
In presenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgia
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspection and
circulation in accordance with its regulations governing
materials of this type. I agree that permission to copy
from, or to publish from, this dissertation may be granted
by the professor under whose direction it was written, or,
in his absence, by the Dean of the Graduate Division when
such copying or publication is solely for scholarly purposes
and does not involve potential financial gain. It is under­
stood that any copying from, or publication of, this dis­
sertation which involves potential financial gain will not
be allowed without written permission.

7/25/68

A QUADRATIC PROGRAMMING APPROACH TO THE SOLUTION

OF THE 0-1 LINEAR INTEGER PROGRAMMING PROBLEM

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

by

Jeffery Lynn Kennington

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Industrial and Systems Engineering

Georgia Institute of Technology

August, 1970

A QUADRATIC PROGRAMMING APPROACH TO THE SOLUTION

OF THE 0-1 LINEAR INTEGER PROGRAMMING PROBLEM

Approved:

/}

Date Approved by Chairman: * ^ ' ^ °

ii

ACKNOWLEDGMENTS

I gratefully acknowledge the assistance, council, and encourage­

ment of Dr. D. E. Fyffe. Without his help and encouragement, this

research would not have reached a successful completion. The numerous

hours Dr. Fyffe spent helping the author are certainly appreciated.

Special thanks are also due to Drs. C. M. Shetty and J. J. Jarvis

who served on the reading committee. Both made valuable suggestions

concerning the proofs of many of the theorems which greatly improved

the original manuscript.

Finally, I would like to express my thanks to Mrs. Peggy Weldon

for an excellent typing job.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ii

LIST OF ILLUSTRATIONS iv

LIST OF TABLES v

SUMMARY vi

CHAPTER

I. INTRODUCTION 1

II. SURVEY OF INTEGER PROGRAMMING 6

Cutting Plane Techniques
Branch-and-Bound Methods of Enumeration
A Stochastic Approach to Discrete Programming
A Boolean Approach to Discrete Programming
Duality Theory in Discrete Programming

III. JUSTIFICATION FOR THE QUADRATIC PROGRAMMING APPROACH
TO THE SOLUTION OF THE 0-1 PURE INTEGER PROGRAMMING
PROBLEM 28

Relationship Between the Discrete Linear Problem
and the Continuous Quadratic Problem

Determination of the Penalty Cost Coefficient

IV. AN ALGORITHM FOR THE SOLUTION OF THE PURE 0-1
INTEGER PROGRAMMING PROBLEM 33

Solution Procedure for the Quadratic Problem
A Solution Procedure for the Reduced Quadratic

Problem
Location of a Feasible Integer Point
Determination of Redundant Constraints
An Algorithm for the Maximization of the

Special Quadratic Programming Problem
Example

V. COMPUTATIONAL EXPERIENCE 78

VI. CONCLUSIONS AND RECOMMENDATIONS 81

LITERATURE CITED 84

LIST OF ILLUSTRATIONS

Figure Page

1. Illustration of Ritter's Partitioning Method 36

2. Flow Chart for 0-1 Programming Algorithm 41

3. Explicit Enumeration Tree Search 50

4. Implicit Enumeration Tree Search 52

5. Implicit Enumeration Tree Search 55

6. Illustration of a Type A Geometrically
Redundant Constraint 56

7. Illustration of a Type B Geometrically
Redundant Constraint 57

8. Complete Flow Chart of the Integer Programming

Algorithm 63

9. Feasible Region of Example Problem 67

10. Illustration of First Cutting Plane
(Iteration l) 68

11. Illustration of Second Cutting Plane
(Iteration 1) 71

12. Illustration of Third Cutting Plane
(Iteration 2) 72

13. Illustration of Fourth Cutting Plane
(Iteration 2) 74

14. Illustration of Fifth Cutting Plane
(Iteration 3) 75

15. Illustration of Sixth Cutting Plane
(Iteration 3) 77

V

LIST OF TABLES

1. Comparison of Cutting Plane Methods and the
Quadratic Method 12

2. Comparative Computational Experience 80

Table Page

vi

SUMMARY

This thesis presents a new algorithm for the solution of the

0-1 linear integer programming problem. The algorithm is a specializa^

tion and modification of a quadratic prograiiiming algorithm by Klaus

Ritter for the maximization of a convex quadratic function subject to

linear constraints. The algorithm as presented also incorporates the

branch-and-bound algorithm of Egon Balas for the solution of the 0-1

linear integer programming problem. Piniteness and optimality of the

algorithm are proven, and the computational experience developed at

this writing is reported.

1

CHAPTER I

INTRODUCTION

Since the development of the simplex method for solving linear

programming problems by George Dantzig in 1947, researchers in all

fields of applied mathematics have been drawn to the interesting field

of mathematical programming. One particular area of mathematical pro­

gramming which is, at present, or prime interest to operations researchers,

industrial engineers, and applied mathematicians, is that of discrete or

integer programming. The best explanation for this interest is that

numerous practical problems can be formulated as integer linear pro­

gramming problems. Scheduling, capital budgeting, resource allocation,

and distribution problems are but a few examples of where integer linear

programming problems arise.

Before 1959, problems which required integer solutions were

usually solved by rounding optimal linear programming variables to the

nearest integer. Although this is often adequate, especially when the

variables are relatively large, it is difficult in some cases to obtain

near optimal solutions to the discrete problem. It is often difficult

if not impossible to see in which way the rounding should be done to

maintain feasibility. After a solution has been rounded, it may even

become necessary to change one or more of the variables by one or more

units to regain feasibility. A good example demonstrating the difficulty

which can be encountered when rounding optimal linear programming solu­

tions is found in Hillier and Lieberman (18). Because of this difficulty,

2

researchers have turned to other means of solving linear optimization

problems which have discrete requirements. The new methodology developed

over the last twelve years for the solution of these types of problems

can be grouped under the single title, linear integer programming. It

is this area of mathematical programming of concern for this research.

In the field of linear integer programming, there are four prob­

lems of interest. The first and most restrictive is the pure 0-1

integer programming problem. Problem (l.l) is this type.

(1.1) Max: f(x)

Subj: Ax < b

x i « 0 or 1 for all i.

The second is the mixed 0-1 integer programming problem. Problem (1.2)

is of this type.

(1.2) Max: f(x) + g(yj

Subj: Ax + By_ < b

y_ > 0

x. = 0 or 1 for all i l

The third is the pure integer programming problem. Problem (1.3) takes

this form.

(1.3) Max: f(x)

Subj: Ax < b

x > 0

x^ is integer for all i

The last and most general type of problem is the mixed integer programming

3

problem. Problem (1.4) is this type problem.

(1.4) Max: f(x) + g(y_)

Sub j: Ax + By_ < b

x > 0

Y_ > 0

is integer for all i

For problems (l.l) through (l.4)

x is a n-component column vector

y_ is a p-component column vector

b is a m-component column vector

0 is a n-component column vector of zeroes

A is a m x n matrix

B is a m x p matrix

f is a mapping from E n into

and g is a mapping from E p into E .

Each of the four linear integer programming problems is important

in its own right and practical applications for each frequently appear

in the literature. These practical applications often require the

solution to very large integer programming problems and consequently a

good integer programming algorithm must be able to solve large problems.

A comparison between two algorithms is usually made by comparing the

computational times of each algorithm on a set of test problem. Since

the success of an algorithm is dependent upon the speed of solution,

integer programming algorithms are typically designed for one and only

one of the four integer programming problems. This enables one to take

advantage of any special characteristics of the problem. The special

4

structure of the pure 0-1 integer programming problem enabled the author

to reformulate this problem in terms of a continuous programming prob­

lem which could be solved. Therefore, this research is specifically

concerned with the pure 0-1 integer programming problem.

The objectives of this research are as follows:

(l) to develop an algorithm for the pure 0-1 linear integer

programming problem via a quadratic programming approach,

(b) to develop a computer code for this algorithm,

and (c) to solve several published test problems and report the

computational times for the new algorithm.

The algorithm is based on a quadratic programming approach in which

the integer problem is solved by solving a related quadratic programming

problem. It is shown in Chapter III, that the optimal solution to the

related quadratic problem is, in a special case, the optimal solution

to the integer problem. The algorithm to solve this special quadratic

programming problem is based on a partitioning procedure. At each

stage a quadratic programming problem is partitioned into two quadratic

problems by the introduction of a constraint which divides the feasible

region into two nonempty sets. One of the regions and the original

objective function are solved as a quadratic programming problem and

the remaining region is transformed into a new space. The branch-and-

bound machinery of Balas (l) is used to obtain a feasible integer point

about which the transformation occurs. Since the transformed problem

has the identical form of the original problem, the partitioning proce­

dure may be reapplied. The algorithm terminates when the branch-and-

5

bound machinery gives the signal that no integer point exists in the

remaining feasible region. The algorithm is developed in Chapter IV

and the computational experience is reported in Chapter V.

The notation and conventions used in this study are now presented.

Matrices are denoted by upper case Latin letters and the elements of a

matrix by the corresponding lower case Latin letters with two subscripts.

Lower case Latin letters underlined denote column vectors. Lower case

Latin letters with a single subscript denote an element of the vector

with the same name. Sets are denoted by upper case Greek and Latin

letters and scalars by both lower case Greek and Latin letters.

The symbols 0 and 1_ denote the zero and one column vectors

respectively. The notation r C A implies that F is a subset of A and

r / A. Non-negative is expressed by c > 0. A' denotes the transposition

of matrix A. The terms, integer programming and discrete programming

are used interchangeably throughout this text and both refer to the

problems of types (l.l) through (1.4). All integer problems considered

in this text shall be composed of a linear objective function and linear

constraints. Any special notation not given here is defined as needed.

6

CHAPTER II

SURVEY OF INTEGER PROGRAMMING

This chapter attempts to survey the current state of theory

and methodology available for the solution of integer programming

problems. Another survey was recently given by Balinsky and Spielberg

(4) with over 200 integer programming articles referenced. Many of

the articles presented there are not discussed here, however; it is

felt that the most important work covered by Balinsky and Spielberg is

discussed here as well as some new work which is not given in their survey,

but has recently come to the attention of the author. The work of Graves,

Whinston, Hammer, and the most recent work of Balas fall into this

category.

To facilitate discussion of the progress in this field, the

approaches have been separated into five categories as follows:

(a) Cutting Plane Methods

(b) Branch-and-Bound Methods

(c) Stochastic Methods

(d) Boolean Methods

and (e) Duality Theory.

Dynamic programming approach has been proposed for the solution of

integer programming problems by Bellman (5). At the present time

this approach does not appear promising as a feasible approach for

discrete programming. Since there has been great progress in other

areas, this approach has been omitted from this survey.

7

The algorithm developed in this research for the solution of

the pure 0-1 integer programming problem falls into a separate category

which we will call the quadratic programming approach. The term,

"quadratic programming method," refers to the algorithm presented in

Chapter IV of this text. Even though the quadratic programming method

is a unique approach for the solution to the 0-1 programming problem,

it is similar in many respects to other integer programming algorithms.

These differences and similarities are presented at logical places in

this survey.

Cutting Plane Techniques

The idea of introducing cutting planes to eliminate unwanted

feasible solutions from a special structured linear programming prob­

lem was first advanced by Dantzig, Fulkerson and Johnson (8) in 1954.

This work resulted in an algorithm for the solution of the traveling

salesman problem.t Their approach requires reformulation of the original

problem into a slightly different problem with the characteristic that

any optimal solution to the revised problem is also optimal for the

original problem. However, feasible solutions to the revised problem

were not necessarily feasible for the original problem.

