82	-0.065	14.493	0.356
	5	455.1	8.41	44.57	0.18448	226.8722	30.75	-0.060	13.820	0.609
	6	455.1	7.46	44.80	0.18420	227.8383	31.84	-0.054	12.962	0.576
	7	455.1	6.10	44.84	0.18392	228.6638	32.77	-0.049	12.071	0.505
	8	455.1	13.30	44.52	0.18365	229.8444	34.10	-0.042	10.416	1.277
	9	455.1	11.88	44.27	0.18338	231.3766	35.82	-0.033	8.451	1.406
	10	455.1	16.50	44.19	0.18172	233.1036	37.75	-0.022	6.433	2.565
	11	455.1	16.50	44.18	0.18079	234.1076	38.88	-0.015	5.301	3.113
csub_006	csub_006 .	10011	12.46	41.89	0.18490	219.8343	22.78	-0.100	19.112	0.110
	1	564.8	21.45	41.89	0.18490	220.8860	23.97	-0.094	17.915	1.197
	2	564.8	10.03	42.55	0.18490	222.4296	25.73	-0.085	16.823	0.596
	3	564.8	16.18	42.92	0.18490		27.18	-0.078	15.736	1.028
	4	564.8	6.81	43.50	0.18489	223.7140	28.46	-0.078	15.040	0.453
	4	564.8	10.06	43.77	0.18489	224.6418	29.39	-0.072	14.377	0.433
	6	564.8	8.13	44.12	0.18489	226.5612	30.40	-0.062	13.721	0.593
	7	564.8	5.60	44.32	0.18489	227.2344	31.16	-0.058	13.158	0.393
	8	564.8	12.86	44.06	0.18489	228.1395	32.18	-0.053	11.879	1.083
	9	564.8	12.03	43.76	0.18489	229.3601	33.56	-0.046	10.208	1.179
	10	564.8	16.93	43.65	0.18489	230.7803	35.15	-0.038	8.495	1.993
aaub 007	11 2017	564.8	16.93	43.63	0.18452	231.6105	36.08	-0.032	7.550	2.243
csub_007	csub_007 .	670.0	13.34	41.43	0.18202	219.8565	22.80	-0.098	18.627	1 205
	1	672.2	22.90	41.43	0.18184	220.7999	23.88	-0.092	17.554	1.305
	2	672.2	10.56	42.16	0.18148	222.1781	25.44	-0.084	16.718	0.631
	3	672.2	16.71	42.54	0.18113	223.3011	26.72	-0.077	15.821	1.056
	4	672.2	8.40	43.05	0.18079	224.3352		-0.071	15.162	0.554
	5	672.2	11.91	43.31	0.18046	225.1719	28.83	-0.066	14.471	0.823
	6	672.2	9.34	43.73	0.18013	226.0475	29.82	-0.061	13.905	0.672
	7	672.2	6.08	44.04	0.17980	226.6826	30.54	-0.057	13.498	0.450
	8	672.2	12.99	43.87	0.17948	227.4680	31.43	-0.052	12.442	1.044
	9		12.43		0.17917	228.5153		-0.046	10.960	1.134
			17.74		0.17886		34.01	-0.039	9.413	1.885
	11	672.2	17.74	43.40	0.17872	230.4891	34.83	-0.034	8.572	2.069
csub_008	csub_008 .		10.10	44.66	0.18452	221.6462	24.84	-0.090	19.825	
	1	117.9	15.47	44.66	0.18452	225.2793	28.95	-0.069	15.709	0.985
	2	117.9	9.14	44.90	0.18451	231.0585	35.46	-0.036	9.433	0.969
	3	117.9	15.42	45.03	0.18449	236.8266	41.80	-0.002	3.230	4.774
	4	117.9	3.64	45.62	0.18447	241.3042		0.023	3.824	0.953
	5	117.9	7.48	45.80	0.18444	243.9161	41.79	0.038	4.005	1.867
	6	117.9	8.08	45.98	0.18438	247.5689	41.78	0.059	4.200	1.923
	7	117.9	4.49	46.22	0.18431	250.5191	41.77	0.076	4.453	1.008
	8	117.9	10.62	46.18	0.18424	254.0659	41.76	0.097	4.423	2.400
	9	117.9	8.94	46.13	0.18413	258.6594	41.74	0.123	4.391	2.037
	10	117.9	13.89	46.08	0.18399	264.0222	41.71	0.154	4.372	3.177
	11	117.9	13.89	46.08	0.18392	267.2846	41.70	0.173	4.377	3.174
-										

csub_(009 csub_009 .		9.15	45.43	0.18499	222.4632	25.77	-0.085	19.669	
	1	89.9	15.26	45.43	0.18499	227.1634	31.08	-0.058	14.353	1.063
	2	89.9	8.28	45.71	0.18498	234.4154	39.22	-0.017	6.494	1.275
	3	89.9	14.17	45.86	0.18496	241.3333	41.88	0.023	3.983	3.558
	4	89.9	2.75	46.44	0.18492	246.5458	41.87	0.053	4.564	0.602
	5	89.9	7.35	46.60	0.18487	249.6582		0.000	4.732	1.554
	6	89.9	6.92	46.85	0.18482	254.0553	41.86	0.096	4.994	1.385
	7	89.9	3.54	47.13	0.18476	257.2776	41.85	0.115	5.285	0.670
	8	89.9	9.40	47.15	0.18468	261.2642		0.138	5.322	1.766
	9	89.9	7.65	47.15	0.18459	266.5163		0.168	5.331	1.435
	10	89.9	12.69	47.12	0.18448	272.7832		0.204	5.320	2.385
	11	89.9	12.69	47.11	0.18442	276.6932	41.79	0.226	5.324	2.384
csub_(010 csub_010 .		15.30	51.21	0.23710	222.0466	25.27	-0.130	25.937	
	1	172.3	20.37	51.21	0.23709	225.3213	28.98	-0.110	22.227	0.916
	2	172.3	10.31	52.00	0.23707	230.2536	34.54	-0.082	17.459	0.591
	3	172.3	22.35	52.99	0.23706	235.5041	40.42	-0.051	12.569	1.778
	4	172.3	6.56	54.70	0.23704	240.1520	45.58	-0.024	9.122	0.719
	5	172.3	12.34	55.41	0.23701	243.1901	48.94	-0.006	6.468	1.907
	6	172.3	15.54	55.59	0.23692	247.6720	50.11	0.020	5.480	2.836
	7	172.3	10.10	55.48	0.23682	251.7949	50.10	0.045	5.382	1.877
	8	172.3	15.90	54.50	0.23665	255.9756	50.07	0.069	4.422	3.596
	9	172.3	14.84	54.22	0.23645	260.9173	50.04	0.005	4.178	3.551
		172.3	19.98				50.04 50.01			
	10			55.22	0.23620	266.5149		0.131	5.210	3.835
acub (11	172.3	19.98	55.43	0.23607	269.7273	49.99	0.150	5.440	3.673
csub_(450.0	17.86	54.26	0.25001	222.5284	25.81	-0.137	28.442	0.001
	1	159.0	21.55	54.26	0.25000	226.2826	30.06	-0.115	24.193	0.891
	2	159.0	13.78	54.93	0.24998	232.4376	36.98	-0.079	17.943	0.768
	3	159.0	27.24	55.96	0.24996	239.5832	44.95	-0.037	11.017	2.473
	4	159.0	7.73	57.86	0.24992	245.6741	51.67	-0.001	6.186	1.249
	5	159.0	17.08	58.55	0.24982	249.9955	51.94	0.025	6.608	2.585
	6	159.0	18.52	58.94	0.24965	256.1975	51.92	0.061	7.027	2.636
	7	159.0	9.84	59.10	0.24944	261.1382	51.89	0.090	7.213	1.364
	8	159.0	17.82	58.10	0.24920	265.9560	51.85	0.119	6.244	2.854
	9	159.0	16.19	57.81	0.24891	271.8805	51.81	0.154	5.997	2.701
	10	159.0	23.36	58.81	0.24857	278.7697	51.77	0.194	7.042	3.317
	11	159.0	23.36	59.02	0.24840	282.8381	51.74	0.218	7.277	3.210
csub_(012 csub_012 .		25.11	55.42	0.25923	222.2031	25.44	-0.146	29.981	
	- 1	274.0	27.62	55.42	0.25921	224.9944		-0.129	26.818	1.030
	2		15.94	56.34	0.25918	229.3964		-0.103	22.770	0.700
	3	274.0	34.40	57.54	0.25915	234.4847	39.27	-0.073	18.267	1.883
	4	274.0	14.51	59.50	0.25913	239.4290		-0.044	14.727	0.985
	5	274.0	26.60	59.81	0.25897	243.5849		-0.020	10.441	2.548
	6	274.0	25.35	60.04	0.25866	248.8366		0.011	6.890	3.679
	7	274.0	14.89	60.19	0.25824	252.9040		0.036	7.097	2.098
	8	274.0	24.65	58.59	0.25773	256.9000		0.060	5.570	4.425
	9	274.0	22.46	57.87	0.25711	261.6615		0.088	4.933	4.553
	10	274.0	34.92	58.79	0.25636	267.4615	52.84	0.123	5.954	5.865

