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SUMMARY 

The volume of health care data is expected to grow faster than any other industry. 

This creates a demand for the development of rigorous analytics and machine learning 

methods for applications to large health data sets.  These data sets, which contain 

personally identifiable information, come with privacy protections that place limitations 

on data visibility and its release. In addition, patient data often contains complex 

relationships such as non-linear relationships and heterogeneity. These characteristics can 

cause unique complications for analysis of health care data and restrict the use of out-of-

the-box solutions.  Notably, healthcare research has incredibly high stakes, it can be the 

difference between life and death and have a major impact on an individual’s quality of 

life and medical treatment.  For these reasons, the development of rigorous solutions are 

that much more critical.   This thesis focuses on the application of analytics and machine 

learning to solve applied research problems based on healthcare data.   

Chapter 1 is an introduction to the thesis. It presents the research objectives and 

contributions for each research study.  This chapter also discusses the value of the methods 

used in each study and the benefits of using administrative claims data. 

In chapter 2, we discuss the study that determined the impact of a new CDC 

recommendation on contraception medical claims for women with high-risk chronic health 

conditions.  The study included Medicaid-enrolled women two years prior to the release of 

the recommendations and two years following the release for 14 states.  We focused on 

two outcome measures: (1) overall contraception use and (2) the use of CDC recommended 

contraception (i.e. those of the highest efficacy).  We evaluated each outcome for the entire 
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study population and by health condition. The ratio of the after-recommendation rate over 

the before-recommendation rate was used to determine statistical significance in the uptake 

of the new recommendations.  The results found that there had been an increase in the 

overall use of contraception methods among women with these health conditions and for 

each condition individually.  However, the results also showed that the use of the highest-

efficacy methods increased overall but not for every condition. The chapter concludes with 

suggestions for further increasing the use of the highest-efficacy methods within this 

population.     

In chapter 3, we assess the health and wellness outcomes of infants born to adolescent 

mothers.  Our nationwide study assesses the impact of adolescent pregnancy on the health 

and wellness of infants within their first year of life.  Each infant in the study group (infants 

born to adolescent mothers) is matched with the control group (infants born to adult 

mothers) based on their mother’s demographics.  The outcomes assessed are: low birth 

weight, substance exposure, foster care, health status, mortality, emergency department 

visits, and wellness visits.  The results suggested differences between the two groups, 

especially for low birth weight and emergency departments visits.  However, the 

differences are not as drastic as previous research has found -- suggesting a promising 

result that the gap between these two groups may be closing.  The chapter also includes 

recommendations on how to support adolescent mothers.   

   In chapter 4, we apply a statistical learning method to a difference-in-differences 

(DID) study setting.  Commonly used DID methods rely on parametric statistical models 

that make strong assumptions about the unknown underlying functional form of the data.  

In this study, we extend existing statistical machine learning methods to target a DID 
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parameter, defined nonparametrically, while considering a larger nonparametric model 

space that makes fewer assumptions. We develop a general framework for DID designs 

that allow researchers to estimate causal or statistical effect quantities using machine 

learning while providing statistical inference.  We demonstrate its performance through a 

simulation in which we compare it to more traditional methods.  The study’s motivating 

example estimates the effects of episode-based bundle payment on perinatal spending.  The 

chapter concludes with limitations of the proposed estimator and suggestions for future 

work.  

 Chapter 5 applies machine learning to the problem of edge weight estimation for 

social networks.  Social network analysis is used to visualize, quantify, and assess 

relationships between two entities.  Within healthcare, social networks can be helpful in a 

variety of settings to quantify the impact of a relationship on healthcare outcomes, 

interventions, or physician treatment decisions.  Algorithms have been used to predict 

information on social networks, such as edge existence, or similarity measures, such as 

common neighbors.  However, little research focuses on weighted graphs and even less 

work on the estimation of their edge weights.  Accurate weight estimation can serve as a 

data quality tool to check if the weights in the data are correct and where we would expect 

new stronger (or weaker) relationships to occur next.  This study evaluates the performance 

of three estimators, including an ensemble machine learning approach, to predict the edge 

weights of a weighted social network.  We use a faculty hiring example to compare the 

three methods’ accuracy and finish with suggestions for future work.     

 Chapter 6 is the conclusion of the thesis.  It includes a discussion of the overall 

impact of the research with respect to health care policy and developed techniques for 
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administrative claims data.  Future work is proposed along with additional health care 

applications.  
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CHAPTER 1. INTRODUCTION 

The volume of healthcare data is expected to continue growing faster than any other 

industry [1].   This creates a demand for the development of rigorous analytics and machine 

learning methods for applications to large health data sets These data sets, which contain 

personally identifiable information, come with privacy protections that place limitations 

on data visibility and its release. In addition, patient data often contains complex 

relationships such as non-linear relationships and heterogeneity. These characteristics can 

cause unique complications for analysis of health care data and restrict the use of out-of-

the-box solutions.  Notably, healthcare research has incredibly high stakes, it can be the 

difference between life and death and have a major impact on an individual’s quality of 

life and medical treatment.  For these reasons, the development of rigorous solutions is that 

much more critical.   This thesis focuses on the application of analytics and machine 

learning to solve applied research problems based on healthcare data.   

Section I, which includes Chapters 2 and 3 of the thesis, concentrates on health 

analytics with applications to child and maternal health.  The data source for this section is 

Medicaid claims data from the Centers for Medicare and Medicaid Services (CMS).  For 

our analysis we utilized three tables: Personal Summary (PS), Inpatient (IP), and Other 

Therapy (OT).  The PS table contains the demographic and administrative information 

about the Medicaid enrollee.  It has 105 data elements including items such as date of birth 

(DOB), gender, ethnicity/race, number of months the enrollee was insured in the current 

year, residential zip code, state of residency, and Medicaid eligibility.  The Medicaid 

eligibility element identifies the reason the enrollee qualifies for public insurance.  The 
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personal table is unique in that it is the only table that does not consist of administrative 

claims.  The IP table includes all inpatient claims.  An inpatient claim is one in which the 

Medicaid enrollee was admitted into the hospital or care facility.  It contains 55 data 

elements and information about the stay within the facility.  Examples of IP data elements 

we used in CHAPTER 3 are admission date, discharge date, diagnosis codes and procedural 

codes.  Diagnosis codes specify the condition that is being treated in the claim and the 

procedural codes identify the physical action that is performed by the clinician.  For 

example, the diagnosis code would state “influenza vaccine” and the procedural code 

would be for administration of the shot.  The OT table includes all outpatient claims, such 

as doctor visits, physical therapy services etc.  It contains 50 data elements and information 

very similar to that of the IP table.  The main difference between IP and OT is that OT 

contains less elements for diagnosis and procedure codes.  The CMS data is a rich data 

source for a variety of reasons.  First, the data covers a non-trivial percentage of Americans 

on one insurance program; enabling us to get a reasonable snapshot of the American 

population.  For example, recent enrollments numbers from CMS show as many as one in 

five American are enrolled in Medicaid [2].  Second, the data allows for longitudinal 

studies, which can be valuable when evaluating the impact of a policy on physician 

behavior or health care outcomes.  Third, the data is provided in a centralized database and 

contains demographic information of the enrollees, such as age, gender, race, and state.  

The demographic information permits for analysis of health disparities across various 

subpopulations.   

