
Hierarchical Optimization of Digital CMOS
Circuits for Power, Performance and Reliability

A Dissertation
Presented to

The Academic Faculty

By

Yuvraj Singh Dhillon

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in Electrical and Computer Engineering

Georgia Institute of Technology
May, 2005

Copyright © 2005 by Yuvraj Singh Dhillon

Hierarchical Optimization of Digital CMOS
Circuits for Power, Performance and Reliability

Approved by:

Dr. Abhijit Chatterjee, Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

 Dr. Thomas G. Habetler
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Jeffrey A. Davis
School of Electrical and Computer
Engineering
Georgia Institute of Technology

 Dr. Adit D. Singh
School of Electrical Engineering
Auburn University

Dr. D. Scott Wills
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: April 15, 2005

This dissertation is dedicated to my parents, Jaspal and Rajwant Dhillon, my
sister, Monica and my wife, Puneet

 iv

Acknowledgements

I am grateful to my advisor, Dr. Abhijit Chatterjee, for his support and guidance

throughout my graduate career. He continuously motivated me to strive for my best and

this helped me to improve the quality of my dissertation. I am thankful to Dr. Adit Singh

for his keen interest in my research and his insightful comments/suggestions that helped

me out of various dead-ends.

I thank Dr. Jeff Davis and Dr. Scott Wills for their suggestions during my

proposal examination and afterwards that helped me to improve the work. I would like to

thank Dr. Sean Lee for his informative and lively discussions about computer

architecture, the “world” outside academia and the politics of conferences.

Thanks to Dr. Smaragdakis, Dr. Linda Wills, Dr. Doug Blough and Dr. Shomu

Banerjee for their excellent teaching, which made taking courses so enjoyable.

 My colleague, Utku Diril, has been an invaluable friend throughout my studies at

Georgia Tech. He cheered me out of innumerable research lows and his cheerful spirits

motivated me to keep striving for my goal.

 I want to thank all my lab-mates for their friendship. They made my research life

so much less tedious by their jokes, laughter and moral support.

 I want to thank my parents, my sister and my wife for all the love and support

they have provided me. I have reached up to this step only because of their blessings and

their belief in me.

 Finally, I want to thank God Almighty for always watching over me and guiding

me in the right direction in my darkest hours.

 v

Table of Contents

Acknowledgements iv

List of Tables vii

List of Figures viii

Glossary x

Summary xi

Chapter I - Introduction 1

1.1. Motivation 1
1.2. Organization of Thesis 5

Chapter II - Survey of Low-Power, Reliable CMOS Circuit Optimization
Techniques 7

2.1. Introduction 7
2.2. Low Power Structural/Behavioral Design Techniques 8
2.3. Low Power Logic Design Techniques 9
2.4. Soft-Error Tolerant Design Techniques 14
2.5. Research Categorization and Comparison 16

Chapter III - Delay-Assignment-Variation (DAV) Based Optimization 18

3.1 Introduction 18
3.2 Topology Matrix Representation of Circuit Netlist 18
3.3 Delay Assignment Variation based Optimization 24

Chapter IV - Module Level Power Optimization 27

4.1. Introduction 27
4.2. Mathematical Condition for Minimum Energy Consumption at the Module

Level 28
4.3. Procedure for obtaining optimal values of supply and threshold voltages 34
4.4. Clustering heuristic for limited number of supply and threshold voltages 36
4.5. Experimental results 39
4.6. Conclusion 48

Chapter V - Gate Level Power Optimization 49

5.1 Introduction 49
5.2 Delay, Energy, Output Ramp and Input Capacitance Modeling 50
5.3 Delay Assignment Variation (DAV) based Gate Level Power Optimization 53
5.4 Hierarchical Application of DAV based optimization 58
5.5 Analysis of Optimization Complexity 64
5.6 Implementation and Results 68
5.7 Conclusion 79

 vi

Chapter VI - Gate Level Soft-Error Optimization 80

6.1 Introduction 80
6.2 Glitch tolerance characteristics of individual gates 82
6.3 Circuit soft-error tolerance analysis 86

6.3.1 Logical masking 88
6.3.2 Electrical masking 89
6.3.3 Latching-window masking 91

6.4 Circuit soft-error tolerance optimization 93
6.5 Experimental results 95
6.6 Conclusion 99

Chapter VII - Conclusions and Future Research 100

7.1. Summary of Research Contributions 100
7.2. Future Directions 102

Appendix A - Topological Sort of Directed Acyclic Graphs 106

Appendix B - Power Aware Zero Slack Algorithm 107

References 109

 vii

List of Tables

4.1. Optimization results for Wallace tree multiplier 42

4.2. Optimization Results 46

5.1. Optimization Results (min-cut partitioning) 76

5.2. Circuit Statistics (min-cut partitioning) 77

5.3. Circuit Statistics (topological partitioning) 77

5.4. Optimization Results (topological partitioning) 78

6.1. Optimization Results 96

6.2. Circuit Statistics 97

 viii

List of Figures

1.1. Scaling trends of transistor performance and sub-threshold leakage
current

2

1.2. Future soft-error trends for memories, latches, and logic with
different pipeline depths

3

3.1. An example circuit with 5 gates and 4 paths (N=5, P=4) 18

3.2. Algorithm for computing the reduced topology matrix, Tr 21

3.3. An example circuit with 4 gates and 4 paths (N=4, P=4) 23

4.1. An example combinational circuit with 5 modules and 4 paths
(N=5, P=4)

29

4.2. Algorithm for minimum energy consumption 37

4.3. Algorithm for clustering 40

4.4. Wallace tree multiplier and associated T matrix 42

4.5. Energy consumption of benchmark circuits as a percentage of the
baseline energy consumption when the input switching activity is
0.01

44

4.6. Percent energy savings with unlimited VDDs and Vths for different
input switching activities

45

4.7. Percent energy savings with two VDDs and one Vth for different
input switching activities

45

5.1. Variables for delay, energy, output ramp and input capacitance
modeling

52

5.2. An example circuit with 8 gates and 4 paths (N=8, P=4). 53

5.3. Procedure for matching delays of gates to gate sizes, VDDs and Vths 55

5.4. Example combinational circuit partitioned into 2 sub-circuits 59

5.5. Pictorial representation of hierarchical DAV based optimization 67

5.6. Plot of (K2+N2/K) versus K 67

 ix

5.7. Plot of (2K2+N2/K3) versus K 68

5.8. Comparison of EDP savings and optimization time reduction
between hierarchy 1 and hierarchy 2

74

5.9. Plot of optimization times for ICSAS benchmark circuits (at
hierarchy 1) versus N4/3(N+E)

75

5.10. Plot of optimization times for ICSAS benchmark circuits (at
hierarchy 2) versus N4/5(N+E)

75

6.1. Input and output signals for different gate delays 83

6.2. Glitch generation characteristics for an inverter for an injected
charge of 16fC

84

6.3. Glitch propagation characteristics of an inverter for an input glitch
of duration 50ps

85

6.4. Unreliability values obtained by SPICE and ASERTA for nodes in
c432

92

6.5. Example combinational circuit partitioned into 2 sub-circuits 94

6.6. Comparison of methods (Cap+DAV), (DAV) and (Cap) 98

7.1. Representation for simultaneous gate and wire sizing 104

A.1. Algorithm for obtaining topological numbering of nodes in a DAG 106

B.1. Algorithm for computing slacks of nodes in a DAG 108

B.2. Algorithm for removing slacks of nodes in a DAG in a power-
aware manner

108

 x

Glossary

BJT Bi-polar junction transistor

CAD Computer-aided design

CED Concurrent error detection

CMOS Complementary metal oxide semi-conductor

DAG Directed acyclic graph

DSM Deep sub-micron

ECC Error correcting codes

EDP Energy-delay product

IC Integrated circuit

MOSFET Metal oxide semi-conductor field effect transistor

PI Primary input

PO Primary output

SER Soft-error rate

SPICE General-purpose circuit simulation program

SRAM Static random access memory

VDD Supply voltage

V th Threshold voltage

ZSA Zero-slack algorithm

 xi

Summary

 Power consumption and soft-error tolerance have become major constraints in the

design of DSM CMOS circuits. With continued technology scaling, the impact of these

parameters is expected to gain in significance. Furthermore, the design complexity

continues to increase rapidly due to the tremendous increase in number of components

(gates/transistors) on an IC every technology generation. This research describes an

efficient and general CAD framework for the optimization of critical circuit

characteristics such as power consumption and soft-error tolerance under delay

constraints with supply/threshold voltages and/or gate sizes as variables.

A general technique called Delay-Assignment-Variation (DAV) based

optimization was formulated for the delay-constrained optimization of directed acyclic

graphs. Exact mathematical conditions on the supply and threshold voltages of circuit

modules were developed that lead to minimum overall dynamic and static power

consumption of the circuit under delay constraints. A DAV search based method was

used to obtain the optimal supply and threshold voltages that minimized power

consumption.

To handle the complexity of design of reliable, low-power circuits at the gate

level, a hierarchical application of DAV based optimization was explored. The

effectiveness of the hierarchical approach in reducing circuit power and unreliability,

while being highly efficient is demonstrated. The usage of the technique for improving

upon already optimized designs is described. An accurate and efficient model for

analyzing the soft-error tolerance of CMOS circuits is also developed.

 1

Chapter I

Introduction

1.1. Motivation

 Energy consumption is recognized as one of the most important parameters in the

design of modern digital systems [1]. With the scaling of transistor feature sizes, more

and more transistors can be made to fit in a given area of die. Furthermore, the clock

frequencies also have been scaling up with every technology generation. The

combination of increased transistor densities and increased clock frequencies has been

causing the dynamic power consumption/dissipation density (W/cm2) to increase very

rapidly even though it has been slightly offset by the scaling down of supply voltages and

node capacitances [2]. The high power density causes problems with chip packaging,

increase in cooling costs, and reduced chip reliability. Even though the transistor counts

per unit area have been going up, designers are putting more and more functionality into

ICs. This causes die sizes to go up, for example, by 25% every micro-processor

generation. Combined with the increasing power density, the increase in area leads to a

roughly 75% increase in total chip dynamic power every technology generation, leading

to correspondingly increased energy expenses for consumers. The scaling of technology

features has also led to an increase in the leakage energy per transistor. This is because

threshold voltages have been reducing to compensate for the decrease in transistor

switching speeds due to reduced supply voltages. The reduction in threshold voltage

causes an exponential increase in the transistor leakage current [3] which means that the

 2

chip wastes a lot of energy even when in standby mode. This has crucial implications in

mobile applications which are battery-powered because the battery gets used up even

when the device is not being operated.

Figure 1.1 shows the trends for performance and leakage current of transistors in

three different kinds of applications viz. high-performance (HP), low-operating-power

(LOP) and low-standby-power (LSTP). The transistor performance is characterized by

the metric CV/I, where C is the gate input capacitance, V is the supply voltage and I is

the drive current. HP chips use low VDDs to reduce dynamic power and very low Vths to

maintain high-performance. They, therefore, have the highest leakage power. LOP chips

are typically for relatively high-performance mobile applications, such as notebook

computers, where the battery is likely to be high capacity and the focus is on reduced

operating power. LSTP chips are typically for lower performance consumer type

Figure 1.1. Scaling trends of transistor performance (1/τ) and sub-threshold
leakage current (Isd,leak) for high-performance (HP), low-operating-power (LOP),
and low-standby-power (LSTP) logic [1].

 3

applications, such as consumer cell-phones, with lower battery capacity and an emphasis

on the lowest possible static power dissipation, i.e., the lowest possible leakage current.

Another side-effect of technology scaling that is rapidly coming to the forefront is

the increased susceptibility of logic and memory circuits to soft-errors caused due to

alpha particles in the chip material and cosmic rays from space [1][4]. Because of the

reduced node capacitances, a smaller injected charge is needed to induce a glitch at a

circuit node. Thus, low-energy particle strikes that earlier had no effect on a circuit can

now cause soft-errors. Because of the reduced supply voltages, noise margins are

reduced, which also increases the susceptibility to particle strikes. Increasing clock

frequencies increase the probability of a soft-error getting latched. Furthermore, due to

super-pipelining, the number of gates in pipeline stages have been reducing, which in

Figure 1.2. Future soft-error trends for memories, latches, and logic with
different pipeline depths [4].

 4

turn reduces the electrical attenuation of glitches as they propagate to the latches.

Although the factors described above affect the power consumption and soft-error

tolerance of both memory and combinational elements, this work focuses on

combinational elements only. Figure 1.2 shows the predicted SER by technology and

pipeline depths. The x-axis plots the CMOS technology generation and the y-axis plots

the SER (in FIT or failures in time) for each element on a log scale. 1 FIT is equal to 1

error in 109 hours. The SER of a single SRAM cell declines gradually with decreasing

device size, while the SER of a latch stays relatively constant. The SER for a single logic

chain shows the most significant change – increasing over five orders of magnitude from

600nm to 50nm. The effect of super-pipelining is illustrated by the increasing SER for

logic circuits at higher pipeline depths (smaller clock period in FO4 delays) within each

technology generation.

The power consumption of a circuit is the product of the supply voltage and the

current drawn by the circuit from the supply voltage. Thus, the power consumption can

be reduced by reducing the supply voltage and/or the current drawn. The supply voltage

can only be reduced to a certain extent beyond which the circuit delay becomes

unacceptable. One way to reduce the current drawn from the supply voltage is by

developing technologies in which transistors need less current for operation. This is seen

in the shift of usage from BJT transistors to MOSFETs. Another way is by implementing

the circuit using a logic style that draws less current. An example is the usage of CMOS

logic style instead of the NMOS logic style to reduce the current drawn. The current

drawn can also be reduced by appropriate transistor level design of the circuit. Given the

technology, the logic style and the circuit design, there are various other optimization

 5

techniques proposed in literature to reduce the power consumption at the circuit level.

Since the major parameters that affect circuit power consumption are the supply

voltage(s) (VDD), threshold voltage(s) (Vth), circuit transistor sizes and switching activity;

most techniques try to optimize one or more of these parameters. Optimization is

necessary since changing the values of these parameters can adversely impact other

circuit characteristics such as delay and area. This work focuses on reducing the power

consumption of CMOS circuits by optimizing the supply voltages, threshold voltages and

gate sizes simultaneously.

The soft-error tolerance of a circuit also depends on the technology, the logic style

and the circuit design; and there have been various studies on the effect of these on the

soft-error tolerance. However, there has been little investigation into usage of circuit

parameter optimization to reduce soft-errors. It is stressed in [1] that such techniques will

be urgently needed for mitigation of soft-errors in logic in future technology generations.

This work shows that optimization can indeed significantly improve the attenuation of

particle-hit induced glitches through CMOS combinational circuits, thereby increasing

the soft-error tolerance.

Although circuit reliability refers to a host of issues besides soft-error tolerance

such as electro-migration, thermal reliability and noise reliability (cross-talk, ground

bounce, substrate coupling, etc); in this thesis, reliability of a circuit will be used to refer

solely to its soft-error tolerance.

1.2. Organization of Thesis

Chapter 2 surveys commonly used techniques for low power and reliable digital

design. Since this thesis focuses mainly on optimization at the logic level, technique at

 6

this level will be given more attention. Structural/behavioral level techniques will also be

described briefly for the sake of completeness. Chapter 3 first gives a new matrix

representation of the topology (T) of a directed acyclic graph (DAG) and then describes

the use of the new representation in the development of Delay-Assignment-Variation

(DAV) based optimization, a generic technique for delay-constrained optimization of

DAGs. In Chapter 4, the topology matrix representation, T, is used to derive exact

conditions on the supply and threshold voltages of circuit modules that yield minimum

energy consumption under delay constraints. Search based methods are then used to

obtain the values of these voltages and cluster them into small groups that can be used in

a practical implementation of the circuit. A metric is developed that can be used by

designers to determine the energy efficiency of their designs at the module level.

Experimental results of optimizing ISCAS’85 benchmarks are provided. In Chapter 5, the

usage of the topology matrix representation for optimization of gate level netlists is

explored. A hierarchical method is developed that is able to handle large netlists and

provides energy reductions beyond those possible by other methods given in literature.

Chapter 6 describes ASERTA (accurate soft-error tolerance analyzer), a tool for fast and

accurate estimation of the soft-error tolerance of combinational circuits. The tool yields

soft-error estimates close to those generated by SPICE in orders of magnitude less

computation time. The energy optimization method developed in Chapter 5 is then

extended to also optimize the soft-error tolerance of circuits. Finally, Chapter 7 concludes

by summarizing the main contributions of the thesis and providing suggestions for future

work. The applicability of the topology matrix representation for optimization at the

behavioral and software levels is also discussed.

 7

Chapter II

Survey of Low-Power, Reliable CMOS Circuit Optimization

Techniques

2.1. Introduction

This chapter surveys techniques described in literature for the design of low-

power and reliable CMOS circuits. Low power digital design requires optimization at all

levels of the design hierarchy viz. system, structural/behavioral, logic, circuit, and device

technology level. However, techniques at all levels basically boil down to a fundamental

set of concepts: energy dissipation is reduced by lowering the supply voltage, the voltage

swing, the physical capacitance, the switching activity or a combination of the above [5].

The application of these techniques may result in an increase in the delay and/or area of

the system. Since the focus in this work is on low power CAD techniques at the logic

level, design techniques at this level are surveyed in detail in Section 2.3. Design

techniques at the behavioral level are also described briefly in Section 2.2, as these can

impact the techniques at the logic level.

Soft-error tolerant design has mostly focused on memories and flip-flops since

these are highly vulnerable. However, the focus has recently started shifting to

combinational logic. In Section 2.4, traditional approaches to soft-error reduction at the

combinational level are described as well as emerging approaches. Finally, Section 2.5

categorizes the work in this thesis according to the techniques discussed and compares it

to previous approaches.

 8

2.2. Low Power Structural/Behavioral Design Techniques

 At the structural/behavioral level, a high-level specification of a problem is

mapped into the register-transfer level. The high-level specification is typically in the

form of a control-flow graph (CFG) and a data-flow graph (DFG) or a combination of the

two (CDFG). The register-transfer level specifies the number of different types of

hardware modules needed (allocation), what operations of the CDFG are mapped onto

what modules (assignment) and at what time-step what operation is carried out

(scheduling).

 Power reduction can be achieved with the use of behavioral transformations that

reduce the number of time-steps by increasing concurrency and through proper

scheduling. The reduced time-steps allow usage of a slower clock, enabling the use of

lower supply voltages. The quadratic reduction in power due to reduced supply voltage

can often offset the increase in capacitance due to more concurrency. A number of other

high-level transformations of the CDFG that reduce the number of operations, reduce the

switching activity, increase utilization of modules, etc have been described in [6].

 If a number of modules, with a range of power/delay costs, are available for

allocation, then an appropriate mapping of modules to operations can lead to lower power

consumption for the same performance. In [7], an Integer Linear Programming (ILP)

approach is used to generate low-power schedules using an optimal set of supply voltages

while accounting for level conversion costs. Approaches that takes up available slack in

schedules in a power-aware way are presented in [8][9].

 Dynamic Voltage Scaling (DVS) [10][11] is another approach that can yield large

power savings while meeting performance constraints. The basic idea is to run modules at

 9

a lower supply voltage (and hence lower speed) when the system is idle or has lower

computing requirements and to increase the supply voltage (increase speed) when there is

an increase in computing demand. The major issues in this technique are (i) whether to

have software or hardware control of voltage scaling, (ii) accurate prediction of when the

system is going to be idle and when it is going to be busy, (iii) the granularity of voltage

changes allowed, and (iv) the frequency of voltage changes allowed. DVS can also be

combined with dual/multiple threshold voltage usage to reduce leakage power as well. A

low-power RISC processor built using hardware-based DVS and variable-threshold

CMOS (VTCMOS) technology has been described in [12].

2.3. Low Power Logic Design Techniques

 The power consumption of any CMOS logic circuit is composed of dynamic

power, short-circuit power and leakage power. Although dynamic power has been the

predominant component of total power in older technologies, the leakage power

component is becoming significant due to the reduction of supply and threshold voltages

in current deep sub-micron (DSM) technologies. Short-circuit power is a small fraction of

the total power and its importance is not expected to grow with device scaling [13].

The dynamic power consumption of any CMOS logic circuit is given by:

20.5dyn CLK DD i
i

P f V Cι= ⋅ ⋅ ⋅ α ⋅∑ (2.1)

where fCLK is the clock frequency, VDD is the supply voltage, αi is the switching activity

of the ith node in the circuit, and Ci is the load capacitance of the ith node in the circuit.