11 274.0 34.92 59.00 0.25597 270.9914 52.78 0.144 62.15 56.19 csub_013 csub_013 1 284.2 262.8 55.28 0.26734 221.809 25.07 0.154 30.205 2 284.2 12.96 56.24 0.26772 228.24412 27.90 0.392 20.664 1.334 3 284.2 27.57 7.90 0.26713 223.57511 40.68 -0.072 18.525 0.472 5 284.2 18.48 59.20 0.26715 238.3658 43.59 0.056 15.984 1.132 6 284.2 14.99 56.63 0.26670 244.5428 50.42 -0.005 51.21 10 284.2 19.10 58.65 0.26562 253.9270 54.11 0.036 14.444 4.027 csub_014 . 16.71 55.14 0.27364 221.8641 25.07 0.144 4.523 0.049 csub_											
1 284.2 262.8 552.8 0.26727 224.412 27.97 0.139 27.302 0.963 2 284.2 12.96 66.24 0.26727 228.2424 32.29 0.016 32.349 0.541 3 284.2 27.57 57.39 0.26713 233.511 40.86 -0.072 18.525 0.472 5 284.2 18.10 59.57 0.26715 238.3658 43.59 -0.035 12.182 1.517 7 284.2 18.45 59.80 0.26674 246.8172 52.92 -0.006 5.710 2.626 9 284.2 19.10 58.65 0.26550 255.783 54.10 0.048 4.544 4.027 csub_014 csub_014 16.71 55.54 0.27364 221.8641 250 -0.159 30.409 1 278.8 26.44 55.44 0.27357 228.4813 32.29 -0.121 2.4312 0.444 3 279.8 16.66 0.027364 221.86141 2.007 1.617 0.841		11	274.0	34.92	59.00	0.25597	270.9914	52.78	0.144	6.215	5.619
2 284.2 12.96 56.24 0.26727 228.2643 32.29 -0.116 23.949 0.541 3 284.2 27.57 57.39 0.26713 232.2134 36.73 -0.092 2.55 1.34 4 284.2 8.74 59.21 0.26715 238.5614 40.86 -0.072 18.525 0.472 6 284.2 18.40 59.72 0.26715 238.3668 43.59 -0.006 57.10 2.626 9 284.2 14.99 58.63 0.26674 244.542 50.42 -0.000 57.10 2.626 9 284.2 19.40 58.56 0.26562 255.7883 54.06 0.048 4.744 4.027 Csub_014 . 16.71 55.54 0.27367 228.2818 2.29 -0.143 2.7523 0.861 2 2.79.8 1.077 56.50 0.27357 228.2818 2.29 -0.143 2.7523 0.861 2	csub_013	csub_013 .		17.56	55.28	0.26734	221.8809	25.07	-0.154	30.205	
3 284.2 27.57 57.39 0.26723 232.2134 36.73 -0.093 20.664 1.334 4 284.2 8.74 59.21 0.26719 235.7511 40.68 0.072 18.525 0.472 5 284.2 18.48 59.72 0.26712 241.9292 47.54 -0.035 12.182 1.517 7 284.2 8.35 59.80 0.26670 244.5428 50.42 -0.020 9.382 0.890 8 284.2 19.49 58.63 0.266641 250.1719 54.18 0.014 3.796 5.121 10 284.2 19.10 58.81 0.26550 255.788 3.66 0.444 4.274 4.073 csub_014 csub_014 . 16.71 55.54 0.27364 221.8641 25.06 0.098 2.12.05 1.267 csub_014 csub_014 . 7.98 1.77 6.027367 222.8618 3.29 0.121 2.4312 0.484 2 279.81 1.77 6.0.179 0.27333 232.0449 <td></td> <td>1</td> <td>284.2</td> <td>26.28</td> <td>55.28</td> <td>0.26732</td> <td>224.4412</td> <td>27.97</td> <td>-0.139</td> <td>27.302</td> <td>0.963</td>		1	284.2	26.28	55.28	0.26732	224.4412	27.97	-0.139	27.302	0.963
4 284.2 8.74 59.21 0.26719 235.7511 40.68 -0.072 18.525 0.472 5 284.2 18.40 59.72 0.26715 238.3658 43.59 -0.056 15.984 1.132 7 284.2 18.45 59.80 0.26710 244.5428 50.42 -0.020 9.382 0.890 8 284.2 14.49 57.86 0.26674 246.8172 52.92 -0.006 5.710 2.526 9 284.2 19.40 58.65 0.26581 255.7883 54.06 0.048 4.744 4.027 csub_014 . 16.71 55.54 0.27362 224.8641 25.05 0.515 0.048 4.744 4.027 csub_014 . 16.71 55.54 0.27357 228.2618 32.29 -0.143 2.7523 0.961 2 279.8 1.667 0.7736 224.867 50.008 6.197 0.823 6.191 0.824 5.391 </td <td></td> <td>2</td> <td>284.2</td> <td>12.96</td> <td>56.24</td> <td>0.26727</td> <td>228.2643</td> <td>32.29</td> <td>-0.116</td> <td>23.949</td> <td>0.541</td>		2	284.2	12.96	56.24	0.26727	228.2643	32.29	-0.116	23.949	0.541
5 284.2 18.10 59.57 0.26715 238.3658 43.59 -0.056 15.984 1.132 6 284.2 18.48 59.72 0.26712 241.9292 47.54 -0.050 51.2182 1.517 7 284.2 18.48 59.80 0.26674 244.5428 50.42 -0.020 9.382 0.880 8 284.2 19.44 57.98 0.266641 250.1719 54.18 0.014 3.766 5.121 10 284.2 19.10 58.81 0.26550 255.7883 54.06 0.048 4.744 4.027 csub_014 .csub_014 16.71 55.54 0.27357 228.461 20.59 -0.143 27.523 0.614 2 279.8 1.77 60.60 0.27357 228.2618 32.29 -0.121 24.312 0.484 3 279.8 2.687 57.79 0.27333 23.049 36.58 -0.038 1.6917 0.984 6 279.8 1.711 60.14 0.27331 234.027 1.2018 1.205<		3	284.2	27.57	57.39	0.26723	232.2134	36.73	-0.093	20.664	1.334
6 284.2 18.48 59.72 0.26712 241.9292 47.54 -0.035 12.182 1.517 7 284.2 8.35 59.80 0.26670 244.5428 50.42 -0.020 9.382 0.980 9 284.2 19.10 58.65 0.26542 253.9270 54.11 0.036 4.545 4.003 11 284.2 19.10 58.65 0.26550 255.783 54.06 0.048 4.744 4.027 csub_014 . 16.71 55.54 0.27352 224.4807 28.02 -0.143 27.52 0.961 2 279.8 11.77 56.60 0.27357 228.618 32.29 -0.143 27.55 0.481 3 279.8 7.84 59.63 0.27340 235.5191 40.42 -0.063 1.275 0.484 4 279.8 7.86 60.03 0.27341 243.125 49.12 0.413 1.266 79 279.8 <td< td=""><td></td><td>4</td><td>284.2</td><td>8.74</td><td>59.21</td><td>0.26719</td><td>235.7511</td><td>40.68</td><td>-0.072</td><td>18.525</td><td>0.472</td></td<>		4	284.2	8.74	59.21	0.26719	235.7511	40.68	-0.072	18.525	0.472
7 284.2 8.35 59.80 0.26700 244.5428 50.42 -0.020 9.382 0.890 8 284.2 14.99 58.63 0.26674 246.8172 52.92 -0.006 5.710 2.62 10 284.2 19.10 58.65 0.26582 253.9270 54.11 0.016 4.545 4.203 11 284.2 19.10 58.61 0.26550 255.7833 54.06 0.048 4.744 4.027 csub_014 . 16.71 55.54 0.27367 228.2618 32.29 -0.121 24.312 0.484 3 279.8 7.84 59.60 0.27357 228.2618 32.29 -0.121 24.312 0.484 3 279.8 7.84 59.63 0.27343 235.5191 40.42 -0.063 16.917 0.984 6 279.8 17.11 60.14 0.27331 243.0125 49.72 -0.028 10.461 0.791 8 279.8 18.01 59.12 0.27217 249.2837 50.02 0.004		5	284.2	18.10	59.57	0.26715	238.3658	43.59	-0.056	15.984	1.132
8 284.2 14.99 58.63 0.26674 246.8172 52.92 -0.006 5.710 2.626 9 284.2 19.10 58.65 0.26562 253.9270 54.11 0.036 4.545 4.203 csub_014 csub_014 1 279.8 55.54 0.27364 221.8641 25.00 -0.159 30.490 1 279.8 26.44 55.54 0.27362 224.807 28.02 -0.121 24.312 0.484 3 279.8 26.87 57.79 0.27353 232.0649 36.58 -0.098 21.205 1.267 4 279.8 16.64 60.03 0.27342 241.3407 46.29 -0.078 19.215 0.488 5 279.8 16.64 60.03 0.27341 231.914 43.12 -0.066 16.41 0.77331 243.9125 49.72 -0.028 10.41 0.79 4.107 1.37 -79.8 8.27 59.07 0.27331 241.3407		6	284.2	18.48	59.72	0.26712	241.9292	47.54	-0.035	12.182	1.517
9 284.2 19.44 57.98 0.26641 250.1719 54.18 0.014 3.796 5.121 10 284.2 19.10 58.65 0.26582 253.927 54.11 0.036 4.545 4.203 csub_014 csub_014 16.71 55.54 0.27362 224.4807 28.02 -0.143 27.523 0.661 2 279.8 26.67 57.79 0.27353 232.049 36.68 -0.098 21.255 1.267 4 279.8 67.79 0.27353 232.049 36.68 -0.098 21.255 0.461 5 279.8 16.64 60.03 0.27331 243.9125 49.72 -0.063 16.917 0.846 6 279.8 17.71 60.14 0.27331 243.9125 49.72 -0.028 10.461 0.791 8 279.8 13.79 59.07 0.27307 246.062 52.13 -0.015 6.413 1.387 10 279.8 <td></td> <td>7</td> <td>284.2</td> <td>8.35</td> <td>59.80</td> <td>0.26700</td> <td>244.5428</td> <td>50.42</td> <td>-0.020</td> <td>9.382</td> <td>0.890</td>		7	284.2	8.35	59.80	0.26700	244.5428	50.42	-0.020	9.382	0.890
10 284.2 19.10 58.65 0.26582 253.9270 54.11 0.036 4.545 4.203 11 284.2 19.10 58.81 0.26550 255.783 54.06 0.048 4.744 4.027 csub_014 csub_014 1 279.8 66.44 55.54 0.27362 224.4807 28.02 0.143 27.523 0.961 2 279.8 11.77 56.60 0.27357 228.2618 32.29 -0.121 24.312 0.484 3 279.8 7.84 59.63 0.27346 237.5191 40.42 -0.078 19.215 0.408 4 279.8 16.64 60.03 0.27346 237.914 43.12 -0.063 16.917 0.984 6 279.8 13.79 59.07 0.27307 246.096 52.13 6.013 0.2734 243.912 4.944 5.380 9 279.8 18.42 58.44 0.27277 249.2837 55.02 0.004		8	284.2	14.99	58.63	0.26674	246.8172	52.92	-0.006	5.710	2.626
11 284.2 19.10 58.81 0.26550 255.7883 54.06 0.048 4.744 4.027 csub_014 csub_014 16.71 55.54 0.27364 221.8641 25.05 -0.159 30.490 1 279.8 279.8 279.8 55.54 0.27357 228.2618 32.29 -0.121 24.312 0.484 3 279.8 26.87 57.79 0.27353 232.0849 36.58 -0.098 12.05 1.267 4 279.8 16.46 60.03 0.27342 241.3474 43.12 -0.063 16.917 0.984 5 279.8 16.44 0.027312 241.3474 43.12 -0.028 10.461 0.791 8 279.8 18.28 60.19 0.27331 243.9125 49.72 -0.028 10.461 0.791 8 279.8 18.01 59.12 0.27224 252.880 54.95 0.026 4.175 4.314 11 279.		9	284.2	19.44	57.98	0.26641	250.1719	54.18	0.014	3.796	5.121
Csub_014 csub_014 . 16.71 55.54 0.27364 221.8641 25.05 0.159 30.490 1 279.8 11.77 56.60 0.27352 224.4807 280.2 -0.143 27.5.23 0.961 3 279.8 26.87 57.79 0.27353 232.0849 36.58 -0.098 11.205 1.267 4 279.8 16.64 60.03 0.27346 237.9414 4312 -0.063 16.917 0.984 6 279.8 17.71 60.14 0.27331 243.3125 49.72 -0.028 10.461 0.791 8 279.8 13.79 59.07 0.27307 246.0962 52.13 -0.015 6.943 1.986 9 279.8 18.42 58.44 0.2777 249.2837 50.02 0.004 3.424 5.380 10 279.8 18.01 59.12 0.27196 254.6713 54.91 0.037 4.371 4.120 csub_01		10	284.2	19.10	58.65	0.26582	253.9270	54.11	0.036	4.545	4.203
1 279.8 26.44 55.54 0.27362 224.4807 28.02 0.143 27.523 0.961 2 279.8 11.77 56.60 0.27357 228.2618 32.29 0.121 24.312 0.484 3 279.8 7.64 59.63 0.27349 235.5191 40.42 -0.078 19.215 0.408 5 279.8 16.64 60.03 0.27346 237.9414 43.12 -0.063 16.917 0.984 6 279.8 17.71 60.14 0.27331 243.9125 49.72 -0.028 10.461 0.791 8 279.8 18.42 58.44 0.27277 249.2837 55.02 0.004 3.424 5.380 9 279.8 18.42 58.44 0.27277 249.2837 55.02 0.004 3.424 5.380 10 279.8 18.01 59.12 0.2724 252.8809 54.95 0.026 4.175 4.314 11 279.8 18.01 59.28 0.27164 281.45 3.38 -0.160		11	284.2	19.10	58.81	0.26550	255.7883	54.06	0.048	4.744	4.027
2 279.8 11.77 56.60 0.27357 228.2618 32.29 -0.121 24.312 0.484 3 279.8 26.87 57.79 0.27353 232.0849 36.58 -0.098 12.056 1.267 4 279.8 7.84 59.63 0.27346 235.5191 40.42 -0.063 16.917 0.984 6 279.8 16.64 60.03 0.27331 243.9125 49.72 -0.028 10.461 0.791 8 279.8 13.79 59.07 0.27307 246.092 52.13 -0.015 6.943 1.986 9 279.8 18.01 59.12 0.27224 252.8890 54.95 0.026 4.175 4.314 11 279.8 18.01 59.28 0.27196 254.6713 54.91 0.037 4.371 4.120 csub_015 . 11.67 56.67 0.28344 224.5813 28.13 0.150 28.544 1 282.4 0.44 58.35 0.28324 22.6107 33.80 0.120 24.548	csub_014	csub_014 .		16.71	55.54	0.27364	221.8641	25.05	-0.159	30.490	
3 279.8 26.87 57.79 0.27353 232.0849 36.58 -0.098 21.205 1.267 4 279.8 7.84 59.63 0.27346 235.5191 40.42 -0.078 19.215 0.408 5 279.8 16.64 60.03 0.27346 237.9414 43.12 -0.063 16.917 0.984 6 279.8 17.71 60.14 0.27302 241.3407 46.89 -0.043 13.251 1.337 7 279.8 8.28 60.19 0.27307 246.0962 52.13 -0.015 6.943 1.986 9 279.8 18.01 59.12 0.27196 254.6713 54.91 0.037 4.371 4.120 11 279.8 18.01 59.28 0.27196 254.6713 54.91 0.036 4.175 4.314 12 282.4 2.42 56.67 0.28344 224.6713 38.0 -0.102 24.544 0.018 2 282.4 0.44 58.35 0.28324 229.6107 38.0 -0.102 <t< td=""><td></td><td>1</td><td>279.8</td><td>26.44</td><td>55.54</td><td>0.27362</td><td>224.4807</td><td>28.02</td><td>-0.143</td><td>27.523</td><td>0.961</td></t<>		1	279.8	26.44	55.54	0.27362	224.4807	28.02	-0.143	27.523	0.961
4 279.8 7.84 59.63 0.27349 235.5191 40.42 -0.078 19.215 0.408 5 279.8 16.64 60.03 0.27346 237.9414 43.12 -0.063 16.917 0.984 6 279.8 17.71 60.14 0.27331 243.9125 49.72 -0.028 10.461 0.791 8 279.8 18.79 59.07 0.27307 244.9825 55.02 0.004 3.424 5.380 9 279.8 18.01 59.12 0.27224 252.8890 54.95 0.026 4.175 4.314 11 279.8 18.01 59.28 0.27196 254.6713 54.91 0.037 4.371 4.120 csub_015 11.67 56.67 0.28344 224.5813 28.13 0.150 28.544 1.420 csub_015 1282.4 2.42 56.67 0.28344 229.6107 3.80 -0.120 24.548 0.037 4.333 0.892 2 282.4 0.42 56.67 0.28327 231.6956 6.14 </td <td></td> <td>2</td> <td>279.8</td> <td>11.77</td> <td>56.60</td> <td>0.27357</td> <td>228.2618</td> <td>32.29</td> <td>-0.121</td> <td>24.312</td> <td>0.484</td>		2	279.8	11.77	56.60	0.27357	228.2618	32.29	-0.121	24.312	0.484
5 279.8 16.64 60.03 0.27346 237.9414 43.12 -0.063 16.917 0.984 6 279.8 17.71 60.14 0.27342 241.3407 46.89 -0.043 13.251 1.337 7 279.8 8.28 60.19 0.27331 243.9125 49.72 -0.028 10.461 0.791 8 279.8 18.42 58.44 0.27277 246.062 52.13 -0.015 6.943 1.986 9 279.8 18.42 58.44 0.27277 249.2837 55.02 0.004 3.424 5.380 10 279.8 18.01 59.28 0.27196 254.6713 54.91 0.037 4.371 4.120 csub_015 . 11.67 56.67 0.28344 224.5813 28.13 0.150 28.54 0.088 2 282.4 7.28 60.71 0.28327 231.6956 6.14 0.108 23.333 0.892 4		3	279.8	26.87	57.79	0.27353	232.0849	36.58	-0.098	21.205	1.267
6 279.8 17.71 60.14 0.27342 241.3407 46.89 -0.043 13.251 1.337 7 279.8 8.28 60.19 0.27331 243.9125 49.72 -0.028 10.461 0.791 8 279.8 18.42 58.44 0.272307 246.0962 52.13 -0.015 6.943 1.986 9 279.8 18.01 59.12 0.27224 252.8890 54.95 0.026 4.175 4.314 11 279.8 18.01 59.28 0.27196 254.6713 54.91 0.037 4.371 4.120 csub_015 . 11.67 56.67 0.28344 224.5813 28.13 -0.150 28.544 1 282.4 0.44 58.35 0.28342 229.0107 33.80 -0.120 24.548 0.018 2 282.4 0.44 58.35 0.28327 231.6956 36.14 -0.108 23.333 0.892 4 282.4		4	279.8	7.84		0.27349	235.5191	40.42	-0.078	19.215	0.408