  Chapter 2 evaluates contraception claims for women on Medicaid with chronic 

health conditions before and after the release of new contraceptive guidelines by the 



20 

Centers for Disease Control and Prevention (CDC).  The purpose of the guidelines, titled 

the US Medical Eligibility Criteria for Contraceptive Use (MEC), is to assist health care 

providers in making evidence-based decisions on contraception.  In the event of an 

unplanned pregnancy, the MEC identified 20 health conditions that posed a level of 

unacceptable risk to the health of the mother and/or fetus.  Therefore, it recommended that 

these women use contraceptive methods with the highest level of efficacy.  Over 13 million 

reproductive-aged women are included in the analysis with about 4% of the population 

having one of the health conditions.  Women were identified as having one of the 22 

conditions if there was a minimum of three Medicaid claims for that condition within a 

two-year period.  A one-sided Poisson test on the contraception rates was used to determine 

if there was an increase in (1) overall contraception use and (2) the use of CDC 

recommended contraception (i.e. those of the highest efficacy).  The results provide 

information on the impact of aggressive publication of a new federal health care policy on 

physician behavior, by evaluating if the dissemination methods used for the CDC were 

effective.  

 Chapter 3 assesses the health and wellness outcomes of infants born to adolescent 

mothers.  Seven outcomes are evaluated: foster care, health risk level, infant mortality, low 

birth weight, substance dependency, number of emergency department (ED) visits and 

number of wellness visits.  Over 65,000 infants, born in the year 2011, are included in the 

study.  The chapter also includes the development of a sequential process for implementing 

the casual inference method of matching on medical claims data.  The process involves a 

data pipeline that iteratively pairs infants to their mothers and then matches each adolescent 

mother to an adult mother based on demographic information.  Outcomes of the infants born 
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to adolescent mothers are compared to those of adult mothers and evaluated using a 

proportion test for the rate outcomes (foster care, health risk level, infant mortality, low 

birth weight) and a two-sided Poisson test for the count outcomes (number of ED visits and 

number of wellness visits).  In addition to finding the impact of adolescent pregnancy on 

infants, the study also evaluates differences by ethnicity/race and urbanicity – identifying 

additional health disparities.  The chapter contains recommendations to address these 

disparities and ensure mothers are better informed on the healthcare needs of their infants.  

Section II, which includes Chapters 4 and 5 of the thesis, focuses on machine 

learning applications to research areas that originated in disciplines outside of industrial 

engineering and statistics.  These include casual inference, which began in economics, and 

social networks, which commonly found in computer science.  This section of the thesis 

demonstrates how ensemble machine learning and statistical methods can be used in these 

research areas with applications to important health care problems.        

Chapter 4’s motivating example is the impact of episode-based payments (EBP) on 

perinatal costs in Arkansas [3].  Under this payment policy, physicians are rewarded for 

remaining below a pre-determined spending cap and penalized for spending above it.  To 

establish causality, the costs in Arkansas are compared to those of nearby southern states 

using a difference-in-differences (DID) study design.  DID takes the difference of the 

difference between the intervention and comparison group pre-intervention and the 

difference between of the two groups post-intervention.  A popular parameter, the average 

treatment effect among the treated (ATT), is used to determine the average causal impact 

on a randomly selected unit within the intervention group.  Parametric algorithms, such as 

regression, are traditionally used to predict the outcome for the ATT.  However, these 
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algorithms are limited by the outcome being correctly specified, which is rarely the case in 

practice.  Our proposed super learner algorithm does not assume a functional form of the 

outcome.  The super algorithm is therefore more flexible and less sensible to bias due to 

misspecification.  In this study we determine if by using machine learning to relax these 

strict parametric assumptions to improve estimation of the ATT.  We develop a simulation 

study to evaluate each algorithm’s performance.  The simulation is based on commercial 

medical claims data from IBM Truven Marketscan.  The variables used in the simulation 

study are generated based on the parameters derived from perinatal claims for women in 

Arkansas and comparison states.  The performance of super learner is evaluated at three 

different effect sizes (-$250, -$400, and -$750) and two different sample sizes (2,000 and 

5,000).  The chapter discusses the implications of the results and proposes future work.  

 Chapter 6 focuses on the application of machine learning for the estimation of the 

edge weight for social networks.  Social network analysis can be used to visualize, 

quantify, and assess relationships between two entities.  The edge weights of social 

networks represent the strength of the social interaction.  Social networks can be a 

valuable tool in health care by assessing how social interactions can impact health 

outcomes through social influence, physician behavior, etc.  The estimator’s performance 

for the edge weights is evaluated for three algorithms: generalized linear model (glm), 

Poisson mixture model and super learner.  The predictors for estimation are metrics of the 

nodes, such as common neighbors or community membership, as well as a similarity 

measure for the metadata (covariates) of the node.  We test each algorithm using a faculty 

hiring network.  In the network, each node is an American institution. An edge exists 

between the two nodes i and j if an individual who received their PhD from node i is 
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hired as a professor by node j.  The edge weight is how many individuals have been hired 

from node i to node j.  Health care applications as well as future work is discussed in the 

conclusion of this chapter.   
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CHAPTER 2. EVALUATING CONTRACEPTION CLAIMS FOR 

COMPLIANCE TO CDC GUIDELINES  

2.1 Introduction 

 In 2010, the Centers for Disease Control and Prevention (CDC) released the 

Medical Eligibility Criteria for Contraceptive Use (MEC) to guide providers to evidence-

based medical decision making regarding contraceptive provision. The MEC highlighted 

20 medical conditions that present an increased risk for adverse outcomes during 

pregnancy, stating that long-acting, highly-effective contraceptive methods may be the best 

choice for women with these medical conditions [4].  These contraceptive methods include 

reversible options, like intrauterine devices (IUDs) and implants, and permanent options, 

like sterilization.  Sole use of behavioral-based methods, like condoms, were not 

recommended due to their higher typical-use failure rates.  

The CDC disseminated MEC guidelines through mobile applications, publications 

and presentations [5].  Nevertheless, a recent survey identified that providers’ knowledge 

of the MEC is low [6].  Some studies exploring individual medical conditions have 

identified low levels of highly-effective contraceptive use, high levels of unintended 

pregnancy, and provider-imposed limitations to effective contraceptive options for women 

with these conditions [7-10].   

The MEC guidelines may be particularly relevant for providers who serve women of 

low income and those enrolled in Medicaid.  These women are more likely to experience 

unintended pregnancies [11] and medical comorbidities [12].  Furthermore, in 2016 over 
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20% of reproductive- aged women in the US were insured by Medicaid [13] and Medicaid 

covered just under half of all births in 2010 [14].  However, patterns regarding 

contraceptive provision for Medicaid-insured women with high-risk medical conditions 

before and after the release of the US MEC are unknown.   

The objective of this paper is to investigate contraceptive provision for women 

enrolled in Medicaid with one or more of the 20 highlighted medical conditions.  We 

quantified the provision of any family planning management for these women and 

determined if the use of the highly effective methods had increased before and after the 

release of the MEC.   

2.2 Methods 

2.2.1 Data Description 

We used Medicaid Analytical Extract (MAX) medical claims acquired from the 

Centers of Medicare and Medicaid Services (CMS) for the years 2009-2012.  The MAX 

dataset consists of individual-level claims data for all Medicaid-enrolled beneficiaries.  We 

examined enrollees from 14 states, accounting for over 50% of all Medicaid enrollees in 

the United States.  The 14 states included 10 southeast states (Alabama, Arkansas, Florida, 

Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Texas) 

as well as states from different regions of the country (California, Minnesota, New York, 

and Pennsylvania).  All data was derived from the MAX files and meet a minimum cell 

size of 11 patients, according to the Data Use Agreement with CMS.  

2.2.2 Identifying the Study Population 
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The overall population consists of all reproductive-aged women enrolled in 

Medicaid in one of the 14 states in the years 2008, 2009, 2011, and 2012.  We investigated 

two time periods: the first time-period spans two years prior to the MEC release (2008 and 

2009) and the second time period spans two years after the MEC release (2011 and 2012).  

The study population is a subset of the overall population.  It includes reproductive-aged 

women with one or more of the 20 conditions listed in the MEC (Table 1).  The study 

population was stratified by: 

• Age group of the women (15-24; 25-34; 35-44) [15] 

• Medical condition  

• State 

We obtained the age of each woman using the date of birth in the Personal Summary 

(PS) table of the MAX data. A woman was assigned to an age group based on her age at 

the beginning of each time period (years 2008 and 2011).  

