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SUMMARY 

This thesis presents a new algorithm for the solution of the 

0-1 linear integer programming problem. The algorithm is a specializa^ 

tion and modification of a quadratic prograiiiming algorithm by Klaus 

Ritter for the maximization of a convex quadratic function subject to 

linear constraints. The algorithm as presented also incorporates the 

branch-and-bound algorithm of Egon Balas for the solution of the 0-1 

linear integer programming problem. Piniteness and optimality of the 

algorithm are proven, and the computational experience developed at 

this writing is reported. 
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CHAPTER I 

INTRODUCTION 

Since the development of the simplex method for solving linear 

programming problems by George Dantzig in 1947, researchers in all 

fields of applied mathematics have been drawn to the interesting field 

of mathematical programming. One particular area of mathematical pro­

gramming which is, at present, or prime interest to operations researchers, 

industrial engineers, and applied mathematicians, is that of discrete or 

integer programming. The best explanation for this interest is that 

numerous practical problems can be formulated as integer linear pro­

gramming problems. Scheduling, capital budgeting, resource allocation, 

and distribution problems are but a few examples of where integer linear 

programming problems arise. 

Before 1959, problems which required integer solutions were 

usually solved by rounding optimal linear programming variables to the 

nearest integer. Although this is often adequate, especially when the 

variables are relatively large, it is difficult in some cases to obtain 

near optimal solutions to the discrete problem. It is often difficult 

if not impossible to see in which way the rounding should be done to 

maintain feasibility. After a solution has been rounded, it may even 

become necessary to change one or more of the variables by one or more 

units to regain feasibility. A good example demonstrating the difficulty 

which can be encountered when rounding optimal linear programming solu­

tions is found in Hillier and Lieberman (18). Because of this difficulty, 
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researchers have turned to other means of solving linear optimization 

problems which have discrete requirements. The new methodology developed 

over the last twelve years for the solution of these types of problems 

can be grouped under the single title, linear integer programming. It 

is this area of mathematical programming of concern for this research. 

In the field of linear integer programming, there are four prob­

lems of interest. The first and most restrictive is the pure 0-1 

integer programming problem. Problem (l.l) is this type. 

(1.1) Max: f(x) 

Subj: Ax < b 

x i « 0 or 1 for all i. 

The second is the mixed 0-1 integer programming problem. Problem (1.2) 

is of this type. 

(1.2) Max: f(x) + g(yj 

Subj: Ax + By_ < b 

y_ > 0 

x. = 0 or 1 for all i l 

The third is the pure integer programming problem. Problem (1.3) takes 

this form. 

(1.3) Max: f(x) 

Subj: Ax < b 

x > 0 

x^ is integer for all i 

The last and most general type of problem is the mixed integer programming 
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problem. Problem (1.4) is this type problem. 

(1.4) Max: f(x) + g(y_) 

Sub j: Ax + By_ < b 

x > 0 

Y_ > 0 

is integer for all i 

For problems (l.l) through (l.4) 

x is a n-component column vector 

y_ is a p-component column vector 

b is a m-component column vector 

0 is a n-component column vector of zeroes 

A is a m x n matrix 

B is a m x p matrix 

f is a mapping from E n into 

and g is a mapping from E p into E . 

Each of the four linear integer programming problems is important 

in its own right and practical applications for each frequently appear 

in the literature. These practical applications often require the 

solution to very large integer programming problems and consequently a 

good integer programming algorithm must be able to solve large problems. 

A comparison between two algorithms is usually made by comparing the 

computational times of each algorithm on a set of test problem. Since 

the success of an algorithm is dependent upon the speed of solution, 

integer programming algorithms are typically designed for one and only 

one of the four integer programming problems. This enables one to take 

advantage of any special characteristics of the problem. The special 
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structure of the pure 0-1 integer programming problem enabled the author 

to reformulate this problem in terms of a continuous programming prob­

lem which could be solved. Therefore, this research is specifically 

concerned with the pure 0-1 integer programming problem. 

The objectives of this research are as follows: 

(l) to develop an algorithm for the pure 0-1 linear integer 

programming problem via a quadratic programming approach, 

(b) to develop a computer code for this algorithm, 

and (c) to solve several published test problems and report the 

computational times for the new algorithm. 

The algorithm is based on a quadratic programming approach in which 

the integer problem is solved by solving a related quadratic programming 

problem. It is shown in Chapter III, that the optimal solution to the 

related quadratic problem is, in a special case, the optimal solution 

to the integer problem. The algorithm to solve this special quadratic 

programming problem is based on a partitioning procedure. At each 

stage a quadratic programming problem is partitioned into two quadratic 

problems by the introduction of a constraint which divides the feasible 

region into two nonempty sets. One of the regions and the original 

objective function are solved as a quadratic programming problem and 

the remaining region is transformed into a new space. The branch-and-

bound machinery of Balas (l) is used to obtain a feasible integer point 

about which the transformation occurs. Since the transformed problem 

has the identical form of the original problem, the partitioning proce­

dure may be reapplied. The algorithm terminates when the branch-and-
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bound machinery gives the signal that no integer point exists in the 

remaining feasible region. The algorithm is developed in Chapter IV 

and the computational experience is reported in Chapter V. 

The notation and conventions used in this study are now presented. 

Matrices are denoted by upper case Latin letters and the elements of a 

matrix by the corresponding lower case Latin letters with two subscripts. 

Lower case Latin letters underlined denote column vectors. Lower case 

Latin letters with a single subscript denote an element of the vector 

with the same name. Sets are denoted by upper case Greek and Latin 

letters and scalars by both lower case Greek and Latin letters. 

The symbols 0 and 1_ denote the zero and one column vectors 

respectively. The notation r C A implies that F is a subset of A and 

r / A. Non-negative is expressed by c > 0. A' denotes the transposition 

of matrix A. The terms, integer programming and discrete programming 

are used interchangeably throughout this text and both refer to the 

problems of types (l.l) through (1.4). All integer problems considered 

in this text shall be composed of a linear objective function and linear 

constraints. Any special notation not given here is defined as needed. 
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CHAPTER II 

SURVEY OF INTEGER PROGRAMMING 

This chapter attempts to survey the current state of theory 

and methodology available for the solution of integer programming 

problems. Another survey was recently given by Balinsky and Spielberg 

(4) with over 200 integer programming articles referenced. Many of 

the articles presented there are not discussed here, however; it is 

felt that the most important work covered by Balinsky and Spielberg is 

discussed here as well as some new work which is not given in their survey, 

but has recently come to the attention of the author. The work of Graves, 

Whinston, Hammer, and the most recent work of Balas fall into this 

category. 

To facilitate discussion of the progress in this field, the 

approaches have been separated into five categories as follows: 

(a) Cutting Plane Methods 

(b) Branch-and-Bound Methods 

(c) Stochastic Methods 

(d) Boolean Methods 

and (e) Duality Theory. 

Dynamic programming approach has been proposed for the solution of 

integer programming problems by Bellman (5). At the present time 

this approach does not appear promising as a feasible approach for 

discrete programming. Since there has been great progress in other 

areas, this approach has been omitted from this survey. 
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The algorithm developed in this research for the solution of 

the pure 0-1 integer programming problem falls into a separate category 

which we will call the quadratic programming approach. The term, 

"quadratic programming method," refers to the algorithm presented in 

Chapter IV of this text. Even though the quadratic programming method 

is a unique approach for the solution to the 0-1 programming problem, 

it is similar in many respects to other integer programming algorithms. 

These differences and similarities are presented at logical places in 

this survey. 

Cutting Plane Techniques 

The idea of introducing cutting planes to eliminate unwanted 

feasible solutions from a special structured linear programming prob­

lem was first advanced by Dantzig, Fulkerson and Johnson (8) in 1954. 

This work resulted in an algorithm for the solution of the traveling 

salesman problem.t Their approach requires reformulation of the original 

problem into a slightly different problem with the characteristic that 

any optimal solution to the revised problem is also optimal for the 

original problem. However, feasible solutions to the revised problem 

were not necessarily feasible for the original problem. 

The revised problem was solved and its solution inspected to 

determine if it lay within the feasible region for the original prob­

lem. If this solution was feasible, the optimal solution had been 

found. If this was not the case, a cutting plane (constraint) reduced 

^Simply stated the traveling salesman problem is as follows: 
given a set of cities, find the minimum distance route which begins at 
one city, passes through each of the other cities exactly once, and 
returns to the original city. 
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the feasible region of the revised problem so that the current solu­

tion was no longer feasible for either problem. The new revised prob­

lem was again solved and the process repeated. 

Markowitz and Manne (22) in 1957 applied this approach to obtain 

the solution of general integer programming problems. Their work 

resulted in a general approach rather than an automatic algorithm and 

can be summarized as follows: first, solve the integer problem as a 

linear programming problem by ignoring the integer restrictions. If 

the solution is not in integers, judgment and ingenuity are used to 

formulate a new constraint that can be shown to be satisfied by the 

still unknown integer solution, but not by the noninteger solution 

already found. This additional constraint is added to the original 

ones and the simplex technique is again applied. The previous noninteger 

solution will be infeasible and a new solution will be generated. If 

this solution is noninteger, the process is repeated until the first 

integer solution is found. Since there was no systematic method for 

generating the new constraints, this method is a general approach rather 

than an algorithm. 

Markowitz and Manne solved the dual rather than the primal at 

each iteration. Each new problem begins with a super optimal infeasible 

solution and proceeds toward feasibility. This is precisely the require­

ments of the dual simplex approach. 

The following year, Ralph Gomory (12) developed a systematic 

method for new constraint generation which turned the cutting plane 

approach into an automatic algorithm. Gomory also proved that these 

cutting planes guarantee that an integer solution (if one exists) can 
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be found in a finite number of steps. 

These cutting planes are derived from the coefficients of the 

simplex tableau at the completion of each cycle. Recall that any 

tableau represents a set of equations of the form 

n 

(2.1) X i + I y i . x . = b l 

j"l 

where x^ is a basic variable, y ^ is the (i.j)^*"1 element of the tableau 
t h 

and Xj is the j variable. If x̂  is a basic variable, then y^j will 

equal zero. Therefore (2.1) reduces to 

(2.2) x. + Y y.,x, « b. 
l l 7ij j I 

jeR 

where R is the set of nonbasic variables. The equation (2.2) can be 

rewritten into the form 

(2.3) x. - [ b i ] I + [b.] F - I ([y i j] Ix j + [ y i j ] F X j ) 
jeR 

where [z]j denotes the largest integer less than z and [z]p denotes 

the fraction such that [z] T + [z] c
 58 z, and 0 < [z] c < 1. Then, 

(2.4) X l - [ b i ] I + I [ y . . ] ^ . - [b.] F . I [yij]pXj 
jeR jeR 

is obtained by rewriting (2.3). It follows that any integer solution 

to x^ implies that the left side of (2.4) is integer. Therefore for 

any feasible integer solution 
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(2.5) [ b i ] F " I [ y i j ] F X j 
jeR 

must be integer. Since ^ Cŷ j]pxj can not be negative and 
jeR 

0 < [b.] F < 1, (2.5) can not be a positive integer. Therefore, 

jeR 

It follows that if x̂  is to be integer, then the constraint (2.6) must 

also be satisfied. After adding a slack variable s^, one obtains the 

cutting plane 

which is known as a Gomory cut. 