7 279.8 8.28 60.19 0.27331 243.9125 49.72 -0.028 10.461 0.791 8 279.8 13.79 59.07 0.27307 246.0962 52.13 -0.015 6.943 1.986 9 279.8 18.42 58.44 0.27277 249.2837 55.02 0.004 3.424 5.380 10 279.8 18.01 59.12 0.27224 252.880 54.95 0.026 4.175 4.314 11 279.8 18.01 59.12 0.27244 252.4800 54.95 0.026 4.175 4.314 csub_015 csub_015 11.67 56.67 0.28340 227.0743 30.94 -0.135 25.727 0.988 2 282.4 0.44 58.35 0.28340 227.0743 30.94 -0.108 23.333 0.892 4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5		5	279.8	16.64	60.03	0.27346	237.9414	43.12	-0.063	16.917	0.984
8 279.8 13.79 59.07 0.27307 246.0962 52.13 -0.015 6.943 1.986 9 279.8 18.42 58.44 0.27277 249.2837 55.02 0.004 3.424 5.380 10 279.8 18.01 59.12 0.27224 252.8890 54.95 0.026 4.175 4.314 11 279.8 18.01 59.28 0.27196 254.6713 54.91 0.037 4.371 4.120 csub_015 . 11.67 56.67 0.28344 224.5813 30.94 -0.135 25.727 0.988 2 282.4 0.44 58.35 0.28327 231.6956 36.14 -0.108 23.333 0.892 4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5 282.4 11.46 61.56 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 13.28 61.84 0.28266 240.0059 45.07 -0.051		6	279.8	17.71	60.14	0.27342	241.3407	46.89	-0.043	13.251	1.337
9 279.8 18.42 58.44 0.27277 249.2837 55.02 0.004 3.424 5.380 10 279.8 18.01 59.12 0.27224 252.8890 54.95 0.026 4.175 4.314 11 279.8 18.01 59.28 0.27196 254.6713 54.91 0.037 4.371 4.120 csub_015 . 11.67 56.67 0.28344 224.5813 28.13 -0.150 28.544 1 282.4 25.42 56.67 0.28340 227.0743 30.94 -0.135 25.727 0.988 2 282.4 0.44 58.35 0.28327 231.6956 36.14 -0.108 23.333 0.892 4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5 282.4 11.60 61.21 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 3.28 61.86 0.28206 241.2405 46.77 -0.051 14.473		7	279.8	8.28	60.19	0.27331	243.9125	49.72	-0.028	10.461	0.791
10 279.8 18.01 59.12 0.27224 252.8890 54.95 0.026 4.175 4.314 11 279.8 18.01 59.28 0.27196 254.6713 54.91 0.037 4.371 4.120 Csub_015 csub_015 11.67 56.67 0.28344 224.5813 28.13 -0.150 28.544 1 282.4 254.2 56.67 0.28340 227.0743 30.94 -0.135 25.727 0.988 2 282.4 0.44 58.35 0.28327 231.6956 36.14 -0.108 23.333 0.892 4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5 282.4 11.60 61.21 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 3.28 61.86 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4<		8	279.8	13.79	59.07	0.27307	246.0962	52.13	-0.015	6.943	
11 279.8 18.01 59.28 0.27196 254.6713 54.91 0.037 4.371 4.120 csub_015 csub_015 11.67 56.67 0.28344 224.5813 28.13 -0.150 28.544 1 282.4 25.42 56.67 0.28340 227.0743 30.94 -0.135 25.727 0.988 2 282.4 0.44 58.35 0.28334 229.6107 33.80 -0.102 24.548 0.018 3 282.4 20.82 59.47 0.28327 231.6956 36.14 -0.108 23.333 0.892 4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5 282.4 11.46 61.21 0.28316 236.3024 41.29 -0.080 19.921 0.582 6 282.4 9.30 61.24 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4		9	279.8	18.42	58.44	0.27277	249.2837	55.02	0.004	3.424	5.380
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	279.8				252.8890	54.95			4.314
1 282.4 25.42 56.67 0.28340 227.0743 30.94 -0.135 25.727 0.988 2 282.4 0.44 58.35 0.28334 229.6107 33.80 -0.120 24.548 0.018 3 282.4 20.82 59.47 0.28327 231.6956 36.14 -0.108 23.333 0.892 4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5 282.4 11.60 61.21 0.28316 236.3024 41.29 -0.080 19.921 0.582 6 282.4 11.44 61.56 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 3.28 61.86 0.28306 240.0059 45.40 -0.058 16.457 0.200 8 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.021 8.395 1.424 11 282.4 11.96 60.84 0.28260 247.4159 53.57 -0.147		11	279.8	18.01	59.28	0.27196	254.6713	54.91	0.037	4.371	4.120
2 282.4 0.44 58.35 0.28334 229.6107 33.80 -0.120 24.548 0.018 3 282.4 20.82 59.47 0.28327 231.6956 36.14 -0.108 23.333 0.892 4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5 282.4 11.60 61.21 0.28316 236.3024 41.29 -0.080 19.921 0.582 6 282.4 11.44 61.56 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 3.28 61.86 0.28306 240.0059 45.40 -0.058 16.457 0.200 8 282.4 9.30 61.24 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.037 10.743 1.385 10 282.4 11.96 60.68 0.28276 246.2432 52.28 -0.021	csub_015	csub_015 .									
3 282.4 20.82 59.47 0.28327 231.6956 36.14 -0.108 23.333 0.892 4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5 282.4 11.60 61.21 0.28316 236.3024 41.29 -0.080 19.921 0.582 6 282.4 11.44 61.56 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 3.28 61.86 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.037 10.743 1.385 10 282.4 11.96 60.68 0.28276 246.2432 52.28 -0.014 7.265 1.646 csub_016 . 11.72 56.54 0.28322 224.2479 27.75 -0.152 28.795 1 284.9 0.17 58.06 0.28311 229.0872 33.21 -0.123 24.850 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>25.727</td> <td></td>		1								25.727	
4 282.4 7.28 60.71 0.28322 234.4510 39.22 -0.091 21.481 0.339 5 282.4 11.60 61.21 0.28316 236.3024 41.29 -0.080 19.921 0.582 6 282.4 11.44 61.56 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 3.28 61.86 0.28306 240.0059 45.40 -0.058 16.457 0.200 8 282.4 9.30 61.24 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.037 10.743 1.385 10 282.4 11.96 60.68 0.28276 246.2432 52.28 -0.021 8.395 1.424 11 282.4 11.96 60.84 0.28322 224.2479 27.75 -0.152 28.795 1 284.9 24.81 56.54 0.28318 226.6592 30.48 -0.137 26.069		2									
5 282.4 11.60 61.21 0.28316 236.3024 41.29 -0.080 19.921 0.582 6 282.4 11.44 61.56 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 3.28 61.86 0.28306 240.0059 45.40 -0.058 16.457 0.200 8 282.4 9.30 61.24 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.037 10.743 1.385 10 282.4 11.96 60.68 0.28260 247.4159 53.57 -0.014 7.265 1.646 csub_016 . 11.72 56.54 0.28322 224.2479 27.75 -0.152 28.795 1 284.9 24.81 56.54 0.28311 229.0872 33.21 -0.123 24.850 0.007 3 284.9 19.42 58.81 0.28305 230.9920 35.35 -0.112 23.456 <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		3									
6 282.4 11.44 61.56 0.28311 238.5618 43.80 -0.067 17.757 0.644 7 282.4 3.28 61.86 0.28306 240.0059 45.40 -0.058 16.457 0.200 8 282.4 9.30 61.24 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.037 10.743 1.385 10 282.4 11.96 60.68 0.28276 246.2432 52.28 -0.021 8.395 1.424 11 282.4 11.96 60.68 0.282260 247.4159 53.57 -0.014 7.265 1.646 csub_016 11.72 56.54 0.28318 226.6592 30.48 -0.137 26.069 0.952 2 284.9 0.17 58.06 0.28311 229.0872 33.21 -0.123 24.850 0.007 3 284.9 19.42 58.81 0.28305 230.9920 35.35 -0.112 23.45		4									
7 282.4 3.28 61.86 0.28306 240.0059 45.40 -0.058 16.457 0.200 8 282.4 9.30 61.24 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.037 10.743 1.385 10 282.4 11.96 60.68 0.28276 246.2432 52.28 -0.021 8.395 1.424 11 282.4 11.96 60.84 0.28260 247.4159 53.57 -0.014 7.265 1.646 Csub_016 11.72 56.54 0.28318 226.6592 30.48 -0.137 26.069 0.952 2 284.9 0.17 58.06 0.28311 229.0872 33.21 -0.123 24.850 0.007 3 284.9 19.42 58.81 0.28305 230.9920 35.35 -0.112 23.456 0.828 4 284.9 8.13 59.85 0.28292 235.5390 40.44 -0.085 20.363<											
8 282.4 9.30 61.24 0.28301 241.2405 46.77 -0.051 14.473 0.643 9 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.037 10.743 1.385 10 282.4 11.96 60.68 0.28276 246.2432 52.28 -0.021 8.395 1.424 11 282.4 11.96 60.84 0.28260 247.4159 53.57 -0.014 7.265 1.646 csub_016 csub_016 11.72 56.54 0.28322 224.2479 27.75 -0.152 28.795 1 284.9 24.81 56.54 0.28318 226.6592 30.48 -0.137 26.069 0.952 2 284.9 0.17 58.06 0.28311 229.0872 33.21 -0.123 24.850 0.007 3 284.9 19.42 58.81 0.28305 230.9920 35.35 -0.112 23.456 0.828 4 284.9 8.13 59.85 0.28298 233.6705 38.35 -0.096 21.											
9 282.4 14.88 60.13 0.28292 243.6118 49.39 -0.037 10.743 1.385 10 282.4 11.96 60.68 0.28276 246.2432 52.28 -0.021 8.395 1.424 11 282.4 11.96 60.84 0.28260 247.4159 53.57 -0.014 7.265 1.646 csub_016 . 11.72 56.54 0.28322 224.2479 27.75 -0.152 28.795 1 284.9 24.81 56.54 0.28318 226.6592 30.48 -0.137 26.069 0.952 2 284.9 0.17 58.06 0.28311 229.0872 33.21 -0.123 24.850 0.007 3 284.9 19.42 58.81 0.28205 230.9920 35.35 -0.112 23.456 0.828 4 284.9 8.13 59.85 0.28298 233.6705 38.35 -0.096 21.495 0.378 5 284.9 11.09 60.80 0.28292 235.5390 40.44 -0.085 20.363 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_									
10 282.4 11.96 60.68 0.28276 246.2432 52.28 -0.021 8.395 1.424 11 282.4 11.96 60.84 0.28260 247.4159 53.57 -0.014 7.265 1.646 csub_016 csub_016 11.72 56.54 0.28322 224.2479 27.75 -0.152 28.795 1 284.9 24.81 56.54 0.28318 226.6592 30.48 -0.137 26.069 0.952 2 284.9 0.17 58.06 0.28311 229.0872 33.21 -0.123 24.850 0.007 3 284.9 19.42 58.81 0.28305 230.9920 35.35 -0.112 23.456 0.828 4 284.9 8.13 59.85 0.28298 233.6705 38.35 -0.096 21.495 0.378 5 284.9 11.09 60.80 0.28292 235.5390 40.44 -0.085 20.363 0.545 6 284.9 11.56 61.27 0.28287 237.7407 42.89 -0.071 18											
11282.411.9660.840.28260247.415953.57-0.0147.2651.646csub_016.11.7256.540.28322224.247927.75-0.15228.7951284.924.8156.540.28318226.659230.48-0.13726.0690.9522284.90.1758.060.28311229.087233.21-0.12324.8500.0073284.919.4258.810.28305230.992035.35-0.11223.4560.8284284.98.1359.850.28298233.670538.35-0.09621.4950.3785284.911.0960.800.28292235.539040.44-0.08520.3630.5456284.911.5661.270.28287237.740742.89-0.07118.3750.6297284.93.1561.450.28276240.526745.98-0.05514.4660.747											
csub_016 csub_016 11.72 56.54 0.28322 224.2479 27.75 -0.152 28.795 1 284.9 24.81 56.54 0.28318 226.6592 30.48 -0.137 26.069 0.952 2 284.9 0.17 58.06 0.28311 229.0872 33.21 -0.123 24.850 0.007 3 284.9 19.42 58.81 0.28305 230.9920 35.35 -0.112 23.456 0.828 4 284.9 8.13 59.85 0.28298 233.6705 38.35 -0.096 21.495 0.378 5 284.9 11.09 60.80 0.28292 235.5390 40.44 -0.085 20.363 0.545 6 284.9 11.56 61.27 0.28287 237.7407 42.89 -0.071 18.375 0.629 7 284.9 3.15 61.45 0.28276 240.5267 45.98 -0.055 14.466 0.747											
1284.924.8156.540.28318226.659230.48-0.13726.0690.9522284.90.1758.060.28311229.087233.21-0.12324.8500.0073284.919.4258.810.28305230.992035.35-0.11223.4560.8284284.98.1359.850.28298233.670538.35-0.09621.4950.3785284.911.0960.800.28292235.539040.44-0.08520.3630.5456284.911.5661.270.28287237.740742.89-0.07118.3750.6297284.93.1561.450.28276239.170444.48-0.06316.9760.1868284.910.8060.450.28276240.526745.98-0.05514.4660.747			282.4								1.646
2284.90.1758.060.28311229.087233.21-0.12324.8500.0073284.919.4258.810.28305230.992035.35-0.11223.4560.8284284.98.1359.850.28298233.670538.35-0.09621.4950.3785284.911.0960.800.28292235.539040.44-0.08520.3630.5456284.911.5661.270.28287237.740742.89-0.07118.3750.6297284.93.1561.450.28282239.170444.48-0.06316.9760.1868284.910.8060.450.28276240.526745.98-0.05514.4660.747	csub_016										
3 284.9 19.42 58.81 0.28305 230.9920 35.35 -0.112 23.456 0.828 4 284.9 8.13 59.85 0.28298 233.6705 38.35 -0.096 21.495 0.378 5 284.9 11.09 60.80 0.28292 235.5390 40.44 -0.085 20.363 0.545 6 284.9 11.56 61.27 0.28287 237.7407 42.89 -0.071 18.375 0.629 7 284.9 3.15 61.45 0.28282 239.1704 44.48 -0.063 16.976 0.186 8 284.9 10.80 60.45 0.28276 240.5267 45.98 -0.055 14.466 0.747											
4284.98.1359.850.28298233.670538.35-0.09621.4950.3785284.911.0960.800.28292235.539040.44-0.08520.3630.5456284.911.5661.270.28287237.740742.89-0.07118.3750.6297284.93.1561.450.28282239.170444.48-0.06316.9760.1868284.910.8060.450.28276240.526745.98-0.05514.4660.747											
5284.911.0960.800.28292235.539040.44-0.08520.3630.5456284.911.5661.270.28287237.740742.89-0.07118.3750.6297284.93.1561.450.28282239.170444.48-0.06316.9760.1868284.910.8060.450.28276240.526745.98-0.05514.4660.747											
6284.911.5661.270.28287237.740742.89-0.07118.3750.6297284.93.1561.450.28282239.170444.48-0.06316.9760.1868284.910.8060.450.28276240.526745.98-0.05514.4660.747											
7284.93.1561.450.28282239.170444.48-0.06316.9760.1868284.910.8060.450.28276240.526745.98-0.05514.4660.747											
8 284.9 10.80 60.45 0.28276 240.5267 45.98 -0.055 14.466 0.747											
9 284.9 14.81 59.68 0.28271 243.0164 48.73 -0.040 10.949 1.353											
		9	284.9	14.81	59.68	0.28271	243.0164	48.73	-0.040	10.949	1.353

