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Abstract 

Immunotherapies have significant potential for implementation towards personalized 

medicine through avenues such as vaccine, gene, and cancer applications. Dendritic cells are a 

major contributor in the immune system, functioning as antigen-presenting cells that aid in 

orchestrating the immune response towards pathogenic activators. Manipulation of these cells 

can allow for the optimization of immune responses, which can be achieved through tissue 

engineering and modulation via gold nanoparticles. This study seeks to provide a basis for 

elucidating the secretory responses of immature dendritic cells as they progress through 

maturation following treatment with modified gold nanoparticles. Additionally, findings are 

presented on the manipulation of dendritic cells with a variety of treatments such as PEGylation 

and thiolation to understand resulting effects on IL-10 expression. Biomaterial-based matrices 

are additionally investigated for their roles in dendritic cell viability and functionality – results of 

variation in weight percentage of hydrogels, used for dendritic cell encapsulation, will be shown. 

With some notable exceptions, such as IL-4, the majority of cytokine and chemokine expressions 

in experimental cell groups compared to baseline immature dendritic cell expression levels 

decreased. Future studies should continue to characterize and solidify this response, both with 

regard to modulation in hydrogels and gold nanoparticles. These studies can aid in paving the 

way for individualized treatment for autoimmune disorders. 
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Introduction 

 Within the field of immunotherapeutic techniques, an increasingly investigated method 

for augmenting the immune response is the manipulation of dendritic cells with biomaterials. 

One such biomaterial that can be used is gold nanoparticles, which have the ability to target 

dendritic cell surface receptors in order to induce a phenotypic, observable response that 

orchestrates greater immune activity. Researchers are currently aiming to understand how 

characteristics of gold nanoparticles can assist in determining the phenotypic response of the 

cells. If understood, this knowledge could be used to engineer a specific and personalized 

immune response. Furthermore, researchers are investigating how these cellular responses can 

change due to variation in the nanoparticles’ parameters. Some research has shown that as gold 

nanoparticles interact with dendritic cells, they can initiate the maturation process of immature 

dendritic cells to have them express activated or tolerogenic phenotypes.1  

 This maturation process is an integral component to the immune response of the body. 

Maturation of a dendritic cell occurs upon exposure and subsequent phagocytosis of antigens, 

followed by the production of corresponding peptides that are expressed on the cell surface. 

Dendritic cells additionally maintain an immune tolerance towards self-antigens. Studies with 

gold nanoparticle methodology have shown promising results thus far in inducing maturation, 

with researchers confirming the efficacy of the nanoparticles as an adjuvant to vaccine delivery 

and for eliciting an anti-tumor response in cancer patients.2,3 However, as this treatment gains 

more potential for clinical application, the potential cytotoxicity of the nanoparticles and their 

safety in patients must also be considered. 

The immune responses by dendritic cells in the body are mediated through varying 

conditions in the treatment groups involving gold nanoparticle application. This response by the 
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dendritic cells is shown through the release of corresponding cytokines and chemokines into the 

cell environment.4 Currently, the cytokine and chemokine expression of dendritic cells upon 

treatment with various coatings is not fully established. By identifying what the supernatant is 

comprised of as a result of nanoparticle application with varying coatings and concentrations, 

researchers can better understand what specific response is being triggered and what phenotype 

is being expressed within the dendritic cells, thus giving greater ability to assess their potential 

risks. 

In addition to this, biomaterials have been shown to modulate dendritic cell viability and 

functionality.5 Research has been done to explore the potential of various materials to activate 

dendritic cells, as well as their mechanisms of maturation.6,7 Further work, however, still needs 

to be done in the identification of the structural components of biomaterial-based matrices that 

support non-activated or tolerogenic dendritic cells. By investigating the structure and function 

relationships that govern hydrogel matrices and dendritic cell interactions, this knowledge can 

direct the design of hydrogels to support dendritic cells. Further biochemical modifications can 

be introduced to the matrices that can be used in the improvement of the scaffold’s ability to 

maintain encapsulated cell viability and tolerogenic functionality.8 

 In this study, assays will be conducted to identify the cytokine and chemokine profile that 

is released from treated dendritic cells. The goal of this experiment is to more clearly understand 

the cellular immune response elicited by different treatment groups of coatings and 

