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Contrast in four-beam-interference lithography
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Specific configurations of four linearly polarized, monochromatic plane waves have previously been shown to
be capable of producing interference patterns exhibiting the symmetries inherent in all 14 Bravais lattices.
We present (1) the range of possible absolute contrasts, (2) the conditions for unity absolute contrast, and (3)
the types of interference patterns possible for configurations of four beams interference that satisfy the uni-
form contrast condition. Results are presented for three Bravais lattice structures: Base- and face-centered
cubic and simple cubic. © 2008 Optical Society of America
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There exists a number of different fabrication tech-
niques for producing photonic crystal structures
[1–4]. While many of these are capable of fabricating
two-dimensional periodic structures, fabrication of
three-dimensional structures can be difficult, if not
impossible, using these techniques. Multibeam inter-
ference, on the other hand, offers a lithographic solu-
tion for the fabrication of three-dimensional periodic
structures. Multibeam interference has been shown
to produce all of the two- and three-dimensional
Bravais lattices and nine of the 17 plane group sym-
metries [5–7]. There have also been two uniform con-
trast conditions defined for three-beam interference
[7,8] and one uniform contrast condition for four-
beam interference [9]. While a complete description
of contrast and crystallography has been given for
three-beam interference [7], a complete discussion of
the range of possible contrasts, conditions for unity
absolute contrast, and the types of interference
patterns possible for four-beam interference have not
been given. The present work provides these.

For the interference of N linearly polarized mono-
chromatic plane waves, the time-average intensity
distribution can be expressed as
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with the constant intensity term, interference coeffi-
cient, and efficiency factor given by
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2
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2, Vij =
EiEjeij
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, eij = êi · êj, �2�

where Ei, êi, ki, and �i are the maximum electric
field amplitude, polarization vector, wave vector, and
initial phase, respectively, of the ith plane wave.
Proper selection of ki’s in four-beam interference has
been shown to produce all 14 Bravais lattices [5]. The
quality of an interference pattern can be improved by
satisfying the uniform contrast condition [9]. This
can be achieved by choosing the individual plane
wave properties such that the interference coeffi-
cients in Eq. (1) are equivalent, that is, Vij=Vkl. For

four-beam interference the constraints on the plane-
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wave properties that result are [9]
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When these constraints for uniform contrast are met
the interference term, Vij, can be expressed as [9]

Vij = V =
2e12e13e23
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Absolute contrast, Vabs, is a function of the intensity
extrema in an intensity distribution and is defined as

Vabs =
Imax − Imin

Imax + Imin
, �6�

where Imax and Imin are the maximum and minimum
intensities, respectively. When the above-mentioned
uniform contrast condition is satisfied, the absolute
contrast is related to the interference coefficient,
V, by

Vabs = � 4

V−1 + 2� . �7�

When this uniform contrast condition is satisfied, the
interference coefficient can range from −1 / 6 �V
� 1 / 2 (corresponding to the range of absolute con-
trast 0�Vabs�1). The sign of V distinguishes be-
tween two fundamentally different types of interfer-
ence patterns. When solutions are found such that
V�0, the intensity maxima in Eq. (6) are located at
all lattice points. Consequently if V�0, the intensity
minima in Eq. (6) is located at all lattice points. It
should be noted that the functional form of Eq. (1) is
identical for a configuration of recording wave vectors
regardless of V. Given that the uniform contrast con-
dition has been satisfied, solutions will have identical
isointensity contours (differing only in the corre-
sponding intensity values) for all possible values of V.

If �i=0, lattice points are defined at the origin

�r=0� and all equivalent points in the three-
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dimensional periodic interference pattern. In gen-
eral, the lattice points are defined at

P =
g12�G13 � G14� + g13�G14 � G12� + g14�G12 � G13�

G12 · �G13 � G14�
,

�8�

where gij=�i−�j and Gij=ki−kj and all equivalent
points in the three-dimensional periodic interference
pattern.

Solutions that result in an interference coefficient
of V= 1 / 2 or −1 / 6 will exhibit unity absolute con-
trast (Vabs=1, Imin=0). Using a constrained nonlinear
optimization algorithm, solutions of Eq. (5) that re-
sult in unity absolute contrast [subject to the nonlin-
ear constraints in Eq. (3)] can be found. Two sets of
solutions result. The first solution is expressed as
eij= ±1. This solution describes an impractical con-
figuration for four-beam interference in which all re-
cording wave vectors are coplanar. In fact, it results
in periodicity in only two dimensions. The second so-
lution is expressed as eij= ± 1 / 3. This solution de-
scribes a situation in which the polarization vectors,
êi, define the vertices of a regular tetrahedron. This

Table 1. Optimized Parameters for Lattic

Lattice ê1 ê2

Face-centered cubic � 0.40825
−0.81650
0.40825 � � 0.54551

−0.83608
0.05811 �

Body-centered cubic � 0.13099
−0.76344
0.63246 � �0.70711

0.70711
0 �

Simple cubic �−0.13099
−0.63246
0.76344 � �0.70711

0
0.70711 �

Table 2. Optimized Parameters for Lattic

Lattice ê1 ê2

Face-centered cubic �0.40825
−0.8165
0.40825 � �−0.76069

−0.59022
0.27018 �

Body-centered cubic �−0.78868
0.57735
0.21132 � � 0.21132

−0.57735
0.78868 �

Simple cubic �−0.78868
0.57735
0.21132 � � 0.21132

−0.57735
0.78868 �
solution, while practical, cannot always be achieved
for general four-beam interference. However, configu-
rations of wave vectors that define both body-center
and simple cubic lattices can satisfy this second solu-
tion and achieve unity absolute contrast �Vabs=1�
with an interference coefficient of V=−1 / 6. For the
general case, a constrained nonlinear optimization
that maximizes absolute contrast must be performed
[9].