11 284.9 12.47 60.60 0.28239 246.8796 52.98 -0.017 7.614 1.63 csub_017 csub_017 . 13.07 56.09 0.28310 224.1000 27.58 -0.153 28.506 1 284.8 24.29 56.09 0.28303 226.4614 30.25 -0.138 25.836 0.94 2 284.8 31.93 58.45 0.28299 232.0944 36.59 -0.105 21.857 1.46 4 284.8 7.73 59.96 0.28295 235.9511 40.90 -0.082 19.057 0.40 5 284.8 11.23 60.67 0.28291 237.7946 42.95 -0.071 17.716 0.63 7 284.8 10.42 60.07 0.28284 241.865 42.92 0.007 13.593 0.39 8 284.8 10.42 60.25 0.28275 243.3664 49.12 -0.038 10.999 0.91 9											
csub_017 csub_017 . 1 284.8 24.29 56.09 0.28308 224.400 27.58 -0.153 25.386 0.94 2 284.8 0.86 57.53 0.28303 228.9062 33.01 -0.124 24.518 0.03 3 284.8 31.93 58.45 0.28299 232.0944 36.59 -0.105 21.857 1.46 4 284.8 17.3 59.66 0.28291 237.7946 42.95 -0.017 1.7.716 0.63 6 284.8 12.62 60.93 0.28275 243.3664 91.20 0.038 10.999 0.91 9 284.8 14.84 59.35 0.28275 243.664 91.00 0.038 30.257 10 284.8 12.42 60.27 0.28212 249.6448 56.01 0.008 5.384 2.30 csub_018 csub_018 . 27.33 4.69 56.75 0.28234 223.6666 27.32 0.153		10	284.9	12.47	60.42	0.28255	245.6679	51.65	-0.024	8.767	1.422
1 284.8 24.29 56.09 0.28308 226.4614 30.25 -0.138 25.836 0.94 2 284.8 0.86 57.53 0.28209 223.0944 65.9 -0105 21.857 1.46 4 284.8 7.73 59.96 0.282295 235.9511 40.90 -0.082 19.057 0.40 5 284.8 11.23 60.67 0.282295 235.9511 40.90 -0.082 19.057 0.40 6 284.8 16.06 0.282263 241.8655 47.46 -0.047 13.593 0.39 6 284.8 16.48 59.35 0.282253 242.8664 49.12 -0.033 7.565 1.66 10 284.8 12.42 60.07 0.28226 248.4370 54.69 -0.008 5.384 2.30 csub_018 - 217.3 36.57 0.28236 248.64 30.10 -0.133 2.747 0.89 csub_018 2247.3		11	284.9	12.47	60.60	0.28239	246.8796	52.98	-0.017	7.614	1.637
2 284.8 0.86 57.53 0.28303 228.9062 33.01 -0.12 24.18 0.03 3 284.8 31.33 58.45 0.28299 232.9044 36.59 -0.105 1.16 0.67 1.46 4 284.8 17.3 56.96 0.28291 237.7946 42.95 -0.071 17.716 0.63 6 284.8 12.65 60.93 0.28288 240.1138 45.52 -0.077 15.873 0.38 8 284.8 10.05 60.12 0.28275 243.3664 49.12 -0.038 10.999 0.91 9 284.8 1.42 60.07 0.28226 248.430 1.02 7.45 0.88 2.33 0.10 2.43 0.23 2.33 0.10 4.20 2.33 0.10 284.8 1.42 60.25 0.28212 248.433 0.00 4.20 2.33 0.50 0.011 27.3 4.63 57.57 0.2823	csub_017	csub_017 .		13.07	56.09	0.28310	224.1000	27.58	-0.153	28.506	
3 284.8 31.93 58.45 0.28299 232.0944 36.59 0.105 21.857 1.46 4 284.8 7.73 59.96 0.28295 235.9511 40.90 0.0082 19.077 0.00 5 284.8 12.62 60.93 0.28288 240.1139 45.52 0.071 17.716 0.63 6 284.8 12.62 60.93 0.28288 240.1139 45.52 0.071 15.407 0.81 9 284.8 14.84 59.35 0.28253 245.7861 51.78 0.008 5.384 2.30 10 284.8 12.42 60.07 0.28226 248.4370 54.69 0.008 5.384 2.30 csub_018 277.3 44.65 55.57 0.28234 226.3666 27.32 0.153 30.257 1 277.3 44.65 59.32 0.28224 240.6394 45.11 0.000 4.240 2.30 csub_018 277.3		1	284.8	24.29	56.09	0.28308	226.4614	30.25	-0.138	25.836	0.940
4 284.8 7.73 59.96 0.28295 235.9511 40.90 -0.082 19.057 0.40 5 284.8 11.23 60.67 0.28294 237.7946 42.95 -0.071 17.716 0.63 6 284.8 10.05 60.12 0.28284 241.8655 47.46 -0.047 13.593 0.39 9 284.8 10.05 60.12 0.28275 243.3664 49.12 -0.038 10.999 0.91 9 284.8 12.42 60.02 0.28225 248.430 56.69 -0.008 5.384 2.33 0.10 284.8 12.42 60.02 0.28226 248.430 1.010 2.73 3.02 1.33 57.57 0.28236 223.8666 27.32 0.103 1.271.5 0.93 2.77.5 1.88 2.77.3 4.81 2.011 2.52.874 46.11 -0.054 6.820 3.932 -0.026 2.84.83 3.01 -0.105 6.820 3.55		2	284.8	0.86	57.53	0.28303	228.9062	33.01	-0.124	24.518	0.035
5 284.8 11.23 60.67 0.28291 237.7946 42.95 -0.071 17.716 0.63 6 284.8 12.62 60.93 0.28288 240.1139 45.52 -0.057 15.407 0.81 7 284.8 10.05 60.12 0.282875 243.3664 49.12 -0.038 10.999 0.91 9 284.8 14.44 59.35 0.282253 245.7661 51.78 -0.023 7.565 1.96 10 284.8 12.42 60.02 0.282261 224.84.30 3.0257 - - 7.565 1.86 csub_018 . 21.33 57.57 0.28236 223.643 0.10 -0.153 0.257 0.89 csub_018 . 21.33 67.57 0.28236 224.6330 39.32 -0.000 4.0494 2.68 1 277.3 48.16 69.32 0.28226 244.693 0.010 -0.153 3.126 6.62 3.59 <		3	284.8	31.93	58.45	0.28299	232.0944	36.59	-0.105	21.857	1.461
6 284.8 12.62 60.93 0.28288 240.1139 45.52 -0.057 15.407 0.81 7 284.8 5.39 61.06 0.282284 241.8655 47.46 40.047 15.593 0.39 0.91 9 284.8 14.45 59.35 0.282253 245.7861 51.78 -0.023 7.565 1.96 10 284.8 12.42 60.07 0.28226 248.4370 54.69 0.000 4.240 2.03 csub_018 . 21.33 57.57 0.28234 226.3264 30.10 -0.139 27.475 0.89 2 277.3 4.69 58.67 0.28221 224.643 30.0 0.121 25.69 0.81 3 2.77.3 4.69 58.67 0.28221 244.1693 50.00 0.033 11.51 1.494 0.66 4 277.3 23.82 61.69 0.28205 244.716 50.7 0.0055 3.721 61.75 <td></td> <td>4</td> <td>284.8</td> <td>7.73</td> <td>59.96</td> <td>0.28295</td> <td>235.9511</td> <td>40.90</td> <td>-0.082</td> <td>19.057</td> <td>0.406</td>		4	284.8	7.73	59.96	0.28295	235.9511	40.90	-0.082	19.057	0.406
7 284.8 5.39 61.06 0.28284 241.8655 47.46 -0.047 13.593 0.39 8 284.8 10.05 60.12 0.28275 243.3664 49.12 -0.038 10.99 0.11 9 284.8 14.84 59.35 0.28253 245.7861 51.78 -0.023 7.565 1.96 1 284.8 12.42 60.25 0.28226 248.4370 54.69 -0.008 5.384 2.33 csub_018 . 21.33 57.57 0.28226 224.633 3.40 -0.12 25.69 0.18 2 277.3 46.15 59.32 0.28226 234.533 3.32 -0.000 2.033 11.515 1.44 4 277.3 12.95 61.06 0.28226 244.613 50.00 -0.033 11.515 1.44 6 277.3 13.88 61.87 0.28176 252.5474 56.17 0.010 5.302 4.66 3.55		5	284.8	11.23	60.67	0.28291	237.7946	42.95	-0.071	17.716	0.634
8 284.8 10.05 60.12 0.28275 243.3664 49.12 -0.038 10.999 0.91 9 284.8 12.42 60.07 0.282253 245.7861 51.76 -0.023 7.565 1.96 10 284.8 12.42 60.27 0.28226 248.4370 54.69 -0.008 5.334 2.33 csub_018 csub_018 21.33 57.57 0.28224 226.3264 30.40 -0.121 25.269 0.18 2 277.3 48.15 59.32 0.28226 240.6394 46.11 -0.054 14.949 0.86 3 277.3 12.99 61.06 0.28226 240.6394 46.11 -0.054 14.949 0.86 5 277.3 12.95 61.62 0.28216 244.1693 50.00 -0.033 11.51 1.94 6 277.3 13.88 61.87 0.28140 255.529 6.610 0.057 2.243 56.17 0.017 5.70		6	284.8	12.62	60.93	0.28288	240.1139	45.52	-0.057	15.407	0.819
9 284.8 14.84 59.35 0.28253 245.7861 51.78 -0.023 7.565 1.96 10 284.8 12.42 60.07 0.28226 248.4370 54.69 -0.008 5.384 2.30 csub_018 csub_018 124.2 60.25 0.28236 223.6666 7.32 0.133 30.257 2 277.3 46.9 56.67 0.28234 226.3264 30.00 -0.139 27.475 0.89 2 277.3 46.9 50.32 0.28226 240.6394 46.11 -0.054 14.949 0.66 3 277.3 12.99 61.06 0.28226 240.6394 46.11 -0.056 6.620 .355 7 277.3 13.88 61.87 0.28126 248.7814 55.07 -0.005 6.620 .355 9 277.3 13.88 61.87 0.28104 255.5929 56.12 0.035 4.669 3.55 9 277.3		7	284.8	5.39	61.06	0.28284	241.8655	47.46	-0.047	13.593	0.397
10 284.8 12.42 60.07 0.28226 248.4370 54.69 -0.008 5.384 2.30 csub_018 csub_018 21.33 57.57 0.28236 223.8666 27.32 -0.153 30.257 2 277.3 24.63 57.57 0.28234 226.5264 30.10 -0.139 27.475 0.89 2 277.3 46.9 58.67 0.28231 229.2549 33.40 -0.121 25.269 0.18 3 277.3 48.15 59.32 0.28221 244.6334 46.11 -0.056 6.620 3.55 6 277.3 13.88 61.87 0.28205 248.7814 55.07 -0.005 6.620 3.55 9 277.3 13.88 61.87 0.28040 266.072 56.00 0.086 4.694 4.74 10 277.3 22.96 60.91 0.28040 226.0723 55.10 0.058 3.721 61.7 10 277.3		8	284.8	10.05	60.12	0.28275	243.3664	49.12	-0.038	10.999	0.913
11 284.8 12.42 60.25 0.28212 249.6448 56.01 0.000 4.240 2.93 csub_018 csub_018 277.3 24.63 57.57 0.28236 223.8666 27.32 -0.153 30.257 2 277.3 4.66 58.67 0.28231 229.2549 33.40 -0.121 25.268 0.18 3 277.3 4.815 59.32 0.28226 244.633 60.11 -0.054 14.949 0.86 5 277.3 23.82 61.06 0.28226 244.1693 50.00 -0.033 11.515 1.94 6 277.3 23.82 61.69 0.28205 248.7814 50.07 -0.055 6.620 3.59 7 277.3 13.88 61.87 0.28176 252.5474 56.17 0.017 5.700 2.43 8 277.3 12.89 60.91 0.28040 264.0672 56.00 0.086 4.644 .744 10		9	284.8	14.84	59.35	0.28253	245.7861	51.78	-0.023	7.565	1.962
csub_018 csub_018 . 21.33 57.57 0.28236 223.8666 27.32 -0.153 30.257 1 277.3 4.69 58.67 0.28234 226.3264 30.10 -0.139 27.475 0.89 2 277.3 4.69 58.67 0.28221 224.6330 39.32 -0.090 20.004 24 4 277.3 18.415 59.32 0.28226 244.6394 46.11 -0.054 14.949 0.86 5 277.3 23.82 61.69 0.28205 248.7814 56.07 -0.005 6.620 3.59 7 277.3 13.86 61.87 0.28140 255.5929 56.12 0.035 4.669 3.55 9 277.3 12.29 60.69 0.28403 223.7976 2.724 -0.155 30.243 csub_019 29.24 57.48 0.28403 223.7976 27.24 -0.155 30.243 csub_019 278.3 31.66 59		10	284.8	12.42	60.07	0.28226	248.4370	54.69	-0.008	5.384	2.307
1 277.3 24.63 57.57 0.28234 226.3264 30.10 -0.139 27.475 0.89 2 277.3 4.60 58.67 0.28231 229.2549 33.40 -0.121 25.690 0.18 3 277.3 18.15 59.32 0.028229 234.5330 39.22 -0.005 14.949 0.66 5 277.3 12.99 61.06 0.28226 244.0639 46.11 -0.015 14.949 0.66 5 277.3 28.82 61.69 0.28205 248.7814 50.07 -0.005 6.620 3.59 7 277.3 22.97 59.79 0.28095 259.5464 56.17 0.017 5.700 2.43 8 277.3 2.29 60.69 0.28040 264.0672 56.00 0.086 4.694 4.74 11 277.3 2.29 60.51 0.28013 226.3523 30.13 -0.140 275.4 0.33 csub_019 _ 278.3 31.66 59.86 0.28398 230.2651 34.54 -0		11	284.8	12.42	60.25	0.28212	249.6448	56.01	0.000	4.240	2.930
2 277.3 4.69 58.67 0.28231 229.2549 33.40 -0.121 25.269 0.18 3 277.3 48.15 59.32 0.28229 234.5330 93.32 -0.090 20.004 2.40 4 277.3 22.35 61.62 0.28226 244.6393 50.00 -0.033 11.515 1.94 6 277.3 23.82 61.69 0.28205 248.7814 56.07 -0.005 6.620 3.59 7 277.3 13.88 61.87 0.28140 255.529 66.12 0.035 4.669 3.55 9 277.3 22.29 60.69 0.28040 264.0672 56.00 0.086 4.694 4.74 1 277.3 22.29 60.91 0.28040 226.323 30.13 -0.100 4.952 4.50 csub_019 csub_019 29.24 57.48 0.28395 234.7679 39.58 -0.090 0.399 1.54 4	csub_018	csub_018 .		21.33	57.57	0.28236	223.8666	27.32	-0.153	30.257	
3 277.3 48.15 59.32 0.28229 234.5330 39.32 -0.090 20.004 2.40 4 277.3 12.99 61.06 0.28226 240.6394 46.11 -0.054 14.949 0.86 5 277.3 23.82 61.69 0.28205 244.7613 50.00 -0.033 11.515 1.94 6 277.3 13.86 61.87 0.28205 248.7814 55.07 0.005 6.620 3.55 9 277.3 18.61 60.79 0.28140 255.5429 56.12 0.035 4.669 3.55 9 277.3 22.97 59.79 0.28040 266.2933 55.96 0.086 4.694 4.74 10 277.3 22.29 60.91 0.28013 223.7976 27.24 -0.155 30.243 csub_019 . 278.3 13.65 58.54 0.28395 234.7679 39.58 -0.090 20.399 1.54 csub_019 . 278.3 31.60 59.98 0.28395 234.7679 39.58		1	277.3	24.63	57.57	0.28234	226.3264	30.10	-0.139	27.475	0.896
4 277.3 12.99 61.06 0.28226 240.6394 46.11 -0.054 14.949 0.86 5 277.3 23.82 61.69 0.28221 244.1693 50.00 -0.033 11.515 1.94 6 277.3 23.82 61.69 0.28205 248.7814 55.07 -0.005 6.620 3.59 7 277.3 13.88 61.67 0.28176 252.5474 56.17 0.035 4.669 3.55 9 277.3 16.61 60.79 0.28040 264.0672 56.00 0.086 4.694 4.74 11 277.3 22.29 60.91 0.28013 266.2933 55.96 0.100 4.952 4.50 csub_019 csub_019 278.3 31.65 58.54 0.28401 226.3233 31.3 0.140 27.354 0.93 2 278.3 31.65 58.54 0.28392 240.0778 45.48 -0.068 17.085 1.27 5 278.3 35.50 63.02 0.28392 240.0778 45.48		2		4.69	58.67	0.28231	229.2549	33.40	-0.121	25.269	0.186
5 277.3 22.35 61.52 0.28221 244.1693 50.00 -0.033 11.515 1.94 6 277.3 23.82 61.69 0.28205 248.7814 55.07 -0.005 6.620 3.59 7 277.3 13.88 61.87 0.28176 252.5474 56.17 0.017 5.700 2.43 8 277.3 16.61 60.79 0.28140 255.5929 56.12 0.035 4.669 3.55 9 277.3 22.29 60.69 0.28040 266.2933 55.96 0.100 4.952 4.50 csub_019 277.3 22.29 60.91 0.280403 223.7976 27.24 -0.155 30.243 11 277.3 23.267 57.48 0.28395 234.7679 35.86 -0.090 2.0399 1.54 4 278.3 31.60 59.98 0.28395 234.7679 35.86 -0.090 2.0399 1.54 4 278.3 31.60 59.98 0.28362 253.3662 56.40 0.021 6.651		3			59.32	0.28229			-0.090	20.004	2.407
6 277.3 23.82 61.69 0.28205 248.7814 55.07 -0.005 6.620 3.59 7 277.3 13.88 61.87 0.28176 252.5474 56.17 0.017 5.700 2.43 8 277.3 22.97 59.79 0.28040 255.592 56.12 0.035 4.669 3.55 9 277.3 22.97 60.69 0.28040 264.0672 56.00 0.086 4.669 4.74 11 277.3 22.29 60.91 0.28013 223.7976 27.24 -0.155 30.243 csub_019 . 29.24 57.48 0.28403 223.7976 27.24 -0.155 30.243 1 278.3 31.60 59.98 0.28395 230.2651 34.54 -0.117 24.002 0.56 3 278.3 31.60 59.98 0.28395 234.0778 35.48 -0.058 17.09 34.58 -0.024 11.249 3.15		4	277.3		61.06		240.6394	46.11	-0.054	14.949	0.869
7 277.3 13.88 61.87 0.28176 252.5474 56.17 0.017 5.700 2.43 8 277.3 16.61 60.79 0.28140 255.5929 56.12 0.035 4.669 3.55 9 277.3 22.97 59.79 0.28095 259.5464 56.07 0.059 3.721 6.17 10 277.3 22.29 60.69 0.28040 266.0623 55.60 0.086 4.694 4.74 11 277.3 22.29 60.91 0.28013 263.233 55.60 0.100 4.952 4.50 csub_019 . 29.24 57.48 0.28403 223.7976 27.24 -0.155 30.243 1 278.3 13.65 58.54 0.28398 230.2651 34.54 -0.117 24.002 0.56 3 278.3 31.60 59.98 0.28395 234.7679 39.58 -0.090 20.399 1.54 4 278.3 21.76 62.57 0.28392 240.0778 45.48 -0.058 17.085 1		5									1.941
8 277.3 16.61 60.79 0.28140 255.5929 56.12 0.035 4.669 3.55 9 277.3 22.97 59.79 0.28095 259.5464 56.07 0.059 3.721 6.17 10 277.3 22.99 60.69 0.28040 264.0672 56.00 0.086 4.694 4.74 11 277.3 22.92 60.91 0.28013 266.2933 55.96 0.100 4.952 4.50 csub_019 . 277.8 25.29 67.48 0.28403 226.3523 30.13 -0.140 27.354 0.93 2 278.3 13.65 58.54 0.28398 230.2651 34.54 -0.117 24.002 0.56 3 278.3 31.65 58.54 0.28392 240.0778 45.48 -0.058 17.085 1.27 5 278.3 35.50 63.02 0.28386 245.7755 51.77 -0.024 11.249 315		6			61.69	0.28205	248.7814		-0.005	6.620	3.598
9 277.3 22.97 59.79 0.28095 259.5464 56.07 0.059 3.721 6.17 10 277.3 22.29 60.69 0.28040 264.0672 56.00 0.086 4.694 4.74 11 277.3 22.29 60.91 0.28013 266.2933 55.96 0.100 4.952 4.50 csub_019 . 29.24 57.48 0.28403 223.7976 27.24 -0.155 30.243 0.93 2 278.3 13.65 58.54 0.28398 230.2651 34.54 -0.117 24.002 0.56 3 278.3 31.60 59.98 0.28395 234.767 34.54 -0.117 24.002 0.56 4 278.3 31.60 59.98 0.28395 234.767 34.57 6.038 1.27 5 278.3 31.60 6.257 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 26.		7			61.87	0.28176			0.017	5.700	2.436
10 277.3 22.29 60.69 0.28040 264.0672 56.00 0.086 4.694 4.74 11 277.3 22.29 60.91 0.28013 266.2933 55.96 0.100 4.952 4.50 csub_019 csub_019 . 29.24 57.48 0.28403 223.7976 27.24 -0.155 30.243 1 278.3 31.65 58.54 0.28398 230.2651 34.54 -0.117 24.002 0.56 3 278.3 31.60 59.98 0.28395 234.7679 39.58 -0.090 20.399 1.54 4 278.3 31.50 63.02 0.28386 245.7755 51.77 -0.024 11.249 3.15 6 278.3 35.50 63.02 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 24.29 63.29 0.28248 264.9189 56.26 0.090 5.559 3.49 8 278.3 32.94 60.56 0.28074 277.8555 56.04 0.166 <		8									3.557
11 277.3 22.29 60.91 0.28013 266.2933 55.96 0.100 4.952 4.50 csub_019 csub_019 29.24 57.48 0.28403 223.7976 27.24 -0.155 30.243 1 278.3 25.67 57.48 0.28398 230.2651 34.54 -0.117 24.002 0.56 3 278.3 31.60 59.98 0.28395 234.7679 39.58 -0.090 20.399 1.54 4 278.3 31.60 59.98 0.28395 234.7679 39.58 -0.090 20.399 1.54 4 278.3 35.50 63.02 0.28386 245.7755 51.77 -0.024 11.249 3.15 6 278.3 35.50 63.02 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 24.29 63.29 0.28248 264.9189 56.26 0.090 5.559 4.80 9 278.3											6.175
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											4.748
1 278.3 25.67 57.48 0.28401 226.3523 30.13 -0.140 27.354 0.93 2 278.3 13.65 58.54 0.28398 230.2651 34.54 -0.117 24.002 0.56 3 278.3 31.60 59.98 0.28395 234.7679 39.58 -0.090 20.399 1.54 4 278.3 35.50 63.02 0.28392 240.0778 45.48 -0.058 17.085 1.27 5 278.3 35.50 63.02 0.28386 245.7755 51.77 -0.024 11.249 3.15 6 278.3 40.78 63.05 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 26.73 61.82 0.28248 264.9189 56.26 0.090 5.559 4.80 9 278.3 34.37 61.96 0.28074 277.553 56.44 0.166 5.920 5.80 11 278.3 34.437 62.29 0.28026 280.9755 55.98 0.187 6.3			277.3								4.501
2 278.3 13.65 58.54 0.28398 230.2651 34.54 -0.117 24.002 0.56 3 278.3 31.60 59.98 0.28395 234.7679 39.58 -0.090 20.399 1.54 4 278.3 21.76 62.57 0.28392 240.0778 45.48 -0.058 17.085 1.27 5 278.3 35.50 63.02 0.28386 245.7755 51.77 -0.024 11.249 3.15 6 278.3 40.78 63.05 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 24.29 63.29 0.28312 259.8416 56.34 0.059 6.955 3.49 8 278.3 32.94 60.56 0.28169 270.8570 56.16 0.126 4.404 7.47 10 278.3 34.37 61.96 0.28074 277.553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28051 224.0213 27.49 -0.153 31.2	csub_019	csub_019 .									
3 278.3 31.60 59.98 0.28395 234.7679 39.58 -0.090 20.399 1.54 4 278.3 21.76 62.57 0.28392 240.0778 45.48 -0.058 17.085 1.27 5 278.3 35.50 63.02 0.28386 245.7755 51.77 -0.024 11.249 3.15 6 278.3 24.29 63.29 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 24.29 63.29 0.28312 259.8416 56.26 0.090 5.559 4.80 9 278.3 32.94 60.56 0.28169 270.8570 56.16 0.126 4.404 7.47 10 278.3 34.37 61.96 0.28074 277.553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28351 224.0213 27.49 -0.153 31.298 csub_020 csub_020 . 33.44 58.79 0.28351 224.0213 27.49 -0.137 <		-									0.938
4 278.3 21.76 62.57 0.28392 240.0778 45.48 -0.058 17.085 1.27 5 278.3 35.50 63.02 0.28386 245.7755 51.77 -0.024 11.249 3.15 6 278.3 40.78 63.05 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 24.29 63.29 0.28312 259.8416 56.34 0.059 6.955 3.49 8 278.3 26.73 61.82 0.28248 264.9189 56.26 0.090 5.559 4.80 9 278.3 32.94 60.56 0.28074 277.5553 56.04 0.166 5.920 5.80 10 278.3 34.37 61.96 0.28074 277.5553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28050 226.7136 30.54 -0.137 28.254 0.96 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142											0.569
5 278.3 35.50 63.02 0.28386 245.7755 51.77 -0.024 11.249 3.15 6 278.3 40.78 63.05 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 24.29 63.29 0.28312 259.8416 56.34 0.059 6.955 3.49 8 278.3 32.94 60.56 0.28169 270.8570 56.16 0.126 4.404 7.47 10 278.3 34.37 61.96 0.28074 277.5553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28026 280.9755 55.98 0.187 6.313 5.44 csub_020 csub_020 . 33.44 58.79 0.28351 224.0213 27.49 -0.153 31.298 1 280.8 27.30 58.79 0.28350 226.7136 30.54 -0.117 28.254 0.96 2 280.8 17.25 59.62 0.28344 236.2413 41.22 -0.081 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.549</td></t<>											1.549
6 278.3 40.78 63.05 0.28362 253.3662 56.40 0.021 6.651 6.13 7 278.3 24.29 63.29 0.28312 259.8416 56.34 0.059 6.955 3.49 8 278.3 26.73 61.82 0.28248 264.9189 56.26 0.090 5.559 4.80 9 278.3 32.94 60.56 0.28169 270.8570 56.16 0.126 4.404 7.47 10 278.3 34.37 61.96 0.28074 277.5553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28026 280.9755 55.98 0.187 6.313 5.44 csub_020 csub_020 . 33.44 58.79 0.28351 224.0213 27.49 -0.153 31.298 1 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142 0.71 3 280.8 34.82 60.85 0.28341 242.3282 47.97 -0.045											1.273
7 278.3 24.29 63.29 0.28312 259.8416 56.34 0.059 6.955 3.49 8 278.3 26.73 61.82 0.28248 264.9189 56.26 0.090 5.559 4.80 9 278.3 32.94 60.56 0.28169 270.8570 56.16 0.126 4.404 7.47 10 278.3 34.37 61.96 0.28074 277.5553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28026 280.9755 55.98 0.187 6.313 5.44 csub_020 csub_020 33.44 58.79 0.28350 226.7136 30.54 -0.137 28.254 0.96 2 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142 0.71 3 280.8 34.82 60.85 0.28341 242.3282 47.97 -0.045 15.235 1.76 4 280.8 26.90 63.21 0.28321 248.9718 55.27 -0.005											
8 278.3 26.73 61.82 0.28248 264.9189 56.26 0.090 5.559 4.80 9 278.3 32.94 60.56 0.28169 270.8570 56.16 0.126 4.404 7.47 10 278.3 34.37 61.96 0.28074 277.5553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28026 280.9755 55.98 0.187 6.313 5.44 csub_020 csub_020 . 33.44 58.79 0.28351 224.0213 27.49 -0.153 31.298 1 280.8 27.30 58.79 0.28350 226.7136 30.54 -0.111 24.142 0.71 3 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142 0.71 3 280.8 34.82 60.85 0.28341 242.3282 47.97 -0.045 15.235 1.76 4 280.8 26.90 63.21 0.28321 248.9718 55.27 -0.005		_									
9 278.3 32.94 60.56 0.28169 270.8570 56.16 0.126 4.404 7.47 10 278.3 34.37 61.96 0.28074 277.5553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28026 280.9755 55.98 0.187 6.313 5.44 csub_020 csub_020 . 33.44 58.79 0.28351 224.0213 27.49 -0.153 31.298 1 280.8 27.30 58.79 0.28350 226.7136 30.54 -0.137 28.254 0.96 2 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142 0.71 3 280.8 34.82 60.85 0.28344 236.2413 41.22 -0.081 19.632 1.77 4 280.8 26.90 63.21 0.28341 242.3282 47.97 -0.045 15.235 1.76 5 280.8 40.47 63.55 0.28272 257.4998 56.29 0.046											
10 278.3 34.37 61.96 0.28074 277.5553 56.04 0.166 5.920 5.80 11 278.3 34.37 62.29 0.28026 280.9755 55.98 0.187 6.313 5.44 csub_020 csub_020 . 33.44 58.79 0.28351 224.0213 27.49 -0.153 31.298 1 280.8 27.30 58.79 0.28350 226.7136 30.54 -0.137 28.254 0.96 2 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142 0.71 3 280.8 34.82 60.85 0.28344 236.2413 41.22 -0.081 19.632 1.77 4 280.8 26.90 63.21 0.28341 242.3282 47.97 -0.045 15.235 1.76 5 280.8 40.47 63.55 0.28321 248.9718 55.27 -0.005 8.281 4.88 6 280.8 46.01 63.57 0.28272 257.4998 56.29 0.046											
11 278.3 34.37 62.29 0.28026 280.9755 55.98 0.187 6.313 5.44 csub_020 csub_020 . 33.44 58.79 0.28351 224.0213 27.49 -0.153 31.298 1 280.8 27.30 58.79 0.28350 226.7136 30.54 -0.137 28.254 0.96 2 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142 0.71 3 280.8 34.82 60.85 0.28344 236.2413 41.22 -0.081 19.632 1.77 4 280.8 26.90 63.21 0.28341 242.3282 47.97 -0.045 15.235 1.76 5 280.8 40.47 63.55 0.28272 257.4998 56.29 0.046 7.285 6.31 6 280.8 46.01 63.57 0.28272 257.4998 56.29 0.046 7.285 6.31 7 280.8 28.05 63.93 0.28206 264.8032 56.21 0.090											
csub_020 csub_020 . 33.44 58.79 0.28351 224.0213 27.49 -0.153 31.298 1 280.8 27.30 58.79 0.28350 226.7136 30.54 -0.137 28.254 0.96 2 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142 0.71 3 280.8 34.82 60.85 0.28344 236.2413 41.22 -0.081 19.632 1.77 4 280.8 26.90 63.21 0.28341 242.3282 47.97 -0.045 15.235 1.76 5 280.8 40.47 63.55 0.28321 248.9718 55.27 -0.005 8.281 4.88 6 280.8 46.01 63.57 0.28272 257.4998 56.29 0.046 7.285 6.31 7 280.8 28.05 63.93 0.28206 264.8032 56.21 0.090 7.725 3.63											
1 280.8 27.30 58.79 0.28350 226.7136 30.54 -0.137 28.254 0.96 2 280.8 17.25 59.62 0.28346 231.1066 35.48 -0.111 24.142 0.71 3 280.8 34.82 60.85 0.28344 236.2413 41.22 -0.081 19.632 1.77 4 280.8 26.90 63.21 0.28341 242.3282 47.97 -0.045 15.235 1.76 5 280.8 40.47 63.55 0.28321 248.9718 55.27 -0.005 8.281 4.88 6 280.8 46.01 63.57 0.28272 257.4998 56.29 0.046 7.285 6.31 7 280.8 28.05 63.93 0.28206 264.8032 56.21 0.090 7.725 3.63			278.3								5.444
2280.817.2559.620.28346231.106635.48-0.11124.1420.713280.834.8260.850.28344236.241341.22-0.08119.6321.774280.826.9063.210.28341242.328247.97-0.04515.2351.765280.840.4763.550.28321248.971855.27-0.0058.2814.886280.846.0163.570.28272257.499856.290.0467.2856.317280.828.0563.930.28206264.803256.210.0907.7253.63	CSUD_020		200.0								0.000
3280.834.8260.850.28344236.241341.22-0.08119.6321.774280.826.9063.210.28341242.328247.97-0.04515.2351.765280.840.4763.550.28321248.971855.27-0.0058.2814.886280.846.0163.570.28272257.499856.290.0467.2856.317280.828.0563.930.28206264.803256.210.0907.7253.63											
4280.826.9063.210.28341242.328247.97-0.04515.2351.765280.840.4763.550.28321248.971855.27-0.0058.2814.886280.846.0163.570.28272257.499856.290.0467.2856.317280.828.0563.930.28206264.803256.210.0907.7253.63											
5280.840.4763.550.28321248.971855.27-0.0058.2814.886280.846.0163.570.28272257.499856.290.0467.2856.317280.828.0563.930.28206264.803256.210.0907.7253.63											
6280.846.0163.570.28272257.499856.290.0467.2856.317280.828.0563.930.28206264.803256.210.0907.7253.63											
7 280.8 28.05 63.93 0.28206 264.8032 56.21 0.090 7.725 3.63											
x 280.8 30.25 62.51 0.28127 270.5517 56.11 0.124 6.399 4.72											
		8	280.8	30.25	02.51	0.28127	270.5517	50.11	0.124	0.399	4.727