The revised problem was solved and its solution inspected to

determine if it lay within the feasible region for the original prob­

lem. If this solution was feasible, the optimal solution had been

found. If this was not the case, a cutting plane (constraint) reduced

^Simply stated the traveling salesman problem is as follows:
given a set of cities, find the minimum distance route which begins at
one city, passes through each of the other cities exactly once, and
returns to the original city.

8

the feasible region of the revised problem so that the current solu­

tion was no longer feasible for either problem. The new revised prob­

lem was again solved and the process repeated.

Markowitz and Manne (22) in 1957 applied this approach to obtain

the solution of general integer programming problems. Their work

resulted in a general approach rather than an automatic algorithm and

can be summarized as follows: first, solve the integer problem as a

linear programming problem by ignoring the integer restrictions. If

the solution is not in integers, judgment and ingenuity are used to

formulate a new constraint that can be shown to be satisfied by the

still unknown integer solution, but not by the noninteger solution

already found. This additional constraint is added to the original

ones and the simplex technique is again applied. The previous noninteger

solution will be infeasible and a new solution will be generated. If

this solution is noninteger, the process is repeated until the first

integer solution is found. Since there was no systematic method for

generating the new constraints, this method is a general approach rather

than an algorithm.

Markowitz and Manne solved the dual rather than the primal at

each iteration. Each new problem begins with a super optimal infeasible

solution and proceeds toward feasibility. This is precisely the require­

ments of the dual simplex approach.

The following year, Ralph Gomory (12) developed a systematic

method for new constraint generation which turned the cutting plane

approach into an automatic algorithm. Gomory also proved that these

cutting planes guarantee that an integer solution (if one exists) can

9

be found in a finite number of steps.

These cutting planes are derived from the coefficients of the

simplex tableau at the completion of each cycle. Recall that any

tableau represents a set of equations of the form

n

(2.1) X i + I y i . x . = b l

j"l

where x^ is a basic variable, y ^ is the (i.j)^*"1 element of the tableau
t h

and Xj is the j variable. If x̂ is a basic variable, then y^j will

equal zero. Therefore (2.1) reduces to

(2.2) x. + Y y.,x, « b.
l l 7ij j I

jeR

where R is the set of nonbasic variables. The equation (2.2) can be

rewritten into the form

(2.3) x. - [b i] I + [b.] F - I ([y i j] Ix j + [y i j] F X j)
jeR

where [z]j denotes the largest integer less than z and [z]p denotes

the fraction such that [z] T + [z] c
 58 z, and 0 < [z] c < 1. Then,

(2.4) X l - [b i] I + I [y . .] ^ . - [b.] F . I [yij]pXj
jeR jeR

is obtained by rewriting (2.3). It follows that any integer solution

to x^ implies that the left side of (2.4) is integer. Therefore for

any feasible integer solution

10

(2.5) [b i] F " I [y i j] F X j
jeR

must be integer. Since ^ Cŷ j]pxj can not be negative and
jeR

0 < [b.] F < 1, (2.5) can not be a positive integer. Therefore,

jeR

It follows that if x̂ is to be integer, then the constraint (2.6) must

also be satisfied. After adding a slack variable s^, one obtains the

cutting plane

which is known as a Gomory cut.

Gomory's algorithm for the solution of integer programming prob­

lems can be summarized as follows: first solve the integer programming

problem as a standard linear programming problem by ignoring the integer

restrictions. If the optimal solution is integer, the integer problem

has been solved. If this is not the case, then a Gomory cut is developed

from some row of the final tableau which gave the linear programming

solution. Since it is desirable to make the largest cut possible, the

usual rule for selecting the row from which to derive the Gomory cut is

to choose that row which yields the largest [b^]p. This new constraint

is appended to the current tableau and the dual simplex algorithm is

applied to obtain another optimal feasible solution. If this new solu-

(2.7)
jeR

11

tion is integer, the problem has been solved. If this is not the case,

a new cut is generated and the process is repeated until such time as

an integer solution is obtained.

Later, Gomory (13) developed an all-integer integer programming

algorithm that began with a problem statement in which all coefficients

were integer and maintained this property throughout the solution

process. Maintaining the integer property prevents the round-off errors

which often occur when solving large problems on a computer. This

algorithm also uses the idea of constraint generation, however; the new

constraint is appended to the tableau immediately at each iteration.

This new constraint is so constructed that it will be the row chosen

for the leaving variable and the pivot element will always be minus one.

This insures that if the coefficients in the original matrix are integer,

that they remain integer from tableau to tableau. The computational

experience thus far has shown little consistency in the time required

to solve integer problems using this method.

A primal analogue to Gomory's all-integer algorithm was developed

by Young (26) and is known as the simplified primal (all-integer)

integer programming algorithm. Young's algorithm is built on Dantzig's

simplex technique with the addition of a special row at each iteration.

This special row is a Gomory cut and is appended to the tableau after

the pivot column is chosen at each cycle. This cut is selected so that

it will have a unit coefficient in the pivot column and will qualify as

the pivot row. To show finiteness, Young imposed certain restrictions

on the row used to generate the Gomory cut. At present there are no

results available on the computational efficiency of Young's algorithm.

12

Balinski (4) predicted that the algorithm would not prove to be effi­

cient. This prediction is based on the fact that the algorithm is

made to work by imposing decision rules which insure finiteness, but

are not necessarily geared to natural measures of progress toward

optimality.

As noted from the discussion of the previous algorithms, an

optimal feasible solution to a pure integer programming problem must

exhibit three properties:

(a) it must be optimal, i.e. c'x* > c'x for all

x e T « (x : g(x) < b, x > 0)

(b) it must be feasible, i.e. x* e T» and

(c) all variables must assume integer values.

Each of the cutting plane methods presented above have maintained two

of the three properties while achieving tableau-to-tableau progress

toward satisfaction of the remaining property. The quadratic program­

ming method presented in Chapter IV maintains only one property while

moving toward satisfaction of the other two. A comparison of the methods

is as shown in Table 1.

Table 1. Comparison of Cutting Plane Methods
and the Quadratic Method

Method Property maintained
at each cycle

Property improved
at each cycle

1. Gomory's method of a and b c
integer forms

2. Gomory's all integer a and c b
method

3. Young's primal integer b and c a
method

4. Quadratic programming b a and c
method

13

The Gomory method differ from the quadratic approach primarily

due to the fact that Gomory's methods are dual in nature whereas the

quadratic approach resembles a primal method. The dual approach has the

disadvantage that no feasible solution is obtained until the optimal

solution is found. If this requires more iterations than can be

afforded, the method yields no useful information. If, however, a

primal method is employed, the best suboptimal feasible solution can be

kept as the iterations progress so that at the end of some given time

period the best suboptimal feasible solution found up to that time is

available.

The last difference between the cutting plane methods and the

quadratic approach is the special way in which additional constraints

are derived for future iterations. For cutting plane methods, con­

straints are derived from another constraint, whereas in the quadratic

approach, the constraints are derived from the objective function.

Branch-and-Bound Methods of Enumeration

The best known methods for obtaining solutions to integer pro­

gramming problems fall under the general heading of branch-and-bound

methods. The terms branch-and-bound, tree search, and implicit

enumeration are used interchangeably in the literature, however; they

refer to the same general technique when used for solving discrete

programming problems. A good description of the enumerative substruc­

ture is given by Glover (ll) and is essentially this. The solution

space of a discrete programming problem can be readily represented by a

tree diagram. The general procedure involves tracing some path of this

14

tree until either a feasible solution is obtained, or a node is reached

which yields information that all solutions in which that node is included

may be eliminated from further consideration. When one of the above two

conditions are met, the process backtracks to the node preceding the one

just eliminated and traces out another path, if one exists. If none

exists at this node, the process backtracks to the next node and

attempts to find another path not yet eliminated. The process continues

until it has backtracked to the starting node, and information is obtained

that eliminates the necessity to trace any more paths. The enumeration

procedure terminates at this point.

The first automatic branch-and-bound method for the solution of

integer programming problems was advanced by Land and Doig (19) in 1960.

With their general approach, all branching is accomplished by adding

constraints to the continuous problem and obtaining the general linear

programming solution. All bounding is set by the value of the objective

function at each branch.

Their algorithm initially solves the integer problem as a con­

tinuous linear programming problem. If this solution happens to be

integer, the solution to the integer problem is as given. If this is

not the case, the algorithm chooses a variable restricted to integer

solutions which is noninteger at the optimal of the unrestricted prob­

lem, and creates two new problems which do require this variable to be

integer.

For example, suppose x^ is a variable restricted to discrete

values for some integer programming problem. Further suppose that x^

is the value of x, at the optimal solution of the unrestricted problem

15

and that x^ is noninteger. Let [x^lj denote the largest integer less

than x^. Then it follows that two new problems (branches) can be

created by adding the constraint x^ * ^ xk^I *° ^ e o r i 9 i n a l constraint

set to form problem (l) and by adding x^ = [x^Jj + 1 to the constraint

set to form problem (2). Suppose that the problem of interest is a maxi­

mization problem, and that the value of the objective function at the

optimal solutions of (l) and (2) are 6^ and 6^ respectively. If 6 Q

represents the value of the objective function of the unrestricted problem

at optimality, then it follows that 0 > 6, and 6^ > 6 n. The objective
R N 0 — 1 0 ~ 2

functions of all branches, have the property that at optimality, the

value is less than or equal to the value of the objective function on

any less restricted problem from which this branch originated. It is

this property which allows Land and Doig to abandon branches without

completely enumerating the entire branch.

Suppose that 0^ > Q^' Then a third problem is solved with the

additional constraint x^ - [x^Jj - 1 appended to the original con­

straint set. Each noninteger node of the tree will have three leaving

branches, if three logical constraints can be constructed as accom­

plished above. If 0 < x^ < 1, then the node may have only two leaving

branches, but in general each node will give three new branches. These

branches are always determined by the most desirable integer for some

particular variable, and the integer on either side.

For the procedure of Land and Doig, the 6^'s are saved along

with the necessary information to pursue any of the branches currently

under consideration. The node with the largest 0 (for a maximization

problem) is examined to determine if a leaving branch will yield a

16

feasible solution for the integer problem. If an integer solution is

found, the solution is recorded and the corresponding 6 becomes the

lower bound. Once a lower bound is established, all branches which yield

0's less than the lower bound can be abandoned. If the node under con­

sideration does not represent a feasible solution (in the integer

sense), new branches are determined as above and the process is repeated.

If some new integer solution is found which is preferred to one pre­

viously obtained, it is recorded as the current best solution and the

corresponding 9 becomes the new lower bound. If the process is con­

tinued, all branches will eventually be completely enumerated or aban­

doned, and the optimal feasible solution, if one exists, will have been

found.

The Land and Doig branch-and-bound approach differs from that of

the quadratic programming approach in several respects. The Land and

Doig approach is applicable for any discrete problem whereas the quadratic

approach presented in Chapter IV is only applicable for the 0-1 integer

programming problem. The Land and Doig approach has characteristics

of both dual and primal methods. Their method begins with a super-

optimal solution and proceeds toward a feasible solution, which is

exactly a dual approach. When the first feasible solution (in the

integer sense) is found, one records this solution and attempts to

locate another feasible solution more desirable than the one currently

known, which resembles the primal approach. The quadratic method of this

research is basically a primal approach. When the Land and Doig approach

eliminates a set of solutions from further consideration, all abandoned

17

solutions lie on a single branch of the solution tree. The quadratic

approach can eliminate several branches with a single constraint or

parts of several branches with a single constraint. Finally the Land

and Doig approach requires that a linear programming problem be solved

at each iteration.