concentrations. During the preliminary treatment steps, dendritic cells are treated with three 

different conditions of nanoparticle groups: bare, serum-coated, and polyethylene glycol (PEG) 

coated. The PEG groups contain PEG-2K (short chain PEG) and PEG-5K (long chain PEG) 

variations. Each of these treatments are administered at concentrations of 0.1 pM, 1.0 pM, and 10 
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pM, for a total of twelve treatment groups. Following treatment by these groups, the cytokine 

and chemokine release response can be characterized via Luminex analysis (Millipore). This is 

done in order to study the levels of the pro- and anti-inflammatory cytokines IL-1β, IL-1Ra, 

MIP-1α, TNF-α, and IL-10 present in the dendritic cell response. These cytokines are detectable 

upon cell contact with biomaterials and indicate the dendritic cell phenotype that is being 

expressed. Ultimately, these assays will help determine how the immune system responds to gold 

nanoparticles and will inform nanoparticle design criteria for immunotherapeutic application in 

patients. Additionally, secretory profiles of dendritic cells treated with various modifications, 

such as thiolation and PEGylation, as well as within various hydrogel weight percentages, will be 

presented. 
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Literature Review 

The immune system response to a pathogen is twofold, including both the innate and 

adaptive immune responses. The two aspects of response work in conjunction with one another 

but differ in their approach towards establishing immunity for the body. The innate response 

provides an immediate immune response, but it does not provide a tailored mechanism to the 

antigens being defended against. Examples of this include inflammation and non-specific cellular 

responses. In contrast, the adaptive immune response does not act immediately; instead, it takes 

several weeks to develop, but provides a tailored response to the antigens present. This response 

functions through T and B lymphocytes and retains memory of the response towards a specific 

antigen in order to elicit a quicker reaction upon subsequent exposure. Both of these responses 

are mediated in the body through the dendritic cells of the immune system.9 

 Dendritic cells work to conduct both the innate and adaptive immune response in the 

body by activating T-cells.10 The dendritic cells function first as antigen-capturing cells, then as 

antigen-presenting cells, meaning they capture antigens through phagocytosis, perform internal 

processing, and then present the resulting peptide of the antigen on their cell surface. Dendritic 

cells are a product of monocytes, a type of differentiated cell from bone marrow.11 When an 

innate immune response is initiated, monocytes congregate at the site of inflammation and 

further develop into immature dendritic cells. Upon producing antigenic peptides after 

phagocytizing antigens and expressing them on their surface, the phenotype of the immature 

dendritic cell is changed to a mature dendritic cell.12  

 Nanoparticles are defined as particles ranging in size from 1-100nm; their characteristics 

vary broadly in size, shape, material, and coating. They are used in medicine to carry and deliver 

drugs to specific targets with a controlled release and specified targeting due to their low cell 
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toxicity. Within immunotherapy specifically, gold nanoparticles have shown to be promising for 

dendritic cell manipulation in order to augment the immune response. Gold nanoparticles are 

favorable in this application due to their inertness, solubility in water, and low toxicity in cells.13 

These nanoparticles can be used to heighten the activity of dendritic cells in stimulating specific 

T-cell responses, which has shown potential in developing strategies for vaccine, gene, and 

cancer therapies.14  

 However, some questions remain in regard to the potential cytotoxicity of the 

nanoparticles. As the characteristics of the gold nanoparticles are varied and administered to 

dendritic cells, the cells release corresponding cytokines and chemokines into the cell 

environment.15 Studies have shown that as particle size increases, efficiency of particle uptake by 

dendritic cells decreases. The nanoparticles must be optimized to balance the ability to carry 

what they are loaded with but cannot be too large to be eliminated before they have a chance to 

interact with dendritic cells.16 Small gold nanoparticles (diameter of 3 nm) have been shown to 

be noncytotoxic and nonimmunogenic, as the secretion of proinflammatory cytokines TNF-α and 

IL-1β were not observed.17 Another study showed results where smaller gold nanoparticles sizes, 

such as 0.8 nm, were associated with increased expression of proinflammatory cytokines IL-1, 

