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ABSTRACT

A compositional view of user interfaces identifies common
user interface component types and structuring principles
for assembling components into a coherent interface. Both
the components and the principles are reusable across
different interfaces. A user interface is represented as a
composition of primitives, where selection of primitives
and their structuring depend on the application for which an
interface is built, and on a desired dialogue style. A model
based on the compositional view can support a wide range
of different designs and easy transitions from one design to
another. We describe the model and a tool built on top of
it, and give examples of structures built by the tool, to
illustrate how primitives can be assembled to meet
requirements of a specific application and a dialogue style.

KEYWORDS: UI models, Ul design tools, Ul design
space, Ul components, design tool functionality.

INTRODUCTION

User interface (UT) design, being an iterative, exploratory
process [4], puts specific requirements on Ul design tools.
These requirements can be expressed in terms of a design
tool's functionality, static and dynamic [15]. The static
functionality of a tool is its capability to produce different
designs, whereas the dynamic functionality is its capability
to support change, going from one design to another.
Thus, if we have a design tool with which we can produce
both command language and direct manipulation based user
interfaces, dynamic functionality pertains to the ease with
which we can produce direct manipulation interface once we
have the command language one, or vice versa.

If we think of all possible UI designs as forming a design
space, then the coverage of this design space corresponds to
a design tool's static functionality, whereas support for
navigation in the design space, going from one point to
another, corresponds to the tool's dynamic functionality.

The problem with contemporary UI design tools is that
they suffer either from poor static, or poor dynamic func-
tionality, or both. Adding to the problem is the fact that
the design space is not fixed, but expanding — technology
advances are opening new possibilities for human-computer
interaction, making possible new user interface designs,
and most tools cannot keep up with these advances.

The capabilities of a UI design tool are limited by its un-
derlying model. Features of a Ul recognized and explicitly
represented by the model are also potentially manipulable
by the tool. On the other hand, features not explicitly rep-
resented in the model are not manipulable by the tool ei-
ther; in this case a particular solution is "hardwired" in all
Uls produced by the tool, thus leaving it beyond direct de-
signer's control.

Obviously, this affects a tool's functionality. Hard-wired
solutions provided by the tool affect the static functional-
ity, or coverage of the design space. Dynamic functional-
ity is affected as well. Unless the tool has knowledge
about a specific feature of a UI (e.g. command syntax), and
what variations are possible (e.g. prefix, postfix, and
nofix), it cannot assist in changing design with respect to
this feature (e.g. from prefix to postfix command syntax),
though design variations can be produced using lower-level
support.

Navigational support includes not only assistance in mov-
ing from one point in space to another, but guidance in the
process. It is especially important when designing com-
plex Uls, where features interact and changing one aspect of
a Ul affects others. Again, unless the model captures all
features and their interdependencies, the tool cannot offer
this level of navigational support.

Also affecting a UI design tool's functionality is its access
to application semantics. Early UI research was based on
the premise that an application’s UI can be isolated from
the application's functionality, allowing for development of
different Uls for an application without affecting its non-in-
teractive part. The Seeheim model [11] is representative of
this traditional approach. However, separation inherently
limits the range of interfaces that can be produced; in
particular, interfaces providing semantic feedback are not



possible without access to the application semantics.
Accordingly, the underlying model must capture enough
application semantics for a class of Uls to be produced by a
design tool.

We present a compositional view of Uls, which identifies
common UI components and their relationships. Based on
a compositional view, we have defined a model which
meets the above requirements. It supports a wide range of
different designs and easy transitions from one design to
another, and it allows for integrating different kinds of
knowledge needed for guiding a UI designer. The composi-
tional model views a UI as a composition of primitives
from a finite set, structured in a specific way; the exact
structure and primitives used depend on the application for
which a user interface is being built and on a desired dia-
logue style. It integrates the compositional view of Uls,
which identifies major parts of a UI, their roles and their
contribution to UI characteristic, and the UIDE model
[7.8,9] which captures the application conceptual model
and a notion of design transformations.