In 1965 Egon Balas (l) presented a different approach based on

the general branch-and-bound technique to obtain the solution of 0-1 pure

integer programming problems. His additive algorithm gave a method for

systematically enumerating part of the solutions of the 0-1 problem,

and examining them in such a way as to ensure that by explicitly enumer­

ating a relatively small number of solutions, it had implicitly examined

all elements of the solution set.

The additive algorithm begins at some starting node on the tree

of solutions and applies two tests. The first test determines if the

best completion of this node is feasible. If this completion is feasi­

ble, this node and all of its descendants can be fathomed (i.e. discarded

from further consideration). If this is not the case, one applies the

second test which attempts to determine that no feasible completion at

the node under consideration is better than any previously found. If

the second test succeeds, then the node under consideration may be

fathomed along with its descendants. When a node is fathomed, the

process backtracks to the last node visited and reapplies the above two

tests. The rules for the choosing of successive nodes are such that no

descendant of any abandoned node will ever be reconsidered. If the node

under consideration cannot be fathomed, then the leaving arc chosen is

the one which leads to a new node which most reduces the total infeasi-

18

bility of the solution. The tests are applied at the new node and the

cycle is repeated. The procedure terminates when it backtracks to the

starting node and information is obtained that eliminates the necessity

to trace out of any more branches of the tree.

If the examination of a particular node is defined as an itera­

tion, then the efficiency of the additive algorithm is dependent on the

number of iterations required before an optimal feasible solution is

found or the absence of a feasible solution is established. One way of

improving the efficiency of the additive process is to increase the

strength of the tests applied and thereby eliminate larger portions of

the tree than would be eliminated under the rules suggested by Balas.

The multiphase-dual-algorithm of Glover (ll) was the first attempt to

strengthen these tests of Balas. Glover introduced the idea of the sur­

rogate constraint which was used in the test mechanism to establish

restrictions on the problem which could not be determined from any

individual constraint in isolation. Since it was computationally prac­

tical to apply the tests to only one constraint at a time, the surrogate

constraint enabled Glover to sharpen the tests of Balas. This surro­

gate constraint of Glover is defined as a nonnegative linear combination

of the original constraints in which at least one of the constraints is

given a positive weight. The computational experience published by Glover

is meager and he suggested that there may be better methods which could

be used to compute this surrogate constraint which could significantly

improve the multiphase-dual-algorithm. He reported that in some cases,

the time required to compute the s-constraint (surrogate constraint)

exceeded what savings it could produce.

19

A second contribution was made by Glover with the introduction

of a new and efficient (in the sense of computer storage required)

method of bookkeeping for the tree search. Geoffrion (9) then reformu­

lated the algorithm of Balas using this general bookkeeping system pre­

sented by Glover. The new formulation required considerably less com­

puter storage than the original version.

Shortly thereafter, Balas (2) presented a new algorithm (the

filter method) which was a continuation of the additive algorithm. The

filter method incorporated a filter mechanism to sharpen the tests of

the basic algorithm and thereby reduce the size of the solution tree.

The filter mechanism required the solution of a special o-l programming

problem with a single constraint. This new constraint is a special case

of the surrogate constraint as defined by Glover. As of this writing,

computational results for the filter method are not available.

The current best o-l pure integer programming algorithm is the

improved implicit enumeration approach of Geoffrion (10). The method

applies the tree search bookkeeping system described in an earlier paper,

Geoffrion (9), it incorporates the use of surrogate constraints defined

slightly different from those of Glover, and relies on an imbedded

linear programming problem to calculate the strongest possible surrogate

constraints. The linear programming problem is so constructed, that the

dual variables give information as to the existence of a binary infeasible

surrogate constraint as well as feasible integer solutions better than

any previously found. A computer code for this method was written and

tested extensively on an IBM 7044. Geoffrion reports that the use of the

imbedded linear program reduced solution times by a factor of about one

20

hundred. He further reports that his computer code dramatically reduced

the solution times of virtually every published test problem attempted,

and sufficed to render the tested algorithm superior to the five other

implicit enumeration algorithms for which comparable published exper­

ience was available.

The implicit enumeration method of Geoffrion is generally

accepted to be the best of the methods available for solving 0-1 integer

programming problems. This method differs from that of the quadratic

approach in three main respects. First, the method of Geoffrion is

based on a tree search, whereas the quadratic approach is based on a

partitioning procedure. Second, the method of Geoffrion introduces

surrogate constraints to the original constraint set which are

redundant in the usual sense, whereas the constraints introduced by the

quadratic approach tend to make the original constraints redundant.

Lastly, the quadratic approach works in a transformed region whereas

the implicit enumeration method works only in the original region. The

similarities between the two methods are as follows: (a) both algorithms

stop, only when all integer points have been either explicitly or

implicitly considered, (b) both methods keep available a current best

integer solution, and (c) both algorithms make full use of the additive

algorithm of Balas.

A Stochastic Approach to Discrete Programming

Graves and Whinston (14) introduced a new approach for integer

programming which incorporates the implicit enumeration bookkeeping

scheme, but relies on the use of population statistics to eliminate

21

large portions of the tree of solutions from further consideration.

They consider the 0-1 programming problem as if it were an n-stage

decision problem. Identical to the Glover approach, it attempts to

fathom a node along with its descendants by either feasibility or

optimality considerations. Graves and Whinston suggest an additional

mechanism which can be used to fathom nodes based on the probability

of the existence of the global optimum being a descendant of the node

under consideration.

Recall that in the tree search algorithm, the nodes, other

than the last node of a branch, represent partial solutions in which

some of the variables are specified and the remainder are free to

assume either of the values zero or one. Then if node k is some node

of the solution tree, and j elements of x have been specified, then n-j
st

elements are free. Then it follows that at the (k + l) node (a descen­

dant of the k**1 node) one of the n-j free variables will be set at either

zero or one. There are two considerations which may be taken into

account when selecting this variable to be fixed as well as determining

the value to which it is assigned. First there is the local or imme­

diate effect. By selecting x^ * 1, the objective function of the new node

is increased by c^ and each constraint (i = 1,2,...,m) is altered by a^^,
where a. is the (i,r)^ element of the matrix which determines the ir
constraint set. Secondly, alternate choices for the remaining unspeci­

fied variables are differently restricted because of this choice. The

first consideration can easily be taken into account and is used to

guide the progress of the additive and multiphase-dual algorithms. The

second consideration is difficult to isolate and is discovered eventually

22

by local considerations. If one were able to evaluate the second factors

exactly, it would be possible to assign at each step the correct value

and solve the problem exactly in n steps. Since this is not possible,

the next best thing to knowing exactly the values of the completions is

to know them almost surely. Graves and Whinston suggest the use of

probability theory to obtain good information at a fraction of the com­

putational cost required to obtain exact information.

They have successfully derived the probability of the existence

of a feasible completion of any particular node which yields a more

desirable local optimum than one previously known. They use these

probabilities in their confidence level implicit enumeration scheme.

This algorithm fathoms a node along with its descendents once it is

established that there is less than an a percent chance that this branch

contains a better feasible solution than one already known. The con­

stant a may be set at any level and is left to the discretion of the

user.

It appears that the general approach of Graves and Whinston has

merit especially for very large practical applications. As of this

writing, only limited computational experience is available for the

approach. It should be noted that this approach can not guarantee that

the optimal solution will be found.

A Boolean Approach to Discrete Programming

A fourth approach which is a variation on the branch-and-bound

techniques was recently presented by Hammer (17). His algorithm is

known as the boolean branch-and-bound method for the solution of 0-1

23

integer programming problems. The boolean approach constructs a solu­

tion tree quite different from that considered by Glover and Geoffrion.

The boolean solution tree may have numerous branches leaving each node,

whereas the implicit enumeration tree has but two departing branches at

any particular node. Branches of the implicit enumeration tree are

determined by allowing one free variable to assume the values of zero

or one. The boolean tree uses the concept of a directrix to determine

the branches at each node.

A directrix is determined by consideration of each constraint

taken in the form

(2.8) a^x, + ... + a. x > b. where
il 1 in n — 1

» i ! > a i 2 > ... > a . n > 0 .

Let the partial sums of the constraint coefficients be denoted by
S * a.
n in

(2.9) S = a. . + a.
n-1 in-1 in

S = a . . + . . . + a. .
1 il in

For a particular constraint the following cases can be distinguished.

(1) b. < 0

(2) b. > 0, S x < b.

(3) b. > 0, S x = b.

(4) b. > 0, S 2 > b.

The directrix (D) will be defined equal to one if the inequality (2.8)

24

is satisfied, otherwise it will equal zero.

In case 1, the inequality (2.8) always holds and D = 1. In

case 2, the inequality is never satisfied and D * 0. In case 3, the

inequality holds if and only if all x̂ . * 1; j = 1,2, ...,n. For equal­

ities of case 4 type, the sums developed in (2.9) must be considered.

Let r be the greatest index for which > b^.

S. > ... > S > b. > S . . > . . . > S . 1 - - r - I - r+1 - - n

This implies that if * ... = x r = 0, the inequality (2.8) is not

satisfied. It follows that a necessary condition for (2.8) to hold is

that max (x^,...,xr) = 1. Therefore, for case 4 let D * max (x^,...,x).

The D as defined in each of the four cases is called the directrix of

an inequality.

Hammer defines the directrix (A) of a system of inequalities as

the product of the directrices of the inequalities of the system. A

necessary condition for a binary vector to be feasible for a set of

inequality constraints is that its system directrix be one. Note that

this condition is necessary but not sufficient.

For example the constraint set

12x 2 + 8x 4 + 7 ^ + 5x 3 + 3x 5 > 17

7x 0 + 6x 0 + 6x. + 4x, + 4 X y 1 > 12 2 3 1 6 4 —

8x 2 + 4x 6 + 3x 5 + 2x1 > 7

where x. 3 1 - x, gives the following inequality directrices

25

D 1 = max(x"2, x 4)

D 2 * max(x 2,x 3,x x)

D 3 = max(x 2,x 6)

and the system directrix reduces to

A = max(x 1x 2, x^x^x^ X2 x3' x3 X4 X6' X2 X4 X6^ *

Each of the above partial solutions represent a branch extending

from the starting node of the boolean solution tree. The branching is

accomplished by tracing some branch chosen from the above set, and bound­

ing is set, as usual by the objective function value of the best solution

currently known.

Unfortunately, there are no published results on the computa­

tional efficiency of the boolean branch-and-bound technique. It appears

to the author, that this branching mechanism coupled with the fathoming

mechanism of Geoffrion could result in an algorithm potentially more

efficient than either of the algorithms taken separately.

Duality Theory in Discrete Programming

The first duality formulation for linear integer programming

problems was advanced by Balas (3) in 1967. This formulation is rela­

tively new and at present no algorithm based on integer programming

duality theory has appeared in the literature.

Balas shows that the linear mixed-integer programming problem

is a special case of a certain minimax problem which has a Lagrangian

type objective function, linear constraints, and some variables con­

strained to belong to an arbitrary set of real numbers. This minimax

26

problem represents the primal in the duality formulation. The dual of

this minimax problem is shown to be a problem of the same type, such

that the dual of the dual is the primal. It is shown that the optimal

solutions of both problems are identical and that a certain type of

complimentary slackness holds.

If the linear mixed-integer problem of interest is denoted by

(2.10), then the equivalent minimax problem given by Balas is as shown

in (2.11). The problem (2.11) represents Balas* primal and (2.12) gives

the corresponding dual.