Gomory's algorithm for the solution of integer programming prob­

lems can be summarized as follows: first solve the integer programming 

problem as a standard linear programming problem by ignoring the integer 

restrictions. If the optimal solution is integer, the integer problem 

has been solved. If this is not the case, then a Gomory cut is developed 

from some row of the final tableau which gave the linear programming 

solution. Since it is desirable to make the largest cut possible, the 

usual rule for selecting the row from which to derive the Gomory cut is 

to choose that row which yields the largest [b^]p. This new constraint 

is appended to the current tableau and the dual simplex algorithm is 

applied to obtain another optimal feasible solution. If this new solu-

(2.7) 
jeR 
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tion is integer, the problem has been solved. If this is not the case, 

a new cut is generated and the process is repeated until such time as 

an integer solution is obtained. 

Later, Gomory (13) developed an all-integer integer programming 

algorithm that began with a problem statement in which all coefficients 

were integer and maintained this property throughout the solution 

process. Maintaining the integer property prevents the round-off errors 

which often occur when solving large problems on a computer. This 

algorithm also uses the idea of constraint generation, however; the new 

constraint is appended to the tableau immediately at each iteration. 

This new constraint is so constructed that it will be the row chosen 

for the leaving variable and the pivot element will always be minus one. 

This insures that if the coefficients in the original matrix are integer, 

that they remain integer from tableau to tableau. The computational 

experience thus far has shown little consistency in the time required 

to solve integer problems using this method. 

A primal analogue to Gomory's all-integer algorithm was developed 

by Young (26) and is known as the simplified primal (all-integer) 

integer programming algorithm. Young's algorithm is built on Dantzig's 

simplex technique with the addition of a special row at each iteration. 

This special row is a Gomory cut and is appended to the tableau after 

the pivot column is chosen at each cycle. This cut is selected so that 

it will have a unit coefficient in the pivot column and will qualify as 

the pivot row. To show finiteness, Young imposed certain restrictions 

on the row used to generate the Gomory cut. At present there are no 

results available on the computational efficiency of Young's algorithm. 
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Balinski (4) predicted that the algorithm would not prove to be effi­

cient. This prediction is based on the fact that the algorithm is 

made to work by imposing decision rules which insure finiteness, but 

are not necessarily geared to natural measures of progress toward 

optimality. 

As noted from the discussion of the previous algorithms, an 

optimal feasible solution to a pure integer programming problem must 

exhibit three properties: 

(a) it must be optimal, i.e. c'x* > c'x for all 

x e T « (x : g(x) < b, x > 0 ) 

(b) it must be feasible, i.e. x* e T» and 

(c) all variables must assume integer values. 

Each of the cutting plane methods presented above have maintained two 

of the three properties while achieving tableau-to-tableau progress 

toward satisfaction of the remaining property. The quadratic program­

ming method presented in Chapter IV maintains only one property while 

moving toward satisfaction of the other two. A comparison of the methods 

is as shown in Table 1. 

Table 1. Comparison of Cutting Plane Methods 
and the Quadratic Method 

Method Property maintained 
at each cycle 

Property improved 
at each cycle 

1. Gomory's method of a and b c 
integer forms 

2. Gomory's all integer a and c b 
method 

3. Young's primal integer b and c a 
method 

4. Quadratic programming b a and c 
method 
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The Gomory method differ from the quadratic approach primarily 

due to the fact that Gomory's methods are dual in nature whereas the 

quadratic approach resembles a primal method. The dual approach has the 

disadvantage that no feasible solution is obtained until the optimal 

solution is found. If this requires more iterations than can be 

afforded, the method yields no useful information. If, however, a 

primal method is employed, the best suboptimal feasible solution can be 

kept as the iterations progress so that at the end of some given time 

period the best suboptimal feasible solution found up to that time is 

available. 

The last difference between the cutting plane methods and the 

quadratic approach is the special way in which additional constraints 

are derived for future iterations. For cutting plane methods, con­

straints are derived from another constraint, whereas in the quadratic 

approach, the constraints are derived from the objective function. 

Branch-and-Bound Methods of Enumeration 

The best known methods for obtaining solutions to integer pro­

gramming problems fall under the general heading of branch-and-bound 

methods. The terms branch-and-bound, tree search, and implicit 

enumeration are used interchangeably in the literature, however; they 

refer to the same general technique when used for solving discrete 

programming problems. A good description of the enumerative substruc­

ture is given by Glover (ll) and is essentially this. The solution 

space of a discrete programming problem can be readily represented by a 

tree diagram. The general procedure involves tracing some path of this 
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tree until either a feasible solution is obtained, or a node is reached 

which yields information that all solutions in which that node is included 

may be eliminated from further consideration. When one of the above two 

conditions are met, the process backtracks to the node preceding the one 

just eliminated and traces out another path, if one exists. If none 

exists at this node, the process backtracks to the next node and 

attempts to find another path not yet eliminated. The process continues 

until it has backtracked to the starting node, and information is obtained 

that eliminates the necessity to trace any more paths. The enumeration 

procedure terminates at this point. 

The first automatic branch-and-bound method for the solution of 

integer programming problems was advanced by Land and Doig (19) in 1960. 

With their general approach, all branching is accomplished by adding 

constraints to the continuous problem and obtaining the general linear 

programming solution. All bounding is set by the value of the objective 

function at each branch. 

Their algorithm initially solves the integer problem as a con­

tinuous linear programming problem. If this solution happens to be 

integer, the solution to the integer problem is as given. If this is 

not the case, the algorithm chooses a variable restricted to integer 

solutions which is noninteger at the optimal of the unrestricted prob­

lem, and creates two new problems which do require this variable to be 

integer. 

For example, suppose x^ is a variable restricted to discrete 

values for some integer programming problem. Further suppose that x^ 

is the value of x, at the optimal solution of the unrestricted problem 
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and that x^ is noninteger. Let [x^lj denote the largest integer less 

than x^. Then it follows that two new problems (branches) can be 

created by adding the constraint x^ * ^ xk^I *° ^ e o r i 9 i n a l constraint 

set to form problem (l) and by adding x^ = [x^Jj + 1 to the constraint 

set to form problem (2). Suppose that the problem of interest is a maxi­

mization problem, and that the value of the objective function at the 

optimal solutions of (l) and (2) are 6^ and 6^ respectively. If 6 Q 

represents the value of the objective function of the unrestricted problem 

at optimality, then it follows that 0 > 6, and 6^ > 6 n. The objective 
R N 0 — 1 0 ~ 2 

functions of all branches, have the property that at optimality, the 

value is less than or equal to the value of the objective function on 

any less restricted problem from which this branch originated. It is 

this property which allows Land and Doig to abandon branches without 

completely enumerating the entire branch. 

Suppose that 0^ > Q^' Then a third problem is solved with the 

additional constraint x^ - [x^Jj - 1 appended to the original con­

straint set. Each noninteger node of the tree will have three leaving 

branches, if three logical constraints can be constructed as accom­

plished above. If 0 < x^ < 1, then the node may have only two leaving 

branches, but in general each node will give three new branches. These 

branches are always determined by the most desirable integer for some 

particular variable, and the integer on either side. 

For the procedure of Land and Doig, the 6^'s are saved along 

with the necessary information to pursue any of the branches currently 

under consideration. The node with the largest 0 (for a maximization 

problem) is examined to determine if a leaving branch will yield a 
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feasible solution for the integer problem. If an integer solution is 

found, the solution is recorded and the corresponding 6 becomes the 

lower bound. Once a lower bound is established, all branches which yield 

0's less than the lower bound can be abandoned. If the node under con­

sideration does not represent a feasible solution (in the integer 

sense), new branches are determined as above and the process is repeated. 

If some new integer solution is found which is preferred to one pre­

viously obtained, it is recorded as the current best solution and the 

corresponding 9 becomes the new lower bound. If the process is con­

tinued, all branches will eventually be completely enumerated or aban­

doned, and the optimal feasible solution, if one exists, will have been 

found. 

The Land and Doig branch-and-bound approach differs from that of 

the quadratic programming approach in several respects. The Land and 

Doig approach is applicable for any discrete problem whereas the quadratic 

approach presented in Chapter IV is only applicable for the 0-1 integer 

programming problem. The Land and Doig approach has characteristics 

of both dual and primal methods. Their method begins with a super-

optimal solution and proceeds toward a feasible solution, which is 

exactly a dual approach. When the first feasible solution (in the 

integer sense) is found, one records this solution and attempts to 

locate another feasible solution more desirable than the one currently 

known, which resembles the primal approach. The quadratic method of this 

research is basically a primal approach. When the Land and Doig approach 

eliminates a set of solutions from further consideration, all abandoned 
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solutions lie on a single branch of the solution tree. The quadratic 

approach can eliminate several branches with a single constraint or 

parts of several branches with a single constraint. Finally the Land 

and Doig approach requires that a linear programming problem be solved 

at each iteration. 

In 1965 Egon Balas (l) presented a different approach based on 

the general branch-and-bound technique to obtain the solution of 0-1 pure 

integer programming problems. His additive algorithm gave a method for 

systematically enumerating part of the solutions of the 0-1 problem, 

and examining them in such a way as to ensure that by explicitly enumer­

ating a relatively small number of solutions, it had implicitly examined 

all elements of the solution set. 

The additive algorithm begins at some starting node on the tree 

of solutions and applies two tests. The first test determines if the 

best completion of this node is feasible. If this completion is feasi­

ble, this node and all of its descendants can be fathomed (i.e. discarded 

from further consideration). If this is not the case, one applies the 

second test which attempts to determine that no feasible completion at 

the node under consideration is better than any previously found. If 

the second test succeeds, then the node under consideration may be 

fathomed along with its descendants. When a node is fathomed, the 

process backtracks to the last node visited and reapplies the above two 

tests. The rules for the choosing of successive nodes are such that no 

descendant of any abandoned node will ever be reconsidered. If the node 

under consideration cannot be fathomed, then the leaving arc chosen is 

the one which leads to a new node which most reduces the total infeasi-
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bility of the solution. The tests are applied at the new node and the 

cycle is repeated. The procedure terminates when it backtracks to the 

starting node and information is obtained that eliminates the necessity 

to trace out of any more branches of the tree. 