Hence, dynamic power of the circuit can be reduced by reducing the supply voltage or by

reducing the product of the switching activity and load capacitance (the switched

 10

capacitance) at the circuit nodes. The clock frequency generally cannot be lowered as it is

determined by the timing constraints.

 Lowering the supply voltage is an effective mechanism for reducing dynamic

power because of the quadratic dependence in Equation 2.1. However, lowering the

supply voltage affects the delay of the logic gates. The delay of a CMOS logic gate is

given by:

()
DD

DD th

k C V
d

V V α

⋅ ⋅=
− (2.2)

where k is a constant depending on the logic function computed by the gate, C is the

output capacitance of the gate (includes the load capacitance as well as the parasitic

junction capacitance), VDD is the supply voltage, Vth is the threshold voltage, and α is the

velocity saturation coefficient [14] which is between 1.2 and 1.5 for short-channel

devices and 2 for long-channel devices. Thus, lowering VDD leads to an increase in the

delay.

 The most common approach uses two or more supply voltages for reducing

power. The gates on the critical path use the highest supply voltage to meet the timing

constraint. Gates on the non-critical paths that have available slack can use lower supply

voltages. There are two major problems facing this approach. The first is the need for

generating and routing multiple supply voltages to different parts of the chip and the

second is the need for level converters whenever a low supply voltage gate drives a high

supply voltage gate. Level converters are needed to prevent the flow of large static

current from supply to ground because of the PMOS transistor in a high supply voltage

gate not being completely turned off by the lower voltage output by a preceding low

 11

supply voltage gate. The first problem is limited by restricting the number of supply

voltages used to two [15][16]. The area, delay, and power impact of the level converters

is reduced by two ways. In Clustered Voltage Scaling (CVS) [17][18], it is tried to cluster

the gates that operate at the reduced supply voltage so that the number of interfacing

level-converters is reduced. The other approach [19] is to partition the gate level netlist

into modules and use multiple supply voltages at the module level. The area, delay and

energy penalties of the level converters are shown to be small compared to the modules.

The idea of taking up slack can be straight-forwardly extended to the usage of gate sizing

and dual/multiple VDDs simultaneously [20].

 The delay impact of reduced supply voltage can be decreased by reducing the

threshold voltage as can be seen from Equation 2.2. This trend is being increasingly

followed in current technologies where the supply and threshold voltages are lowered to

reduce dynamic power as well as not impact delay significantly. The reduction in

threshold voltage, however, has the adverse effect of increasing the leakage power per

transistor exponentially as can be seen from the leakage power equation below:

1
G S t h D S

T T

V V V

n v v
l e a k D D SP V I e e

−
⋅

= ⋅ ⋅ ⋅ −

 (2.3)

IS is a circuit and process dependent constant, n is the sub-threshold swing coefficient,

VDD is the supply voltage, Vth is the threshold voltage and vT is the thermal voltage.

 Leakage energy is expected to equal, if not overtake, dynamic energy as the major

component of total energy in future technology generations. To tackle this problem,

researchers have proposed using two [21][22] or more [23] threshold voltages. Similar to

the dual voltage approach, the idea here is to use the lower threshold voltage for gates on

 12

the critical paths so that they can operate at high speed albeit with high leakage energy

dissipation and to use the higher threshold voltage for gates on the non-critical paths so

that they operate with less leakage.

 The combined usage of dual/multiple VDDs and dual Vths has also been suggested

[24][25]. [25] gives an exact method that achieves the upper bound on energy savings

possible using multiple supply and threshold voltages. As a practical application of these

techniques, an ARM processor has been designed using Clustered Voltage Scaling (CVS)

and dual threshold voltages in 0.18µ CMOS technology [26]. The problem of circuit

sizing and dual threshold voltage assignment has been studied in [27]. Using multiple

gate sizes to achieve low-power while meeting timing constraints is a standard

optimization carried out by commercially available CAD tools and also studied in

literature [28][29][30].

 Methods have been proposed to simultaneously use multiple supply voltages,

multiple threshold voltages and multiple gate sizes to reduce power [31][32][33]. These

methods use heuristics to determine the supply voltage, threshold voltage and gate size to

be used for every gate in a circuit such that the total power is minimized while the delay

constraint is met. Rules of thumb for choosing the values of VDDs, Vths and sizes are

given in [34].

 The switched capacitance of a logic circuit is primarily dependent on the logic

function implemented by the circuit. However, different circuits implementing the same

function may have different internal switching activities and loads. For example, among

various adder implementations, a ripple carry adder has the least average number of logic

transitions while a conditional sum adder has the largest number, for the same set of

 13

computations [35]. For arbitrary logic functions, a power-aware cost function can be used

while doing logic minimization [36], resulting in lower switching activity.

 The switched capacitance may be reduced by pre-computation [37] in which a

subset of inputs is used to guess the final answer. If the guess is correct, the remaining

inputs are disabled so as to reduce switching activity. Another approach is to “gate” the

inputs to those logic blocks whose output will not be needed for the present computation,

thus reducing switching activity in the blocks. This approach can be very useful when

applied to clock signals [38], since clock signals are generally heavily loaded.

 Switching activity can also be optimized at the logic level by appropriate

technology decomposition and mapping. Technology decomposition is the problem of

converting a Boolean network into a network of primitive gates (e.g. NOT and 2-input

NAND) before mapping the network to a cell library. Even though the switched

capacitance of the final circuit is unknown at this stage, it is good to have a

decomposition that minimizes the sum of the switching activities. Technology mapping is

the step in which sets of primitive gates are mapped to gates in some target cell library.

The general approach is to hide nodes with high switching activity inside the gates where

they drive smaller load capacitances [39]. As a final step of technology mapping, power

aware signal to pin assignment can also reduce power by assigning high switching signals

to input pins with low input capacitance. The pin permutation for low power should take

place on non-critical gates as it generally interferes with pin permutation for minimum

delay.

 Path balancing is an approach which tries to minimize the level difference

between the inputs of nodes which drive highly capacitive nodes. This reduces the

 14

chances of the occurrence of glitches at the circuit inputs, which reduces the switching

activity at the nodes output. Balanced paths can be achieved by inserting buffers in the

shorter paths. The amount of power saved due to reduced glitching has to be weighed

against the increase in capacitance due to the buffers. Another approach is to use smaller

sized (and hence slower) gates on the shorter paths, which can reduce glitches as well as

power consumption in the smaller gates [29].

 In finite state machine synthesis, states with highest transition frequency to one

another can be given uni-distance codes so as to minimize switching activity [40].

However, such a state assignment might increase the activity in the combinational logic

of the state machine. This problem has been handled in [41].

 This section listed the major techniques for low-power logic design, but this list is

brief and far from complete. The interested reader is referred to [5][42][43][44][45] for

more details and more techniques.

2.4. Soft-Error Tolerant Design Techniques

Soft-errors, also called transient errors or single-event upsets (SEUs), are errors in

digital circuits that arise due to electrical noise or external radiation rather than design or

manufacturing defects. The existence of this phenomenon has been known for a very long

period and various studies have focused on protecting memory elements, particularly

caches and latches/flip-flops, from soft-errors. The focus on caches has been due to the

fact that caches occupy a large chunk of chip area and that the soft-error rate (SER)

primarily depends on the area exposed to the environment. Latches have been also

studied because they are very vulnerable to soft-errors; a bit flipped can have catastrophic

effects. Logic circuitry has been much less susceptible to soft-errors because of

 15

occupying less chip area and also because of three effects that mask soft-errors: (i)

Logical masking, which refers to the case when a soft-error is stopped form propagating

to a latch because of the path not being sensitized, (ii) Electrical Masking, which refers to

the case when a soft-error just attenuates away before reaching a latch and (iii) Latching-

window masking, which refers to the case when a soft-error arrives at a latch input when

the latch is not accepting data.

However, recent studies [4][46] have shown that the SER of combinational logic

is expected to rise with decreasing feature sizes, supply voltages and increasing clock

rates. Decreasing feature sizes and supply voltages reduce the critical charge needed to

cause a soft-error, thereby increasing the number of soft-errors generated and hence

possibly latched. Increasing clock rates reduce the time when latches/flip-flops are not

accepting data, thereby increasing the probability of errors getting latched. Furthermore,

reducing logic depths (due to super-pipelining) reduce the attenuation of glitches before

they reach the flip-flops. Therefore, it is becoming necessary to study techniques for

hardening combinational logic against soft-errors.

In view of the above, research interest has been increasing in the development of

techniques for reduction of soft-errors in combinational logic. The most common way has

been to use concurrent error detection (CED) logic [47][48] that monitors the output of a

logic block for the occurrence of an error. If an error is detected, the system can correct it

and keep operating. However, these methods add a lot of area and power overhead to

circuits. Furthermore, the speed of the circuit is also reduced because of the presence of

the extra checking circuit. Low-cost methods for increasing soft-error tolerance of

commodity applications using time-redundancy [49] and partial duplication [50] have

 16

been proposed. However, these methods still add additional delay overhead to the

original circuit due to the presence of the checker circuit. Also, these methods have

system level overheads (such as pipeline flushes) when an error is detected, either to

correct the error or to do the computation again.

Recently, there has been work in using gate sizing as a way to reduce soft-error

rates. The key insight is that the amplitude and width of the voltage pulse (glitch)

generated at a node due to a particle hit is a function of the capacitance at that node

[51][52]. Hence, it is appropriate to increase the sizes of the gates loading nodes more

susceptible to soft-errors. These techniques mostly use analytical models [53][54] to

simulate glitch propagation from the point where the particle hit to the primary output,

and then try to minimize some cost function that depends on gate sizes.

2.5. Research Categorization and Comparison

This research focuses on the problem of power and soft-error tolerance

optimization at the logic level, specifically by using gate sizing, dual/multiple VDDs and

dual/multiple Vths. The problem of determining the optimal VDDs and Vths that minimize

total energy consumption (dynamic + static) at the module level is first tackled. An

arbitrary interconnection of modules is assumed as compared to [24], which assumes

node and edge-disjoint paths. Furthermore, an exact condition on the supply and

threshold voltage values is developed as compared to [24], which uses rules of thumb.

The problem of determining optimal gate sizes, VDDs and Vths is tackled next.

While [28][32] stop after taking up the circuit slack using some heuristics, the approach

described in this thesis searches for the best way to take up slack. It is shown that taking

up slack using heuristics is atleast 12% off from the optimal. In [33], a mixed-integer-

 17

linear-programming (MILP) problem is solved repeatedly to determine the optimal circuit

parameters. This approach is prohibitively expensive in terms of CPU time. On the other

hand, this research develops a novel hierarchical optimization approach that can yield

near optimal circuit parameters with approximately O(N3) worst case optimization

complexity, where N is the problem size (number of gates).

Finally, this thesis presents a novel way to reduce soft-errors in combinational

logic. A unique approach that uses circuit sizing, multiple VDDs/Vths and output loading

to increase the attenuation of particle-hit induced glitches is developed. It is shown that

this approach performs better than an approach that just uses gate sizing and it also

performs better than an approach that uses higher supply voltage and output loading for

reducing soft-errors.

 18

Chapter III

Delay-Assignment-Variation (DAV) Based Optimization

3.1 Introduction

This chapter lays the mathematical groundwork for the rest of the thesis. A novel

representation of the circuit topology is first developed. The representation is then used to

develop a generic delay-constrained optimization framework. Although the discussion

focuses on circuit netlists, it is applicable to any directed acyclic graph (DAG) based

problem.

3.2 Topology Matrix Representation of Circuit Netlist

Consider a digital circuit of N gates and P paths from primary inputs to primary

outputs. A binary matrix, T, of P rows and N columns, representing the topology of the

circuit is constructed as follows:

Figure 3.1. An example circuit with 5 gates and 4 paths (N=5, P=4).

 19

j i 1

0

i f g a t e i l i e s o n P a t h j

o t h e r w i s e

Τ =

=
 (3.1)

For example, the T matrix corresponding to the circuit in Figure 3.1 (N=5, P=4) is:

1 0 1 1 0

1 0 1 0 1

0 1 1 1 0

0 1 1 0 1

Τ = (3.2)

If a path Pu is a subset of Pv (i.e. all gates on Pu also lie on Pv), then the row of T

corresponding to Pu (Rowu(T)) is removed from T to reduce unnecessary computation.

The delay of each path in the system is given by:

j iT d
ji P

f o r a l l j
∈

= ∑ (3.3)

We can represent the above equation in vector form as follows:

⋅T = Τ d (3.4)

where T = [T1 T2 . . . TP]
T is the vector of path delays and d = [d1 d2 . . . dN]T is the vector

of gate delays.

Equation 3.4 represents P simultaneous equations in N variables. The P equations

are known to be consistent since they were formed from the circuit topology. If P is

greater than N, then the equations must be dependent. Even if P is less than or equal to N,

the equations might be dependent. Hence, some equations can be dropped without losing

any information. Only R (= rank(T)) number of rows can actually be used to represent the

topology of the circuit. This is a significant benefit since P can be an exponential function

of N and the corresponding T matrix would be very large.

The reduced matrix Tr that has only R independent rows (R<=N) can be

computed using Gaussian-Elimination from the T matrix. However, it would still require

 20

computation of the P circuit paths and thus could have exponential complexity. Gaussian-

Elimination would also be computationally wasteful since information about the topology

of the circuit would not be used at all. A procedure for computing the reduced topology

matrix, Tr, in an efficient manner is outlined below. The circuit in Figure 3.1 is used as an

example.

 The T matrix for the circuit in Figure 3.1 represents the following delay

equations:

d1 + d3 + d4 = T1 (3.5a)

d1 + d3 + d5 = T2 (3.5b)

d2 + d3 + d4 = T4 (3.5c)

d2 + d3 + d5 = T5 (3.5d)

These can be rewritten as:

d1 + d3 + d4 = T1 (3.6a)

d1 + d3 + d5 = T2 (3.6b)

d2 – d1 = T4 - T1 (3.6c)

d2 – d1 = T5 – T2 (3.6d)

Equations 3.6c and 3.6d are equivalent and either of them can be dropped without losing

any information about the circuit topology. Hence, the 4 equations, Eqs. 3.5a-d, are

actually equivalent to the 3 equations, Eqs. 3.6a-c. The corresponding reduced topology

matrix, Tr, is:

3x5

1 0 1 1 0

1 0 1 0 1

-1 1 0 0 0

r
Τ = (3.7)

Note that row 3 of Tr is the difference of rows 1 and 3 of T.

 21

Figure 3.2. Algorithm for computing the reduced topology matrix, T r.

 22

The reduced set of equations can be obtained from the circuit by visiting all the

gates in Depth First Order, starting from primary inputs. The complete algorithm for

doing this is shown in Figure 3.2. The input to the algorithm is the Adjacency Matrix

representation of the circuit. The output of the algorithm is the reduced topology matrix,

Tr. The first step is to topologically sort the nodes. The procedure for this is described in

Appendix A. The procedure “Subtract” in the flowchart returns a “Difference” vector,

PathDiff, of length N constructed from its 2 arguments Path1 and Path2 as follows:

(i) Initialize PathDiff to all zeros.

(ii) For all nodes p1 in Path1, set PathDiff(p1) = 1.

(iii) For all nodes p2 in Path2, set PathDiff(p2) = PathDiff(p2) -1.

 Although Tr has less number of rows than T in general, it still might have more

rows than R (=rank(T)) number of rows. In the worst case, it might have the same

number of rows as T. For example, consider the circuit in Figure 3.3. The T and Tr

matrices corresponding to it are:

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

Τ = ,

1 0 1 0

1 0 0 1

-1 1 0 0

-1 1 0 0

r
Τ = (3.8)

rank(T) is 3 but the reduced matrix Tr computed by the algorithm in Figure 3.2 has more

rows than rank(T). However, the number of rows of Tr can still be bounded as shown in

the following lemma.

 23

Lemma 1: The number of rows of Tr is less than or equal to E, the number of edges in

the circuit.

Proof: As seen from Figure 3.2, a row is added to Tr only when (i) a node that has

already been visited is visited again or (ii) when the last node on a path is visited.

 (i) A node i (with Pi number of predecessors) that was first visited through predecessor j

can only be visited again through its remaining Pi -1 predecessors. This is because

predecessor j would have been marked visited previous to its visit to i and hence all other

(attempted) visits to i through j would stop at j. Similarly, i can only be visited by its

remaining predecessors at most once because they also would have been marked visited

previous to their visit to i. Hence, any node i can be visited again only Pi-1 times, leading

to addition of atmost Pi-1 rows to Tr. The total number of rows added is therefore

(1)i
V

P E N− = −∑ where E is the number of edges and N is the number of gates.

(ii) A row is added to Tr also when a primary output is first visited. The total number of

rows added is O, the number of primary outputs.

Hence, the total number of rows in Tr in the worst case is E-N+O which is less than or

equal to E. □

Figure 3.3. An example circuit with 4 gates and 4 paths (N=4, P=4).

 24

The Tr matrix thus has significantly reduced number of rows compared to the T

matrix. In the worst case of a completely connected graph, Tr has O(N2) rows whereas T

has O(2N) rows.

3.3 Delay Assignment Variation based Optimization

 Given the initial delay vector, i n i td , the initial path delay vector ,initT , can be

obtained as in Equation 3.4. Since it is advantageous to work with the reduced topology

matrix Tr instead of T, a path constraint vector,
c
initT , is constructed using Tr and used to

specify the circuit delay constraints.

⋅
c r
i n i t i n i tT = Τ d (3.9)

The delays of the gates in the circuit can be modified by adding a perturbation vector ∆

to initd such that ⋅rT ∆ = 0 . This choice of ∆ allows the new delay vector d to still

satisfy the initial path constraints as shown below:

()⋅ ⋅ ⋅ ⋅
c cr r r r
init initinit initT d = T d + ∆ = T d + T ∆ = T + 0 = T (3.10)

In other words, ∆ has to lie in the nullspace of Tr. Let the nullspace of Tr be U. U will

have N rows and Q columns (Q<N), each column representing a basis vector for U. Then,

any perturbation vector ∆ can be constructed from any vector r of length Q as follows:

⋅∆ = U r (3.11)

The vector r represents the co-ordinates of ∆ in the null-space of Tr.

A delay assignment variation based optimization scheme can now be formulated

as follows. Suppose the objective function to be optimized under delay constraints is a

 25

function of the gate delays, represented byF()d . Then, F()d can be translated into an

equivalent function G()r that has the delay constraints inbuilt into it by the following

transformation:

G() F()= + ⋅initr d U r (3.12)

The benefit of this translation is that the number of variables is reduced from N (length of

d) to Q (length of r). Any global optimization method can now be used to find the

optimum value of r that minimizes G and hence F.

 Although theoretically r can be any vector in RQ, there might be other limits on

the allowed delay vector d that will constrainr . For example, all entries of d should be

greater than 0. This constraint can be handled inside function G by scaling r by a scalar α

such thatmin() 0+ ⋅α >initd U r . Lower and upper bound limits on d can also be handled

similarly.

 Note that the above formulation only requires the nullspace of Tr, U, which is the

same as the nullspace of T, since both Tr and T represent the same set of equations.

Hence, for notational convenience, T will be used with the understanding that the

nullspace U is actually computed using Tr.

 In Chapter IV, the topology matrix representation is used to find exact conditions

on module VDDs and Vths for minimum energy consumption. DAV based optimization is

then used to find the values of the optimal VDDs and Vths. In Chapter V, a method is

proposed for formulating the total energy consumption of a gate level netlist as a function

of d (the delays of the individual gates) and finding the optimum d that minimizes the

 26

energy consumption. In Chapter VI, a similar method is used to maximize the soft-error

tolerance of the circuit.

 The DAV optimization method presented can be used to further optimize designs

that have already been optimized to some extent. For example, given the delays

heuristicd for the gates in a circuit that has been sized for speed using some heuristic, DAV

based optimization can start from heuristicd and using a circuit size cost function that can

be formulated as a function of gate delays, C(d), search for a perturbation opt∆ that

lowers the cost function even more. In the worst case, opt∆ will be the zero vector, which

will give us back the initial circuit. However, it is highly likely that the initial circuit

hasn’t been optimally sized, in which case opt∆ will be non-zero and C(heuristicd + opt∆)

will be lower than C(heuristicd).