	9	280.8	36.17	61.21	0.28033	277.1010	55.99	0.164	5.223	6.926
	10	280.8	40.32	62.45	0.27923	284.6442	55.85	0.209	6.602	6.108
	11	280.8	40.32	62.75	0.27867	288.6206	55.78	0.233	6.974	5.782
csub_021	csub_021 .		32.56	60.85	0.28198	225.0800	28.69	-0.146	32.154	
	1	273.5	42.26	60.85	0.28197	229.3582	33.52	-0.121	27.328	1.546
	2	273.5	30.73	61.27	0.28194	236.7475	41.79	-0.077	19.485	1.577
	3	273.5	47.05	61.57	0.28191	244.6219	50.50	-0.030	11.064	4.252
	4	273.5	22.12	62.66	0.28172	251.6250	56.16	0.012	6.498	3.405
	5	273.5	30.63	62.75	0.28135	256.9658	56.12	0.044	6.630	4.620
	6	273.5	33.27	62.90	0.28084	263.4347	56.05	0.082	6.850	4.857
	7	273.5	21.97	63.47	0.28020	269.0273	55.97	0.116	7.500	2.930
	8	273.5	27.40	63.23	0.27946	274.0259	55.88	0.146	7.350	3.728
	9	273.5	34.42	62.83	0.27860	280.2844	55.77	0.184	7.063	4.873
	10	273.5	34.13	62.78	0.27760	287.2247	55.64	0.225	7.139	4.781
	11	273.5	34.13	62.78	0.27710	290.6804	55.57	0.246	7.206	4.737
csub_022	csub_022 .		34.82	59.84	0.28185	224.6391	28.19	-0.148	31.647	
	1	282.2	38.99	59.84	0.28184	228.4660	32.51	-0.126	27.327	1.427
	2	282.2	30.37	60.73	0.28181	235.2739	40.14	-0.085	20.588	1.475
	3	282.2	48.86	61.49	0.28179	243.0508	48.77	-0.039	12.721	3.841
	4	282.2	22.58	62.67	0.28161	250.0630	56.15	0.003	6.520	3.463
	5	282.2	32.35	62.49	0.28125	255.4547	56.10	0.035	6.384	5.068
	6	282.2	32.08	62.12	0.28075	261.7783	56.04	0.073	6.083	5.273
	7	282.2	22.11	63.20	0.28014	267.0970	55.96	0.105	7.234	3.057
	8	282.2	36.10	63.02	0.27942	272.8101	55.87	0.139	7.152	5.047
	9	282.2	32.74	62.31	0.27857	279.5664	55.76	0.179	6.543	5.004
	10	282.2	43.42	62.70	0.27758	287.0418	55.64	0.224	7.067	6.145
	11	282.2	43.42	62.81	0.27708	291.3037	55.57	0.250	7.241	5.997
csub_023	csub_023 .		47.06	60.65	0.28056	225.2792	28.92	-0.144	31.732	
	1	276.6	52.43	60.65	0.28055	230.5287	34.83	-0.113	25.816	2.031
	2	276.6	46.21	61.55	0.28051	240.4052	45.85	-0.054	15.703	2.943
	3	276.6	69.83	62.44	0.28032	252.0249	55.99	0.015	6.453	10.821
	4	276.6	39.51	63.84	0.27978	262.9735		0.080	7.921	4.987
	5		43.96		0.27901	271.3312		0.130	8.117	5.416
	6	276.6		63.37	0.27800	280.6605		0.186	7.676	6.411
	7		36.47	64.81	0.27678	289.2403		0.238	9.279	3.931
	8			64.88	0.27539	296.8535		0.284	9.522	4.154
	9			64.23	0.27380	305.6676		0.337	9.080	5.338
		276.6		65.02	0.27201	315.1293		0.394	10.101	4.557
		276.6			0.27140	319.7377		0.421	10.370	4.438
csub_024	csub_024 .			60.61	0.28175	225.2861		-0.144	31.682	
		279.0		60.61	0.28173	229.8414		-0.117	26.546	1.729
	2	279.0	38.99	61.37	0.28169	238.2677	43.48	-0.067	17.895	2.179
	3	279.0	69.86	62.96	0.28166	249.0740		-0.003	7.571	9.228
	4			64.46	0.28121	260.0845		0.062	8.359	4.911
	5			64.50	0.28048	269.0282		0.116	8.497	5.772
	6		49.40	64.19	0.27949	278.8004		0.174	8.313	5.942
	7	279.0	35.66	65.72	0.27827	287.2443	55.72	0.225	9.997	3.567