Medical condition is defined as one of the 20 conditions identified by the MEC.  A 

woman was identified as having a specific non-surgical condition if she had at least three 

Medicaid claims for that specific condition recorded on three different days within a time 

period (2008-2009 or 2011-2012) [16].  The Medicaid claim could be a claim from the 

Other Therapy (OT) table or the Inpatient (IP) table.  International Classification of 

Disease-Ninth Revision (ICD-9) diagnosis codes were used to identify non-surgical 

conditions.  Different approaches were needed to identify women with surgical conditions.  

The two surgical conditions identified by the MEC were bariatric surgery and solid organ 

transplant.  These women were identified using the corresponding surgery condition 
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procedure codes in the IP table of the MAX data.  We screened for the procedure codes in 

the IP claims that occurred within the two time periods, and a woman was assigned to the 

time period in which the surgery occurred.  When identifying patients, we considered each 

condition separately to account for comorbidities.  See Table 1 for the ICD-9 and CPT 

codes used to identify each of the medical conditions.     

We identified a woman's state by the state listed on her claim.  This ensured that a 

woman was counted in each state in which she received service.   

2.2.3 Outcome Analysis 

We considered two outcome measures as described below. We documented the 

number of women for both outcome measures for each time period and medical condition.  

2.2.3.1 Outcome 1: Family Planning Management (FPM) 

We defined a family planning management (FPM) claim as one containing a 

diagnosis code that began with “V25”, the overarching code for “Encounter for 

contraceptive management” [17].  The FPM measure includes many forms of contraceptive 

claims ranging from discussion of contraceptive options with the clinician to extensive 

procedures such as IUDs and sterilization.  We aggregated the number of women with V25 

claims for each time period and each condition, with comparisons between the study 

population and the overall population.  
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2.2.3.2 Outcome 2: Highest-efficacy Methods (HEM) 

The highest-efficacy methods (HEM) outcome included contraceptive claims for 

IUDs, contraceptive implants, and sterilizations. The MEC recommends HEM methods for 

women with high-risk conditions.  We used the diagnosis codes for IUD insertion (V25.1), 

IUD surveillance (V25.42), and implant surveillance (V25.43) and searched in both IP and 

OT claims.  Due to the nature of the procedure, we searched for sterilizations (V25.2) in 

IP claims only.   

2.2.3.3 Rate Analysis 

 FPM and HEM utilization rates had increased nationally in the years of the study 

[18].  Therefore, we used utilization rates of the overall population as a scaling factor for 

the study population.  The scaling factor was applied to the study population utilization 

rate to accurately determine the change in rates before and after the MEC.   

A one-sided exact Poisson test was used to determine if there was a statistically 

significant increase in contraceptive provision for the study population. The alternative 

hypothesis was defined as the before-MEC rate was smaller than the after-MEC rate.  A 

ratio greater than 1 indicates an increase in provision; a ratio of 1.1 would indicate a 10% 

increase in the rate. 

The test statistic comparing before-MEC and after-MEC outcome measures is 

scaled by the rates of each time period (2008-2009 and 2011-2012) by the corresponding 

outcome measure of the overall population.  

Setting up the problem, we define: 
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𝐶𝑖
𝑘: Total number of women in overall population in phase 𝑖 for outcome 𝑘 

𝐶𝑖 = ∑ 𝐶𝑖
𝑘

∀𝑘

= Total overall population in phase 𝑖 

𝜋𝑖
𝑘 =  rate of outcome 𝑘 in phase i for overall population =

𝐶𝑖
𝑘

𝐶𝑖
 

𝑀𝑖
𝑘: Total number of women in study population in phase 𝑖 for outcome 𝑘 

𝑀𝑖 = ∑ 𝑀𝑖
𝑘

∀𝑘

= Total study population in phas𝑒 𝑖 

 

Given that 𝑀𝑖 is a subset of the overall population, the expected number of women in the 

study population with outcome 𝑘 is 𝐸[𝑀𝑖
𝑘] = 𝜋𝑖

𝑘 ∗ 𝑀𝑖
𝑘 .  Furthermore, let 

𝜇𝑖𝑗
𝑘  :  scaled proportion ofthe study population for time period 𝑖 and medical condition 𝑗  

where: time period  𝑖 ∈ (0,1), medical condition 𝑗 ∈ (1,2, … 20) and outcome 𝑘 ∈

(0,1). 

 

We determine the rate for each time-period: 

Outcome 1: FPM ratio which includes counseling, insertions, and surveillance for 

contraceptive methods. 

𝜇𝑖𝑗
1  

=
𝑠𝑐𝑎𝑙𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑚𝑒𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑢𝑑𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐹𝑃𝑀 𝑐𝑙𝑎𝑖𝑚

𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑢𝑑𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
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=

𝑀𝑖
1 − 𝐸[𝑀𝑖

1]

𝑀𝑖
 

 

Outcome 2: HEM ratio which includes (1) insertion and surveillance of intrauterine devices 

(IUD) and (2) implants.     

𝜇𝑖𝑗
2  

=
𝑠𝑐𝑎𝑙𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑚𝑒𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑢𝑑𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐻𝐸𝑀 𝑐𝑙𝑎𝑖𝑚

𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑢𝑑𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

 

 
=

𝑀𝑖
2 − 𝐸[𝑀𝑖

2]

𝑀𝑖
 

 

 

The ratio of rates in time period 0 and time period 1 were assessed using a one-sided exact 

Poisson test.  

𝐻0:
(𝜇1𝑗

𝑘 )

(𝜇0𝑗
𝑘 )

= 1 

𝐻1:
(𝜇1𝑗

𝑘 )

(𝜇0𝑗
𝑘 )

> 1 

 

 The test procedure was applied to all conditions together and each individual 

condition separately.   For the condition-level analysis, we corrected for the testing of 

multiple outcomes simultaneously using Bonferroni’s correction. 
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2.3 Results  

2.3.1 Study Population  

Table 2 shows the number of women covered by Medicaid in the selected 14 states.  

The study included more than 12 million women in both time periods.  Most reproductive-

aged women enrolled in Medicaid did not have claims for these conditions; less than five 

percent were identified as having one of the 20 high-risk conditions. Though low, there 

was an increase from 3.5% in the before-MEC time period to 3.9% in the after-MEC time 

period.   More than half of the women with high-risk conditions were older, with 53.5% 

and 66.9% (before and after MEC time period, respectively) in the 35-44 age group (Figure 

1).  Four conditions made up 83% of the study population (Figure 2).  The most common 

conditions were hypertension and diabetes, followed by epilepsy and HIV.  Most of the 

study population came from the states in the southeast -- 60% of the before-MEC study 

population and 57% of the after-MEC study population.  For summary for study population 

by count and percentage see Table 2. 
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Figure 1: Age Count of Women with Chronic Medical Condition by Time Period 
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Figure 2: Medical Conditions by Time Period 
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2.3.2 Outcome 1: FPM - Aggregate and Condition Level Analysis 

Family planning management (FPM) provision is detailed in Table 3 for the overall 

population, the study population, and individual medical conditions. It provides the number 

of women with a FPM claim for each condition, the percentage rates of FPM [defined as 

the ratios of the number of women (values from Table 3) over the total number of women 

for the corresponding condition and time period (values from Table 2)], and the results of 

a one-sided test for significance.  We considered 19 conditions for the FPM outcome; 

schistosomiasis condition was excluded because of low counts (cell size smaller than 11 

patients cannot be reported).    