 27

Chapter IV

Module Level Power Optimization

4.1. Introduction

Dynamic energy has been the main component of total energy since it is

proportional to the square of VDD. However, with the shrinking of device sizes and

reduction of supply voltages, static energy has become as important as dynamic energy.

To obtain high gate overdrive (VDD - Vth) for high speeds of operation, Vth is also

decreased as VDD is decreased. The decrease in threshold voltage increases the leakage

current exponentially, which makes static energy consumption more significant in every

new technology generation. Therefore, it has become essential to consider both supply

and threshold voltage in any circuit optimization for low-energy consumption.

This chapter presents a method that considers both supply and threshold voltages

simultaneously when optimizing circuits for low energy consumption at the module level.

A metric is also provided that can be used by circuit designers to test how close the

energy consumption of their module-level design is to the minimum possible. In this

work, the metric is used to determine the stopping conditions of the optimization

algorithm. If an unlimited number of supply and threshold voltages are available, the

proposed algorithm is optimum in the sense that no other voltage assignment for the given

modules will give lower energy consumption for the given delay constraint.

 The complete procedure has two steps. The first step finds optimum supply and

threshold voltage values for CMOS modules in a digital circuit that minimizes the total

 28

energy consumption, using the techniques discussed in Chapter III. Considering a circuit

as composed of modules allows energy optimization of much larger circuits than is

possible with gate-level optimization algorithms. This is due to the significant reduction

of problem complexity. The exact conditions for minimum energy are found using the

Lagrange Multiplier Method. Then, the supply and threshold voltage values for each

module that satisfy the minimum energy condition are found iteratively. If it is

technologically feasible to assign the optimum (and perhaps all different) supply and

threshold voltages to all the modules, then the algorithm stops here. Otherwise it

continues to the next step.

 The second step clusters the multiple voltages obtained from the first step into a

fixed number of supply and threshold voltages (for example, 2 different supply voltages

and 2 different threshold voltages). This step results in a feasible implementation of the

system in current technologies. Section 4.2 gives the derivation of the minimum energy

condition. Section 4.3 describes the search method used to obtain the optimal values.

Section 4.4 describes the heuristic used to cluster the voltages. Section 4.5 gives

experimental results.

4.2. Mathematical Condition for Minimum Energy Consumption at
the Module Level

 The topology matrix representation described in Chapter III can be used to derive

an exact mathematical condition for minimum energy consumption at the module level.

The energy-minimization problem for a digital system (assumed given to us) consisting

of N modules and P paths from primary inputs to primary outputs can be stated as

follows:

 29

 Minimize
1

N

i
i

E
=
∑ under the constraints

j

i d
i P

d T
∈

≤∑ for all paths Pj where Ei is the

energy consumption of the ith module, di is the delay of the ith module, Td is the time

constraint and the variables are VDDi and Vthi for each module.

 Figure 4.1 shows an example combinational circuit in which a module itself

represents a block of logic with multiple gates. A module has to be chosen big enough so

that the delay and energy overhead of the level-shifters that would be needed between

modules is negligible compared to module delays and energies. In order to derive the

exact mathematical condition for minimum energy consumption, we need equations for

module delay, dynamic energy, and static energy in terms of VDD and Vth.

 For a CMOS circuit module, delay can be approximated as being proportional to

VDD /(VDD - Vth)
α [14].

Figure 4.1. An example combinational circuit with 5 modules and 4 paths (N=5,
P=4).

 30

0

()
i D D i

i
D D i t h i

k V
d

V V α
⋅=
−

(4.1)

Here di is the delay of the ith module, k0i is a constant for that module, VDDi and Vthi are

the supply voltage and threshold voltage, respectively applied to that module, and α is the

velocity saturation coefficient. For current technologies, α is between 1.2 and 1.5. The

delay constant (k0i) includes the effects of process, device sizes, load capacitance, and

gate depth in that module. Gate depth can be included in the constant because of the

additive characteristics of delays.

 The energy consumption of a module is the sum of its dynamic and static energy

consumptions. The dynamic energy consumed in a module can be written as:

20.5di i D D iE C V= ⋅ ⋅

(4.2)

Here Ci is the term for all the capacitances that are switched during operation of the ith

module including possible multiple switching of some nodes. To simplify the derivation,

dynamic energy is rewritten as:

2
1di i DDiE k V= ⋅

(4.3)

where k1i stands for the circuit, process, and application dependent terms including

switching activity. Short circuit power dissipation can also be included in k1i because of

the quadratic dependence of short-circuit power dissipation to VDD [13].

 For static energy consumption, a generalized model is used.

 31

3 4

6 7

2

5

i DDi i thi

i DDi i thi

k V k V
si subi gatei i DDi d

k V k V
i DDi d

E E E k V e T

k V e T

⋅ − ⋅

⋅ − ⋅

= + = ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ (4.4)

Esubi stands for the sub-threshold leakage component of the static energy consumption.

This component is strongly influenced by the threshold voltage. Egatei stands for the gate

leakage component of the static energy. This component is much smaller than Esubi when

V th is small. When Vth is large, the main contribution to the static energy comes from this

component. Also, gate leakage increases as the gate oxide thickness becomes smaller. k2i

and k5i are circuit-dependent parameters. k3i, k4i, k6i, and k7i are process-dependent

parameters. The values of the process-dependent parameters can be found by fitting

SPICE simulation results of a simple gate to Equation 4.4. The values for these

parameters can be used for any circuit designed in the same technology. After the process

dependent parameters have been found, the circuit dependent parameters can be found by

fitting the static energy consumption of the modules for different VDDs and Vths to

Equation 4.4.

 The delay constrained energy minimization problem can be formulated using the

method of Lagrange Multipliers by constructing an auxiliary function as follows:

1 1 1
1 1

(, , , , , , ,) - [-]
j

N P

DD th DDN thN P i j i d
i j i P

G V V V V E d Tλ λ λ
= = ∈

= ⋅∑ ∑ ∑� � (4.5)

where Ei=Edi+Esi is the energy consumption of the ith module and λj is the Lagrange

Multiplier for the constraint that the delay of the jth path be less than Td.

 Then, for minimum energy consumption, the following has to hold:

 32

1 1 1(, , , , , , ,)
 0

λ λ∂ =
∂
� �DD th DDN thN P

DDi

G V V V V
for all i

V
(4.6)

1 1 1(, , , , , , ,)
 0

λ λ∂ =
∂

� �DD th DDN thN P

thi

G V V V V
for all i

V
(4.7)

Equations 4.6 and 4.7 become:

Ti i
i

E
 = R o w ()

D D i D D i

d
f o r a l l i

V V

∂ ∂⋅ ⋅
∂ ∂

T λ (4.8)

Ti i
i

E
 = R o w ()

t h i t h i

d
f o r a l l i

V V

∂ ∂⋅ ⋅
∂ ∂

T λ (4.9)

where 1 2[]T
Pλ λ λ=λ � and Rowi(T

T) refers to the ith row of TT. Two vectors, the

Constant Threshold Energy Gradient Vector (CTEG) and the Constant Supply Energy

Gradient Vector (CSEG), can be defined as follows:

T

N N1 1 2 2

1 1 2 2

EE E

DD DD DD DD DDN DDN

dd d
CTEG

V V V V V V

 ∂ ∂∂ ∂ ∂ ∂= ∂ ∂ ∂ ∂ ∂ ∂
�

(4.10)

T

N N1 1 2 2

1 1 2 2

EE E
and

th th th th thN thN

dd d
CSEG

V V V V V V

 ∂ ∂∂ ∂ ∂ ∂= ∂ ∂ ∂ ∂ ∂ ∂
�

(4.11)

 Following are the equations for the partial derivatives of the energy function, Ei.

These equations are obtained using Equations 4.1, 4.3 and 4.4.

 33

() ()()
() ()()

3 4 6 7

3 4 6 7

i
1i 2 3 5 6

2 5

3 6

E
 = 2

2

i DDi i thi i DDi i thi

i DDi i thi i DDi i thi

k V k V k V k V
DDi d DDi i i i i

DDi

k V k V k V k V
d i i

subi gateidi
i subi i gatei

DDi DDi

k V T V k k e k k e
V

T k e k e

E EE
k E k E

V V

⋅ − ⋅ ⋅ − ⋅

⋅ − ⋅ ⋅ − ⋅

∂ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅
∂

+ ⋅ ⋅ + ⋅

+⋅= + ⋅ + ⋅ +

 (4.12)

() ()
()

()()
()

1

0 2

1

thi thi

thi

thi

DDi DDi DDii
i

DDi DDi

i DDi thi

DDi DDi

V V V V Vd
k

V V V

d V V

V V V

α α

α

α

α

−

⋅

− − ⋅ − ⋅∂ = ⋅
∂ −

⋅ − ⋅ +
= −

⋅ −

 (4.13)

() ()()3 4 6 7i
2 4 5 7

4 7

E
 = i DDi i thi i DDi i thik V k V k V k V

d DDi i i i i
thi

i subi i gatei

T V k k e k k e
V

k E k E

⋅ − ⋅ ⋅ − ⋅∂ − ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
∂

= − ⋅ − ⋅
 (4.14)

() ()
0i

1α
α α

+

⋅ ⋅ ⋅∂ = =
∂ −−

i DDi i

thi DDi thiDDi thi

k V dd

V V VV V

(4.15)

Finally, from Equations 4.12-15:

()
()() ()

3 62

1
di DDi i subi i gatei subi gatei

i
i DDi thi DDi thi

E V k E k E E E
CTEG

d V V V Vα
⋅ + ⋅ ⋅ + ⋅ + +

=
⋅ − + −

 (4.16)

()4 7i subi i gatei
i DDi thi

i

k E k E
CSEG V V

dα
⋅ + ⋅

= ⋅ −
⋅ (4.17)

Using Equations 4.10, 4.11, 4.16 and 4.17, Equations 4.8 and 4.9 can now be written

concisely as follows:

:Minimum Energy Condition

⋅TCTEG = CSEG = T λ
 (4.18)

 34

 The minimum energy condition states that if the ith module has delay di, then the

module consumes minimum energy when the supply voltage VDDi and threshold voltage

V thi are uniquely chosen (out of all possible combinations that yield delay di) such that

CTEGi=CSEGi. These optimal values of VDDi and Vthi can be found by solving

CTEGi=CSEGi along with Equation 4.1 numerically. However, Equation 4.18 states that

the entire system will consume minimum energy (under the delay constraint) if and only

if each CTEGi (and CSEGi) is also equal to the ith term of ⋅TT λ .

 But λ is an artificial quantity used to represent delay constraints and its value is

unknown. The problem is thus to find the optimal delay vector

1 2[]opt opt opt T
Nd d d=

opt
d � that meets the delay constraints and satisfies Equation 4.18 as

well.

4.3. Procedure for obtaining optimal values of supply and threshold
voltages

The optimal delay vector is found by starting from an initial delay vector
init

d that

meets the delay constraints and generating new delay vectors d by adding perturbation

vectors ∆ (chosen from the nullspace of T) to
initd (as described in Section 3.3). To

check if this new d is optimal, the “Normalized Energy Gradient” (NEG) metric, defined

as follows, is used:

() ()NEG() norm norm= ⋅ ⋅T T†d T T CTEG-CTEG CTEG (4.19)

where
T†T is the pseudo-inverse of TT .

 35

At the minimum energy point, when
opt

=d d (and

correspondingly
opt opt

⋅TCTEG = CSEG = T λ), NEG will be zero as shown below.

() ()
() ()
() ()

NEG()

0

norm norm

norm norm

norm norm

= ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

=

opt opt optopt T T†

T T† T T T

T T T

d T T CTEG -CTEG CTEG

T T T λ -T λ T λ

T λ -T λ T λ

 (4.20)

 NEG is depicted as a function of d . To calculate NEG for any d , the condition

C T E G = C S E G is first met by choosing VDDs and Vths for every module as follows. To

solve CTEGi = CSEGi for the ith module, the delay, di, for that module is used in Equation

4.1 to write Vthi in terms of VDDi. This makes CTEGi and CSEGi functions of VDDi only

and the equation CTEGi = CSEGi can be solved easily (for e.g. using MATLAB’s

FZERO function) to get the VDDi and Vthi values. NEG can then be computed using the

VDD and Vth values.

Note that the NEG metric can be computed for any digital system if the delay and

energy equations for the modules in the system are known. The value of the NEG metric

can be used as a measure of how good a design is in terms of energy consumption.

Designs with high NEG values are energy inefficient for their delay constraint whereas

those with NEG values close to zero are near optimal for their delay constraint.

An iterative gradient search based algorithm is used to get to the delay assignment

at which NEG is zero. Any other global optimization algorithm could also be used. The

inputs to the algorithm are the initial parameters of all the N modules, such as the VDDis,

the Vthis, the module delays (dis) and the circuit- and process-dependent parameters k0is,

k1is, k2is, k3is, k4is, k5is, k6is and k7is.

 36

First, intermediate values for module delays,intd , are obtained that make all path

delays as close to Td as possible. This step also makes sure that all modules have zero

slack, so that the starting point is optimal. A method similar to the Zero Slack Algorithm

(ZSA) [55] is used in this step. It removes the slack of nodes in an energy-aware way (as

described in Appendix B). Let ⋅int intT = T d be the vector of path delays after this step.

Next, Etotal is minimized by doing a gradient search on the delay vector, d .

The delay vector, newd , for a new iteration is obtained from the current delay

vector, currd , as follows:

totalk E⋅∇new curr Td = d + (4.21)

where totalE∇T is the gradient of totalE along the nullspace vectors of T. k is chosen in

such a way that the new energy (()E newd) is minimum in the direction of gradient

vector. The search is stopped when a NEG value near 0 is obtained. The overview of the

optimization algorithm is given in the flowchart in Figure 4.2.

4.4. Clustering heuristic for limited number of supply and threshold
voltages

The algorithm described in the previous section yields optimum values of supply

and threshold voltages for each module that minimize the overall circuit energy. But

these voltages might all have different values, in which case a practical implementation

of the optimized circuit is difficult in current technologies. In this subsection, a heuristic

algorithm is described that clusters the optimum supply and threshold voltage values

 37

Figure 4.2. Algorithm for minimum energy consumption

 38

obtained into a limited number of supply and threshold voltages. The final solution meets

the delay constraint at the expense of slightly higher total energy consumption than the

optimum case.

Assume only n supply voltage planes and m threshold voltages are available

(n<N, m<N). Note that the values of the available voltages are not fixed at the beginning,

although their number is fixed. Let _DD optV and _th optV be the optimum supply and

threshold voltage values (obtained in the previous section), respectively. Let _DD nV and

_th mV be supply and threshold voltage vectors holding values for the limited number of

supply and threshold voltages (n supply voltages, m threshold voltages) initialized as

follows:

() () () ()_ _

_ _ 1
1

DD opt DD opt

DD n DD opt

max V min V
V p min V p for p n

n

 −
 = + ⋅ =
 +

� (4.22)

() () () ()_ _

_ _ 1
1

th opt th opt

th m th opt

max V min V
V q min V q for q m

m

 −
 = + ⋅ =
 +

� (4.23)

These vectors will finally hold the n supply voltage values and m threshold

voltage values that will be used in the circuit. For any module i, the function “Map” finds

the nearest pair [VDD_n(p), Vth_m(q)] to the pair [Vdd_opt(i), V th_opt(i)] and assigns it to

[VDD_new(i), V th_new(i)].

_ _ _ _ _ _[,] (, , ,)DD new th new DD opt th opt DD n th mV V Map V V V V= (4.24)

In any iteration, the delay of the circuit (Tc) is calculated using _ _[,]DD new th newV V .

2
total cE T⋅ is used as the cost function if Tc exceeds Td by a fixed fraction (say 0.01).

 39

* A power-aware partitioning of the circuit into modules could further improve the results, but
that by itself is a very difficult problem to solve and is not handled in this work.

Doing this forces the critical path delay to go down in the next iteration, possibly

increasing Etotal. If Tc is less than Td by a fixed fraction, totalE is used as the cost function.

Doing this decreases the energy in the next iteration, possibly by increasing Tc. These

cost functions were chosen because they yielded good results in experiments. The

gradient, (_)C ost fn∇ , is obtained by changing the entries of _D D nV and _th mV by a

small amount, mapping these to new _ _[,]DD new th newV V and calculating the difference in

the cost function. The new values of _DD nV and _th mV , which lower the cost function,

are obtained by searching in the direction of the gradient. The search terminates when the

circuit delay is in 1% proximity of the deadline, Td. The flowchart of the algorithm is

given in Figure 4.3.

4.5. Experimental results

The hierarchical Verilog descriptions of the combinational ISCAS’85 circuits and

a 16-bit Wallace Tree Multiplier were synthesized using Synopsys Design Compiler

(with the TSMC 0.25µ library) to get the delay, dynamic energy and static energy

consumption values for the modules at the top level of design hierarchy. The modules at

the top level of hierarchy in the Verilog description were directly mapped to the modules

used in the optimization*. The values of the process-dependent parameters (k3, k4, k6, k7)

were obtained from SPICE simulations as explained in Section 4.2. SPICE simulation of

simple gates showed that k5 is 6 orders of magnitude smaller than k2 for this technology.

Since k2 and k5 scale almost linearly with number of gates [56][57], k5 can be taken to be

 40

Figure 4.3. Algorithm for clustering

 41

10-6 times k2 for any module. The circuit-dependent parameters (k0, k1, k2) were then

calculated for each module by using the delay, dynamic energy and static energy values

obtained from Synopsys and the process-dependent parameters.

The following notation is used for describing the results: The symbol “I” denotes

the initial circuit which has the standard 0.25µ TSMC voltages (VDD = 2.5V, Vth = 0.5V).

The delay of the initial circuit is obtained using Synopsys Design Compiler and this value

is used as the time constraint for the optimization i..e the optimized circuits (II, III, IV)

will have the same delay as I. “II” denotes the baseline circuit (for energy comparisons)

that has the single VDD and Vth values that give the minimum energy consumption for the

given deadline. “III” denotes the circuit having optimum (and possibly all different) VDDs

and Vths for the modules. “IV” denotes the circuit in which the VDDs and Vths in III have

been clustered into two VDDs and one Vth. Only one Vth is used in the final circuit because

it was found that having more Vths only saved an additional 2-3% of energy in the

benchmark circuits designed using 0.25µ technology. The need for multiple Vths will

become more pronounced as technology shrinks.

 For the experiments, various switching activities were used for the input ports to

observe their effects on the energy savings and the optimum voltages obtained. It was

noticed that for switching activities above 0.05, the optimum Vths were of the order of 10

mV. This is due to the fact that the static energy in 0.25µ technology is very small

compared to the dynamic energy for high switching activities. So for these cases, the

optimization algorithm scales down VDD aggressively and to achieve the delay constraint,

it reduces Vth to very small values without incurring a significant increase in static

energy. Since such small Vth values are not currently feasible, for these cases Vth was

 42

Table 4.1. Optimization results for Wallace tree multiplier
II (Baseline System) III (unlimited V DDs, Vths) IV (2 VDDs, 1 Vth)

i

SA=0.01

VDD=1.62V
V th=0.11V

Td=13.7 ns

E=71.6 pJ
Ed=63.4 pJ
Es=8.2 pJ

ii

SA=0.0001

VDD=2.18V
V th=0.35V

Td=13.7 ns

E=0.35 pJ
Ed=0.33 pJ
Es=0.02 pJ

i

2 .2 3 0 .1 0

1 .3 8 0 .0 9

0 .8 5 0 .1 2

0 .8 3 0 .1 1

0 .8 5 0 .1 2

0 .7 7 0 .0 8

0 .8 4 0 .1 1

0 .8 5 0 .1 2

0 .8 0 0 .0 9

0 .9 4 0 .0 8

0 .8 4 0 .1 1

0 .8 6 0 .1 2

0 .5 0 0 .0 9

1 .0 0 0 .1 0

0 .6 3 0 .0 6

0 .5 4 0 .1 2

0 .6 4 0 .0 6

D D thV V

E=36.9 pJ
Ed=31.8 pJ
Es=5.1 pJ

Saving=48%

ii

2 .8 0 0 .3 3

1 .7 5 0 .3 2

1 .4 3 0 .3 8

1 .4 8 0 .3 6

1 .4 3 0 .3 8

1 .3 9 0 .3 4

1 .4 9 0 .3 7

1 .4 0 0 .3 6

1 .4 4 0 .3 6

1 .4 1 0 .3 2

1 .4 6 0 .3 7

1 .4 7 0 .3 8

0 .9 7 0 .3 3

1 .4 7 0 .3 5

1 .0 7 0 .3 0

1 .0 2 0 .3 6

1 .0 7 0 .3 0

D D thV V

E=0.22 pJ
Ed=0.20 pJ
Es=0.02 pJ

Saving=39%

i

1 .8 4 0 .0 9

1 .8 4 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

1 .8 4 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

1 .8 4 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

0 .9 1 0 .0 9

D D thV V

E=49.4 pJ
Ed=41.9 pJ
Es=7.5 pJ

Saving=31%

ii

2 .4 2 0 .3 4

2 .4 2 0 .3 4

1 .4 5 0 .3 4

2 .4 2 0 .3 4

1 .4 5 0 .3 4

1 .4 5 0 .3 4

2 .4 2 0 .3 4

1 .4 5 0 .3 4

1 .4 5 0 .3 4

1 .4 5 0 .3 4

2 .4 2 0 .3 4

2 .4 2 0 .3 4

1 .4 5 0 .3 4

2 .4 2 0 .3 4

1 .4 5 0 .3 4

1 .4 5 0 .3 4

1 .4 5 0 .3 4

D D thV V

E=0.28 pJ
Ed=0.25 pJ
Es=0.03 pJ

Saving=22%

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 0 1 1 1 1 0

1 1 1 1 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1

TT

Figure 4.4. Wallace tree multiplier and associated T matrix

 43

fixed at 0.1V and the optimum VDDs found. This phenomenon is not expected to occur

for deep sub-micron technologies, where static energy is significant.