	8	279.0	43.43	65.48	0.27685	295.0963	55.54	0.272	9.938	4.370
	9	279.0	51.09	64.73	0.27520	304.4796	55.33	0.329	9.399	5.436
	10	279.0	49.75	65.45	0.27333	314.4896	55.09	0.389	10.363	4.800
	11	279.0	49.75	65.63	0.27270	319.4281	55.01	0.419	10.624	4.683
csub_025	csub_025 .		47.74	60.19	0.28182	225.1296	28.75	-0.145	31.438	
	1	287.0	43.89	60.19	0.28180	229.3653	33.52	-0.120	26.661	1.646
	2	287.0	36.68	61.01	0.28177	237.1412	42.22	-0.074	18.783	1.953
	3	287.0	66.07	62.60	0.28174	247.0573	53.18	-0.015	9.423	7.011
	4	287.0	38.77	64.10	0.28139	257.1749	56.12	0.045	7.980	4.859
	5	287.0	49.41	64.26	0.28081	265.6848	56.05	0.096	8.210	6.018
	6	287.0	53.51	64.51	0.28000	275.6174	55.95	0.155	8.565	6.248
	7	287.0	36.92	65.42	0.27900	284.3449	55.82	0.207	9.604	3.844
	8	287.0	44.70	65.12	0.27782	292.2220	55.67	0.255	9.449	4.731
	9	287.0	53.14	64.92	0.27646	301.6640	55.49	0.312	9.423	5.639
	10	287.0	51.04	65.08	0.27490	311.7179	55.29	0.372	9.787	5.216
	11	287.0	51.04	65.12	0.27413	316.6440	55.19	0.402	9.925	5.143

