GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION

			Date: June	26, 1979	
Project Title: En	ergy Conservatic	on in the Textile : Sub	Industry Part		
Project No: E-	27-682	2ut - 1853-0	504)	Hr	CO
Project Director:	Dr. Wayne C. Tir	icher		10	
Sponsor: U.S.	Department of H	Inergy; Oak Ridge (Operations	0.30,1980	0
Agreement Period:	From	6/1/78	Until <u>1/3</u>		ract Period)
Type Agreement:	Contract No. DE Contract No. EY	-AS05-76CS40081, M -76-S-05-5099)	Mod. No. M005 (1	Cormerly	
Amount:	\$87,692		, 		
	N				

Reports Required: Monthly Technical Status Reports; Publication Preprints; Publication Reprints; Final Report

Sponsor Contact Person (s):

Technical Matters

Mr. John Rossmeissel
Division of Building and Energy Conservation
Department of Energy
20 Massachusetts Avenue
Washington, D. C. 20545

Contractual Matters

(thru OCA) A. H. Frost, Jr., Chief Contract Management Branch Procurement and Contracts Division Department of Energy Oak Ridge Operations Oak Ridge, TN 37830

Earl Mason 615/576-0792

Defense Priority Rating: n/a

Assigned to: <u>Textile Engineering</u>

COPIES TO:

Project Director Division Chief (EES) School/Laboratory Director Dean/Director-EES Accounting Office Procurement Office Security Coordinator (OCA) V Reports Coordinator (OCA) (School/Laboratory)

Library, Technical Reports Section EES Information Office EES Reports & Procedures Project File (OCA) Project Code (GTRI) Other

GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION

Date: 8/24/81

Project Title: Energy Conservation in the Textile Industry -- Part III of Phase III

Project No: E-27-682

Project Director: Dr. Wayne C. Tincher

Sponsor: U.S. Dept. of Energy; Oak Ridge Operations

Effective Termination Date: _____ 4/30/80

Clearance of Accounting Charges: 4/30/80

Grant/Contract Closeout Actions Remaining:

- x Final Invoice and Closing Documents
- Final Fiscal Report
- Final Report of Inventions
- Govt. Property Inventory & Related Certificate
- Classified Material Certificate
- x Other ____ Cost Expenditure Statement (in Format of Contract Appendix)

Assigned to: Textile Engineering

(School/Laboratory)

COPIES TO:

Project Director Division Chief (EES) School/Laboratory Director Dean/Director-EES Accounting Office Procurement Office Security Coordinator (OCA) Reports Coordinator (OCA) Library, Technical Reports Section EES Information Office Project File (OCA) Project Code (GTR1) Other_____ Monthly Technical Status Report Number T

Contract No. DE-AS05-76CS40081 Modification No. M005

Energy Conservation in the Textile Industry Part III of Phase III

IN-PLANT DEMONSTRATION OF OPTIMIZATION OF ENERGY UTILIZATION IN BECK DYEING OF CARPET

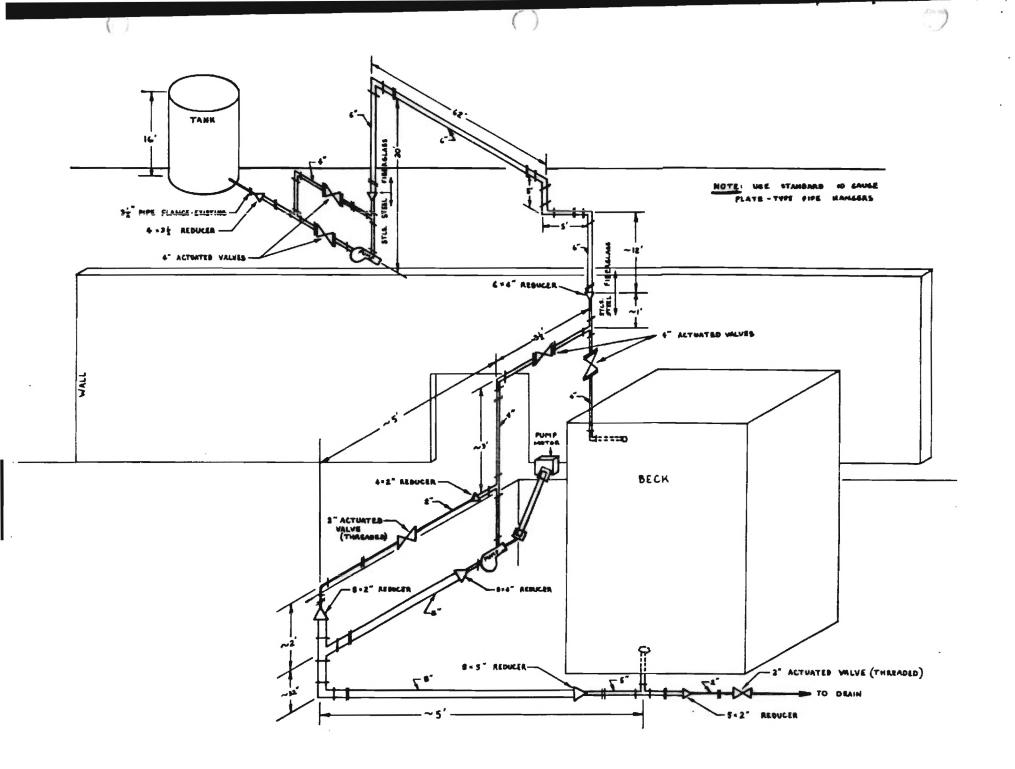
Prepared for

Department of Energy Division of Building and Energy Conservation

Ьy

Wayne C. Tincher School of Textile Engineering Georgia Institute of Technology Atlanta, Georgia 30332

August 10, 1979


Major effort during the first month of the project has been directed toward development of plans for the dyebath reuse holding tank and pumping system. Two visits to the Salem plant were made during the month to complete siting plans and to discuss alternate arrangements of the holding tank and pumping system with Salem engineers. The demonstration will be conducted on the Salem dyehouse number 1 beck with the holding tank about 60 feet away in a storage area.

Engineering drawings for all beck modifications have been completed and a list of required components has been prepared. A drawing of the preposed system is given in the attached figure.

A meeting is planned on August 7 with Salem engineers to complete the planning phase and to initiate purchasing of components for installation of the holding tank and pumping system.

November 1 has been established as the target for beginning the in-plant experiments.

Three other carpet firms requested visits during July to discuss dyebath reuse in carpet dyeing. Due to styling changes, an increase in beck dyeing has been occurring in the industry and these three firms have expressed keen interest in receiving information on the progress of the in-plant demonstration.

/ /

E-27-682

Monthly Technical Status Report Number 2

Contract No. DE-AS05-76CS40081 Modification No. M005

Energy Conservation in the Textile Industry Part III of Phase III

IN-PLANT DEMONSTRATION OF OPTIMIZATION OF ENERGY UTILIZATION IN BECK DYEING OF CARPET

Prepared for

Department of Energy Division of Building and Energy Conservation

by

Wayne C. Tincher School of Textile Engineering Georgia Institute of Technology Atlanta, Georgia 30332

September 10, 1979

Preparations for the in-plant demonstration at Salem Carpet Mills have continued this month. A meeting was held with the plant engineering staff on August 7 to complete the planning phase and to initiate purchase of capital equipment for beck modification.

The spectrophotometer and computer system have been delivered and are now being checked and calibrated. The interface is approximately 60% complete.

A progress review meeting is scheduled with Salem personnel on September 7.

Technology transfer activities have been continued at a high level during the month. At least two plants have attempted dyebath reuse experiments on their own and a number of others will probably be carrying out initial experiments in the next few months.

.

•

Monthly Technical Status Report Number 3

,

.. ..

Contract No. DE-AS05-76CS40081 Modification No. M005

Energy Conservation in the Textile Industry Part III of Phase III

IN-PLANT DEMONSTRATION OF

OPTIMIZATION OF ENERGY UTILIZATION

IN BECK DYEING OF CARPET

Prepared for

Department of Energy Division of Building and Energy Conservation

by

A...

Wayne C. Tincher School of Textile Engineering Georgia Institute of Technology Atlanta, Georgia 30332

October 10, 1979

Progress continues on preparations for the in-plant demonstration at the Chickamauga plant of Salem Carpet Mills. The monthly review meeting was held with Salem engineers on Septmeber 7 and all pumps, piping, tanks, etc. are on order and expected to be delivered and installed before the November 5 target date. The October review meeting is scheduled for the 8th with a second meeting scenduled for October 29th.

The analytical system (spectrophotometer, interface and computer). has been assembled and checked and all computer programs have been written.

Technology transfer activities this month included a presentation on dyebath reuse on the Catawba Hosiery Association technical meeting in Hickory, NC, and meetings with interested hosiery and dyeing equipment manufacturers. An invited paper including the work on dyebath reuse was presented at the National American Chemical Society Meeting in Washington. Several meetings with companies interested in initiating dyebath reuse studies are scheduled during October.

· ·

Monthly Technical Statuts Report Number 4

>

.

Contract No. DE-AS05-76CS40081 Modification No. M005

Energy Conservation in the Textile Industry

Part III of Phase III

IN-PLANT DEMONSTRATION OF

OPTIMIZATION OF ENERGY UTILIZATION

IN BECK DYEING OF CARPET

Prepared for

Department of Energy Division of Building and Energy Conservation

bу

Wayne C. Tincher School of Textile Engineering Georgia Institute of Technology Atlanta, Georgia 30332

November 10, 1979

All equipment for the in-plant demonstration at the Chicamauga plant of Salem Carpet Mills was on hand by the October 29 review meeting. The water and steam monitoring systems have been installed and the beginning of the trial runs scheduled for November 5 will occur as planned.

At the October 29 review meeting, Salem engineers indicated that some delays had been experienced in installation of the pump control systems for the dyebath reuse runs. They estimate that all systems should be operational by November 26. A two week delay in the reuse runs will be necessary, therefore. This delay should not create any problems in the timing of the completion of the project. Monthly Technical Status Report Number 5

1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -

ė

4

Contract No. DE-AS05-76CS40081 Modification No. M005

Energy Conservation in the Textile Industry Part III of Phase III

IN-PLANT DEMONSTRATION OF OPTIMIZATION OF ENERGY UTILIZATION IN BECK DYEING OF CARPET

Prepared for

Department of Engery Division of Building and Energy Conservation

bу

Wayne C. Tincher School of Textile Engineering Georgia Institute of Technology Atlanta, Georgia 30332

December 10, 1979

The in-plant demonstration of energy conservation in carpet dyeing began on November 6. The first series of dyeingswere completed November 10. The first series consisted of twenty dyeing cycles. The first 10 cycles were conducted in the conventional manner and the subsequent 10 cycles with a procedure designed for optimum energy conservation.

The second phase of the in-plant demonstration was carried out from November 26 to December 4. This phase consisted of 30 dyeing cycles divided into 3 groups. The first group was carried out with reuse of the dyebath for 11 dyeings. The second group consisted of 13 dyeings in the same bath. The last group of 6 was carried out by leaving the dyebath in the beck and pulling the carpet hot and rinsing just prior to final drying. Both the optmized cycles and the dyeing with reuse of the dyebath gave no quality problems. Both redye rates and add rates were lower than normal plant experience for the styles dyed.

A preliminary analysis of the data suggests that energy consumption in carpet dyeing was reduced by over 35% using an optimized cycle and reuse of the dyebath. An overall cost reduction of approximately 2 cents per pound of carpet dyed was achieved also. These results agree well with predictions based on laboratory dyeings.

The final report on the project is in preparation.

Final Report

E-27-682

IN-PLANT DEMONSTRATION OF ENERGY OPTIMIZATION IN BECK DYEING OF CARPET

Investigators:

W. C. Tincher F. L. Cook W. W. Carr L. H. Olson M. L. Averette

Prepared for

U. S. DEPARTMENT OF ENERGY ASSISTANT SECRETARY FOR CONSERVATION AND SOLAR ENERGY OFFICE OF INDUSTRIAL PROGRAMS

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF TEXTILE ENGINEERING ATLANTA, GEORGIA 30332

U.S. DEPARTMENT OF ENERGY

DOE AND MAJOR CONTRACTOR RECOMMENDATIONS FOR DISPOSITION OF SCIENTIFIC AND TECHNICAL DOCUMENT

See Instructions on Reverse Side

	DOE Report No.	2. Contract No. DE-A205-76CS4008	3. Subject Category No
	Title		
	IN-PLANT DEMONSTRATION OF ENERGY	Y OPTIMIZATION IN BECK DYE	ING OF CARPET
	Type of Document ("x" one)		
	X a. Scientific and technical report		
	□ b. Conference paper: Title of conference		
			Date of conference
	Freedow to the term		
	Exact location of conference	Sponsoring organization	
_	C. Other (Specify Thesis, Translations, etc.)		
	Copies Transmitted ("x" one or more)	ution by DOE TIC	
	 Copies being transmitted for standard distribution b. Copies being transmitted for special distribution 		
	□ c. Two completely legible, reproducible copies □ d. Twenty-seven copies being transmitted to D(
_	Recommended Distribution ("x" one)	The rest is processing and write sales.	
	I a. Normal handling (after patent clearance): no	restraints on distribution excent as may be	equired by the security classification
	Make available only D b. to U.S. Government age		n DOE and to DOE contractors.
	\Box d. within DOE.		ase listed in item 13 below.
	☑ f. Other (Specify) Textile Industry		
-	Recommended Announcement ("x" one)		
		b. Recommend the following announceme	nt limitations:
	Reason for Restrictions Recommended in 7 or 8 ab		ther (Explain)
	Patent Clearance		
	Does this information product disclose any new equ		
	Has an invention disclosure been submitted to DOE		
	disclosure number and to whom the disclosure wa	submitted. 🗌 Yes	X No
	Are there any patent related objections to the relea	a of this information product? If so, state th	or objections
	NO	se of this mormation product? It so, state th	ese objections.
	110		
	("x" one) a. DOE patent clearance has be	en granted by responsible DOE patent group.	
		en granted by responsible DOE patent group. esponsible DOE patent group for clearance.	
		esponsible DOE patent group for clearance.	
	b. Document has been sent to re	esponsible DOE patent group for clearance.	
2	b. Document has been sent to re National Security Information (For classified docur	esponsible DOE patent group for clearance. nent only; "x" one)	
	□ b. Document has been sent to render National Security Information (For classified document □ Document □ a. does [X] b. does not Copy Reproduction and Distribution Total number of copies reproduced	esponsible DOE patent group for clearance. nent only; "x" one) contain national security information other _Number of copies distributed outside origin	than restricted data.
	□ b. Document has been sent to render National Security Information (For classified document □ a. does ○ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	esponsible DOE patent group for clearance. nent only; "x" one) contain national security information other _Number of copies distributed outside origin	than restricted data.
	□ b. Document has been sent to render National Security Information (For classified document □ Document □ a. does [X] b. does not Copy Reproduction and Distribution Total number of copies reproduced	esponsible DOE patent group for clearance. nent only; "x" one) contain national security information other _Number of copies distributed outside origin	than restricted data.
•	□ b. Document has been sent to render t	esponsible DOE patent group for clearance. nent only; "x" one) contain national security information other _Number of copies distributed outside origin aparate sheet, if necessary)	than restricted data.
•	b. Document has been sent to rent National Security Information (For classified document Document a. does Xational Security Information (For classified document Document a. does Xational Security Information (For classified document Document a. does Xational Security Information and Distribution Total number of copies reproduced Additional Information or Remarks (Continue on security Submitted by (Name and Position) (Please print or Security Sec	esponsible DOE patent group for clearance. nent only; "x" one) contain national security information other _Number of copies distributed outside origin aparate sheet, if necessary)	than restricted data.
	□ b. Document has been sent to re National Security Information (For classified docur Document □ a. does ⊠ b. does not Copy Reproduction and Distribution Total number of copies reproduced Additional Information or Remarks (Continue on set Submitted by (Name and Position) (Please print or Dr. Fred L. Cook	esponsible DOE patent group for clearance. nent only; "x" one) contain national security information other _Number of copies distributed outside origin aparate sheet, if necessary)	than restricted data.
•	b. Document has been sent to rent National Security Information (For classified document Document a. does Advisorial and Distribution Total number of copies reproduced Additional Information or Remarks (Continue on submitted by (Name and Position) (Please print or Dr. Fred L. Cook	esponsible DOE patent group for clearance. nent only; "x" one) contain national security information other _Number of copies distributed outside origin aparate sheet, if necessary) type)	than restricted data.
ga	□ b. Document has been sent to re National Security Information (For classified docur Document □ a. does ⊠ b. does not Copy Reproduction and Distribution Total number of copies reproduced Additional Information or Remarks (Continue on set Submitted by (Name and Position) (Please print or Dr. Fred L. Cook	esponsible DOE patent group for clearance. nent only; "x" one) contain national security information other _Number of copies distributed outside origin aparate sheet, if necessary) type)	than restricted data.

Who uses this form: All DOE contractors except those specifically instructed by their DOE contract administrator to use the shorter Form DOE-427.

When to use: Submit one copy of this form with each document that is sent to the DOE Technical Information Center (TIC) in accordance with the requirements of DOE Order 1340.

Where to send: Forward this form and the document(s) to:

USDOE-TIC P.O. Box 62 Oak Ridge, TN 37830

Item instructions:

Item 1. The DOE report number will be constructed as follows:

 (a) Major DOE laboratories and contractors that have been assigned TIC-approved codes will use their approved system, e.g., BNL, BMI, PNL. Sequential numbers will be assigned to each report by the originating laboratory or contractor.

(b) Contractors that do not have TIC-approved identifying codes will create their unique numbers by (1) identifying the report with code DOE, (2) selecting the basic seven characters (two alphabetic and five numeric) for the applicable contract number, and (3) adding sequential numbers for each report generated under the contract. Slash marks and hyphens should be applied as shown in the examples below.

Reports issued in more than one binding or reissued as revisions or later editions will be identified by adding the additional suffixes to the basic number, e.g., Rev., Revision; Vol., Volume; Pt., Part; Add., Addendum; Ed., Edition.

Examples

Major laboratories and contractors with approved codes BNL-1874

Contractors without approved codes

For Contract DE-AC01-78<u>ET01834</u>.M002 DOE/ET/01834-1 DOE/ET/01834-2 DOE/ET/01834-2 Rev. 1

(The modification number, if any, normally shown as .M002, etc., following the basic five-digit number, is not used in the report number.)

Item 2. Self-explanatory.

- Item 3. Insert the appropriate subject category from TID-4500 ("Standard Distribution for Unclassified Scientific and Technical Reports") or M-3679 ("Standard Distribution for Classified Scientific and Technical Reports") for both classified and unclassified documents, whether or not printed for standard distribution.
- Item 4. Give title exactly as on the document itself unless title is classified. In that case, omit title and state "classified title" in the space for item 4.
- Item 5. Self-explanatory.
- Item 6. a. If box a is checked, the number of copies specified for the appropriate category or categories in M-3679 or TID-4500 will be forwarded to TIC for distribution.

b. If box b is checked, a complete address list must be provided TIC.

c. If box c is checked, at least one copy will be original ribbon or offset and be completely legible. A clear carbon copy is acceptable as a second reproducible copy.

d. If box d is checked, 27 copies will be forwarded to TIC, 2 will be retained for processing and 25 will be sent to NTIS for public availability.

Item 7. If box *a* is checked for an unclassified document, it may be distributed by TIC (after patent clearance) to addressees listed in TID-4500 for the appropriate subject category, to libraries in the U.S. and abroad which through purchase of microfiche maintain collections of DOE reports, and to the National Technical Information Service for sale to the public.

If box a is checked for a classified document, it may be distributed by TIC to addressees listed in M-3679 for the appropriate subject category.

If a box other than a is checked, the recommended limitation will be followed unless TIC receives other instructions from the responsible DOE program division.

Box f may be checked in order to specify special instructions, such as "Make available only as specifically approved by the program division."

Item 8. a. Announcement procedures are normally determined by the distribution that is to be given a document. If box a in item 7 is checked for an unclassified document, it will normally be listed in the weekly "Accessions of Unlimited Distribution Reports by TIC" (TID-4401) and may be abstracted in Energy Research Abstracts (ERA).

> A classified document, or an unclassified document for which box b, c, d, e, or f in item 7 is checked, may be cited with appropriate subject index terms in Abstracts of Limited Distribution Reports (ALDR).

> b. If the normal announcement procedures described in 8a are not appropriate, check 8b and indicate recommended announcement limitations.

- Item 9. Self-explanatory.
- Item 10. It is assumed that there is no objection to publication from the standpoint of the originating organization's patent interest. Otherwise explain in item 13.
- Item 11. If box a is checked, the document cannot be made available to Access Permit holders (Code of Federal Regulations, 10 CFR, Part 25, subpart 25.6); if box b is checked, TIC will determine whether or not to make it available to them.
- Item 12. Self-explanatory.
- Item 13. Self-explanatory.
- Item 14. Enter name of person to whom inquiries concerning the recommendations on this form may be addressed.