There was an increase in FPM provision from 17.9% to 18.2% for all reproductive-

aged women in Medicaid.  We saw a comparable increase for women in the study 

population from 16.7% to 17.8%.  There was variability of FPM by medical condition in 

both time periods, ranging from 4.4% for those with liver cancer to 46.6% for those with 

peripartum cardiomyopathy.  The conditions with the highest rates of FPM provision in 

both time periods were peripartum cardiomyopathy, sickle cell disease (SCD), and 

thrombogenic heart disease (Figure 3).  

Before and after the MEC release, 12 of the 19 conditions showed a statistically 

significant increase at the 1% significance level; the Bonferroni adjusted p-value threshold 

was 0.0005. After accounting for the increase at the overall population level, five 

conditions showed a greater than 30% increase in FPM including solid organ transplant, 

endometrial and ovarian cancer, liver cancer, bariatric surgery and HIV (Table 3).  The 7 

conditions that did not show a significant increase in FPM were epilepsy, GTD, peripartum 
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cardiomyopathy, sickle cell disease, thrombogenic heart disease, tuberculosis, and valvular 

heart disease (Table 3).   

 

 

Figure 3: Percentage of Women with a Family Planning Management (FPM) Claim 

by Medical Condition 
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the 20 medical conditions. GTD, liver cancer, schistosomiasis, and solid organ transplant 

were excluded due to counts below 11. 

There was an increase in HEM provision from 3.5% to 5.0% for all reproductive-

aged women in Medicaid.  We saw a comparable increase for women in the study 

population from 4.1% to 5.7%.  There was variability of HEM by medical condition in 

both time periods, ranging from <1% for those with endometrial or ovarian cancer to 

greater than 25% for those with peripartum cardiomyopathy (Figure 4).  After accounting 

for the increase at the overall population level, all of the 16 conditions showed a statistically 

significant increase at the 1% significance level.  The Bonferroni adjusted p-value 

threshold was 0.0006.   Two conditions saw a doubling of HEM provision between the 

time points: bariatric surgery and endometrial and ovarian cancer.   
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Figure 4: Percentage of Women with a Highest-Efficacy Method (HEM) Claim by 

Medical Condition 
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for HEM. The increase in provision of highly effective contraceptive methods mirrors the 

trends that were happening nationally.  According to an analysis from the National Survey 

of Family Growth, the use of IUDs and contraceptive implants among reproductive-aged 

American women increased from 6% in 2008 to 12% in 2012 [18] .  While our study 

accounted for the increase seen in the overall population and documented an increase 

across medical conditions, the HEM rates for women with one or more of the 20 conditions 

were below the national average.  Champaloux and colleagues had a similar finding in their 

review of claims of women with medical conditions from a privately insured population 

[19].   

The uptake of the highest-efficacy methods is particularly important for women with 

the identified medical conditions because pregnancy can lead to severe health outcomes 

for this population.  The physiologic changes of pregnancy affect nearly every organ 

system in the body.  Normal pregnancy is a state of anemia, increased oxygen demand and 

cardiac output, hypercoaguability, immune compromise and insulin resistance, to name a 

few.  These necessary changes support gestation and are generally well tolerated by healthy 

women. However, women with underlying medical conditions may experience 

amplification of their condition or predisposition to complications and morbidities, 

including maternal death [20].  The maternal mortality rate in the US is the worst of the 

developed world and climbing [21].  A recent review of maternal mortalities from nine 

states identifies hemorrhage, cardiovascular and coronary conditions, infection and 

cardiomyopathy as the most common causes of maternal mortality.  The review identified 

both racial and age-related differences underlying the cause of mortality. It also estimates 

that 63.2% of these deaths are preventable [22].  One step proximal to preventing maternal 
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mortality is to prevent maternal morbidity.  As a prevention strategy for serious morbidity, 

a woman with a high-risk medical condition should have ready access to the most effective 

methods of contraception until she desires pregnancy.  Then when wanting to conceive, a 

woman should have access to pre-conceptual care to optimize her health, medication 

management and transition her to and through pregnancy.  This strategy will help women 

with high-risk conditions to attain their reproductive goals while decreasing their health 

risk [23].   

This study found that FPM and HEM provisions varied by medical condition.  For 

example, we found that cancer conditions (breast, endometrial and ovarian) showed lower 

rates for FPM and HEM, relative to other medical conditions. One explanation is nature of 

these conditions and the methods used to treat them.  For example, hysterectomies or 

bilateral oophorectomies are common forms of treatment for endometrial and ovarian 

cancer.  After such procedures, contraception is no longer needed.  In addition, the nature 

of these cancers can limit women’s contraceptive options.  IUDs are contraindicated in 

women with endometrial cancer and hormonal IUDs and implants for women with breast 

cancer [4].   On the other hand, peripartum cardiomyopathy had the highest rates for FPM 

and HEM. One possible reason for this is condition is associated with very high morbidity 

and mortality as high as 19% with a subsequent pregnancy [24]. Second, by definition, 

peripartum cardiomyopathy is diagnosed the last month of pregnancy or first few months 

after delivery.  The peripartum timing of the diagnosis may create the opportunity for an 

OB/GYN provider to facilitate a conversation on the importance of contraception due to 

the high-risk of a subsequent pregnancy. However, the medical conditions impacting the 

most women fall in between these extremes.  Hypertension, diabetes, epilepsy and HIV 
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affected more than 430,000 women in our study.  These conditions put them at high-risk 

for adverse health outcomes with pregnancy. Therefore, additional focus should be placed 

on these conditions for highest impact.        

There are several limitations to consider in this study. The CMS data restricts us to 

diagnosis and procedure coding by the clinician during the visit.  Therefore, we may not 

have captured women using methods that did not require a clinician or for un-coded 

services.  Similarly, we were only able to reliably capture sterilization procedures that 

occurred within the years of the study.  Hence, there are women who use tubal sterilization 

and partner vasectomy as a form of birth control that were not captured.  For these reasons, 

we believe our findings to be underestimates.  Because claims data do not include sexual 

or relationship history, we were unable to ascertain whether a woman was at risk for 

pregnancy by being sexually active with a male partner, nor were we able to assess if her 

medical condition precluded sexual activity or fertility. Medicaid eligibility criteria for 

women varies by state, and women who become pregnant may only be eligible for a limited 

time.  For the two very common conditions, hypertension and diabetes, the MEC guidelines 

apply to more severe cases; our analysis was more inclusive.  Finally, statistical analysis 

shows an association but cannot directly address causality or reasons for the change.   

Overall, this study found a limited, but encouraging, change in clinical practice 

shortly after release of the MEC guidelines. The relatively low rate of family planning and 

highly effective method provision we found suggests that access to highly effective 

contraceptives was a barrier. Access issues for contraception can arise from financial and 

systems issues as well as from provider bias [25]; these may also present opportunities for 

ongoing and next steps for full implementation of the MEC guidelines. 
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Historically, access to contraception methods have been limited, especially for 

women with low income [26]. Fortunately, there have been several efforts to lessen 

financial and system barriers to accessing contraception since release of the MEC.  After 

the mandate for contraceptive coverage from the Affordable Care Act went into effect, the 

percentage of women using IUDs and implants increased, while the usage of oral 

contraception remained flat among sexually active women [27, 28] .  The 6|18 Initiative by 

the CDC and its partners outline four interventions for reducing financial and logistic 

barriers for public and private payers and providers.  For women with no insurance 

coverage, family planning services can be obtained from the Federal Title X grant [29].  

These multi-level and collaborative approaches to reducing barriers may serve to increase 

the uptake of the MEC guidelines [30].   

In addition to these interventions, parallel programs have been working to ensure 

provider knowledge and application of the MEC in practice.  This has included 

endorsement and implementation support of the MEC by several medical associations 

including the American College of Obstetricians and Gynecologists, the American 

Academy of Family Physicians and the American Academy of Pediatricians [31-33].  

Focusing future efforts on subspecialty providers may help ensure that women with high-

risk medical conditions receive evidence-based care and referrals to provision, as needed.  