(2.10) Max: c'x

Subj: Ax + y_ = b

x,y_ > 0

Xj integer j e

where N * l,...,n , = l,...,n^

(2.11) min max : c'x + u'y, + u'A-.x
u x

Subj: Ax + y_ « b

x, u > > 0

(Primal) u.
j

x.
j

integer,

integer,

unrestricted, jeM

> 0, j e M - M

where M * l,...,m,M 1= 1 > • • 1

1 = Y.2 ^

27

and

(2.12)

i l

(Dual)

is the first m^ rows and first n^ columns of A,

max min
x u

Subj:

b'y - + a 1 i y i

u'A - v * c

u,x > 0

Uj integer, j eM^

Xj integer, j e

v unrestricted, j e

> 0, jeN - N.

where x 1 * (x^, xi)

v' = (vj, vi) .

The partitioning of the vectors is made such that u^ is a component of

u^ and Vj is a component of if j e and x, is a component of and

v^ is a component of v^ if i eN^.

Even though a major contribution has been made by Balas in

developing the above duality theory, efficient means must be determined

for solving problems of the form (2.11) before this theory results in an

efficient solution procedure.

28

CHAPTER III

JUSTIFICATION FOR THE QUADRATIC PROGRAMMING APPROACH

TO THE SOLUTION OF THE 0-1 PURE INTEGER

PROGRAMMING PROBLEM

The quadratic programming approach to the solution of the 0-1

integer programming problem is not a new idea. This basic approach was

suggested most recently by Raghavachari (24); however, full development

of the approach resulting in an algorithm has not appeared in the lit­

erature at this writing. It is a relatively straightforward task to

construct a continuous quadratic programming problem such that the

solution to the quadratic problem is also the solution to the integer

problem. Finding an efficient solution procedure for this quadratic

problem is not straightforward. A complete discussion of a solution

technique for the nonlinear problem is deferred until Chapter IV.

Chapter III is devoted to developing a justification for the quadratic

approach.

Let us begin with a definition of the problem of interest for this

research. The 0-1 pure integer programming problem is stated as follows:

(3.1) Max: c' x

Subj: A x < b

X j a 0 or 1, j « 1,2,...,n;

where c is a n x 1 column vector

29

b is a m x 1 column vector

A is a m x n matrix

and x is a n x 1 column vector.

The development of this chapter assumes that ĉ > 0 for i * l,2,...,n.

If c^ is initially less than zero, one can set x. a 1 - x. to obtain a

positive form of c.

The quadratic programming problem of interest is stated as follows:

(3.2) Max: Q(x) * c'x - a(l_'x - x'x) = c'x - | x'Cx

Subj: Ax < b

x < 1_

x > 0

where "a" is some arbitrarily large positive constant

c = c - al_

C = -2al.

Relationship Between the Discrete Linear Problem

and the Continuous Quadratic Problem

Two observations about problems (3.1) and (3.2) are immediate,

(a) if x is feasible for (3.2) and x is integer, then x

is feasible for (3.1),

and (b) if x is feasible for (3.1), then x is feasible for (3.2).

These observations simplify the proofs of the following three theorems.

Theorem 1

If x* is an optimal solution to (3.2) and x* is integer*, then

x* is an optimal solution to (3.1).

1 £ £
x integer if and only if every component of x is integer.

30

Proof. Let x* be integer and an optimal solution to (3.2). Then x*

is feasible for (3.1). Let z be any other feasible solution to (3.1).

Then z is feasible for (3.2). Hence c'x* - a(l'x* - x**x*) > c'z

- a(l_'z - z' z). But (l_'x* - x*'x*) = (l_'z - z'z) = 0 since x* and

z are integer. Therefore c'x* > c'z, i.e. x* is the solution to (3.1).

This completes the proof of Theorem 1.

Theorem 2

If x* is an optimal solution to (3.2) and x* is noninteger,

then (3.1) has no solution.

Proof. Let x* noninteger be the optimal solution to (3.2). Then

(l*x* - x*'x*) < 0. Hence Q(x*) = c'x* - a(l_'x* - x*'x*) < 0 for

sufficiently large a. Suppose (3.1) has a feasible solution z. Then

z is feasible for (3.2) and Q(z) > 0. Hence Q(z) > Q(x*) which contra­

dicts the assumption that x* is optimal for (3.2). Therefore (3.1) has

no feasible solution. This completes the proof of Theorem 2.

Theorem 3

If (3.2) has no solution, then (3.1) has no solution.

Proof. Since the feasible region of (3.1) is a subset of the feasible

region of (3.2) and since (3.2) has no feasible solution, then (3.1) has

no feasible solution.

Remark 1 Summary of Theorems 1, 2, and 3.

a. If x* is integer and is the optimal solution to (3.2), x* is

the optimal solution of (3.1).

b. If x* is noninteger and is the optimal solution to (3.2), (3.1)

has no solution.

x noninteger if and only if for some i, xf / (0 or l).

31

c. If (3.2) has no solution, (3.1) has no solution.

Determination of the Penalty Cost Coefficient

For solving problem (3.2) either on a digital computer or by

hand calculations, it is more convenient to set the constant "a" at

some finite value. This section gives a method for determining a suf­

ficiently large "a" so that the solution of (3.2) is forced sufficiently

close to an integer solution, if one exists.

Problem (3.2) gives Q(x) as follows:

2 *~ 2
Q(x) = " a x i + a x i) + (°2 *" a x 2 + a x 2 ^ + •*•

+ (c - ax + ax ̂) . n n n

Considering only the x̂ terms, one obtains the function

f*l = c^x^ + a(x^ 2- x^) .

The constant "a" is to be chosen so that ^ (^ = 0) > F^(d<x^<l -d)

where d is the allowable deviation from 0 or 1 which will be tolerated.

It follows that d and a must be chosen so that a(d - d) > c^d and

a[(l - d) - (l - d)] > c^(l - d). Therefore, for any allowable devia­

tion d, an a which satisfies

c d
(a) a > — i

d - d 2

cx(l -d)
and (b) a >

(1 - d) - (1 - d) 2

will insure that the x^ variable will be forced to either 0 or 1 ± d

if one of these integer values yields a feasible solution.

32

The expressions can be simplified to the following forms

and (d) a > — — .

Since £ > 0 and d is small, the expression (d) always dominates (c).

Furthermore, the constant a must satisfy an expression of the form (d)

for each variable x^, x ^ , x ^ . Therefore a must be chosen so that

a > max (c\/d), i = 1,2, ...,n.
i

For all example problems reported in Chapter V, a was chosen as shown

below.

a s max (c./d) + 1, i = 1,2,...,n.

This completes the justification for the quadratic programming

approach to the solution of the 0-1 integer programming problem. The

theorems of section 1 give the relationship between the integer and

continuous problem and the development of section 2 gives the process

whereby numerical problems of the form (3.2) may be formulated.

33

CHAPTER IV

AN ALGORITHM FOR THE SOLUTION OF THE PURE

O-l INTEGER PROGRAMMING PROBLEM

It was shown in Chapter III that any pure O-l integer program­

ming problem can be solved by solving a related quadratic programming

problem. The following chapter presents the development which results

in an algorithm for this related quadratic programming problem which is,

in turn, an algorithm for the integer programming problem.

A definition of the quadratic problem to be solved is as follows:

(4.1) Max: Q(x) = c'x - a(l'x - x'x) = c'x - | x'Cx

Subj: Ax < b

x < 1_

x > 0

where c > 0

a is an arbitrarily large positive constant

c = c - al_

C = -2al

and I is a n x n identity matrix.

Since C is negative definite, the function Q(x) is strictly convex. It

is well known that the maximization of a convex quadratic function over

a bounded and closed convex set is attained at one of its finitely many

extreme points (15).

34

Furthermore problems of this type may have local optima at extreme

points which are not global optima. This possibility of numerous

feasible local optimum renders the problem (4.1) unsolvable by the

well known method of Wolfe (28).

Klaus Ritter (25) has developed an algorithm to solve quadratic

programming problems in which numerous feasible local optima may be

present. His method is applicable to the maximization of any nonconcave

quadratic function subject to linear constraints whereas the problem

(4.1) has special characteristics which may be used to aid in increasing

the efficiency of a general solution procedure. The two important char­

acteristics of (4.1) not necessarily present in the problem considered

by Ritter are as follows:

(a) Q(x) is strictly convex

and (b) every feasible integer point is a local optimum.

Ritter's algorithm requires a feasible local optimum at each iteration.

The method he uses to obtain this local optimum is very time consuming.

Property (b) above allowed the author to draw from other resources to

obtain this local optimum in a more efficient manner than that sug­

gested by Ritter. The work presented in this chapter is Ritter's algorithm

with modifications to take advantage of these special properties.

His approach requires partitioning of the feasible region of

(4.1) into two regions such that each contains one or more of the

finitely many feasible integer extreme points. The cutting plane which

performs this partitioning is constructed so that the global optimum in

one of the regions can be found. The objective function Q(x), and the

remaining region then become a new problem denoted (4.1) which has the

35

identical form of the original problem (4.1). The new problem (4.1)^

differs from the problem (4.1) in that the feasible region of the former

contains fewer of the finitely many integer extreme points than does

the feasible region of the latter. Then the new problem (4.1)^ is

partitioned such that each of the resulting regions contains at least

one of the remaining feasible integer extreme points. Again the cutting

plane which performs this partitioning is constructed so that the global

optimum in one of the new regions can be found. The objective function

Q(x), and the remaining region then become a new problem (4.l) 2 which

again contains fewer integer extreme points, than either of the problems

(4.1)^ or (4.1). Since there are a finite number of feasible integer

extreme points and since each successive problem (4.1), (4.1)^, (4.1)

contains fewer of these extreme points than all preceding problems,

eventually a problem will result which contains none of the integer

extreme points. When this condition occurs, the algorithm stops and

the global optimum of the problem (4.1) is the best global optimum of

each of the partitioned regions. Figure 1 illustrates how this parti­

tioning reduces the feasible region at each step. The points 1,2, and

3 represent the feasible integer points of the original problem, and

the dotted lines represent the cutting planes which perform the parti­

tioning. Note that (4.1) has three feasible integer points, (4.1)^ has

one, and (4.l) 2 has none. A complete description of this approach along

with a proof of finiteness is presented in the next section.

Solution Procedure for the Quadratic Problem

The solution of problem (4.1) can be obtained by solving each of

the problems (4.2) and (4.3) and selecting the better of the two solutions,

36

Figure 1. Illustration of Patter's Partitioning Method.

37

since the sum of the feasible regions of (4.2) and (4.3) is precisely

the feasible region of (4.1) and the objective functions are identical

Problem (4.2) and (4.3) are defined as follows:

(4.2) Max: Q(x) = c'x - | x'Cx

Subj: Ax < b

-c'x < t

x < 1_

x > 0

(4.3) Max: Q(x) = c'x - | x'Cx

Subj: Ax < b

-c'x > t

x < 1

x > 0

where t is some scalar.

For the development of the algorithm, assume that the following

conditions are met by problem (4.1).

(a) 0 is a feasible extreme point of (4.1)

(b) Q(x) is a strictly convex quadratic function

and (c) c < 0.

Suppose condition (a) is initially met by the problem (4.1), then con­

ditions (b) and (c) are also met by definition of problem (4.1). If,

however, 0 is not feasible for the problem (4.1), then a new problem

(4.1)* can be obtained which does satisfy property (a). The new prob­

lem (4.1)* is obtained by transforming some feasible extreme point of

38

(4.1) to the origin of the new problem while preserving all extreme

points of the original problem as well as the value of the objective

function at corresponding points. In order to insure that the objec­

tive function of the new problem (4.1)* is strictly convex, a feasible

integer extreme extreme point is transformed to the origin.