Figure 4.4 shows the top level of the Verilog design hierarchy for a Wallace Tree

Multiplier. The modules are a partial product generator (level0), Carry Save Adders

(CSAs), and a Carry Propagate Adder (CPA). Also shown is the T matrix corresponding

to the entire circuit. The first column of Table 4.1 gives the VDD, Vth and energy

consumption values for the baseline Wallace Tree circuit (II) for two different input

switching activities (SA=0.01 and SA=0.0001). Note that the delay for the baseline

circuit is same as the delay of the initial circuit (I), which had VDD = 2.5V, Vth = 0.5V.

The second and third columns give the voltages for each module as well as the energy

consumptions for circuits III and IV respectively.

Figure 4.5 shows the energy savings obtained for the various benchmark circuits

as a percentage of the baseline energy consumption for an input switching activity of

0.01. The dynamic and static components of energy are also shown. It is observed that in

II and III, static energy is ~10% of the total energy. This validates the fact that at the

optimum, static energy is a fixed fraction of the total energy [58], although this fraction

depends on the technology used. Figures 4.6 and 4.7 show the savings for different input

switching activities for circuits III and IV, respectively. The results show that the energy

savings tend to increase as the input switching activity increases. Thus, accurate

estimation of the input switching activity is crucial for obtaining good energy savings.

Table 4.2 summarizes the results of the experiments. VDD1 and VDD2 are the two

voltages applied to the circuit after clustering. Savings up to 48.4% savings were

obtained for circuit III and up to 36% for circuit IV for switching activities below 0.05

 44

(V ths variable). For switching activities above 0.05 (Vths fixed at 0.1V), savings up to

58.4% savings were obtained for circuit III and up to 31.6% savings for circuit IV. The

average saving, for switching activities above 0.05, was 29% for circuit III and 18% for

circuit IV. For switching activities below 0.05, the average saving was 28% for circuit III

and 15% for circuit IV.

Figure 4.5. Energy consumption of benchmark circuits as a percentage of the
baseline energy consumption when the input switching activity is 0.01.
I: Energy consumption of circuit with standard 0.25µ TSMC voltages (VDD = 2.5, Vth = 0.5)
II: Energy consumption of circuit with optimum single VDD and single Vth (baseline case)
III: Energy consumption of circuit with unlimited VDDs and Vths
IV: Energy consumption of circuit with two VDDs and one Vth

 45

0

10

20

30

40

50

60

c1908 c2670 c3540 c432 c499 c5315 c7552 Multiplier

%
 E

n
er

g
y

S
av

in
g

s

0.01

0.001

0.0001

Figure 4.6. Percent energy savings with unlimited VDDs and Vths (III) for
different input switching activities

0

10

20

30

40

50

60

c1908 c2670 c3540 c432 c499 c5315 c7552 Multiplier

%
 E

n
er

g
y

S
av

in
g

s

0.01

0.001

0.0001

Figure 4.7. Percent energy savings with two VDDs and one Vth (IV) for
different input switching activities

 46

Table 4.2. Optimization Results

Circuit
Input

Switching
Activity

E (I) pJ E (II) pJ E (III) pJ E (IV) pJ VDD (II) V th (II)

0.5 106 44.2 25.9 30.6 1.6 0.10
0.1 44.1 18.7 11.2 13.2 1.6 0.10
0.01 5.85 2.75 1.67 1.98 1.6 0.10
0.001 0.62 0.37 0.25 0.28 1.8 0.20

c1908

0.0001 0.07 0.05 0.04 0.05 2.0 0.28
0.5 238 100 92.5 100 1.6 0.10
0.1 78.1 33.5 31.2 33.5 1.6 0.10
0.01 8.95 4.58 3.71 4.45 1.7 0.14
0.001 0.85 0.55 0.45 0.53 1.9 0.23

c2670

0.0001 0.09 0.07 0.06 0.07 2.1 0.32
0.5 414 175 120 139 1.6 0.10
0.1 130 57.0 39.1 45.3 1.6 0.10
0.01 14.4 7.75 5.18 6.81 1.7 0.16
0.001 1.29 0.87 0.60 0.73 2.0 0.25

c3540

0.0001 0.09 0.07 0.05 0.06 2.2 0.36
0.5 23.5 9.81 9.05 9.47 1.6 0.10
0.1 6.77 2.88 2.65 2.77 1.6 0.10
0.01 0.74 0.37 0.33 0.36 1.7 0.14
0.001 0.09 0.053 0.049 0.052 1.9 0.22

c432

0.0001 0.01 0.0084 0.0078 0.0081 2.1 0.30
0.5 81.4 34.0 26.9 27.6 1.6 0.10
0.1 34.4 14.5 11.8 12.0 1.6 0.10
0.01 4.81 2.24 1.95 1.98 1.6 0.10
0.001 0.49 0.29 0.26 0.26 1.8 0.19

c499

0.0001 0.05 0.039 0.035 0.035 2.0 0.28
0.5 438 184 110 153 1.6 0.10
0.1 143 61.5 37.3 50.7 1.6 0.10
0.01 16.7 8.59 5.38 7.83 1.7 0.14
0.001 1.59 1.03 0.67 0.97 1.9 0.23

c5315

0.0001 0.15 0.12 0.07 0.10 2.1 0.33
0.5 861 361 259 285 1.6 0.10
0.1 283 121 84.7 86.0 1.6 0.10
0.01 32.3 16.4 9.04 11.00 1.7 0.14
0.001 3.34 2.12 1.20 1.42 1.9 0.22

c7552

0.0001 0.42 0.32 0.17 0.20 2.1 0.31
0.5 2890 1210 502 834 1.6 0.10
0.1 1180 500 245 342 1.6 0.10
0.01 151 71.6 36.9 49.40 1.6 0.11
0.001 11.7 7.21 4.00 5.16 1.9 0.21

Multiplier

0.0001 0.43 0.35 0.22 0.28 2.2 0.35

 47

Table 4.2. (Continued)

Circuit VDD1
(IV) VDD2 (IV) V th (IV) % Energy

Savings (III)
% Energy

Savings (IV)
1.2 2.1 0.10 41.5 30.9
1.2 2.1 0.10 40.2 29.4
1.2 2.1 0.10 39.4 28.1
1.4 2.4 0.19 32.5 22.9

c1908

1.7 2.1 0.27 26.9 5.1
1.6 1.6 0.10 7.5 0
1.6 1.6 0.10 6.9 0
1.3 1.7 0.12 19.2 3.0
1.5 1.9 0.22 18.4 2.6

c2670

1.8 2.1 0.31 13.4 1.0
1.2 1.6 0.10 31.5 20.3
1.2 1.7 0.10 31.4 20.6
1.3 1.7 0.12 33.2 12.2
1.5 2.0 0.22 31.8 16.0

c3540

1.7 2.3 0.35 32.6 17.6
1.5 1.8 0.10 7.7 3.5
1.5 1.7 0.10 8.0 3.9
1.5 1.8 0.11 10.6 4.0
1.7 2.1 0.20 8.7 3.0

c432

1.9 2.4 0.29 7.5 4.1
1.2 1.9 0.10 20.8 18.8
1.2 1.9 0.10 18.5 17.1
1.3 1.8 0.09 12.8 11.5
1.5 2.0 0.19 11.1 10.2

c499

1.7 2.3 0.28 9.5 9.1
0.5 1.6 0.10 40.0 16.8
0.5 1.6 0.10 39.3 17.5
0.5 1.6 0.09 37.3 8.9
0.6 1.8 0.18 34.8 5.3

c5315

0.8 2.1 0.29 35.0 14.5
1.0 1.6 0.10 28.1 21.0
0.6 1.6 0.10 29.9 28.9
0.7 1.6 0.10 44.9 32.8
1.0 1.9 0.20 43.4 33.2

c7552

1.2 2.1 0.31 45.4 36.0
1.0 1.8 0.10 58.4 30.0
1.0 1.8 0.10 51.0 31.6
0.9 1.8 0.09 48.4 30.9
1.1 2.1 0.20 44.5 28.5

Multiplier

1.5 2.4 0.34 39.0 22.0

 48

4.6. Conclusion

This chapter presented exact mathematical conditions on the supply and threshold

voltages of modules in combinational circuits that minimize the total circuit energy under

delay constraints. A procedure was described that used a DAV based search method to

obtain the values of the optimal supply and threshold voltages. DAV based search was

also used to finally cluster the many different voltage values obtained into a small

number of voltages. For switching activities below 0.05, savings up to 48.4% savings

were obtained if each module could have a separate supply and threshold voltage. For

switching activities above 0.05 (Vths fixed at 0.1V), savings up to 58.4% savings were

obtained with each module having a separate supply voltage. The average savings for the

above two cases were 28% and 29% respectively.

 49

Chapter V

Gate Level Power Optimization

5.1 Introduction

This chapter discusses the application of DAV based optimization to the problem

of power minimization using sizing, multiple VDDs and Vths at the gate level. The

approach described in Chapter IV cannot be straightforwardly extended for optimization

at the gate level because of several reasons:

a) Gate sizes are important optimization variables. However, they are not included in the

module level equations.

b) Inclusion of gate sizes as variables makes the gate delays dependent on successor gate

sizes (and hence successor delays). At the gate level, an analytical delay model will

have to include the sizes of the successor gates whereas this was not the case at the

module level. This makes analytical derivation of the exact minimum energy

condition impossible at the gate level.

c) The overhead of level-shifters could be neglected at the module level, but this is not

possible at the gate level.

d) The delay and energy equations in Chapter IV are simplistic and do not take into

account second and third order effects that are present in current deep-sub-micron

(DSM) technologies.

To tackle these problems, a DAV search based approach for gate level power

optimization is developed in this section. It allows selection of optimal gate sizes, VDDs

 50

and Vths for minimizing power consumption. Furthermore, delays, energy consumptions,

output ramps and input capacitances of gates are modeled using SPICE simulation based

look-up tables. This allows very accurate modeling of leakage energies and capacitances

in the DSM domain as compared to analytical models. Section 5.2 gives the methodology

developed for delay and energy modeling of gates in the circuit netlist. Section 5.3

describes a method to formulate the energy consumption of a circuit as a function of the

gate delays, which is needed to apply DAV based optimization as described in Section

3.3. Section 5.4 describes the application of DAV based optimization in a hierarchical

fashion that allows optimization of large netlists efficiently. Section 5.5 analyzes the

computational complexity of the optimization with and without hierarchical optimization.

Section 5.6 provides details of the implementation of the optimization framework and

gives results of experiments on ISCAS’85 benchmark circuits.

5.2 Delay, Energy, Output Ramp and Input Capacitance Modeling

Deep-sub-micron technologies have a lot of second and third order effects that

closed form analytical equations cannot capture. For example, the input capacitance of a

gate changes according to the input signal slope. It is also different for different values of

input signal amplitude, gate VDD, Vth, etc. Similarly, delay and energy at the gate level

are not very accurately modeled using the simple equations 2.1, 2.2 and 2.3. These

equations do not incorporate gate size in them, which is needed to accurately capture the

effect of sizing on a gate. Output ramp is another parameter that is difficult to model

using analytical equations. Furthermore, it is difficult to model gate leakage analytically.

To get around these limitations of analytical models, SPICE tables were used for the

modeling. SPICE simulations for 70nm CMOS technology [59] were carried out to get

 51

the values of delay, input capacitance, dynamic energy consumption, static energy

consumption and output signal ramp (average of rise time and fall time) for 2 to 4 input

NAND and NOR gates, and inverters. The variables for each gate were its size, the

applied supply voltage (VDD), the threshold voltage (Vth) of the NMOS and PMOS

transistors (assumed equal in magnitude), the input signal amplitude, the input signal

ramp and the load capacitance at its output (see Figure 5.1). Tables were built for delay,

input capacitance, dynamic and static energy consumption values, and output signal ramp

for gate sizes of 1 to 10, VDD values of 0.8V to 1.2V (in steps of 0.2V), Vth values of

0.1V to 0.4V (in steps of 0.1V), input signal amplitudes of 0.8V to 1.2V (same as for

VDD), several input signal ramps ranging from 5ps to 75ps, and several load capacitances

ranging from 0.25fF to 50fF. Appropriate interpolation was used to obtain the values of

delay, input capacitance, dynamic and static energy consumption, and output signal ramp

for input variables that were inside the ranges given above. For example, to determine

dynamic energy for an arbitrary VDD value (say 1.9V), quadratic interpolation was used

(because of the quadratic relation between dynamic energy and VDD) between the

dynamic energy values for 0.8V and 1V obtained from the table. Similarly, to determine

delay for an arbitrary gate size (say 2.6), reciprocal interpolation was used (because of the

reciprocal relation between delay and gate size) between the delay values for sizes 2 and

3 obtained from the table. The ranges for the variables given above were chosen in such a

way that extrapolation would not be needed during the optimization.

 52

 The measured delay in SPICE was the average delay for rising input and falling

input (of amplitude VIN, a variable) to the gate with the other gate inputs (in case of

NAND and NOR) set to their sensitizing values. The input capacitance (Cin) of a gate was

measured by applying a voltage pulse of amplitude VIN with rise and fall time T to the

gate and measuring the average current flowing into (IIN) or out of (IOUT) the gate. Cin is

then taken as the average of IN

IN

I T

V

⋅
 and OUT

IN

I T

V

⋅
. The dynamic energy consumption for a

0-1 transition (E01) and a 1-0 transition (E10) at the output was measured by averaging the

current supplied by the voltage source for a small time-period around the respective

transitions and multiplying with VDD and the time-period of measurement. The static

power consumption was measured for output at 0 (P0) and 1 (P1) by measuring the

average current drawn from VDD with the output settled at the respective values and

multiplying with VDD. The logic “1” value of the input signal corresponded to voltage

V IN. Thus, for VIN values less than VDD, P0 also included the effect of leakage in the gate

PMOS network (due to the PMOS transistors not being completely off). The average

energy consumption of a gate in a circuit with clock cycle of Tclock was obtained as

follows:

Figure 5.1. Variables for delay, energy, output ramp and input capacitance
modeling

 53

()
01 10

0 0 1 1

2clock

E E
E T prob P prob P

 += ⋅ ⋅ + ⋅ + η⋅

 (5.1)

where 0prob and 1prob were the static probabilities of the output of the gate being 0 and

1 respectively and η was the switching activity at the gate output. The output signal ramp

was measured as the average of rise times and fall times of the output signal.

5.3 Delay Assignment Variation (DAV) based Gate Level Power
Optimization

Figure 5.2 shows an example combinational circuit driving a known output load

Cout. The gates have been numbered in topological order (Appendix A). Suppose the

topology matrix for the circuit is T and the initial delays corresponding to the gates are

represented by vector i n i td []1 2 3 4 5 6 7 8

T
d d d d d d d d= . The delay-

constraint is max()deadT = ⋅ initT d . As described in Section 3.3, the delays can be

Figure 5.2. An example circuit with 8 gates and 4 paths (N=8, P=4).

 54

perturbed by ∆ in the null-space of T without violating the delay-constraint. Let the new

delay vector be initd = d + ∆ . Then, the required sizes, VDDs and Vths for the gates to

match the new delays can be computed by a backward traversal from primary outputs

(POs) to primary inputs (PIs). The allowed sizes, VDDs and Vths to be used for the

matching can be given as input.

For example, first, values of size, VDD and Vth are chosen for gate 8 that match the

assigned delay, d8 (say 15ps), while minimizing the energy-load product (ELP) for the

gate and its predecessors. The predecessors also have to be considered while matching

the delay of a gate since the size chosen for the current gate determines the load of the

predecessor gates. For example, if (size,VDD,Vth) values of (5,1.2,0.2) and (10,1,0.3) both

yield a required delay of 15ps for gate 8 when driving a load Cout, the first set of values

might be chosen over the second (even though the second set of values yields lower

energy consumption for the gate) since the first set will reduce the capacitive loading of

the predecessor gates (and hence make their delay matching possible with smaller sizes)

yielding (possibly) a lower value of total ELP for the gate and its predecessors.

The load capacitances of gates 6 and 7 can now be determined from the size, VDD

and Vth of gate 8 by looking up its input capacitance in the SPICE tables. Once the load

capacitances of gates 6 and 7 are known, the best sizes, VDDs and Vths can be found for

them to match delays d6 and d7 respectively. This process can then be repeated till the PIs

are reached. At the end, the gate sizes, VDDs and Vths for all gates to match the new delay

assignment d will be known. The total energy consumption of all the gates, the circuit

area, the circuit delay, etc for this assignment can then be computed using the SPICE

tables. Figure 5.3 gives a formal description of the algorithm for matching delays to gate

 55

sizes, VDDs and Vths. The inputs are the delay vector to be matched and the sets of sizes,

VDDs and Vths allowed for the matching. Delay(w,v,u,Cload), Energy(w,v,u,Cload) and

Procedure match_delay(d_vec, allowed_sizes, allowed_vdds, allowed_vts)

For i = N down to 1

d = d_vec(i)
 If gate i is a Primary Output

Cload = I/P capacitance of flip-flop
Else

Cload = 0
End

 For all successors j of gate i
 Cload = Cload + I/P capacitance of gate j

End

 Matching_set = Null

For all combinations of sizes w, VDDs v and Vths u from the allowed set
 If Delay(w,v,u,Cload) is equal to d
 Add (w,v,u) to Matching_set
 End
End

minELP = infinity
For all entries (w,v,u) in Matching_set
 ELP = Energy(w,v,u,Cload)*Cload
 For all predecessors j of gate i
 ELP = ELP + 0.5*Activity(j)*InputCap(w,v,u,Cload)2*v 2
 End
 If ELP < minELP

 minELP = ELP
 min_set = (w,v,u)
 End
 End

 Assign the parameters in min_set to gate i

Compute delay, energy and I/P capacitance of gate i using obtained parameters
and the SPICE tables

End

Figure 5.3. Procedure for matching delays of gates to gate sizes, VDDs and Vths

 56

InputCap(w,v,u,Cload) represent the SPICE look-up tables for delay, energy and input

capacitance respectively.

Experimental comparison between an energy (E) metric and the ELP metric for

choosing between different (size,VDD,Vth) sets showed that ELP was a better metric. The

E metric almost always favors giving bigger sizes to a gate since that allows the usage of

lower VDD and higher Vth while matching the delay, hence reducing the energy a lot for

the gate. However, the sizes of the predecessors then have to be increased even more to

match their delay assignment. This can have a cascading effect which leads to a high

energy matching of the delays for the overall circuit. On the other hand, the ELP metric

favors giving smaller sizes to a gate even if it means higher energy consumption for the

gate. However, this tends to lead to a lower energy matching of the delays for the overall

circuit (as the cascading effect is reduced).

In some cases, the ELP metric can also lead to a cascading effect if while

matching the delay of a gate, a bigger size still has lower ELP. For some delay

assignments, it is better to use the minimum size gates that match the delay assignment.