If the examination of a particular node is defined as an itera­

tion, then the efficiency of the additive algorithm is dependent on the 

number of iterations required before an optimal feasible solution is 

found or the absence of a feasible solution is established. One way of 

improving the efficiency of the additive process is to increase the 

strength of the tests applied and thereby eliminate larger portions of 

the tree than would be eliminated under the rules suggested by Balas. 

The multiphase-dual-algorithm of Glover (ll) was the first attempt to 

strengthen these tests of Balas. Glover introduced the idea of the sur­

rogate constraint which was used in the test mechanism to establish 

restrictions on the problem which could not be determined from any 

individual constraint in isolation. Since it was computationally prac­

tical to apply the tests to only one constraint at a time, the surrogate 

constraint enabled Glover to sharpen the tests of Balas. This surro­

gate constraint of Glover is defined as a nonnegative linear combination 

of the original constraints in which at least one of the constraints is 

given a positive weight. The computational experience published by Glover 

is meager and he suggested that there may be better methods which could 

be used to compute this surrogate constraint which could significantly 

improve the multiphase-dual-algorithm. He reported that in some cases, 

the time required to compute the s-constraint (surrogate constraint) 

exceeded what savings it could produce. 
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A second contribution was made by Glover with the introduction 

of a new and efficient (in the sense of computer storage required) 

method of bookkeeping for the tree search. Geoffrion (9) then reformu­

lated the algorithm of Balas using this general bookkeeping system pre­

sented by Glover. The new formulation required considerably less com­

puter storage than the original version. 

Shortly thereafter, Balas (2) presented a new algorithm (the 

filter method) which was a continuation of the additive algorithm. The 

filter method incorporated a filter mechanism to sharpen the tests of 

the basic algorithm and thereby reduce the size of the solution tree. 

The filter mechanism required the solution of a special o-l programming 

problem with a single constraint. This new constraint is a special case 

of the surrogate constraint as defined by Glover. As of this writing, 

computational results for the filter method are not available. 

The current best o-l pure integer programming algorithm is the 

improved implicit enumeration approach of Geoffrion (10). The method 

applies the tree search bookkeeping system described in an earlier paper, 

Geoffrion (9), it incorporates the use of surrogate constraints defined 

slightly different from those of Glover, and relies on an imbedded 

linear programming problem to calculate the strongest possible surrogate 

constraints. The linear programming problem is so constructed, that the 

dual variables give information as to the existence of a binary infeasible 

surrogate constraint as well as feasible integer solutions better than 

any previously found. A computer code for this method was written and 

tested extensively on an IBM 7044. Geoffrion reports that the use of the 

imbedded linear program reduced solution times by a factor of about one 
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hundred. He further reports that his computer code dramatically reduced 

the solution times of virtually every published test problem attempted, 

and sufficed to render the tested algorithm superior to the five other 

implicit enumeration algorithms for which comparable published exper­

ience was available. 

The implicit enumeration method of Geoffrion is generally 

accepted to be the best of the methods available for solving 0-1 integer 

programming problems. This method differs from that of the quadratic 

approach in three main respects. First, the method of Geoffrion is 

based on a tree search, whereas the quadratic approach is based on a 

partitioning procedure. Second, the method of Geoffrion introduces 

surrogate constraints to the original constraint set which are 

redundant in the usual sense, whereas the constraints introduced by the 

quadratic approach tend to make the original constraints redundant. 

Lastly, the quadratic approach works in a transformed region whereas 

the implicit enumeration method works only in the original region. The 

similarities between the two methods are as follows: (a) both algorithms 

stop, only when all integer points have been either explicitly or 

implicitly considered, (b) both methods keep available a current best 

integer solution, and (c) both algorithms make full use of the additive 

algorithm of Balas. 

A Stochastic Approach to Discrete Programming 

Graves and Whinston (14) introduced a new approach for integer 

programming which incorporates the implicit enumeration bookkeeping 

scheme, but relies on the use of population statistics to eliminate 
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large portions of the tree of solutions from further consideration. 

They consider the 0-1 programming problem as if it were an n-stage 

decision problem. Identical to the Glover approach, it attempts to 

fathom a node along with its descendants by either feasibility or 

optimality considerations. Graves and Whinston suggest an additional 

mechanism which can be used to fathom nodes based on the probability 

of the existence of the global optimum being a descendant of the node 

under consideration. 

Recall that in the tree search algorithm, the nodes, other 

than the last node of a branch, represent partial solutions in which 

some of the variables are specified and the remainder are free to 

assume either of the values zero or one. Then if node k is some node 

of the solution tree, and j elements of x have been specified, then n-j 
st 

elements are free. Then it follows that at the (k + l) node (a descen­

dant of the k**1 node) one of the n-j free variables will be set at either 

zero or one. There are two considerations which may be taken into 

account when selecting this variable to be fixed as well as determining 

the value to which it is assigned. First there is the local or imme­

diate effect. By selecting x^ * 1, the objective function of the new node 

is increased by c^ and each constraint (i = 1,2,...,m) is altered by a^^, 
where a. is the (i,r)^ element of the matrix which determines the ir 
constraint set. Secondly, alternate choices for the remaining unspeci­

fied variables are differently restricted because of this choice. The 

first consideration can easily be taken into account and is used to 

guide the progress of the additive and multiphase-dual algorithms. The 

second consideration is difficult to isolate and is discovered eventually 
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by local considerations. If one were able to evaluate the second factors 

exactly, it would be possible to assign at each step the correct value 

and solve the problem exactly in n steps. Since this is not possible, 

the next best thing to knowing exactly the values of the completions is 

to know them almost surely. Graves and Whinston suggest the use of 

probability theory to obtain good information at a fraction of the com­

putational cost required to obtain exact information. 

They have successfully derived the probability of the existence 

of a feasible completion of any particular node which yields a more 

desirable local optimum than one previously known. They use these 

probabilities in their confidence level implicit enumeration scheme. 

This algorithm fathoms a node along with its descendents once it is 

established that there is less than an a percent chance that this branch 

contains a better feasible solution than one already known. The con­

stant a may be set at any level and is left to the discretion of the 

user. 

It appears that the general approach of Graves and Whinston has 

merit especially for very large practical applications. As of this 

writing, only limited computational experience is available for the 

approach. It should be noted that this approach can not guarantee that 

the optimal solution will be found. 

A Boolean Approach to Discrete Programming 

A fourth approach which is a variation on the branch-and-bound 

techniques was recently presented by Hammer (17). His algorithm is 

known as the boolean branch-and-bound method for the solution of 0-1 
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integer programming problems. The boolean approach constructs a solu­

tion tree quite different from that considered by Glover and Geoffrion. 

The boolean solution tree may have numerous branches leaving each node, 

whereas the implicit enumeration tree has but two departing branches at 

any particular node. Branches of the implicit enumeration tree are 

determined by allowing one free variable to assume the values of zero 

or one. The boolean tree uses the concept of a directrix to determine 

the branches at each node. 

A directrix is determined by consideration of each constraint 

taken in the form 

(2.8) a^x, + ... + a. x > b. where 
il 1 in n — 1 

» i ! > a i 2 > ... > a . n > 0 . 

Let the partial sums of the constraint coefficients be denoted by 
S * a. 
n in 

(2.9) S = a. . + a. 
n-1 in-1 in 

S = a . . + . . . + a. . 
1 il in 

For a particular constraint the following cases can be distinguished. 

(1) b. < 0 

(2) b. > 0, S x < b. 

(3) b. > 0, S x = b. 

(4) b. > 0, S 2 > b. 

The directrix (D) will be defined equal to one if the inequality (2.8) 
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is satisfied, otherwise it will equal zero. 

In case 1, the inequality (2.8) always holds and D = 1. In 

case 2, the inequality is never satisfied and D * 0. In case 3, the 

inequality holds if and only if all x̂ . * 1; j = 1,2, ...,n. For equal­

ities of case 4 type, the sums developed in (2.9) must be considered. 

Let r be the greatest index for which > b^. 

S. > ... > S > b. > S . . > . . . > S . 1 - - r - I - r+1 - - n 

This implies that if * ... = x r = 0, the inequality (2.8) is not 

satisfied. It follows that a necessary condition for (2.8) to hold is 

that max (x^,...,xr) = 1. Therefore, for case 4 let D * max (x^,...,x ). 

The D as defined in each of the four cases is called the directrix of 

an inequality. 

Hammer defines the directrix (A) of a system of inequalities as 

the product of the directrices of the inequalities of the system. A 

necessary condition for a binary vector to be feasible for a set of 

inequality constraints is that its system directrix be one. Note that 

this condition is necessary but not sufficient. 

For example the constraint set 

12x 2 + 8x 4 + 7 ^ + 5x 3 + 3x 5 > 17 

7x 0 + 6x 0 + 6x. + 4x, + 4 X y 1 > 12 2 3 1 6 4 — 

8x 2 + 4x 6 + 3x 5 + 2x1 > 7 

where x. 3 1 - x, gives the following inequality directrices 
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D 1 = max(x"2, x 4) 

D 2 * max(x 2,x 3,x x) 

D 3 = max(x 2,x 6) 

and the system directrix reduces to 

A = max(x 1x 2, x^x^x^ X2 x3' x3 X4 X6' X2 X4 X6^ * 

Each of the above partial solutions represent a branch extending 

from the starting node of the boolean solution tree. The branching is 

accomplished by tracing some branch chosen from the above set, and bound­

ing is set, as usual by the objective function value of the best solution 

currently known. 

Unfortunately, there are no published results on the computa­

tional efficiency of the boolean branch-and-bound technique. It appears 

to the author, that this branching mechanism coupled with the fathoming 

mechanism of Geoffrion could result in an algorithm potentially more 

efficient than either of the algorithms taken separately. 

Duality Theory in Discrete Programming 

The first duality formulation for linear integer programming 

problems was advanced by Balas (3) in 1967. This formulation is rela­

tively new and at present no algorithm based on integer programming 

duality theory has appeared in the literature. 

Balas shows that the linear mixed-integer programming problem 

is a special case of a certain minimax problem which has a Lagrangian 

type objective function, linear constraints, and some variables con­

strained to belong to an arbitrary set of real numbers. This minimax 
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problem represents the primal in the duality formulation. The dual of 

this minimax problem is shown to be a problem of the same type, such 

that the dual of the dual is the primal. It is shown that the optimal 

solutions of both problems are identical and that a certain type of 

complimentary slackness holds. 

If the linear mixed-integer problem of interest is denoted by 

(2.10), then the equivalent minimax problem given by Balas is as shown 

in (2.11). The problem (2.11) represents Balas* primal and (2.12) gives 

the corresponding dual. 