Suppose z is one such feasible integer extreme point of the

region (Ax < b, x < 1, x > 0). Then since z is integer, exactly n of

the 2n inequalities x < 1_, x > 0 are met as equalities at x = z. If

these n constraints which are met as equalities at z are denoted by

A^x < b^, then A^z = b^ and Az < b. The matrix A^ is constructed to be

a diagonal matrix whose diagonal elements are either one or minus one.

According to Ritter (2b), the feasible region can be transformed by

A^x • b - v; v > 0

into a v-region where the origin is feasible. By introducing

x = A^ * (b - v) into Ax < b, x < 1_, x > 0, and Q(x) = c'x - ~ x'Cx

a new problem denoted (4.1)* is obtained.

(4.1)* Max: Q*(v) = Q(z) + £*'v - | v'C*v

Subj: A*v < b*

v < 1_

v > 0

where A^ * * A^, since A^ is a diagonal matrix with unit coefficients
^* . i-l ̂ . .'-1 ̂ . -1

39

A* = -AA^ 1 = -AA

b* = b + A*b_x

Thus (4.1)* is an equivalent problem to (4.1) and condition (a) is met

by the new problem. Condition (b) is also met since C* = C and C is

negative definite. It will now be shown that condition (c) also holds

for c*.

c* = b^C - c'A^ and c' < 0.

Then c. = 2ab. - c.a.. .
I 1^ 1 11
Case 1 b. = 1 and a,. = 1 1. ii 1

Then cf = -2a - c. < 0, since a dominates c..
I I 1
Case 2 b. = 0 and a.. = -1 1. 11 1

Then c* = 0 + c. < 0, since c, < 0. 1 1 i
Therefore condition (c) is also met by the problem (4.1)*.

A basic algorithm for the solution of problem (4.1) is now pre­

sented along with a proof of finiteness. First, let us introduce the

following notation.

Let T denote the linear transformation from the w-space into the w-y r

y-space (i.e. y_ * T^ ^(w) and w * T^ ^(yj for all y.,w).

F(4.l) = (x I x integer, Ax < b, x < 1, x > 0)

F(4.2) « (x|xeF(4.l), -c'x < t)

F(4.3) « (x |xeF(4.l), -c'x > t)

For t > 0, P(4.3) C F(4.l) since 0 <) F(4.3). The problem (4.3) can be

transformed into a new problem in v-space such that each x maps onto a

4 0

unique v. The new problem is so constructed that v 5 0 is feasible.

Denote the transformed (4.3) as (4.1)^.

Let F(4.l) 1 = (v | v - T x_ v(x), xe F(4.3))

T(4.l) : . (x | x = T v_ x(v), ve F(4.l) 1)

Then T(4.l) = F(4.3)c F(4.l). NOW we partition (4.1) into (4 . 2 ^

and (4.3)^ with the hyperplanes -c*'v < t and -c* 'v > t.

Let F(4.2) : - (v | veF(4.l) , -c*'v< t)

F(4.3) 1 = (v I veF(4.l) 1, -c* ' v > t)

T(4.2) 1 - (x I x - T v_ x(v), veF(4.2) 1)

and T(4.3) 1 - (x | x - T v_ x(v), ve F(4.3) 1) .

It follows that the optimal solution to (4.1) is the best optima of

(4.2), (4.2) 1, and (4.3) 1- Furthermore, for t > 0, F(4.3) 1c F(4.l)

since 0 i F(4.3) 1, and T(4.3) 1c T(4.l) 1c F(4.l). We now transform

the problem (4.3)^ into a new problem in the u-space such that u 8 0 is

feasible. Denote the transformed (4.3)^ as (4.1) .

Let F(4.l) 2 = (u I u - T v_ u(v), ve F(4.3)]_)

T(4.l) 2 - (x J x = T u_ x(u), ue F(4.l) 2)

Then T(4.1) C T(4.1) C F(4.l), since at least one integer extreme

point has been deleted for each of the successive problems. Reapplica-

tion of the above process will eventually result in a (4.1) in which

F(4.l) * q>. When this point is reached, the solution of (4.1) is

given by the best solution of (4.2), (4.2^, (4.2) 2 > ..., (4.2) ^ .

Figure 2 shows the basic flow chart of the Ritter algorithm as modified

by the author. The problem (4.1)^ refers to the original problem.

Finiteness of this algorithm is immediate, however; for completeness

and formalism Theorem 4 provides this proof.

41

Start

No

11

0 e F(4.l) , — 'o
Yes

Stop: (4.1) 0 has
no solution

Yes
1

F(4.l) o - <p ?
No

Transform to v-region

J 4
i = 0

t
Partition (4.l) i into (4.2) i and (4.3) i

Solve (4.2). for t > 0 l

No F(4.3). = <p ? Yes

1
Transform (4.3)^ to a new (4.1)^ +^

+ 9
i « i + 1

10
Stop: Global optimum is the best
solution of (4.2). for all i

Figure 2. Flow Chart for 0-1 Programming Algorithm.

42

Theorem 4 (Finiteness)

The algorithm of Figure 2 terminates in a finite number of

iterations.

Proof.

Case I. Problem (4.1)^ has a solution. There are a finite number of

integer extreme points in the feasible region of problem (4.1) q. Each

partitioning of (4.1)^ occurs such that 0 $of F(4.3)^. Therefore, each

problem (4.3)^ and consequently each new problem (4.l)^ +^ contains at

least one less integer extreme point than the preceding problem. Since

there are a finite number of integer extreme points there are a finite

number of partitionings which can occur such that an original extreme

point remains in the problem (4.3)^. When a (4.3)^ is developed which

contains no feasible integer extreme point (F(4.3)^ = cp), the algorithm

terminates. Since this will occur in a finite number of steps the

algorithm terminates in a finite number of iterations.

Case II. Problem (4.1) has no solution. If problem (4.1) has no
o r o

solution, the algorithm terminates immediately at block 11. This com­

pletes the proof of Theorem 4.

A Solution Procedure for the Reduced Quadratic Problem

Finiteness of the algorithm is dependent upon a means of finding

the solution of problem (4.2) for some t > 0. The required mechanism

for obtaining this solution is developed through consideration of the

following problem,

(4.4) Max: Q(x) « c'x - | x'Cx

Subj: -c'x = t

x > 0 .

43

Now it will be shown that for t greater than some lower bound, the

solution of (4.4) is an upper bound on the solution of problem (4.2).

Theorem 5

Let x^t,) be the optimal solution to problem (4.4) for t = t.

Let x^tT) be the optimal solution to problem (4.2) for t = t.

-2c\
Let t. = and t * min t. .

1 c. , r . 1 11 1

Then for all t > tp, Q[x£(t)] > Q[x*(t)].

Proof. Let

(4.5) x*(t) = (0,...,0, -t/ci,0,.. .,0).

It follows that xMt) , i * 1,2, ...,n, correspond to the extreme points

of problem (4.4) and the corresponding value of the solution is

Q[xi(t)] * c. x. - 7; c. . x^ 1 1 2 11 i
1 9 9

-t - \ c n t /c\ .

Then for t > ^ « -2c^/c i i > Q[x1(t)] > 0. 2,

2 Since t * min t. * -2c /c , then it follows that r . 1 r rr' 1

(i) Q[2$(t)] - max Q j V U)] - Q[xr(t)]
i

and (ii) smallest value of t for which Q[x*(t)] > 0 is t = t .

Now consider x r(t) * (0,...,0, -t/c r,0,...,0). Note that Q[xr(t)]

is a monotone increasing function of t for t > t r. Also the optimal

of the problem

(4.6) Max: Q(x) = c'x - | x'Cx

44

Subj: -c'x < t

x > 0

for t > t occurs at an extreme point of the form (4.5) [see Hadley

(15)]. Hence x*(t) is the solution to both (4.4) and (4.6) for t > t .
— — r

Both (4.6) and (4.2) have the same objective function and (4.2) is a

more restricted problem than (4.6). Hence Q[x*(t)] = Q[x*(t)] > Q[x*(t)]

for t > t^. This completes the proof of Theorem 5.

Remark 2. Special application of Theorem 5 provides the basic machinery

upon which the algorithm is built. All other development in this text

provides the details for applying this basic theorem.

The above theorem is applied at every iteration of the algorithm.

The particular t used at each application is chosen such that either

the solution of (4.2) can be found or there is no solution to (4.2) for

t = t better than some current best known solution. The solution to

(4.4) is the solution to (4.2) for all t > t r. The solution to (4.4)

for any t > t f is simply x r where r = (j | c^ < c 2, i * l,...,n). If

x* denotes the best local optima of (4.4) for t = 1 and x* / 0, then

tx* denotes the solution of (4.4) t = t. Beginning with some x*, and

some current best solution, x , Theorem 5 is applied in two ways.

First, determine the t denoted t^ which is the largest t such that tx

is the optimal solution of (4.2) for t * t Q. Second, determine t̂ such

that Q(txx*) = Q(x**).

-1 - [1 -(2)(c)(xJ)2(Q(/*) - Q (0))] l / 2

t = — - - -
1 f ^ 2 c..(x.) ii l

Since c.. < 0 for all i, t. will always have one positive solution

45

greater than or equal to t^.

-2c 2

*i * *r - - r * •
rr

To insure that t > t^ choose t *= maxlt^.t^). Since t̂ > t^, t > t^,

and Theorem 5 can always be applied for some t > t .

Remark 3. The following is a summary of the rules used in the applica­

tion of Theorem 5.

(a) Find t Q • max(T: Atx* < b,tx* < l)

(b) Find t1 : Q ^ x *) - Q(x**)

(c) t s max(t Q,t 1)

Remark 4. The efficiency of the proposed algorithm (Figure 2) is

dependent on its ability to solve (4.2) for large t. If (4.2) can

only be solved for small t, the method reduces to complete enumeration

since only one integer extreme point is excluded from further consider­

ation at each iteration. This can be shown by observing that for t < c^

-c'x < t excludes all extreme points from problem (4.2) with x^ = 1.

If t 8 min(c^), no nonzero integer point is feasible for (4.2) and only

x * 0 can be eliminated at each iteration. Therefore for sufficiently

small t at each iteration, the algorithm reduces to complete enumeration.

The decision rules presented in Remark 3 yield the largest t (largest

cut) which insures that we have not eliminated any integer point better

than x**»

A second cutting plane which can be used to eliminate part of

the feasible region will now be introduced. This plane is a parallel

shift of the original objective function hyperplane (i.e. c'x > k) and

46

can only be inserted when t^ > t̂ (i.e. a new integer extreme point

has been found to replace the current best solution). Consider now

two new problems formed by partitioning problem (4.3) as follows:

(4.9) Max: Q(x)

Subj: Ax <

-c'x >

c x <

x <

2S >

(4.10) Max: Q(x)

Subj: Ax <

-c'x >

c x >

x <

x >

When t^x* is integer, it follows that the global optimum of (4.1) is

that x which is the largest global optima of (4.2), (4.9), and (4.10).

Theorem 6 states that the solution of (4.2) is an upper bound on the

solution of (4.9). With Theorem 6 one need only solve (4.2) and (4.10)

to obtain the solution of (4.1) when t^ > t^.

Theorem 6

If z is an optimal integer solution to (4.9; and t^x is an

optimal integer solution to (4.2), then Q(z) < Q(t^x*)»

Proof. For any integer solution z, Q(z) * c'z. But the constraint

£ fz < c'tnx* implies Q(z) = c'z < c'tnx* = Q(t nx*) or simply

= c'x - ^ x'Cx

b

1

0

c'x - ^ x'Cx

1

0

47

Q(z) < Q(t Qx*). This completes the proof of Theorem 6.