Examples we use are based on the Circuit Design
application. It has two major classes of objects: gates,
with properties position, angle (orientation), fan-in
(maximum number of inputs), fan-out (maximum number
of outputs), free-in-lines (number of available input lines),
and free-out-lines (number of available output lines); and
connectors, with properties source-gate and destination-
gate. Subclass NOT-gate differs from other subclasses of
gate in that its fan-in property is always 1. Gates can be
created, deleted, moved, rotated, aligned, connected (creates
a connector object), and disconnected (deletes a connector).

RELATED WORK

The compositional model is the successor to the UIDE
model. User Interface Design Environment (UIDE) inte-
grates a control and a data model of the application — the
control model pertains more to the syntax, describing se-
quences of user actions needed to input control information
and how this information relates to application commands
and their parameters, while the data model describes the ap-
plication-specific objects: their types, properties and rela-
tionships. They complement one another and each repre-
sents a natural way of expressing some aspects of the ap-
plication conceptual model. Other systems which integrate
the control and data models are GWUIMS [18] and Serpent
[1l.

Most other UI tools rely on models focusing on either con-
trol or data aspects, which is the reason why they support
only a subset of dialogue styles. Conversational style inter-
faces (e.g. Mike [17], Cousin [12], the UofA UIMS [11],
and Diction [19]), are typical for tools focusing on the
control model. In contrast, direct manipulation interfaces
feature rich interaction semantics and require the data
model. The Higgens system [14], built around the data
model, is tuned for direct manipulation interfaces.
However, it lacks explicit control model and does not
support other dialogue styles. Similarly, the Nephew

system [21,23] supports direct manipulation interfaces,
but also lacks full-fledged global control model and hence
cannot support other dialogue styles.

Even tools supporting different dialogue styles do not pro-
vide specific support for changing designs. An exception
is UIDE [6,9], which provides a set of built-in
transformations specifically aimed to make switching from
one design to another easy. Diction [19] provides limited
support for change; its model captures a notion of
command syntax and the mapping between different syn-
taxes, allowing a designer to change command syntax
easily. The compositional model extends the set of trans-
formations provided by UIDE; it extended the UIDE model
by explicit representation of a Ul and allows for finer tun-
ing of UI designs.

The idea behind the compositional view that a Ul is a
composition and that we can identify a set of Ul building
blocks is not new. Thus, Szekely [21,23] classifies the
communication concepts characteristic for graphical
interfaces, and shows that these concepts fall into a small
number of categories. Based on this classification, Szekely
proposes a standard for an internal interface between an ap-
plication and a User Interface Management System, and a
set of reusable building blocks that can be used to
implement a class of graphical user interfaces. Hurley and
Sibert [13] also focus on the internal interface. Their
CREASE model uses its five modeling primitives —
Conceptual Relation, Entity, Action, State, and Event —to
model the information flow through the internal interface
and how much knowledge about the application it requires.

Szekely [22] also addressed constructing presentation
component of a UI from the graphical building blocks; he
proposed a template-based method for composing widgets
and tying them to application objects. Others have
addressed input devices and interaction techniques. Card,
Mackinley, & Robertson [5] propose a model that
represents elementary devices as 6-tuples, and includes
operators for composing elementary devices into more
complex devices. Bleser and Sibert [3] propose the input
model that also incorporates human factors criteria of uses
of input devices, and serves as a basis for a tool for guiding
a designer in selecting interaction techniques.

Sukaviriya [20] integrates into the UIDE model a
framework for providing context-sensitive animated help,
which also includes a model of interaction techniques.
Tatsukawa [24] proposed a model consisting of a set of
primitive components which can be manipulated
graphically into an event-flow graph describing user
interactions. However, his components do not provide
direct support for handling application concepts (other than
callbacks to application functions which handle various
events), but are rather suited for defining interaction tech-
niques.

The compositional model goes beyond past models by pro-
viding unified framework integrating the Ul model and the
application conceptual model. It does not focus on a set of



primitives characteristic only for a specific type of inter-
faces, or a dialogue style, but it provides a set of generic
component types common across different dialogue styles,
or combination of dialogue styles, including multimedia,
multimodal interfaces [16].