IL-6 and TNF-α, as well as higher cytotoxicity.18 Noncytotoxicity has been shown for dendritic 

cells with the use of gold nanoparticles of larger size (10 nm and 60 nm in diameter) even at high 

concentrations.18,19 

Additionally, the concentration of gold nanoparticles present also plays a role in uptake 

and cytotoxicity. Higher gold nanoparticle concentrations have shown to increase rates of 

toxicity to cells, so in addition to size and coating, the amount per volume of nanoparticle present 

must also be investigated and optimized for greatest uptake and minimal cell toxicity.20 This 
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occurs because with excess nanoparticles beyond what is effective, there is an increased chance 

of the nanoparticles creating nanopores within the cell that ultimately can engender interference 

with normal cellular function and damage the cell. The threshold at which gold nanoparticle 

concentrations with particular specifications in size or coating result in cytotoxicity is not 

established and needs further investigation. 

Finally, the coatings of nanoparticles can affect their uptake. Serum-coating the gold 

nanoparticles or attaching a long chain polymer, such as polyethylene glycol (PEG), has been 

shown to decrease phagocytic uptake of nanoparticles in order to increase their circulation time. 

This increases the efficacy of the nanoparticles in situations where their phagocytosis can cause 

insufficient exposure to the site being targeted.21,22 Conversely, coatings can be used to enhance 

phagocytosis, where the uptake of the gold nanoparticles increases their target efficiency. 

Coatings can also be used to induce a specific phenotype in the dendritic cell, resulting in either 

immature, mature, or tolerogenic cells, and consequently engineering a specific immune 

response. However, strong correlations between uptake and maturation as a result of surface 

chemistries have not yet been established. Variations in nanoparticle coating not only affords 

different chemical properties to nanoparticles – different densities of the same coating can 

additionally effect change in nanoparticle modulation. For example, one study used increasing 

PEG-coating densities with gold nanoparticles and found that macrophage uptake efficiency was 

high and serum-dependent at low PEG densities, while less efficient and serum-independent at 

high PEG densities.23 Additionally, selecting nanoparticle coatings has important implications in 

the formation of a gold nanoparticle-protein corona. This corona is a dynamic biopolymer layer 

serving as the first nano-bio interface, thus determining the interactions of gold nanoparticles 

with living cells.24 As many as sixty-nine plasma proteins are able to bind to the surface of a gold 
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nanoparticle,25,26 and these proteins largely pertain to the fate of a gold nanoparticle in the body 

through biodistribution, cellular uptake and clearance efficiency, as well as immunological 

properties. As shown by the literature, the cytokine and chemokine response from dendritic cells 

is not fully established, thus demonstrating the need for more studies to inform how particle 

coating, in addition to concentration, modulates cellular interactions. 

In this experiment, the supernatant will be analyzed once obtained from the filtration of 

cells from the initial culture using a filter plate. By understanding what comprises the 

supernatant resulting from nanoparticle application, researchers can better understand what exact 

response is being triggered within the dendritic cells and assess their potential risks. This study 

uses Luminex analysis to analyze the supernatant and characterize dendritic cell response by 

investigating the levels of the pro- and anti-inflammatory cytokines IL-1β, IL-1Ra, MIP-1α, 

TNF-α, IL-10, IFN-γ, IL-12p70, MCP-1, and RANTES. The goal is to more clearly elucidate the 

effect of gold nanoparticle coating and concentration on dendritic cell response, paving the way 

for gold nanoparticles’ optimization in immunotherapy. 

Biomaterials have additionally been shown to modulate dendritic cell viability and 

functionality.5 The potential of various materials to activate dendritic cells, as well as their 

mechanisms of maturation, is currently being researched.6,7 By elucidating the qualities and 

benefits of a biomaterial-based scaffold that can support the functionality and induced outcomes 

by transferred, antigen-specific, tolerogenic dendritic cells, this knowledge can be applied to 

dendritic cell therapies in humans. The relationships that govern hydrogel matrices and dendritic 

cell interactions can be used in directing the design of hydrogels to support dendritic cells. Using 

a murine model provides for an anatomically relevant and scalable design. The project uses a 

PEG-4MAL hydrogel which is functionalized with bioactive ligands as a delivery scaffold for 
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tolerized dendritic cells. This can be used to ameliorate experimental autoimmune 

encephalomyelitis (EAE), as well as diseases such as multiple sclerosis (MS). Dendritic cells 

which are treated with tolerizing agents and antigen result in antigen-specific 

immunosuppressive dendritic cells. This function by conditioning T cells towards tolerance. 