(2.10) Max: c'x 

Subj: Ax + y_ = b 

x,y_ > 0 

Xj integer j e 

where N * l,...,n , = l,...,n^ 

(2.11) min max : c'x + u'y, + u'A-.x 
u x 

Subj: Ax + y_ « b 

x, u > > 0 

(Primal) u. 
j 

x. 
j 

integer, 

integer, 

unrestricted, jeM 

> 0, j e M - M 

where M * l,...,m,M 1= 1 > • • 1 

1 = Y.2 ^ 
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and 

(2.12) 

i l 

(Dual) 

is the first m^ rows and first n^ columns of A, 

max min 
x u 

Subj: 

b'y - + a 1 i y i 

u'A - v * c 

u,x > 0 

Uj integer, j eM^ 

Xj integer, j e 

v unrestricted, j e 

> 0, jeN - N. 

where x 1 * (x^, xi) 

v' = (vj, vi) . 

The partitioning of the vectors is made such that u^ is a component of 

u^ and Vj is a component of if j e and x, is a component of and 

v^ is a component of v^ if i eN^. 

Even though a major contribution has been made by Balas in 

developing the above duality theory, efficient means must be determined 

for solving problems of the form (2.11) before this theory results in an 

efficient solution procedure. 
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CHAPTER III 

JUSTIFICATION FOR THE QUADRATIC PROGRAMMING APPROACH 

TO THE SOLUTION OF THE 0-1 PURE INTEGER 

PROGRAMMING PROBLEM 

The quadratic programming approach to the solution of the 0-1 

integer programming problem is not a new idea. This basic approach was 

suggested most recently by Raghavachari (24); however, full development 

of the approach resulting in an algorithm has not appeared in the lit­

erature at this writing. It is a relatively straightforward task to 

construct a continuous quadratic programming problem such that the 

solution to the quadratic problem is also the solution to the integer 

problem. Finding an efficient solution procedure for this quadratic 

problem is not straightforward. A complete discussion of a solution 

technique for the nonlinear problem is deferred until Chapter IV. 

Chapter III is devoted to developing a justification for the quadratic 

approach. 

Let us begin with a definition of the problem of interest for this 

research. The 0-1 pure integer programming problem is stated as follows: 

(3.1) Max: c' x 

Subj: A x < b 

X j a 0 or 1, j « 1,2,...,n; 

where c is a n x 1 column vector 
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b is a m x 1 column vector 

A is a m x n matrix 

and x is a n x 1 column vector. 

The development of this chapter assumes that ĉ  > 0 for i * l,2,...,n. 

If c^ is initially less than zero, one can set x. a 1 - x. to obtain a 

positive form of c. 

The quadratic programming problem of interest is stated as follows: 

(3.2) Max: Q(x) * c'x - a(l_'x - x'x) = c'x - | x'Cx 

Subj: Ax < b 

x < 1_ 

x > 0 

where "a" is some arbitrarily large positive constant 

c = c - al_ 

C = -2al. 

Relationship Between the Discrete Linear Problem 

and the Continuous Quadratic Problem 

Two observations about problems (3.1) and (3.2) are immediate, 

(a) if x is feasible for (3.2) and x is integer, then x 

is feasible for (3.1), 

and (b) if x is feasible for (3.1), then x is feasible for (3.2). 

These observations simplify the proofs of the following three theorems. 

Theorem 1 

If x* is an optimal solution to (3.2) and x* is integer*, then 

x* is an optimal solution to (3.1). 

1 £ £ 
x integer if and only if every component of x is integer. 
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Proof. Let x* be integer and an optimal solution to (3.2). Then x* 

is feasible for (3.1). Let z be any other feasible solution to (3.1). 

Then z is feasible for (3.2). Hence c'x* - a(l'x* - x**x*) > c'z 

- a(l_'z - z' z). But (l_'x* - x*'x*) = (l_'z - z'z) = 0 since x* and 

z are integer. Therefore c'x* > c'z, i.e. x* is the solution to (3.1). 

This completes the proof of Theorem 1. 

Theorem 2 

If x* is an optimal solution to (3.2) and x* is noninteger, 

then (3.1) has no solution. 

Proof. Let x* noninteger be the optimal solution to (3.2). Then 

(l*x* - x*'x*) < 0. Hence Q(x*) = c'x* - a(l_'x* - x*'x*) < 0 for 

sufficiently large a. Suppose (3.1) has a feasible solution z. Then 

z is feasible for (3.2) and Q(z) > 0. Hence Q(z) > Q(x*) which contra­

dicts the assumption that x* is optimal for (3.2). Therefore (3.1) has 

no feasible solution. This completes the proof of Theorem 2. 

Theorem 3 

If (3.2) has no solution, then (3.1) has no solution. 

Proof. Since the feasible region of (3.1) is a subset of the feasible 

region of (3.2) and since (3.2) has no feasible solution, then (3.1) has 

no feasible solution. 

Remark 1 Summary of Theorems 1, 2, and 3. 

a. If x* is integer and is the optimal solution to (3.2), x* is 

the optimal solution of (3.1). 

b. If x* is noninteger and is the optimal solution to (3.2), (3.1) 

has no solution. 

*x* noninteger if and only if for some i, xf / (0 or l). 
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c. If (3.2) has no solution, (3.1) has no solution. 

Determination of the Penalty Cost Coefficient 

For solving problem (3.2) either on a digital computer or by 

hand calculations, it is more convenient to set the constant "a" at 

some finite value. This section gives a method for determining a suf­

ficiently large "a" so that the solution of (3.2) is forced sufficiently 

close to an integer solution, if one exists. 

Problem (3.2) gives Q(x) as follows: 

2 *~ 2 
Q(x) = " a x i + a x i ) + (°2 *" a x 2 + a x 2 ^ + •*• 

+ (c - ax + ax ̂ ) . n n n 

Considering only the x̂  terms, one obtains the function 

f*l = c^x^ + a(x^ 2- x^) . 

The constant "a" is to be chosen so that ^ ( ^ = 0) > F^(d<x^<l -d) 

where d is the allowable deviation from 0 or 1 which will be tolerated. 

It follows that d and a must be chosen so that a(d - d ) > c^d and 

a[(l - d) - (l - d) ] > c^(l - d). Therefore, for any allowable devia­

tion d, an a which satisfies 

c d 
(a) a > — i 

d - d 2 

cx(l -d) 
and (b) a > 

(1 - d ) - (1 - d ) 2 

will insure that the x^ variable will be forced to either 0 or 1 ± d 

if one of these integer values yields a feasible solution. 
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The expressions can be simplified to the following forms 

and (d) a > — — . 

Since £ > 0 and d is small, the expression (d) always dominates (c). 

Furthermore, the constant a must satisfy an expression of the form (d) 

for each variable x^, x ^ , x ^ . Therefore a must be chosen so that 

a > max (c\/d), i = 1,2, ...,n. 
i 

For all example problems reported in Chapter V, a was chosen as shown 

below. 

a s max (c./d) + 1, i = 1,2,...,n. 

This completes the justification for the quadratic programming 

approach to the solution of the 0-1 integer programming problem. The 

theorems of section 1 give the relationship between the integer and 

continuous problem and the development of section 2 gives the process 

whereby numerical problems of the form (3.2) may be formulated. 
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CHAPTER IV 

AN ALGORITHM FOR THE SOLUTION OF THE PURE 

O-l INTEGER PROGRAMMING PROBLEM 

It was shown in Chapter III that any pure O-l integer program­

ming problem can be solved by solving a related quadratic programming 

problem. The following chapter presents the development which results 

in an algorithm for this related quadratic programming problem which is, 

in turn, an algorithm for the integer programming problem. 

A definition of the quadratic problem to be solved is as follows: 

(4.1) Max: Q(x) = c'x - a(l'x - x'x) = c'x - | x'Cx 

Subj: Ax < b 

x < 1_ 

x > 0 

where c > 0 

a is an arbitrarily large positive constant 

c = c - al_ 

C = -2al 

and I is a n x n identity matrix. 

Since C is negative definite, the function Q(x) is strictly convex. It 

is well known that the maximization of a convex quadratic function over 

a bounded and closed convex set is attained at one of its finitely many 

extreme points (15). 
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Furthermore problems of this type may have local optima at extreme 

points which are not global optima. This possibility of numerous 

feasible local optimum renders the problem (4.1) unsolvable by the 

well known method of Wolfe (28). 

Klaus Ritter (25) has developed an algorithm to solve quadratic 

programming problems in which numerous feasible local optima may be 

present. His method is applicable to the maximization of any nonconcave 

quadratic function subject to linear constraints whereas the problem 

(4.1) has special characteristics which may be used to aid in increasing 

the efficiency of a general solution procedure. The two important char­

acteristics of (4.1) not necessarily present in the problem considered 

by Ritter are as follows: 

(a) Q(x) is strictly convex 

and (b) every feasible integer point is a local optimum. 

Ritter's algorithm requires a feasible local optimum at each iteration. 

The method he uses to obtain this local optimum is very time consuming. 

Property (b) above allowed the author to draw from other resources to 

obtain this local optimum in a more efficient manner than that sug­

gested by Ritter. The work presented in this chapter is Ritter's algorithm 

with modifications to take advantage of these special properties. 

His approach requires partitioning of the feasible region of 

(4.1) into two regions such that each contains one or more of the 

finitely many feasible integer extreme points. The cutting plane which 

performs this partitioning is constructed so that the global optimum in 

one of the regions can be found. The objective function Q(x), and the 

remaining region then become a new problem denoted (4.1) which has the 
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identical form of the original problem (4.1). The new problem (4.1)^ 

differs from the problem (4.1) in that the feasible region of the former 

contains fewer of the finitely many integer extreme points than does 

the feasible region of the latter. Then the new problem (4.1)^ is 

partitioned such that each of the resulting regions contains at least 

one of the remaining feasible integer extreme points. Again the cutting 

plane which performs this partitioning is constructed so that the global 

optimum in one of the new regions can be found. The objective function 

Q(x), and the remaining region then become a new problem (4.l) 2 which 

again contains fewer integer extreme points, than either of the problems 

(4.1)^ or (4.1). Since there are a finite number of feasible integer 

extreme points and since each successive problem (4.1), (4.1)^, (4.1) 

contains fewer of these extreme points than all preceding problems, 

eventually a problem will result which contains none of the integer 

extreme points. When this condition occurs, the algorithm stops and 

the global optimum of the problem (4.1) is the best global optimum of 

each of the partitioned regions. Figure 1 illustrates how this parti­

tioning reduces the feasible region at each step. The points 1,2, and 

3 represent the feasible integer points of the original problem, and 

the dotted lines represent the cutting planes which perform the parti­

tioning. Note that (4.1) has three feasible integer points, (4.1)^ has 

one, and (4.l) 2 has none. A complete description of this approach along 

with a proof of finiteness is presented in the next section. 