COMPOSITIONAL VIEW OF USER INTERFACES

Ul Characteristics

A UI of an application is the part of the application in
charge of the communication with a user. The rest of the
application is a non-interactive part, providing the applica-
tion functionality. Conceptually, we model this as sepa-
rated parts, though the separation need not be clearly mani-
fested in a physical implementation. A UI facilitates
communication between the application functional part
(from now on, referred to as the functional part ) and a user.
The communication consists of the information exchange
in both directions: from the user to the functional part (user
inputs), and from the functional part to the user (the appli-
cation feedback). We consider characteristics of the com-
munication on two levels: surface level, as seen by the
user, and internal level, as seen by the application (i.e. the
functional part).

On the surface level, the communication between the user
and the application is characterized by its syntax, interac-
tion techniques, and feedback. Syntax pertains to sequenc-
ing of inputs and outputs, that is, the order in which units
of information are communicated from the user to the ap-
plication and back. Interaction techniques are methods of
using input devices that the user can employ to specify in-
puts. Finally, feedback pertains to the ways of presenting
information to the user, that is, the way of encoding the
output information. Differences on the surface level are
relatively easy to spot; they are what makes Uls look and
feel distinctive — the form that information exchanged takes
is different.

Internally, regardless of surface differences, all Uls to the
same functional part must communicate the same type of
information. What concerns the application functionality
is the content of the information exchanged, not its form.

A distinction between the information content and the in-
formation form is very important. The content of the in-
formation a UI communicates depends on the application
functionality, not on the UI itself. The application’'s in-
formation needs determine what is to be communicated via
the UL In contrast, the UI establishes the way this infor-
mation is actually communicated. All Uls belonging to
the same application must be able to communicate the
same information content, e.g. an object's type and proper-
ties, but they may differ in the information form.

There are two aspects of the communication that a UI can
vary: how and when communication takes place. How cor-
responds to the mapping, performed by the U, between in-
ternal representation of the information, used in communi-
cations with the application functional part, and external

properties presented to and manipulated by the user. On
the input side, hiow depends on the interaction techniques
used to specify a piece of information. Thus, the user can
specify a position either by typing its coordinates, or by
selecting it by pointing. Similarly, the user can specify a
tone by typing its specification, by creating a graphical
symbol corresponding to the tone, or by playing it on a
keyboard. On the output side, how depends on the choice
of output medium and properties in that medium used to
represent properties in the application domain. It is possi-
ble to represent properties in one domain via properties in
another domain; what this requires is establishing a proper
set of associations and conventions. For instance, a musi-
cal piece can be presented by playing it, e.g. using a syn-
thesizer, or it can be presented graphically using musical
notation; however, to understand the graphical representa-
tion, the user must be familiar with the music notations.
A contrasting example would be representing graphical
properties using sound, e.g. using a musical pattern (e.g.
an earcone [2]) to represent object type, and volume and
pitch to represent its scalar properties such as size and
orientation.

The other aspect of communication, when, corresponds to
syntax, or sequencing of the information exchange events.
Similarly to how, when also pertains to both directions of
the information exchange, input and output events. The
sequencing has three parts to it: sequencing of user inputs,
sequencing of output events comprising the feedback, and
timing of feedback events with respect to the user inputs
causing them.

Sequencing of user inputs corresponds to the order in which
information units are entered. Variety here includes more
than just a set of permutations of inputs on the level of in-
dividual actions, such as those corresponding to prefix,
postfix, or some other syntax. It also considers default and
global values of information units, which break into a di-
rect correspondence between the information content that a
user specifies and the information content the UI passes to
the application functional part. If an information unit has
a default value, that means that the user does not have to
specify it (it is optional); if the user chooses not to, the
UI will use a designer defined default value when passing
information to the functional part. To the functional part,
it is transparent whether a value comes from the user, or
the UI has obtained it in some other way. In the case of
global values, the UI designer does not specify the value at
design time, rather the user does this at run time, using
special actions provided by the Ul designer. With default
values, we have a situation when a Ul passes the informa-
tion to the functional part even when the user does not
specify it. In the case of global values, we have the oppo-
site situation as well — the UI does not pass to the UI the
information the user did specify, but stores it internally.
This is an important property of a UI, that it can store in-
formation and use it at some later stage, or even reuse it
repeatedly.