Cells delivered subcutaneously or intravenously incur unwanted effects and distribution, so in 

developing an injectable hydrogel scaffold, viability and localization of delivered dendritic cells 

can be improved.27,28 Secretory profiles of immature dendritic cells will be analyzed following a 

variety of treatment methods, as well as encapsulation within modified hydrogels. These serve to 

illustrate the effects on IL-10 expression following modification, as well as the impact caused on 

dendritic cells as a result of varying hydrogel stiffness. 
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Methods and Materials 

 This experiment is conducted through a Luminex assay in order to study the levels of the 

pro- and anti-inflammatory cytokines IL-1β, IL-1Ra, MIP-1α, TNF-α, and IL-10 present in the 

dendritic cell response. Initially, an assay must be conducted in order to obtain the linear range 

for the cytokines and chemokines to be investigated, which relates amount loaded to instrument 

fluorescent readout. This allows for the determination of the optimal concentrations that the 

supernatant should be diluted to for testing, so that ranges can be observed prior to saturation. 

After the linear range is identified, each treatment group (bare, serum-coated, PEG-2K coated, 

PEG-5K coated) can have an assay conducted at each concentration (0.1 pM, 1.0 pM, 10 pM). 

The cytokines specified are detectable upon cell contact with biomaterials and indicate the 

dendritic cell phenotype that is being expressed. 

 

Materials  

Necessary materials are included in Milliplex kit HCYTOMAG-60K. Materials that are 

required but not provided in Milliplex kit include reagents including Luminex sheath fluid or 

Luminex drive fluid as used for machine protocol. 

Reagents Supplied Volume Quantity 

Human Cytokine / Chemokine Standard lyophilized 1 vial 

Human Cytokine Quality Controls 1 and 2 lyophilized 2 vials 

Serum Matrix (Contains 0.08% Sodium Azide) lyophilized 1 vial (serum and plasma 
sample only) 

Set of one 96-Well Plates with 2 Sealers  1 plates 
2 sealers 

Assay Buffer 30 mL 1 bottle 

10X Wash Buffer 
Note: Contains 0.05% Proclin 

60mL 1 bottle 
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Cytokine Detection Antibodies 3.2 mL 1 bottle 

Streptavidin-Phycoerythrin 3.2 mL 1 bottle 

Bead Diluent 
(not provided with premixed panel) 

3.5 mL 1 bottle 

Mixing Bottle 
(not provided with premixed panel) 

             1 bottle 

 

For instrumentation, materials needed include the following: adjustable pipettes with tips 

capable of delivering 25 μL to 1000 μL, multichannel pipettes capable of delivering 5 μL to 50 

μL or 25 μL to 200 μL, reagent reservoirs, polypropylene microfuge tubes, absorbent pads, 

laboratory vortex mixer, sonicator, and titer plate shaker. Luminex 200, HTS (High Throughput 

Screening), FLEXMAP 3D®, or MAGPIX® with xPONENT® software by Luminex 

Corporation will also be used, as well as an automatic plate washer for magnetic beads or 

handheld magnetic separation block. 

Methods 

Results are read on MAGPIX software. Following sample collection of cells from initial 

murine or human cell culture done in lab, the cells are filtered out using a filter plate. 25 uL of 

supernatant from each of the below wells is then transferred. to each new corresponding sample 

well for cytokine assay (pictured below for reference). Mix supernatant well by vortexing and 

centrifuging prior to use in the assay to remove particulates. Following this, add a maximum of 

25 μL per well of neat or diluted serum. All samples must be stored in polypropylene tubes. Do 

not store samples in glass. 
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Figure 1. Plate layout of initial gold nanoparticle and dendritic cell treatments in 96-well plate. 
Gold nanoparticle concentrations of 0.1 pM, 1.0 pM, and 10 pM were added to dendritic cells in 
individual wells for all gold nanoparticle treatment groups (bare, serum-coated, PEG-2K coated, 
and PEG-5K coated). Antibody staining was added to three wells of six wells per treatment, and 
isotype staining was added to the others. Cells-background indicates untreated cells.  
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Figure 2. Plate layout for use in 
Luminex cytokine assay of 
uncoated, serum coated, and PEG 
5K coated nanoparticles. 
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Preparation of Reagents for Immunoassay 

