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In this paper, we develop a command governor-based architecture in order to improve

the response of neuroadaptive control approaches. Specifically, a command governor is

a linear dynamical system that modifies a given desired command to improve transient

and steady-state performance of uncertain dynamical systems. It is shown that as the

command governor gain is increased, the neuroadaptive system converges to the linear

reference system. Simulation results are used to validate the effectiveness of the proposed

framework.

I. Introduction

All models of real world phenomena are approximations, and the design of successful control systems

must take this fact into account. Furthermore, systems can be subject to disturbances and other uncertain-

ties such as unpredictable adverse conditions. Adaptive controllers are designed to handle uncertain terms

in the model by actively changing the controller law to achieve a desired result. Model reference adaptive

controllers accomplish this effect by propagating a reference system with the desired dynamics. The out-

put from the reference system is compared to the output of the plant, and the error is used to drive the

adaptation. The class of errors which can be handled by the model reference adaptive controller is partially

dependent on the approximation function used. Multilayer neural networks have attractive properties for

this role in adaptive control; they are universal function approximators, meaning they can approximate any

continuous function to any degree of accuracy given enough hidden layer neurons.

It is desired that the adaptive controller quickly approximate the error. In theory, fast approximation can

be achieved by using high adaptation gain. However, high gain controllers can excite high frequency unmod-

eled dynamics and cause instability in the system.1 A novel command governor architecture was constructed

in Ref. 2 to address the problem of obtaining predictable transient response with adaptive controllers for

uncertain dynamical systems without requiring high-gain learning rates. Specifically, the command governor

is a linear dynamical system which adjusts the trajectories of a given command in order to follow an ideal

reference system (capturing a desired closed-loop system behavior) in transient-time. That is, by choosing

the design parameter of the command governor, the controlled uncertain dynamical system approximates

a Hurwitz linear time-invariant dynamical system with L∞ input-output signals. This allows a low-gain

adaptive element to slowly adapt to the modeling error. Application of this architecture to autonomous

helicopter control is developed in Ref. 3.

In this paper, the command governor architecture is used to improve the transient response of a neuroad-

aptive controller. The command governor improves transient response during the adaptation phase, which
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allows a lower adaptation gain to be used while achieving the same performance. Simulation results are

presented to validate the proposed system.

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers, Rn

denotes the set of n × 1 real column vectors, Rn×m denotes the set of n ×m real matrices, R+ (resp., R+)

denotes the set of positive (resp., nonnegative-definite) real numbers, Rn×n
+ (resp., R

n×n

+ ) denotes the set of

n×n positive-definite (resp., nonnegative-definite) real matrices, Sn×n denotes the set of n×n symmetric real

matrices, (·)T denotes transpose, and (·)−1 denotes inverse. In addition, we write λmin(A) (resp., λmax(A))

for the minimum (resp., maximum) eigenvalue of the Hermitian matrix A, det(A) for the determinant of the

Hermitian matrix A, tr(·) for the trace operator, AL for the left inverse (ATA)+AT of A ∈ R
n×m, PA for the

projection matrix AAL of A ∈ R
n×m, ‖ · ‖2 for the Euclidian norm, ‖ · ‖∞ for the infinity norm, and ‖ · ‖F

for the Frobenius matrix norm.

II. Neuroadaptive Control

We begin by presenting a standard model reference neuroadaptive control problem. Specifically, consider

the nonlinear uncertain dynamical system given by

ẋ(t) = Ax(t) +B
[
u(t) + δ(x(t))

]
, x(0) = x0, t ∈ R+, (1)

where x(t) ∈ R
n is the state vector available for feedback, u(t) ∈ R

m is the control input, δ : Rn → R
m is

an uncertainty, A ∈ R
n×n is a known system matrix, and B ∈ R

n×m is a known control input matrix such

that det(BTB) 6= 0 and the pair (A,B) is controllable.