Additionally, to increase demand, grassroots and community-based interventions could be 

explored to educate women with these conditions about the risks of unintended pregnancy 

and the contraceptive options uniquely suited for them.  
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Table 1: ICD-9 Codes for 20 High Risk Medical Conditions Identified by the MEC   

  

#  Condition  ICD-9 Code  

1  breast cancer  174  

2  diabetes  250  

3  endometrial & ovarian cancer  179, 182, 183  

4  epilepsy  345  

5  History of bariatric surgery (last 2 years) a  V45.86  

6  HIV  042  

7  hypertension  401-405  

8  ischemic heart  410, 412-414  

9  malignant gestational trophoblastic disease  181  

10  
malignant liver tumors and hepatocellular 

carcinoma of the liver  
155  

11  peripartum cardiomyopathy  674.5  

12  schistosomiasis with fibrosis of the liver  120.9  

13  severe cirrhosis  571  

14  sickle cell  282.6  

15  solid organ transplant in the last 2 yearsa
  V42.0, V42.1, V42.6, V42.7, V42.83, V42.9  

16  stroke  430-434, 436-438  

17  systemic lupus erythematosus  710.0  

18  thrombogenic mutations  286.  

19  tuberculosis  010-018  

20  valvular heart disease  424  
a   Current Procedural Terminology (CPT) Code; used to identify surgical medical 

conditions (Source: www.icd9data.com)  
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Table 2: Reproductive-aged Women enrolled in Medicaid by Age, State, and 

Condition 
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Table 3: Family Planning Management: Number of Reproductive-aged Women 

with Medical Conditions Enrolled in Medicaid and Statistics for Poisson Test Ratio 

 

  

Family Planning Management (FPM)
a  Estimate

b
p-value

c
Lower Bound CI

d

Overall Population 2,221,325 (17.9%) 2,477,023 (18.2%)

Study Population 87,115 (16.7%) 112,851    (17.8%) 1.06 <0.001 1.05

Medical Conditions

Bariatric Surgery 650 (12.6%) 1265 (18.8%) 1.49 <0.001 1.42

Breast Cancer 822 (7.4%) 1117 (8.6%) 1.16 <0.001 1.13

Diabetes 26915 (16.9%) 33928 (17.8%) 1.05 <0.001 1.04

Endometrial & Ovarian Cancer 105 (4.6%) 187 (7.3%) 1.58 <0.001 1.48

Epilepsy 8104 (18.8%) 10469 (18.8%) 1.00 0.55 0.98

Malignant Gestational Trophoblastic Disease 32 (27.1%) 22 (17.9%) 0.66 1 0.49

HIV 2816 (11.8%) 3549 (15.5%) 1.31 <0.001 1.28

Hypertension 35681 (17.2%) 47465 (18.3%) 1.07 <0.001 1.06

Ischemic Heart Disease 1049 (8.5%) 1331 (9.8%) 1.15 <0.001 1.12

Liver Cancer 12 (4.4%) 23 (6.7%) 1.52 <0.001 1.25

Lupus 2731 (17.3%) 3830 (19.1%) 1.10 <0.001 1.07

Peripartum Cardiomyopathy 1312 (46.6%) 1355 (44.8%) 0.96 0.95 0.9

Severe Cirrhosis 769 (11.6%) 1275 (13.5%) 1.16 <0.001 1.12

Sickle Cell Disease 1996 (23.8%) 2337 (24.4%) 1.03 0.02 1.00

Solid Organ Transplant 36 (6.1%) 74 (12.8%) 2.14 <0.001 1.86

Stroke 922 (11.4%) 1224 (12.7%) 1.12 <0.001 1.08

Thrombogenic Heart Disease 1200 (24.3%) 1335 (23.6%) 0.97 0.94 0.93

Tuberculosis 564 (19.2%) 481 (19.5%) 1.02 0.24 0.96

Valvular Heart Disease 1399 (18.3%) 1584 (18.4%) 1.00 0.52 0.96

  FPM claim includes all claims with an ICD-9 code that begins with "V25"

d  One-sided 99% Confidence Interval 

Bolded conditions were statistically significant

2011-2012

b  The estimate is the ratio of the after-MEC scaled rate over the before-MEC scaled rate 

a Percentage is number of women with a FPM claim relative to women in that category (See Table 1 for values)

c  p-values based on one-sided Poisson test at 99% confidence level   

   Bonferroni adjustment for p-value threshold: 0.005 

2008-2009
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Table 4: Highest Efficacy Methods: Number of Reproductive-aged Women with 

Medical Conditions Enrolled in Medicaid and Statistics for Poisson Test Ratio 

 

  

Highest Efficacy Methods (HEM)
a Estimate

b
p-value

c
Lower Bound CI

d

Overall Population 437,036 (3.5%) 679,230   (5.0%)

Study Population 21,413 (4.1%) 36,176     (5.7%) 1.37 <0.001 1.36

Medical Conditions

Bariatric Surgery 114 (2.2%) 416 (6.2%) 2.8 <0.001 2.68

Breast Cancer 214 (1.9%) 400 (3.1%) 1.59 <0.001 1.55

Diabetes 6892 (4.3%) 11377 (6.0%) 1.38 <0.001 1.37

Endometrial & Ovarian Cancer 21 (0.9%) 58 (2.3%) 2.43 <0.001 2.27

Epilepsy 1658 (3.8%) 2813 (5.1%) 1.32 <0.001 1.3

HIV 602 (2.5%) 976 (4.3%) 1.69 <0.001 1.65

Hypertension 8902 (4.3%) 15072 (5.8%) 1.35 <0.001 1.34

Ischemic Heart Disease 242 (2.0%) 439 (3.2%) 1.65 <0.001 1.6

Lupus 615 (3.9%) 1187 (5.9%) 1.52 <0.001 1.48

Solid Organ Transplant 24 (4.2%)

Peripartum Cardiomyopathy 559 (19.8%) 775 (25.6%) 1.29 <0.001 1.21

Sickle Cell Disease 302 (3.6%) 511 (5.3%) 1.49 <0.001 1.44

Severe Cirrhosis 159 (2.4%) 391 (4.1%) 1.72 <0.001 1.66

Stroke 237 (2.9%) 452 (4.7%) 1.6 <0.001 1.55

Thrombogenic Heart Disease 423 (8.6%) 576 (10.2%) 1.19 <0.001 1.14

Tuberculosis 102 (3.5%) 146 (5.9%) 1.71 <0.001 1.61

Valvular Heart Disease 371 (4.9%) 563 (6.5%) 1.35 <0.001 1.3

b  The estimate is the ratio of the after-MEC scaled rate over the before-MEC scaled rate 
c  p-values based on one-sided Poisson test at 99% confidence level   

   Bonferroni adjustment for p-value threshold: 0.006
d   One-sided 99% lower bound of confidence interval 

2008-2009 2011-2012

NANA

a Percentage is number of women with a HEM claim relative to population for that category (See Table 1 for 

   values)

  HEM claims includes IUDs, contraceptive implants and sterilization
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CHAPTER 3. HEALTH AND WELLNESS OUTCOMES OF 

INFANTS BORN TO ADOLESCENT MOTHERS 

3.1 Introduction  

While teenage pregnancies in the US have dropped nationwide, the US rate still 

remains high compared to other developed countries [34], particularly in lower income 

populations [35].  Previous studies have found that infants born to teenage mothers are at 

risk for lower educational attainment [36], lower income, and higher rates of 

unemployment, increased risk for incarceration, increased health care costs, increased rate 

of entering into foster care, and increased risk of teenage pregnancy for the child [37]. 