Yan and						
Lin [61]						
R-134a, D						
= 2.0 mm T_sat =						
1_sat = 31 C						
310				15		
				kW/m^2		
	G = 200 kg/m^2s		G = 100	kg/m^2s	G = 50 kg/m^2s	
	X	h	x	h	х	h
	0.12	6200	0.08	4900	0.22	2600
	0.18	5800	0.19	5300	0.4	2300
	0.29	5200	0.32	4900	0.52	2100
	0.38	4800	0.5	4100	0.8	1300
20						
kW/m^2	0.45	4300	0.66	3400		
	0.55	4100	0.68	2600	h	q
	0.71	3400	0.81	2400		
	0.78	2600	0.815	2400	2600	5000
	0.92	2000	0.86	2600	2300	5000
	0.12	5300			2100	5000
					1300	5000
h	q		h	q		
6200	20000		4900	15000		
5800	20000		5300	15000		
5200	20000		4900	15000		
4800	20000		4100	15000		
4300	20000		3400	15000		
4100	20000		2600	15000		
3400	20000		2400	15000		
2600	20000		2400	15000		
2000	20000		2600	15000		
5300	20000					

Table B.3: Yan and Lin [61]

References

D.C. Lowe and K.S.Rezkalla, Flow Regime identification in microgravity two-phase flow using void fraction signals. Int. J. Multiphase flow 25, 433-457 (99)

2 Ghiaasiaan, S.M., Abdul-Khalik, S.I., 2001. Two Phase flow in micro-channels. Advances in Heat Transfer 34, 145-254.

3 S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and micro channels, Experimental Thermal and Fluid Science 26 (2002 389-407

A S. Lin, P.A. Kew, K.Cornwell, Two-phase heat transfer to a refrigerant in a 1 mm diameter tube, International Journal of Refrigeration 24 (2001) 51-56.