IN-PLANT DEMONSTRATION OF ENERGY OPTIMIZATION IN BECK DYEING OF CARPET

Final Report

Part III, Phase III Extension of DOE Contract No. DE-A205-76CS4008

Modification No. M005

Prepared By

School of Textile Engineering

and

Engineering Experiment Station

of

THE GEORGIA INSTITUTE OF TECHNOLOGY Atlanta, Georgia 30332

and

SALEM CARPET COMPANY Chickamauga, Georgia 30707

Investigators:

W. C. TincherF. L. CookW. W. CarrL. H. OlsonM. L. Averette

Prepared For:

U.S. Department of Energy Assistant Secretary for Conservation and Solar Energy Office of Industrial Programs

IN-PLANT DEMONSTRATION OF ENERGY OPTIMIZATION IN BECK DYEING OF CARPET

Final Report

Part III, Phase III Extension of DOE Contract No. DE-AS05-76CS4008] Modification No. M005

Covering the Period

June 1, 1979 - January 1, 1980

Prepared by

The School of Textile Engineering

and

The Engineering Experiment Station

of

THE GEORGIA INSTITUTE OF TECHNOLOGY, Prime Contractor Atlanta, Georgia 30332

and

SALEM CARPET COMPANY, Sub-contractor Chickamauga, Georgia

Principal Investigator: Dr. W. C. Tincher Professor/Director Senior Investigator: Dr. Fred L. Cook Associate Professor Senior Engineer: Dr. Wallace W. Carr Associate Professor

Salem Carpets Director: Mr. Jack Haselwander, V. P. Director of Corporate Engineering Salem Carpet Company P. O. Box 10 Ringgold, GA 30736

Prepared for:

U.S. Department of Energy Assistant Secretary for Conservation and Solar Energy Office of Industrial Programs

TABLE OF CONTENTS

			PAGE
LIST O	F TA	BLES	iii
LIST O	F FI	GURES	iv
LIST O	F AP	PENDICES	v
ACKNOW	LEDG	EMENTS	vi
Ι.	SUM	MARY	vii
II.	INT	RODUCTION	1
III.	EXP	ERIMENTAL RESULTS AND DISCUSSION	11
	A. Equipment, Chemicals and Goods		11
	в.	Engineering Design and Modification	11
		1. Atmospheric Dye Beck	11
		2. Reuse System	18
		3. Dyebath Temperature Control Device and Controller Modification	19
		4. Steam Monitoring System	22
		5. Water Meter	22
	C. Computer Interface and Programs		24
		1. Computer Interface	24
		2. Programs	27
	D. Conventional Salem ProcessE. Bump-and-Run Sequences		31
			34
	F.	Combined Bump-and-Run/Dyebath Reuse Sequences	34
	G.	Bump-and-Run/Dyebath Reuse/Hot Pull Sequence	36
	Н.	Carpet Quality	37

TABLE OF CONTENTS (Continued)

			PAGE
IV.	SAV	INGS AND COST/BENEFIT ANALYSIS	38
	Α.	Percentage Savings in Consumption	38
	Β.	Cost Savings for Modified Sequences	40
	C.	Cost Benefit Analysis for Salem Carpets	45
		1. Incorporation of Bump-and-Run	45
		2. Incorporation of Bump-and-Run/Dyebath Reuse	46
	D.	Projected National Energy Conservation Potential	49
	E.	Projected Industry Economic Potential	52
	F.	Indirect Energy Savings	53
۷.	CON	CLUSIONS	54
VI.	DIS	SEMINATION OF INFORMATION	56
VII.	BIB	LIOGRAPHY	57
	APP	ENDICES	58

LIST OF TABLES

Table	1.	Cost Factors	32
Table	2.	Average Consumption Data for Dyeing Sequences	33
Table	3.	Percentage Savings for Modified Dyeing Processes Over the Conventional Procedure	39
Table	4.	Model Cycles for Energy Consumption Based on Appendix 4	41
Table	5.	Combined Cost Savings for Process Modifications	42
Table	6.	Savings Per Average Cycle Load (1664 lbs)	44
Table	7.	Projected Cost of Incorporating Bump-and-Run/ Dyebath Reuse to Eight Production Becks	47
Table	8.	Most Recent Full-Year Carpet Production Data	50

LIST OF FIGURES

Figure 1.	Atmospheric Beck Flows	3
Figure 2.	Tasks and Work Schedule	10
Figure 3.	Schematic of Atmospheric Dye Beck	12
Figure 4.	Overflow System	14
Figure 5.	Sight Glass	15
Figure 6.	Spray Bar Used for "Hot Pulls"	16
Figure 7.	Schematic of Reuse System	17
Figure 8.	Dyebath Temperature Control Device and Steam Monitoring System	20
Figure 9.	Location and Orientation of Water Meter	23
Figure 10.	Single Bit Level Conversion Schematic	26
Figure 11.	Five Volt Regulated Power and Reference Voltage Supply	26
Figure 12.	Display Schematic	28
Figure 13.	Pin-out of Integrated Circuits	28
Figure 14.	Steam Required to Reach the Hold Temperature for the Various Dyeing Sequences	35

LIST OF APPENDICES

PAGE

Appendix	1.	Dyeing Sequences Conducted by Various Processes	59
Appendix	2.	Engineering and Analysis Equipment Required by the Project	61
Appendix	3.	Program Listings for Dyebath Reuse	77
Appendix	4.	Conventional Salem Process as of December, 1979	81
Appendix	5 "	Energy Consumption Data for the Dyeing Sequences	88
Appendix	б.	Water/Sewer and Time Requirements for Dyeing Sequences	93
Appendix	7.	Auxiliary-Chemical Consumption Data for Dyeing Sequences	98
Appendix	8.	Dye Consumption Data and Savings for Dyeing Sequences	103
Appendix	9.	Color Differences Between Dyed Samples and Average Color Values by Shade	108
Appendix	10.	Bump-and-Run Process	112
Appendix	11.	Combined Bump-and-Run/Dyebath Reuse Process	113
Appendix	12.	Combined Bump-and-Run/Dyebath Reuse/Hot Pull Process	114
Appendix	13.	Cost Savings Due to Energy and Water/Sewer Reductions	115
Appendix	14.	Cost Savings Due to Auxiliary Reduction	116
Appendix	15.	Cost Savings Due to Dye Reduction	117
Appendix	16.	Dissemination of Information Efforts to Date	118

۷

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the overwhelming support extended to the project by the Salem Carpet Company management and staff. Specific recognition is reserved for the following individuals: Messers. Jack Haselwander, Dave Dake, and John Milhollin of the corporate engineering staff; Mr. Sonny Whitlock, Plant Manager; Mr. Roger Webb, Assistant Plant Manager; and Mr. Ron Jones, former Director of Special Projects.

The authors also acknowledge the DOE Technical monitor for the project, Mr. John Rossmeissl, and his colleague, Mr. David Klimaj, for their valuable guidance and support. The authors are also grateful to Mr. Al Streb and Mr. Doug Harvey of DOE for their administrative roles in the project.

Thanks are also extended to research assosicates who played minor roles in the project, including Ms. Dona Tucker and Mr. Ty Stokes. Ms. Tucker gathered the data for the early pilot-scale research that led to the plant demonstration. Mr. Stokes participated on-site in the demonstration, and helped compile the color difference data for the report. Ms. Faye Hagood, Ms. Esther Davis and Ms. Maureen Glass are recognized for typing and assembling the report.

I. SUMMARY

Several energy-conservative technologies have been successfully combined and transferred to a commercial carpet finishing plant to optimize beck dyeing. The technology of "bump-and-run", in which the dyebath temperature was allowed to drift for the last 85% of the hold time instead of being maintained by active steam sparging, reduced the energy consumption by 38% with negligible capital investment required. Merging of dyebath reuse with bump-and-run only marginally increased the energy consumption (to 39%), but substantially lowered the plant's finishing costs further by directly recycling dyes, auxiliary chemicals, and water. Final optimization, which merged a technique whereby the carpet was pulled directly from the hot bath with bump-and-run and dyebath reuse, further improved the economics by drastically reducing water/sewer requirements by 90% and eliminating the holding tank/ pumping assembly as a reuse requirement.

Combined energy/materials savings achieved by the full optimization totaled 2.3 cents per pound of goods, with an estimated return of raw capital investment of 6.6 months for application to 8 of the plant's 14 becks with the holding tank/pumping system approach. By combining the hot pull technique with the other modifications, which depends on receiving adequate rinsing in the wet out box already being utilized by the plant before drying, the return period on capital investment is negligible. In the latter case, greater than \$400,000 in savings can be realized by the plant in the first year of implementation of the modifications on the 8 becks.

vii

From a carpet industry viewpoint, the demonstrated modifications have a direct energy conservation potential of 2.4×10^5 barrels of oil equivalent per year assuming the technology is directly transferable to similar atmospheric dyeing processes, e.g., beck dyeing of nylon and polyester fabrics, the potential to the entire textile industry is 2.6×10^6 BOE/year. Indirect energy conservation potential of a undetermined quantity is also inherent in the optimized process via reduced dye, auxiliary chemical and water requirements. Finally, the successful merging of the hot pull technique with the other modifications dictated a water/sewer conservation potential of 2.7×10^9 gallons per year for carpets and 2.3×10^{10} gallons per year including the allied fabric industry.

Economically, total potential savings for the carpet industry on reuse incorporation was $\$1.2 \times 10^7$ /year, based on the 2.3¢/lb. savings figure. When the allied fabric industry was included, the national potential was raised to $\$1.0 \times 10^8$ /year. These figures includes cost savings due to materials recycled (water, auxiliary chemicals and dyes) as well as energy conservation.

Salem Carpet Co. has expanded bump-and-run over the plant's entire nylon beck production, and is evaluating the process modification on its carrierless polyester production. Studies are also underway to evaluate the rinsing efficiency of the wet-out box for plant incorporation of the hot pull technique, and alternate engineering/economic plans are being derived to incorporate dyebath reuse by the holding tank/pumping system approach if necessary.

viii

II. INTRODUCTION

Data collected in Phase I of DOE Contract Number DE-AS05-76CS40081 revealed that 240 million pounds of nylon and 165 million pounds of polyester are dyed in carpet form on atmospheric dyebecks¹. An average of approximately 13,000 BTU/pound of goods of steam energy is consumed during a typical carpet beck dyeing cycle, or 9.1 x 10^5 barrels of oil equivalent (BOE) consumption per year. Atmospheric becks are heated by direct steam injection. Undissipated steam and hot water vapor are removed in bulk during the hold cycles at the boil by an exhaust system. The system, consisting of a stack, damper, and fan is required to prevent steam from escaping into the work area during the hold cycle. Radiation/convection losses from the uninsulated, high surface area machines add to the stack losses to further increase energy consumption and lower efficiency. Many installations familiar to the investigators have inadequate, unmaintained (and thus inefficient) or no heat exchangers applied to hot water drains, and therefore considerable energy is also wasted in the form of hot process water. Pollution treatment costs, water costs, unexhausted chemical costs, and the energy inherent in supplying these services and materials are also considerable due to the conventional practice of draining hot dyebaths to the sewer after each dyeing cycle.

Nylon carpet dyeing processes are particularly narrowly defined from a chemical viewpoint. Quite often long color lines are derived from the same three dyes, with a yellow, a red, and a blue colorant usually included in the formulation. Both Nylon 6 and Nylon 66 fiber types are utilized. Although both acid and disperse dye classes are employed to color nylon carpet, acid dyes are most widely used due to their superior light fastness properties.

- 1 -

The dyebath auxiliary chemicals in nylon acid dyeing, consisting of leveling agent, pH control agent, defoamer, and sequesterant are not appreciably substantive to the fiber, and can thus be reused without hindering the dyeing behavior.

In summary, the nylon carpet dyeing process was an ideal candidate for adapting energy-conserving process modifications. Optimization of the beck dyeing process in the reported demonstration included the modifications of bump-and-run, dyebath reuse, and hot pull. The demonstration project was conducted at the Chickamauga, Georgia, finishing plant of Salem Carpet Company.

The concept of bump-and-run evolved from earlier interests in dyeing nylon carpet at low hold temperatures ($\sim 140^{\circ}$ F). To exhaust the dye onto the fiber at this low a temperature, however, additional new chemicals had to be added to the dyebath to "open up" the polymeric structure. Unfortunately, cost/benefit analyses revealed that in at least one of the low-temperature processes being investigated by industry, the added chemical costs more than offset the energy savings realized by dropping the hold temperature from the boil.² In addition, the 140°F temperature was not sufficiently above the wet glass transition temperature of the nylon to fully develop the "bloom", or bulk, of the carpet, giving a poorer surface coverage and hand. For the same reason, coverage of yarn streaks caused by fiber nonuniformities was also a weakness of dyeing at 140°F.

The concept of bump-and-run, first expoused by Mr. John J. Toon of Piedmont Chemical Company, avoids several of the drawbacks associated with 140[°]F processes. Phase I had shown that approximately 49% of the total energy consumed in beck dyeings was lost to the atmosphere via the stack, with the bulk lost at the boil (Figure 1). Radiation/convection losses were small by comparison, amounting to only 2% of the energy consumed. In the process of

- 2 -

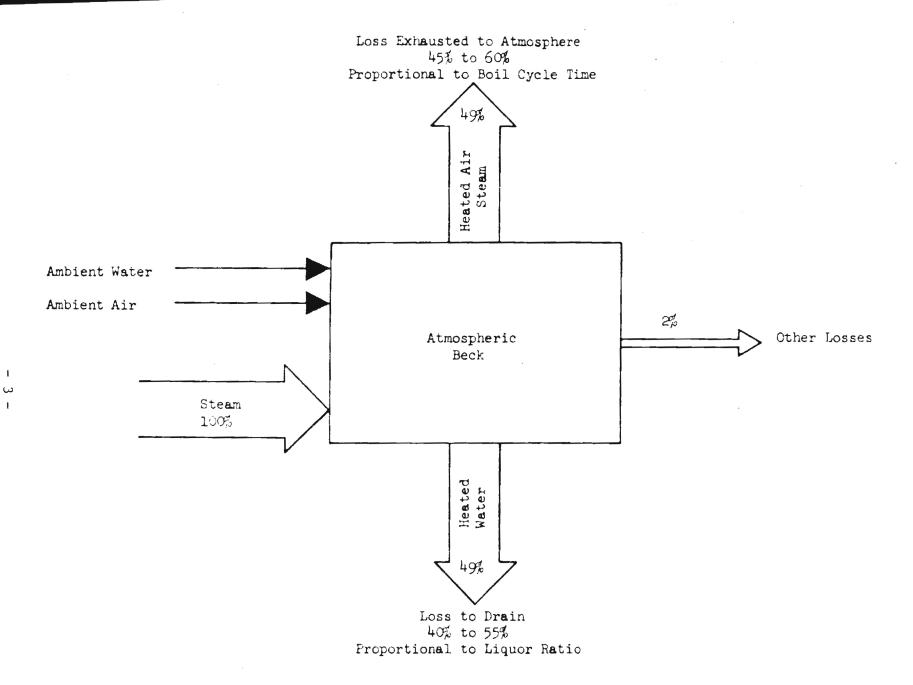


FIGURE 1. ATMOSPHERIC BECK FLOWS

bump-and-run, the stack loss at the boil is minimized while utilizing the low radiation/convection loss as an advantage. The dyebath is brought ("bumped") to the boil in the usual manner, and maintained at the boil for five minutes to level-out the dye. Steam injection is then terminated, the stack fan is cut off and the damper is closed (by controls at the beck), and the beck doors (or curtains) are closed. In effect, the beck is converted into a closed kettle during the remaining 25 minutes of the conventional 30 minute hold cycle with the temperature allowed to drift during the time period (the "run" portion of the modification). Little temperature is lost during the drift period, with experience dictating an approximate drop of 20° F from the boil. The remainder of the cycle is the same as with conventional processes. As an added benefit, the <u>same chemicals</u> as utilized in the conventional process are adaptable to the bump-and-run modification.

Based on its energy savings potential, ease of adaptation, use of conventional chemicals and bloom characteristics, bump-and-run was selected as the initial process modification to quantify in the plant demonstration. Following ten conventional runs monitored to generate baseline data, ten runs were conducted and monitored with the incorporation of bump-and-run as the only variable.

The next modification, termed dyebath reuse, was designed to reduce the 49% of the energy that is traditionally released to the sewer in the form of hot water (Figure 1) that is not affected by bump-and-run. In the conventional beck dyeing process, the hot bath is discharged to the drain when the correct shade is obtained. If the dyebath is examined before and after the dyeing cycle, two major changes have occurred. First, most of the dye has been removed from the bath by the carpet, and second, the bath is hot rather

- 4 -

than cold. In acid dyeing of nylon, the auxiliary chemicals added to the bath are still present in the same condition as they were at the start of the dyeing cycle. When the dyebath is discharged to the drain, large quantities of energy, water and useful chemicals are thus lost. In the procedure demonstrated in the reported project, the spent dyebath was analyzed for the remaining dye, the bath was reconstituted to the desired strength and reused for subsequent dyeings. The energy, water and chemical savings were quantified.

A number of technical problems required solution in pilot-scale research before dyebath reuse could be broadly applied in commercial batch dyeing¹. First, an analytical system had to be developed to simply, accurately, and economically determine the concentration of dyes remaining in the bath. The analytical techniques had to be compatible with existing dyehouse personnel, space, time, and equipment constraints. Second, dyeings had to be started at elevated temperatures $(150^{\circ}-170^{\circ}F)$. The increased rate of dye adsorption from the bath at these temperatures had the potential of leading to spotting and poor levelness in the recycle dyeings. Third, materials handling procedures had to be worked out to give scouring, dyeing, and rinsing cycles compatible with current plant operating procedures. Fourth, evaluation procedures were required to insure that dyeings in recycledbaths were equivalent in quality to conventionally dyed-products.

The first key to reusing dyebaths was to develop a simple, but accurate, analysis procedure. The very strong absorption of dyes in the visible region of the spectrum provides the simplest and most precise method for determination of dye concentration. The absorbance, <u>A</u>, of a dye solution can be related to the concentration by the modified Lambert-Beer equation:

 $A = \log I_0 / I = Kc$

- 5 -

where $\underline{I}_{\underline{O}}$ is the intensity of the visible radiation falling on the sample, \underline{I} is the intensity of the radiation transmitted by the sample, \underline{K} is a constant including the path length of radiation through the sample and a constant related to the absorptivity of the sample at a given wavelength, and \underline{c} is the concentration of the absorbing species. In mixtures of absorbing species, the total absorbance at any wavelength is the sum of the absorbances of each species and is given by:

$$A_{\lambda} = K_{1}c_{1} + K_{2}c_{2} + K_{3}c_{3} \cdots + K_{n}c_{n}$$

The additive characteristic of light absorption by dyes was important in the analysis of dye mixtures of the type found in spent dyebaths. For such dye mixtures, the absorbance can be measured at a number of wavelengths and the concentration of the dyes determined by simultaneous solution of a set of linear equations of the type shown above. The wavelengths selected for the analysis are generally those for which one of the dyes gives a maximum in absorbance.

Use of the Lambert-Beer relationship requires, of course, determination of the \underline{K} values for each dye at every wavelength used in the analysis. The \underline{K} values were determined by preparing various parts-per-million (ppm) standard solutions of the dyes and measuring the absorbances of the standard solutions on a UV-visible spectrophotcmeter. The \underline{K} values were obtained from a leastsquares fit of the absorbance versus concentration data by a linear equation of the form:

A = Kc + B

For all dyes used in this work, \underline{B} was essentially zero and regression coefficients indicated that the equation gave an excellent fit of the data. Most of the analyses in the plant demonstration were conducted in this manner.

- 6 -

The final modification, termed hot pull, was investigated as the crowning achievement in the beck optimization. After bump-and-run and dyebath reuse had been merged, the hot pull technique was incorporated to assess the elimination of the requirement for holding tanks and pumping systems. Basically, the modification called for simply pulling the hot carpet directly out of the spent dyebath, leaving the water in the beck and eliminating the drop to the holding tank. To facilitate the hot pull, the plant personnel were supplied with gloves for handling the carpet and beginning the exit over the beck reel. Since bump-and-run was included in the final series, the dyebath had cooled to between $180^{\circ}-190^{\circ}F$ by cycle end, which further facilitated the hot pull technique as long as gloves were used. Final rinsing of the carpet was accomplished in the wet-out box positioned before the entrance to the continuous plant dryer. Each plant prewets the carpet after straightening and before drying to insure uniform side-to-side and end-to-end moisture uniformity. Such uniformity is critical to avoid streaks and other dyeing imperfections caused when the carpet is thermally "shocked" upon entering the 350° - 450° F dryer, initiating dye migration.

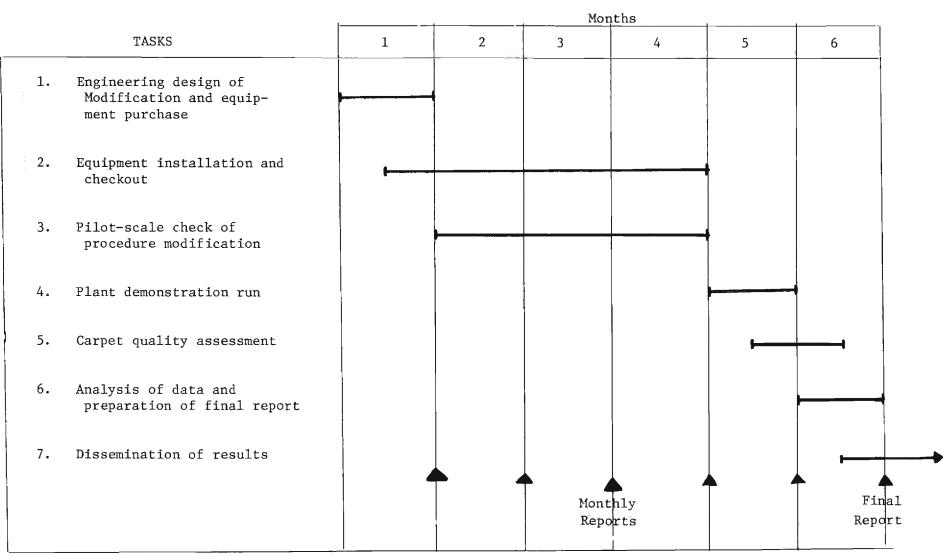
The analysis scheme had to be altered to accomodate the hot pull. Salem Carpets, due to problems in yarn lot control from the tufting plant, employs a heavy, water-removable tint on all of its greige carpets. In the preceeding sequence combining bump-and-run and dyebath reuse, the dyebath had been pumped to the holding tank and the dyed carpet had been after-rinsed in the beck in the usual fashion. The incoming carpet had been entered into and prerinsed under ambient conditions in the bath left from the previous run, and the rinse bath then dropped. The prerinse did not penalize the energy and material consumption while providing two benefits: 1) the carpet was

- 7 -

wet-out, lowering fresh water requirements in replenishing the incoming dyebath from the holding tank, and 2) the prerinse removed the bulk of the tint from the carpet. The latter was especially important, as the analysis as described above was based on a spectrophotometric determination of the dye concentration in the visible region, and any colored impurities such as the tint would have had a detrimental effect on the accuracy of the dye determination. During the pilot scale research, it was discovered that the acid dyes were extractable into octanol, whereas the tints were not. Extraction of the dyebath sample with octanol therefore allowed an analysis layer that contained the dye, but was free of the tint. The prerinse requirement was thus eliminated, and the hot pull technique became feasible.

Accurate analysis for dyebath components other than dyes (auxiliary chemicals) was not required. The dyebath additives controlled the dyebath environment and were not used up or removed during the dyeing cycle. The exception was ammonia, which was partially steamed out of the dyebath during the hold cycle. These components were added to the reused baths in direct proportion to the quantity of make-up water required between dyeings, with the exception of ammonia which was added in larger percentages. Since the volume of fresh water added to each dyebath was held constant during each reuse sequence, the auxiliary replenishment was fixed for each cycle.

The uniformity of the reuse-dyed carpet was assessed by selecting representative samples from the dyed goods and determining the color (tristimulus values) on a ACS 400 Color Computer System. The difference in color between each specimen and the average color values of all the samples dyed to that shade was determined using the CIE L* a* b* and FMC II color


- 8 -

difference formulas. In the latter system one MacAdam Unit of color difference is defined as the minimum perceptible difference in color. Offshade dyeings could therefore be readily identified by variations in color difference from the average color values. In addition to instrumental measurements, samples dyed by the reuse procedure were examined visually by the plant dyers and quality control personnel to further assess the color uniformity and color reproducibility.