Infants born to adolescent mothers also have worse health outcomes. For example, infants 

born to adolescent mothers were found to be associated with higher rates of low birth 

weight, preterm delivery, low APGAR score, postpartum hemorrhage, and neonatal 

mortality [38-40]. This is particularly relevant because the health status of an infant is 

linked with health outcomes later in life. For instance, previous studies have shown that 

birth conditions, such as low birth weight, are linked to developing obesity [41] , diabetes 

[42], and cardiovascular disease [43] in adults.  In addition, emotional and/or physical 

stressors in the infant’s first year of life, such as foster care or abuse, can be detrimental to 

cognitive, language, and behavioral function due to impact on brain development [44, 45].  

Our study focuses on the health and wellness outcomes for infants born to Medicaid-

enrolled mothers from birth through the first year of life in order to capture long-term 

effects on the infant’s health.  We selected the Medicaid population for our study because 
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it covers 48% of all births in the US [46].  Additionally, the nature of Medicaid eligibility 

suggests infants born to mothers in this population are at a higher risk of low income and/or 

low health status (i.e. medically needy) [47].  We choose to investigate outcomes that have 

been linked to long-term health and wellness of the infant and are trackable within 

Medicaid claims data. We included the following outcomes in the study: substance 

exposure (such as neonatal drug or alcohol exposure), health risk status, entry into foster 

care, infant mortality, preterm birth/low birth weight (LBW), emergency department (ED) 

visits, and wellness visits. This study adds value in several ways. To our knowledge, there 

is no study that focuses on the Medicaid population and multiple outcomes within the first 

year of the infant’s life.  We also found no study that tracks infants throughout their first 

year of life across several outcomes.  For example, we assess infant mortality beyond birth 

and included deaths that occur within those first 12 months as well.  In addition, the data 

we use provides the ability to stratify the results and discover new differences across race 

and urbanicity.  

The objective of this study is to investigate the impact of adolescent pregnancy on 

the health and wellness of infants enrolled in Medicaid within their first year of life. The 

questions addressed in this study are: 

• What is the frequency of occurrence of the outcome measures among Medicaid 

births?  

• Are the health and wellness outcomes of these infants born to adolescent mothers 

on Medicaid significantly different than those of infants born to adult mothers on 

Medicaid? 
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• How do these differences change when evaluated by urbanicity level of the infant’s 

residence and his or her race/ethnicity? 

 

3.2 Methods 

To isolate the impact of an adolescent mother from other factors, we used the causal 

inference method of exact matching.  We matched adolescent mothers to adult mothers and 

compared the outcomes of the two infants’ subpopulations. We developed algorithms 

based on geographic and demographic variables to find the mother-infant pairs as well as 

the adolescent-adult mother matching. This section will provide additional details on this 

process. 

3.2.1 Data Description 

The data source for this study consists of 2011-2012 Medicaid Analytic Extract 

(MAX) claims data acquired from the Centers of Medicare and Medicaid Services (CMS) 

and several publicly-available datasets: International Classification of Diseases, Ninth 

Revision (ICD-9); National Plan and Provider Enumeration System’s National Provider 

Index (NPI); and the US Department of Agriculture’s Economic Research Service rural-

urban continuum codes (RUCC).  Our study focuses on 42 states (Table 6) covering over 

70% of all Medicaid enrollment nationwide [48]. The remaining eight states were not 

included for the following reasons: (1) data was not available (Colorado and Idaho), (2) 

data had quality issues (Alabama, California, and Mississippi), and (3) data was not large 

enough (Arizona, Hawaii, and New Jersey). The research was approved by the authors’ 
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Institute’s Institutional Review Board. In accordance with the Data Use Agreement, all 

data derived from the MAX files meet a minimum count of 11 patients.  

3.2.2 Identifying the Study Population (Pairing of Adolescent Mothers and Infants) 

The study population consists of Medicaid-enrolled infants born in 2011 to 

Medicaid-enrolled adolescent mothers. The age of the adolescent mothers was obtained 

from the Personal Summary (PS) table of the MAX data; ages 10 to 19 (per the World 

Health Organization definition of adolescence [49]), was based on the mother’s final age 

in 2011.  

3.2.2.1 Identification of mother-infant pairs from MAX data 

The MAX data does not directly link mothers to their infants (denoted herein as 

pairing). Therefore, we used an algorithm similar to that in Palmsten et al [50]. First, we 

paired mothers based on two criteria: (1) the mother and infant state case ID number 

matched and (2) the infant’s date of birth was between the hospital admission and discharge 

dates for the mother’s delivery. For the adolescent mothers that were not paired by this 

approach, we used demographics of the mother and infant to find additional pairs.   The 

process of pairing the mothers to their infants is discussed in this section. 

Mothers and infants were identified from the MAX PS table using the recipient 

delivery code. The recipient delivery code equals 1 to indicate the enrollee gave birth that 

year, i.e. mothers, or 2 to indicate the enrollee was born that year, i.e. infants [51]. A 

maternal delivery claim is an IP claim with a recipient delivery code equal to 1, which 

specifies the claim of the mother’s delivery.  We removed cases of multiple maternal 
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delivery claims with the same state case ID number if they were partial duplicates (i.e. all 

the data elements in the duplicate claim did not match the original claim). These claims 

were removed because it is not clear which claim contained the correct information.  

A newborn delivery claim is an IP claim with a recipient delivery code equal to 2, 

which specifies the claim of the infant’s birth.  We removed all cases of multiple newborn 

delivery claims with the same state case ID number.  If multiple newborn delivery claims 

had the same state case ID number and demographic information (i.e. only hospital 

admission dates and NPI were different), we kept the claim with the earliest hospital 

admission date.  Otherwise, all the claims with that same state case ID were removed from 

the study.  We also excluded multiple gestation newborn delivery claims since infants of 

multiple births are more prone to adverse birth outcomes [52].  We identified the multiple 

gestation claims to remove using the ICD-9 diagnosis codes beginning with “651”. 

We utilized maternal and newborn delivery claims for the pairing algorithm and 

completed three iterations to achieve the highest pairing rate.  In iteration 1, we paired 

adolescent mothers and infants based on three criteria.  

1. The adolescent mother and infant have the same state case ID number 

2. The adolescent mother and infant have the same zip code 

3. The date of birth (DOB) of the infant is between the mother’s hospital admission 

and discharge dates 

In iteration 2, the remaining unpaired mothers were paired with the remaining unpaired 

infants via demographics.  We assigned mother-infant pairs if the following criteria were 

met.  
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1. Mother and infant have the same ethnicity 

2. Mother and infant have the same zip code 

3. Mother and infant have the NPI on their delivery claim 

4. The DOB of the infant is between the mother’s hospital admission and discharge 

dates  

We removed all duplicate pairs (mothers paired to multiple infants).  In iteration 3, the 

remaining unpaired infants and mothers were paired using the demographics and DOB 

criteria of the second iteration but the NPI constraint was relaxed. Instead of the NPI 

directly, the mother and infant were paired when they have the same health provider 

address given by the NPPES database.  The provider addresses were clustered using the 

Google’s Open Refine application. We again removed all duplicate pairs found in this 

iteration. We validated iterations 2 and 3 by evaluating the number of pairs in iteration 1 

that the process of iteration 2 and 3 was able to capture (88%).   

3.2.3 Identifying the Control Population (Matching of Adolescent Mother-Infant Pairs 

with Adult Mother-Infant Pairs) 

The control population consists of infants born to adult mothers that share similar 

demographics with the paired adolescent mothers (i.e. mothers of the study population). 

We used exact matching versus traditional propensity scoring because the size of the data 

allowed for it. We selected mothers aged 20 to 44 who gave birth in 2011 and were actively 

enrolled in Medicaid that year. The age of the adult mother was obtained from the waPS 

table of the MAX data and based on their final age in 2011.  
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To obtain the control population, first we identified adult mother-infant pairs by 

using the same pairing algorithm that was used for the study population. Second, we 

matched each adolescent mother-infant pair with an adult mother-infant pair based on 

factors included in the MAX data. These include: (1) mother’s race/ethnicity; (2) mother’s 

state of residency; (3) mother’s basis for qualifying for Medicaid, i.e. Medicaid eligibility; 

(4) mother’s health status; and (5) urbanicity of the mother’s reported home residence.  