In the same way a Ul can buffer and reorder user inputs, it
can buffer outputs when providing feedback. A situation
when this may be useful is when an object goes through a
sequence of changes, and interim states are not of interest,
hence require no in-between feedback. A contrasting exam-
ple is the animation of transition from one state to another
when Ul interpolates the interim states an object has to go
through, thus generating more feedback than asked for by
the functional part.

A UI can control timing of feedback events with respect to
the user inputs causing them. Feedback can be provided
immediately after each user input (we denote this as
dynamic feedback), or it can be delayed until after a
sequence of user inputs is completed (static feedback).
Thus, when moving an object, feedback can be given for
each new position, or only after the final position is
selected. More specifically, in a graphical editor, when
moving a shape, the shape can follow the cursor, or simply
jump to a new position. Again, these variations are the
result of different Uls; the functional part remains the
same, but the UI can buffer and reorder input and output
events.

Building Blocks of Uls — Functional Components
As we have seen, a Ul is not just a passive transducer of
information between a user and the application functional
part. It performs tasks falling into three major categories:

» Map user inputs into internal representation and internal
representation to external representation;

» Buffer information, both that coming from the user and
from the functional part;

 Control information flow, where information goes to and
comes from.

These tasks are common for all Uls - communication is
inherent to an interactive application; buffering occurs even
if default and global values are not used, as information
communicated from a user must be stored somewhere while
all pieces of information needed for carrying out an action
are collected; controlling information flow is necessary
since there are multiple sources and destination of
information. These components are necessary parts of a
Ul, because they perform mandatory UI tasks. A Ul can
also include other components, for performing optional
tasks, such as error-recovery and help. These tasks belong
to the Ul because they do not contribute to the
application's functionality, but to the quality of its UL. On
the other hand, they are optional since a Ul can function
without them, though a user will probably perceive such a
UI as of lesser quality. Figure 1 represents a Ul as a
composition of three kinds of components -
communication, buffering, and control - performing the
mandatory tasks mentioned above, and other component for
optional UT tasks. In the rest of this section we further
subclass the mandatory component types.

Application External
Functionality User Interface World
Semantic * * commu-
ACion [ ] control nication j=e- ﬁ User
Routines * +
bufferring

Figure 1 — A Compositional View on a User Interface

Communication Components. While the role of a Ul as a
whole is to exchange information between a user and an
application, the communication components perform the
part of the exchange involving the user. While doing this,
they typically transform the information: input is converted
into internal form which can be stored in the Ul itself
before passing it to the application; and, internal form is
transformed into the form used to present information in
the external world. Each instance of a communication
primitive acts as a converter, mapping one information
form into another, and is characterized by the mapping it
performs. A primitive is selected based on its characteristic

mapping.

The communication components category has two sub-
classes:

« Interaction techniques
+ Presentation objects

Interaction techniques are defined as methods of using input
devices for producing desired types of input [10]. They
map external input into internal form. An interaction
technique can be simple, such as "push button”, or com-
posite, such as "drag: push button, move mouse, release
the button”. Each interaction technique is characterized by
(1) the input device it uses, (2) the interactions it takes
upon these devices, and (3) outputs it produces — what
interaction tasks it is good for. Based on these
characteristics we can select an interaction technique based
on available input devices and the required interaction task,
and also detect possible conflicts — whether two techniques
that can be enabled simultaneously have (leading)
interaction steps in common.

Presentation objects are defined as a set of presentation rou-
tines which map given internal information form into de-



sired presentation properties, such as color, size, shape, or
tone pitch.

The set of communication primitives (instances of com-
munication components category) is open — as technologi-
cal advances are constantly bringing new possibilities for
communication exploiting new external information forms,
new primitives are being added to the set. The primitives,
together with descriptions of their characteristics, are orga-
nized as a catalog, or a library. They are selected from the
catalog based on requirements of application semantics
(primitives must support a specific information type) and
desired dialogue styles (must have a specific external form).