Solution Procedure for the Quadratic Problem 

The solution of problem (4.1) can be obtained by solving each of 

the problems (4.2) and (4.3) and selecting the better of the two solutions, 
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Figure 1. Illustration of Patter's Partitioning Method. 
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since the sum of the feasible regions of (4.2) and (4.3) is precisely 

the feasible region of (4.1) and the objective functions are identical 

Problem (4.2) and (4.3) are defined as follows: 

(4.2) Max: Q(x) = c'x - | x'Cx 

Subj: Ax < b 

-c'x < t 

x < 1_ 

x > 0 

(4.3) Max: Q(x) = c'x - | x'Cx 

Subj: Ax < b 

-c'x > t 

x < 1 

x > 0 

where t is some scalar. 

For the development of the algorithm, assume that the following 

conditions are met by problem (4.1). 

(a) 0 is a feasible extreme point of (4.1) 

(b) Q(x) is a strictly convex quadratic function 

and (c) c < 0. 

Suppose condition (a) is initially met by the problem (4.1), then con­

ditions (b) and (c) are also met by definition of problem (4.1). If, 

however, 0 is not feasible for the problem (4.1), then a new problem 

(4.1)* can be obtained which does satisfy property (a). The new prob­

lem (4.1)* is obtained by transforming some feasible extreme point of 
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(4.1) to the origin of the new problem while preserving all extreme 

points of the original problem as well as the value of the objective 

function at corresponding points. In order to insure that the objec­

tive function of the new problem (4.1)* is strictly convex, a feasible 

integer extreme extreme point is transformed to the origin. 

Suppose z is one such feasible integer extreme point of the 

region (Ax < b, x < 1, x > 0). Then since z is integer, exactly n of 

the 2n inequalities x < 1_, x > 0 are met as equalities at x = z. If 

these n constraints which are met as equalities at z are denoted by 

A^x < b^, then A^z = b^ and Az < b. The matrix A^ is constructed to be 

a diagonal matrix whose diagonal elements are either one or minus one. 

According to Ritter (2b), the feasible region can be transformed by 

A^x • b - v; v > 0 

into a v-region where the origin is feasible. By introducing 

x = A^ * (b - v) into Ax < b, x < 1_, x > 0, and Q(x) = c'x - ~ x'Cx 

a new problem denoted (4.1)* is obtained. 

(4.1)* Max: Q*(v) = Q(z) + £*'v - | v'C*v 

Subj: A*v < b* 

v < 1_ 

v > 0 

where A^ * * A^, since A^ is a diagonal matrix with unit coefficients 
^* . i-l ̂ . .'-1 ̂ . -1 
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A* = -AA^ 1 = -AA 

b* = b + A*b_x 

Thus (4.1)* is an equivalent problem to (4.1) and condition (a) is met 

by the new problem. Condition (b) is also met since C* = C and C is 

negative definite. It will now be shown that condition (c) also holds 

for c*. 

c* = b^C - c'A^ and c' < 0. 

Then c. = 2ab. - c.a.. . 
I 1^ 1 11 
Case 1 b. = 1 and a,. = 1 1. ii 1 

Then cf = -2a - c. < 0, since a dominates c.. 
I I 1 
Case 2 b. = 0 and a.. = -1 1. 11 1 

Then c* = 0 + c. < 0, since c, < 0. 1 1 i 
Therefore condition (c) is also met by the problem (4.1)*. 

A basic algorithm for the solution of problem (4.1) is now pre­

sented along with a proof of finiteness. First, let us introduce the 

following notation. 

Let T denote the linear transformation from the w-space into the w-y r 

y-space (i.e. y_ * T^ ^(w) and w * T^ ^(yj for all y.,w). 

F(4.l) = (x I x integer, Ax < b, x < 1, x > 0) 

F(4.2) « (x|xeF(4.l), -c'x < t) 

F(4.3) « (x |xeF(4.l), -c'x > t) 

For t > 0, P(4.3) C F(4.l) since 0 <) F(4.3). The problem (4.3) can be 

transformed into a new problem in v-space such that each x maps onto a 
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unique v. The new problem is so constructed that v 5 0 is feasible. 

Denote the transformed (4.3) as (4.1)^. 

Let F(4.l) 1 = (v | v - T x_ v(x), xe F(4.3) ) 

T(4.l) : . (x | x = T v_ x(v), ve F(4.l) 1 ) 

Then T(4.l) = F(4.3)c F(4.l). NOW we partition (4.1) into ( 4 . 2 ^ 

and (4.3)^ with the hyperplanes -c*'v < t and -c* 'v > t. 

Let F(4.2) : - (v | veF(4.l) , -c*'v< t) 

F(4.3) 1 = (v I veF(4.l) 1, -c* ' v > t) 

T(4.2) 1 - (x I x - T v_ x(v), veF(4.2) 1) 

and T(4.3) 1 - (x | x - T v_ x(v), ve F(4.3) 1 ) . 

It follows that the optimal solution to (4.1) is the best optima of 

(4.2), (4.2) 1, and (4.3) 1- Furthermore, for t > 0, F(4.3) 1c F(4.l) 

since 0 i F(4.3) 1, and T(4.3) 1c T(4.l) 1c F(4.l). We now transform 

the problem (4.3)^ into a new problem in the u-space such that u 8 0 is 

feasible. Denote the transformed (4.3)^ as (4.1) . 

Let F(4.l) 2 = (u I u - T v_ u(v), ve F(4.3)]_ ) 

T(4.l) 2 - (x J x = T u_ x(u), ue F(4.l) 2 ) 

Then T(4.1) C T(4.1) C F(4.l), since at least one integer extreme 

point has been deleted for each of the successive problems. Reapplica-

tion of the above process will eventually result in a (4.1) in which 

F(4.l) * q>. When this point is reached, the solution of (4.1) is 

given by the best solution of (4.2), (4.2^, (4.2) 2 > ..., (4.2) ^ . 

Figure 2 shows the basic flow chart of the Ritter algorithm as modified 

by the author. The problem (4.1)^ refers to the original problem. 

Finiteness of this algorithm is immediate, however; for completeness 

and formalism Theorem 4 provides this proof. 
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Start 

No 

11 

0 e F(4.l) , — 'o 
Yes 

Stop: (4.1) 0 has 
no solution 

Yes 
1 

F(4.l) o - <p ? 
No 

Transform to v-region 

J 4 
i = 0 

t 
Partition (4.l) i into (4.2) i and (4.3) i 

Solve (4.2). for t > 0 l 

No F(4.3). = <p ? Yes 

1 
Transform (4.3)^ to a new (4.1)^ +^ 

+ 9 
i « i + 1 

10 
Stop: Global optimum is the best 
solution of (4.2). for all i 

Figure 2. Flow Chart for 0-1 Programming Algorithm. 
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Theorem 4 (Finiteness) 

The algorithm of Figure 2 terminates in a finite number of 

iterations. 

Proof. 

Case I. Problem (4.1)^ has a solution. There are a finite number of 

integer extreme points in the feasible region of problem (4.1) q. Each 

partitioning of (4.1)^ occurs such that 0 $of F(4.3)^. Therefore, each 

problem (4.3)^ and consequently each new problem (4.l)^ +^ contains at 

least one less integer extreme point than the preceding problem. Since 

there are a finite number of integer extreme points there are a finite 

number of partitionings which can occur such that an original extreme 

point remains in the problem (4.3)^. When a (4.3)^ is developed which 

contains no feasible integer extreme point (F(4.3)^ = cp), the algorithm 

terminates. Since this will occur in a finite number of steps the 

algorithm terminates in a finite number of iterations. 

Case II. Problem (4.1) has no solution. If problem (4.1) has no 
o r o 

solution, the algorithm terminates immediately at block 11. This com­

pletes the proof of Theorem 4. 

A Solution Procedure for the Reduced Quadratic Problem 

Finiteness of the algorithm is dependent upon a means of finding 

the solution of problem (4.2) for some t > 0. The required mechanism 

for obtaining this solution is developed through consideration of the 

following problem, 

(4.4) Max: Q(x) « c'x - | x'Cx 

Subj: -c'x = t 

x > 0 . 
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Now it will be shown that for t greater than some lower bound, the 

solution of (4.4) is an upper bound on the solution of problem (4.2). 

Theorem 5 

Let x^t,) be the optimal solution to problem (4.4) for t = t. 

Let x^tT) be the optimal solution to problem (4.2) for t = t. 

-2c\ 
Let t. = and t * min t. . 

1 c. , r . 1 11 1 

Then for all t > tp, Q[x£(t)] > Q[x*(t)]. 

Proof. Let 

(4.5) x*(t) = (0,...,0, -t/ci,0,.. .,0). 

It follows that xMt) , i * 1,2, ...,n, correspond to the extreme points 

of problem (4.4) and the corresponding value of the solution is 

Q[xi(t)] * c. x. - 7; c. . x^ 1 1 2 11 i 
1 9 9 

-t - \ c n t /c\ . 

Then for t > ^ « -2c^/c i i > Q[x1(t)] > 0. 2, 

2 Since t * min t. * -2c /c , then it follows that r . 1 r rr' 1 

(i) Q[2$(t)] - max Q j V U ) ] - Q[xr(t)] 
i 

and (ii) smallest value of t for which Q[x*(t)] > 0 is t = t . 

Now consider x r(t) * (0,...,0, -t/c r,0,...,0). Note that Q[xr(t)] 

is a monotone increasing function of t for t > t r. Also the optimal 

of the problem 

(4.6) Max: Q(x) = c'x - | x'Cx 
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Subj: -c'x < t 

x > 0 

for t > t occurs at an extreme point of the form (4.5) [see Hadley 

(15)]. Hence x*(t) is the solution to both (4.4) and (4.6) for t > t . 
— — r 

Both (4.6) and (4.2) have the same objective function and (4.2) is a 

more restricted problem than (4.6). Hence Q[x*(t)] = Q[x*(t)] > Q[x*(t)] 

for t > t^. This completes the proof of Theorem 5. 

Remark 2. Special application of Theorem 5 provides the basic machinery 

upon which the algorithm is built. All other development in this text 

provides the details for applying this basic theorem. 

The above theorem is applied at every iteration of the algorithm. 

The particular t used at each application is chosen such that either 

the solution of (4.2) can be found or there is no solution to (4.2) for 

t = t better than some current best known solution. The solution to 

(4.4) is the solution to (4.2) for all t > t r. The solution to (4.4) 

for any t > t f is simply x r where r = (j | c^ < c 2, i * l,...,n). If 

x* denotes the best local optima of (4.4) for t = 1 and x* / 0, then 

tx* denotes the solution of (4.4) t = t. Beginning with some x*, and 

some current best solution, x , Theorem 5 is applied in two ways. 

First, determine the t denoted t^ which is the largest t such that tx 

is the optimal solution of (4.2) for t * t Q. Second, determine t̂  such 

that Q(txx*) = Q(x**). 