Recall that in each step of the proposed algorithm (Figure 2),

the problem (4.1) and hence the problem (4.2) are no longer in terms

of the original region. Each problem (4.1) begins with the origin

feasible and each iteration eliminates at least the origin from further

consideration in all successive iterations. Therefore, it becomes

necessary to transform some other feasible point to the origin to

make possible the solution of the next problem. It is also implied by

the algorithm of Figure 2, that the best local optimum currently known

is available for reference at any iteration. When a new local optimum

is discovered which is better than any previously found, it must be

saved in place of its predecessor. Since the new local optimum is

given in some transformed region, a means must be developed to relate

this point to the variables of the original region. Therefore it is

necessary that one have a reverse transformation by which points in

some v-region can be related to original points in the x-region. The

following transformation gives the desired result.

(4.11) T*v + tt* = x

where T* x -TA^ *

tt* = tt - T*b .

Initially T and tt are an identity matrix and a zero vector of the

appropriate dimensions. For successive transformations, T* and tt*

become the T and tt of the next transformation so that the reverse

transformation through numerous forward transformations can be accom­

plished by application of (4.1l) only once.

48

Furthermore, the objective function of the original integer

programming problem can be expressed in terms of the new region by the

following transformation

It follows that if the transformed variables are substituted

for the original variables of Theorem 6 and the condition that Tt x* + tt
o— —

be integer instead of t^x*, then Theorem 6 holds for any transformed

region.

Location of a Feasible Integer Point

The basic algorithm of Figure 2 requires that the problem (4.3)^

be transformed to a new region at each iteration. The transformed

problem denoted must satisfy the following conditions, 0 must

be feasible, Q*(x) must be convex, and c* must be negative. To make

this transformation so that the above conditions are satisfied, the

algorithm must transform a feasible integer point of the problem (4.3)^

to the origin for the problem (4»l) i + 1* The following section describes

how these integer points are obtained.

The general approach followed is that of a tree search in which

each node of the tree represents an integer point. The search begins

with an infeasible solution and moves successively toward feasibility.

Once a feasible solution is found, the search is ended. When it becomes

necessary to locate another feasible integer point, the search resumes

from the stopping point of the previous search. Since each integer point

found becomes the origin of the new (4.1) , and since the origin is

49

eliminated from further consideration at each stage, each search begins

with an infeasible solution.

The tree search scheme is based on the work of Glover (ll) as

revised by Geoffrion (9). The latter defines a partial solution S as

a binary assignment of n or fewer of the integer variables. All vari­

ables assigned a value by S are called fixed variables and variables

not assigned a value by S are known as free variables. The notation

j e S and -j e S denotes x̂ * 0 and x.. = 1 respectively. Hence if

n « 5 and S * (3,5,-2), then 8 0, x^ - 0, x^ s 1, and x^ and x 4 are

free variables. For any solution S, all free variables will be assigned

the value one. Therefore the solution S = (3,5,-2) denotes the solution

xl * ^ 9 x 2 = x3 * ^' x4 = x5 = ^" ^ o i i o w s that any partial

solution S is different from another partial solution if at least one

element of S is different in the two solutions. With this notation, it

follows that the scheme of Figure 3 terminates only after a feasible

solution has been found or all 2 n unique solutions have been explicitly

enumerated.

The scheme of Figure 3 could be used to find a feasible integer

point; however, it would be inefficient for even small problems. The

efficiency of the scheme can be greatly increased if some of the solu­

tions can be implicitly enumerated. This can be accomplished if one or

more tests can be devised which indicate the futility of further examina­

tion along the branch in question. Assuming that such tests are avail­

able, the explicit enumeration tree search could be converted to an

implicit enumeration tree search as shown in Figure 4.

50

Start

S = cp

No Is S a feasible solution ? Yes Stop Is S a feasible solution ?
w

Stop

No
Are there any free variables ?

Yes
Are there any free variables ? Augment S with

one of the free
variables

No Are all elements of S negative ?
Yes

Are all elements of S negative ?
Terminate: No

feasible
solution

I
Set the right most positive element
of S equal to its negative and drop
all elements to its right.

Figure 3. Explicit Enumeration Tree Search.

51

Theorem 7

The implicit enumeration scheme of Figure 4 leads to a non-

redundant sequence of partial trial solutions which does not terminate

before a feasible solution is found, or all 2 n solutions have been

implicitly enumerated.

A proof of Theorem 7 can be found in Geoffrion (9) and is not

repeated here.

Attention is now turned to the details of the method used to

accomplish the task of block 7 Figure 4 in which the partial solution S

is augmented with one of the free variables. The method used to select

this free variable is due to Geoffrion (9) and is this, fix that free

variable in the next solution which most reduces the infeasibility of

the present solution. With this augmentation criterion, it follows that

the only free variables which can decrease infeasibility without allowing

the value of the objective function to fall below some lower limit are

elements of T where

r = (j : j free, c. < c'xs - z, a. , > 0 for some
J IJ

i such that y^ < 0) ,

where x is the solution determined by S with Ax + y = b

and z is some lower limit on the objective function.

Remark 5. Notice that the assumption c > 0 is used here. Also notice

that if r is the null set, there is no feasible completion of S that

is better than some known solution and S can be fathomed. Therefore,

indirectly a fathoming mechanism has been developed.

If r is not null, then it can be seen that the free variable

52

1

S = <p

No Yes
Is S a feasible solution? Stop

Can S be fathomed ? Can S be fathomed ?

No

Are there any free variables ?
Yes Augment S with

one of the free
variables

No l 9

Are all elements of S negative ?
Yes Terminate: No

feasible solution

10
Set the right most positive element
of S equal to its negative and drop
all elements to its right.

Figure 4. Implicit Enumeration Tree Search.

Start

53

which when fixed would most reduce the infeasibility is that k where

m m
k = j | £ min (yi + a^, 0) > £ min(yi +a i^,0),

i=l i*l
\> = 1,..., n •

The original notion that all free variables take on the value of one

is used in the development of the above expression.

Using this augmentation mechanism attention is now turned to

block 5 of Figure 4 which attempts to fathom the current partial solu­

tion denoted by S. Balas (l) presented three tests to be used in an

attempt to fathom partial solutions. The first requires the determina­

tion of the set T. If T is the null set, the branch may be fathomed.

The second test attempts to demonstrate that the best completion of S,

regardless of feasibility considerations, is not preferable to some

other known feasible solution. If z S denotes the value of Q(x) at S,
s

then z - z < 0 implies that no solution preferable to the one already

known exists along the branch in question. Note that c > 0 is used in

the second test. The final test attempts to show that at least one of

the m constraints will be violated by any completion of the partial solu­

tion. Mathematically the third test reduces to computing the quantities

* y^ + max (â .., 0) for all i such that y^ < 0. If

cu < 0 for some i, then the branch in question may be fathomed.

Remark 6. A summary of Balas* tests follows:

54

(a) Test 1. Compute V = (j : j free, < c'xs - z, a ^ > 0

for some i such that y. < 0).

If r • 9, S may be fathomed.

(b) Test 2. Compute 8 •» z S - z.

If B < 0, S may be fathomed.

(c) Test 3. Compute = y^ + max(a^, 0) for all i

such that y.. < 0. il

If < 0 for some i, S may be fathomed.

A complete flow chart of the Balas algorithm as modified by the author

to locate feasible integer points is as shown in Figure 5.

The above algorithm provides not only a means for determining

feasible local optimum (integer points) required at each iteration,

but also a stopping mechanism for the integer programming algorithm of

Figure 2. If at the p**1 iteration, the search routine fails to find a
feasible integer point, the global optimal is the local optimal found

st

at the p-1 iteration. Failure to find a feasible point on the first

iteration implies that 0 is the optimal solution if 0 is feasible and

that there is no solution if it is infeasible.

Determination of Redundant Constraints

Recall that at each iteration of the algorithm of Figure 2, one

or more constraints or cutting planes are added to the constraint set.

These constraints cut away or eliminate from further consideration one

or more integer extreme points. It follows that as more of these con­

straints are added to the constraint set, that some of the original

constraints as well as some of the additional constraints no longer

55

Start

S = q>, z * 0

No _ 1
Is S feasible ? Yes

Set the right most
positive element of
S equal to its neg­
ative and drop all
elements to its
right.

Yes

No
I

All elements of
S negative ?

T = (j: j free, c. < c'xS - z,
a. . > 0 for some i such that
y. < 0)

Yes
r = <p?

No

Yes
z s - z < 0 ? No

for all i such that y. < 0

- a. < 0 for some i ? i
No

Yes

Terminate: No
feasible solution

Stop

Augment S
with k

m
* = (j I £ min(yi +a..,0)

i=l
m

> £ min(yi +8^,0)

Figure 5. Implicit Enumeration Tree Search.

56

serve to restrict the feasible region. These ineffective constraints

shall be referred to as geometrically redundant constraints. It can be

easily seen that the constraint set would become quite unwieldy if

several hundred iterations were required to solve the integer problem.

Therefore, it is imperative that the algorithm be able to locate and

eliminate these redundant constraints. A full explanation of these

constraints and a means for locating them follows.

Definition 1: Type A Geometrical Redundancy

Let a! be the j**1 row of the A matrix. Then a'.x < b, is a type

A geometrically redundant constraint if and only if ajz £ b.. for all

z e r - (z | Az < b) when P = <p. When V * 9, there are no feasible

points in the constraint set, and the definition has no meaning.

Figure 6. Illustration of a Type A Geometrically
Redundant Constraint.

Constraint 1, Figure 6 is a type A geometrically redundant con­

straint.

57

Definition 2: Type B Geometrical Redundancy

Let a_!x < bj be a row of Ax < b. Then ajx < b^ is a type B

geometrically redundant constraint if and only if there exists an i / j

such that J C I where

J = (z I a!z = b., A z < b) and " "J" J

I = (x | a^x = b^, Ax < b) .

Simply stated, a type B geometrically redundant constraint is one which

is met as an equality in the feasible region at only a single point or

at a set of points which lie along the face of the convex set which is

determined by another constraint.

Figure 7. Illustration of a Type B Geometrically
Redundant Constraint.

Constraint 1, Figure 7 is a type B geometrically redundant constraint,

58

Remark 7. Observe that a type B redundancy becomes a type A redundancy

when the redundant constraint is perturbed to form a!x < b. + e where
F -j J

e is some scalar greater than zero.

Remark 8, Also notice that a type B redundancy implies that there

exists a degenerate basic feasible solution.

Klaus Ritter (25) developed a method to locate type A geometrical

redundancies. The author has extended this basic approach by perturbing

certain elements of b so that type B redundancies can also be detected.

After the addition of slack variables the constraints take the form

a!x + s. * b.. Positively perturbed constraints take the form

ajx + S j * bj + e, e > 0. Positively perturbed type B geometrically

redundant constraints become type A geometrically redundant. Positively

perturbed essential constraints remain essential. The method presented

below is based on the idea of perturbing constraints and then applying

the basic approach of Ritter to locate type B as well as type A redun­

dancies.

The method is based upon the solution of the following linear

programming problem.

(4.12) Max: -s^

Subj: Ax + s_ = b

x, s > 0

th

with the j element of b perturbed by e where e > 0. To accomplish

this perturbation without actually changing the b^, the following

decision rule was incorporated for determining the leaving variable.

If there is a tie for the leaving variable which involves b,, allow the

59

j^^ variable to remain in the solution. For example if k is the enter­

ing variable for some tableau and there is a tie for the leaving variable
b. b b.+e b i r i r such that — - > 0 then the perturbed b. would produce >

yjk yrk J yjk yrk
and would indicate that r should be the leaving variable. The above

decision rule accomplishes precisely what is needed to solve the per­

turbed problem.