This is sure to minimize the cascading effect but might lead to usage of higher VDDs and

lower Vths. A compromise would be to compare the circuit energies for a delay

assignment matched using the ELP metric and the min-size metric and choose the lower

of the two.

As an aside, it is interesting to note that the delay matching at the gate level is

significantly more complicated than at the module level (as in Section 4.3). At the

module level, the delay equation used did not have any term for load capacitance. Hence,

the delays of a module could be matched independently of its successors. The VDD and

 57

V th values chosen for a module were those that minimized its energy consumption for the

delay assignment. Thus, for any delay assignment, the energy consumption of the overall

circuit was guaranteed to be the minimum possible. At the gate level, however, the delay

of a gate is highly dependent on its successor gates. The size, VDD and Vth values chosen

for a gate are not guaranteed to minimize its energy consumption (and are indeed chosen

to minimize ELP or gate sizes) since the values depend on the parameters of the

successor gates. Thus, for any delay assignment, there is no guarantee that the energy

consumption of the overall circuit is the minimum possible for that delay assignment.

Another assignment might exist that matches the delays while giving lower energy.

However, matching the delays using the ELP metric and/or the min-size metric gives

very good results. This brings in a heuristic element into the gate level optimization

framework that is not the case at the module level.

 The procedure described above formulates the energy consumption of a circuit in

terms of the delays of the gates i.e. it formulates E(d). This is the first step needed to

apply DAV based optimization. As described in Section 3.3, E(d) can be represented as

E’(r) where r represents the co-ordinates of ∆ in the null-space of T. The energy

consumption of the circuit can now be minimized by finding the global minimum of

E’(r) using any global optimization algorithm. The corresponding vector minr can be

used to find ⋅ minmin initd = d + U r , the optimum delay assignment for the gates that

minimizes energy. The optimum gate sizes, VDDs and Vths can then be found using the

procedure described above.

 58

 There are a few practical issues with the procedure outlined above. First, the

procedure described above could find different VDDs for different gates from the allowed

set of VDDs. This would necessitate the use of a level-shifter whenever a low VDD gate

drove a high VDD gate with a lot of accompanying overhead. Second, the size of the

problem (equal to size ofr) for big circuits can be too big to be handled by any global

optimization algorithm in reasonable computation time. Third, the current delay

assignment might not always be matched exactly because of the finite number of sizes,

VDDs and Vths available, leading to a possible violation of the delay constraint.

The third problem can be handled by realizing that the delay assignment variation

method is just a way to explore the design space. Hence, by formulating a cost function

that is a weighted sum of the normalized circuit delay violation and the normalized

energy consumption and then minimizing it, the best design in terms of circuit delay and

energy consumption can still be obtained. The energy-delay product (EDP) of the entire

circuit can also be used as a cost function.

The next section describes how the first two problems can be mitigated by

partitioning the circuit into smaller sub-circuits and doing the optimization hierarchically.

5.4 Hierarchical Application of DAV based optimization

Figure 5.4 shows the example combinational circuit partitioned into two sub-

circuits. All gates in a sub-circuit can be constrained to have a single value of VDD. This

reduces the need for level-shifters to just the boundaries between sub-circuits. The value

 59

of VDDi for sub-circuit ‘i’ then also becomes an optimization variable and can be added to

the problem i.e E’(r) can be reformulated as E’(subir , VDDi), where subir refers to the

co-ordinates of a vector in the nullspace of the topology matrix for sub-circuit ‘i’, Usubi.

Furthermore, by partitioning the circuit such that a minimum numbers of edges are cut

between sub-circuits, the overhead of level-shifters can be brought further down.

Partitioning also reduces the size of r for each sub-circuit and hence allows for faster

optimization.

The topology matrix of sub-circuit ‘i’, Tsubi, can be computed easily from the

topology matrix of the entire circuit, T. It is just those columns of T that correspond to

the gates in sub-circuit ‘i’. For example, the topology matrix for the example circuit is:

1 0 1 0 1 1 0 1

0 1 1 0 1 1 0 1

0 1 0 1 1 1 0 1

0 1 0 0 0 0 1 1

 =

sub1 sub2T T

T
 (5.2)

Figure 5.4. Example combinational circuit partitioned into 2 sub-
circuits

 60

If the sub-circuit with gates 1, 2, 3 and 4 is sub-circuit 1, and the other sub-circuit

is 2, then the sub-circuit topology matrices are:

1 0 1 0 1 1 0 1

0 1 1 0 1 1 0 1
,

0 1 0 1 1 1 0 1

0 1 0 0 0 0 1 1

 = =

sub1 sub2T T (5.3)

The reduced topology matrix, Tr, is:

1 0 1 0 1 1 0 1

1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 1 1 1 0

 − =
 − −
 − − − −

r r
sub1 sub2

r

T T

T
 (5.4)

Tr is the same size as T since all the path equations are independent. The

corresponding reduced sub-circuit topology matrices are:

1 0 1 0 1 1 0 1

1 1 0 0 0 0 0 0
,

1 1 1 1 0 0 0 0

1 1 1 0 1 1 1 0

 − = =
 − −
 − − − −

r r
sub1 sub2T T (5.5)

Just as the null-spaces of T and Tr are the same (since they represent the same set

of equations), similarly the null-spaces of Tsubi and Tr
subi are also the same (they also

represent the same set of equations). Hence, the computation of the null-spaces of the

sub-circuit topology matrices can also be done from the reduced topology matrix.

Application of DAV based optimization to a sub-circuit implies that the delays of

paths inside the sub-circuit do not change. This is an extra restriction that does not allow

path delay variation between sub-circuits. This may not be desirable in the case when the

energy consumptions of the sub-circuits are very different. In this case, the path delays of

 61

the high energy consuming sub-circuits should be increased (from their initial values)

compared to the low energy consuming sub-circuits so that the overall circuit can operate

at lower energy. However, applying DAV based optimization to sub-circuits will not let

this happen as it will keep the sub-circuit path delays at their initial values.

The solution to this problem is to first apply DAV based optimization between

sub-circuits and then within each sub-circuit. To apply DAV based optimization between

sub-circuits, each sub-circuit ‘i’ is assigned a number, ∆subi, representing the amount of

extra delay added to the gates in the sub-circuit. Assuming the circuit is partitioned into K

sub-circuits, let sub∆ =[∆sub1 ∆sub2 … ∆subK]
T represent the perturbation vector for the K

sub-circuits. Then, sub∆ is used to construct the perturbation vector,pseudo∆ , that will be

used to perturb the gate delay vector,d . First, a partition matrix, P, of K rows and N

columns, representing the partitioning scheme is constructed as follows:

j i 1

0

i f g a t e i l i e s i n p a r t i t i o n j

o t h e r w i s e

=

=

P
 (5.6)

For the example circuit, the P matrix is:

2 8

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
x

=

P (5.7)

Then, pseudo∆ is given by:

⋅T
p s e u d o s u b∆ = P ∆ (5.8)

For example, given the sub-circuit perturbation vector sub∆ = [∆sub1 ∆sub2]
T for the

example circuit in Figure 5.4, the perturbation vector is

[]sub1 sub1 sub1 sub1 sub2 sub2 sub2 sub2= ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
T

pseudo∆ . However, this pseudo∆

 62

is not guaranteed to lie in the nullspace of T, U (hence the subscript pseudo). The actual

perturbation vector,∆ , is found by projecting pseudo∆ into the nullspace, U. This is done as

follows:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅T T T
pseudo sub sub∆ = U U ∆ = U U P ∆ = H ∆ (5.9)

where ≡ ⋅ ⋅T TH U U P can be thought of as a higher level (or hierarchical) null-space

matrix (in analogy with Equation 3.11). Recall from Section 3.3 that U is a N by Q

matrix, where N is the number of gates in the circuit and Q is the number of vectors in the

null-space of T. Hence, H is a N by K matrix. It is easy to see that

() ()⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅T T T T T T
sub sub subT ∆ = T U U P ∆ = T U U P ∆ = 0 U P ∆ = 0 showing that

∆ indeed lies in the null-space of T.

 The hierarchical DAV based optimization can now be formulated as a two step

procedure as follows:

(i) Inter-partition DAV based optimization: This consists of the following sub-steps:

(a) Formulate E(d) as E’(sub∆) = E(⋅init subd + H ∆).

(b) Minimize E’(sub∆) using any global optimization algorithm. Let the

minimizing vector be min
sub∆ .

(c) Compute ⋅
min min
hier init subd = d + H ∆ .

min
hierd as the optimal delay assignment for

the gates that minimizes energy at this level of hierarchy. This becomes the initial

delay assignment for the next stage of optimization.

(ii) Intra-partition DAV based optimization: Initialize the optimal delay assignment

vector
min

d to zero for all gates. Repeat the following sub-steps for each sub-circuit ‘i’:

 63

(a) Let
init
subid be the delays corresponding to sub-circuit ‘i’ in

min
hierd .

(b) Formulate E(d) as E’(subir , VDDi) = E(+ ⋅
init

subisubi subid U r) . All gates in

sub-circuit ‘i’ are constrained to have supply voltage VDDi. The energies of gates

not in sub-circuit ‘i’ are included in E’(subir , VDDi) also.

(c) Minimize E’(subir , VDDi) using any global optimization algorithm. Let the

minimizing vector be
min
subir and the minimizing VDDi be min

DDiV .

(d) Compute ⋅
min init min

subisubi subi subid = d + U r as the optimal delay assignment for the

sub-circuit gates that minimizes total circuit energy.

(e) Set the entries in
min

d corresponding to the gates in sub-circuit ‘i’ to
min
subid .

The optimal delay vector
min

d obtained after step (ii) can be used to compute the

optimal gate parameters using procedure match_delay under the condition that all gates in

a sub-circuit are only allowed to use the minimizing VDD for that sub-circuit.

Although the above discussion assumed energy as the cost function, any other

cost function could also be used. Whatever cost function is used, it should compute the

cost at the circuit level even when sub-circuits are optimized (in step (ii) above). For

example, if a weighted sum of total circuit energy (normalized to the initial energy) and

circuit delay (normalized to the initial delay) is used as the cost function, a sub-circuit

delay assignment that reduces sub-circuit energy at the expense of increased delay might

have lower cost at sub-circuit level but higher cost at circuit level. For example, if a sub-

circuit delay assignment reduces sub-circuit energy by 40% but the overall circuit delay

 64

increases by 10% (due to limited library size), the sub-circuit cost would reduce by 15%

(assuming equal weightage for energy and delay) but the overall circuit cost would

increase by 1% (assuming sub-circuit energy is one-fifth of circuit energy, circuit energy

reduces by 8% only).

5.5 Analysis of Optimization Complexity

The complexity without partitioning is first analyzed. Firstly, at the circuit level,

the number of optimization variables is Q+1, where Q (length of r) is the number of

vectors in the null-space of the topology matrix, T. This assumes that only one VDD is

allowed for the circuit and it is an optimization variable. Q is equal to N-R, where R is

the rank of T. In the worst case, the rank of T might be 1, in which case, Q is N-1. Hence,

in the worst case the number of optimization variables is N. Secondly, the calculation of

the cost function is O(N+E), where E is the number of edges in the circuit, since for any

delay assignment, the corresponding sizes and Vths for the gates can be found in one

backward traversal over the circuit and the energy consumption can be found in another

traversal over the circuit. Finally, if the global optimization algorithm is restricted to

O((Q+1)2) (=O(N2), in the worst case) cost function evaluations to locate the global

optimum, the overall complexity in the worst case is O(N2(N+E)). This level of hierarchy

in which the whole circuit is flatly optimized is numbered 0 in Figure 5.5. This level only

utilizes the nullspace matrix, U, of the overall topology matrix, T.

Now assume the circuit is partitioned into K equal sub-circuits. The problem size

(number of optimization variables) for inter-partition optimization is K (length of sub∆).

The H matrix needed for inter-partition optimization at this level of hierarchy is referred

 65

to as H1 in Figure 5.5. The cost function evaluation is O(N+E). Hence, the optimization

complexity for inter-partition optimization is O(K2(N+E)). In intra-partition optimization,

the problem size for a sub-circuit ‘i’ is N/K in the worst case (under the assumption that

the number of vectors in the null-space of Tsubi scale down directly). However, the cost

function calculation is still O(N+E) since the total circuit energy/delay is computed even

when optimizing sub-circuits. Hence, the optimization complexity for optimizing all the

partitions in intra-partition optimization is K times O((N/K)2(N+E)) = O(N2(N+E)/K).

The null-spaces of the partition topology matrices are referred to as U1, U2, etc in Figure

5.5. Thus, the overall optimization complexity with partitioning is O(K2(N+E)) +

O(N2(N+E)/K) = O((K2+N2/K)(N+E)). To see how the complexity varies with the

number of partitions, the function K2+N2/K is plotted in Figure 5.6 for N=100 and K

varying from 1 to 100. It is seen that there is an optimum number of partitions that

minimizes optimization complexity. The optimum number of partitions can be calculated

by differentiating K2+N2/K to get
2/3

optK =0.794N which gives the minimum value

of K2+N2/K to be 4/31.89N . This yields an optimization complexity with an optimum

number of partitions of O(
4/3N (N+E)) which is better than the optimization

complexity without partitions (Level 0). This level of hierarchy (in which the partitions of

the circuit are optimized flatly) is numbered 1 in Figure 5.5.

The partitioning scheme can be carried one step further. Instead of optimizing the

partitions generated in the previous step flatly (in the intra-partition optimization step),

each partition can be further partitioned into sub-partitions and the sub-partitions

optimized flatly (hierarchy level 2 in Figure 5.5). The optimization complexity for inter-

partition optimization would still be O(K2(N+E)) from above. However, the optimization

 66

complexity for intra-partition optimization would be different now since partitions have

been further split into sub-partitions. Assuming the cost function at this level is computed

for the whole partition only instead of the whole circuit, the cost function calculation

would be O((N+E)/K). The optimization complexity for inter-sub-partition optimization

would be O(K2(N+E)/K) or O(K(N+E)). The complexity for intra-sub-partition

optimization for all sub-partitions in a partition would be K times O((N/K2)2(N+E)/K) or

O(N2(N+E)/K4). Thus, the total complexity of intra-partition optimization now would be

K times (O(K(N+E)) + O(N2(N+E)/K4)) or O((K2+ N2/K3)(N+E)). Combining this with

the inter-partition complexity finally gives the overall complexity of (O(K2(N+E))+

O((K2+ N2/K3)(N+E))) or O((2K2+ N2/K3)(N+E)). The function 2K2+N2/K3 is plotted in

Figure 5.7 for N=100 and K varying from 1 to 100. It is observed that less number of

partitions are needed per level at this level (Level 2 in Figure 5.5) of optimization as

compared to Level 1. However, the total number of lowest level partitions went up from

17 to 36 (62). The optimum number of partitions can be calculated as before by

differentiating 2K2+N2/K3 to get
2/5

optK =0.891N which gives the minimum value of

2K2+N2/K3 to be 4/52.97N . This yields an optimization complexity with an optimum

number of partitions of O(
4/5N (N+E)) which is better than the optimization

complexity at hierarchies 0 and 1.

Thus, hierarchical DAV optimization can result in significant computational

speedup. In the next section, the energy-saving/speedup tradeoff is shown for the

ISCAS’85 benchmark circuits.

 67

Figure 5.5. Pictorial representation of hierarchical DAV based optimization

Figure 5.6. Plot of (K2+N2/K) versus K

 68

5.6 Implementation and Results

 The DAV based optimization methodology was applied to ISCAS’85 benchmark

circuits. Each benchmark circuit was first sized for speed using Synopsys Design Vision

with a library of 2 to 4 input NAND and NOR gates, and inverters. For the optimum

sizing obtained, the initial delay, dynamic and static energy consumption of the circuit

was determined (with a VDD of 1V, Vth of 0.2V for all gates and a capacitive load of 3 fF

at POs) using SPICE models for a 70nm CMOS technology as described in Section 5.2.

The switching activities and the static probabilities of all gate outputs (needed for the

calculation of the dynamic and static energy consumption values) were also obtained

using Synopsys Design Vision assuming switching activities of 0.1 and static

probabilities of 0.5 at the PIs. A TSMC wire load model was used for net length

estimation for different fan-outs and the distributed capacitance per unit length of local

interconnects was computed taking into account coupling capacitances and ground plane

Figure 5.7. Plot of (2K2+N2/K 3) versus K

 69

capacitances in a typical VLSI layout [60]. The width and spacing between interconnects

was taken to be 0.1 micron, and the thickness of interconnect and dielectric was taken to

be 0.2 micron respectively. The dielectric constant was taken to be 3.9 (SiO2).

 The optimization was carried out at hierarchy level 1 in Figure 5.5. For the ISCAS

benchmark circuits, it was found that operating at this level gives good energy savings

while consuming small computation time. For bigger circuits, going deeper in the

hierarchy might be needed.

 Two kinds of partitioning schemes were studied. In the first scheme, each

benchmark circuit was partitioned using hMETIS [61] such that a minimum number of

edges were cut between sub-circuits. Since, in the final optimized circuit, each sub-circuit

can have different VDDs, “min-cut” partitioning can minimize the number of level shifters

needed. The size of each sub-circuit was kept almost equal and restricted to

approximately 100 gates. Since each of the sub-circuits is optimized separately, the loads

that the POs of a sub-circuit drive cannot be fixed if the sizes of the gates driven by POs

(which are the PIs of the driven sub-circuit) are allowed to change during optimization.

This problem was handled by fixing the sizes of the PIs of the sub-circuits at their initial

values. Only the sizes of the gates that were not driven by gates in other sub-circuits were

allowed to change from their initial values during the optimization.

 The second partitioning scheme simply split the gates equally between the

partitions in topological order. Figure 5.4 shows the example circuit “topologically”

partitioned into two equal sub-circuits. The advantage of this scheme is that the partitions

can also be guaranteed to be sorted topologically. If the sub-circuits are then optimized in

reverse topological order, the load that the POs of a sub-circuit drive are fixed before that

 70

sub-circuit is optimized (since the driven sub-circuits have already been optimized).

Hence, the PIs of the sub-circuits do not have to be restricted to their initial values (as for

min-cut partitioning). Furthermore, the VDDs of the gates driven by the POs of a sub-

circuit are also fixed before the sub-circuit is optimized. This allows the restriction of the

VDD of the sub-circuit during its optimization, to a value greater than or equal to the

maximum VDD of its successor sub-circuits. This, in turn, guarantees that level-shifters

will not be needed in the optimized circuit. The “min-cut” and “topological” partitioning

schemes represent two trade-offs present in any dual/multi-VDD design. In the “min-cut”

scheme, any VDD can be used for a sub-circuit at the cost of additional level-shifters

whereas in the “topological” scheme, no level-shifters are needed but the freedom in

choosing sub-circuit VDD is restricted.

 Since some of the gates in the circuit have available slack after the sizing for

speed, the first step in the optimization was to take up the slack so that the energy

consumption of those gates could be reduced. This was done by using an “energy-aware”

version of the Zero Slack Algorithm (ZSA) described in Appendix B. The slack of gates

was taken up in the order of decreasing energy-slack product instead of uniformly as in

the normal ZSA [55]. This allowed gates with high energy consumption to be slowed

down while also reducing the number of iterations to get to the zero slack state. The VDDs

of the sub-circuits were kept at their initial values (1V) during this phase while the sizes

and Vths of the gates were chosen to match the new delays using the backward traversal

method described in the previous section. Note that most optimization algorithms stop

after this step i.e. after having taken up the slack. However, the results obtained after this

step might still be far from optimal because there are innumerable ways to take up slack

 71

out of which only one is the best. Another way to look at DAV based optimization is that

it basically searches efficiently for the best way to take up slack amongst all possible

ways.

 The second step used the delay assignment of the gates after the ZSA step as input

and found the optimal perturbation that minimizes the energy consumption. The global

optimization method used to minimize the cost function was multi-level co-ordinate

search (MCS) [62].

 Tables 5.1 and 5.4 give the optimization results for ISCAS’85 benchmark circuits

for the two different partitioning schemes studied. For the DAV optimization, all

(continuous) sizes between 1 and 20 were assumed available. All voltages between 0.8V

and 1.2V were assumed available for use as sub-circuit VDDs. At the end, a post-

processing step quantizes the sizes to a resolution of 0.2 and clusters the VDDs into a

maximum of 3 different values (to take into account a finite sized library and limited

numbers of VDDs allowed in practice). The threshold voltages allowed were 0.2V and

0.3V. Column 1 gives the circuit name, the number of gates in the circuit and the number

of sub-circuits each circuit was partitioned into. Columns 2 and 3 give the initial delay

and energy consumption of the circuit respectively. Columns 4 and 5 give the energy

decrease and delay increase after the first step (ZSA) of the optimization. As mentioned

before, in this step, all the sub-circuits were kept at the initial voltage of 1V while the

slack of the gates was taken up (by decreasing the size and/or increasing Vth). Columns 6

and 7 give the total energy decrease and the delay increase after the second step (DAV).