In preparing the reagents for immune assay for individual bead vials, sonicate each 

antibody-bead vial for 30 seconds. Following this, vortex for 1 minute. Add 60 μL from each 

antibody bead vial (5 vials) to the mixing bottle and bring final volume to 3.0 mL with Bead 

Diluent by adding 2.7 mL. Vortex the mixed beads well using 5 cytokine antibody-immobilized 

beads – add 60 μL from each of the 5 bead sets to the mixing bottle. Then, add 2.7 mL Bead 

Diluent. To prepare quality controls, reconstitute Quality Control 1 and Quality Control 2 with 

250 μL deionized water. Invert the vial several times, vortex, and allow the vial to sit for 5-10 

minutes. Following this, transfer the controls to appropriately labeled polypropylene microfuge 

tubes 

To prepare wash buffers, bring the 10X Wash Buffer to room temperature. Mix to bring 

salts into solution, and dilute 60 mL to 10X Wash Buffer with 540 mL deionized water. 

Preparation of Human Cytokine Standard requires the following before use: reconstitution of the 

Human Cytokine Standard with 250 μL deionized water – this gives a 10,000 pg/mL 

concentration of standard for all analytes. Then invert the vial several times, vortex for 10 

seconds, and let stand for 5-10 minutes. Then transfer the standard to an appropriately labeled 

polypropylene microfuge tube and use as the 10,000 pg/mL standard. To prepare the working 

standards, label five polypropylene microfuge tubes 2,000, 400, 80, 16, and 3.2 pg/mL. Then add 

200 μL of Assay Buffer to each. Prepare serial dilutions by adding 50 μL of the 10,000 pg/mL 

reconstituted standard to the 2,000 pg/mL tube and mix well by vortexing. Transfer 50 μL of the 

2,000 pg/mL standard to the 400 pg/mL tube and mix well by vortexing. Transfer 50 μL of the 

400 pg/mL standard to the 80 pg/mL tube and mix well by vortexing. Transfer 50 μL of the 80 

pg/mL standard to 16 pg/mL tube and mix well by vortexing. Finally, transfer 50 μL of the 16 



 15 

pg/mL standard to the 3.2 pg/mL tube and mix well by vortexing. The 0 pg/mL standard 

(Background) will be Assay Buffer. 

 

Serial Dilutions Chart – adapted from Valeková et al.29: 

 

 

 

 

 

 

Standard Concentration (pg/ 
mL) 

Volume of Deionized Water to 
Add 

Volume of Standard to Add 

10,000 250 μL 0 

2,000 200 μL 50 μL of 10,000 pg/mL 

400 200 μL 50 μL of 2000 pg/mL 

80 200 μL 50 μL of 400 pg/mL 

16 200 μL 50 μL of 80 pg/mL 

3.2 200 μL 50 μL of 60 pg/mL 

 

Immunoassay Procedure 

Before beginning the assay, allow all reagents to warm to room temperature (20-25°C) 

before use in the assay. If using a filter plate, set the filter plate on a plate holder. To begin the 

assay, add 200 μL of Wash Buffer into each well of the plate. Seal and mix on a plate shaker for 

10 minutes at room temperature. Then, decant Wash Buffer and remove the residual amount 

from all wells by inverting the plate and tapping it smartly onto absorbent towels several times. 

Following this, add 25 μL of each Standard or Control into the appropriate wells. Assay Buffer 
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should be used for 0 pg/mL standard (Background). Then add 25 μL of Assay Buffer to the 

sample wells. Add 25 μL of appropriate matrix solution (from initial cell culture) to the 

background, standards, and control wells. Use proper control culture medium as the matrix 

solution. Then add 25 μL cell culture sample into the appropriate sample wells, vortex mixing 

bottle, and add 25μL beads to each well. Following this, seal the plate with a plate sealer and 

cover with foil. Incubate with agitation on a plate shaker overnight at 4°C or 2 hours at room 

temperature, preferably overnight. Gently remove well contents and wash plate two times by 

following directions in the plate washing section below. Allow to warm to room temperate and 

add 25 μL of Detection Antibodies into each well. Seal, cover with foil and incubate with 

agitation on a plate shaker for 1 hour at room temperature (20-25°C). Do not aspirate after 

incubation. Add 25 μL Streptavidin-Phycoerythrin to each well containing the 25 μL of 