-1 - [1 -(2)(c )(xJ)2(Q(/*) - Q ( 0 ) ) ] l / 2 

t = — - - -
1 f ^ 2 c..(x.) ii l 

Since c.. < 0 for all i, t. will always have one positive solution 
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greater than or equal to t^. 

-2c 2 

*i * *r - - r * • 
rr 

To insure that t > t^ choose t *= maxlt^.t^). Since t̂  > t^, t > t^, 

and Theorem 5 can always be applied for some t > t . 

Remark 3. The following is a summary of the rules used in the applica­

tion of Theorem 5. 

(a) Find t Q • max(T: Atx* < b,tx* < l) 

(b) Find t1 : Q ^ x * ) - Q(x**) 

(c) t s max(t Q,t 1) 

Remark 4. The efficiency of the proposed algorithm (Figure 2) is 

dependent on its ability to solve (4.2) for large t. If (4.2) can 

only be solved for small t, the method reduces to complete enumeration 

since only one integer extreme point is excluded from further consider­

ation at each iteration. This can be shown by observing that for t < c^ 

-c'x < t excludes all extreme points from problem (4.2) with x^ = 1. 

If t 8 min(c^), no nonzero integer point is feasible for (4.2) and only 

x * 0 can be eliminated at each iteration. Therefore for sufficiently 

small t at each iteration, the algorithm reduces to complete enumeration. 

The decision rules presented in Remark 3 yield the largest t (largest 

cut) which insures that we have not eliminated any integer point better 

than x**» 

A second cutting plane which can be used to eliminate part of 

the feasible region will now be introduced. This plane is a parallel 

shift of the original objective function hyperplane (i.e. c'x > k) and 
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can only be inserted when t^ > t̂  (i.e. a new integer extreme point 

has been found to replace the current best solution). Consider now 

two new problems formed by partitioning problem (4.3) as follows: 

(4.9) Max: Q(x) 

Subj: Ax < 

-c'x > 

c x < 

x < 

2S > 

(4.10) Max: Q(x) 

Subj: Ax < 

-c'x > 

c x > 

x < 

x > 

When t^x* is integer, it follows that the global optimum of (4.1) is 

that x which is the largest global optima of (4.2), (4.9), and (4.10). 

Theorem 6 states that the solution of (4.2) is an upper bound on the 

solution of (4.9). With Theorem 6 one need only solve (4.2) and (4.10) 

to obtain the solution of (4.1) when t^ > t^. 

Theorem 6 

If z is an optimal integer solution to (4.9; and t^x is an 

optimal integer solution to (4.2), then Q(z) < Q(t^x*)» 

Proof. For any integer solution z, Q(z) * c'z. But the constraint 

£ fz < c'tnx* implies Q(z) = c'z < c'tnx* = Q(t nx*) or simply 

= c'x - ^ x'Cx 

b 

1 

0 

c'x - ^ x'Cx 

1 

0 
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Q(z) < Q(t Qx*). This completes the proof of Theorem 6. 

Recall that in each step of the proposed algorithm (Figure 2), 

the problem (4.1) and hence the problem (4.2) are no longer in terms 

of the original region. Each problem (4.1) begins with the origin 

feasible and each iteration eliminates at least the origin from further 

consideration in all successive iterations. Therefore, it becomes 

necessary to transform some other feasible point to the origin to 

make possible the solution of the next problem. It is also implied by 

the algorithm of Figure 2, that the best local optimum currently known 

is available for reference at any iteration. When a new local optimum 

is discovered which is better than any previously found, it must be 

saved in place of its predecessor. Since the new local optimum is 

given in some transformed region, a means must be developed to relate 

this point to the variables of the original region. Therefore it is 

necessary that one have a reverse transformation by which points in 

some v-region can be related to original points in the x-region. The 

following transformation gives the desired result. 

(4.11) T*v + tt* = x 

where T* x -TA^ * 

tt* = tt - T*b . 

Initially T and tt are an identity matrix and a zero vector of the 

appropriate dimensions. For successive transformations, T* and tt* 

become the T and tt of the next transformation so that the reverse 

transformation through numerous forward transformations can be accom­

plished by application of (4.1l) only once. 
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Furthermore, the objective function of the original integer 

programming problem can be expressed in terms of the new region by the 

following transformation 

It follows that if the transformed variables are substituted 

for the original variables of Theorem 6 and the condition that Tt x* + tt 
o— — 

be integer instead of t^x*, then Theorem 6 holds for any transformed 

region. 

Location of a Feasible Integer Point 

The basic algorithm of Figure 2 requires that the problem (4.3)^ 

be transformed to a new region at each iteration. The transformed 

problem denoted must satisfy the following conditions, 0 must 

be feasible, Q*(x) must be convex, and c* must be negative. To make 

this transformation so that the above conditions are satisfied, the 

algorithm must transform a feasible integer point of the problem (4.3)^ 

to the origin for the problem ( 4»l) i + 1* The following section describes 

how these integer points are obtained. 

The general approach followed is that of a tree search in which 

each node of the tree represents an integer point. The search begins 

with an infeasible solution and moves successively toward feasibility. 

Once a feasible solution is found, the search is ended. When it becomes 

necessary to locate another feasible integer point, the search resumes 

from the stopping point of the previous search. Since each integer point 

found becomes the origin of the new (4.1) , and since the origin is 
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eliminated from further consideration at each stage, each search begins 

with an infeasible solution. 

The tree search scheme is based on the work of Glover (ll) as 

revised by Geoffrion (9). The latter defines a partial solution S as 

a binary assignment of n or fewer of the integer variables. All vari­

ables assigned a value by S are called fixed variables and variables 

not assigned a value by S are known as free variables. The notation 

j e S and -j e S denotes x̂  * 0 and x.. = 1 respectively. Hence if 

n « 5 and S * (3,5,-2), then 8 0, x^ - 0, x^ s 1, and x^ and x 4 are 

free variables. For any solution S, all free variables will be assigned 

the value one. Therefore the solution S = (3,5,-2) denotes the solution 

xl * ^ 9 x 2 = x3 * ^' x4 = x5 = ^" ^ o i i o w s that any partial 

solution S is different from another partial solution if at least one 

element of S is different in the two solutions. With this notation, it 

follows that the scheme of Figure 3 terminates only after a feasible 

solution has been found or all 2 n unique solutions have been explicitly 

enumerated. 

The scheme of Figure 3 could be used to find a feasible integer 

point; however, it would be inefficient for even small problems. The 

efficiency of the scheme can be greatly increased if some of the solu­

tions can be implicitly enumerated. This can be accomplished if one or 

more tests can be devised which indicate the futility of further examina­

tion along the branch in question. Assuming that such tests are avail­

able, the explicit enumeration tree search could be converted to an 

implicit enumeration tree search as shown in Figure 4. 
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Start 

S = cp 

No Is S a feasible solution ? Yes Stop Is S a feasible solution ? 
w 

Stop 

No 
Are there any free variables ? 

Yes 
Are there any free variables ? Augment S with 

one of the free 
variables 

No Are all elements of S negative ? 
Yes 

Are all elements of S negative ? 
Terminate: No 

feasible 
solution 

I 
Set the right most positive element 
of S equal to its negative and drop 
all elements to its right. 

Figure 3. Explicit Enumeration Tree Search. 
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Theorem 7 

The implicit enumeration scheme of Figure 4 leads to a non-

redundant sequence of partial trial solutions which does not terminate 

before a feasible solution is found, or all 2 n solutions have been 

implicitly enumerated. 

A proof of Theorem 7 can be found in Geoffrion (9) and is not 

repeated here. 

Attention is now turned to the details of the method used to 

accomplish the task of block 7 Figure 4 in which the partial solution S 

is augmented with one of the free variables. The method used to select 

this free variable is due to Geoffrion (9) and is this, fix that free 

variable in the next solution which most reduces the infeasibility of 

the present solution. With this augmentation criterion, it follows that 

the only free variables which can decrease infeasibility without allowing 

the value of the objective function to fall below some lower limit are 

elements of T where 

r = (j : j free, c. < c'xs - z, a. , > 0 for some 
J IJ 

i such that y^ < 0 ) , 

where x is the solution determined by S with Ax + y = b 

and z is some lower limit on the objective function. 

Remark 5. Notice that the assumption c > 0 is used here. Also notice 

that if r is the null set, there is no feasible completion of S that 

is better than some known solution and S can be fathomed. Therefore, 

indirectly a fathoming mechanism has been developed. 

If r is not null, then it can be seen that the free variable 
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1 

S = <p 

No Yes 
Is S a feasible solution? Stop 

Can S be fathomed ? Can S be fathomed ? 

No 

Are there any free variables ? 
Yes Augment S with 

one of the free 
variables 

No l 9 

Are all elements of S negative ? 
Yes Terminate: No 

feasible solution 

10 
Set the right most positive element 
of S equal to its negative and drop 
all elements to its right. 

Figure 4. Implicit Enumeration Tree Search. 

Start 
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which when fixed would most reduce the infeasibility is that k where 

m m 
k = j | £ min (yi + a^, 0) > £ min(yi +a i^,0), 

i=l i*l 
\> = 1,..., n • 

The original notion that all free variables take on the value of one 

is used in the development of the above expression. 

Using this augmentation mechanism attention is now turned to 

block 5 of Figure 4 which attempts to fathom the current partial solu­

tion denoted by S. Balas (l) presented three tests to be used in an 

attempt to fathom partial solutions. The first requires the determina­

tion of the set T. If T is the null set, the branch may be fathomed. 

The second test attempts to demonstrate that the best completion of S, 

regardless of feasibility considerations, is not preferable to some 

other known feasible solution. If z S denotes the value of Q(x) at S, 
s 

then z - z < 0 implies that no solution preferable to the one already 

known exists along the branch in question. Note that c > 0 is used in 

the second test. The final test attempts to show that at least one of 

the m constraints will be violated by any completion of the partial solu­

tion. Mathematically the third test reduces to computing the quantities 

* y^ + max (â .., 0) for all i such that y^ < 0. If 

cu < 0 for some i, then the branch in question may be fathomed. 

Remark 6. A summary of Balas* tests follows: 
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(a) Test 1. Compute V = (j : j free, < c'xs - z, a ^ > 0 

for some i such that y. < 0). 

If r • 9, S may be fathomed. 

(b) Test 2. Compute 8 •» z S - z. 

If B < 0, S may be fathomed. 

(c) Test 3. Compute = y^ + max(a^, 0) for all i 

such that y.. < 0. il 

If < 0 for some i, S may be fathomed. 

A complete flow chart of the Balas algorithm as modified by the author 

to locate feasible integer points is as shown in Figure 5. 

The above algorithm provides not only a means for determining 

feasible local optimum (integer points) required at each iteration, 

but also a stopping mechanism for the integer programming algorithm of 

Figure 2. If at the p**1 iteration, the search routine fails to find a 
feasible integer point, the global optimal is the local optimal found 

st 

at the p-1 iteration. Failure to find a feasible point on the first 

iteration implies that 0 is the optimal solution if 0 is feasible and 

that there is no solution if it is infeasible. 