Assumption 1. The uncertainty in (1) is parameterized as

δ(x) = WTσ(V Tx) + ǫ(x), |ǫ(x)| < ǭ, x ∈ S ⊂ R
n, (2)

where W ∈ R
s×m and V ∈ R

n×s are unknown weight matrices and σ : Rs → R
s is a known function of

the form σ(z) = [σ1(z1), σ2(z2), . . . , σs(zs)]
T. The set S is a compact, simply connected set. The term ǫ(x)

defines the approximation error of the neural network to the true uncertainty. Let us further define the

following matrix

Z =

[
W 0

0 V

]
(3)

Assumption 2. The matrices W and V have known upper bounds

||W ||F ≤ W̄ , ||V ||F ≤ V̄ (4)

and therefore

||Z||F ≤ Z̄ (5)

Assumption 3. Desired trajectory xr had a known upper bound

||xr|| ≤ Q (6)
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Next, consider the ideal reference system capturing a desired closed-loop dynamical system performance

given by

ẋr(t) = Arxr(t) +Brc(t), xr(0) = xr0, t ∈ R+, (7)

where xr(t) ∈ R
n is the reference state vector, c(t) ∈ R

m ia a bounded command for tracking (or c(t) = 0

for stabilization), Ar ∈ R
n×n is the Hurwitz reference system matrix, and Br ∈ R

n×m is the command input

matrix. Also, their exist matrices K1 ∈ R
m×n and K2 ∈ R

m×m such that Ar = A + BK1, Br = BK2, and

det(K2) 6= 0 hold.

Consider the feedback law

u(t) = un(t) + ua(t), (8)

where un(t) is the nominal feedback control law given by

un(t) = K1x(t) +K2c(t), (9)

Using (8) and (9) in (1) subject to Assumption 1 gives

ẋ(t) = Arx(t) +Brc(t) +B
[
ua(t) +WTσ(V Tx) + ǫ(x)

]
. (10)

Next, let the adaptive feedback control law ua(t) be given by

ua(t) = −ŴTσ(V̂ Tx(t) + v(t), (11)

where Ŵ (t) ∈ R
s×m and V̂ (t) ∈ R

s×n are the estimates of W and V respectively, satisfying the weight

update laws

˙̂
W (t) = Γ−1

w

[(
σ(V̂ Tx(t))− σ′(V̂ Tx(t))V̂ Tx(t)

)
eT(t)PB + κ||e||Ŵ

]
, Ŵ (0) = Ŵ0, t ∈ R+, (12)

˙̂
V (t) = Γ−1

v

[
x(t)eT(t)PBŴTσ′(V̂ x(t)) + κ||e||V̂

]
, V̂ (0) = V̂0, t ∈ R+, (13)

where Γw ∈ R
s×s
+ ∩ S

s×s and Γv ∈ R
n×n
+ ∩ S

n×n are the learning rate matrices, e(t) , x(t) − xr(t) is the

system error state vector, and P ∈ R
n×n
+ ∩ S

n×n is a solution of the Lyapunov equation

0 = AT
r P + PAr +R, (14)

where R ∈ R
n×n
+ ∩ S

n×n can be viewed as an additional learning rate. Note that since Ar is Hurwitz, it

follows from converse Lyapunov theory4 that there exists a unique P satisfying (14) for a given R. The term

v(t) is a robustifying term and is defined as

v(t) = −kv

(
||Ẑ||F + Z̄

)
BTPe(t) (15)

Now, subtracting (10) from (7) gives system error dynamics

ė(t) = Are(t) +B
[
an +WTσ(V Tx) + ǫ(x)

]
, e(0) = e0, t ∈ R̄+. (16)
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where e0 , x0 − xr0. Defining W̃ = W − Ŵ and Ṽ = V − V̂ we note that

˙̃
W = −

˙̂
W, (17)

˙̃
V = −

˙̂
V. (18)

Taking (16) along with (11), (15), (17), and (18) yeilds a system of dynamic equations for the state and

weight errors.

Proof of the uniform ultimate boundedness of this system subject to assumptions 1, 2, and 3 can be

found in Ref. 5.,

III. Command Governor-based Neuroadaptive Control

The recently developed command governor architecture may be applied to a variety of adaptive and

non-adaptive control frameworks. This section overviews the command governor architecture applied to the

neuroadaptive control problem described in the previous section. Specifically, let the command c(t) be given

by

c(t) = cd(t) +Gη(t), (19)

where cd(t) ∈ R
m is a bounded external command for tracking (or cd(t) ≡ 0 for stabilization) and Gη(t) ∈ R

m

is the command governor signal with G ∈ R
m×n being the matrix defined by

G , K−1
2 BL = K−1

2 (BTB)−1BT, (20)

and η(t) ∈ R
n being the command governor output generated by

ξ̇(t) = −λξ(t) + λe(t), ξ(0) = 0, t ∈ R+, (21)

η(t) = λξ(t) +
(
Ar − λIn

)
e(t), (22)

where ξ(t) ∈ R
n is the command governor state vector and λ ∈ R+ is the command governor gain.