3.2.3.1 Matching of adolescent mother-infant pairs with adult mother-infant pairs from 

MAX data 

The five factors used to match the adolescent mother pair to the adult mother pair 

are discussed in this section. Mother’s ethnicity was included because it is a determinant 

for pregnancy outcome disparities [53]. Home state is a factor for matching because of 

variations in Medicaid policies and reimbursement rates by state.  The Medicaid eligibility 

provides information on if the mother was on Medicaid due to low income, medical 

disability, or foster care.  Medicaid eligibility can serve as a proxy for environment and 

social health determinants.   

As a proxy for the mother’s health risk status, we considered the mother’s Critical 

Risk Grouping (CRG) [54], which was determined using the 3M™ Core Grouping 

Software with the CRG version 1.12.  CRG describes the burden of illness of the mother 

based on twelve months of administrative claims.  All diagnosis codes, procedures and 

prescription drug codes found in a patient’s medical claims are used to classify the patient’s 

CRG into 10 categories. The classification scale ranges from 1 (healthy) to 9 (catastrophic 

condition). We further categorize health risk status as low risk (CRG 1 to CRG 3), medium 
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risk (CRG 4 to CRG 5a), and high risk (CRG 5b to CRG 9).  See Table 7 for more details 

on the classification levels.   

The urbanicity of the mother was determined by her county residence.  Each 

county is categorized based on the corresponding RUCC [55]: urban (1-3), suburban (4-6), 

or rural (7- 9).  The RUCC level is based on the population of the area.  See Table 8 for 

more details on the RUCC definitions. 

In the first iteration, we matched adolescent mother pairs to adult mother pairs 

using all five demographic criteria.  The second iteration, we removed the Medicaid 

eligibility because foster care was one of the eligibility criteria and no adult mothers would 

satisfy that eligibility.  For the final iteration, we removed eligibility and relaxed ethnicity.  

An match could be made between a mixed ethnicity and mother who shared one of the 

mixed ethnicities.   All remaining unmatched adolescent mother-infant pairs were removed 

from the study.  Figure 5 shows the percentage adolescent mother-infant pairs matched to 

adult mother-infant pairs at each iteration. 
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Figure 5: Percentage of Matched Adolescent Mother-Infant Pairs by Matching 

Criteria 

 

3.2.4 Outcome Measures 

We analyze seven outcomes for infants in the study and control population cohorts. 

The outcomes are derived from the IP and Other Therapy (OT), i.e. outpatient, claims of 

the infants, and are limited to the first year after birth. The categorical outcome measures 

include: substance exposure, health risk status (i.e. CRG), foster care entrance, infant 

mortality, and preterm birth/low birth weight (LBW). The count outcome measures 

include: emergency department (ED) visits, and wellness visits.  A description of all the 

codes used for identifying the outcomes can be found in Table 5 . 
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3.2.4.1 Categorical Outcome Measures 

The categorical outcome measures and the corresponding ICD-9 codes are 

discussed in this section.  

Substance Exposure Outcome: Neonatal substance exposure is associated with a higher 

risk for negative health problems such as congenital anomalies, behavioral problems, and 

neurological development issues [56].  We determined an infant had in utero exposure to 

an addictive substance if one or more of the ICD-9 codes for this outcome was listed in the 

newborn delivery claim.  The ICD-9 codes that are used for substance exposure are: ‘291’, 

‘292.2’, ‘303.9’, ‘648.4’, ‘655.5’, and ‘760.7’ .  

Health Risk Level Outcome:  Health risk is based on the CRG metric, a proxy for the health 

of the infant within the first year of life. The health risk status of an infant is derived using 

the same methods as used for the mothers and described in 3.2.3.1. 

Foster Care Outcome: An infant being placed in foster care can be an indicator of the 

mother’s health and/or parental resources to care for the infant. We identified an infant as 

being in foster care if the ICD-9 code ‘V6081’ is listed in any claims in the IP or OT tables 

for the first year or if the Medicaid eligibility code ‘48’ was in the PS file.     

Infant Mortality Outcome: Infant mortality is an indicator of infant health.  Causes for 

infant mortality include birth defects, low birth weight, sudden infant death syndrome, 

maternal pregnancy complications, and injuries such as suffocation [57].  Infants who died 

after delivery within the first year of life were identified using the PS date of death 

field.  Still births were excluded from this study.  
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Low Birthweight Outcome (LBW): Low birthweight and preterm birth serve as indicators 

of adverse birth outcomes and can directly relate to an infant’s health.  LBW is often a 

result of preterm birth or restricted fetal growth.  LBW greatly increases the rate of infant 

mortality and associated development problems.  It also may factor into chronic diseases 

later in the infant’s life [42, 43]  LBW in an infant was identified if the birth claim had an 

ICD-9 code that began with ‘765’.    

3.2.4.2 Count Outcome Measures 

The count outcomes measures and the corresponding ICD-9 codes are discussed in this 

section. 

 Number of Emergency Department Visits: While some may be unavoidable, the total 

number of emergency department (ED) visits can serve as an indicator of poor health, 

accidents, neglect, and/or abuse [58].  We exclude hospitalizations from this outcome since 

those are captured indirectly in the CRG metric described above. We identified ED visits 

using the type of service and place of service reported in the claims.  We considered a claim 

to be an ED visit only if the ED claim was not associated with an inpatient stay (e.g. claim 

on the same day in the IP file) or hospitalization (determined by place of service).    

Number of Wellness Visits: Regular wellness visits determine if the infant is receiving 

adequate health monitoring and preventive care.  This is because wellness visits include 

essential monitoring done by the pediatrician such as checking the growth, development, 

and vision of the infant.  The number of wellness visits also serves as a proxy for the infants 

receiving vaccinations according to the recommended CDC schedule [59].  We identified 

wellness visits using the ICD-9 code ‘V202’ in any IP or OT claim.       
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Table 5: Description of Diagnosis and Procedure Codes for Identification of 

Outcomes in MAX Data   

  Code*  Description  

Substance Exposure  291  Alcohol induced disorders  

   292.2  Pathological drug intoxication  

   303.9  Other and unspecified alcohol dependence  

   648.4  Mother mental disorders  

   655.5  Suspected damage to fetus from drugs  

   760.7  Drug affecting fetus or newborn via placenta or breast milk  

Foster Care  V608.1  Foster care (status)  

   48  Medicaid eligibility code for foster care child in any MAX file  

LBW  765  Disorders relating to extreme immaturity of infant  

Wellness Visits  V202  Routine infant or child health check  

      

ED Visits  11  Code for outpatient hospital visit for type of service   

   23  Code for emergency room for place of service   

   21  Code for hospitalization claim for place of service   

*ICD-9 code unless otherwise specified. Code represents the beginning of all the codes that 
were queried.  Source: www.icd9data.com & MAX 2011 OT Dictionary  

 

3.2.5 Statistical Analysis 

For our study, we were interested in the differences between the adolescent-mother 

infants (study population) and the adult-mother infants (control population). To assess if 

the differences between outcomes were statistically significant, we used a two-sided 

proportion test for categorical outcome measures and a two-sided Poisson test for count 

outcome measures. We performed both tests at the 95% confidence level. Since the counts 

of ED visits and wellness visits are dependent on the length of the infant’s enrollment in 

Medicaid, we normalized the count data by enrollment months. Enrollment months were 

pulled from the PS file for each infant. The following normalization was done for each 

infant’s visit count.  
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We define: 