Buffering components. Primitives belonging to this cate-
gory maintain the context of a UL Contrary to the com-
munication primitives, the buffering primitives do not per-
form any conversion of information, but serve as passive
repositories of information. The buffering components
category has three subclasses, each maintaining a different
aspect of the overall Ul context:

« Action-object — for the context pertaining to individual
application actions,

» Object-prototype — for the context pertaining to applica-
tion objects, and

« Blackboard — for the context pertaining to the Ul state.

During the activation of an action, the action-object primi-
tive keeps all (known) pieces of information needed to per-
form the action, decoupling the order in which these pieces
of information are specified from the order in which they
are passed to the application functional part. Between the
activations, the action-object instance keeps the informa-
tion which is reusable across multiple activations of the ac-
tion and specific to that action, such as local default values
and partially-global values for action parameters. These de-
fault and global values may have corresponding object at-
tributes, but are kept as the part of action's context because
the action may use different default or global values. In
other situations there may not be a corresponding object at-
tribute; then keeping default or global values in the action-
object primitive is the only alternative. For instance, ver-
tical-alignment parameter in align command does not have
corresponding object attribute.

The object-prototype primitive keep global properties for
each application object class. These include default at-
tribute values and reusable (factored) attribute values. Both
the action-object primitives and the object-prototype primi-
tives are instantiated to match their corresponding applica-
tion actions and objects. For instance, action-object primi-
tives must have a slot for each unit of information it uses,
i.e. for each action parameter. Additional slots may be
needed for default and global values defined specifically for
its corresponding action. Similarly, object-prototype prim-
itives must have a slot for each default or global value its
properties may have.

Both the action and object related contexts implicitly de-
scribe some aspects of the Ul state. The context not cap-
tured there is maintained in a different set of primitives, the
blackboard primitives. They have in common that they
post "public" information accessible to all, which is not
the case with the action-object and object-prototype primi-
tives. The posting include state information for maintain-
ing the sequencing and information flow control, and prop-
erties of sets, e.g. sets of currently selected objects, non-se-
lected objects, and clipboard objects. Additional primitives
may be used to maintain history context (that is, not only
what the current context is, but how we got here), but we
are not modeling the history context for now.

Control Components. Primitives belonging to this cate-
gory tie in all parts of a Ul in a coherent whole. They link
communication and buffering primitives and application
semantic routines and maintain and direct information flow
between all these primitives. Control primitives not only
pass information, but decide where each piece of informa-
tion goes to and where it comes from. Their role spans
three major tasks and there is a subclass corresponding to
each of the three tasks:

» Information flow control,
» Sequencing control, and
« Event propagation subclass.

The first subclass, information flow control, maintains in-
formation flow among primitives, thus integrating func-
tional parts of a Ul into a single structure. Its primitives
act as intermediaries in obtaining information required by
the action and they know where to look for each piece of
information, whether to get it from a communication prim-
itive, or from a buffering component, and which one.
They are specialized according to the nature of the informa-
tion they pass and what it is used for. The information
user provides may be (1) a value for an action’s parameter,
or (2) an event aimed to change the action's state. Action
parameters can pertain to an object selection (either object
class or instance), or a data value (typically corresponding
to an object attribute); the corresponding specialized primi-
tives are select-object and get-attribute. We distinguish the
following events for changing an action’s state: select-ac-
tion, cancel-action, invoke-action, suspend-action, and re-
sume-action; these are also the names of corresponding
specialized primitives handling those events. There are no
explicit events for enabling/disabling an action because the
user does not enable/disable actions directly, but it is the
side effect of other actions. Whether the user has to explic-
itly signal events for the primitives listed here or not, de-
pends on a specific UI design. For instance, invoke-action
event is specified only if confirmation is required, other-
wise this primitive will "fire" automatically as soon as all
necessary information is collected and will pass the infor-
mation to an application's semantic action routine. Also
belonging to this category is bundle specialized primitive.



It connects other information flow control primitives to a
single communication primitive.

The second subclass, sequencing control, maintains the rel-
evant UI context; it updates the context whenever some-
thing potentially affecting information flow control primi-
tives happens, and it constantly evaluates the context to
enable/disable those primitives. The two tasks are per-
formed by specialized primitives: postconditions are updat-
ing the context, while preconditions are evaluating it.