The industrial partner in the demonstration was Salem Carpets of Chickamauga, Georgia. Salem is a large carpet manufacturing firm (\$100 MM annual sales) with a well established reputation for innovation in carpet processing. The overall goal of the reported project was to evaluate and optimize the energy/material consumption of the beck dyeing process over a 50-cycle plant sequence. The compilation of the different technologies incorporated in the internal dyeing sequences within the 50 cycles actually conducted is located in Appendix 1. Approximately 41 tons of carpet were dyed during the demonstration, with 33 tons dyed by modified processes. Complete energy, material and time consumptions were obtained on both the conventional and modified processes. From the data, a detailed cost/benefit analysis was performed to arrive at recommendations to Salem for plant erpansion of the technology.

The project consisted of seven (7) major tasks. The tasks and the project work schedule are shown in Figure 2.

- 9 -

Schedule of Work

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Equipment, Chemicals and Goods

The lists of analytical, computer and engineering equipment required for the project, along with the necessary ordering information, are contained in Appendix 2. Dyes and auxiliaries were purchased from a number of vendors as part of Salem's usual material supply procurement. The greige carpets were randomly selected from Salem's production of the "Jaunty", or closelyrelated styles. Fiber type varied randomly from Nylon 6 to Nylon 66, with the bulk of the carpet dyed during the project consisting of the former.

B. Engineering Design and Modification

Conducting the in-plant demonstration required modifications to Salem Carpet's dyeing plant facility. The purchase and intallation of capital equipment and the modifications to existing equipment were made by Salem Carpets with the recommendations of the Georgia Tech researchers. The design drawings that were submitted to Salem Carpets are shown in Figures 4 through 9 of this report, while the recommended equipment list is contained in Appendix 2. The equipment and systems as used during the in-plant demonstration are discussed below.

1. Atmospheric Dye Beck

The atmospheric dye beck used for the in-plant demonstration is shown schematically in Figure 3. The stainless steel beck is typical of the atmospheric becks used by the carpet industry for batch dyeing. A stainless steel sheet with one-inch holes punched on approximately four-inchcenters is used to separate the front of the beck from the rest of the beck where carpet is located. Sparged steam, water, dyes, and auxiliary chemicals

- 11 -

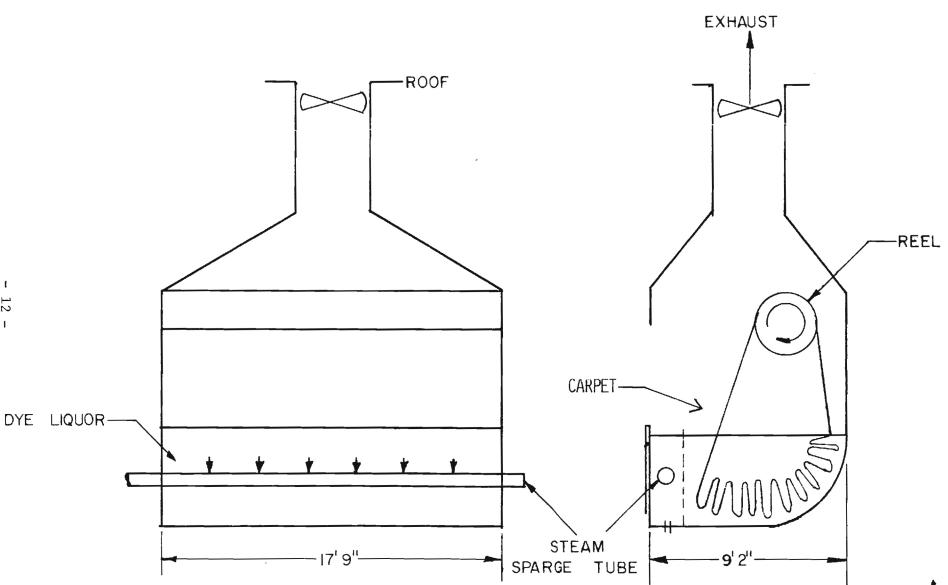


FIGURE 3. SCHEMATIC OF ATMOSPHERIC DYE BECK

12

are introduced into the beck in the front region.

Several modifications were made to the beck before the reuse runs were conducted. In the conventional process as operated by the carpet manufacturer, the dyes, auxiliary chemicals, etc. entered the beck at the center of the front region. A two-inch DIA, stainless-steel pipe with 1/8-inch holes spaced 6-inches apart was added so that the materials could be introduced uniformily across the front of the beck.

An overflow system shown in Figure 4 was added to the beck to provide the capability of closely regulating the quantity of dye liquor reused each cycle. The overflow system can be used to reduce the dye liquor volume to some predetermined value either before pumping to the holding tank or after returning to the beck.

A sight glass was attached to the side of the atmosphere beck as shown in Figure 5. The sight glass was calibrated to the nearest 500 gallons and was used to make various volumetric measurements needed during the demonstration run.

A spray bar was mounted across the front of the beck as shown in Figure 6 so that the hot carpet being removed from the dye beck during "hot pulls" could optionally be sprayed with cold water. The spray bar was a one-inch, black-iron pipe with 1/8-inch holes spaced three inches apart. The spring bar was found not to be needed in the hot pull process.

A strainer was fabricated to prevent large pieces of lint and strings from entering the drain pump that pumped dye liquor to the holding tank. The drain pipe between the pump and the beck was connected to the left side of the beck near the bottom of the beck and in the front region as shown in Figure 7. An enclosure around the entrance to the drain pipe served as the strainer. An 18-gauge, stainless-steel sheet with 1/16-inch holes to give a 70% open surface was used to form two sides of the enclosure. The left

- 13 -

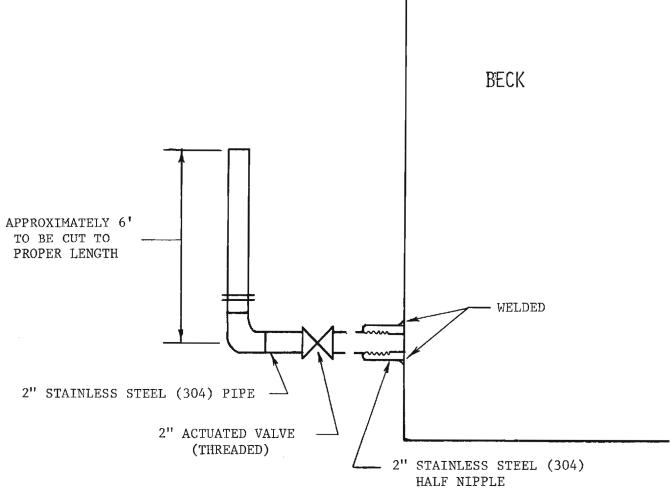
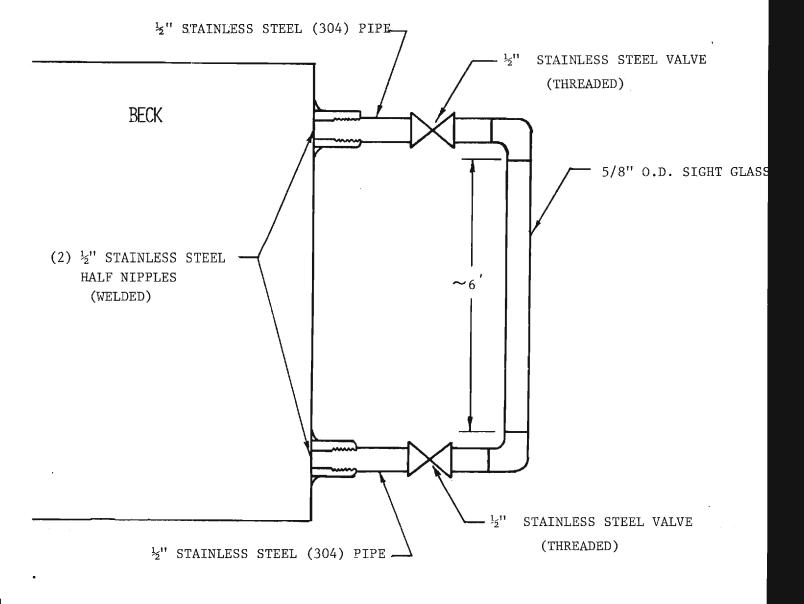
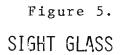




Figure 4.

OVERFLOW SYSTEM

;

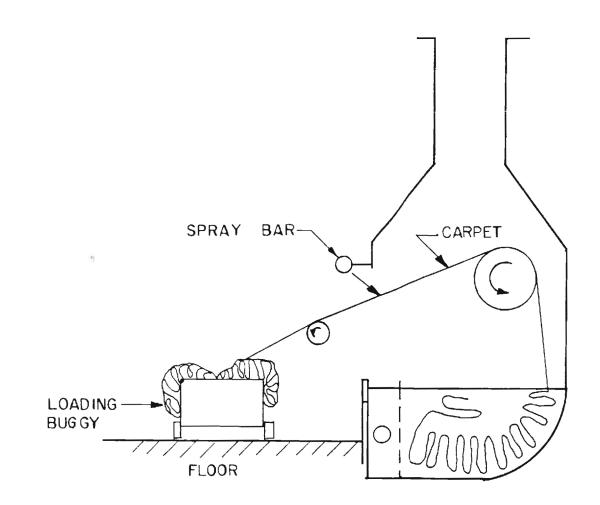
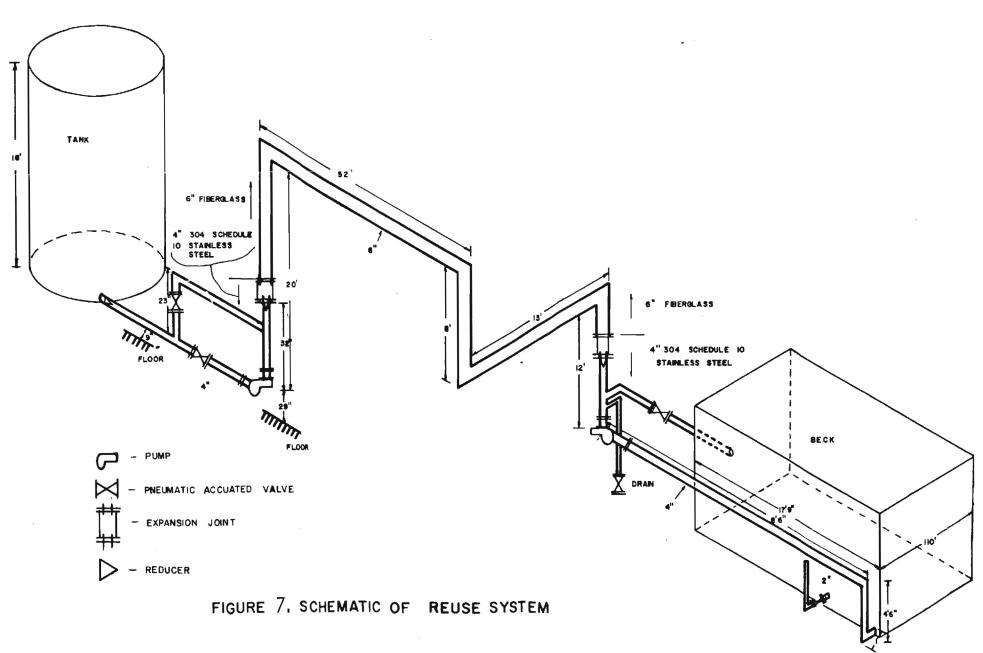



FIGURE 6. SPRAY BAR USED FOR "HOT PULLS"

•

- 17

side, front, and bottom of the beck served as the other sides of the enclosure. The stainless-steel sheet extended from the bottom of the beck to the overflow level in the beck. The holes in the stainless-steel sheet allowed the dye liquor to flow into the pipe, but at the same time kept most of the lint and strings out of the reuse system.

2. Reuse System

The reuse system is shown schematically in Figure 7. The system consisted of an uninsulated, 6000-gallon, double-wall, stainless-steel cylindrical holding tank and a pumping/plumbing system. Since the construction materials could potentially cause problems in analyzing the dyebath, the materials for the reuse system were carefully selected. Most of the components of the system were made of either 304 stainless steel or fiber glass. Several synthetic materials for the plumbing (PVC, C-PVC, polyethylene, teflonlined) were considered, but were rejected because of either cost or low strength at the dyebath temperature. Six fiberglass pipes and fittings (2.0 mil lines) were used over most of the distance between the beck and holding tank. Expansion joints were used to isolate the fiberglas piping from the rest of the reuse system because fiberglass has very poor vibrational characteristics. Four-inch, schedule-10,304-stainless-steel pipe and fittingswere used to connect the tank and beck to the pumps.

The two-inch values in the reuse system were Figure 1660, pneumaticactuated (PA25) Jamesbury ball values with 316-stainless-steel body and seats. The four-inch values were Figure 7577-1212359, pneumatic-actuated (PA50) Jamesbury butterfly values with 316-stainless-steel body and disk and

- 18 -

ethylene/propylene seats. The pump motor and valves were wired so that they could be controlled by two manual switches. One switch actuated the pump and valves necessary to pump the dye liquor from the beck to the holding tank. The other switch activated the pump and valves needed to return the bath to the beck.

Two Gorman-Rupp, 14-A4B gray-iron centrifugal pumps with teflon packing were utilized to pump the dye liquor to the holding tank and to return it to the beck. The trash pumps designed with open impellers capable of handling liquids containing entrained solids were used because the dye liquor contained excessive lint and string removed from the carpet during dyeing agitation. Since the time available for emptying and filling the beck was limited to less than ten minutes, the pumps were specified with the capability of delivering 500 gpm against a thirty-foot head. Stainless-steel pumps were desirable since dye liquor is corrosive; however, due to the extremely high cost of stainless-steel pumps, gray-iron pumps were used instead. No problems with dyebath analysis were caused by the gray-iron pumps. The pumps were driven by 10HP-1750 RPM, three-phase, 220 volt motors.

3. Dyebath Temperature Control Device and Controller Modification

The temperature controller used in the Salem Plant was a Foxboro Model 43C-H. The controller, referred to as a clock in the plant, uses pneumatic systems to obtain proportional control of steam flow to the beck, and indicates the cycle condition, rise, hold, or end of cycle by means of 7W, 110V/electric lamps (Figure 8). A modification was made to the controller involved with testing to allow for a short five minute hold period at the

- 19 -

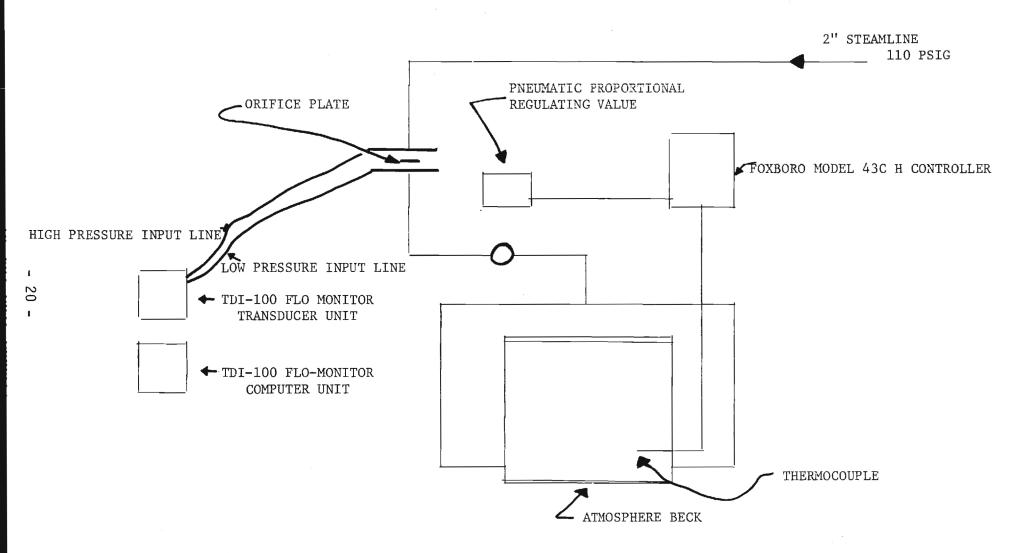


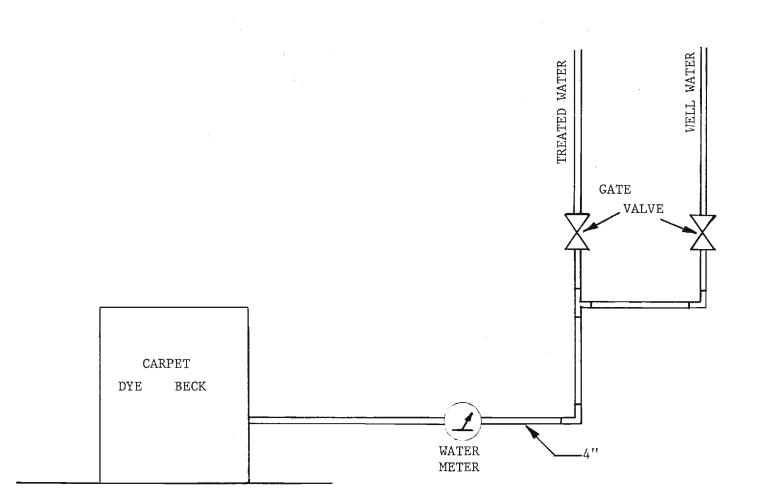
Figure 8. Dyebath Temperature Control Device and Steam Monitoring System

boil followed by a twenty five minute drift with the steam turned off prior to illuminating the end of cycle lamp, i.e., to adapt bump-and-run to the process.

The modification consisted of installation of an automatic reset timer, Omron STP-MYH-AH, and mounting base, Omron 8PF, on the wall adjacent to the controller. The circuitry simply involved breaking the wire to the end of cycle lamp and using this to energize the timer motor. The secondary timer was preset to the length of drift period up to sixty minutes. At the end of the drift period, a normally open contact on the timer was closed to illuminate the end of cycle lamp. The controller attendant performed his or her normal duties upon seeing the end of cycle light such as calling for fabric sample for shade matching. The modification avoided manual setting of the controller timer twice during each cycle, a handicap for the operator.

The hold period timer on the controller was settable for up to sixty minutes, and for bump-and-run was set at five minutes. At the end of the hold period as the secondary timer was energized, a second contact on the secondary timer was utilized to illuminate a neon lamp located on the timer in order that the controller attendant would recognize the drift condition, rather than assume that some malfunction had occurred. By setting the secondary timer to zero, all normal controller functions were returned to normal and the presence of the secondary timer was essentially transparent to the controller attendant. Disruption of normal plant procedure was thus avoided, facilitating personnel acceptance of bump-and-run.

- 21 -


4. Steam Monitoring System

The steam flow measurements were made using TDI-100 and TDI-150 Flow Monitors to measure the pressure drop across an orifice plate inserted into the steam line. A schematic of the steam-monitoring system is included in Figure 8. The TDI-100 and TID-150 Flow Monitors have two components: a transducer unit and a computer unit. The transducer measures the pressure drop across the orifice plate, converts the pressure drop into an electrical signal and sends the electrical signal to the computer unit. The computer unit computes the flow rate from the transducer signal and integrates the flow rate over time to give total flow. Both flow rate and total flow can be continuously read with the TDI instruments.

5. Water Meter

A schematic diagram of the location and orientation of the water meter is shown in Figure 9. The water meter selected for the reuse tests was a Brooks Propeller Meter Model 3312-03A31AA, which is designed to measure flow through a four-inch line. However, the four-inch Brooks water meter failed before the reuse tests were begun. The failure was caused by the large volume of lint contained in the chlorine-treated water used for many of the conventional dyeings at Salem Carpets. The cross-sectional area of the meter through which the water and lint passed was not large enough to allow the lint to pass freely. As a result, the turbine inside the meter was dislodged from its position in the line and lost. After two failures of the fourinch meter, the decision was made to test a larger water meter and to use only well water in the remaining runs, eliminating the lint. A six-inch, Kent turbine meter was installed, and was used throughout the reuse runs without any operational problems.

- 22 -

NOTE: WATER METER MUST BE MOUNTED HORIZONTALLY

Figure 9. LOCATION & ORIENTATION OF WATER METER

- 23 -

C. <u>Computer Interface and Programs</u>

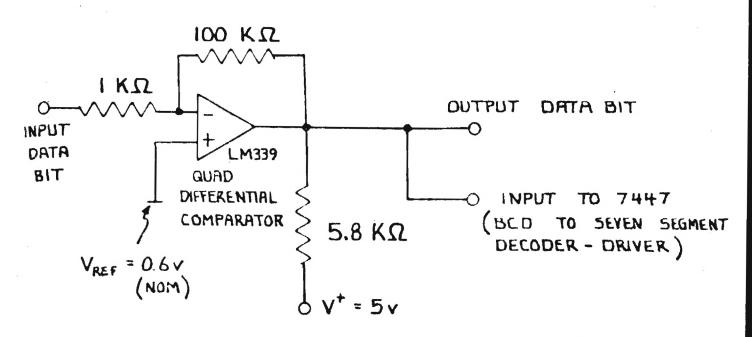
1. Computer Interface

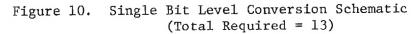
The input/output interface between the Bausch and Lomb Spectronic 100 spectrophotometer and Hewlett-Packard 9815A desktop computer used for dyebath analysis at the Salem Carpets demonstration had to be constructed at Georgia Tech. The following describes the digital input/output signals for the two instruments being interfaced, and describes the interface in terms of its operation and servicing.

The Bausch and Lomb Spectronic 100 has a standard forty-four terminal double-sided printed circuit board connector on its back plane which delivers complemented BCD (binary coded decimal) output of the three low-order digits, and a fourth high-order line which switches between logic 0 and logic 1. These are parallel outputs. The output logic levels are RTL (resistortransistor logic) compatible in terms of voltage. The three low-order digits use the definition that logic 1 is greater than or equal to 0.8 vdc and logic 0 is less than or equal to 0.4 vdc. The fourth high-order line uses the definition that logic 1 is less than or equal to 0.4 vdc and logic 0 is greater than or equal to 0.8 vdc.

The Hewlett-Packard 9815A has a BCD input/output option which permits parallel reception of ten data digits at TTL (transistor-transistor logic levels), which are that logic 0 is less than or equal to 0.4 vdc and logic 1 is greater than or equal 2.4 vdc. The input lines are used to acquire the three low-order digits and the fourth high-order bit in standard parallel BCD code. The data input is through twisted wire cable. All unused digits are held at logic 0, using a common ground (0 vdc) potential. The

- 24 -


number of input data digits and format of these digits is controlled by internal programming of the HP9815A, described in the "BCD Interface Manual".