The DAV step assumed perfect level-shifters with zero delay and energy overheads. The

first sub-columns of the 8th and 9th columns give the energy decrease and delay increase

 72

respectively if the DAV-optimized sub-circuits are connected together without any level-

shifters. These numbers show that there is not a very significant effect of low-voltage

gates driving high-voltage gates (at sub-circuit boundaries) on the total circuit energy and

circuit delay. This is due to the fact that there is little difference between the sub-circuit

VDDs obtained after DAV optimization (as shown in Tables 2 and 4). The second sub-

columns of the 8th and 9th columns show the energy decrease and delay increase after

quantizing the sizes to a resolution of 0.2 and clustering the sub-circuit VDDs to 3 values.

Clustering was done simply by grouping together VDDs close to each other into their

mean value. After clustering, the high VDD gates that were driven by low VDD gates were

given a higher threshold voltage to reduce their leakage power. This is shown to be a

better trade-off than inserting level-shifters, when the voltage difference is small [63].

The third sub-columns of the 8th and 9th columns show the effect of this on the energy

decrease and delay increase of the circuit. Tables 5.2 and 5.3 give some statistics of the

initial and final circuits. The final sub-circuit VDDs used (after clustering) are also given.

 As mentioned before, while most methods stop after taking up slack using some

energy-aware heuristic (the one in Appendix B being one example heuristic), DAV based

optimization searches for the best way to take up slack. This is how it is able to reduce

energy beyond what other methods can give. For the ISCAS benchmark circuits, the

energy savings after the ZSA step is 24% on the average. This represents the energy

savings possible by using a heuristic to take up slack. DAV based search is however able

to give 36% (using min-cut partitioning) on the average. The ZSA method in Appendix B

has complexity O(N(N+E)) in the worst case since it could potentially do N calculations

of the circuit slack before stopping and every slack calculation is O(N+E). The DAV

 73

based optimization, on the other hand, is O(
4/3N (N+E)) (with optimum number of

partitions), which is only marginally higher.

 Finally, to compare the speed-up obtained due to partitioning, the smallest ISCAS

benchmark circuit ‘c432’ was optimized flatly (hierarchy level 0) and with 4 partitions

(hierarchy level 1). Other benchmarks were too big too be optimized flatly in a

reasonable time frame. For ‘c432’, it was found that the energy saving at level 0 was

39.1% with a 1.7% delay overhead. This can be compared to the results for level 1 in

Tables 5.1 and 5.4. With min-cut partitioning, energy saving at level 1 was 37.3% with

2% delay overhead. With topological partitioning, energy saving at level 1 was 36.3%

with 1.1% delay overhead. However, the optimization time at level 1 was 1000 seconds

while the optimization time at level 0 was 20000 seconds, giving a 20X speedup. Note

that the optimization assumes only one VDD per partition. Hence only one VDD was used

for the whole circuit at level 0 whereas at level 1, each partition had a separate VDD. The

availability of extra VDDs at level 1 seems to be able to compensate for the loss due to

hierarchy.

 Figure 5.8 gives the tradeoff between computational speedup and EDP savings at

hierarchy levels 1 and 2 for the ISCAS circuits and a 16 bit ALU. The number of

partitions that were optimized flatly was kept the same for both levels. For example, the

circuit ‘c2670’ was optimized using 16 partitions at level 1 and 4 partitions (each with 4

sub-partitions) at level 2. At hierarchy level 2, only the partitions at level 1 were allowed

to have different VDDs (i.e. all the sub-partitions of a partition had the same VDD). It is

seen that there is significant reduction in optimization time at level 2 compared to level 1.

Furthermore, the EDP savings obtained at level 2 are very close to those obtained at level

 74

1. In fact, for some cases, the savings obtained at level 2 are more than the savings

obtained at level 1. This is because there are a lot more VDDs used at level 1 compared to

level 2 (for example 16 at level 1 and 4 at level 2 for ‘c2670’) and this leads to some EDP

degradation at level 1 due to VDD clustering and level-shifting.

 Figures 5.9 and 5.10 give the optimization times at levels 1 and 2 for the ISCAS

circuits. It is seen that the optimization times at level 1 track the optimal complexity

calculated in Section 5.5 closely (even though the number of partitions was not chosen to

be Kopt in the experiments). The optimization times at level 2 do not track so closely. This

is probably due to the fact that the implementation of the optimization algorithm at level

2 (in MATLAB and the C programming language) had complexity O(N+E) and not

O((N+E)/K) as required in Section 5.5.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

c432 c499 c1908 c2670 c3540 c5315 c7552 16 Bit ALU

Circuit

P
er

ce
n

ta
g

e
R

ed
u

ct
io

n

EDP savings at hier 1

EDP savings at hier 2

Optimization time reduction
at hier 2 compared to hier 1

Figure 5.8. Comparison of EDP savings and optimization time reduction between
hierarchy 1 and hierarchy 2

 75

0

5000

10000

15000

20000

25000

30000

35000

0 50000 100000 150000 200000 250000

N4/3(N+E)/1000

O
p

tim
iz

at
io

n
 ti

m
e

(s
ec

)

Figure 5.9. Plot of optimization times for ICSAS benchmark circuits (at
hierarchy 1) versus N4/3(N+E)

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000 2500 3000 3500 4000

N4/5(N+E)/1000

O
p

tim
iz

at
io

n
 ti

m
e

(s
ec

)

Figure 5.10. Plot of optimization times for ICSAS benchmark circuits (at
hierarchy 2) versus N4/5(N+E)

 76

Table 5.1. Optimization Results (min-cut partitioning)

Circuit

(#Gates,

#Sub-

circuits)

Initi al

Delay

(ps)

Initial

Energy

(fJ)

%

Energy

Decrease

(ZSA)

%

Delay

Increase

(ZSA)

%

Energy

Decrease

(DAV)

%

Delay

Increase

(DAV)

% Energy

Decrease

(Final)

% Delay

Increase

(Final)

c432

(267,4)
457 94.6 24.4 1.2 36.1 1.7 34.3 34.337.3 1.7 1.9 2

c499

(835,8)
351 351 24.3 1.6 29.7 1.7 29.5 29.7 30 1.7 2.3 2.3

c1908

(680,8)
523 262 21.8 1.25 28.1 4.3 26 26.227.9 4.4 4.5 4.5

c2670

(875,8)
326 333 23.7 1.7 38.3 1.5 36.6 37.442.1 1.7 1.9 2.9

c3540

(1319,8)
632 528 25.6 1.4 34.5 0.8 31.4 31.438.4 0.8 1.3 1.3

c5315

(1994,16)
510 784 25.3 0.7 34 0.4 29.4 34.240.8 4.6 3.9 3.9

c7552

(2538,16)
444 1088 21.8 1.9 32.7 2 30.9 29.435.1 2.4 2 2.5

Average 463 492 23.8 1.4 33.3 1.8 31.2 31.835.9 2.5 2.5 2.8

 77

Table 5.3. Circuit Statistics (topological partitioning)

Initial Circuit Final Circuit

Circuit
Min

Size

Mean

Size

Max

Size

Min

Size

Mean

Size

Max

Size

% Decrease

in Circuit

Size

% High

V th

gates

Sub-circuit

VDDs (V)

c432 1 2.35 6 1 1.45 6 38.5 58.4 0.99

c499 1 2.52 6 1 1.71 6 32.2 24.8 1

c1908 1 2.23 6 1 1.53 9.2 31.6 68.4 1.05,1.2

c2670 1 2.6 6 1 1.56 6 40 67.7 0.97,1

c3540 1 2.25 6 1 1.62 11.2 28.1 71 1

c5315 1 2.27 7 1 1.49 6.6 34.3 81.2 0.98,1.01,1.05

c7552 1 2.24 8 1 1.54 6.4 31 74.3 1,1.02,1.04

Average 1 2.35 6.43 1 1.56 7.34 33.7 63.7 -

Table 5.2. Circuit Statistics (min-cut partitioning)

Initial Circuit Final Circuit

Circuit Min

Size

Mean

Size

Max

Size

Min

Size

Mean

Size

Max

Size

% Decrease

in Circuit

Size

% High

V th

gates

Sub-circuit

VDDs (V)

c432 1 2.35 6 1 1.41 6 40.2 56.9 0.96, 0.98, 1

c499 1 2.52 6 1 1.65 6 34.7 25.6 1

c1908 1 2.23 6 1 1.68 6 24.5 47.5 0.93, 0.99, 1

c2670 1 2.6 6 1 1.54 6 40.9 67.1 0.85, 0.99, 1.01

c3540 1 2.25 6 1 1.58 6 29.8 68.6 0.89, 0.98, 1

c5315 1 2.27 7 1 1.54 9.6 32.3 71.6 0.82, 0.96, 1.14

c7552 1 2.24 8 1 1.57 8 29.8 71.2 0.88, 0.92, 1.01

Average 1 2.35 6.43 1 1.57 6.8 33.17 58.36 -

 78

Table 5.4. Optimization Results (topological partitioning)

Circuit

(#Gates,

#Sub-

circuits)

Initial

Delay

(ps)

Initial

Energy

(fJ)

%

Energy

Decrease

(ZSA)

%

Delay

Increase

(ZSA)

%

Energy

Decrease

(DAV)

%

Delay

Increase

(DAV)

% Energy

Decrease

(Final)

% Delay

Increase

(Final)

c432

(267,4)
457 94.6 24.4 1.2 33 0.4 33 33.7 36.3 0.4 1 1.1

c499

(835,8)
351 351 24.3 1.6 26.8 1.1 26.8 26.1 26.6 1.1 1.8 2.1

c1908

(680,8)
523 262 21.8 1.2 8.2 2.3 8.3 8.3 11.3 2 2.5 2.5

c2670

(875,8)
326 333 23.7 1.7 33.2 0.9 33.2 33.2 36.9 0.9 1.8 2.8

c3540

(1319,8)
632 528 25.6 1.4 31 0.2 30.9 31 36.4 0.2 0.8 1.1

c5315

(1994,16)
510 784 25.3 0.7 26.8 0.7 25.4 27.7 34.5 0.4 0.7 1.2

c7552

(2538,16)
444 1088 21.8 1.9 25.5 1.1 25.5 25.1 30.8 1 1.2 2

Average 463 492 23.8 1.4 26.4 1.0 26.2 26.4 30.4 0.9 1.4 1.8

 79

5.7 Conclusion

This chapter presented a technique for modeling delay and energy consumption of

CMOS combinational circuits using SPICE look-up tables. A method was presented for

using DAV based optimization to minimize the energy consumption of CMOS circuits at

the gate level. A hierarchical method was developed to handle large netlists efficiently. It

was shown that DAV based optimization can yield 12% better energy savings compared

to traditional slack based optimization approaches. The computational complexity of

DAV based optimization was shown to be only marginally higher than traditional

methods.

 80

Chapter VI

Gate Level Soft-Error Optimization

6.1 Introduction

Technology scaling roughly leads to a doubling of clock frequencies every

generation, a 30% decreases in node capacitances every generation and a 30% reduction

in supply voltages to reduce power consumption. All these factors are leading to a drastic

increase in soft-error susceptibility of combinational and memory circuits to alpha-

particle and neutron strikes. Because of the reduced node capacitances, a smaller injected

charge is needed to induce a glitch at a circuit node. Thus, low-energy particle strikes that

earlier had no effect on a circuit can now cause soft-errors. Because of the reduced supply

voltages, noise margins are reduced, which also increases the susceptibility to particle

strikes. Increasing clock frequencies increase the probability of a soft-error getting

latched. Furthermore, due to super-pipelining, the number of gates in pipeline stages have

been reducing, which in turn reduces the electrical attenuation of glitches as they

propagate to the latches.

Although these factors affect both memory and combinational elements, the

overall soft-error rate of memories is not increased as much as combinational logic

because memories are protected by techniques such as error-correcting codes (ECC).

There has not been a need to protect combinational circuits because combinational

circuits have a natural tendency to mask glitches due to three phenomena [64]. First, due

to logical masking, a glitch might not propagate to a latch because of a gate on the path

 81

not being sensitized to facilitate glitch propagation. Second, due to electrical masking, a

generated glitch might get attenuated because of the delays of the gates on the path to the

output. Third, due to latching-window masking, a glitch that reaches the primary output

might not still cause an error because of the latch not being open. The factors mentioned

in the previous paragraph adversely affect all the above three factors in terms of soft-error

tolerance. Due to decreasing number of gates in a pipeline stage, logical masking as well

as electrical masking has been decreasing for new technology generations. Electrical

masking has also been decreasing due to the reduction in node capacitances and supply

voltages every generation. Furthermore, increasing clock frequencies have reduced the

time window in which latches are not accepting data, thereby reducing latching-window

masking also. Because of these factors, the soft-error rate (SER) of combinational logic is

expected to rise 9 orders of magnitude from 1992 to 2011, when it will equal the SER of

unprotected memory elements [4].

Generally, in mission-critical space applications combinational circuits are

protected by using duplication/triplication and concurrent-error detection (CED) [46].

However, these methods have too high delay, area and power overheads to be used in

commercial applications. Recently, low-cost methods for increasing soft-error tolerance

of commodity applications using time-redundancy [49] and partial duplication [50] have

been proposed. However, these methods still add additional delay overhead to the

original circuit due to the presence of the checker circuit. Also, these methods have

system level overheads (such as pipeline flushes) when an error is detected, either to

correct the error or to do the computation again.

 82

This chapter proposes a novel, low delay-overhead method for increasing the soft-

error tolerance of nanometer CMOS combinational logic circuits using DAV based

optimization. Using an optimal assignment of supply voltages, threshold voltages and

sizes to gates and by adding optimal amounts of capacitive loads at the primary outputs,

the electrical attenuation characteristics of the gates in the circuits are enhanced without

incurring significant delay overhead. Multi-supply voltage and multi-threshold voltage

designs are becoming increasingly common for low-power applications, however if these

are infeasible, the method can still be used to just find optimal gate sizings for increased

soft-error tolerance using the specified supply and threshold voltage. This method can be

used along with any of the traditional methods described above to greatly decrease the

overhead of error detection and correction.

The chapter is organized as follows. Section 6.2 describes characteristics of gates

that affect the strike-induced glitches. Section 6.3 describes ASERTA, a tool for fast and

accurate analysis of the soft-error tolerance of a circuit. Section 6.4 describes SERTOPT,

a circuit optimization tool for enhancing the soft-error tolerance of circuits while meeting

timing constraints. Section 6.5 gives experimental results. Section 6.6 concludes.

6.2 Glitch tolerance characteristics of individual gates

There are two characteristics of interest for a single gate in terms of soft error

tolerance: glitch generation and glitch propagation. The glitch generation characteristics

of a logic gate determine the shape and magnitude of the voltage glitch generated at the

output of the gate due to a particle strike on the gate. The glitch propagation

characteristics of a logic gate determine how the gate attenuates a glitch that is generated

at some prior circuit node as it passes through the logic gate.

 83

When a particle strikes a circuit node, the voltage magnitude of the corresponding

glitch is dependent on the total capacitance of the node. The duration of the generated

glitch is dependent on the delay of the gate that is driving the node. If the gate driving the

node is fast, it will quickly discharge (or charge) the node back to its original value.

Therefore, faster gates have better glitch generation characteristics in terms of the

generated glitch width. However, the behaviour is opposite for glitch propagation.

Assuming a linear ramp at the output of the gate, for a gate propagation delay of d and

glitch duration of wi at the gate input, glitch duration at the output of the gate, wo, can be

approximated as follows (see Figure 6.1):

()
0

2 2

2

o i

o i i

o i i

w if w d

w w d if d w d

w w if w d

= <
= ⋅ − < < ⋅
= > ⋅

 (6.1)

This model is similar to the glitch amplitude attenuation model used in [65]. As

seen from Equation 6.1, a slow gate will attenuate a glitch at its output more compared to

a fast gate. Therefore, slow gates have better glitch attenuation characteristics.

Increasing a gate’s output capacitance increases the delay of that gate. This makes

the glitch attenuation characteristics of that gate better. Furthermore, if the capacitance is

large enough, the particle may not have enough energy to create enough voltage

Figure 6.1. Input and output signals for different gate delays

 84

fluctuation for an error. So, a large enough output capacitance may improve both glitch

generation and glitch propagation characteristics of a gate at a cost of increased gate

delay.

Figures 6.2 and 6.3 show SPICE simulation results for generated glitch width and

propagated glitch width, respectively, for an inverter for different values of gate size, gate

supply voltage (VDD), gate threshold voltage (Vth) and gate load (Cload). The SPICE

models are for 70nm technology node [59]. The minimum and maximum values of the

variables are indicated on the x-axis. Size of 1 means a gate width of 100nm. It is clear

that if the output load is kept constant, the factors that slow down a gate (decrease in size,

reduction in VDD, and increase in Vth) increase generated glitch width but also increase

the attenuation of propagating glitches. The generated glitch width first increases with

output capacitance, then it starts to decrease. This behaviour is explained as follows: If

Figure 6.2. Glitch generation characteristics for an inverter for an injected
charge of 16fC.

 85

the capacitance is small, the voltage generated at the gate’s output is clipped by the diode

between the source and the body of the transistor. For this case, smaller capacitance will

hold less charge for the same voltage (Q = CV), making the discharge (recharge) time

faster. This initially results in larger glitch widths for increasing values of output

capacitance. However, if the output capacitance is large enough, the magnitude of the

generated voltage glitch will reduce, and eventually become too small to cause an error.

There are two insights gained from the SPICE simulation data. First, only

generated glitch width or propagated glitch width are not enough to characterize the

“softness” of a gate as this might lead to erroneous conclusions. If only glitch

propagation characteristics are considered as a measure of the “softness” of a gate (as in

[66]), slowing down a gate would apparently always reduce the softness of the circuit;

however, a slower gate will produce a bigger glitch at its output when it is subjected to a

Figure 6.3. Glitch propagation characteristics of an inverter for an input glitch of
duration 50ps.

 86

particle strike. Such a glitch can easily propagate to the output and cause an error. The

circuit must be considered as a whole and any soft error tolerance enhancement scheme

should consider both glitch generation and glitch propagation characteristics of the gates

as well as their location in the circuit.

The second insight is that the soft-error tolerance of a combinational circuit can

be increased by increasing the capacitive loads of the gates at the primary outputs (POs)

as this will attenuate all glitches reaching the POs (see propagated glitch width variation

with Cload in Figure 6.3). The capacitive load should be increased beyond the critical

point (peak in Cload curve in Figure 6.2) so that the generated glitch width at the POs is

also small. However, a delay penalty will be incurred due to the increased load at the

POs. This can be offset by appropriate selection of sizes, VDDs and Vths for the gates in

the circuit as described in Section 6.4. The next section describes ASERTA, a tool for

accurate estimation of the soft-error tolerance of a circuit.

6.3 Circuit soft-error tolerance analysis

ASERTA models a particle strike at a node as a current source injecting (or

removing) a fixed amount of charge into (or from) that node. If the node is at low

voltage, charge is injected into the node and if the node is at high voltage, charge is

removed by the current source. The opposites of these two cases do can not cause a

voltage glitch to be generated and are neglected. A SPICE look-up table is constructed

for generated glitch width (due to charge injected at gate output) for different types of

gates, fan-ins, sizes, channel lengths, VDDs, Vths and load capacitances.

The rising and falling behavior of the current waveform generated due to a

particle strike is given by the following equation [67]:

 87

where T is a process dependent parameter. However, for simplicity, the current waveform

in ASERTA is approximated as a trapezoid with duration of 24ps and with rise time and

fall time of 4ps and 16ps respectively.

SPICE look-up tables are also constructed for delays, static energies, dynamic

energies, output ramp and gate input capacitances for different types of gates, fan-ins,

sizes, VDDs, Vths, input ramps and load capacitances as described in Section 5.2.