Determination of Redundant Constraints 

Recall that at each iteration of the algorithm of Figure 2, one 

or more constraints or cutting planes are added to the constraint set. 

These constraints cut away or eliminate from further consideration one 

or more integer extreme points. It follows that as more of these con­

straints are added to the constraint set, that some of the original 

constraints as well as some of the additional constraints no longer 
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No _ 1 
Is S feasible ? Yes 

Set the right most 
positive element of 
S equal to its neg­
ative and drop all 
elements to its 
right. 
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for all i such that y. < 0 
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No 

Yes 

Terminate: No 
feasible solution 

Stop 

Augment S 
with k 

m 
* = (j I £ min(yi +a..,0) 

i=l 
m 

> £ min(yi +8^,0) 

Figure 5. Implicit Enumeration Tree Search. 
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serve to restrict the feasible region. These ineffective constraints 

shall be referred to as geometrically redundant constraints. It can be 

easily seen that the constraint set would become quite unwieldy if 

several hundred iterations were required to solve the integer problem. 

Therefore, it is imperative that the algorithm be able to locate and 

eliminate these redundant constraints. A full explanation of these 

constraints and a means for locating them follows. 

Definition 1: Type A Geometrical Redundancy 

Let a! be the j**1 row of the A matrix. Then a'.x < b, is a type 

A geometrically redundant constraint if and only if ajz £ b.. for all 

z e r - (z | Az < b) when P = <p. When V * 9, there are no feasible 

points in the constraint set, and the definition has no meaning. 

Figure 6. Illustration of a Type A Geometrically 
Redundant Constraint. 

Constraint 1, Figure 6 is a type A geometrically redundant con­

straint. 
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Definition 2: Type B Geometrical Redundancy 

Let a_!x < bj be a row of Ax < b. Then ajx < b^ is a type B 

geometrically redundant constraint if and only if there exists an i / j 

such that J C I where 

J = (z I a!z = b., A z < b ) and " "J" J 

I = (x | a^x = b^, Ax < b ) . 

Simply stated, a type B geometrically redundant constraint is one which 

is met as an equality in the feasible region at only a single point or 

at a set of points which lie along the face of the convex set which is 

determined by another constraint. 

Figure 7. Illustration of a Type B Geometrically 
Redundant Constraint. 

Constraint 1, Figure 7 is a type B geometrically redundant constraint, 
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Remark 7. Observe that a type B redundancy becomes a type A redundancy 

when the redundant constraint is perturbed to form a!x < b. + e where 
F -j J 

e is some scalar greater than zero. 

Remark 8, Also notice that a type B redundancy implies that there 

exists a degenerate basic feasible solution. 

Klaus Ritter (25) developed a method to locate type A geometrical 

redundancies. The author has extended this basic approach by perturbing 

certain elements of b so that type B redundancies can also be detected. 

After the addition of slack variables the constraints take the form 

a!x + s. * b.. Positively perturbed constraints take the form 

ajx + S j * bj + e, e > 0. Positively perturbed type B geometrically 

redundant constraints become type A geometrically redundant. Positively 

perturbed essential constraints remain essential. The method presented 

below is based on the idea of perturbing constraints and then applying 

the basic approach of Ritter to locate type B as well as type A redun­

dancies. 

The method is based upon the solution of the following linear 

programming problem. 

(4.12) Max: -s^ 

Subj: Ax + s_ = b 

x, s > 0 

th 

with the j element of b perturbed by e where e > 0. To accomplish 

this perturbation without actually changing the b^, the following 

decision rule was incorporated for determining the leaving variable. 

If there is a tie for the leaving variable which involves b,, allow the 
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j^^ variable to remain in the solution. For example if k is the enter­

ing variable for some tableau and there is a tie for the leaving variable 
b. b b.+e b i r i r such that — - > 0 then the perturbed b. would produce > 

yjk yrk J yjk yrk 
and would indicate that r should be the leaving variable. The above 

decision rule accomplishes precisely what is needed to solve the per­

turbed problem. 

If problem (4.12) is solved using the above decision rule, one of 

three cases will occur at the optimal solution. 

Case I: is greater than zero. This implies that the j*'*1 

constraint is type A geometrically redundant. 

Case II. s. is a basic variable at the zero level. This implies 
th 

that the j constraint is type B geometrically redundant. 

Case III: ŝ  is not a basic variable. This implies that the 

j^^ constraint is essential. 

With the above information, a procedure for locating redundant 

constraints could be developed. If a constraint set contained m con­

straints, one could determine if each is essential by solving the per­

turbed problem (4.12) for j * 1,2,...,m. This would involve solving m 

linear programming problems which could be a very lengthy process. This 

can be significantly reduced by observing that at any feasible tableau, 

if all elements of the row are less than or equal to zero except the 

y^ * 1 element, then the problem max - s^ subject to the constraints of 

that tableau will have the solution s^ • bp. If bp is positive, then 

the constraint is type A geometrically redundant. If bp is equal to 

zero, then the constraint is type B geometrically redundant. The 
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number of linear programming problems can be reduced by observing that 

at each tableau the columns which are not in the basis which have unique 

pivot elements could enter the basis and remove the variable correspond­

ing to the row of this pivot element. If this variable is a slack, then 

the constraint corresponding to this slack variable is essential. The 

arguments presented above form the basis for the following method for 

determining geometrically redundant constraints. 

Let E * the set of essential constraints 

Initially E is the null set and M contains all real numbers (l,2,...,m). 

Step 1. Let j * 1 

M = the set of constraints about which no decision has been made 

Ax + s • b is the constraint set 

• the (i,j) element of any tableau 

Step 2. Solve Max: -s. 
J 

Subj: Ax + s * b 

x,s > 0 

by the perturbed method. 

Step 3. Is s. greater than zero? J 
t h 

Yes - The j constraint constraint is type A geometrically redundant. 

Delete j from M and proceed to step 5. 

No - Proceed to step 4. 

Step 4. Is s. a basic variable? J 
Yes - The constrain constraint is type B geometrically redundant. 

Delete j from M and proceed to step 5. 

No - The j th constraint is an essential constraint. Delete 

j from M, place j in E, and proceed to step 5. 
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Step 5. Are there any rows in the current tableau which have only one 

positive component? 

Yes - If the row is r, the constraint is redundant. 

Delete r from M and check for all other such rows. 

After all rows have been checked, proceed to step 6. 

No - Proceed to step 6. 

Step 6. Calculate the pivot element in each column not in the basis. 

If the pivot element in a column is unique, then examine the 

variable corresponding to the row containing this pivot ele­

ment. If this variable is a slack, then the constraint asso­

ciated with this slack variable is essential. Delete the 

appropriate entry from M and make an entry in E. 

Step 7. Is M the null set? 

Yes - The procedure is complete, the essential constraints 

are in E. All other constraints are redundant. 

No - Let j equal some element of M, and proceed to step 2. 

An Algorithm for the Maximization of the 

Special Quadratic Programming Problem 

Section 1 presented the basic algorithm for the solution of the 

special quadratic programming problem. The approach involves successively 

partitioning the feasible region in such a way that the global optimum 

can be found in one of these regions. Section 2 presents the methods 

which are used to solve each of the special sub-problems. Section 3 

gives a means for finding a local optimum which is required to solve 

the partitioned problem and section 4 presents a method for eliminating 

geometrically redundant constraints. A complete expansion of the flow 



chart of Figure 2 is given in Figure 8. The flow chart of Figure 11 

was used to write a computer program from which computational exper­

ience with the proposed algorithm was obtained. These results are 

given in Chapter V. 

Example 

Max: 3x^ + 2x^ + x^ 

Subj: x x + x 2 + x 3 < 2.75 

x 1,x 2,x 3 = 0 or 1 

Following the procedure of Section 2, Chapter III 

a * max (30, 20, 10) + 1 = 31 

Therefore the quadratic programming problem to be solved is as follow 

Max: Q(x) = -28x1 * -29x2 - 30x 3 + 31x x
2+ 31x 3

2 

Subj: x + x 2 + x 3 < 2.75 

x < 1 

x > 0 

In terms of the notation used in the algorithm Figure 11 

A = [ 1 1 1 ] b = 2.75 

C - -62 0 0 c 1 = [ 3 2 1 ] 

0 -62 0 

0 0 -62 c ' * [-28 -29 -30] . 

The numbers at each step of the solution procedure reference 

in the flow chart of Section 5. 
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Flow Chart for the 0-1 Programming Algorithm 

No 

Start 

Initialize T and tt 

No 
I 

AO < b ? 
Yes 

Is there an integer point 
z, such that Az < b? 

Add the constraint £* x > c'z 
to Ax < b 

Transform z to 0 

x** = tt, Q(x") = Q(0) 

1 8 
| Stop: Optimal Solution is x** 

9 
Stop: Problem Has No Solution 

Yes 

No Is there an integer point 
z, such that Az < b ? 

Yes D Is there an integer point 
z, such that Az < b ? 

D 

Figure 8. Complete Flow Chart of the Integer Programming Algorithm. 



I 10 
Add the constraint c'x > c'z 

to Ax < b 

11 
x** = Tz + tt, Q(x**) * Q(z) 

12 

Transform z to 0 
A* * -AA X 

b * = b + A*b x 

T = -TA 1 

tt* =tt - T * ^ 
£*' =b'C - c'A1 

c*' --c'A 
Q*(0_) = Q(z) 

13 
Solve (4.4) for x* at t • 1 

14 
Find tx: QU.̂ *) * Q(x**) 

15 
Find t : t 88 max(t: Atx* < b) o o — 

I 
Figure 8. (Continued) 



65 

Yes 
16 

No Add -c'x > t 1 to 
Ax < b 

17 

x** = Tt x* + tt 
Q(x**) =°Q(tox*) 

i 18 
Add c'x > t Q to Ax < b 

19 

Add c x > c t q x to Ax < b 

20 
Eliminate geometrically redundant 
constraints from Ax < b 

Figure 8. (Continued) 
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1. Initialize T and tt 

1 0 0 

R = T = 0 1 0 tt' = [0 0 0] 

0 0 1 

Note: R is a matrix which provides a transformation of a constraint 

in some v-region to the identical constraint in the x-region. 

If aj represents the coefficients of some transformed constraint, 

the aJR gives the coefficients of this constraint on the x-region. 