Finally, the third subclass, event propagation, propagates
events of interest, possibly performing relation detection
and enforcement. While pre- and post-conditions also
propagate events when enabling or disabling other
primitives, they do it indirectly through context updates.
Event propagation primitives do this directly — they
monitor an event of interest and, when it happens,
propagate it right to a desired target. Doing so, they effec-
tively link other primitives and establish a flow of infor-
mation between them. In that sense they complement in-
formation flow control primitives — they are specialized to
monitor specific events, which do not have to originate
from the user inputs.

Other Components. This subclass includes primitives
which go beyond the minimal Ul in embodying additional
knowledge about the UI domain. They include common
interface objects and actions, functional, and "advanced"
primitives. Interface objects and actions are comparable to
application objects and actions, but in the Ul domain.
They allow reuse of commonly used interface objects, such
as windows, and buttons, and actions manipulating them,
such as scroll-window, push-button, and are closely related
to communication primitives which use the same interface
objects [20].

Functional primitives perform standard functions com-
monly needed in different Uls and applications, such as
name management, clipboard management, data-base man-
agement, and set management. Primitives for name man-
agement are used to provide a unique name or identifier for
an entity. Clipboard has become common way of informa-
tion exchange between different processes, or between parts
of the same process, and this exchange is facilitated by cut,
copy, and paste primitives. Data base management en-
compasses instantiating and deleting object instances, and
modifying, inspecting, and saving attribute values. Set
management primitives include primitives for selecting and
deselecting objects, for adding objects to the set, and for
removing objects from the set. Finally, the advanced prim-
itives include primitives for maintaining history, providing
various forms of help, and for error recovery. UIDE
[8,9,20] demonstrated some possibilities in providing
automatically generated help and history mechanism, and
we plan to expand work in this direction

Compositional View and Reusability

The compositional view offers several important character-
istics which give us a leverage for building UI design

tools. One is that there is a finite set of component types
that can be found in any UL. However, the set of primi-
tives (instances of those component types) is not fixed —
it is open to expand to accommodate technology advances
opening new ways of communicating information and
allowing for creation of new instances of communication
components.

Another important characteristics is that these components
are reusable across different interfaces and different applica-
tions. While a user interface as a whole is not generally
reusable across applications, because we cannot just plug
any Ul into any application, its parts are. The user inter-
face as a whole is application semantics dependent, which
is why it cannot be easily reused. Its building blocks are
also application dependent, but to a lesser extent. Selection
of primitives is driven primarily by the application
semantics, that is, the types of information they must
handle. But, the same primitive, handling specific infor-
mation type, can be reused across different user interfaces
and applications.

Structuring of components is also application dependent,
and it makes up for the rest of the application specificity
that a UI has, but is not captured in its components.
Accordingly, the resulting structure is not directly reusable
across applications and Uls, but basic structuring principles
are. This reusability of components and structuring
principles is what makes the compositional view an
excellent framework for developing highly functional
design tools.

EXAMPLES

Different UlIs are produced by replacing individual primi-
tives and changing the way the composed parts are struc-
tured. By replacing one instance of the communication
component with another, handling the same information
type, we can change the external form of information as
seen by the user. Different syntaxes can be achieved by
changing the control and buffering components. Thus, we
can control when and how information is communicated by
selecting different instances of components and structuring
them differently, resulting in different dialogue styles. We
illustrate this with examples showing how to compose Ul
structures for two representative commands from our
sample application, move-gate and create-gate.