5 J.G. Collier and J.R. Thome, Convective Boiling and Condensation, third ed., Oxford University Press, Inc., N.Y. 1996

O V.P. Carey, Liquid phase Change Phenomena: An introduction to the thermophysics of vaporization and condensation process in Heat transfer equipment. 1992

G.F. Hewitt, D.N. Robert, Studies in two phase flow patterns by simultaneous x-ray and flash photography AERE-M-2159 HMSO.

8 D. Baker, "Simultaneous Flow of Oil and Gas," Oil and Gas J, 53, pp 183-195 1954.

[9] T. Som, Satyendra Kumar, Vishwas N. Kulkarni, H^+ ion induced hydrogen depletion from a-C: H films, Nuclear Instruments and methods in Physics Research B 156 (1999) 212-216

10 D.A. Butterworth, A comparison of some void-fraction relationships for co-current gas-liquid flow, Int. J. Multiphase Flow, v1, pp 845-850. 1975

11 V.V. Klimenko, A generalized correlation for two phase forced flow heat transfer, International Journal of Heat and Mass transfer, 31 (1988) 541-552

12 Klimenko, V.V. 1990 A generalized correlation for two phase flow heat transfer, second assessment. Int. J. Heat and Mass Trans. 33: 2073-2088

13 S.G. Kandlikar," Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Sub cooled Flow Boiling, Journal of Heat Transfer, May 1998, Vol. 120 p395 14 L.S. Tong, Y.S. Tang, Boiling Heat transfer and two phase flow ed. 2 1997

15 K.E. Gungor, R.H.S Winterton, "Simplified general Correlation for saturated flow Boiling and comparisons of correlations with data, Chem. Eng. Res Des, Vol. 65, March 1987

16 Thome, J.R., "Boiling in micro-channels: a review of experiment and theory, Int. J. of Heat and Fluid flow (25) 2004 128-139.

17 J.C. Chen, "Correlation for Boiling heat Transfer to Saturated fluids in convective Flow", I & EC Process Design and Development vol. 5 no. 3 July 1966.

18 M.M. Shah, "A General Correlation for Heat Transfer During Subcooled Boiling in Pipes and Annuli," ASHRAE Trans., 83, pp. 202–215.1977

19 R.W. Bjorge, G.R. Hall, W.M. Rohsenow, 1982 Correlations of forced convective boiling heat transfer data. Int. J. Heat Mass Transfer 25, 753-757

20 Liu and Winterton 1991, A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, Int. J. Heat Mass transfer vol. 34, no 11, p. 2759-2766

21 Kandlikar, S.G. 1990, "A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes," ASME Journal of Heat Transfer, Vol. 112, pp. 219-228

22 Kandlikar, S.G., "Development of a flow boiling map for subcooled and saturated flow boiling of different fluids inside circular tubes, ASME Journal of Heat transfer 113 (1991) 190-200

23 Dittus, F.W., Boelter, L.M.K, 1930, "Heat Transfer in automobile radiators of tubular type. University of California Pub. Eng. Vol. 2 pp.443-461

24 V. Gnielinski, New equations for hear and Mass transfer in turbulent pipe and Channel flow, International Chemical Energy 16 (1970) 359-368

25 Petukov, B.S., 1970 Heat Transfer and friction in turbulent pipe flow with variable physical Properties. Adv Heat Transfer 6. 503-565

26 H.K. Forster and N. Zuber, "Bubble dynamics and boiling in heat transfer" AIChE J. 1 532-535, 1955

27 D. Steiner and J. Taborek, 1992. Flow boiling heat transfer in vertical tubes correlated by asymptotic model. Heat Transfer Eng. 13, 43-69.

28 J. R. Thome, Laboratory of Heat and Mass Transfer Faculty of Engineering Science Swiss Federal Institute of Technology Lausanne, Switzerland.

29 Agostini, B., Watel, B., Bontemps, A., Thonon, B., Liquid flow friction factor and heat transfer coefficients in small channels: an experimental investigation. Experimental Thermal and Fluid Science (28) (2004) 97-103.

30 M. Suo, and P. Griffith, "Two-phase flow in capillary tubes". J. Basic Eng. Vol. 86, 576-582 (1964)

31 Ghiaasiaan and Abdul-Khalik 2001 (See #2)

32 S.S. Mehendale, A. M. Jacobi, Evaporative heat transfer in mesoscale heat exchanger, ASHRAE trans. 106 (1) 2000 446-452

33 C. Vlassie, H. Macchi, J. Guilpart, B. Agostini, Flow boiling in small diameter channels, Int. J. of Refrigeration 27 (2002) 191-201.

34 T.N. Tran, M.W. Wambsganss, D.M. France, Small Circular and rectangular-channel boiling with two refrigerants, Int. J. Multiphase Flow 22 (3) (1996) 485-498

35 S.Lin, P.A. Kew, K. Cornwell, Two phase flow regimes and heat transfer in small tubes and channels", Heat Transfer 1998 Proceedings of 11P^{thP} IHTC, vol.2 Aug. 23-28 1998.

36 B. Agostini, B. Watel, A. Bontemps, B. Thonon, "Friction factor and heat transfer coefficient of R134a liquid flow in mini-channels", Applied Thermal Engineering, 22 (2002) 1821-1834

37 J. Lee, I Mudawar, "Two phase flow in high-heat micro-channel heat sink for refrigeration cooling applications: Part II- heat transfer characteristics" Int. Journal of Heat and Mass Transfer (2004)

38 G.M. Lazarek, S.H. Black , Evaporative heat transfer pressure drop and critical heat flux in a small vertical tube with R113, International of Heat and mass transfer (25) 7 (1982) 945-960

39 Z.Y. Bao, D.F. Fletcher, B.S. Haynes, Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages, Int. J. Heat Mass Transfer 43 (2000) 3347–3358

40 W. Yu, D.M. France, M.W. Wambsganss, J.R. Hull, Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube, Int. J. Multiphase Flow 28 (2002) 927–941

41 P.A. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, App. Therm. Eng. 17 (1997) 705–715.

42 T.S. Ravigururajan, Impact of channel geometry on two-phase flow heat transfer characteristics of refrigerants in micro-channels heat exchangers, J. Heat Transfer 120 (1998) 485–491.

43 H.J. Lee, S.Y. Lee, Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios, Int. J. Multiphase Flow 27 (2001) 2043–2062.

44 S. Lin, P.A. Kew, K. Cornwell, Two-phase heat transfer to a refrigerant in a 1 mm diameter tube, Int. J. Refrige. 24 (2001) 51–56.

45 G.R. Warrier, V.K. Dhir, L.A. Momoda, Heat transfer and pressure drop in narrow rectangular channels, Exp. Therm. Fluid Sci. 26 (2002) 53–64

46 Wen, D.S, Y.Yan, D.B.R, Kenning, Saturated flow boiling of water in a narrow channel: time-averaged heat transfer coefficient and correlations, App. Therm. Eng. 24 (2004) 1207-1223

[47] X. Huo, L. Chen, Y.S. Tian, T.G. Karayiannis, Flow boiling and flow regimes in small diameter tubes, App. Therm. Eng. 24 (2004) 1225–1239.

48 Ingo Hapke, Hartwig Boye, Jurgen Schmidt, 'Onset of Nucleate boiling in mini channels'' Int. J. Therm. Sci. (2000) 39 505-513

49 Kennedy, J.E., Roach, Dowling, M.F., G.M, Adel-Khalik, S.I, Ghiaasiaan, S.M., Jeter, S.M., Quershi, Z.H., "The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels", Transactions of the ASME, Vol. 122 Feb. 2000, pp. 118-125.

50 Chedester, R.C., Ghiaasiaan, S.M., A Proposed mechanism for hydro-dynamicallycontrolled onset of significant void in microtubes", International Journal of Heat and Fluid Flow 23 (2002) 769-775.

51 Davis, E.J., Anderson, G.H., 1966. The incipience of nucleate Boiling in forced convection flow "AICHEJ. Vol.12 pp.774-780

52 Haynes, B.S., Fletcher, D.F., Sub cooled flow boiling heat transfer in narrow passages, Int. J. of Heat and Mass Transfer 46 (2003) 3673-3882

53 D. Gorenflo, Pool Boiling, in: Chapter Ha in VDI Heat Atlas, VDI Vela, Dusseldof, 1993.

54 Jae-Mo Koo, Linan Jiang, Lian Zhang, Peng Zhou, Shilajeet S. Banerjee, Thomas W.Kenny, Juan G. Santiago, Kenneth E. Goodson, "Modeling of two-phase microchannel heat sinks for VLSI chips. IEEE 2001.

55 Zhang, L., Wang, E.N., Koo, J., "Enhanced nucleate boiling in microchannels" 2002 IEEE, Int. conf., Micro Electro Mechanical Systems, Las Vegas, pp.89-92.

56 Yen T., Kasagi, N., Suzuki, Y., "Forced convective boiling heat transfer in microtubes at low mass and heat fluxes", Int. J. of Multiphase Flow 29 (2003) 1771-1792.

57 Roach, G.M, Abdel-Khalik, S.I, Ghiaasiaan, S.M., Jeter, S.M., 1999, Low-flow onset of flow instability in heated microchannels Source: Nuclear science and engineering [0029-5639] Roach yr: 1999 vol: 133 iss: 1 pg: 106

58 B. Sumith, F. Kaminaga, K. Matsumura "Saturated flow boiling of water in a vertical small diameter tube", Experimental Thermal and Fluid Science 27 (2003) 789–801

59 K. Stephan and M. Abdulsalam "Heat Transfer Correlations for Natural Convection Boiling, Int. J. Heat Mass Transfer (23) 1980; p.73-87

60 Baird, J.R., Bao, Z.Y., Fletcher ,D.F., Haynes, B.S, "Local flow boiling heat transfer coefficients in narrow conduits", Multiphase Sci. Technol. 12 (2000) 129-144

61 Y. Yan and T. Lin "Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe" International Journal of Heat and Mass Transfer (41) 1998; p.4183-4194

62 Kew PA, Cornwell K. Correlations for prediction of boiling heat transfer in smalldiameter channels. Applied Thermal Eng. 1997; 17:705-715

63 M.G. Cooper, Saturated Nucleate pool boiling- a simple correlation. 1st UK National Heat Transfer Conf. IchemE Symp. Series no 86, vol 2, 1984. p. 785-793

64 V. Dupont, J.R. Thome, A.M. Jacobi, Heat transfer model for evaporation in microchannels. Part II: Comparison with the database, International Journal of Mass and Heat Transfer 47 (2004) 3387-3401

65 M.S. Plesset, S.A. Zwick, The growth of vapour bubble in superheated liquid, J Appl. Phys. 25 (1954) 493-500.

66 S. S. Kutateladze, Boiling Heat transfer, Int. J. Heat Mass Transfer 4, 31-45 (1961)

67 S.W Churchill," Friction-factor equation spans all fluid flow regimes," Chem. Eng., November, pp 91-92, 1977 (1974)

68 S.G.,Kandlikar, and M.E. Steinke. "Flow Boiling Heat Transfer Coefficient in Minichannels – Correlation and Trends." Proceedings of 12th International Heat Transfer Conference, Aug 2002, Grenoble, France, Paper # 1178, 2002.

[69] www.pe.utexas.edu/2phaseweb