The interface designed and constructed at Georgia Tech provides logic level conversion and complements the data from the B & L Spectronic 100 to provide standard BCD encoding. The design criteria were to have a high input impedance for low current demand from the RTL circuitry, to provide an adjustable threshold for the logical 0 to logical 1 transition to permit varying this setting for optimun noise immunity, and to provide a copy of the BCD output on a LED (light emitting diode) display using a BCD to seven segment TTL decoder to show that level conversion and BCD encoding were being accomplished successfully. The interface is powered by an independent 5 volt, 1 amp regulated power supply with short circuit and over-temperature protection.

The schematic diagram for one data bit is shown in Figure 10. A total of thirteen of these circuit elements are required to provide three four-bit, low-order digits and the fourth high-order bit. The differential comparator is one-fourth of a LM 339 integrated circuit. Maximum input current is on the order of five microamps. The output of the LM 339 is an open collector using the 5.8 K Ω pull-up resistor tied to the +5 vdc supply line to set standard TTL output. Operational amplifier gain of one-hundred is set by the input and feedback resistors to give rise and fall times for TTL circuitry.

Figure 11 is the power supply schematic diagram. The LM 309K is a To-3 package integrated circuit five-volt regulator with thermal overload protection and current limitation. A one-amp fuse is located in the +5 line at the inter-

- 25 -

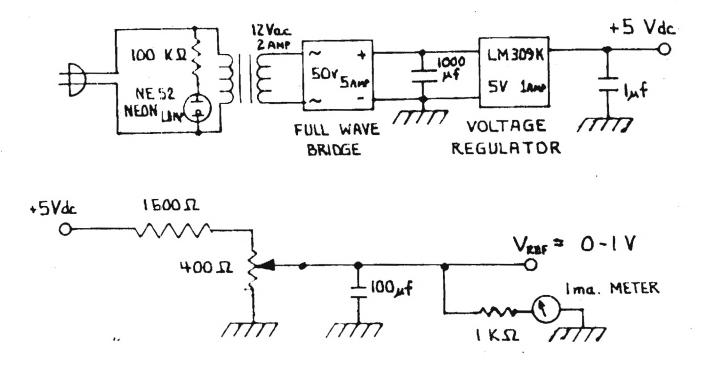
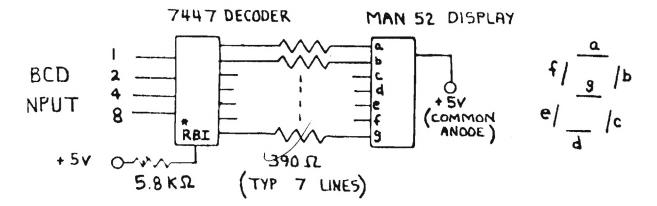


Figure 11. Five Volt Regulated Power and Reference Voltage Supply face circuitry for additional protection. The reference voltage for the LM 339 translators is derived from the regulated supply as shown.

Figure 12 illustrates schematically the drive for one interface display digit. The MAN 52 seven segment LED display is a dual inline package with a common anode configuration. The 390Ω resistors limit the diode current to 10-15 milliamperes through the open collector transistors on the 7447 TTL decoder/driver.


Figure 13 gives the pin-out for the LM 339, 7447 and MAN 52. Each is a dual inline package with fourteen or sixteen pins. Within the interface, each chip is mounted in a socket for easy replacement should a failure occur.

2. Programs

The programs written for the Hewlett-Packard 9815A desktop programmable calculator/computer are designed to provide a conversational mode of interface between the dyer and the dyebath analysis equations and data. All the stored programs and base data are stored on magnetic tape, available to the H-P 9815A through its built-in tape drive which functions under program control. External data are available through the BCD input/output interface to the Bausch and Lomb Spectronic 100 spectrophotometer constructed at Georgia Tech and described in the previous section.

The conversational interactive interface with the dyer is effected by printing alphanumeric questions to the dyer on the built-in tape printer and soliciting responses through the keyboard, such as entering the numeral one (1) for yes or two (2) for no. This accomplishes general program selection and identifies the particular options within each program which the dyer is interested in following.

- 27 -

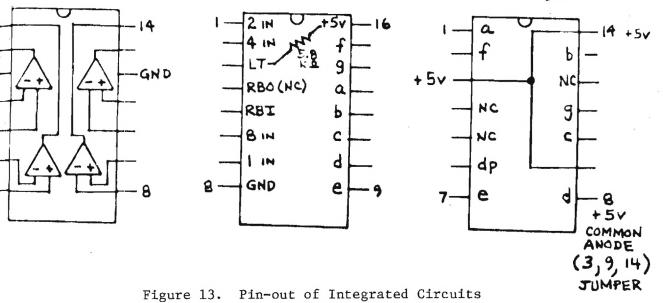

NOTE: On the fourth high-order bit, only the 1 input is used, the RBI (Ripple Blanking Input) is tied to ground, and only Segments B and C which form the numeric character 1 are wired.

Figure 12. Display Schematic

LM 339

7447

The programs cover dyebath reuse analysis and general utility routines to provide for factors such as recipe changes and new dye lot strength calculations. The tape drive identifies programs or data by file numbers. Thus the various programs and data are referenced by sequential numbers beginning with zero. The first program or program zero is a monitor program calling the appropriate files for the major program functions. The calculator/ computer has a special auto-start feature at the time of cut-on which loads and begins execution of program zero. The following description of program content tracks the logical program flow in the major program functions defined for dyebath reuse.

The monitor program contains the access directions to the nine principle programs stored on tape. Two basic programs of this group contain the dyebath reuse calculation procedure, taking advantage of some 160 files to extract data for the particular reuse run under analysis. The remaining programs serve to generate, modify, remove, or list contents of the data files, thereby supporting the basic reuse function.

The programs and the data file structure were generated independently at Georgia Tech, representing a total revision of software for dyebath reuse. The application of these programs to dyebath reuse at Salem Carpets served as their first application in an industrial environment. Among the features incorporated in the revised software were improved clarity of instructions to the operator, a simpler format, and increased capacity for style/shade, dye and auxiliary information.

- 29 -

Basically, the unit of information storage under this system is a tape cartridge. Each tape cartridge contains all the programs for reuse work and space for up to six dyes, six auxiliaries, and forty style/shade combinations. Thus ten tapes, for example, can hold a library for four hundred style/shade combinations. Typically, they would be separated according to type of fiber and dyeing procedure. Each style/shade combination on a tape may use one or more of the dyes and auxiliaries, which allows shades using dyes and chemicals from the common group to coexist on one tape.

The reuse program solicits and stores the volume of the reuse bath and the weight of fabric in the next run. It then requests input of the style number and shade number. After loading the style/shade data file, the program directs the operator to set the spectrophotometer to the correct wavelength for an absorbance measurement, to zero the spectrophotometer, and to load the sample. When this has been completed, the absorbance measurement is taken automatically. This sequence of steps is repeated as many times as there are dyes in the formula. The number of dyes and optimum wavelengths for the measurements are stored in this file, sufficient data is available to solve <u>n</u> equations for the <u>n</u> unknowns, i.e., the concentrations of the <u>n</u> dyes in the bath.

The program which solves the $\underline{n} \times \underline{n}$ matrix uses a simple Gauss-Jordan elimination technique. At its completion, the concentrations of reuse dyes are reported to the operator. This step normally serves no useful function, but occasionally a standard solution of known concentration may be tested to confirm that the system has correctly performed absorbance measurement and concentration calculation functions.

- 30 -

The final program of the reuse series was designed to detail the dye and auxiliary quantities for reconstitution of the reuse dyebath to the proper level for the next dyeing. The quantity of dye in the bath for each of the several species which may be present is calculated by multiplying the concentration value from the analysis in units of mass per unit volume times the volume of the dyebath. This number, the mass of dye present, is substracted from the total mass of dye needed, which in turn is found by multiplying the dye formula quantity in units of dye mass needed per unit weight of fabric times the weight of fabric.

Dyebath reuse program listings for the HP-9815A desktop computer are contained in Appendix 3. Entries by file step are detailed.

D. Conventional Salem Process

The conventional Salem Carpets process as practiced in November of 1979 is detailed in Appendix 4. The process was typical of that used in most carpet operations with the exception of the ammonia addition. By keeping the pH on the basic side during the initial phase of the cycle with the ammonia, the fixation of the acid dyes was slowed, allowing better leveling. As the cycle proceeded, the ammonia was largely steamed out of the bath, resulting in a gradual decrease in the pH and fixation of the dye.

A total of ten (10) conventional runs were conducted in the monitored dyebeck to generate baseline data. The consumption data by shade is detailed in Appendices 5-8. for the conventional sequence. Cost factors for the energy and materials are detailed in Table 1, and are applicable to all of the dyeings conducted. The average consumption data for conducting the ten runs by the original Salem process are tabulated in Table 2. Color differences between the samples and the average color values for the individual shades are detailed in Appendix 9. Both \underline{D} and \underline{F} light sources of the ACS Color Computer System were utilized.

- 31 -

		AUXILIARIES						DYES				
(\$/1000 LBS STEAM)	(\$/10 ⁶ btu)	WATER/SEWER (¢/1000 GAL)	LEVEL. (¢/LB)	SEQUEST. (¢/LB)	DEFOAM. (¢/LB)	AMMONIA (¢/LB)	MSP (¢/LB)	ACETIC (¢/LB)	YELLOW (\$/LB)	RED (\$/LB)	BLUE (\$/LB)	
3.12	3.00	45	59	27	36	7	32	16	8.47	7.25	15.00	

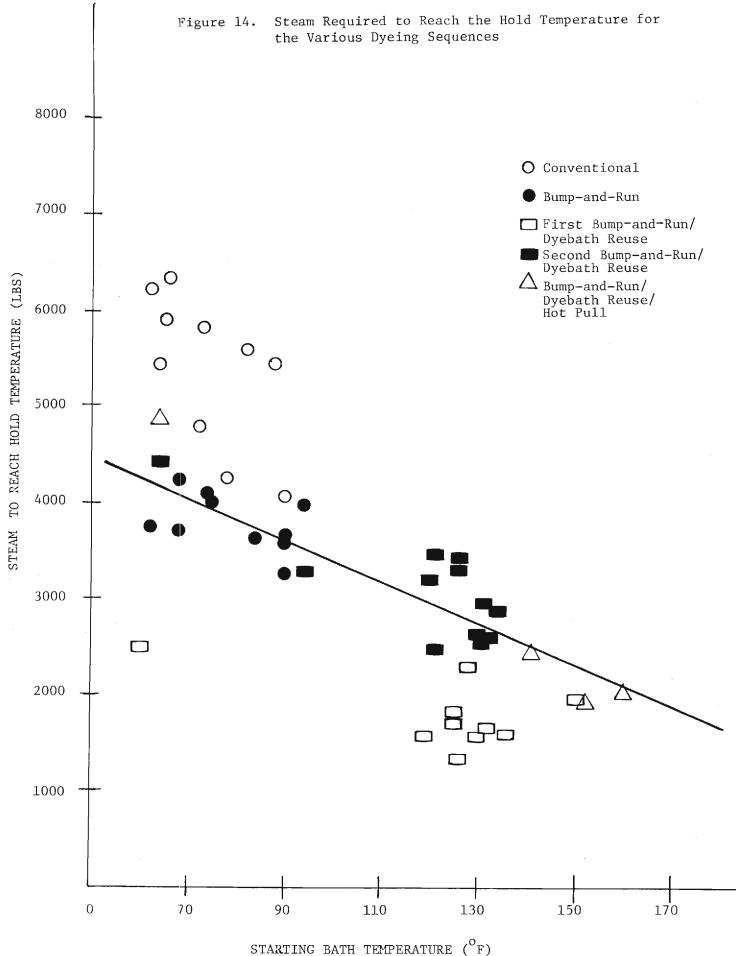
Table 1. Cost Factors

Table 2. Average Consumption Data for Dyeing Sequences

	TOTAL		STE CONSUM		ENERGY P OF CA	ER WEIGHT RPET	WATER/ SEWER	AUXILIARIES (LBS)	TIME (MIN)	ADDS (#)
SEQUENCE	RUNS (#)	LOAD (LBS)	HEAT-UP (LBS)	TOTAL (LBS)	HEAT-UP (BTU/LB)	TOTAL (BTU/LB)	(GAL)			
Conventional	10	1667	5384	9620	3711	6636	9149	105	268	0.7
Bump-and-Run	10	1677	3784	6252	2595	4287	8442	100	269	0.8
First Bump-and-Run/ Dyebath Reuse	11	1717	1810 ^a	4277 ^a	1212 ^a	2865 ^a	5581	46	357	1.4
Second Bump-and-Run/ Dyebath Reuse	13	1700	3071	6238	2077	4220	5313	43	341	1.0
Bump-and-Run/ Dyebath Reuse/ Hot Pull	6	1558	2653	5969	1958	4406	888	316	316	1.2

^a TDI malfunctioned, and energy data was invalidated.

E. Bump-and-Run Sequences


A total of ten (10) cycles were conducted by the process termed bumpand-run (see Appendix 10 for the process description). The consumption data for the sequence is contained in Appendices 5-8, with the average consumption located in Table 2. Color differences were obtained where possible, and are recorded in Appendix 9. The color differences for the bump-and-run sequence compared favorably with those of the conventional sequence.

F. Combined Bump-and-Run/Dyebath Reuse Sequences

Two separate sequences were conducted with bump-and-run and dyebath reuse combined. The first sequence incorporated eleven (11) cycles, while the second sequence incorporated thirteen (13) cycles. The procedure is detailed in Appendix 11. Consumption data for the two sequences are detailed in Appendices 5-8, with the average consumption located in Table 2. Color difference data between the dyed samples and the average color values are shown in Appendix 9. Again, favorable comparisons in shade matching were obtained.

As the steam flow data were being collected for Project Runs 21-31, the investigators realized that the data was abnormally low based on theoretical calculations. A new TDI system had been incorporated beginning with the sequence that had not been tested before the demonstration. As evidence that the total steam data for the sequence was faulty, the steam required for the initial "bump" for the conducted cycles versus starting bath temperature is plotted in Figure 14. As seen from the plot, the first bump-and-run/dyebath reuse sequence does not correlate with the other entries of the plot, being shifted lower than the other modified sequences. Another

- 34 -

TDI was used for the following sequence, and reasonable data were obtained. Due to the TDI problem with Project Runs 12-31, and since a second parallel sequence was conducted under proper measurement conditions (Project Runs 32-44), the steam data for the initial bump-and run/dyebath reuse sequence was ignored in deriving percentage savings and in the cost/benefit analysis.

G. Bump-and-Run/Dyebath Reuse/Hot Pull Sequence

Although the return on investment (ROI) estimates for incorporation of dyebath reuse are attractive (less than one year), any outlay for capital equipment (holding tanks, pumps, pipes, etc.) is undesirable if it can be avoided. By pulling the carpet directly from the hot dyebath and leaving the exhausted liquid in the beck, the necessity of a holding tank/pumping system was eliminated. Technical feasibility of the hot pull process depended on receiving adequate rinsing at some other point in the plant. The wet-out box situated before the entrance of the drying oven offered sufficient rinsing of the carpet without affecting crock fastness. Since the wet-out of the carpet before drying was standard operating procedure at Salem, the dyeing process was not penalized in water consumption for the final rinse, reducing water/sewer requirements.

A total of six (6) cycles were conducted in a fully-optimized procedure (Appendix 12). Consumption data for the sequence is detailed in Appendices 5-8, and the average consumption data is contained in Table 2. Color difference data are shown in Appendix 9 for Project Runs 45-50. By adding the auxiliary chemicals and dyes before entering the carpet in the hot $(\sim 180^{\circ}F)$ bath, better level on the initial strike was obtained. The pumping system was utilized to circulate the dyebath in the beck for several minutes before adding carpet to insure a completely-homogeneous dyebath. The color differences were acceptable using the fully-optimized process.

- 36 -

H. Carpet Quality

As detailed in the preceeding sections, color correlation of carpets dyed with the modified procedures was acceptable.

In Table 2, the average number of adds increased on reuse incorporation, which in turn perturbed the energy and time consumptions upward. For example, from Appendices 5 and 6, an add in a bump-and-run/dyebath reuse sequence carried a penalty of 1000-1800 pounds of steam and 1-2 hours of process time. Discussions with the plant dyers and dyeing lab director revealed that Salem Carpets averages 1.2 - 1.5 dye adds per cycle. In other words, the average add ratio of 0.7 and 0.8, respectively, for the conventional and bump-andrun sequences were unusually low for the plant. The dyers agreed that the 1.2 adds per cycle average over the three sequences incorporating dyebath reuse was in line with the plant experience. As a result, a figure of 1.2 adds per cycle was assumed for the subsequent cost/benefit analysis.

The number of redyes are also an important criteria of product quality. The conventionally-dyed carpets required one redye. Correspondingly, no more than one redye per sequence was required for the process-modified sequences. Bump-and-run and dyebath reuse did not increase the number of redyes normally encountered by the plant .

One observation made was that redyes occured in bunches across the plant, with some shifts encountering few redyes while others suffered numerous redyes on the 14 becks. Possible causes were unconventional yarn lots and improper preparation of dye concentrates in the drug room. For example, dye formulations were on hand for nylon yarn from two different manufacturers. Due to the differences in the yarn properties, the two formulations were quite varied. During the demonstration, yarn lots from a third manufacturer entered production for which no dye/auxiliary formulation had

- 37 -

been devised. The dyers were therefore forced to choose between the available two formulations, neither of which had been designed for the third manufacturer's yarn. Such lack of control led, of course, to an increase in the add rate as well as in the number of redyes.

IV. SAVINGS AND COST/BENEFIT ANALYSIS

A. <u>Percentage Savings in Consumption</u>

Table 2 reports the average consumption data for energy, materials (except dyes) and time, as well as the average number of adds, from Appendices 5 - 8. Since the shade order was different in the various dyeing sequences, no average correlation of dye consumption by sequence could be ascertained. Therefore the percentage dyes saved per cycle was derived by dividing the dyes recycled for each bath by the total dye required for the shade. The latter consisted of the sum of the recycled dye, make-up dye, and dyes entered via adds:

 $\frac{\%}{\text{per cycle}}$ = $\frac{\text{mass of recycled dyes}}{\text{total mass of dye entered}}$ x 100

The sequence averages were obtained by:

 $\frac{\%}{\text{per sequence}} = \frac{\text{average mass of recycled dyes}}{\text{average total mass of dye entered}} \times 100$

The percentage savings for the energy and materials are detailed in Table 3.

	STEA		WATER/SEWER	AUXILIARIES		DYES		ADDS	
SEQUENCE	CONSUMI HEAT-UP (%)	TOTAL (%)	(%)	(%)	YELLOW (%)	RED (%)	BLUE (Z)	(#)	
Bump-and-Run	30	35	-	-	-	-	-	0.8	
First Bump-and-Run/ Dyebath Reuse	- ^a	_ ^a	39	56	5.0	5.5	6.3	1.4	
Second Bump-and-Run/ Dyebath Reuse	43	35	42	59	5.1	6.5	7.4	1.0	
Bump-and-Run/ Dyebath Reuse/ Hot Pull	49	38	90	59	0.9.	1.1	0.4	1.2	

Table 3. Percentage Savings for Modified Dyeing Processes Over the Conventional Procedure

 $^{
m a}$ TDI malfunctioned, and energy data was invalidated

- 39 -

.

B. Cost Savings for Modified Sequences

Model cycles for energy consumption for the various dyeing sequences were derived from Appendix 5 by averaging the heat-up, add, and level-out comsumptions for the runs conducted in the sequences. The add consumption averages were all multiplied by 1.2, the production add factor for Salem Carpets, to give a total steam consumption for the model cycle (Table 4). Using the data in Tables 1, 2 and 4 and Appendices 13-15, combined cost savings per pound of carpet in comparison to the conventional process were derived for the various input parameters (Table 5). For simple incorporation of bump-and-run, 0.78¢/lb was gained from the energy reduction. By the nature of bump-and-run, energy is the only parameter reduced on process modification.

The first sequence incorporating dyebath reuse was included by using the same steam cost savings figure as the second reuse sequence. The assumption was necessary due to the failure of the TDI unit discussed earlier in this report. Water/sewer, auxiliary, and dye cost savings were, of course, directly applicable from the first reuse sequence data as these parameters were independent of the energy measurements (Appendices 14-15). The bump-and-run/dyebath reuse sequences that involved use of the holding tank average 2.3¢/lb of carpet in savings. As in the earlier plant demonstration on pantyhose, the greatest contributions to the cost savings were the recycled auxiliaries and energy (average of 51% and 36%, respectively, for the two sequences). The contribution by water/sewer savings were small (average of 5%) due to the low price of water purchase and treatment in the U.S. With increasing pressure from EPA regulations, such as

- 40 -

		STEAM CONSUMP	TION		
SEQUENCE	HEAT-UP (LBS)	1.2 ADDS (LBS)	LEVEL-OUT (LBS)	TOTAL (LBS)	SAVINGS (%)
CONVENTIONAL	5384	2864	2566	10814	-
BUMP-AND-RUN	3784	1273	1620	6677	38
SECOND BUMP-AND-RUN/ DYEBATH REUSE	3071	2048	1459	6578	39
BUMP-AND-RUN/ DYEBATH REUSE/ HOT PULL	2653	2153	1223	6029	44

Table 4. Model Cycles for Energy Consumption Based on Appendix 5.

	TOTAL		COST SAV	VINGS /U NIT WEIGH	Т			CONTRIBUTION TO	COST SAVINGS	
SEQUENCE	RUNS (#)	STEAM (¢/LB)	WATER/SEWER (¢/LB)	AUXILIARIES (¢/LB)	DYES (¢/LB)	TOTAL (¢/LB)	STEAM (%)	WATER/SEWER (%)	AUXILIARIES(%)	DYES (%)
BUMP-AND-RUN	10	0.78			-	0.78	100	-	-	
FIRST BUMP-AND-RUN/ DYEBATH REUSE	. 11	0.81 ^a	0.10	1.16	0.33	2.40	34	4	48	14
SECOND BUMP-AND-RUN/ DYEBATH REUSE	13	0.81	0.11	1.16	0.09	2.17	37	5	53	5
BUMP-AND-RUN/ DYEBATH REUSE/ HOT PULL	6	0.81	0.22	1.12	0.01	2.16	38	10	52	0

TABLE 5. Combined Cost Savings for Process Modifications

42 <u>H</u>

I.

1

a Since the TDI malfunction invalidated the steam flow data on the first dyebath reuse runs, the average for the second reuse sequence steam cost savings was also used for the first sequence. the recently published effluent guidelines for carpet finishing plants proposing incorporation of multimedia filtration in addition to the best practicable control technology currently available³, the cost for treatment of the waste will become more expensive, increasing savings on reuse incorporation. Regardless of economics, the EPA goals of zero discharge by 1985 will certainly increase the attractiveness of dyebath reuse. Dyes were also a relatively minor part of the cost savings due to the high exhaustion, but any dye savings are important in the face of rising costs (Table 1) and in reducing hard-to-remove color in the plant effluent.