The addition of the command governor signal Gη(t) to the command for tracking cd(t) in (19) does not

change the system error dynamics, and hence, the weight update law (12) for Ŵ (t) remains the same. In

this case, however, (7) and (16) change to

ẋr(t) = Arxr(t) +Brcd(t) + PBη(t), (23)

ẋ(t) = Arx(t) +Brcd(t) + PBη(t) +B
[
ua(t) +WTσ(V Tx) + ǫ(x))

]
, (24)

where PB = BBL = B(BTB)−1BT. Even though this implies the modification of the reference system

with the signal PBη(t), as we see later, by properly choosing the command governor gain λ it is possible to

suppress the effect of B
[
an +WTσ(V Tx) + ǫ(x)

]
in (24) through PBη(t).

For the following theorem, we assume that the choice of R in (16) satisfies R = R0 + γλIn, where

R0 ∈ R
n×n
+ ∩ S

n×n and γ ∈ R+ is an arbitrary constant that can be chosen to be sufficiently small. There-

fore, this assumption is technical and does not place restrictions on the selection of R.

Theorem 1. Consider the nonlinear uncertain dynamical system given by (1) subject to Assumptions

1, 2, and 3, the reference system given by (7) with the command given by (19), the feedback control law
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given by (8) along with (9), (11), (12) and (13), and the command governor given by (21) and (22). Then,

the solution
(
e(t), W̃ (t), Ṽ (t), ξ(t)

)
of the closed-loop dynamical system given by (16), (17), (18), and (21)

is uniform ultimate bounded.

Proof. Consider the following Lyapunov candidate

L = eTPe+ γξTξ + trW̃TΓwW̃ + trṼ TΓvṼ (25)

Taking the derivative along
(
e(t), W̃ (t), Ṽ (t), ξ(t)

)
and inserting (16) and (21) yields

L̇ = −eTRe− 2γξT(λ(ξ − e)) + 2trW̃TΓw
˙̃
W + 2trṼ TΓv

˙̃
V (26)

= −eTR0e− γλeTe− 2γλξTξ + 2γλξTe+ 2trW̃TΓw
˙̃
W + 2trṼ TΓv

˙̃
V (27)

= −eTR0e− γλ||e− ξ||2 − γλξTξ + 2trW̃TΓw
˙̃
W + 2trṼ TΓv

˙̃
V (28)

The command governor adds two terms to the Lyapunov function derivative, −γλ||e − ξ||2 and −γλξTξ,

which are negative semidefinite. Therefore the proof of uniform ultimate boundedness is not affected by the

addition of the command governor.

�

A. Improving the Transient Performance

Theorem 1 demonstrates that the addition of the command governor does not negatively affect the stability

properties of the neuroadaptive system. On the contrary, it will be demonstrated in this section that the

command governor affects the dynamics of the system such that, in the limit of the command governor gain,

the original nonlinear system converges to the linear reference model.

Consider the dynamics of the command governor given in the frequency domain:

Ge→η = Are(s)−
s

1

λ
s+ 1

e(s) (29)

The second term, s
1

λ
s+1

e(s), is a low-pass filter on the error dynamics derivative, and therefore the command

governor output in Equation (22) can be rewritten

η(t) = Are(t)− ėlf (t) (30)

where ėlf (t) is the low frequency portion of the error dynamics derivative. Note that we define ėhf (t) to be

the corresponding high frequency portion, and that ė(s) = ėlf (t) + ėhf (t). In addition, note that

η(t) → Are(t)− ė(t) as λ → inf (31)

By rearranging the state dynamics the influence of the command governor becomes apparent. First note

that the error dynamics in Equation (16) can be rewritten as

ė(t)−Are(t) = B
(
ua(t) +WTσ(V Tx) + ǫ(x)

)
(32)
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Now, consider the state dynamics of the original system in Equation 24:

ẋ(t) = Arx(t) +Brcd(t) + PBη(t) +B
[
ua(t) +WTσ(V Tx) + ǫ(x)

]
(33)

ẋ(t) = Arx(t) +Brcd(t) + PT
B η(t) +B(BTB)−1BTB

[
ua(t) +WTσ(V Tx) + ǫ(x)

]
(34)

ẋ(t) = Arx(t) +Brcd(t) + PB

[
η(t) +B

(
ua(t) +WTσ(V Tx) + ǫ(x)

) ]
(35)

Inserting (32) into (35) gives

ẋ(t) = Arx(t) +Brcd(t) + PB

[
η(t) + ė(t)−Are(t)

]
(36)

Finally, inserting (30) into (37) results in

ẋ(t) = Arx(t) +Brcd(t) + PB

[
ėhf (t)

]
(37)

As the command governor gain approaches infinity, ėhf (t) → 0 and the system dynamics converge to the

reference model.

At high gain, the feedback of the high frequency error dynamics in the command governor architecture

can have the undesirable effect of amplifying the measurement noise present in the system. If this is the

case, additional conditioning of the command governor signal can be performed as described in Reference 2.

IV. Simulation Results

To illustrate the behavior of the modified neuroadaptive controller, the proposed system was applied to

a standard wing-rock aircraft model.6 Consider a nonlinear controlled wing rock aircraft dynamics model

given by

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

0 0

][
x1(t)

x2(t)

]
+

[
0

1

]
[u(t) + δ(t)] ,

[
x1(0)

x2(0)

]
=

[
0

0

]
, t ∈ R+ (38)

where x1 represents the roll angle in radians and x2 represents the roll rate in radians per second. In

(38), δ(x) represents an uncertainty of the form δ(x) = α1x1 + α2x2 + α3|x1|x2 + α4|x2|x2 + α5x
3
1, where

αi, i = 1, ..., 5 are unknown parameters that are derived from the aircraft aerodynamic coefficients. For our

numerical example, we set α1 = 0.1414, α2 = 0.5504, α3 = −0.0624, α4 = 0.0095, and α5 = 0.0215. We

choose K1 = [−0.16,−0.57] and K2 = 0.16 for the nominal controller design that yields to a reference system

with a natural frequency of ωa = 0.40 rad/s an a damping ratio of ζ = 0.707. For the standard neuroadaptive

controller, Γ−1
w = 0.1I3, Γ

−1
v = 0.1I2, Z̄ = kv = 0.1 and κ = .01. Three hidden layer neurons were used to

approximate the uncertainty. In the command governor case, the gain λ = 50.

Figures 1, 2 and 3 shows the results of a 120 second simulation where the desired response is a shaped

±10◦ input. Figure 1 shows that the baseline controller becomes oscillatory and does not converge to the

command within the 120 second period. Likewise the actuator commands are oscillatory also. The results

of increasing the adaptation gain by a factor of 100 are shown in Figure 2. Better tracking is observed, but

at the expense of highly active actuator commands which would be unrealistic. Figure 3 show the response

with the addition of the command governor at the original adaptation gain. Note the behavior of command

governor-affected input c, which is the command driving the neuroadaptive controller. The attitude tracks

the desired command well throughout and the actuator commands are realistic.
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V. Conclusion

This paper presented a novel method to address the transient response and uniform ultimate boundedness

of neuroadaptive controllers through the application of the command governor. It was shown that the

command governor architecture causes the dynamics of the original neuroadaptive system to approximate

the linear reference model. Simulation results illustrated the effectiveness of the approach using an aircraft

wing-rock model.
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Figure 1. Wing-rock model response for standard neuroadaptive control for a 10 degree input with state

feedback. Adaptation gains are set to Γ−1
w = 0.1I3, Γ

−1
v = 0.1I2.
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Figure 2. Wing-rock model response for standard neuroadaptive control for a 10 degree input with state

feedback. Adaptation gains are set to Γ−1
w = 10I3, Γ

−1
v = 10I2.
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Figure 3. Wing-rock model response for command governor-based neuroadaptive control for a 10 degree input

with state feedback with λ = 50. Adaptation gains are set to Γ−1
w = 0.1I3, Γ

−1
v = 0.1I2
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