Detection Antibodies. Seal, cover with foil and incubate with agitation on a plate shaker for 1 

hour at room temperature (20-25°C). Gently remove well contents and wash plate two times by 

following directions in the plate washing section below. Add 150 μL of Sheath Fluid to all wells 

and resuspend the beads on a plate shaker for 5 minutes. Run plate on Luminex 200, HTS (High 

Throughput Screening), FLEXMAP 3D® or MAGPIX® with xPONENT® software and save 

and analyze the Median Fluorescent Intensity (MFI) data using a 5-parameter logistic or spline 

curve-fitting method for calculating cytokine/chemokines concentrations in samples. For diluted 

samples, multiply the calculated concentration by the dilution factor. 

Plate Washing 

To wash the plates, use a solid plate with a handheld magnet. Rest the plate on the 

magnet for 60 seconds to allow complete settling of magnetic beads. Remove well contents by 

gently decanting the plate in an appropriate waste receptacle and gently tapping on absorbent 
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pads to remove residual liquid. Wash plate with 200 μL of Wash Buffer by removing plate from 

magnet. Add wash buffer, shake for 30 seconds, reattach to magnet, allow beads to settle for 60 

seconds, remove well contents as previously described after each wash twice, and repeat 

accordingly to assay procedure. 

Data Analysis 

Results of Luminex assays were analyzed and visually represented through the creation 

of heatmaps in MATLAB. This heatmaps were coded to provide a gradient scale of fold change 

in order to indicate lower expression, higher expression, or no change in expression of a given 

cytokine or chemokine. Values for controls (immature dendritic cells) were compared to 

treatment groups, such as mature, tolerogenic, PEG-4MAL-IL-10-treated, or hydrogel-modified 

dendritic cells. The ratio between the two was plotted on the heatmap. Sample MATLAB code is 

provided in the Addendum. 
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Results 

 The following contains results of cytokine and chemokine analysis assays conducted on 

murine dendritic cell supernatant samples following encapsulation in hydrogels. The supernatant 

was obtained from the initial cell culture conducted by other members of the lab after removing 

cells using a filter plate. Testing was then conducted on the remnants of the sample. Data was 

obtained from Luminex machine quantification and visual heatmap representations were coded 

using MATLAB. 

In this study, cytokine and chemokine expression in treated dendritic cells will be 

compared to that of immature dendritic cells, which serve as a baseline. Levels seen in immature 

dendritic cells will be used to determine whether a certain cytokine and chemokine has increased 

or decreased with a given treatment. The linear range is first obtained in order to determine the 

optimal concentration of supernatant to diluent across all cytokines being tested. Figures 3, 4, 

and 5 depicts how results are displayed in heatmaps using fold changes. “Fold change” is defined 

as the ratio of each individual cytokine or chemokine between immature dendritic cells and 

treated cells. 

Pro-inflammatory cytokines of interest included TNF-alpha, IL-1alpha, IL-1beta, IL-6, 

IL-12beta, IL-8, and IFN-gamma, and anti-inflammatory cytokines of interest included IL-4, IL-

5, and IL-10. Pro-inflammatory chemokines of interest included MCP-1. Additional cytokines of 

interest include: IL-1R α, MIP-1 α, IL-12p70, and RANTES. 

 

iDC = immature dendritic cells; tDC = tolerogenic dendritic cells; mDC = mature dendritic cell. 
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Figure 3 presents a controls fold change between immature dendritic cell cytokine and 

chemokine expression levels and those of experimental murine cells. These cells are compared to 

tolerogenic and mature dendritic cells in order to establish a baseline expression level for the 

cytokines and chemokines being observed. Mature dendritic cells expressed noticeably higher 

levels of inflammatory cytokines as compared to tolerogenic ones – exceptions to this include 

IL-4 and IL-10, both anti-inflammatory cytokines, as well as GM-CSF, a modulator of stem cells 

to differentiate cells involved in innate (non-specific) immune response.30 All fold changes for 

previously noted cytokines of interest were significantly different between mature dendritic cells 

and immature dendritic cells, with the exception of IL-4. 