The primary purpose of R for the example problem is to allow the 

author to determine the cutting planes in terms of the original 

feasible region. Transformed regions often become difficult to 

draw, therefore all sketches for this example are in terms of 

the original feasible region although it should be remembered 

that transformed problems are actually being solved at each 

2. AO < b? Yes 

6. x** « 0, Q(x**) = Q(0) « 0 

Iteration 1 

7. Is there an integer point z, such that Az < b? Yes, z = (0,1,1) 

10. Add the constraint 3x^ + 2x^ + x^ > 3 to Ax < b. The original 

feasible region is shown in Figure 9, and the feasible region 

reduced by the above constraint is shown in Figure 10. Note that 

in Figure 13, points 1, 2, and 3 are no longer candidates for con­

sideration. 

iteration. R * -A R gives the transformation required for R. 

11. x** = Tz + tt = (0, 1, 1), Q(x**) * Q(z) = 3 



Figure 9» Feasible Region of Example Problem 



Figure 10. Illustration of First Cutting Plane 
(Iteration 1). 



12. Transform z to 0 

The transformed problem is as follows: 

A = 1 -1 -1 b = 0.75 

-3 2 1 0 

-62 0 0 c' « [3 -2 -l] 

C = 0 -62 0 

0 0 -62 c' = [-28 -33 -32] 

R = T = 1 0 0 tt = 0 

0 - 1 0 1 

0 0 - 1 1 

13. Solve (4.4) for x* at t « 1 

x* « (1/28, 0, 0) 

14. Find t x: A(t2x*) * Q(x**) 

t x * 25.29 

15. Find t : t * max(t: Atx* < b) 
o o - -

t • 21.00 
o 

16. t > t. ? 
o 1 

21.00 > 25.29? No. 

21. Add 28x1 + 33x 2 + 32x 3 > 25.29 to Ax < b. The reduced 

constraint set is as shown in Figure 11. 

22. Eliminate geometrically redundant constraints from Ax < b. 

Iteration 2 

7. Is there an integer point z, such that kz < b, 

Yes, z «= (1, 1, 0). 
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10. Add 3x 1 - 2x 2 - x ] > 1 to Ax < b. 

The above cutting plane is as shown in Figure 12. Note that point 

5 has also been eliminated from further consideration. 

11. x** = (l, 0, 1), Q(x**) = 4 

12. Transform (l, 1, 0) to 0. 

The transformed problem is as follows: 

A = 28 33 -32 b = 35.71 

3 -2 1 1 

-1 1 -1 0.75 

3 -2 1 0 

C « same c' = 

c' = 

[-3 

[-34 

T = -1 0 0 tt = 1 

0 1 0 0 

0 0 -1 1 

Q(q) * 4 

Solve (4.4) for x* at t « 1 

x* * (0, 1/29, 0) 

Find V Q(tr x*) - Q(x**) 
t * Xl 27.13 

Find t : t 
o 0 

max(t: Atx* < b) 

t * 
0 

21.75 

16. t > t. ? 
o 1 

2 -1] 

•29 -32] 

21.75 > 27.13 No 



Figure 11. Illustration of Second Cutting Plane 
(iteration 1) 
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*3 

Figure 12. Illustration of Third Cutting Plane 
(iteration 2) 
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21. Add 34 X ; L + 29x 2 + 32x 3 > 27.13 to Ax_ < b. 

Figure 13 shows the above cutting plane. Note that point 6 has 

now been eliminated. 

22. Eliminate geometrically redundant constraints from Ax < b 

Iteration 3 

7. Is there an integer point z, such that Az < b ? 

Yes, let z « (0, 1, l) 

10. Add -3x1 + 2x 2 - x 3 > 1 to Ax < b. 

Figure 14 shows the new cutting plane. 

11. x** « (1, 1, 0), Q(x**) = 5 

12. Transform z to 0 

The transformed problem is as follows: 

-1 -1 1 b 0.75 

28 -33 32 34.71 

-34 29 32 33.89 

3 2 -1 1.00 

3 2 -1 0.000 

= same c' * [-3 

i 
c 

» [-34 

-1 0 0 tt = 1 

0 -1 0 1 

0 0 1 0 

13. Solve (4.4) for x* at t * 1 

x* = (0, 0, 1/30) 



*3. 

Figure 13. Illustration of Forth Cutting Plane 
(Iteration 2) 



Figure 14. Illustration of Fifth Cutting Plane 
(Iteration 3) 
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14. Find t 1: Q(x**) 

tJL = 29.03 

15. Find t : t = max(t: Atx* < b) 
o o 

t = 22.50 
o 

16. t > t, ? 
o 1 

22.50 > 29.03? No 

21. Add 34x : + 33x 2 + 30x 3 > 29.03 to Ax < b. 

The cutting plane is as shown in Figure 15. Note that all seven 

feasible integer extreme points have been eliminated from further 

consideration. 

22. Eliminate geometrically redundant constraints from Ax < b. 

Iteration 4 

7. Is there an integer point z, such that Az < b. No 

8. Stop: Optimal Solution is x** «= (l, 1, 0) 



Figure 15' Illustration of Sixth Cutting Plane 
(Iteration 3) 
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CHAPTER V 

COMPUTATIONAL EXPERIENCE 

A computer code was developed from the algorithm of Figure 11 

and used to obtain the computational results reported in Table 2. The 

computer code is written entirely in Fortran V for the Univac 1108. 

The object program and data are all held in core with all program data 

in floating point. Total number of 36 fixed bit storage words required 
2 

for this program is 2mn + 10m + 4n + lln + 2305 where m is the number 

of constraints and n is the number of 0-1 variables. 

The program was written in four segments as follows: 

a) MAIN 

b) FIND 

c) TRANS 

and d) SUPER. 

MAIN is the control program which directs the flow of the algorithm as 

well as generating the cutting planes required to reduce the feasible 

region. The subroutine FIND is used to locate a feasible local optimum 

required at each iteration. This subroutine is essentially the implicit 

enumeration algorithm of Balas (l) with revisions to transfer control 

back to MAIN after each new feasible local optimum has been found. The 

TRANS subroutine transforms this local optimum to the origin while stor­

ing reverse transformations to enable the algorithm to reference extreme 

points in the original region. The last subroutine, SUPER, is used to 
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eliminate geometrically redundant constraints after each transforma­

tion. The linear programming routine required is basically a revised 

simplex algorithm which has been modified to take advantage of the special 

structure of the problem. 

The test problems were taken from the literature and are refer­

enced in Table 2. The computational times for other algorithms were 

reported by Geoffrion (10) and are repeated for purposes of comparison. 

The limited computational experience reported here indicates 

that the present form of the computer code used to develop the compu­

tation experience is inferior to the code used by Geoffrion (10). The 

program developed in this research has not been refined at this writing 

and consequently there are several opportunities for improvement which 

have not been explored. The main objective of the programming effort 

was to obtain a code that worked so that, at least, some computational 

experience could be reported. This objective has been accomplished. 

Further refinement of the computer code is left as a future area of 

research. 
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Table 2. Comparative Computational Experience 

Problem Problem 
Size 

0-1 Var. 
x Const. 

Balas(lO) 
(7044) 

min. 

Geoffrion(lO) 
(7044) 

min. 

Other Algorithms 

min. Ref. 

Quadratic 
Approach 
(U1108) 
min. 

Bouvier 
and 

Messoumian(7) 

15 20 x 20 0.48 0.09 0.47 7 0.42 

16 20 x 20 1.69 0.62 2.07 7 1.30 

17 20 x 23 1.06 0.64 0.85 7 0.44 

23 27 x 20 8.08 1.18 7.10 7 7.21 

Petersen(23) 

4 20 x 10 0.46 0.04 0.06 23 0.89 

Haldi(l6) 

II-7 20 x 4 0.10 0.03 0.02 20 3.50 

II-8 20 x 4 0.10 0.05 0.40 20 5.07 

11-10 30 x 10 0.41 0.06 - - 1.81 

IBM(16) 

1 21 x 7 0.14 0.01 0.13 27 0.26 

2 21 x 7 0.11 0.02 0.17 27 0.23 

3 20 x 3 0.04 0.01 0.04 27 0.03 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The objective of this research was to develop a 0-1 integer pro­

gramming algorithm via a quadratic programming approach. An algorithm 

based on this approach has been developed, finiteness of the algorithm 

has been proved, and several published test problems have been solved by 

a computer code developed from this algorithm. The singular result of 

this research is the 0-1 integer programming algorithm presented in 

Chapter IV. 

Even though the practicality of the quadratic programming approach 

to the solution of the 0-1 integer programming problem has been estab­

lished, there still remain many unanswered questions concerning this 

approach. The following is a brief outline of recommendations for fur­

ther research in the area of integer programming via quadratic program­

ming approach. 

a) Can the computer code written by the author be refined to 

increase its efficiency? There are, at least, two avenues which may be 

pursued in this endeavor. First, the present code uses the SUPER sub­

routine at each iteration. At some computational cost, this routine 

locates and eliminates any geometrically redundant constraints present 

in the constraint set to thereby reduce the computation time, in other 

phases of the program. The computational relationship between carrying 

say k redundant constraints and eliminating them is not known. It may 
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be possible that more time is expended in locating and eliminating a few 

redundant constraints than would have been incurred had they been carried 

along through the other phases of the program. If this relationship 

were known, it may be advantageous to apply routine SUPER less frequently 

than at every iteration. The second avenue available would be to revise 

the program to work only in the original region rather than the trans­

formed regions. This would eliminate the necessity to make two (one 

forward and one backward) transformations at each iteration. 

b) Does the algorithm perform better on a specific type of 

problem? It is impossible to determine this with the computational 

experience presently available. 

c) How does the computational time increase with respect to the 

number of variables and number of constraints? Again this can only be 

determined after much more computational experience is available. 

d) Can the integer programming algorithm developed in Chapter 

IV be extended to solve the mixed 0-1 integer programming problem? The 

logical approach to follow here is to use Benders (6) partitioning method. 

This method requires that one be able to solve a problem of the form 

(6.1) Max: z 

Subj: z < c^x + (b - A^x)'u^ 

z < c^x + (b - A^x) 'uP 

x̂  = 0 or 1 for all i 

where z and x are variables, and c^, b, A^, and u (p * 1,...,P) are 

constants. The problem (6.1) is a pure 0-1 integer programming problem 
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with an additional continuous variable z. If one attempts to use the 

quadratic approach presented in Chapter IV, a problem of the form (6.2) 

will be obtained. 

(6.2) Max: Q(y) = c'y - | y'Cy 

Subj : Ay < b 

1 > 0 

where y' = (x', z^9 z^)9 z *= z^ -

c' - (al1, 1, -1) 

-2al | 0 | 0 
1 

ol 0 ! o 
1 

ol 0 j 0 

Note that the C matrix contains two diagonal elements which are zero. 

Recall that from Chapter IV section 4.2, a t̂  greater than zero is only 

guaranteed if c ^ < 0 for all i. Since (6.2) does not initially meet 

this criteria, Benders partitioning method can not be used without 

extensive modifications to the present algorithm. This problem is a 

very important area for future work. 
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