In this Letter, results are presented for three
three-dimensional lattice structures: Face- and body-
centered cubic and simple cubic. A face-centered
cubic lattice can be defined by four-beam inter-
ference by choosing the four recording wave vectors
as k1=k0�1/3�3��3 3 3	, k2=k0�1/3�3��1 1 5	,
k3=k0�1/3�3��5 1 1	, and k4=k0�1/3�3��1 5 1	. Two
configurations of polarization vectors are found to
maximize absolute contrast for the two fundamen-
tally different types of interference patterns. These
solutions are summarized in Tables 1 and 2. Addi-
tionally, these solutions are simulated in Fig. 1(a). In
this and subsequent figures solutions are illustrated
as a simulated exposure in a negative photoresist
material. Isointensity contours are drawn encom-
passing volumes of material experiencing intensities
greater than some arbitrary intensity threshold.

aximizing Absolute Contrast with V�0

ê3 ê4 V Vabs

� 0.05811
−0.83608
0.54551 � � 0.68041

−0.27217
0.68041 � 0.37189 0.85307

�0.70711
0.70711

0 � �−0.13099
0.76344
0.63246 � 1/6 1/2

�−0.13099
0.63246
0.76344 � �0.70711

0
0.70711 � 1/6 1/2

aximizing Absolute Contrast with V�0

ê3 ê4 V Vabs

−0.27018
0.59022
0.76069 � � 0.68041

−0.27217
0.68041 � −0.05750 0.25986

−0.78868
−0.57735
0.21132 � �0.21132

0.57735
0.78868 � −1/6 1.0

−0.78868
−0.57735
0.21132 � �0.21132

0.57735
0.78868 � −1/6 1.0
es M
es M

�
�
�
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A body-centered cubic lattice can be defined by
four-beam interference by choosing the four
recording wave vectors as k1=k0�1/�3��1 1 1	,
k2=k0�1/�3��1 −1 −1	, k3=k0�1/�3��−1 1 −1	, and
k4=k0�1/�3��−1 −1 1	. Two configurations of polar-
ization vectors are found as to maximize absolute
contrast for the two fundamentally different types of
interference patterns. These solutions are summa-
rized in Tables 1 and 2. Additionally, these solutions
are simulated in Fig. 1(b).

A simple cubic lattice can be defined by four-beam
interference by choosing the four recording wave
vectors as k =k �1/�3��1 1 1	, k =k �1/�3��−1 1 1	,

Fig. 1. (Color online) Four-beam interference resulting in
(a) face-centered, (b) body-centered, and (c) simple cubic
lattices. Isocontours are drawn to encompass volumes of
material experiencing relatively high intensities. Solutions
resulting in V�0 with intensity maxima (left) and in
V�0 with intensity minima (right) located at lattice
points. Optimized parameters for these solutions are
summarized in Tables 1 and 2.
1 0 2 0
k3=k0�1/�3��1 −1 1	, and k4=k0�1/�3��1 1 −1	. Two
configurations of polarization vectors are found as to
maximize absolute contrast for the two fundamen-
tally different types of interference patterns. These
solutions are summarized in Tables 1 and 2. Addi-
tionally, these solutions are simulated in Fig. 1(c).

Of the three simulated configurations of wave vec-
tors, only those that produce body-centered and
simple cubic lattices can result in unity absolute con-
trast �Vabs=1�. Once more, this only occurs for solu-
tions with V=−1 / 6 such that intensity minima are
located at lattice points. In these two cases, a higher
absolute contrast is achieved by maximizing contrast
for V�0. However, when defining a face-centered cu-
bic lattice, maximizing contrast for V�0 produces a
higher absolute contrast. Similar to light- and dark-
field masks in conventional lithography, these two
fundamentally different interference patterns pro-
vide designers two complementary intensity distribu-
tions. Exposure and development in a positive photo-
resist using a configuration corresponding to one of
the types of interference patterns will produce an
identical structure resulting from using a negative
photoresist and the other type of interference pattern
(with an appropriately adjusted exposure). Thus, de-
pending upon process parameters, an appropriate
type of interference pattern can be chosen that best
suits the designer’s needs.

This work was performed as part of the Intercon-
nect Focus Center research program and was
supported by the Microelectronics Advanced
Research Corporation (MARCO) and the Defense
Advanced Research Projects Agency (DARPA).
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