Move-gate command has two parameters, object to be
moved and position where to place the object. The initial
design we consider has confirmation mode and cancel op-
tion enabled, and only type-in interaction technique en-
abled. Figure 2 shows the resulting structure. On the left
hand side are information-flow-control primitives instanti-
ated for action parameters (cm-so-move-object for object
parameter, and cm-ga-move-position for position parame-
ter), and for changing the action's state (cm-sa-move for se-
lecting the action, cm-ca-move for canceling, and cm-ia-
move for invoking its semantic action routine). All in-
formation flow control primitives are connected to aoi-
move buffering primitive for maintaining the action's con-
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text. FEach of them is also connected to a pair of
sequencing control primitives, a pre- and a post-condition.
Boxes link-to-aoi, cm-has-postcondition and cm-has-
precondition symbolize these relations. Each information
flow control primitive is associated with an interaction
technique — in this case type-in — represented by a link-to-
itec relation in the white box below the primitive's name.
To keep the diagram simple, we did not show buffering
primitives not directly related to this action, or eveni-
propagation primitives monitoring the state of aoi-move
primitive.

The structure supports the following type of interaction. A
default design assumes the prefix syntax, therefore all
information flow control primitives are disabled when cm-
sa-move is disabled (the action must be selected first).
Once it is enabled and the user specifies required input, it
(i.e. its postconditions and other primitives' preconditions)
enables other information flow control primitives (except
cm-ia-move — semantic action routine cannot be invoked
before all necessary information is provided); after that they
can accept the user input as well. Once both object and
position are specified, the user can complete action by
providing input required by cm-ia-move. Or, the user can
cancel the action at any time.

Now we modify this design to use different interaction
techniques (position can also be specified by pointing).
We also bundle primitives for selecting the move action
and its object parameter. This means that we don't have to
explicitly and separately specify an event for selecting the
action, but when we select object, the action is selected as
well. As a result, syntax changes and is no longer prefix.
Figure 3 illustrates a structure for this new design. Among
changes we can see is a new primitive, cm-bsa-move,
which is an instance of bundle. Also, bundled primitives
are no longer linked to any interaction technique, but to
their bundling primitive instead; it is in turn linked to
interaction technique which can deliver information for all
bundled primitives. Move command in this design works
simply by selecting object and a new position for the
object.

We can further modify a design, e.g. by changing feedback
style of cm-ga-move-position primitive (corresponding to
parameter position) to dynamic, attaching a continuous in-
teraction technique which sense each mouse move. Move
command would now give impression of direct manipula-
tion: once we select a gate, it will follow the mouse until
we confirm the action or cancel it. Confirmation may in
turn be associated with mouse click; if the object is se-
lected by push-button, then we get interaction where we
push button over the object, start dragging it, and release
the gate by releasing the button. Another way to achieve
the same effect is to bundle the primitive for position pa-
rameter together with already bundled primitives and attach
the resulting bundle to dragging composite interaction
technique. This example is not shown here.

Figure 4 shows the structure for create-gate command. Itis
similar to move structure, but more complex, with more
primitives, since create command has more parameters.

COMPOSITIONAL MODEL

A compositional view offers a potential for a rich static
functionality. As shown in the previous section, different
designs can be produced by replacing individual primitives
and rearranging their structure; these designs range from
conventional command language interfaces to direct manip-
ulation interfaces, and, with adequate set of communication
primitives, can be extended to virtual reality interfaces as
well. While this is powerful, there is still a problem of
assembling interfaces from the the set of primitives identi-
fied in the compositional view.

It is possible to generate a Ul from these primitives di-
rectly — either graphically or by writing the code "by hand",
without additional assistance from any tool. The latter is
what we were doing in our pilot version of the tool based
on the compositional view. We were modifying designs
by changing specifications of individual primitives.
Compositional rules also identify structuring principles and
how changes in the structure affect the resulting UL Using
these principles, a UI can be generated automatically, and
later changed in a systematic way to conform to
requirements of an application and of a desired dialogue
style. This is done in the compositional model, which
integrates the compositional view with the UIDE model.
It thus unites the UI model with the application conceptual
model, enabling utilization of those structuring principles
— the application conceptual model captures knowledge
about the application semantics and can therefore drive
rules for generating Uls, which are in turn based on the
structuring principles we identified using compositional
view of Uls.

The compositional model has four major parts:
» Modeling primitives,

« Composition rules,

« Transformation rules, and

» Conflict detection and resolution rules.

Modeling primitives include both UI primitives we dis-
cussed earlier, and the application modeling primitives
based on the concepts in the UIDE model [7,9,10].