In the final sequence, the hot pull technique was combined with bumpand-run and dyebath reuse. The reduction in water/sewer requirements was striking, conserving an average of 8261 gal/cycle over the conventional sequence (a reduction of 90%) and 5447 gal/cycle over the average of the first two reuse sequences (Table 2). As seen in Table 5, the additional reduction in water roughly doubled the cost/weight savings contributed by water/sewer for the final sequence.

The average cycle loads from Column 3 of Table 2 were themselves averaged to give a plant average of 1664 lbs/cycle. The plant average load was used in conjunction with Column 7 of Table 5 to generate the overall cost savings per cycle on incorporation of the various process modifications (Table 6). Although lower than the other sequences since conserved energy was the only added value, the \$12.98 /cycle cost savings with bump-and-run were significant in that the simple, easy to incorporate modification requires hardly any capital investment. To alleviate setting the steam controller twice instead of once as in the conventional process, installation of the Omron auxiliary timer is recommended at a cost of \$30 per controller. This is the only investment suggested for implementation of bump-and-run. As an

- 43 -

Table 6. Savings Per Average Cycle Load (1664 lbs)

Sequence	Savings <u>(\$/Cycle)</u>
Bump-andRun	12.98
First Bump-and-Run/ Dyebath Reuse	39.94
Second Bump-and-Run/ Dyebath Reuse	36.11 Average: \$37.33
Bump-and-Run/ Dyebath Reuse/ Hot Full	35.94 Cycle

added bonus, first-quality goods were obtained in the demonstration with bump-and-run by using the plant's standard auxiliary chemicals and dyes.

The three sequences incorporating dyebath reuse averaged \$37.33/cycle (Table 6). The deviation from the mean was small for the individual sequences, including the final sequence incorporating the hot pull technique. The average figure was therefore used in the subsequent cost/benefit analysis.

C. Cost Benefit Analysis for Salem Carpets

1. Incorporation of Bump-and-Run

The participating plant operates 14 production becks. Conservatively, 57% of the plant production (8 becks) can be adapted to the bump-and-run process. If this is the only modification adapted, the annual savings will be:

8 becks x 4.0 <u>cycles</u> beck-day

 $\frac{x 7 \text{ days}}{\text{week}} \times \frac{50}{\text{year}} \times \frac{\$12.98}{\text{cycle}} = \frac{\$145,013/\text{year}}{\$145,013/\text{year}}$

The 4.0 cycles per beck-day is based on the plant operation of 24 hours per day, with an average of 310 minutes per cycle derived from Column 10, Table 2. The plant normally operates 7 days per week for nearly the entire year, or 50 weeks. Using the savings figure of \$12.98/cycle from Table 6, the annual plant savings are an impressive \$145,013 on incorporation of bump-and-run alone. The only suggested modification for the implementation of bump-and-run (installation of the \$30 Omron auxiliary timer on each steam controller) would require only a \$240 investment for conversion of eight controllers. The return on investment (ROI) would therefore be almost instantaneous, resulting in considerable profit for the plant during the first year.

2. Incorporation of Bump-and-Run/Dyebath Reuse

Merging of dyebath reuse with bump-and-run considerably improves the cost savings per cycle but also requires more capital investment. Assuming that a conservative 57% (8 becks) of production can be converted to the combined process, the yearly savings using the facts detailed earlier are:

8 becks x 4.0 cycles x 7 days x 50 weeks year

The plant scheduling is such that two machines can be operated from a single holding tank, and therefore four insultated tank systems would be required to adapt dyebath reuse to the eight becks. Based on Appendix 2 and vendor information, Table 7 was derived as an estimate of the costs required to outfit the becks for the combined process. Based on the annual savings derived above and the estimated cost of implementation, and neglecting any tax benefits, the return on raw capital investment is:

$$\frac{\$231,580 \text{ cost}}{\$418,096 \text{ savings/year}} \times \frac{12 \text{ months}}{\text{ year}} = 6.6 \text{ months}$$

The 6.6 month ROI is well within the acceptable paybeck period of 1-2 years followed by most members of the industry.

Using the hot pull technique in conjunction with bump-and-run and dyebath reuse, the \$418,096 savings in the first year would be nearly all profit as the only expenses would be the \$10,000 for the analysis system and \$240 for the auxiliary timers. Some modification of the wet-out box situated before the dryer may be required to facilitate better rinsing of the hot-pulled carpets.

- 46 -

TABLE 7. Projected Cost of Incorp Reuse to Eight Productio		un/Dyebath
PROCESS EQUIPMENT		TOTAL COST (\$)
Holding Tank Assembly, 4, 10,000- gallon capacity each, fiberglass reinforced construction		
\$15,000 x 4 =		\$60,000
Pumps, 8, grey iron with teflon pac	king	
\$1100 x 8 =		\$ 8,800
Pump Motors, 8, 10 HP-750 RPM		
\$270 x 8 =		\$ 2,160
Pump Accessories (couplings, sheave belts, etc)	s,	
\$550 x 4 =		\$ 2,200
Piping, Fiberglass and Stainless		
\$3000 x 4 =		\$12,000
Elbows, Tees, Flanges, Valves etc.		
\$15,000 x 4 =		\$60,000
Strainer System, 4		
\$300 x 4 =		\$ 1,200
Sight Glass, 4		
\$300 x 4 =		\$ 1,200
Auxiliary Timer, 8		
\$30 x 8 =		<u>\$ 240</u>
	SUBTOTAL	\$147,800

INSTALLATION COST

Taken a	s 50%	of	equipment	subtotal:	\$73,780

ANALYTICAL SYSTEM

Including spectrophotometer, computer, interface, accessories, and disposable items for one-year operation \$10,000

TOTAL ESTIMATED COST OF IMPLEMENTATION: \$231,580

Crockfastness is the quality control factor in question. However, of the carpets pulled hot in the final dyeing sequence of the project, all passed Salem's quality control standards. All of the carpets in the sequence were also heavily tinted, which adequately tested the accuracy of the octanol extraction system for the analysis.

The thought and training required to alter the plant's usual procedure to the hot pull technique is therefore justified in company profits, as well as in drastically reduced water/sewer requirements. Even if the capital investment in holding tanks and pumping systems is made, the 6.6 month ROI still makes the demonstrated modifications extremely attractive for implementation.

D. Projected National Energy Conservation Potential

The total reduction in pounds of steam per cycle for the fully optimized process (bump-and-run/dyebath reuse/hot pull) was 4785 (Column 4, Table 4). The average cycle load was 1664 pounds of carpet (Column 7, Table 5). Using a conversion factor of 1150 BTU/1b of steam, the energy savings per pound of goods were quantified as:

 $\frac{4785 \text{ lbs. steam x } 1150 \quad \frac{\text{B TU}}{\text{lb}}}{1664 \text{ lbs of carpet}} = 3307 \quad \frac{\text{B TU}}{\text{lb}} \text{ savings}$

A recent government publication placed the fourth quarter/1978 through third quarter/1979 carpet production at 1.42 billion pounds of nylon and 0.19 billion pounds of polyester (Table 8).⁴ A second publication has placed beck production of nylon carpets at 25%,⁵ up from 20% estimated in the project proposal, and reflecting the trend back to becks in recent years with the market upsurge of solid shades. The proposal estimate of 90% of the polyester carpets dyed on becks remains valid in 1980. Using the "most recent" yearly data⁴ and

- 49 -

	Ny] Staple	lon Filament	Polyester
Quarter	$\frac{(1\text{bs x } 10^{-3})}{(1\text{bs x } 10^{-3})}$	$\frac{(1bs \times 10^{-3})}{(1bs \times 10^{-3})}$	$(1bs \times 10^{-3})$
Q4-1978	159,968	183,473	46,969
Q1-1979	161,232	172,126	45,022
Q2-1979	171,852	191,929	47,295
Q3-1979	197,880	185,523	46,969
TOTALS:	690,932 1,423,	733,051	186,255

TABLE 8. Most Recent Full-Year Carpet Production Data

^a Source: Government Pulications, Current Industry Reports, Carpets and Rugs, Pub. Nos. MQ-22Q (78 and 79)-5, U.S. Dept. of Commerce, Washington, D.C. assuming the savings per pound would be the same for polyester carpet as for nylon carpet, the direct natural energy conservation potential is calculated as:

$$\left\{ \begin{bmatrix} 1.42 & x & 10^9 & \frac{1\text{bs nylon}}{\text{year}} & x & 0.25 \text{ beck factor} \end{bmatrix} + \begin{bmatrix} 0.19 & x & 10^9 & \frac{1\text{bs polyester}}{\text{year}} \\ x & 0.90 \text{ beck factor} \end{bmatrix} \right\} = 3.307 \times 10^3 \text{ BTU savings/lb}$$
$$= 1.42 \times 10^{12} \text{ BTU/year}$$

Using the standard conversion factor of 5.8 x 10^6 BTU/BOE, the BTU energy conservation potential translates to 2.4 x 10^5 BOE/year. Based on 4.1 x 10^7 BOE/year consumed in wet processing ¹, application of the technology strictly to beck dyeing of nylon and polyester carpets would result in a 0.6% reduction in the energy requirements of the wet processing segment of the textile industry (0.001 quads).

The technology has the technical potential of being implemented in <u>all</u> beck dyeing of nylon and polyester carpet as calculated above. Realistically, however, a gradual implementation of the technology is expected, with a 50% penetration into the available market estimated by 1990.⁶

Projections based on 1973 annual production and equipment-in-place data have placed the <u>total</u> poundage of nylon and polyester fiber dyed in batch atmospheric equipment at 4.5 x 10^9 pounds 1,6 . This figure includes not only the 0.425 x 10^9 pounds of carpet that is beck dyed, but also all fabric materials dyed atmospherically by similar time/temperature profiles and equipment, e.g., beck dyeing of cotton/polyester blends, paddle machine dyeing of men's nylon socks, etc. Assuming that the technology as developed is directly transferable to all forms of atmospheric batch dyeing of fabrics containing nylon and

- 51 -

polyester fibers, which is valid based on the similarities of the fabric systems to the carpet beck, the <u>overall</u> direct energy conservation potential demonstrated by the project is calculated as:

4.5 x
$$10^9 \frac{1\text{bs}}{\text{year}}$$
 x 3.307 x $10^3 \frac{\text{BTU savings}}{1\text{b}}$
= 1.5 x $10^{13} \frac{\text{BTU}}{\text{year}}$ 2.6 x $10^6 \frac{\text{BOE}}{\text{year}}$

The expanded volume raises the potential energy savings to 6.3% of the annual energy consumed in wet processing (0.015 quads). As with the pure carpet calculation, however, a market penetration of 50% by 1990 is realistic considering the conservation attitude of the industry toward process modifications.

E. Projected Industry Economic Potential

The modified processes averaged $2.3 \, \text{c/lb}$ of carpet economic savings (Column 6, Table 5). Using the carpet production figures derived in Section IV-D, the maximum potential economic savings to only the carpet section of the textile industry is:

2.3 x
$$10^{-2} \frac{\text{\$ savings}}{1\text{b}}$$
 x 0.53 x $10^{9} \frac{1\text{bs carpet beck dyed}}{\text{year}}$
= 1.2 x 10^{7} \\$ savings/year

Translating the technology to the <u>total</u> poundage of nylon and polyester fiber dyed annually in batch atmospheric equipment (4.5 x 10^9 pounds ^{1,6}) gives an expanded maximum potential economic savings to the textile industry of:

2.3 x
$$10^{-2}$$
 $\frac{\text{\$ savings}}{1b}$ x 4.5 x 10^9 $\frac{\text{lbs fiber atmospherically}}{\text{year}}$
= 1.0 x 10^8 $\text{\$ savings/year}$

As in Section IV-D, these calculations should be tempered with the expectation that the technology will be gradually implemented, with a 50% penetration into the available market estimated by 1990.⁶

- 52 -

F. Indirect Energy Savings

Although the focus of the report has been on direct energy savings to the plant, considerable <u>indirect</u> national energy savings are also inherent in implementation of the demonstrated modifications. The drastic reduction in auxiliary chemicals, which are usually petrochemical based and/or require considerable fossil fuel input for synthesis, would have a measurable impact on national energy consumption if realized industry-wide. The same argument can be applied to the recycled dyes. In addition, treatment of make-up water and effluent requires energy in the form of synthesized chemicals such as chlorine and in electrical pump energy. The reduction of water/sewer requirements, if matched industry-wide, would thus also have an impact on national energy consumption. The data required to quantify the indirect energy savings on reuse incorporation (cost per unit weight of synthesizing auxiliary chemicals, dyes and chlorine, pump energy requirements in aeration ponds, etc.) were not available to the authors.

V. CONCLUSIONS

The in-plant demonstration of carpet dyebeck optimization met or surpassed all of the project's goals and objectives. From Column 4 of Table 4, the merging of dyebath reuse and hot pull with bump-and-run reduced the steam consumption by 2.9 pounds of steam/pound of carpet. Using the conversion factor of 1150 BTU/pound of saturated steam, 3307 BTU/pound of carpet was conserved. Since 0.36 x 10⁹ pounds of nylon and 0.17 x 10⁹ pounds of polyester are dyed annually on the beck, ⁴ utilization of the optimized cycle strictly in carpet production would yield a direct national savings of 1.42 x 10¹² BTU of energy per year $(2.4 \times 10^5$ barrels of oil equivalent per year, 0.001 quad). When all nylon and polyester fibers dyed on similar atmospheric equipment is included in the annual poundage, the potential energy savings is raised to 1.5 x 10¹³ BTU/year (2.6 x 10⁶ BOE/year, 0.015 quads).

The reduction in auxiliary chemical, dye, and water/sewer requirements also dictated substantial <u>indirect</u> energy savings from a national viewpoint, as well as contributing to the economic attractiveness of the demonstrated modifications (Appendices 6-8 and Tables 5-6). From a pollution reduction viewpoint, the modifications were also extremely efficient. From Appendix 13, dyebath reuse alone reduced the water requirements by 2.3 gallons/pound of carpet. Based on the above national production figures for carpet beck usage, the demonstrated water/sewer conservation potential is 1.2×10^8 gallons/year. By utilizing the hot pull technique, the demonstrated potential jumps to 2.7 x 10^9 gallons/year. Using the nylon/polyester full production figure of 4.5 x 10^9 lbs/year, the water/sewer

- 54 -

conservation potential rises to 1.0 x 10^{10} gallons/year and 2.3 x 10^{10} gallons/year, respectively, for the holding tank and hot pull approaches. Such reductions in treatable water volume embrace the attractiveness and economics of combining the dyebath reuse/hot pull process with effluent separation or clean-up technology (hyperfiltration, chlorination, ozonolysis, carbon adsorption, etc.) to further the goal of reaching a "closed-loop" batch dyeing process.

Since the demonstration terminated, Salem Carpets has incorporated bump-and-run in all of its nylon production, and is experimenting with the technique on its beck-dyed carrierless polyester production. A study of the rinsing effectiveness of the wet-out box prior to the dryer is also underway, and any appropriate modifications will be defined for incorporation of the hot pull technique. Engineering studies are being conducted on the optimum holding tank/pumping installation in case the management decision is reached to use this approach instead of the hot pull technique. Dyebath reuse will be incorporated once bump-and-run is optimized across the plant and the proper engineering modifications are made.

- 55 -

VI. <u>DISSEMINATION OF INFORMATION</u>

The investigators have already begun to disseminate the results of the project to the remainder of the industry. A list of presentations that have been made or are scheduled to be made to date is shown in Appendix 16. Written publications in the industry's trade journals is also planned upon DOE approval of this report, as well as further oral presentations when opportunities arise. Trade organizations such as the Carpet and Rug Institute (CRI), the American Textile Manufacturer's Institute (ATMI), the American Association of Textile Chemists and Colorists (AATCC) and the various state associations will also be heavily utilized to publicize the results and cost/benefit analysis of the demonstration. Finally, the Textile Sector of the Georgia Industrial Energy Extension Service, funded by DOE through the Georgia Office of Energy Resources and directed by the School of Textile Engineering at Georgia Tech, will be used to disseminate the information and encourage implementation by individual plant contacts.

VII. BIBLIOGRAPHY

- F. L. Cook, W. W. Carr, et al., "Energy Conservation in the Textile Industry", Phase I Summary and Phase II Technical Report of DOE Project No. EY-76-S-05-5099, School of Textile Engineering and the Engineering Experiment Station, Georgia Institute of Technology, Atlanta, Georgia, 1979.
- F. L. Cook and R. L. Moore, Unpublished Results, Industrial Energy Extension Service Report, Georgia Institute of Technology, 1979.
- 3. Anonymous, "Proposed Effluent Guidelines: Rulemaking for the Textile Mills Point Source Category", Joint Brochure, U.S./-EPA and Office of Water and Waste Management, Washington, D.C., Winter, 1979.
- Government Publications, <u>Current Industry Report/Carpet</u> and <u>Rug</u>, Pub. Nos. MQ-22Q - (78 and 79) - 5, U.S. Dept. of Commerce, Washington, D.C.
- 5. R. Weber and H. Hoise, <u>Carpet and Rug Industry</u>, (4), 20 (1979).
- 6. W. C. Tincher, DOE Projection Evaluation Sheet for Project Entitled "Energy Conservation in the Textile Industry, Phase III: In-Plant Demonstration of Energy Utilization in Beck Dyeing of Carpet", February 12, 1979.

APPENDICES

APPENDIX 1

Dyeing Sequences Conducted by Various Processes

Project Run (#)	Run in Sequence (#)	Technology Used	Shade <u>Name</u>
1	1	Conventional	Thistle
2	2	11	Thistle
3	3	11	Auburn
4	4	11	Auburn
5	5	11	Bamboo
6	6	**	Bamboo
7	7	11	Bamboo
8	8	11	Bamboo
9	9	11	Chamois
10	10	"	Chamois
11	1	Bump-and-Run	Sauterne
12	2	11	Pecan
13	3	"	Pecan
14	4	п	Sauterne
15	5	11	Sauterne
16	6	"	Watercress
17	7	11	Camel
18	8	"	Came1
19	9	"	Camel
20	10	"	London Fog

Project Run (#)	Run in Sequence (#)	Technology Used	Shade <u>Name</u>
21	1	Bump-and-Run/Dyebath Reuse	Rice
22	2	"	Skycraper Blue
23	3	"	Thistle
24	4		Thistle
25	5	"	Thistle
26	6		Thistle
27	7		Buckeye
28	8		Buckeye
29	9	"	Buckeye
30	10	"	Buckeye
31	11	"	Buckeye
32	1	Bump-and-Run/Dyebath Reuse	Polar White
33	2		Polar White
34	3	"	Polar White
35	4	"	Rice
36	5	11	Bran
37	6	"	Bran
38	7	11	Bran
39	8	"	Bran
40	9	"	Bran
41	10	"	Thistle
42	11	п	Thistle
43	12	"	Thistle
44	13	11	Thistle
45	1 Bum	p-and-Run/Dyebath Reuse/Hot Pull	Bone
46	2	17	Bone
47	3	"	Bone
48	4	"	Muffin
49	5		Muffin
50	6	11	Temple Gold

AFPENDIX 1 (cont'd.)

No.	Item Description	Esti- mated Cost (\$)	Quantity	Esti- mated Total Cost (\$)	Potential Vendor
1	WATER METER Water Meter Brooks Propellor Meter Model 3312- 04A31AA For 4" Water Line		1	775.00	Stallings, Inc. 4220 Pleasantdale Road Chamblee, Georgia Phone (404)-448- 7084
2	STEAM MONITORING SY	STEM ACCE	SSORIES		
2A	Orifice Plate (Stain- less Steel Tab Type) with Concentric Bore. 300 lb. Steel Weld Neck Flanges with Pressure Taps and Pressure Pick-up Parts For Steam @ 125 psig. Orifice Plate is to be sized for 2" Steam Line (schedule 40, I.D.) Pipe Carrying 125 psig Steam With Flow Rate Ranging From 0 to 6500 lbs/hr.	-300/ea.	1	300.00	J.W. Sweet Co. P.O. Box 6395 Columbia, S.C. 29260 Phone: (803)-754- 7492
2в	1/8" Quick Connects (Male)	2.00/ea	4	8.00	

Appendix 2. Engineering and Analysis Equipment Required by the Project

APPENDIX	2	(cont	'd.)	
----------	---	-------	------	--

No.	Item Description	Esti- mated Cost (\$)	Quantity	Esti- mated Total Cost (\$)	Potential Vendor
2C	¹ ₂ " Blackiron Pipe (150 psi)	0.26/ft	25ft	6.50	Obtain Locally
2D	'z" Full Port Valve (Gate or Ball) (150 psi)	9.43/ea.	4	37.72	п
2E	'J' Blackiron 90 Elbow (150 psi)	0.10/ea.	4	0.40	11
2F	'z" Blackiron TEG (150 psi)	0.26/ea.	4	1.04	"
		i			

APPENDIX 2 (con	it'	d.)
-----------------	-----	----	---

No.	Item Description	Esti- mated Cost (\$)	Quantity	Esti- mated Total Cost	Potential Vendor
3.	FIBERGLASS PIPING A		C	(\$)	
3A	6" Pipe with 20 mil liner	8.48/ft	<u>9</u> 8 ft	831.04	Ameron - Bonstrand Products 2508 Canal Ave. Atlanta, GA 30341 Phone (404)-457- 6685 Contact: John Patric
3B	6" 90 ⁰ Elbow	72.98/ea	4	291.92	Joim ratific
3C	6" Filament wound flange	42.82/ea	. 8	342.56	
4. <u>PIPE</u>	304 STAINLESS STEEL	PIPING A	ND FITTIN		Southwest Stainless of Georgia 6290 I-85 Access Road Norcross, GA Phone (404)-449- 7965 Contact: Dick George
4A	2" 304 Stainless Steel Pipe, Schedule 40	6.11/ft	20 ft	12.22	or Stainless Distribu-
4B	4" 304 Stainless Steel Pipe Schedule 40	20.25/ft	32 ft	648.00	tion and Supply Norcross, GA Phone (404)-449- 7720
4C	5" 304 Stainless Steel Pipe Schedule 40	25.00/ft	4 ft	100.00	Contact: Richard Bennett

•.

APPENDIX	2	(cont'd.)	