 

Figure 3. Controls fold change between iDC levels and those of experimental murine cells: tDCs 
and mDCs. Untreated tDCs and mDCs are compared to iDC expression levels as a baseline. The 
scale of colors is indicated as per the following: blue (low change) to white (moderate change) to 

red (high change). The baseline for comparison is immature dendritic cell cytokine and 
chemokine expression. For all cytokines of interest except IL-4, all fold changes between mature 

dendritic cells and immature dendritic cells were significant with P < 0.05. 
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Figure 4 depicts the PEG-4MAL-IL-10 fold change between untreated iDC levels and 

those of experimental mouse cells. Immature dendritic cells are treated with one of the 

following: IL-10, thiolated IL-10 (S-IL-10), PEGylated and thiolated IL-10 (PEG IL-10), or PEG 

(polymer without IL-10). 

 
 

Figure 4. PEG-4MAL-IL-10 fold change between untreated iDC levels and those of 
experimental mouse cells: iDCs treated with PEG and/or IL-10. The expression of IL-10 in the 
DCs were observed after being modified in different ways (S-IL10: IL-10 with thiolation, PEG 

IL-10: PEGylated and thiolated, PEG: polymer without IL-10). 
 
 Finally, Figure 5 presents results of observing dendritic cells encapsulated in hydrogels 

with varying polymer densities. This sought to understand the gel stiffness within the scaffold 

and its corresponding effect on dendritic cells. Phenotype, secreted molecules, and morphology 

of the cells were further pursued, but only for 3.5 weight percent and 4.5 weight percent only. 

This was due to the fact that dendritic cells in scaffolds of higher weight percentages (6.0% and 

10.0%) died due to gel being too stiff. 
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Figure 5. Hydrogel wt% fold change between untreated iDC levels and those of experimental 
murine cells: iDCs in 3.5, 4.5, 6.0, or 10.0 wt% hydrogel. DCs encapsulated in hydrogels with 
varying polymer densities were observed to see the effect of gel stiffness in scaffold on DCs. 
Phenotype, secreted molecules, and morphology of the cells were then investigated. Only 3.5 

wt% and 4.5 wt% were viable as cells in higher wt% (6.0% and 10.0%) died due to gel being too 
stiff. 

 
In investigating the fold change between controls, many of the cytokine and chemokine 

expressions associated with inflammation were highly expressed in mature dendritic cells, while 

those involved with anti-inflammatory responses were not. Tolerogenic dendritic cells, 

conversely, did not present high inflammatory cytokine levels. A particularly high expression of 

IL-10, an anti-inflammatory cytokine, was observed in tDCUnk2, which is representative of the 

tolerogenic phenotype. In regard to the PEG-4MAL-IL-10 results, a notable increase in 

expression occurred in in IL-10 for the iDC + PEG-IL-10 sample. The expression of IL-10, an 

anti-inflammatory cytokine, was increased across all four modifications tested, but particularly 
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so with PEGylation and thiolation, which suggests this may be the most potent modification to 

elicit IL-10 expression. 

In the hydrogel weight percent analysis, IL-4 expression was consistently elevated, across 

all weight percent samples with the exception of iDC in 4.5 weight percent gel B, which 

exhibited a slightly less extreme increase. IL-4 is a critical cytokine involved in anti-

inflammatory responses as well as the promotion of the alternative activation of macrophages 

into M2 cells. Additionally, there was a significant increase in IL-12p70 expression within the 

iDC in 10.0 wt% gel C sample, and a slight increase in IL-3 within the iDC in 3.5 wt% gel C 

sample. IL-12p70 is involved in the regulation of T cell responses, while IL-3 stimulates 

multipotential hematopoietic progenitors, as well as lineage-committed cells.31 

While the assay gives a comprehensive visualization of cytokine expression via 

quantification of their secretory profiles, specific pro-inflammatory cytokines of interest included 

TNF-alpha, IL-1alpha, IL-1beta, IL-6, IL-12beta, IL-8, and IFN-gamma, and anti-inflammatory 

cytokines of interest included IL-4, IL-5, and IL-10. Pro-inflammatory chemokines of interest 

included MCP-1. Additional cytokines of interest include: IL-1R α, MIP-1 α, IL-12p70, and 