Composition rules establish relationship between the ap-
plication modeling primitives and the UI primitives. They
capture structuring principles and automatically generate a
(defaulf) UI based on the application conceptual model.
Figure S illustrate this process. It shows how create appli-
cation action and its parameters are mapped into their corre-
sponding UI primitives. Boxes link-to-cm-primitive repre-



sent this relation. We see that the action is mapped into
its state-changing primitives and its buffering primitive.
Each action parameter is mapped into a information flow
control primitive. Fan-in-create parameter is a special case.
1t corresponds to fan-in attribute of gate and its allowable
values depend on which object is selected. It is mapped to
two information flow control primitives which handle dif-
ferent possible values for not-gate and for all other gate ob-
jects. Their preconditions capture dependencies between pa-
rameters and will enable the right primitive once object
type is known (a value of parameter obj-create). Note that
cm-ga-create-not-gate-fan-in primitive, which handles fan-in
value for NOT-gate, is not linked to any interaction
technique — it does not need any input since the value is
predefined (equal 1). The example illustrates that the
compositional model is powerful enough to capture
complex dependencies between UI components and, what is
also important, the composition rules can handle those
dependencies automatically.

Transformation rules complement composition rules by al-
lowing easy access to other (non-default) designs. They are
a composition model's vehicle for navigation in the design
space, adding to its dynamic functionality. For instance,
design changes described in the previous section are easily
made applying appropriate transformations.

Finally, conflict detection and resolution rules utilize
knowledge about individual UI primitives and their interac-
tion to detect potentially invalid design. Currently, we de-
tect ambiguous situations in which the same user's input is
mapped to different interpretations. This can be extended to
detect conflicts on the output side as well — for instance,
mapping different internal values into the same external
value. The system also offers the assistance in resolving
detected conflict, typically by changing the interaction
techniques, or modifying dialogue syntax [16].

IMPLEMENTATION

We are currently working on the third version of our tool
based on the compositional view, and later the composi-
tional model. The first one was the pilot version, featuring
only Ul primitives without accompanying composition and
transformation rules. Assembly of a UI and its modifica-
tions had to be done by changing the original specification.
Based on the experience with this version we refined the
representation of Ul primitives, and integrated the UIDE
model, as well as automatic composition, transformation
rules, and conflict detection and resolution rules. The first
two versions were done in Inference Corp's Art3.1 and
Common Lisp, on Sun 3/60 and HP9000 platforms.
Figures 2-5 are for instance created by this version of our
tool; all structures shown are automatically generated. We
are now porting our system to Art4 and CLOS, running on
SparcIl.

Using Art enables us to combine rule-based and object-ori-
ented programming. All primitives are defined as Art
schemata, which makes subclassing easy, and also makes
the resulting structure visible to pattern-matching rules

which check design for conflicts and inconsistencies.
Behavior of a primitive is implemented by methods at-
tached to its corresponding schemata, and by active values
and pattern-matching rules. Event propagation subclass of
primitives is completely implemented via active values and
pattern-matching rules.

SUMMARY

The existence of the finite set of primitives, or building
blocks, and of the basic set of structuring principles is
what makes Ul design tools possible. We have presented
the compositional view of user interfaces which identifies
the set of common Ul primitives and structuring principles
and is a significant step in building the Ul domain knowl-
edge needed for developing fully-functional Ul tools. We
showed how UI primitives can be used to build various Ul
designs, and illustrated how it can be easily modified to
produce different dialogue styles.

We have integrated the compositional view into the UIDE
framework; the resulting compositional model unites the
UI model and the application conceptual model. The UI
model features common Ul primitives which, with adequate
library of communication primitives, can represent a wide
variety of different Uls. Add to this composition and trans-
formation rules for automatic generation and easy modifica-
tion of Uls, and we get a framework for a fully functional
Ul design tool capable of delivering rich static and dynamic
functionality.

We are in the process of further enhancing the set of trans-
formations, to include high-level transformation that would
capture knowledge of differences between typical dialogue
styles and enable designer to go directly between such de-
signs. We are also improving navigational support, to
recognize and provide assistance for more conflicts and de-
sign inconsistencies.
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