	Item	Esti- mated	Quantity	Esti- mated	Potential Vendor
No.	Description	Cost (\$)	Quantity	mated Total Cøst (\$)	Fotentral Vendos
4D	6" 304 Stainless Steel Pipe Schedule 40	30.00/ft	2 ft	60,00	"
4E	8" 304 Stainless Steel Pipe Schedule 40	45.50/ft	10 ft	455.00	11
<u>900</u>	ELBOWS				
4F	2" 304 Stainless Steel 90 ⁰ Elbow Schedule 40	14.22/ea	2	28.44	11
4G	4" 304 Stainless Steel 90 ⁰ Elbow Schedule	67.20/ea	. 3	201.60	"
4н	8" 304 Stainless Steel Elbow Schedule 40	302.50/ea	1	302.50	11
TEES					
41	4" 304 Stainless Steel Tee Schedule 40	127,80/ea	a 5	639.00	11

APPENDIX	2	(cont'	d.)	
----------	---	--------	-----	--

	Item	Esti- mated	Quantity	Esti- mated	Potential Vendor
No.	Description	Cost (\$)	quantity	mated Total Cost (\$)	rotentrar vendor
4J	·	190.00/ea	. 1	190.00	"
4к	8" 304 Stainless Steel Tee Schedule 40	439.80/ea	1	439.80	"
4L	<u>FLANGES</u> 2" 304 Stainless Steel Flange Schedule 40	40.00/ea	6	240.00	"
4M	4" 304 Stainless Steel Flange Schedule 40	67.20/ea	. 21	1411.20	"
4N	3½" 304 Stainless Steel Flange Schedule 40	60.50/ea	1	60.50	"
40	5" 304 Stainless Steel Flange Schedule 40	80.00/ea	5	400.00	"
4P	6" 304 Stainless Steel Flange Schedule 40	96.25/ea	2	192.50	
4Q	8" 304 Stainless Steel Flange Schedule 40	143.00/ea	4	572.00	"

APPENDIX	2	cont	d:
----------	---	------	----

	Item	Esti- mated Cost	Quantity	Cest	Potential Vendor
No.	Description	(\$)		(\$)	
	HALF NIPPLES				
4R	¹ / ₂ " Half Nipple 304 Stainless Steel Schedule 40 (¹ / ₂ " X 3")	1.50/ea	2	3.00	"
4S	2" Half Nipple 304 Stainless Steel Schedule 40 (2" X 4")	5.50/ea	1	5.50	"
	REDUCERS				
	304 Stainless Steel (Schedule 40)				
4T	8 X 6	139.75/ea	1	139.75	11
4U	6 X 5	115.05/ea	1	115.05	11
4V	8 X 4	186.00/ea	2	372.00	11
4W	6 X 4	64.20	2	128.40	11
4X	5 X 3	Ŀ28.7 0	1	128.70	
4Y	3 X 2	22.04	1	22.04	11
4Z	4 X 2	38.45	3	115.35	
4AA	4 X 3 ¹ 2	50.00	1	50.00	"

APPENDIX	2	(cont'	d.)
----------	---	--------	-----

	Item	Esti- mated Cost	Quantity	Esti- mated Total Cost	Potential Vendor
No.	Description	(\$)		(\$)	······································
5	PUMPS AND ACCESSORI	<u>ES</u>			
5A	Gorman-Rupp 14-A4B Gray Iron Centrifugal Pump with Teflon Packing (212 [°] MAX)	1071.00/¢	a 2	2142.00	Daigh Equipment Co 1860 Scobb Industrial Blvd. S.E. Smyrna, GA Phone (404)-432- 8836 Contact:
5B	10HP-1750 RPM 3 Phase Drip Motor 220 Volts	270.00/ea	2	540.00	Bill Waits "
5C	Coupling	82.80/ea	1	82.80	
5D	Base Plate and Coupling guard	149.40/ea	1	149.40	"
5E	Sheaves, Belts, Bearing, etc.	300.00 TOTAL	1	300.00	"

APPENDIX	2	(cont'd)
----------	---	----------

No .	Item Description	Esti- mated Cost (\$)	Quantity	Esti- mated Total Cost (\$)	Potential Vendor
6.	SIGHT GLASS	(+)			
6A	Penbenthy Model No. 70A, 316 Stainless Steel ½" Pipe Size 5/8" Glass Value Set 70A, 316 Stainless Steel	220.00/ Set	1	220.00	Streater Sales, Inc. 2090 Tucker Indus- trial Road Tucker, GA Phone (404)-939- 4544 Contact: Nelson Gore
6В	6' length of Pressure glass with red line	25.20	1	25.20	п
60	6' Bronze Guard Rods	8.64/ ea	4	34.56	
6D	¹ 2" Stainless Steel (304) Pipe Schedule 40	0.50/ft	2	1.00	same as 4

No.	Item Description	Esti- mated Cost (\$)	Quantity	Esti- mated Total Cost (\$)	Potential Vendor
7.	<u>VALVES</u> ITT Grinnell Corpor	ation Val	ves		Simco Supply Co. Inc.
74	2" Figure 1660 Bar Stock ball valve; 316 Stainless Steel Body and Trim; RCS. PA 25 Actuaton for 80 psi available air suppl intergal nema 4, 4 way solenoid with speed control		2	879.84	665 8th St. N.W. Atlanta, GA Phone (404)-875- 9371 Contact: Bill Blankmien ITT Grinnell Corp. P. O. Box 4719 645 Northside Dr. N.W. Atlanta, GA 30302
78	Same as 7A with 70" Extended Stem	∿500.00/ ea	1	500.00	Phone (404)-524- 6201 "

APPENDIX 2 (cont'd.)

- 69 -

APPENDIX	2	(cont'd.)

No	Item	Esti- mated Cost	Quantity	Esti- mated Total Cost	Potential	Vendor
<u>7</u> С	A" Figure 7577-1212359 Butterfly Valve; CI Body 316 Stainless Steel Disk, EPT (Ethylene propylene Seat, with RCS PA50 Actuator; integral nema 4 - 4 way solenoid valve with speed control	l	4	(\$) 1948.00	11	

APPENDIX	2	(cont'	d.)
----------	---	--------	-----

Item		Esti- mated	Quantity	Esti- mated	Potential Vendor
No.	Description	Cost (\$)	quantity	mated Total Cost (\$)	
8.	<u>STRAINER SYSTEM</u> 316 Stainless Steel Wire Strainer	300.00	1	300.00	Same as 6A

9. Computer Requirements

No.	Description	Cat. No.	Manufac- turer	Price (\$)	Quantity	Total Price (\$)
9A	9815A Desk top Computer	981 5A	Hewlett- Packard	2,900/ea	1	\$ 2,900.00
	Factory Installed Options					
9B	2008 Total Program Steps	001	11	500/opt	1	500.00
9C	2 I/O Channels	002	н	200/opt	1	200.00
9D	6 Additional Data	003	н	54/set	2	108.00
	Cartridges					
9E	BCD Interface	98133A	0	600/opt	1	600.00
ЭF	Carrying Case	98145A	u .	35/ea	1	35.00
9G	Printer Paper	9270 - 0479	11	21.60/6 roll pkg	2	43.20
	Maintenance Agreement covering 9815A, options 001 and 002, and 98133A		п	246/yr	1	246.00

¹Vendor: Hewlett-Packard Corporation P. O. Box 105005 450 Interstate North Parkway Atlanta, Georgia 30348 (404)955-1500

10. <u>Computer-Spectrophotometer Interface</u>

No.	Description	Cat. No.	Manufac- turer	Price (\$)	Quantity	Total Price (\$)
10	Logic Interface betweer B&L Spectronic 100 and HP9815A ¹		Built at Georgia Tech	500/ea	1	\$ 500.00

11. Spectrophotometer and Accessories

No.	Description	Cat. No.	Manufac- turer	Price (\$)	Quantity	Total Price (\$)
11 A	B&L Spectronic 100 Spectrophotometer with 14-377-267 multiple Sample Compartment	14-385-200	Fisher	2553.13	1	\$ 2,533.13
1]B	Instructional Manual	14-385-204	п	4.81	2	9.63
110	Blue Phototube	14-385-232	11	16.84	1	16.84
11D	Red Phototube	14-385-233	11	16.84	1	16.84
11·E	Tungsten Lamp	14-377-290	u	16.36	2	32.75
11F	Spectrophotometer Cells	14-385- 904D	It	68.91	4	275.63
						\$ 2,884.82

Vendor: Fisher Scientific 2775 Pacific Dr. Norcross, GA (404) 449-5050

12. Miscellaneous OS&E Items

No.	Description	Cat. No.	Manufac- turer	Price (\$)	Quantity	Total Price (\$)
12A	30ml Syringes	14-823-10E	Fisher	8.50/ea	. 3	\$ 25.50
12B	Kimwipes	6-666A	11	31.80/ea	1	31.80
120	100ml pipets	13-6500	11	4.96/ea	2	9.92
12D	50ml pipets	13-6505	11	3.50/ea	2	7.00
12E	25ml pipets	13-650P	11	2.74/ea	2	5.48
12F	5ml pipets	13-650F	n	1.76/ea	2	3.52
12G	Pipet bulbs	13-681-51	"	11.75/ea	2	22.50
124	250ml beakers	2-555-20A	н	14.88/12	12	14.88
12I	Test tubes	14-932A	п	7.68/24	24	7.68
12J	Test tube holders	14-781-16	"	3.30/ea	2	6.60
12K	Acetone	∆A-17	11	43.20/cs	1	43.20
12L	Liquinox Liquid Detergent	4-322-15A	11	3.50/qt	2	7.00
					TOTAL:	\$ 185.08

¹Vendor: Fisher Scientific 2775 Pacific Dr. Norcross, GA (404) 449-5050

13. Syringe Filter Accessories

No.	Description	Cat. No.	Manufac- turer	Price (\$)	Quantity	Total Price (\$)
13A	Prefilters, 100/pkg	AP2501000	Millipore	7.20/pkg	3	\$ 21.60
13B	Water <u>Filters</u>	HAWP01300	11	18.90/pkg	3	56.70
130	Swinny Filter Attach- ment, 13mm	XX3001200	U	22.40/ea	2	44.80
130	Swinny Replacement Part	s				
	O-ring, Teflon, 5/pkg	XX3001201	u	13.20/pk	g 1	13.20
	<u>Gasket, Teflon, 10/pkg</u>	XX3001202	11	24.10/pk	g 1	24.10
	<u>SS Filter Screen</u>	XX3001210	"	6.60/ea	1	6.60
	Wrench Set	XX3001204	H	6.60/ea	1	6.60

¹Vendor: Millipore Corporation Ashby Road Bedford, Massachusetts 01730 (617)275-9200

APPENDIX 3.

.

Program Listings for Dyebath Reuse

Program O

0049 . 0097 N 0149 F 0050 END∝ 0098 > 0150 I 0099 END∝ 0151 N

77 -

0153 LINE

Program O

$0193 +$ $0248 L$ $0194 + \neq 0249 L$ $0195 LOAD$ 0250 $0195 LOAD$ 0250 0250 $0196 RCL$ $R000$ $0251 K$ $0198 SPACE$ $0252 N$ $0198 SPACE$ $0252 N$ $0253 O$ $0253 O$ $0201 PRNT \propto$ $0254 B$ $0203 PR1NT$ $0255 O$ $0204 PRNT \propto$ $0256 O$ $0204 PRNT \propto$ $0257 U$ $0206 Y$ $0258 T$ $0207 E$ $0259 2$ $0259 2$	0262 2 0263 E 0263 E 0265 0 0265 0 0266 LINE 0266 0 0266 0 0266 0 0267 0 0269 P 0269 P 0269 P 0269 0 0269 0 0271 U 0273 H 02273 H 02273 H 02273 H 02273 H 02274 N 02275 N 02283 4 02283 4 02288 0 02288 0 02293 R 02293 R 02293 R 02293 S 02293 S
---	--

4 A

Program O

9

0313 STO 0314 ROLL4 0315 S10+ I J 0317 NEXT 0318 FIX 0320 CLEAR 0321 2 0322 LD&G0 0323 LBL ---- Ĥ 0325 CLEAR 0326 3 0327 LD%60 0328 LBL ••• ••• ••• 🗄 0330 CLEAR 0331 4 0332 LD&CO 0333 LBL ____ C 0335 CLEAR 0336 5 0337 LD&G0 0338 LBL ---- II 0346 CLEAR 034i 6 0342 LD&GG . 0343 LBL 0345 CLEAR 0346 7 0347 LU&GO 0348 LBL ----0350 CLEAR 0351 8 0352 LD&GO 0353 LBL ---- G 0355 CLEAR 0356 9 6357 LD&C0 8358 LBL ---- 04 0360 STOP

0361	CALL
0363	-+-
<u>й364</u>	RETURN
0365	LBL
	Н
0367	CLEAR
0368	4
<u>изб9</u>	ĥ
0370	4 -
0371	LD&GO
8372	LBL
	LD&GO LBL I CLEAR
0374	CLEAR
0375	
0376 0377	7
0377	$+ \neq -$
0378	LD&GG END
8379	END

- 79 -

APPENDIX 3. (cont'd.)

Program Listings for Dyebath Reuse

.

Program 1

0000 PRNT« 0002 D 0003 Y 0004 E 0005 B 0005 B 0005 A 0005 A 0007 T 0008 H	0045 H 0046 A 0047 D 0048 E 0049 LINE 0050 LINE 0051 END« 0052 5 0053 0		0099 0101 0102 0103 0104 0105 0106 0107	STO+ I 4 RCL F STO CLEAR 1	B J
0009 LINE 0010 R 0011 E 0012 C 0013 J 0014 N	0054 0 0055 ENTER† 0056 RCL 0058 9 0059 1	R089	0108 0109 0111 0112 0114 0115	8 RCL I LOAD RCL EEX 2	J R010
0015 S 0016 T 0017 I 0018 T 0019 U	0060 + 0061 LOAD 0062 GOSU8 0064 3 0065 .	0500	0116 0117 0119 0120 0121	÷ STO* I EEX 3 STO÷ I	E
0020 T 0021 I 0022 C 0023 N 0023 N 0024 LINE 0025 Q	-0066 7 0067 8 0068 5 0069 3 0069 3 0070 RCL 0072 * 0073 STO	R088 E	0127 0123 0124 0126 0127 0129	CFG LBL 01 CLERF RCL I FIX	- - - - -
0026 U 0027 A 0028 N 0029 T 0030 I 0031 T 0032 I	0073 STO 0074 1 0075 STO 0076 RCL 0078 STO 0079 FOR 0079 FOR 0080 RCL I	с В В ФОО В Ф С В	0131 0132 0133 0134 0135 0135	4 9 + SPACE GOSUB	80%5
0033 E 0034 S 0035 0036 F 0037 O	0082 +≑- 0083 STO I 0085 RCL 0086 STO* I 0088 5 0089 4	BE	0146	SPACE RCL I IF - GOSUB RCL I 4	8 1.04 8
0038 R 0039 LINE 0040 N 0041 E 0042 W 0043 0044 S	0000 RCL 0090 RCL 0091 + 0093 RCL I 0093 RCL I 0095 RCL 0097 * 0098 STO	B J J R086 H	6151	4 ÷ GOTO ENTER† INT	4 0163

Program 1

00000000000000000000000000000000000000	4 5 4 5 4 * * * * * * * *		34567891134680234678912317891123468002334678912222 022178912322222333467891222 0221789122222233346789122222255568900 0000000000000000000000000000000000	STO RCL STO* ESTO÷ STO÷ STO- SFGUB SFGUB SFGUB CDSUB C	B J J L03 R001 R001 J L01 J L02 0000	00000000000000000000000000000000000000	A N LINE
0201 0202 0203	L X 2 I 3 L 5 A 5 R 5 R 8 E	ß	0261 0262	¥ * * * * * * * * * * * * * * * * * * *		0311 0312 0313	A N LINE E X C E S

Program 1

0321 0322 D 0323 Y 0324 E 0325 END4 0326 ENTER1 0327 ENTER1 0328 RCL H 0329 X+7 0330 -0331 ÷ 0332 EEX 0333 2 0334 ÷ 0335 +÷-0336 F1X 1 0338 PRNT# 0340 0341 =0342 PRINT 0343 0344 % 0345 END« 0346 ROLL4 0347 SPACE 0348 SPACE 0349 RETURN 0350 END

,

APPENDIX 3. (cont'd.)

Program Listings for Dyebath Reuse

.

Program 2

0004 0005 S 0006 O 0007 L 0008 V 0009 E 0010 0011 N 0012 + 0013 N 0014 = 0016 0017 PRINT 0018 END4 0020 END4 0021 SPACE 0022 CFG 0023 GOTO 0025 LBL 00 0027 SFG 0028 LBL 01 0030 1 0031 STO 0032 +#- 0033 STO 0032 STO 0036 STO 0037 STO 0038 FOR 0038 FOR 0039 RCL 0036 STO 0038 FOR 0039 RCL 0040 STO 0041 STO 0042 FOR 0042 FOR 0043 1 0044 RCL 0045 + 0048 RCL 0048 RCL 0049 RCL 0049 RCL 0050 GOSUB 0052 STO 0053 FOR	1 L01 I R000 F G A→F A B H B→G R000 C B A A B H D R C B A A B H D C B A A B H D C B A A B H D C D C B A A B H C B D C B A A B H C B A A B H C B A A B H C B A A B H C B A A B H C B A A B H C B A A B H C B A A B H C B A B H C B A B H C B B A B H C B B B B A B B B B B B B B B B B B B B	0055 RCL C 0056 GOSUB A 0058 RCL E 0059 STO+I J 0061 NEXT C 0062 NEXT B 0063 RCL A 0064 RCL R000 0067 GOTO C 0067 GOTO C 0067 GOTO C 0067 GOTO C 0070 1 B 0070 1 B 0071 + B 0072 STO B 0077 + R 0078 STC C 0079 FOR C+HB 0082 GOSUB A 0084 STO E 0084 STO E 0084 STO E 0084 STO E 0087 GOSUB A 0088 RCL C	0113 GOSUB 0115 STO 0116 RCL 0117 STO 0118 1 0119 RCL 0121 + 0122 STO 0123 RCL 0124 - 0126 RCL 0126 RCL 0127 - 0128 GOSUB 0130 STO I 0132 STO I 0133 STO I 0135 NEXT 0136 NEXT 0136 STO I 0137 1 0138 STO 0139 RCL 0141 2 0141 2 0142 + 0142 + 0143 INT 0144 STO 0145 FOR 0146 RCL 0147 1 0148 FOR 0146 RCL 0157 + 0151 GOSUB 0153 STO 0154 RCL 0157 STO 0156 RCL 0157 + 0157 STO 0156 RCL 0157 STO 0156 STO I 0168 RCL 0169 STO I 0169 STO I 0171 NEXT 0172 IF CFG	E JI R 808 JA JB A LE BA A R 600 F A F A F A R 600 F A L JI R 8 R 600 F A L JI R 8 R 6 R 6 R 8 R 8 R 8 R 8 R 8 R 8 R 8
0054 RCL	B	0112 RCL B	0172 IF CFG 0173 GOTO	1 1.00

- 83 -

.

Program 2

0175 0176 0177 0179 0180	1 STO RCL STO 1	A R000 F		0226 0227 0228 0229 0231	X≑Y 1 RCL 1	R000
	+ STO FOR RCL FIX PRNT& C O N C PRINT		•	0232 0233 0234 0235 0236 0238 0239	+ * STO RCL I RETURN END	
0196 0197 0198 0200 0203 0205 0205 0205 0205 0205 0208	END& RCL RCL GOSĽB FIX PRNT& PRINT (
0211 0212 0213 0214 0215 0216 0218 0220 0223 0223 0223 0223 0223	M G L L L L N N N N N N N N N N N N N N N	A A				

APPENDIX 3. (cont'd.)

Program Listings for Dyebath Reuse

Proc	iram	-0
		-

0007 CLEAR 0008 PRNT∝ 0010 G 0011 I	0050 0051 0052 0053 0054 0055 0055 0055 0055 0055 0059 0060	PRESS <run></run>	0102 · 0103 · 0105 · 0106 · 0107 · 0108 · 0108 · 0109 ·	STO CLEAR 1 3 LOAD CLEAR	R087
0012 V 0013 E 0014 0015 S 0016 T 0017 Y 0017 E 0020 0021 # 0022 LINE 0023 P 0023 E	0061 0062 0063 0064 0065 0065 0065 0065	LINE LINE LINE	0115 (0116 (0118 F 0120 (0121 (0123 L 0125 F 0125 F 0126 1 0127 4 0128 P	RCL I IF 0 GOTO RCL IF X=Y GOTO BL N RCL I I I	A A R087 M
0026 S 0027 S 0028 0029 (0030 E 0031 N 0032 T 0033 E 0033 E 0033 E 0035 > 0036 LINE 0037 G 0038 I 0039 V 0040 E	0075 0076 0077 0078 0080 0080 0080 0082 0082 0088 0088	E # PRINT ENDα X≑Y PRNT∝ S H R. D E	0133 F 0134 C 0136 L 0138 F 0140 F 0141 L 0142 L 0142 L 0143 F 0144 C 0145 F 0146	(F X=Y GTO ?OLL↓ GOTO .BL ?RNT∝ }	K L 9 1
0040 L 0041 0042 S 0043 H 0045 D 0045 E 0045 E 0046 E 0048 # 0049 LINE	0091 0092 0093 0094 0095 0095 0096 0098 0098 0099	# = PRINT ENDα X≑Y EEX 4 - 85 -	0147 L 0148 I 0149 E 0150 R 0151 F 0152 R 0153 Y 0154 L 0155 S 0156 E	INE	

- 85 -

Ĥ

9999

.

•

Program -0

01590 0162 0162 0162 01665 01665 01665 01665 01665 01665 01665 01665 01665 01665 01665 01665 01655 01777 01775 01775 01775 01775 01775 01775 01775 01775 015555 01555 01555 01555 01555 01555 01555 01555 01555 015555 015555 01555 015550 015550 015550 015550 015550 015550 015550 015550 015550 015550 015550 015550 015550 015550 015550 015550 015550 0155500 015550 015550 015550 015550 015550 00000000	SHADESLOT	4567890112345678901223567 0220890022112145678901222222222222222222222222222222222222	A R T O V E R A N E W L I N D R C L B L C L C L C L C C C C C C C C C C
--	-----------	---	--

Appendix 4.

Conventional Salem Process as of December, 1979

- 1. Load carpet.
- 2. Fill the beck with water.
- 3. Add the auxiliaries, to include:

leveling agent

sequesterant

defoamer

ammonia

and run 5-10 minutes.

- 4. Add dyes and run 5-10 minutes.
- 5. Add MSP as pH control agent, and run 5 minutes.
- 6. Rinse to boil at 4⁰F/minute.
- 7. Hold at boil for 30 minutes, and patch.
- If on shade, proceed to Step 9. If not, make the necessary add and repeat Steps 6-8.
- 9. Repeat Steps 6 and 7 without patching to insure that level is attained.
- 10. Drop the dyebath to the drain, fill the beck with rinse water, and run 5 minutes.
- Pull the carpet, drop the rinse bath, and clean the beck.
 Return to Step 1.