ASERTA uses linear-interpolation inside the look-up tables to compute output values for

arbitrary values of input parameters. Using look-up tables allows ASERTA to have better

accuracy than analytical models while still being much faster than SPICE. To estimate

the soft-error tolerance of a circuit, ASERTA injects charge into every gate output, looks-

up the generated glitch width from the table and then propagates the generated glitch to

the primary outputs (POs) taking into account the effects of logical and electrical

masking. The sum total of the widths of the glitches reaching the POs is taken as a

measure of the “Unreliability” of the circuit. The amount of charge injected (or removed)

actually depends on the energy of the strike E and the probability of getting a strike of

energy E falls of exponentially with E [68]. To model this, 3 different charge amounts

(corresponding to 3 different strike energies) are actually injected (by varying the

amplitude of the trapezoidal current waveform) at every node and the propagated glitches

at the POs due to the 3 different charges are combined by weighting with the probability

of that charge injection taking place. To model glitch generation and propagation, glitch

width is used alone instead of a combination of width and amplitude since it was found

2
I() exp

t t
t

T TT π
− = ⋅ ⋅ ⋅

 (6.2)

 88

that the latter did not lead to enough increase in accuracy to justify the added complexity.

The following sub-sections describe how ASERTA models logical, electrical and

latching-window masking.

6.3.1 Logical masking
Since actual signal values are not known, for every node ASERTA calculates the

probability that there is at least one sensitized path from that node to a primary output.

Calculation of the sensitization probability values from the input signal statistics is easy

for circuits which do not have reconvergent fan-out. Sensitization probabilities for such

circuits can be calculated as in [66]. However, finding the values for circuits with

reconvergent fan-out is an NP-complete problem [69]. ASERTA uses zero delay

simulation of the circuit with 10000 random inputs applied (as in [50]) to compute the

probability, Pij, that there is at least one path sensitized from output of gate i to primary

output j. For primary output j, Pjj is 1. The static probability, pi, of a node i being at logic

1 is obtained for all nodes using a commercially available tool, Synopsys Design

Compiler, given a static probability of 0.5 at the primary inputs.

For all successor gates s of gate i, the probability that a glitch at i will be able to

propagate through gate s to primary output j is calculated as follows:

∑
Ψ∈

⋅
⋅

=

k
kjik

ijis
isj PS

PS
π (6.3)

where Ψ is the set of successors of gate i and Sis is the probability that gate s is sensitized

to gate i (i.e. all other inputs of gate s have non-controlling values). Sis can be obtained by

multiplying together the static probabilities of the other inputs being 1/0 for a AND/OR

gate. Note that πisj is not taken to be just Sis
.Psj since πisj should have the property that

 89

ij
k

kjikj PP =⋅∑
Ψ∈

π . Also note that πisj is an approximation to the actual probability

value since in circuits with reconvergent fan-out, the probability that gate s is sensitized

to gate i conditions the probability of gate s having a path sensitized to a primary output.

The next sub-section describes the procedure used in ASERTA for computing the

glitch widths at POs for charge injected at every gate output.

6.3.2 Electrical masking
As mentioned before, ASERTA computes the expected output glitch width, Wij,

at primary output j for generated glitch width, wi, at gate i. To do this efficiently in one

pass over the circuit, for every gate, the expected output glitch widths, WSijk, for 10

sample glitch widths, wsk (k between 1 and 10) are computed.

The output glitch widths are computed for all gates in reverse topological order

(i.e. from POs to PIs) as follows:

(i) Let current gate be i.

(ii) If gate i is a primary output, set WSiik=wsk for all k.

Set WSijk=0 for all other primary outputs j.

Also, since gate is primary output, it will propagate generate glitch width, wi,

directly. Hence, set Wii=wi and Wij=0 for all other primary outputs j.

(iii) If gate i is not a primary output, for all sample glitch widths, wsk:

For all successors s of gate i:

Let ds be the delay of gate s looked up from the SPICE tables.

Calculate the glitch width, wosk, propagated to the output of gate s for input width

of wsk using Equation 6.1.

 90

For each primary output j, look up the expected output glitch width, WEsjk, for

generated glitch width of wosk from the table of expected output glitch widths for gate s,

linearly interpolating if necessary.

Finally, Let ijk is j s jk
s

W S W Eπ
∈ Ψ

= ⋅∑

(iv) Compute Wij by looking up the table of expected output glitch widths, WSijk,

computed in step (iii), for a generated glitch width of wi, again linearly interpolating if

necessary. Now process the next gate.

At the end of this procedure, expected output glitch widths, Wij, at primary output

j for generated glitch width, wi, for every gate i are known. The complexity of the

procedure is O(V+E), where V is the number of gates and E is the number of circuit

edges.

Lemma 1: For a very wide glitch wwi generated at output of gate i, the above procedure

correctly computes the expected output glitch width at primary output j as

ij i ijWW = ww P⋅ , if it is assumed that wwi is one of the sample glitch widths used above

(say sample 1).

Proof: Since the generated glitch is very wide, it will pass through all gates on any path

from i to j without attenuation. WSjj1 is correctly computed as wwi at primary output j.

Assume that WSrj1 is correctly computed for all successor gates r of a gate p between i

and j as wwi
.Prj. Then, the expected width WSpj1 will be computed as:

 91

1 1pj prj rj prj i rj
r r

i prj rj i pj
r

WS WS ww P

ww P ww P

π π

π
∈Ψ ∈Ψ

∈Ψ

= ⋅ = ⋅ ⋅

= ⋅ ⋅ = ⋅

∑ ∑

∑

where WSrj1 can be used instead of WErj1 because wwi is wide enough to propagate

through gate r without attenuation. By induction, WSij1 is also computed as i ijww P⋅ .

Since wwi is the first sample glitch width, WSij1 is WWij. □

6.3.3 Latching-window masking
A glitch must arrive within the setup and hold times of the latch at the primary

output to be captured. Since the exact time of the particle strike is unknown, it can be

assumed to be uniformly distributed within the clock cycle. The probability of a glitch

being captured by a latch is directly proportional to its duration. Hence, by summing up

the expected output glitch widths, Wij, for all primary outputs j, the total contribution of

gate i to the circuit unreliability is obtained. However, this ignores the fact that the size,

Zi of a gate plays an important role in determining the particle flux incident on the gate.

Hence, the actual contribution of gate i to circuit unreliability is:

∑⋅=
j

ijii WZU (6.4)

The total unreliability of the circuit is:

∑=
i

iUU (6.5)

Note that although the unreliability of a circuit becomes worse if its clock

frequency is increased (due to technology scaling), the above definition of unreliability

can ignore clock frequency because it is only used to compare designs with the same

clock frequency.

 92

Figure 6.4 shows the unreliability numbers, Ui, for the gates in benchmark circuit

“c432” calculated by ASERTA plotted along with values calculated by SPICE for 70nm

technology node. In SPICE, the unreliability was computed by applying 50 random input

vectors, injecting charge at every gate output i and using the width of the glitch at

primary output j as Wij in Equation 6.4. Only the nodes that were at most five levels deep

from the POs are plotted. It is seen that there is close matching. The correlation between

the two series was computed to be 0.96. For the ISCAS’85 benchmark circuits, an

average correlation of 0.9 was obtained.

The next section describes SERTOPT, a tool that uses the unreliability estimates

generated by ASERTA to optimize nanometer circuits for increased soft-error tolerance

by enhancing the electrical masking characteristics of gates in the circuits.

Figure 6.4. Unreliability values obtained by SPICE and ASERTA for nodes in
c432.

 93

6.4 Circuit soft-error tolerance optimization

SERTOPT uses DAV based optimization to minimize a cost function that is a

weighted sum of a circuit unreliability metric and circuit energy-delay product (EDP). A

designer can easily change the optimization trade-offs by changing the ratio of the

weights.

To find the circuit parameters (gate sizes, VDDs, Vths, loads) that are needed to

match a delay assignment, SERTOPT traverses the circuit from POs to PIs in reverse

topological order. For the gates at the POs, different capacitive loads yield the required

delay for different values of size, VDD and Vth. From these different sets of load, size,

VDD and Vth values, the set that yields the lowest value of generated glitch width is

chosen. Once the parameters (load, size, VDD, Vth) of the PO gates have been set, the

capacitive loads offered by these gates to their predecessors can be found. For the internal

gates (not primary outputs), appropriate values of size, VDD and Vth are chosen that match

the assigned delay while minimizing the energy-delay product (ELP) for the gate and its

predecessors. The whole procedure is repeated until the primary inputs (PIs) are reached.

The procedure is similar to the one in Figure 5.3 with the exception that PO load is also

an additional variable now.

Once the circuit parameters (sizes, VDDs, Vths) have been determined, the circuit

delay, energy (static + dynamic) and the EDP can be computed using SPICE libraries.

The cost of the current delay assignment is computed as:

()1 11 1 1
avg

avg
init init

EDP POD
C w w

EDP POD

= ⋅ − + − ⋅ −

 (6.6)

 94

where w1 is the weight (0≤w1≤1) and EDPinit is the initial circuit EDP. PODavg is the

average primary output delay. The average POD is tried to be maximized to reduce glitch

propagation through the POs. Matching the bigger average PO delay using big

capacitances also reduces the glitch generation at the POs. PODavg can be considered as a

circuit reliability metric, with bigger values indicating a more reliable circuit.

The cost is minimized by using Multi-level Co-ordinate Search (MCS) to search

for the optimal delay assignment giving lowest cost. However, simulated annealing,

genetic algorithms or some other optimization algorithm can also be used.

The issues related to problem size and level-shifters (discussed in Section 5.3) are

tackled similar to the approach in Section 5.4. The only major difference is the usage of

additional capacitive loads to match the delays at the primary outputs as shown in Figure

6.5.

Figure 6.5. Example combinational circuit partitioned into 2 sub-circuits

 95

6.5 Experimental results

As in Section 5.6, gate sizes were first obtained for ISCAS’85 benchmark circuits

by optimizing for speed using Synopsys Design Compiler. The gate sizes were then used

with SPICE 70nm models [59] to compute the delays of the circuits for the 70nm

technology. All the gates had a transistor channel length of 70nm, VDD of 1V and Vth of

0.2V. The unreliability of the baseline circuits was estimated using ASERTA. A TSMC

wire load model was used for net length estimation for different fan-outs and the

distributed capacitance per unit length of local interconnects was computed taking into

account coupling capacitances and ground plane capacitances in a typical VLSI layout.

The width and spacing between interconnects was taken to be 0.1 micron, and the

thickness of interconnect and dielectric was taken to be 0.2 micron respectively. The

dielectric constant was taken to be 3.9 (SiO2).

Then, SERTOPT was used to determine new gate sizes, VDDs and Vths (and added

capacitances at the POs) for the circuits that would minimize unreliability while meeting

the delay constraint of the baseline circuits. The optimization was done at hierarchy level

1 i.e. the circuit was partitioned into sub-circuits (using min-cut partitioning) and the sub-

circuits were optimized flatly. The Vth values used were 0.2V and 0.3V. The results of the

optimization are reported in Table 6.1. The fifth, sixth and seventh columns give the

energy decrease, delay increase and unreliability decrease after DAV optimization

(assuming perfect level-shifters with zero delay and energy overhead). The eight, ninth

and tenth columns give the corresponding numbers after quantizing the sizes to a

resolution of 0.2 and clustering the VDDs into a maximum of 3 different values (to take

into account a finite sized library and limited numbers of VDDs allowed in practice). After

 96

clustering, the high VDD gates that were driven by low VDD gates were given a higher

threshold voltage to reduce their leakage power. As mentioned before, the delay

Table 6.1. Optimization Results

Circuit (#Gates,
#Sub-circuits)

Initial
Delay
(ps)

Initial
Energy

(fJ)

Initial
Unreliability

(ns)

% Energy
Increase
(DAV)

% Delay
Increase
(DAV)

% Unreliability
Decrease (DAV)

c432 (267,4) 457 94.6 2.32 42.6 6.7 71.9

c499 (835,8) 351 351 4.39 12.2 5.9 53

c1908 (680,8) 523 262 5.71 42.9 6.2 95.2

c2670 (875,8) 326 333 8.77 46.4 6.3 83.5

c3540 (1319,8) 632 528 10.97 26.1 5.6 79.9

c5315 (1994,16) 510 784 23.8 26.9 4.9 88.9

c7552 (2538,16) 444 1088 22.1 30.9 7.2 85.5

Average 463.3 491.5 11.2 32.6 6.1 79.7

Table 6.1. (Continued)

Circuit (#Gates,
#Sub-circuits)

% Energy Increase
(Final)

% Delay Increase
(Final)

% Unreliability Decrease
(Final)

c432 (267,4) 42.5 6.8 71.3

c499 (835,8) 12.2 6.2 53.1

c1908 (680,8) 41.2 6.3 95.2

c2670 (875,8) 45 6.3 83.5

c3540 (1319,8) 23.2 5.5 78.6

c5315 (1994,16) 23.5 4.9 88.6

c7552 (2538,16) 28.6 7.2 84.6

Average 30.9 6.2 79.3

 97

constraint is exceeded due to the finite sized library used. Table 6.2 gives some circuit

statistics before and after optimization. It is seen that although the maximum gate size

goes up, the average gate size goes down. The circuit area was estimated as the sum of

load capacitances of all gates. Although the average gate size went down, the circuit size

still went up because of the added load capacitances at the primary outputs. The

optimization results shown are actually for the case when only a VDD of 1.2V was

allowed for all the sub-circuits. If multiple VDDs were allowed, it was found that the

partition with PO gates got a much higher VDD than the other partitions. This led to a lot

of leakage energy dissipation that couldn’t be reduced by just increasing the threshold

voltages of the high VDD gates driven by low VDD gates.

Table 6.2. Circuit Statistics

Initial Circuit Final Circuit

Circuit Min

Size

Mean

Size

Max

Size

Min

Size

Mean

Size

Max

Size

% Increase

in Circuit

Size

% High

V th gates

Sub-circuit

VDDs (V)

c432 1 2.35 6 1 1.54 13.6 11.6 49.1 1.2

c499 1 2.52 6 1 1.6 7.2 12.3 35.9 1.2

c1908 1 2.23 6 1 1.46 7 36.6 49.6 1.2

c2670 1 2.6 6 1 1.48 20 43.5 49.3 1.2

c3540 1 2.25 6 1 1.35 12.4 -9.6 67.6 1.2

c5315 1 2.27 7 1 2.26 20 44.3 68.5 1.2

c7552 1 2.24 8 1 1.38 20 4.9 57.8 1.2

Average 1 2.35 6.43 1 1.58 14.3 20.5 54 -

 98

In [70], a similar method using DAV is presented but which does not use PO

capacitances. The cost function is also a weighted sum of circuit unreliability, energy

delay and area. Hence the circuit unreliability needs to be computed in every iteration of

the search, with a lot of runtime overhead.In [71], PO capacitances are inserted and the

delay overhead is tried to be reduced by simply increasing the supply voltages of the

gates. Although this method leads to a large reduction in soft-errors, the energy overhead

is very large. Figure 6.6 compares the unreliability decrease and EDP increase of the

method in this chapter and the above two methods. The method in this chapter is referred

as Cap+DAV, the method in [70] as DAV and the method in [71] as Cap. It is clearly

seen that using capacitive loads at the outputs (for increasing reliability) while using

DAV optimization for the rest of the gates (to reduce EDP) provides much better energy-

delay-reliability trade-off than just using capacitive loads at output (and increasing VDD

-25

0

25

50

75

100

125

150

175

200

225

c432 c499 c1908 c2670 c3540 c5315 c7552
Circuit

P
er

ce
nt

ag
e

C
ha

ng
e

% Unreliability Decrease (DAV) % EDP Increase (DAV)

% Unreliability Decrease (Cap) % EDP Increase (Cap)

% Unreliability Decrease (Cap+DAV) % EDP Increase (Cap+DAV)

Figure 6.6. Comparison of methods (Cap+DAV), (DAV) and (Cap)

 99

to offset delay penalty) or just using DAV. Just using DAV is not very effective in

reducing unreliability. Cap is effective in highly reducing unreliability but the EDP cost

is very high. Cap+DAV is able to reduce unreliability almost as much as Cap but with

very low EDP overhead.

6.6 Conclusion

This chapter presented tools for the analysis and optimization of the soft-error

tolerance of nanometer combinational circuits. The analysis tool, ASERTA, is able to

accurately calculate (with average correlation of 0.9 with SPICE) the “unreliability” of

circuits in orders of magnitude less computation time than SPICE. The optimization tool,

SERTOPT, maximizes the average PO delay while simultaneously minimizing the

energy-delay product (EDP) for the circuit. The bigger delays of the PO gates are

matched by adding extra capacitances at the POs. This reduces both glitch generation and

propagation through the PO gates. Experiments on ISCAS’85 benchmark circuits show

that SERTOPT is able to reduce the unreliability of circuits by 79.3% on the average

while incurring delay, energy and area penalties of 6.2%, 30.9% and 20.5% on the

average respectively.

 100

Chapter VII

Conclusions and Future Research

7.1. Summary of Research Contributions

 The thesis developed an efficient, hierarchical and unified framework for the co-

optimization of the energy consumption and soft-error robustness of digital circuits under

specified timing constraints. The design variables that were used in the co-optimization

were the supply and threshold voltages of the gates/modules in the netlist and/or the sizes

of the transistors comprising the gates. The novelty in the co-optimization approach was

the use of a technique called Delay-Assignment-Variation (DAV) based optimization.

This technique allows delay constrained optimization to be formulated efficiently as a

global optimization problem targeting any DAG based cost function. In this thesis, the

cost functions studied were circuit energy and circuit unreliability. The next section

describes some other problems that can also be tackled by this approach.

The following outlines the contributions of the research:

• A novel matrix representation, T, of a netlist was developed that can be used in

various circuit optimizations which have delay as a constraint. Using the matrix

representation, a generic and efficient Delay-Assignment-Variation (DAV) based

optimization technique was formulated that can be applied to various delay-

constrained optimization problems. The efficiency of DAV based optimization

compared to brute-force parameter optimization results due to the implicit

 101

consideration of the delay constraints that allows a big reduction in the optimization

problem size.

• Using the DAV based approach, an exact technique has been developed that

determines the values of the supply and threshold voltages to be used in a digital

circuit such that the sum of the dynamic and static energy consumption of the circuit

is minimized while meeting the timing constraint.

• A metric, the Normalized Energy Gradient (NEG) metric, was formulated that can be

used to evaluate the “energy efficiency” of any design using a limited number of

supply and threshold voltages as compared to the optimum design having unlimited

number of available voltages. The NEG metric can also be used to rank various low

power optimization techniques that make use of multiple supply and threshold

voltages according to how close they bring the system to the lowest energy

consumption possible.

• DAV based optimization was formulated for gate level netlists. To handle large

netlists, a hierarchical application of the approach was developed. Depending on the

size of the netlist, optimization could be done at different levels of hierarchy to trade-

off computational complexity and optimality of the results. Hierarchical DAV based

optimization was used to find optimal sizes and threshold voltages of gates and

supply voltages of sub-circuits that minimize the energy consumption.

• Usage of a combination of SPICE look-up tables and analytical equations to model

energy and delay of CMOS combinational circuits accurately and efficiently was

described.

 102

• The unreliability of individual gates in a CMOS circuit was characterized in a novel

way using their “glitch generation” and “glitch propagation” characteristics. The

effect of various gate parameters such as size, output load, and supply and threshold

voltage on the unreliability of a gate was investigated.

• An accurate and efficient tool called ASERTA was developed for the analysis of soft-

error tolerance of a CMOS combinational circuit. The tool estimates the soft-error

tolerance with accuracy close to SPICE in orders of magnitude less computation time.

• Usage of gate sizing, multiple supply/threshold voltages and output loading for

increasing the soft-error tolerance of digital circuits was investigated. The problem

was formulated as a DAV based optimization problem and it was shown that a

judicious combination of sizing, primary output loading and usage of multiple

supply/threshold voltages can significantly increase the glitch attenuation

characteristics of circuits with marginal delay-energy penalties. It was shown that this

was a better approach for reducing unreliability than just using gate sizing or just

using higher VDDs combined with primary output loading.

7.2. Future Directions

The DAV based optimization approach given in this thesis is a general a approach

that can be used to solve various delay-constrained DAG based optimization problems. A

few examples are given below:

• This approach can be easily applied at the software level where the data flow graph

(DFG) is a DAG. The nodes of the graph represent computations/instructions that

execute on functional units (FUs). Under a dynamic voltage scaling (DVS) model, the

 103

supply voltages of the FUs can change dynamically depending on the delay/energy

requirements. Using DAV based optimization and appropriate models of FU delay

and energy, the optimal voltages for the FUs that minimize the energy consumption

for the entire flow graph (while meeting the timing constraints) can be found and

stored in memory. A controller can then read the memory when the program is

executing and correctly assign voltages to FUs dynamically to minimize energy.