If problem (4.12) is solved using the above decision rule, one of

three cases will occur at the optimal solution.

Case I: is greater than zero. This implies that the j*'*1

constraint is type A geometrically redundant.

Case II. s. is a basic variable at the zero level. This implies
th

that the j constraint is type B geometrically redundant.

Case III: ŝ is not a basic variable. This implies that the

j^^ constraint is essential.

With the above information, a procedure for locating redundant

constraints could be developed. If a constraint set contained m con­

straints, one could determine if each is essential by solving the per­

turbed problem (4.12) for j * 1,2,...,m. This would involve solving m

linear programming problems which could be a very lengthy process. This

can be significantly reduced by observing that at any feasible tableau,

if all elements of the row are less than or equal to zero except the

y^ * 1 element, then the problem max - s^ subject to the constraints of

that tableau will have the solution s^ • bp. If bp is positive, then

the constraint is type A geometrically redundant. If bp is equal to

zero, then the constraint is type B geometrically redundant. The

60

number of linear programming problems can be reduced by observing that

at each tableau the columns which are not in the basis which have unique

pivot elements could enter the basis and remove the variable correspond­

ing to the row of this pivot element. If this variable is a slack, then

the constraint corresponding to this slack variable is essential. The

arguments presented above form the basis for the following method for

determining geometrically redundant constraints.

Let E * the set of essential constraints

Initially E is the null set and M contains all real numbers (l,2,...,m).

Step 1. Let j * 1

M = the set of constraints about which no decision has been made

Ax + s • b is the constraint set

• the (i,j) element of any tableau

Step 2. Solve Max: -s.
J

Subj: Ax + s * b

x,s > 0

by the perturbed method.

Step 3. Is s. greater than zero? J
t h

Yes - The j constraint constraint is type A geometrically redundant.

Delete j from M and proceed to step 5.

No - Proceed to step 4.

Step 4. Is s. a basic variable? J
Yes - The constrain constraint is type B geometrically redundant.

Delete j from M and proceed to step 5.

No - The j th constraint is an essential constraint. Delete

j from M, place j in E, and proceed to step 5.

61

Step 5. Are there any rows in the current tableau which have only one

positive component?

Yes - If the row is r, the constraint is redundant.

Delete r from M and check for all other such rows.

After all rows have been checked, proceed to step 6.

No - Proceed to step 6.

Step 6. Calculate the pivot element in each column not in the basis.

If the pivot element in a column is unique, then examine the

variable corresponding to the row containing this pivot ele­

ment. If this variable is a slack, then the constraint asso­

ciated with this slack variable is essential. Delete the

appropriate entry from M and make an entry in E.

Step 7. Is M the null set?

Yes - The procedure is complete, the essential constraints

are in E. All other constraints are redundant.

No - Let j equal some element of M, and proceed to step 2.

An Algorithm for the Maximization of the

Special Quadratic Programming Problem

Section 1 presented the basic algorithm for the solution of the

special quadratic programming problem. The approach involves successively

partitioning the feasible region in such a way that the global optimum

can be found in one of these regions. Section 2 presents the methods

which are used to solve each of the special sub-problems. Section 3

gives a means for finding a local optimum which is required to solve

the partitioned problem and section 4 presents a method for eliminating

geometrically redundant constraints. A complete expansion of the flow

chart of Figure 2 is given in Figure 8. The flow chart of Figure 11

was used to write a computer program from which computational exper­

ience with the proposed algorithm was obtained. These results are

given in Chapter V.

Example

Max: 3x^ + 2x^ + x^

Subj: x x + x 2 + x 3 < 2.75

x 1,x 2,x 3 = 0 or 1

Following the procedure of Section 2, Chapter III

a * max (30, 20, 10) + 1 = 31

Therefore the quadratic programming problem to be solved is as follow

Max: Q(x) = -28x1 * -29x2 - 30x 3 + 31x x
2+ 31x 3

2

Subj: x + x 2 + x 3 < 2.75

x < 1

x > 0

In terms of the notation used in the algorithm Figure 11

A = [1 1 1] b = 2.75

C - -62 0 0 c 1 = [3 2 1]

0 -62 0

0 0 -62 c ' * [-28 -29 -30] .

The numbers at each step of the solution procedure reference

in the flow chart of Section 5.

63

Flow Chart for the 0-1 Programming Algorithm

No

Start

Initialize T and tt

No
I

AO < b ?
Yes

Is there an integer point
z, such that Az < b?

Add the constraint £* x > c'z
to Ax < b

Transform z to 0

x** = tt, Q(x") = Q(0)

1 8
| Stop: Optimal Solution is x**

9
Stop: Problem Has No Solution

Yes

No Is there an integer point
z, such that Az < b ?

Yes D Is there an integer point
z, such that Az < b ?

D

Figure 8. Complete Flow Chart of the Integer Programming Algorithm.

I 10
Add the constraint c'x > c'z

to Ax < b

11
x** = Tz + tt, Q(x**) * Q(z)

12

Transform z to 0
A* * -AA X

b * = b + A*b x

T = -TA 1

tt* =tt - T * ^
£*' =b'C - c'A1

c*' --c'A
Q*(0_) = Q(z)

13
Solve (4.4) for x* at t • 1

14
Find tx: QU.̂ *) * Q(x**)

15
Find t : t 88 max(t: Atx* < b) o o —

I
Figure 8. (Continued)

65

Yes
16

No Add -c'x > t 1 to
Ax < b

17

x** = Tt x* + tt
Q(x**) =°Q(tox*)

i 18
Add c'x > t Q to Ax < b

19

Add c x > c t q x to Ax < b

20
Eliminate geometrically redundant
constraints from Ax < b

Figure 8. (Continued)

66

1. Initialize T and tt

1 0 0

R = T = 0 1 0 tt' = [0 0 0]

0 0 1

Note: R is a matrix which provides a transformation of a constraint

in some v-region to the identical constraint in the x-region.

If aj represents the coefficients of some transformed constraint,

the aJR gives the coefficients of this constraint on the x-region.

The primary purpose of R for the example problem is to allow the

author to determine the cutting planes in terms of the original

feasible region. Transformed regions often become difficult to

draw, therefore all sketches for this example are in terms of

the original feasible region although it should be remembered

that transformed problems are actually being solved at each

2. AO < b? Yes

6. x** « 0, Q(x**) = Q(0) « 0

Iteration 1

7. Is there an integer point z, such that Az < b? Yes, z = (0,1,1)

10. Add the constraint 3x^ + 2x^ + x^ > 3 to Ax < b. The original

feasible region is shown in Figure 9, and the feasible region

reduced by the above constraint is shown in Figure 10. Note that

in Figure 13, points 1, 2, and 3 are no longer candidates for con­

sideration.

iteration. R * -A R gives the transformation required for R.

11. x** = Tz + tt = (0, 1, 1), Q(x**) * Q(z) = 3

Figure 9» Feasible Region of Example Problem

Figure 10. Illustration of First Cutting Plane
(Iteration 1).

12. Transform z to 0

The transformed problem is as follows:

A = 1 -1 -1 b = 0.75

-3 2 1 0

-62 0 0 c' « [3 -2 -l]

C = 0 -62 0

0 0 -62 c' = [-28 -33 -32]

R = T = 1 0 0 tt = 0

0 - 1 0 1

0 0 - 1 1

13. Solve (4.4) for x* at t « 1

x* « (1/28, 0, 0)

14. Find t x: A(t2x*) * Q(x**)

t x * 25.29

15. Find t : t * max(t: Atx* < b)
o o - -

t • 21.00
o

16. t > t. ?
o 1

21.00 > 25.29? No.

21. Add 28x1 + 33x 2 + 32x 3 > 25.29 to Ax < b. The reduced

constraint set is as shown in Figure 11.

22. Eliminate geometrically redundant constraints from Ax < b.

Iteration 2

7. Is there an integer point z, such that kz < b,

Yes, z «= (1, 1, 0).

70

10. Add 3x 1 - 2x 2 - x] > 1 to Ax < b.

The above cutting plane is as shown in Figure 12. Note that point

5 has also been eliminated from further consideration.

11. x** = (l, 0, 1), Q(x**) = 4

12. Transform (l, 1, 0) to 0.

The transformed problem is as follows:

A = 28 33 -32 b = 35.71

3 -2 1 1

-1 1 -1 0.75

3 -2 1 0

C « same c' =

c' =

[-3

[-34

T = -1 0 0 tt = 1

0 1 0 0

0 0 -1 1

Q(q) * 4

Solve (4.4) for x* at t « 1

x* * (0, 1/29, 0)

Find V Q(tr x*) - Q(x**)
t * Xl 27.13

Find t : t
o 0

max(t: Atx* < b)

t *
0

21.75

16. t > t. ?
o 1

2 -1]

•29 -32]

21.75 > 27.13 No

Figure 11. Illustration of Second Cutting Plane
(iteration 1)

72

*3

Figure 12. Illustration of Third Cutting Plane
(iteration 2)

73

21. Add 34 X ; L + 29x 2 + 32x 3 > 27.13 to Ax_ < b.

Figure 13 shows the above cutting plane. Note that point 6 has

now been eliminated.

22. Eliminate geometrically redundant constraints from Ax < b

Iteration 3

7. Is there an integer point z, such that Az < b ?

Yes, let z « (0, 1, l)

10. Add -3x1 + 2x 2 - x 3 > 1 to Ax < b.

Figure 14 shows the new cutting plane.

11. x** « (1, 1, 0), Q(x**) = 5

12. Transform z to 0

The transformed problem is as follows:

-1 -1 1 b 0.75

28 -33 32 34.71

-34 29 32 33.89

3 2 -1 1.00

3 2 -1 0.000

= same c' * [-3

i
c

» [-34

-1 0 0 tt = 1

0 -1 0 1

0 0 1 0

13. Solve (4.4) for x* at t * 1

x* = (0, 0, 1/30)

*3.

Figure 13. Illustration of Forth Cutting Plane
(Iteration 2)

Figure 14. Illustration of Fifth Cutting Plane
(Iteration 3)

76

14. Find t 1: Q(x**)

tJL = 29.03

15. Find t : t = max(t: Atx* < b)
o o

t = 22.50
o

16. t > t, ?
o 1

22.50 > 29.03? No

21. Add 34x : + 33x 2 + 30x 3 > 29.03 to Ax < b.

The cutting plane is as shown in Figure 15. Note that all seven

feasible integer extreme points have been eliminated from further

consideration.

22. Eliminate geometrically redundant constraints from Ax < b.

Iteration 4

7. Is there an integer point z, such that Az < b. No

8. Stop: Optimal Solution is x** «= (l, 1, 0)

Figure 15' Illustration of Sixth Cutting Plane
(Iteration 3)

78

CHAPTER V

COMPUTATIONAL EXPERIENCE

A computer code was developed from the algorithm of Figure 11

and used to obtain the computational results reported in Table 2. The

computer code is written entirely in Fortran V for the Univac 1108.

The object program and data are all held in core with all program data

in floating point. Total number of 36 fixed bit storage words required
2

for this program is 2mn + 10m + 4n + lln + 2305 where m is the number

of constraints and n is the number of 0-1 variables.

The program was written in four segments as follows:

a) MAIN

b) FIND

c) TRANS

and d) SUPER.