APPENDIX 5.

Energy Consumption Data for The Dyeing Sequences

		RUN	SHADE	LOAD	ADDS				TE	MPERATU	RE/STEAM					
SEQUENCE	PROJECT	IN		(LBS)	(#)	HEA	T-UP	ADI) 1	ADD	2	ADD	3	LEVE	L-OUT	TOTAL
	RUN	SEQUENCE				TEMP.	STEAM	TEMP.	STEAM	TEMP.	STEAM	TEMP.	STEAM	TEMP.		STEAM
CONVENTIONAL	(#)	(#)				([°] F)	(LBS)	(⁰ F)	(LBŞ)	(⁰ F)	<u>(LBŞ)</u>	(°F)	(ĻBS)	([°] F)	(LBS)	(LBS)
**	1	1	Thistle	1642	1	72	4782	180	2904	-	-	-	-	172	3073	10759
11	2	2	Thistle	1680	0	82	5590	-	-	-		_	-	192	3325	8915
	3	3	Auburn	1665	1	66	6317	186	2573	-	-	-	-	190	2617	11507
н	4	4	Auburn	1640	0	65	5905	-		_	-	_		194	2433	8338
11	5	5	Bambc _' o	1650	1	64	5431	184	2130		-	-	-	186	2165	9726
	6	6	Bamboo	1666	1	78	4253	184	2433	-	-	-	-	192	2696	9382
<u> </u>	7	7	Bamboo	1700	1	62	6218	194	2045	-	-	-		199	2352	10615
**	8	8	Bamboo	1680	1	73	5836	186	2192	-		-		192	2506	10532
**	9	9	Chamois	1680	1	88	5446	173	2430			-	-	182	1869	9745
11	10	10	Chamois	1667	0	90	4057	-	-	-	-	-		183	2620	6677
			TOTAL:	16670	7	740	53835	1287	16707	_	-	-	-	1882	25656	96196
			AVERAGE:	1667	0.7	74	5384	184	2387	_	_	-	-	188	2566	9620

		RUN	SHADE	LOAD	ADDS				Т	EMPERATU	RE/STEAM					
SEQUENCE	PROJECT	IN		(LBS)	(#)	HEA	AT-UP	AI	DD 1	ADD	2		DD 3		L-OUT	TOTAL
BUMP & RUN	RUN (#)	SEQUENCE(#)				TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TFMP (^O F)	STEAM (LBS)	TEMP. ([°] F)	STEAM (LBS)	STEAN (LBS
	11	1	Sauterne	1652	2	62	3733	172	0	157	848			166	1318	589
11	12	2	Pecan	1685	2	90	3585	168	1547	168	1907	-		176	1793	883
U	13	3	Pecan	1740	0	94	3981	-		_		-		164	2267	624
п	14	4	Sauterne	1620	0	75	3987		_			-	-	173	2029	601
11	15	5	Sauterne	1692	1	68	4225	180	1012		-	-	-	176	995	623
11	16	6	Watercress	1616	0	68	3705	-	_					173	1559	526
13	17	7	Camel	1670	1	74	4103	170	1514		-	-	-	174	1595	721
"	18	8	Camel	1670	0	90	3654	-	-	_		-	-	165	1894	554
н	19	9	Came1	1720	0	90	3245	-	-	-	-	-	-	168	1412	465
11	20	10	London Fog	1700	2	84	3618	175	883	160	778	-		175	1334	661
			TOTAL:	16765	8	795	37836	865	4956	485	3533	-	-	1710	16196	6252
			AVERAGE:	1677	0.8	80	3784	173	991	162	1178	-		171	1620	625

APPENDIX 5. (cont'd.)

•

		RUN	SHADE	LOAD	ADD	S			TE	EMPERATU	RE/STEAN	1				
EQUENCE	PROJECT	IN		(LBS)	(#)	HE	AT-UP	AD	D 1	AD	D 2	AD	D 3	LEVE	L-OUT	TOTAL
FIRST BUMP & RUN/ DYEBATH REUSE	RUN (#)	SEQUENCE (#)				TEMP. (F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	STEAN (LBS)
	21	1	Rice	1616	1	60	2499	164	1234		_	_	-	190	1062	479
"	22	2	Skyscraper Elue	1570	2	150	1962	172	1353	182	1612	-	-	181	1080	600
n	23	3	Thistle	1640	2	136	1591	168	1348	174	730	-	-	179	876	454
11	24	4	Thistle	1616	3	125	1703	170	986	164	1392	176	983	a_	_	506
11	25	5	Thistle	1640	1	128	2302	178	1328	-	-	-		181	883	451
11	26	6	Thistle	1770	0	132	1642	-		-		-	-	175	1357	299
11	27	7	Buckeye	1800	2	130	1585	162	1644	162	96	_	-	168	1000	432
н	28	8	Buckeye	1786	2	119	1665	157	527	168	1599	-	-	183	990	478
п	29	9	Buckeye	1920	0	126	1336		-	-	-	-	-	143	974	2310
11	30	10	Buckeye	1780	1	125	1816	157	1455	-	-	-	-	171	155	3426
11	31	11	Buckeye	1745	1	Ъ_	-	-	-	-	-	_	-	-	_	-
			TOTAL:	18883	15	1231	18101	1328	9875	850	5429	176	983	1571	8377	4276
			AVERAGE:	1717	1.4	123	1810	166	1234	170	1086	176	983	175	931	4277

APPENDIX 5. (cont'd.)

No level-out cycle for this run, since 3 adds had been made.

^b For unknown reason, TDI zeroed on this run, and accurate measurements were not obtained.

		RUN	SHADE	LOAD	ADDS	S				TEMPERAT	URE/STEA	M				
SEQUENCE	PROJECT	IN		(LBS)	(#)		EAT-UP	AI	DD 1	AI	DD 2	A	DD 3	LEVI	EL-OUT	TOTAL
SECOND BUMP & RUN/ DYEBATH REUSE	RUN (#)	SEQUENCE (#)				TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEAM. (°F)	STEAM (LBS)	STEAM (LBS)
"	32	1	Polar White	1666	2	64	4425	160	1610	168	1904		_	172	2411	10350
п	33	2	Polar White	1650	1	130	2623	164	2147	-	-	-	-	169	1470	6240
н	34	3	Polar White	1690	3	121	3455	162	2064	162	1998	163	2031	168	1325	10873
п	35	4	Rice	1692	2	120	3182	176	1413	172	1673	_	-	179	1326	7594
11	36	5	Bran	1710	1	94	3281	166	1935	-	-	-	-	174	909	6125
11	37	6	Bran	1720	0	130	2822	-		-	-	-	-	171	1640	4462
**	38	7	Bran	1660	0	132	2599	-	_		_	-	_	159	1732	4331
11	39	8	Bran	1802	1	131	2537	176	1143	-	-	-	-	175	1281	4961
"	40	9	Bran	1662	0	134	2871	-		-	-	-	-	181	1604	4475
"	41	10	Thistle	1790	0	126	3295	-	-	-	-	-	-	179	1787	5082
11	42	11	Thistle	1820	0	126	3419	_	-	_	-			184	1239	4658
11	43	12	Thistle	1600	1	131	2933	163	1593	-	-	-	-	178	1017	5543
11	44	13	Thistle	1638	2	121	2484	168	1238	170	1448	-	-	175	1228	6398
			TOTAL:	22100	13	1560	39926	1335	13143	672	7023	163	2031	2264	18969	81092
			AVERAGE:	1700	1.0	120	3071	167	1643	168	1756	163	2031	174	1459	6238

APPENDIX 5. (cont'd.)

		RUN	SHADE	LOAD	ADDS					TEMPERAT	URE/STE	M				-
SEQUENCE	PROJECT	IN		(LBS)	(#)	HEAT	-UP	A	DD 1	AD	D 2	AI	DD 3	LEVEI	-OUT	TOTAL
BUMP & RUN/ DYEBATH REUSE/ HOT PULL	RUN (#)	SEQUENCE (#)				TEMP.	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	TEMP. (°F)	STEAM (LBS)	STEAM (LBS)
	45	1	Bone	1560	0	64	4877		-			-		174	1521	6398
11	46	2	Bone	1560	0	149	2422	-	-	_		-	-	172	1163	<u>35</u> 85
"	47	3	Bone	1550	3	141	2422	174	1448	170	1428	169	1643	180	1147	8088
	48	4	Muffin	1526	3	1.52	1925	-	1812	-	2372	_	2345		1046	<u>95</u> 00
н	49	5	Muffin	1590	0	-	2244		-	-	-	-	-	_	1219	3463
н	50	6	Temple Gold	1560	1	160	2028	_	1511		-	-	-		1242	4781
			TOTAL:	9346	7	666	15918	174	4771	170	3800	169	3988	526	7338	35815
			AVERAGE:	1558	1.2	133	2653	174	1590	170	1900	169	1994	175	1223	5969

APPENDIX 5. (cont'd.)

APPENDIX 6.

WATER/SEWER AND TIME REQUIRE	MENTS FOR	DYEING	SEQUENCES
------------------------------	-----------	--------	-----------

SEQUENCE	PROJECT	RUN IN	SHADE	ADDS	WATER/ SEWER	CYCLE TIME
CONVENTIONAL	RUN (#)	SEQUENCE (#)		(#)	(GAL)	(MIN)
11	1	1	Thistle	1	9985 ^a	280
11	2	2	Thistle	0	9945 ^a	209
11	3	3	Auburn	1	9985 ^a	299
11	4	4	Auburn	0	9925	192
11	5	5	Bamboo	1	9615	383
11	6	6	Bamboo	1	10165	278
11	7	7	Bamboo	1	9965	295
11	8	8	Bamboo	1	6165 ^b	293
11	9	9	Chamois	1	6165 ^b	265
11	10	10	Chamois	0	9575	189
			TOTAL:	7	91490	2683
			AVERAGE	0.7	9149	268

^aWater meter malfunctioned, and fill volumes were calculated from the the beck dimensions.

^bThe rinse water from the previous cycle was used as the dyebath water for the next run, as was infrequently done in conventional practice at the plant.

		RUN			WATER/	CYCL
SEQUENCE	PROJECT	IN	SHADE	ADDS	SEWER	TIME
	RUN	SEQUENCE		(#)	(GAL)	(MIN
BUMP & RUN	(#)	(#)				
"	11	1	Sauterne	2	9855	280
11	12	2	Pecan	2	10005	385
	13	3	Pecan	0	6125 ^b	224
11	14	4	Sauterne	0	6125 ^b	225
11	15	5	Sauterne	1	9615	260
11	16	6	Watercress	0	9775	213
11	17	7	Came1	1	9965	348
T1	18	8	Camel	0	10625	202
11	19	9	Camel	0	6125 ^b	205
11	20	10	London Fog	2	6205 ^b	352
			TOTAL:	8	84420	2694
			AVERAGE:	0.8	8442	269

APPENDIX 6. (cont'd.)

APPENDIX	6.	(cont'd.)
----------	----	-----------

FOUENCE	DDO IECT	RUN	CUADE		WATER/	CYCLE
SEQUENCE FIRST	PROJECT RUN	IN SEQUENCE	SHADE	ADDS (#)	SEWER (GAL)	TIME (MIN)
BUMP & RUN/	(#)	(#)		(π)	(GAL)	(MIN)
DYEBATH REUSE	(#)					
DIEDAIR REUSE		- H				
11	21	1	Rice	1	7869	400
"	22	2	Skyscraper Blue	2	4919	415
	23	3	Thistle	2	7856	365
"	24	4	Thistle	3	5447	455
11	25	5	Thistle	1	4745	282
11	26	6	Thistle	0	4605	225
"	27	7	Buckeye	2	6028	450
"	28	8	Buckeye	2	3410	385
11	29	9	Buckeye	0	4786	258
11	30	10	Buckeye	1	5202	373
11	31	11	Buckeye	1	6527	315
			TOTAL:	15	61394	3923
			AVERAGE:	1.4	5581	357

APPENDIX	6.	(cont'd.)
UT THUDIU	~ •	

SEQUENCE	PROJECT	RUN IN	SHADE	ADDS	WATER/ SEWER	CYCLI
SECOND	RUN	SEQUENCE		(#)	(GAL)	(MIN)
BUMP & RUN/	(#)	(#)	<u> </u>			
DYEBATH REUSE						
11	32	1	Polar White	2	8336	445
17	33	2	Polar White	1	4458	315
11	34	3	Polar White	3	7687	595
11	35	4	Rice	2	5156	385
11	36	5	Bran	1	5227	313
"	37	6	Bran	0	3896	240
11	38	7	Bran	0	4966	310
11	39	8	Bran	1	3735	310
11	40	9	Bran	0	3852	245
11	41	10	Thistle	0	3780	267
11	42	11	Thistle	0	4824	277
11	43	12	Thistle	1	8215	309
11	44	13	Thistle	2	4937	420
			TOTAL:	13	69069	4431
			AVERAGE:	1	5313	341

SEQUENCE BUMP & RUN/ DYEBATH REUSE/ HOT PULL	PROJECT RUN (#)	RUN IN SEQUENCE (#)	SHADE	ADDS (#)	WATER/ SEWER (GAL)	CYCLE TIME (MIN)
	45	1	Bone	0	3625	280
11	46	2	Bone	0	125	249
н	47	3	Bone	3	345	456
	48	4	Muffin	3	245	445
11	49	5	Muffin	0	725	225
11	50	6	Temple Gold	1	265	240
			TOTAL:	7	5330	1895
			AVERACE:	1.2	888	316

APPENDIX 6. (cont'd.)

APPENDIX 7.

Auxiliary Chemical Consumption Data for Dyeing Sequences

		RUN						AUXILIARY C	HEMICALS		
SEQUENCE	PROJECT RUN	IN SEQUENCE	SHADE	LOAD (LBS)	ADDS (#)	LEVEL. (LBS)	SEQUEST. (LBS)	DEFOAM. (LBS)	AMMONIA (LBS)	MSP (LBS)	ACETI((LBS)
CONVENTIONAL	(#)	(#)									
	<u> </u>	1	Thistle	1642	1	16	32	4	24	24	0
11	2	2	Thistle	1680	0	17	34	6	26	26	0
11	3	3	Auburn	1665	1	17	34	б	26	26	0
"	4	4	Auburn	1640	0	16	32	11	24	24	0
	5	5	Bamboo	1650	1	17	34	б	17	17	0
27	6	6	Bamboo	1666	1	17	34	4	26	26	0
11	7	7	Bamboo	1700	1	17	34	6	26	26	0
TI	8	8	Bamboo	1680	11	17	34	6	26	26	15
"	9	9	Chamois	1680	1	17	34	б	17	17	0
11	10	10	Chamois	1667	0	17	34	4	26	26	0
			TOTAL:	16670	7	168	336	59	238	238	15
			AVERAGE:	1667	0.7	16.8	33.6	5.9	23.8	23.8	1.5

		RUN						AUXILIARY C	HEMICALS		
QUENCE BUMP & RUN '' '' '' '' '' '' '' '' '' '' '' '' ''	PROJECT RUN (#)	IN SEQUENCE (#)	SHADE	LOAD (LBS)	ADDS (#)	LEVEL. (LBS)	SEQUEST. (LBS)	DEFOAM. (LBS)	AMMONIA (LBS)	MSP (LBS)	ACETIC (LBS)
11	11	1	Sulterne	1652	2	17	34	4	26	26	0
	12	2	Pecan	1685	2	17	34	6	26	26	0
TI	13	3	Pecan	1740	0	17	34	6	17	17	0
н	14	4	Saulterne	1620	0	16	32	6	16	16	0
11	15	5	Saulterne	1692	1	17	34	4	26	26	0
"	16	6	Watercress	1616	0	16	32	4	24	24	0
11	17	7	Camel	1670	1.	17	34	6	26	26	0
11	18	8	Camel	1670	0	17	34	6	26	26	0
u .	19	9	Camel	1720	0	17	34	6	17	17	0
П	20	10	London Fog	1700	2	17	34	6	17	17	0
			TOTAL:	16765	8	168	336	54	221	221	0
			AVERAGE:	1677	0.8	16.8	33.6	5.4	22.1	22.1	0

APPENDIX 7. (cont'd.)

		RUN						AUXILIARY	CHEMICALS		
SEQUENCE FIRST BUMP & RUN/ DYEBATH REUSE	PROJECT RUN (#)	IN SEQUENCE (#)	SHADE	LOAD (LBS)	ADDS (#)	LEVEL. (LBS)	SEQUEST. (LBS)	DEFQAM. (LBS)	AMMONIA (LBS)	MSP (LBS)	ACETI (LBS
н	21	1	Rice	1616	1	16	16	4	24	24	0
н	22	2	Skyscraper Blue	1570	2	5.3	5.3	3	12	8	0
п	23	3	Thistle	1640	2	4	4	3	8.5	2	4
11	24	4	Thistle	1616	3	5.3	5.3	2	20 ^a	8	0
**	25	5	Thistle	1640	1	6	6	3	20 ^a	8	0
"	26	6	Thistle	1770	0	6	6	3	20 ^a	9	0
**	27	7	Buckeye	1800	2	6	6	3	20 ^a	9	0
"	28	8	Buckeye	1786	2	5	5	2	20 ^a	8	0
**	29	9	Buckeye	1920	0	8	8	3	20 ^a	12	0
	30	10	Buckeye	1780	1	6	6	6	20 ^a	9	0
н	31	11	Buckeye	1745	1	6	6	6	20 ^a	9.	0
			TOTAL:	18883	15	73.6	73.6	38	204.5	106	4
			AVERAGE:	1717	1.4	6.7	6.7	3.5	18.6	9.6	0.4

APPENDIX 7. (cont'd.)

Eight lbs. ammonia added to prerinse bath.

100 -

1

		RUN						AUXILIARY (CHEMICALS		
SEQUENCE SECOND BUMP & RUN/ DYEBATH REUSE	PROJECT RUN (#)	IN SEQUENCE (#)	SHADE	LOAD (LBS)	ADDS (#)	LEVEL. (LBS)	SEQUEST. (LBS)	DEFOAM. (LBS)	AMMONIA (LBS)	MSP (LBS)	ACETI (LBS
п	32	1	Polar White	1666	2	27 ^b	17	6	26	26	0
11	33	2	Polar White	1650	11	00	6	3	12	6	0
"	34	3	Polar White	1690	3	6	6	33	20 ^a	8	0
п	35	4	Rice	1692	2	14	6	2	20 ^a	8	0
11	36	5	Bran	1710	1	0	6	3	14	9	0
11	37	6	Bran	1720	0	6	66	3	16	9	0
11	38	7	Bran	1660	0	6	6	3	16	8	0
н	39	8	Bran	1802	1	<u>14</u> b	4	2	16	5	0
н	40	9	Bran	<u>16</u> 62	0	66	6	3	16	8	0
"	41	10	Thistle	1790	0	6	6	6	16	9	0
"	42	11	Thistle	1820	0	5	5	3	16	7	0
11	43	12	Thistle	1600	1	44	4	3	16	6	0
	44	13	Thistle	1638	2	5	4	3	16	6	0
			TOTAL:	22100	13	99	82	43	220	115	0
			AVERAGE:	1700	1	7.6	6.3	3.3	16.9	8.9	0

APPENDIX 7. (cont'd.)

Additional leveling agent added because of unlevel dyeing.

		RUN						AUXILIARY CH	HEMICALS		
SEQUENCE BUMP & RUN/	PROJECT RUN	IN SEQUENCE	SHADE	LOAD (LBS)	ADDS (#)	LEVEL. (LBS)	SEQUEST. (LBS)	DEFOAM. (LBS)	AMMONIA (LBS)	MSP (LBS)	ACETIC (LBS)
DYEBATH REUSE / HOT PULL	(#)	(#)									
	45	1	Bone	1560	0	16	16	6	24	24	0
	46	2	Bone	1560	0	4	4	3	16	6	0
	47	3	Bone	1550	3	4	4	3	16	6	0
	48	4	Muffin	1526	3	4	4	2	16	6	0
	49	5	Muffin	1590	0	6	6	3	16	9	0
н	50	6	Temple Gold	1560	1	4	4	3	16	6	0
			TOTAL:	9346	7	38	38	20	104	57	0
			AVERAGE:	1558	1.2	6.3	6.3	3.3	17.3	9.5	0

APPENDIX 7. (cont'd.)

Т

APPENDIX 8.

Dye Consumption Data and Savings for Dyeing Sequences

			RUN	SHADE	LOAD	ADDS	RECYC	LED D	YES	ADDE	ED DYES	5	TOTA	L DYES	3	DYE S	AVING	S
SI	EQUENCE CONVENTIONAL	PROJECT RUN (#)	IN SEQUENCE		(#)	(#)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (%)	RED (%)	BLUE (%)
	11	1	1	Thistle	1642	1	_	-	-	1701	885	274	1701	885	274	-	-	-
_	11	2	2	Thistle	1680	0		-	-	1735	903	281	1735	903	281	~		-
	*1	3	3	Auburn	1665	1	-	-	-	4419	2842	558	4419	2842	558	-	-	-
_	11	4	4	Auburn	1640	0	-	-	-	4177	2798	538	4177	2798	538	-	-	-
_		5	5	Bamboo	1640	1	-		_	324	149	39	324	149	39	-	-	-
_	11	6	6	Bamboo	1666	1	-	+	-	356	155	40	356	155	40	-		-
	11	7	7	Bamboo	1700	1	-	-	-	385	168	41	385	168	41	-	-	-
	"	8	8	Bamboo	1680	1	-	-	-	334	151	39	334	151	39	-	-	-
_	11	9	9	Chamois	1680	1	-	-	_	657	256	64	657	250	64	-	-	_
_	н	10	10	Chamois	1667	0		-		585	218	58	585	218	58			
				TOTAL:	16670	7	-	-	-	14673	8519	1932	14673	8519	1932	-	-	-
				AVERAGE:	1667	0.7	-	_	_	1467	852	193	1467	852	193		-	

			RUN	SHADE	LOAD	ADDS	RECYC	LED D	YES	AI	DDED DY	ES	TOTA	AL DYE	S	DYE S	AVING	S
SI	EQUENCE	PROJECT RUN	IN SEQUENCE		(#)	(#)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (%)	RED (%)	BLUI (%)
	BUMP & RUN	(#)	(#)															
	п	11	1	Sauterne	1642	2	-	-	-	219	55	58	219	55	58		-	-
		12	2	Pecan	1685	2	-	-	-	912	423	163	912	423	163	-	-	-
	н	13	3	Pecan	1740	0	-	-	-	853	419	171	853	419	171		-	-
	11	14	4	Sauterne	1620	0	-	-		199	53	57	199	53	57	-	-	-
_	11	15	5	Sauterne	1692	1	-	-	-	218	56	59	218	56	59	-	-	-
_	**	16	6	Watercress	1616	0	-	-	-	165	39	60	165	39	60	-	-	-
	11	17	7	Came1	1670	1	-	-	-	540	316	85	540	316	85	-	-	-
_	**	18	8	Camel	1670	0	-	-	-	537	317	85	537	317	85	-	-	-
	п	19	9	Camel	1720	0		-	-	564	337	96	564	337	96			-
	11	20	10	London Fog	1700	2	-	-		300	173	77	300	173	77		-	-
				TOTAL:	16765	8	-	-	-	4507	2188	911	4507	2188	911	-	-	-
				AVERAGE:	1677	0.8	-	-	-	450.7	218.8	91.1	450.7	218.8	91.1	-	-	-

APPENDIX 8. (cont'd.)