• In this thesis, DAV based optimization was applied to the problem of minimizing

energy consumption and increasing soft-error tolerance. The approach can be

straightforwardly applied to the circuit sizing problem without any modifications.

Instead of using energy and/or unreliability as the cost function, an estimate of the

circuit size (computed using the gate sizes) can be solely used as the cost function to

minimize area while meeting timing constraints.

• The DAV approach can be applied to solve the wire sizing and gate sizing problem

simultaneously. The wires in a netlist can actually be represented as additional nodes

between gates. This is shown in Figure 7.1. Each wire also has associated delays and

energies similar to gates. Now, the DAV based optimization can be used to find

optimal delay assignments for gates and wires. The optimal gate and wire sizes can be

found from the optimal delay assignment by a backward traversal similar to the one

described in Section 5.3. Simultaneous gate and wire sizing is likely to become a key

optimization in future technologies when local wire delays also become significant.

 104

Improvements are also possible to the hierarchical application of DAV based

optimization. A few are listed below:

• This work described and compared two different kinds of partitioning schemes viz.

min-cut partitioning and topological partitioning. Min-cut partitioning has the

advantage that is reduce the number of level-shifters required between partitions,

thereby reducing the overhead of level-shifters that is inherent in any multi-VDD

optimization approach. However, min-cut partitioning imposes constraints on the

sizes of the gates on the boundaries of the partitions (see Section 5.6), which might

reduce the possible optimization benefits. Topological partitioning doesn’t impose

constraints on the sizes of the boundary gates but imposes conditions on the partition

VDDs (the VDDs have to be increasing in value from POs to PIs) to eliminate the need

for level-shifters. This might again reduce the optimization savings. The best way

might be to have a partitioning scheme that reduces the number of edges cut between

partitions while at the same time ensuring that the partitions can be sorted

topologically (i.e. the partition graph is also a DAG).

Figure 7.1. Representation for simultaneous gate and wire sizing

 105

• In this work, the partitions were generated without directly considering their impact

on the energy savings (except trying to reduce the number of edges cut or trying to

reduce the size constraints imposed). However, it might be possible to choose the

sizes of partitions and the gates included in them in a more power-aware way. For

example, in an ALU, the higher order bits have very low switching activity compared

to the lower order bits. Hence, it might be a good strategy to cluster the logic

corresponding to the higher order bits into one partition and the lower order bits into

another. This will allow the inter-partition optimization stage to achieve higher

energy savings by slowing down the higher activity partition while speeding up the

lower activity partition.

• The mapping of gate delays to gate sizes, VDDs and Vths is a crucial step in DAV

based optimization. At the module level (Chapter IV), the best VDD and Vth could be

chosen for a module for its delay assignment (using analytical equations),

independent of the VDDs and Vths chosen for other modules. However, at the gate

level, the choice of sizes, VDDs and Vths for a gate affects the choices for its

predecessor gates. This makes optimal mapping of gate delays to sizes, VDDs and Vths

very hard. This work explored two mapping schemes viz. the ELP scheme and the

min-size scheme, but finding better schemes can be another research pursuit.

 106

Appendix A

Topological Sort of Directed Acyclic Graphs

A topological sort of a DAG, G(V,E), is a numbering of the nodes of the graph in

such a way that given any edge e(u→v) between nodes u and v, u is less than v. After a

DAG has been topologically sorted, it is very easy to make forward and reverse traversals

over it. A forward traversal can be done by visiting nodes in increasing order of the

topological numbering i.e. from node 1 to node |V|. A backward traversal can be done by

visiting nodes in decreasing order of the topological numbering i.e. from node |V| to node

1. A forward traversal is guaranteed to visit a node before visiting any of its successors

whereas a backward traversal is guaranteed to visit a node before any of its predecessors.

The algorithm for listing nodes in topological order is given in Figure A.1.

Algorithm Topsort(G(V,E))

count = 1
for each node n in V
 If n has no incoming edges, insert n into queue Q
end
while Q is nonempty

Remove a node n from Q
topnumber(n) = count
count = count + 1

 for each node m with an edge e from n to m
 Remove edge e from E
 if m has no other incoming edges, insert m into Q

 end
 end

Figure A.1. Algorithm for obtaining topological numbering of nodes in a DAG.

 107

Appendix B

Power Aware Zero Slack Algorithm

Given a DAG, G(V,E), with delays D and energies E associated with each node,

five quantities can be computed for each node as follows:

(i) Early Start Time (EST):

If node n is a primary input (no incoming edges), EST(n) = 0.

Otherwise, EST(n) = max(EST(m)+D(m)) for all nodes m with edges to n.

(ii) Early Finish Time (EFT): For any node n, EFT(n) = EST(n)+D(n).

 (iii) Late Finish Time (LFT):

 If node n is a primary output (no outgoing edges), LFT(n) = max(EFT(m)) for all

nodes m in V.

Otherwise, LFT(n) = min(LFT(m)-D(m)) for all nodes m with edges from n.

(iv) Late Start Time (LST): For any node n, LST(n) = LFT(n)-D(n).

(v) Slack: For any node n, Slack(n) = LST(n)-EST(n) = LFT(n)-EFT(n).

Computation of Early Start Times requires a forward traversal over G while

computation of Late Finish Times requires a backward traversal over G. The procedure

for computing the above five quantities for a DAG is given in Figure B.1. It uses the

topological numbering of the nodes.

 108

After the slacks have been computed, the algorithm in Figure B.2 increases the

delays of the nodes with non-zero slack until all nodes have zero slack. The nodes are

chosen in the order of decreasing energy-slack product.

Algorithm Power Aware Zero Slack(G(V,E))
Compute Slacks(G(V,E))
while there is a node with non-zero slack
 Select node n that has maximum Energy-Slack product

D(n) = D(n)+Slack(n)
 Compute Slacks(G(V,E))
end

Figure B.2. Algorithm for removing slacks of nodes in a DAG in a power-aware
manner.

Algorithm Compute Slacks(G(V,E))
for i = 1 to |V|

 Let n be the node with topological number i
 if n has no incoming edges, EST(n) = 0
 else EST(n) = max(EST(m)+D(m)) for all nodes m with edges to n
 EFT(n) = EST(n)+D(n)
 end
 Delay = max(EFT(n)) for all nodes n

for i = |V| down to 1
 Let n be the node with topological number i

if n has no outgoing edges, LFT(n) = Delay
else LFT(n) = min(LFT(m)-D(m)) for all nodes m with edges from n

 LST(n) = LFT(n)-D(n)
 Slack(n) = LST(n)-EST(n)
 end

Figure B.1. Algorithm for computing slacks of nodes in a DAG.

 109

References

[1] http://public.itrs.net/Files/2003ITRS/Home2003.htm, The International
Technology Roadmap for Semiconductors, 2003.

[2] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, Vol. 19, Issue
4, pp. 23-29, August 1999.

[3] M. Horowitz, T. Indermaur, R. Gonzalez, “Low-power Digital Design,” ISLPED,
pp. 8-11, October 1994.

[4] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, L. Alvisi, “Modeling the
Effect of Technology Trends on the Soft Error Rate of Combinational Logic,”
DSN, pp. 389-398, June 2002.

[5] J.M. Rabaey, M. Pedram, “Low Power Design Methodologies,” Kluwer
Academic Publishers, 1996.

[6] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, R.W. Brodersen,
“Optimizing power using transformations,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, pp. 12-31, Vol. 14, Issue 1, Jan 1995.

[7] M. Johnson, K. Roy, “Optimal Selection of Supply Voltages and Level
Conversions during Data Path Scheduling under Resource Constraints,” ICCD,
pp.72 -77, 1996.

[8] A. Manzak, C. Chakrabarti, “A low power scheduling scheme with resources
operating at multiple voltages,” IEEE Trans. on VLSI, pp. 6-14, Vol. 10, Issue
1, Feb. 2002.

[9] A.U. Diril, Y.S. Dhillon, K. Choi, A. Chatterjee, “An O(N) Supply Voltage
Assignment Algorithm for Low-Energy Serially Connected CMOS Modules and
a Heuristic Extension to Acyclic Data Flow Graphs,” ISVLSI, pp.173-179,
February 2003.

[10] T. Ishihara, H. Yasuura, “Voltage Scheduling Problem for Dynamically Variable
Voltage Processors,” ISLPED, pp. 197-202, August 1998.

[11] T. Pering, T. Burd, R. Brodersen, “The Simulation and Evaluation of Dynamic
Voltage Scheduling Algorithms,” ISLPED, pp.76-81, 1998.

[12] K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K.
Matsuda, T. Maeda, T. Kuroda, “A 300 MIPS/W RISC core processor with

 110

variable supply-voltage scheme in variable threshold-voltage CMOS,”
CICC, pp. 587-590, May 1997.

[13] K. Nose, T. Sakurai, “Analysis and future trend of short-circuit power,” IEEE
Trans. on CAD, vol.19, no.9, pp.1023-1030, Sept. 2000.

[14] T. Sakurai, A.R. Newton, “Alpha-power law MOSFET model and its applications
to CMOS inverter delay and other formulas,” IEEE Journal of Solid-State
Circuits, vol. 25, pp.584-594, April 1990.

[15] V. Sundararajan, K.K. Parhi, “Synthesis of low power CMOS VLSI circuits using
dual supply voltages,” DAC, pp. 72 -75, 1999.

[16] C. Chen, A. Srivastava, M. Sarrafzadeh, "On gate level power optimization using
dual-supply voltages," IEEE Transactions on VLSI Systems, vol. 9, pp. 616-29,
2001.

[17] K. Usami, M. Horowitz, "Clustered voltage scaling technique for low-power
design," Low Power Design Symposium, pp. 3-8, April 1995.

[18] M. Donno, L. Macchiarulo, A. Macii, E. Macii, M. Poncino, "Enhanced clustered
voltage scaling for low power," GLSVLSI, pp. 18-23, April 2002.

[19] J. Chang, M. Pedram, “Energy Minimization Using Multiple Supply Voltages,”
IEEE Trans. on VLSI Systems, vol.5, no.4, December 1997.

[20] C. Chen, M. Sarrafzadeh, “Power reduction by simultaneous voltage scaling and
gate sizing,” ASP-DAC, pp. 333-338, Jan 2000.

[21] L. Wei, Z. Chen, K. Roy, M.C. Johnson, Y. Ye, V.K. De, “Design and
optimization of dual-threshold circuits for low-voltage low-power applications,”
IEEE Trans. on VLSI Systems, pp.16-24, vol.7, no.1, March 1999.

[22] V. Sundararajan, K.K. Parhi, “Low power synthesis of dual threshold voltage
CMOS VLSI circuits,” ISLPED, pp.139-144, 1999.

[23] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, J. Yamada, “1-V
power supply high-speed digital circuit technology with multithreshold-voltage
CMOS,” IEEE Journal of Solid-State Circuits, Vol. 30, Issue 8, pp. 847-854,
August 1995.

[24] A. Srivastava, D. Sylvester, “Minimizing total power by simultaneous VDD/V th
assignment,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 23, Issue 5, pp. 665-677, May 2004.

[25] Y.S. Dhillon, A.U. Diril, A. Chatterjee, H.H.S. Lee, “Algorithm for achieving
minimum energy consumption in CMOS circuits using multiple supply and
threshold voltages at the module level,” ICCAD, pp. 693-700, Nov 2003.

 111

[26] R. Bai, S. Kulkarni, W. Kwong, A. Srivastava, D. Sylvester, D.Blaauw, “An
implementation of a 32-bit ARM processor using dual power supplies and dual
threshold voltages,” ISVLSI, pp.149-154, 2003.

[27] S. Sirichotiyakul, T. Edwards, C. Oh, J. Zuo, A. Dharchoudhary, R. Panda, D.
Blaauw, “Stand-by power minimization through simultaneous threshold voltage
selection and circuit sizing,” DAC, pp. 436-441, 1999.

[28] V. Sundararajan, K.K. Parhi, “Low power gate resizing of combinational circuits
by buffer redistribution,” Proc. 20th Anniversary Conference on Advanced
Research in VLSI, pp. 170 – 184, 1999.

[29] D.S. Chen, M. Sarrafzadeh, “An Exact Algorithm for Low Power Library-
Specific Gate Re-Sizing,” DAC, pp. 783–788, 1996.

[30] P. Girard, C. Landrault, S. Pravossoudovitch, and D. Severac, “A gate resizing
technique for high reduction in power consumption,” ISLPED, pp. 281 – 286,
1997.

[31] P. Pant, V.K. De, A. Chatterjee, “Simultaneous power supply, threshold voltage,
and transistor size optimization for low-power operation of CMOS circuits,”
IEEE Trans. on VLSI Systems,” Vol. 6, Issue. 4, pp. 538-545, December 1998.

[32] A. Srivastava, D. Sylvester, D. Blaauw, “Power minimization using simultaneous
gate sizing, dual-Vdd and dual-Vth assignment,” DAC, pp. 773-778, June 2004.

[33] Y. Zhang, X. Hu, D.Z. Chen, “Cell selection from technology libraries for
minimizing power,” ASP-DAC, pp. 609-614, Feb 2001.

[34] M. Hamada, Y. Ootaguro, T. Kuroda, “Utilizing surplus timing for power
reduction,” CCIC, pp. 89-92, May 2001.

[35] T.K. Callaway, E.E. Swartzlander Jr., “Estimating the power consumption of
CMOS adders,” Proc. of 11th Symposium on Computer Arithmetic, pp. 210-216,
1993.

[36] S. Iman, M. Pedram, “An approach for multilevel logic optimization targeting low
power,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 15, Issue 8, pp. 889-901, Aug. 1996.

[37] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,” IEEE
Transactions on VLSI Systems, Vol. 2, Issue 4, pp. 426-436, Dec 1994.

[38] G.E. Tellez, A. Farrahi, M. Sarrafzadeh, “Activity-driven clock design for low
power circuits,” ICCAD, pp. 62–65, Nov. 1995.

 112

[39] T. Chi-Ying, M. Pedram, A.M. Despain, “Power efficient technology
decomposition and mapping under an extended power consumption model,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.
13, Issue 9, pp. 1110–1122, Sept. 1994.

[40] K. Roy, S.C. Prasad, “Circuit activity based logic synthesis for low power reliable
operations,” IEEE Transactions on VLSI Systems, Vol. 1, Issue 4, pp. 503-513,
Dec.1993.

[41] T. Chi-Ying, M. Pedram, A.M. Despain, “Low-power state assignment targeting
two- and multilevel logic implementations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 17, Issue 12, pp. 1281-
1291, Dec. 1998.

[42] A. Chandrakasan, R. Brodersen, “CMOS low power digital design," Kluwer
Academic Publishers, 1995.

[43] S. Iman, M. Pedram, “Logic synthesis for low power VLSI designs,” Kluwer
Academic Publishers, 1998.

[44] S. Devadas, S. Malik, “A survey of optimization techniques targeting low power
VLSI circuits,” DAC, pp. 242-247, 1995.

[45] M. Pedram, “CAD for low power: status and promising directions,” Proc. of
International Symposium on VLSI Technology, Systems, and Applications, pp.
331-336, 1995.

[46] S. Buchner, M. Baze, D. Brown, D. McMorrow, J. Melinger, “Comparison of
error rates in combinational and sequential logic,” IEEE Transactions on Nuclear
Science, Vol. 44, Issue 6, pp. 2209-2216, Dec. 1997.

[47] M. Nicolaidis and Y. Zorian, "On-line testing for VLSI - a compendium of
approaches," JETTA, vol. 12, pp. 7-20, 1998.

[48] N.A. Touba, E.J. McCluskey, “Logic synthesis of multilevel circuits with
concurrent error detection,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 16, Issue 7, pp. 783-789, July 1997.

[49] M. Nicolaidis, "Time redundancy based soft-error tolerance to rescue nanometer
technologies," VTS, pp. 86-94, 1999.

[50] K. Mohanram, N.A. Touba, “Cost-effective approach for reducing soft error
failure rate in logic circuits,” ITC, Vol. 1, pp. 893-901, 2003.

[51] Y.S. Dhillon, A.U. Diril, A. Chatterjee, A.D. Singh, “Sizing CMOS Circuits for
Increased Transient Error Tolerance,” IOLTS, pp. 11-16, July 2004.

 113

[52] Q. Zhou, K. Mohanram, “Transistor Sizing for Radiation Hardening,” Proc.
International Reliability Physics Symposium, pp. 310-315, 2004.

[53] N. Kaul, B.L. Bhuva, S.E. Kerns, “Simulation of SEU transients in CMOS ICs,”
IEEE Transactions on Nuclear Science, Vol. 38, Issue 6, pp. 1514-1520, Dec.
1991.

[54] M.P. Baze, S. Buchner, W.G. Bartholet, T.A. Dao, “An SEU analysis approach
for error propagation in digital VLSI CMOS ASICs,” IEEE Transactions on
Nuclear Science, Vol. 42, Issue. 6, pp. 1863-1869, Dec. 1995.

[55] R. Nair, C.L. Berman, P.S. Hauge, E.J. Yoffa, “Generation of performance
constraints for layout,” IEEE Trans. on CAD, vol.8, no.8, pp.860-874, Aug. 1989.

[56] J.A. Butts, G.S. Sohi, “A static power model for architects,” IEEE/ACM MICRO,
pp. 191-201, 2000.

[57] R. Kumar, C.P. Ravikumar, “Leakage power estimation for deep submicron
circuits in an ASIC design environment,” DAC, pp.45-50, 2002.

[58] K. Nose, T. Sakurai, “Optimization of VDD and VTH for low-power and high-
speed applications,” ASP-DAC, pp.469-474, 2000.

[59] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, "New paradigm of
predictive MOSFET and interconnect modeling for early circuit simulation,"
CICC, pp. 201 – 204, 2000.

[60] S.C. Wong, G.Y. Lee, D.J. Ma, “Modeling of interconnect capacitance, delay, and
crosstalk in VLSI,”, IEEE Trans. on Semiconductor Manufacturing, vol. 13, no.
1, pp. 108 – 111, 2000.

[61] G. Karypis, V. Kumar, “Multilevel k-way hypergraph partitioning,” DAC, pp. 343
- 348, 1999.

[62] W. Huyer, A. Neumaier, “Global optimization by multilevel coordinate search,”
Journal of Global Optimization, vol. 14, no. 4, pp. 331 – 355, 1999.

[63] A.U. Diril, Y.S. Dhillon, A. Chatterjee, A.D. Singh, "Level-shifter free design of
low power dual supply voltage CMOS circuits using dual threshold voltages,"
ICVLSI, 2005.

[64] P. E. Dodd and L. W. Massengill, "Basic mechanisms and modeling of single-
event upset in digital microelectronics," IEEE Trans. on Nuclear Science, vol. 50,
pp. 583-602, 2003.

[65] M. Oman, G. Papasso, D. Rossi, C. Metra, "A model for transient fault
propagation in combinatorial logic," International On-Line Testing Symposium,
pp. 111-115, July 2003.

 114

[66] C. Zhao, X. Bai, S. Dey, "A scalable soft spot analysis methodology for
compound noise effects in nano-meter circuits," DAC, pp. 894-899, 2004.

[67] L. B. Freeman, "Critical charge calculations for a bipolar SRAM array," IBM J.
Res. Develop., vol. 40, pp. 119-129, 1996.

[68] P. Hazucha, C. Svensson, S.A. Wender, “Cosmic-Ray Soft Error Rate
Characterization of a Standard 0.6-µm CMOS Process,” IEEE Journal of Solid-
State Circuits, vol. 35, no. 10, pp. 1422 – 1429, 2000.

[69] F. N. Najm and I. N. Hajj, "The complexity of fault detection in MOS VLSI
circuits," IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 9, pp. 995-1001, 1990.

[70] Y. S. Dhillon, A. U. Diril, A. Chatterjee, "Soft-error tolerance analysis and
optimization of nanometer circuits," DATE, pp. 288-293, 2005.

[71] A.U. Diril, Y.S. Dhillon, A. Chatterjee, A.D. Singh, "Design of adaptive
nanometer digital systems for effective control of soft error tolerance,” VTS, to be
published, 2005.