RANTES. Subsequent runs of this experiment should continue to focus on the secretion of these 

biomolecules. 
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Discussion 

With some notable exceptions, the majority of cytokine and chemokine expressions in 

experimental cell groups compared to baseline immature dendritic cell expression levels were 

highly indicative of whether the dendritic cell was of a mature or tolerogenic phenotype. A less 

extreme response for the tolerogenic dendritic cells may likely be due to the fact that there is no 

antigen present to truly induce the immune response, so the mature dendritic cells are not 

secreting significant amounts of cytokines and chemokines that would require an anti-

inflammatory response to counterbalance it. 

With regard to the PEG-4MAL-IL-10 fold change between untreated immature dendritic 

cell levels and those of experimental mouse cells, it seems possible that PEGylation and 

thiolation confer a synergistic effect on IL-10 expression, or simply that PEGylation is more 

efficacious than thiolation. Further experimentation would need to be conducted with PEGylated 

IL-10 alone in order to distinguish the effects of each modification. 

The remaining samples generally exhibited slight increases in cytokine and chemokine 

expression, including those specified earlier as cytokines and chemokines of interest, with 

greater degrees of increase observed with higher weight percent hydrogel. The significant and 

consistent increase of IL-4 in the hydrogel weight percent analysis across all samples raises an 

interesting avenue of whether the hydrogel qualities potentially contributes towards anti-

inflammatory activity. This may be a result of the material comprising the hydrogel. M2 

macrophages, promoted by IL-4, encourage vessel maturation and tissue regeneration, 

suggesting that the hydrogel does encourage dendritic cell viability, functionality, and 

compatibility. This is additionally supported due to being coupled with low expression seen in 

pro-inflammatory cytokines. That being said however, cells in scaffolds of higher weight 
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percentages (6.0% and 10%) died, indicating these scaffolds’ weight were not compatible with 

the growth of dendritic cells. 

Despite the trends these data show, these results are preliminary – replications of these 

experiments and assays will need to be completed in order to confirm the cytokine and 

chemokine response. Additional experimental runs with murine samples can aid in establishing 

statistical significance for the results presented. Solidifying the dendritic cell response can aid to 

inform development and design of hydrogels for maximal dendritic cell compatibility, viability, 

and functionalization. Due to unforeseen difficulties with human dendritic cell culture, gold 

nanoparticle analysis was unable to be completed for inclusion in this thesis. These assays will 

need to be completed again upon achievement of AuNP treatment on human dendritic cells. The 

continuation of this work is paramount in order to identify how AuNPs can be developed to elicit 

an optimal or desired response from dendritic cells. 
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Conclusion and Future Work 

These results indicate that generally, IL-10 expression increased with the four tested IL-

10 modification. Similar results of increased cytokine and chemokine secretion overall were 

observed with a corresponding increase in the weight percent of hydrogel, with limits of 6.0%, as 

cell death was observed at 6.0% and 10.0%. However, further research should be done to see 

whether the observed cytokine and chemokine response is consistent upon treatment of varying 

hydrogel modifications. By optimizing the hydrogel to function with dendritic cells, this 

technology can be leveraged to improve the viability, cellular response, and localization of 

dendritic cells that are delivered to patients for the use of amelioration of autoimmune disease 

such as EAE or MS. 

Determining the specific cytokine and chemokine response of dendritic cells, as well as 

what resulting cell phenotype is expressed, are critical to nanoparticle design and application 

within immunotherapy. Additionally, a wider range of nanoparticle concentrations can be 

investigated to fully establish cytotoxicity thresholds. Finally, the methods and data analysis used 

in this study will need to be applied to the AuNP treated-dendritic cells in order to ascertain their 

optimal design. By optimizing AuNP characteristics and conducting studies to continue assessing 

cytotoxicity and internalization of AuNPs in dendritic cells, greater clarity of the effect of 

AuNPs on the body can be obtained. This information can then subsequently be used in 

engineering and optimizing AuNP treatments for immunotherapeutic application and the creation 

of personalized immune responses. In doing so, the ultimate application of these technologies 

towards personalized medicine can work towards being achieved.  
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Addendum 

 

Figure A1. Sample MATLAB code used in data analysis. 

 