		RUN	SHADE	LOAD	ADDS	REC	YCLED DY	ES	ADD	ED DYES	3	ĩ	OTAL DYE	ES	DYE S	AVING	S
SEQUENCE FIRST BUMP & RUN/ DYEBATH REUSE	PROJECT RUN (#)	IN SEQUEN (#)	ICE	(#)	(#)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (%)	RED (~~)	BLUE (%)
11	21	1	Rice	1616	1	0	0	0	176	88	32	176	88	32	0	0	0
11	22	2	Skyscraper Blue	1570	2	10.2	6.7	4.9	106	147	367	116.2	153.7	371.9	8.8	4.4	1.3
11	23	3	Thistle	1640	2	5.3	10.6	50.3	1620	837	239	1625.3	847.6	289.3	0.3	1.3	17.4
11	24	4	Thistle	1616	3	104.5	64.7	26.1	1630	782	248	1734.5	846.7	271.1	6.0	7.6	9.5
*1	25	5	Thistle	1640	1	35.2	26.1	9.1	1555	889	262	1590.2	915.1	271.1	2.2	2.9	3.4
"	26	6	Thistle	1770	0	102.2	39.2	11.2	1591	867	266	1693.2	906.2	277.2	6.0	4.3	4.0
11	27	7	Buckeye	1800	2	109.0	64.7	25.0	4150	3772	1394	4259	3836.7	1419	2.6	1.7	1.8
n	28	8	Buckeye	1786	2	320.2	327.0	136.3	3905	3074	1212	4225.2	3401	1348.3	7.6	9.6	10.1
11	29	9	Buckeye	1920	0	278.2	266.8	103.3	4234	3529	1330	4512.2	3795.8	1433.3	6.2	7.0	7.2
U	30	10	Buckeye	1780	1	203.3	182.8	71.5	4008	3531	1272	4211.3	3713.8	1343.5	4.8	4.9	5.3
u	31	11	Buckeye	1745	1	248.7	228.2	87.4	3880	3328	1230	4128.7	3556.2	1317.4	6.0	6.4	6.6
			TOTAL:	18883	15	1416.8	1216.8	525.1	26855	20844	7852	28272	22061	8374	-	-	-
			AVERAGE:	1717	1.4	128.8	110.6	47.7	2441	1895	714	2570	2005	761	5.0 ^a	5.5 ^a	6.3
	^a Der1	ved by	dividing the avera	age rec	ycled d	ye weigh	ts by th	e avera	ge total	dye we	ights.	AVERAGE	DYE SAV	INGS:	5.6%		

APPENDIX 8. (cont'd.)

		RUN	SHADE	LOAD	ADDS	RECY	CLED DY	YES	ADDI	ED DYE	S	TOTA	L DYES		DYE	SAVIN	GS
SEQUENCE SECOND BUMP & RUN/ DYEBATH REUSE	PROJECT RUN (#)	IN SEQUENCE (#)		(#)	(#)	YELLOW (G)	RED (g)	BLUE (g)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (g)	RED (g)	BLUE (g)	YELLOW (%)	RED (%)	BLU (%)
11	32	1	Polar White	1666	. 2	0	0	0	37	12	9	37	12	. 9	0	0	0
11	33	2	Polar White	1650	1	0	0	0.	36	12	6	36	12	6	0	0	0
"	34	3	Polar White	1690	3	0	0	0	54	21	15	54	21	15	0	0	0
**	35	4	Rice	1692	2	0	0	0	184	88	34	184	88	34	0	0	0
11	36	5	Bran	1710	1	2.3	4.5	0	990	305	81	992.3	309.5	81	0.23	1.5	0
"	37	6	Bran	1720	0	27.3	2.7	0	938	318	77	965.3	320.7	77	2.8	.8	0
11	38	7	Bran	1660	0	34.4	23.9	5.3	888	276	69	922.4	299.9	74.3	3.7	8.0	7.
"	39	8	Bran	1802	1	42.0	7.0	0	878	303	81	921	310	81	0.5	0.2	0
	40	9	Bran	1662	0	62.3	29.1	8.0	786	256	67	848.3	285.1	75	7.3	10.2	10.
н	41	10	Thistle	1790	0	100.7	53.2	20.1	1671	897	260	1771.7	950.2	280.1	5.7	5.6	7.
11	42	11	Thistle	1820	0	107.3	67.6	27.8	1614	869	276	1721.3	936.6	303.8	6.2	7.2	9.
	43	12	Thistle	1600	1	83.5	55.6	23.9	1400	782	274	1483.5	837.6	297.9	5.6	6.6	8.
11	44	13	Thistle	1638	2	128.5	95.4	33.1	1470	769	237	1598.5	864.4	270.1	8.0	11.0	12.
			TOTAL:	22100	13	588.3	339.0	118.2	10947	4908	1486	11535	5247	1604	-	-	-
			AVERAGE:	1700	1.0	45.3	26.1	9.1	842	378	114	887	404	123	5.1 ^a	6.5	^a 7.

APPENDIX 8. (cont'd.)

AVERAGE DYE SAVINGS: 6.3%

APPENDIX	8.	(cont'd.)
----------	----	-----------

	SEQUENCE	PROJECT RUN (#)	RUN IN SEQUENCE (#)	SHADE	LOAD (#)	ADDS (#)	<u>RECY</u> YELLOW (g)	CLED D' RED (g)	Y <u>ES</u> BLUE (g)	AI YELLO (g)	D <u>DED DYE</u> DW RED (g)	BLUE (g)	TOT YELLOW (g)		BLUE (g)	DYE YELLOW (g)	<u>SAVING</u> RED (g)	S BLUE (g)
- 107	BUMP-AND-RUN/ DYEBATH REUSE/ HOT PULL																	
I	11	45	1	Bone	1560	0	0	0	0	73	14	9	73	14	9	0	0	00
	11	46	2	Bone	1560	0	5.5	1.3	0	77	16	10	82.5	17.3	10	6.7	7.5	0
	"	47	3	Bone	1550	3	3.0	0.8	0	54	16	10	57.0	16.8	10	5.3	4.8	0
	11	48	4	Muffin	1526	3	5.6	1.4	0	241	72	34	246.6	73.4	34	2.3	1.9	0
		49	5	Muffin	1590	0	6.3	2.3	0.1	233	85	34	239.3	87.3	34.1	2.6	2.6	0.29
		50	6	Temple Gold	1560	1	10.6	4.5	1.0	2921	720	232	2931.6	724.5	233	0.36	0.62	0.43
				TOTAL:	9346	7	31.0	10.3	1.1	3599	923	329	3630	933	330	-	-	-1
				AVERAGE:	1558	1.2	5.2	1.7	0.2	600	154	54.8	605	156	55	0.9	1.1	0.4

AVERAGE DYE SAVINGS: 0.8%

APPENDIX 9.

			RUN IN	011	E L*a*b	*				FMC II			
SEQUENCE	SHADE	PROJECT RUN	SEQUENCE (#)	SOURCE	E_D	SOURC	CE F	S	OURCE D		S	OURCE F	
		(#)		DL	DE	DL	DE	DC	DL	DE	DC	DL	DE
Bump-and-Run/ Dyebath Reuse	Rice	21	1	-0.52	0.52	-0.52	0.52	0.19	-1.32	1.33	0.17	-1.29	1.30
	н	35	4	-1.50	1.62	-1.48	1.58	2.40	-3.74	4.44	1.76	-3.62	4.03
Conventional	Thistle	1	1	3.02	3.14	3.05	3.18	3.43	7.25	8.02	2.32	7.21	7.57
	11	2	2	3.12	3.24	3.15	3.31	2.78	7.53	8.03	1.89	7.51	7.74
Bump-and-Run/ Dyebath Reuse	н	23	3	0.16	0.74	0.17	0.57	1.93	0.44	1.97	1.43	0.45	1.50
**	51	24	4	-0.47	0.51	-0.47	0.50	0.32	-1.08	1.12	0.24	-1.07	1.10
11	ч	25	5	-3.18	3.32	-3.21	3.37	2.61	-6.86	7.34	1.82	-6.82	7.06
u	ч	26	6	1.12	1.50	1.11	1.30	2.05	2.71	3.39	1.22	2.62	2.89
**	н	41	10	-1.99	2.26	-2.00	2.11	4.24	-4.32	6.05	2.76	-4.29	5.10
11	н	42	11	1.82	1,93	1.80	1.87	0.77	4.35	4.42	0.50	4.22	4.25
u	0	43	12	1.50	1.52	1.47	1.50	1.68	3.58	3.92	1.26	3.41	3.63
	u.	44	13	2.03	2.12	2.00	2.11	3.49	4.81	5.94	2.73	4.63	5.37
Bump-and-Run/ Dyebath Reuse	Buckeye	27	7	-0.79	1.21	-0.83	1.29	1.25	-1.64	2.06	1.01	-1.68	1.97
н	н	28	8	0.05	0.35	0.05	0.35	0.47	0.09	0.48	0.40	0.08	0.41
11	0	29	9	1.30	1.62	1.33	1.70	1.42	2.79	3.13	0.95	2.81	2.96
н	11	30	10	0.54	0.78	0.54	0.68	1.21	1.20	1.70	0.89	1.17	1.48
н	н	31	11	-0.96	1.06	-0.97	1.08	0.28	-1.96	1.98	0.19	-1.95	1.96

APPENDIX 9. (cont¹d.)

			RUN IN	C	IE L*a*	b*				FMC II			
SEQUENCE	SHADE	PROJECT RUN	SEQUENCE (#)	SOURC	E D	SOUR	CE F	S	OURCE D			SOURCE F	
554051105		(#)	<u></u>	DL	DE	DL	DE	DC	DL	DE	DC	DL	DE
Bump-and-Run Dyebath Reus		11	1	0.83	0.93	0.81	0.94	1.30	2.13	2.50	1.04	2.08	2.32
		14	4	-0.30	0.46	-0.31	0.47	0.39	-0.74	0.84	0.33	-0.77	0.83
"	н	15	5	0.79	0.79	0.80	0.80	0.27	2.04	2.06	0.22	2.05	2.06
	Pecan	12	2	0.47	0.52	0.46	0.50	0.95	1.16	1.49	0.66	1.12	1.30
н	u	13	3	-0.45	0.53	-0.44	0.50	1.08	-1.09	1.54	0.74	-1.05	1.29
u.	Watercress	16	6	0.49	0.49	0.49	0.49	0.18	1.25	1.26	0.15	1.26	1.27
н	Camel	17	7	-0.55	0.63	-0.53	0.59	1.29	-1.35	1.87	0.99	-1.27	1.61
11	11	18	8	-0.22	0.28	-0.22	0.22	0.61	-0.54	0.81	0.43	-0.52	0.68
		19	9	0.91	1.00	0.89	0.96	2.00	2.26	3.02	1.51	2.17	2.64
	London Fog	20	10	-0.10	0.11	-0.10	0.11	0.16	-0.26	0.31	0.13	-0.26	0.28

APPENDIX 9. (cont'd.)

			RUN IN	C	IE_L*a*	b*				FMC II			
SEQUENCE	SHADE	PROJECT RUN	SEQUENCE	SOURC	E D	SOUR	CE F		SOURCE D			SOURCE F	
		(#)		DL	DE	DL	DE	DC	DL	DE	DC	DL	DE
Bump-and-Run/ Dyebath Reuse/ Hot Pull	Muffin	48	4	0.58	0.68	0.58	0.68	0.87	1.51	1.71	0.67	1.47	1.61
"		49	5	-0.98	1.08	-0.96	1.08	1.39	-2.46	2.83	1.05	-2.38	2.60
п	Temple Gold	50	6	0.47	0.51	0.48	0.53	0.40	1.06	1.14	0.28	1.07	1.11
Bump-and-Run/ Dyebath Reuse	Skyscraper Blue	22	2	0.12	0.19	0.14	0.20	0.52	0.30	0.60	0.46	0.35	0.58
Conventional	Auburn	3	3	-0.49	0.57	-0.50	0.57	0.29	-1.02	1.06	0.26	-1.04	1.07
U		4	4	0.53	0.61	0.54	0.61	0.34	1.13	1.18	0.28	1.14	1.18
п	Bamboo	5	5	0.41	1.05	0.37	1.09	2.70	1.02	2.88	2.02	0.89	2.21
и	н	6	6	-1.52	2.09	-1.44	2.04	4.81	-3.72	6.08	3.54	-3.45	4.94
Conventional	н	7	7	1.36	1.40	1.38	1.44	0.21	3.49	3.50	0.13	3.48	3.49
11	н	8	8	1.27	1.65	1.22	1.59	3.97	3.23	5.12	2.93	3.02	4.21
н	Chamois	9	9	0.76	0.85	0.79	0.89	0.17	1.93	1.44	0.14	1.96	1.96
		10	10	0.06	0.27	0.04	0.27	0.67	0.14	0.69	0.50	0.09	0.51

APPENDIX 9. (cont'd.)

			RUN IN	C	IE L*a*	b*				FMC II			
SEQUENCE	SHADE	PROJECT RUN	SEQUENCE (#)	SOURCI	E D	SOUR	CE F		SOURCE D			SOURCE F	
SEQUENCE	SHADE	(#)	(*)	DL	DE	DL	DE	DC	DL	DE	DC	DL	DE
Bump-and-Run/ Dyebath Reuse	Polar White	32	1	0.44	1.12	0.50	1.14	2.98	1.14	3.19	2.33	1.30	2.67
	17	33	2	2.55	2.59	2.60	2.64	1.55	6.60	6.78	1.27	6.67	6.79
11	н	34	3	-2.39	2.75	-2.52	2.97	1.82	-5.59	6.16	1.48	-6.14	6.32
Bump-and-Run/ Dyebath Reuse/ Hot Pull	Bone	45	1	1.74	1.84	1.72	1.79	2.47	4.45	5.09	1.92	4.35	4.75
н	11	46	2	-1.69	2.15	-1.65	2.19	3.50	-4.21	5.47	2.76	-4.06	4.91
		47	3	-0.04	1.04	-0.06	1.08	1.49	-0.05	1.49	1.26	-0.11	1.26
Bump-and-Run/ Dyebath Reuse	Bran	36	5	0.72	0.90	0.73	0.87	1.69	1.76	2.44	1.40	1.74	2.24
	н	37	6	-1.63	2.23	-1.59	2.01	5.54	-3.82	6.73	4.06	-3.67	5.48
"		38	7	-3.18	3.68	-3.12	3.61	6.75	-7.45	10.05	4.82	-7.17	8.64
н	u	39	8	1.96	3.30	1.85	3,33	8.25	4.90	9.60	5.71	4.54	7.30
	0	40	9	1.23	1.40	1.25	1.39	2.16	3.05	3.74	1.74	3.04	3.51

Appendix 10.

Bump-and-Run Process

1. Load carpet.

2. Fill the beck with water.

3. Add the auxiliaries, to include:

leveling agent

sequesterant

defoamer

ammonia

and run 5-10 minutes.

- 4. Add dyes and run 5-10 minutes.
- 5. Add MSP as pH control agent, and run 5 minutes.
- 6. Raise to boil at 4^oF/minute.
- 7. Hold at boil for 5 minutes, cut off the fan (damper closes automatically), and close the beck door.
- 8. Drift for 25 minutes, and patch.
- 9. If on shade, proceed to Step 10. If not, make the necessary add and repeat Steps 6-9.
- 10. Repeat Steps 6-8 without patching to insure that level is attained.
- 11. Drop the dyebath to the drain, fill the beck with rinse water, and run 5 minutes.
- 12. Pull the carpet, drop the rinse bath, and clean the beck.

13. Return to Step 1.

- 112 -

Appendix 11.

Combined Bump-and-Run/Dyebath Reuse Process

1. Load carpet into rinse water left from previous cycle, and run 3 minutes.

2. Drop the rinse bath to the drain.

- 3. Pump the reused dyebath into the beck from the holding tank.
- 4. Add the auxiliaries, to include:

leveling agent

sequesterant

defoamer

ammonia

and run 5-10 minutes.

- 5. Add dyes and run 5-10 minutes.
- 6. Add MSP as pH control agent, and run 5 minutes.
- 7. Raise to boil at 4^oF/minute.
- Hold at boil for 5 minutes, cut off the fan (damper closes automatically), and close the beck door.
- 9. Drift for 25 minutes, and patch.
- 10. If on shade, proceed to Step 11. If not, make the necessary add and repeat Steps 7-10.
- 11. Repeat Steps 7-9 without patching to insure that level is attained.
- 12. After sampling for analysis, pump the exhausted dyebath to the holding tank, fill the beck with rinse water, and run 5 minutes.
- 13. Pull the carpet from the rinse water, skim loose fiber from the water surface, and clean the lint filter.
- 14. Return to Step 1.

Appendix 12.

Combined Bump-and-Run/Dyebath Reuse/Hot Pull Process

- 1. Add the auxiliaries to the hot dyebath left in the beck from the previous cycle, and run 5 minutes.
- 2. Add dyes and run 5-10 minutes.
- 3. Load carpet, run 5-10 minutes.
- 4. Add MSP, run 5 minutes.
- 5. Raise to boil at 4^oF/minute.
- Hold at boil for 5 minutes, cut off the fan (damper closes automatically), and close the beck door.
- 7. Drift for 25 minutes, and patch.
- If on shade, proceed to Step 9. If not, make the necessary add and repeat Steps 5-8.
- 9. Repeat Steps 5-7 without patching to insure that level is attained.
- 10. Pull the carpet from the hot dyebath $(180^{\circ}-190^{\circ}F)$ with the use of protective gloves, and secure a dyebath sample for analysis.
- 11. Return to Step 1.

APPENDIX 13.

Cost Savings Due to Energy and Water/Sewer Reductions

SEQUENCE	STEAM TOTAL (LBS)	LOAD (LBS)	STEAM PER UNIT WEIGHT (LBS/LB)	COST/ UNIT WEIGHT (¢/LB)	SAVINGS (¢/LB)	WATER/ SEWER (GAL)	WATER PER UNIT WEIGHT (GAL/LB)	COST/ UNIT WEIGHT (¢/LB)	SAVINGS (¢/LB)
CONVENTIONAL	10814	1667	6.49	2.02	**	9149	5.49	0.25	
BUMP-AND-RUN	6677	1677	3.98	1.24	0.78	8442	5.03	0.23	
FIRST BUMP-AND-RUN/ DYEBATH REUSE	_ ^a	1717	_ ^a	_a	_a	5581	3.25	0.15	0.10
SECOND BUMP-AND-RUN/ DYEBATH REUSE	6578	1700	3.87	1.21	0.81	5313	3.13	0.14	0.11
BUMP-AND-RUN/ DYEBATH REUSE/ HOT PULL	6029	1558	3.87	1.21	0.81	888	0.57	0.03	0.22

 ${}^{\mathrm{a}}_{\mathrm{TDI}}$ malfunctioned, and steam data was invalidated.

APPENDIX 14.

Cost Savings Due to Auxiliary Reductions

		AVE	RAGE AUXIL	IARY MASS			LOAD			COST/	UNIT WEIGH	IT			TOTAL
SEQUENCE	LEVEL. (LBS)	SEQUEST. (LBS)	DEFOAM. (LBS)	AMMONIA (LBS)	MSP (LBS)	ACETIC (LBS)	(LBS)	LEVEL. (¢/LB)	SEQUEST. (¢/LB)	DEFOAM. (¢/LB)	AMMONIA (ç/LB)	MSP (¢/LB)	ACETIC (¢/LB)	TOTAL (¢/LB)	SAVINGS (¢/LB)
CONVENTIONAL	16.8	33.6	5.9	23.8	23.8	1.5	1667	0.59	0.54	0.13	0.10	0.46	0.01	1.83	-
BUMP-AND-RUN	16.8	33.6	5.4	22.1	22.1	0.0	1667	0.59	0.54	0.12	0.09	0.42	0.00	1.76	-
FIRST BUMP-AND-RUN/ DYEBATH REUSE	6.7	6.7	3.5	18.6	9.6	0.4	1717	0.23	0.11	0.07	0.08	0.18	0.00	0.67	1.16
SECOND BUMP-AND-RUN/ DYEBATH REUSE	7.6	6.3	3.3	16.9	8.9	0.0	1700	0.26	0.10	0.07	0.07	0.17	0.00	0.67	1.16
BUMP-AND-RUN/ DYEBATH REUSE/ HOT PULL	6.3	6.3	3.3	17.3	9.5	0.0	1558	0.24	0.11	0.08	0.08	0.20	0.00	0.71	1.12

1

APPENDIX 15.

	RECY	CLED DYES		LOAD	V	ALUE/UNIT	WEIGHT	
SEQUENCE	YELLOW (g)	RED (g)	BLUE (g)	(LBS)	YELLOW (¢/LB)	RED (¢/LB)	BLUE (¢/LB)	TOTAL (¢/LB)
FIRST BUMP-AND-RUN/ DYEBATH REUSE	128.8	110.6	47.7	1717	0.14	0.10	0.09	0.33
SECOND BUMP-AND-RUN/ DYEBATH REUSE	45.3	26.1	9.1	1700	0.05	0.02	0.02	0.09
BUMP-AND-RUN/ DYEBATH REUSE/ · HOT PULL	5.2	1.7	0.2	1558	0.01	0.00	0.00	0.01

Cost Savings Due to Dye Reductions

- 117 -

APPENDIX 16.

Dissemination of Information Efforts to Date

- 1. F. L. Cook and M. Moore, "In-Plant Experiences with Dyebath Reuse", Clemson University Wastewater Conference, Hilton Head, S. C., January, 1980.
- F. L. Cook, "In-Plant Implementation of Dyebath Reuse in Hosiery and Carpet Operations", AATCC South Central Section Meeting, Chattanooga, Tenn., February, 1980
- 3. W. C. Tincher "In-Plant Optimization of Carpet Beck Dyeing", Invited Seminar, N. C. State University, College of Textiles, January, 1980.
- 4. W. C. Tincher "In-Plant Optimization of Carpet Beck Dyeing", Joint Georgia Tech/Clemson University Symposium entitled "Energy Conservation in the Textile Industry", Atlanta, GA., February, 1980.

ŕ