MAIN is the control program which directs the flow of the algorithm as

well as generating the cutting planes required to reduce the feasible

region. The subroutine FIND is used to locate a feasible local optimum

required at each iteration. This subroutine is essentially the implicit

enumeration algorithm of Balas (l) with revisions to transfer control

back to MAIN after each new feasible local optimum has been found. The

TRANS subroutine transforms this local optimum to the origin while stor­

ing reverse transformations to enable the algorithm to reference extreme

points in the original region. The last subroutine, SUPER, is used to

79

eliminate geometrically redundant constraints after each transforma­

tion. The linear programming routine required is basically a revised

simplex algorithm which has been modified to take advantage of the special

structure of the problem.

The test problems were taken from the literature and are refer­

enced in Table 2. The computational times for other algorithms were

reported by Geoffrion (10) and are repeated for purposes of comparison.

The limited computational experience reported here indicates

that the present form of the computer code used to develop the compu­

tation experience is inferior to the code used by Geoffrion (10). The

program developed in this research has not been refined at this writing

and consequently there are several opportunities for improvement which

have not been explored. The main objective of the programming effort

was to obtain a code that worked so that, at least, some computational

experience could be reported. This objective has been accomplished.

Further refinement of the computer code is left as a future area of

research.

80

Table 2. Comparative Computational Experience

Problem Problem
Size

0-1 Var.
x Const.

Balas(lO)
(7044)

min.

Geoffrion(lO)
(7044)

min.

Other Algorithms

min. Ref.

Quadratic
Approach
(U1108)
min.

Bouvier
and

Messoumian(7)

15 20 x 20 0.48 0.09 0.47 7 0.42

16 20 x 20 1.69 0.62 2.07 7 1.30

17 20 x 23 1.06 0.64 0.85 7 0.44

23 27 x 20 8.08 1.18 7.10 7 7.21

Petersen(23)

4 20 x 10 0.46 0.04 0.06 23 0.89

Haldi(l6)

II-7 20 x 4 0.10 0.03 0.02 20 3.50

II-8 20 x 4 0.10 0.05 0.40 20 5.07

11-10 30 x 10 0.41 0.06 - - 1.81

IBM(16)

1 21 x 7 0.14 0.01 0.13 27 0.26

2 21 x 7 0.11 0.02 0.17 27 0.23

3 20 x 3 0.04 0.01 0.04 27 0.03

81

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The objective of this research was to develop a 0-1 integer pro­

gramming algorithm via a quadratic programming approach. An algorithm

based on this approach has been developed, finiteness of the algorithm

has been proved, and several published test problems have been solved by

a computer code developed from this algorithm. The singular result of

this research is the 0-1 integer programming algorithm presented in

Chapter IV.

Even though the practicality of the quadratic programming approach

to the solution of the 0-1 integer programming problem has been estab­

lished, there still remain many unanswered questions concerning this

approach. The following is a brief outline of recommendations for fur­

ther research in the area of integer programming via quadratic program­

ming approach.

a) Can the computer code written by the author be refined to

increase its efficiency? There are, at least, two avenues which may be

pursued in this endeavor. First, the present code uses the SUPER sub­

routine at each iteration. At some computational cost, this routine

locates and eliminates any geometrically redundant constraints present

in the constraint set to thereby reduce the computation time, in other

phases of the program. The computational relationship between carrying

say k redundant constraints and eliminating them is not known. It may

82

be possible that more time is expended in locating and eliminating a few

redundant constraints than would have been incurred had they been carried

along through the other phases of the program. If this relationship

were known, it may be advantageous to apply routine SUPER less frequently

than at every iteration. The second avenue available would be to revise

the program to work only in the original region rather than the trans­

formed regions. This would eliminate the necessity to make two (one

forward and one backward) transformations at each iteration.

b) Does the algorithm perform better on a specific type of

problem? It is impossible to determine this with the computational

experience presently available.

c) How does the computational time increase with respect to the

number of variables and number of constraints? Again this can only be

determined after much more computational experience is available.

d) Can the integer programming algorithm developed in Chapter

IV be extended to solve the mixed 0-1 integer programming problem? The

logical approach to follow here is to use Benders (6) partitioning method.

This method requires that one be able to solve a problem of the form

(6.1) Max: z

Subj: z < c^x + (b - A^x)'u^

z < c^x + (b - A^x) 'uP

x̂ = 0 or 1 for all i

where z and x are variables, and c^, b, A^, and u (p * 1,...,P) are

constants. The problem (6.1) is a pure 0-1 integer programming problem

83

with an additional continuous variable z. If one attempts to use the

quadratic approach presented in Chapter IV, a problem of the form (6.2)

will be obtained.

(6.2) Max: Q(y) = c'y - | y'Cy

Subj : Ay < b

1 > 0

where y' = (x', z^9 z^)9 z *= z^ -

c' - (al1, 1, -1)

-2al | 0 | 0
1

ol 0 ! o
1

ol 0 j 0

Note that the C matrix contains two diagonal elements which are zero.

Recall that from Chapter IV section 4.2, a t̂ greater than zero is only

guaranteed if c ^ < 0 for all i. Since (6.2) does not initially meet

this criteria, Benders partitioning method can not be used without

extensive modifications to the present algorithm. This problem is a

very important area for future work.

84

LITERATURE CITED

1. Balas, Egon. 1965, "An Additive Algorithm for Solving Linear
Programs with Zero-One Variables," Operations Research, 13, 5-7-546.

2. Balas, E. 1967b. "Discrete Programming by the Filter Method,"
Opns. Res., 15, 915-157.

3. Balas, E., Duality in Discrete Programming,Technical Report
No. 67-5, July 1967, Department of Operations Research, Stanford
University, Revised December 1967.

4. Balinski, M. and K. Spielberg, "Methods for Integer Programming:
Algebraic, Combinatorial, and Enumerative," Progress in Opera­
tions Research, V. Ill, Relationship between Operations Research
and the Computer^ (edited by Julius Arnofsky) John Wiley and Sons,
195-292, 1969.

5. Bellman, Richard. 1956. "Maximization over Discrete Sets,"
Naval Research Logistics Quarterly, 3, 67-70.

6. Benders, J. F. 1962. "Partitioning Procedures for Solving Mixed-
Variables Programming Problems," Numerische Mathematik, 4, 238-252.

7. Bouvier, B., and G. Messoumian. 1965. "Programmes Lineaires en
Variables Bivalentes-Algorithme de E. Balas," Faculte des Sciences
de Grenoble.

8. Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson. 1954 "Solu­
tion of a Large Scale Travelling Salesman Problem," Opns. Res., 2,
393-410.

9. Geoffrion, A. M., Integer Programming by Implicit Enumeration and
Balas' Method, Rand Corporation Memorandum, RM-4783-PR, February
1966.

10. Geoffrion, A. M., An Improved Implicit Enumeration Approach for
Integer Programming, Rand Corporation Memorandum, RM-5644-PR, June
1968.

11. Glover, F. 1965c. "A Multiphase-Dual Algorithm for the Zero-One
Integer Programming Problem," Opns. Res., 13, 879-919.

12. Gomory, R. E. 1958a. "An Algorithm for Integer Solutions to Linear
Programs," pp. 269-302 in Graves and Wolfe, (1963). First Issued
as Princeton-IBM Mathematics Research Project, Tech. Rept. 1,
Nov. 17.

85

13. Gomory, R. E. 1960a. "All-Integer Integer Programming Algorithm,"
pp. 193-206 in Muth and Thompson (1963). First Issued as IBM
Research Center, Res. Rept. RC-189, Jan. 29.

14. Graves G., and Whinston A., "A New Approach to Discrete Mathe­
matical Programming," Management Science. Vol. 15, No. 3, November
1968.

15. Hadley, G., Nonlinear and Dynamic Programming. 1964, Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts.

16. Haldi, J. 1964. "25 Integer Programming Test Problems," Stanford
University, Working Paper No. 43, Dec.

17. Hammer, P. L., "A Boolean-Branch-and-Bound Method for Linear and
Nonlinear Bivalent Programming," Working Paper Weizmann Institute
of Science, Rehovoth, 1968.

18. Hillier, F. S., and Lieberman, G. J., Introduction to Operations
Research, 1968, Holden-Day, Inc., San Francisco, California.

19. Land, A. H., and A. G. Doig, 1969. "An Automatic Method for
Solving Discrete Programming Problems," Econometrica, 28, 497-520.

20. Lemke, C. and K. Spielberg, "Direct Search Algorithms for Zero-
One and Mixed Integer Programming," Operations Research, V. 15,
No. 5, 892-914, October 1967.

21. Mangasarian, Olvi L., Nonlinear Programming, 1969, McGraw-Hill
Inc., New York, New York.

22. Markowitz, Harry M., and A. S. Manne. 1957. "On the Solution of
Discrete Programming Problems," Econometrica, 25, 84-110.

23. Petersen, Clifford C. 1967. "Computational Experience with Variants
of the Balas Algorithm Applied to the Selection of R and D
Projects," Mgmt. Sci., 13, 736-750.

24. Raghavachari, M., "On Connections Between Zero-One Integer Pro­
gramming and Concave Programming Under Linear Constraints," Journal
of Operations Research, Vol. 17, No. 4, pp. 680-684 (1969).

25. Ritter, K., "A Method for Solving Maximum Problems with a Non-
concave Quadratic Objective Function," Z. Wahrscheinlichkeitstheorie
4, 340-351 (1966).

26. Young, R. D., "A Simplified Primal (All-Integer) Integer Program­
ming Algorithm," Journal of Operations Research, Vol. 16, No. 4,
(1968).

86

27. Woiler, S., "Implicit Enumeration Algorithms for Discrete Optimi
zation Problems," Ph.D. Dissertation, Department of Industrial
Engineering, Stanford University, May 1967.

28. Wolfe, P., The Simplex Method for Quadratic Programming.
Econometrica. 27, 1959, No. 3.

87

OTHER REFERENCES

Balinski, M. L. 1965. "Integer Programming: Methods, Uses, Compu­
tations," Mqmt. Sci., 12, 253-313.

Cabot, A. V. and Francis, R. L., "Solving Certain Nonconvex Quadratic
Minimization Problems by Ranking the Extreme Points," Journal of
Operations Research, Vol. 18, No. 1, p. 82 (1970).

Climescu, Al., "La Programmation Algebrique," Buletinul Institutului
Politechnic, Din Iasi, Serie Nova, Tomul VIII (XII), Fasc. 1-2, 1962.

Dantzig, G. B. 1960. "On the Significance of Solving Linear Program­
ming Problems with Some Integer Variables," Econometrica, 28, 30-44.

Glover, F., and S. Zionts. 1965. "A Note on the Additive Algorithm of
Balas," Opns. Res., 13, 546-549.

Gomory, R. E. 1958b. "Outline of an Algorithm for Integer Solutions
to Linear Programs," Bulletin of the American Mathematical Society,64, 275.

Hadley, G., Linear Programming, 1962, Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts.

Hu, T. C , Integer Programming and Network Flows, 1969, Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts.

Lawler, E. L., and D. E. Wood. 1966. "Branch-and-Bound Methods: A
Survey," Opns. Res., 14, 699-719.

Mueller, R. K., "A Method for Solving the Indefinite Quadratic Pro­
gramming Problem," Management Science, Vol. 16, No. 5, January, 1970.

Murty, Katta G., "Solving the Fixed Charge Problem by Ranking the
Extreme Points," Journal of Operations Research, Vol. 16, No. 2, pp.
268-279 (1968).

Ritter, K., "Stationary Points of Quadratic Maximum-Problems,"
Z. Wahrscheinlichkeitstheorie, verw. Geb 4, 149-158 (1965).

Tui, Hoang, "Concave Programming Under Linear Constraints," Soviet-
Math., 1937-1940 (1964).