𝑇𝑖,𝑗: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑠 𝑜𝑓 𝑎𝑑𝑜𝑙𝑒𝑠𝑐𝑒𝑛𝑡 − 𝑚𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑓𝑎𝑛𝑡 𝑖 𝑓𝑜𝑟 𝑐𝑜𝑢𝑛𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑗  

𝐸𝑖: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝑚𝑜𝑛𝑡ℎ𝑠 𝑓𝑜𝑟 𝑎𝑑𝑜𝑙𝑒𝑠𝑐𝑒𝑛𝑡 − 𝑚𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑓𝑎𝑛𝑡  𝑖  

𝐴𝑖,𝑗: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑠 𝑜𝑓 𝑎𝑑𝑢𝑙𝑡 − 𝑚𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑓𝑎𝑛𝑡 𝑖 𝑓𝑜𝑟 𝑐𝑜𝑢𝑛𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑗 

𝐹𝑖: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝑚𝑜𝑛𝑡ℎ𝑠 𝑓𝑜𝑟 𝑎𝑑𝑢𝑙𝑡 − 𝑚𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑓𝑎𝑛𝑡 𝑖  

𝑆𝑐𝑎𝑙𝑒𝑖: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝑚𝑜𝑛𝑡ℎ𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑜𝑚𝑒 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑓𝑎𝑛𝑡 𝑖 

Therefore, the normalized count for the adolescent and adult infants respectively 

are: 

�̃�𝑖,𝑗  = (
𝑇𝑖,𝑗

𝐸𝑖
) ∗ 𝑆𝑐𝑎𝑙𝑒𝑖 

�̃�𝑖,𝑗 = (
𝐴𝑖,𝑗

𝐹𝑖
) ∗ 𝑆𝑐𝑎𝑙𝑒𝑖 

The ratio of visits for adolescent mother infants and adult mother infants were 

assessed using a two-sided exact Poisson test.  

     

𝐻0:
�̃�𝑖,𝑗 

�̃�𝑖,𝑗

= 1 

𝐻1:
�̃�𝑖,𝑗 

�̃�𝑖,𝑗

≠ 1 
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Statistical analysis is also performed to compare the outcomes by urbanicity and 

race/ethnicity. For the stratification results, the Bonferroni correction was used to adjust 

the p-values based on the number of categories.  

To determine potential clinical relevance, we assessed the odds ratio for the 

categorical outcome measures and the rate ratio for the count outcome measures. We used 

a threshold of 1.2 to determine the significance of the effect.   

3.3 Results 

3.3.1 Study and Control Populations 

For the study population, we identified 134,784 adolescent mothers of which 

70,942 (52.6%) were paired with infants. Of the adolescent mother-infant pairs, we 

matched 68,562 with adult mother-infant pairs.  Table 6 shows the counts of paired infants 

included in the study, the percentage of the paired mothers in each ethnicity/race group and 

each urbanicity group by state.   

 To identify potential pairing bias, we also observed the frequency chart distribution 

of paired and unpaired adolescent mothers by urbanicity, ethnicity and Medicaid eligibility.  

The distribution charts for the paired groups are in  

Figure 6 and Figure 7.    
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Figure 6: Paired Adolescent Mothers by Urbanicity 

 

Figure 7: Paired Adolescent Mothers by Race 

 

To identify potential matching bias, we observed the frequency chart distribution 

of (1) adolescent-adult mother matches based on all five factors (i.e. full match) versus (2) 

adolescent-adult mother matches with less restrictive criteria by urbanicity, ethnicity, and 



61 

health status (partial match).  The distribution charts for the matching are in Figure 8 Figure 

9.    

 

Figure 8: Matched Adolescent Mothers by Urbanicity 

 

Figure 9: Matched Adolescent Mothers by Race   
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3.3.2 Overall Outcomes 

Figure 10 shows the counts for each of the outcomes.  Table 9 provides counts, 

proportions, and p-values for the seven outcome measures. Overall, the percentage of 

infants born with substance exposure was 0.7% and 0.8% for adolescent mother infants 

and adult mother infants, respectively. Adolescent mother infants had statistically 

significant higher rates of low risk health status (90.3% vs 90% with p-value: <0.04), LBW 

(8.4% vs 6.0% with a p-value: <0.005), and ED visits (ratio of 1.311 and p-value: <0.005). 

The average number of wellness visits per infant was 4.4, and the average number of ED 

visits per an infant was 1.3. There was no statistically significant difference for substance 

exposure, entry into foster care, high risk health status and wellness visits.  Table 6 presents 

the outcomes by state. 

 

Figure 10: Total Results for Outcome Measures for Infants Born in 2011 
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3.3.3 Outcome Measures by Urbanicity  

Figure 11 and Figure 12 show highlights of the outcomes by urbanicity.  Table 10 

presents the results of the seven outcome measures by urbanicity and includes proportions 

and p-values. The statistical results by urbanicity showed that substance exposure and 

foster care are significantly different in urban areas. Urban adolescent mother infants had 

a lower rate of substance exposure (0.7% vs 0.9%) and a higher rate of foster care (0.6% 

and 0.3%) compared to urban adult mothers’ infants. The odds ratio suggested potential 

clinical relevance with values of 1.22 and 1.82 for substance exposure and foster care, 

respectively. In addition, urban adolescent mother infants had a statistically higher rate 

than urban adult mother infants for low birth weight (6.9% vs 6.2% with p-value= <0.005). 

As before, adolescent mother infants had statistically higher level of ED visits. ED visits 

stayed significant at each urbanicity level (p-value: <0.005) with suburban mothers having 

the highest discrepancy with adolescent mothers having 38% more ED visits than their 

adult counterparts. There was no statistically significant difference at any urbanicity level 

for all three health status levels or for infant mortality. Similar to the aggregate level, 

wellness visits showed no statistically significant differences.  
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Figure 11: Selected Percentages of Total of the Health and Wellness Outcomes via 

Urbanicity 

 

 

Figure 12: Ratio of Emergency Department Visits via Urbanicity 
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Outcome Measures by Race/Ethnicity 

 

 

 

Table 11 presents the results of the seven outcome measures by race/ethnicity and 

includes proportions and p-values. Unlike at the aggregated level, substance exposure and 

foster care were statistically significant for white infants. Infants of white adolescent 

mothers had a lower rate of substance exposure (0.6% and 0.9%) and a higher rate for foster 

care (0.7% and 0.4%) than white adult mother infants. The odds ratio of 1·37 and 1·54 for 

substance exposure and foster care, respectively, demonstrated potential clinical relevance. 

In addition, black adolescent mother infants had a statistically significant higher rate for 

foster care (0·8% vs 0·4% with p-value: <0·005) with an odds ratio of 2·06. Similarly to 

the aggregate level, adolescent mother infants had a statistically higher level of ED visits 

at each race/ethnicity (p-value: <0·005). Infants of white mothers had the highest ratio for 

ED visits (1·37). Infants of white adolescent mother had more wellness visits (ratio 1·02 

with p-value: <0·005) than infants of white adult mothers while Hispanic (ratio is 0·977 

with p-value: <0·005) and other race adolescent mother infants (ratio is 0·985 with p-value: 

0·006) had fewer wellness visits than infants of mothers with their respective race. The 

total percentage of infants (study and control population combined) with substance 

exposure with mothers who were white, black, or Hispanic, was 0·77%, 1·1%, and 0·45%, 

respectively. The rate of entry into foster care was 0·42%, 0·26% , and 0·12% for white, 

black, Hispanic infants respectively.   
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Figure 13: Highlights of Health and Wellness Outcomes via Race/Ethnicity 
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3.4 Discussion 

Our study provides new insights into healthcare utilization in several ways. To our 

knowledge, we found no study that has addressed all seven outcomes in one study 

(substance exposure, foster care, low birth weight, infant mortality, emergency department 

visits, wellness visits, and health risk status) nor one that tracks infants throughout their 

first year of life.  In addition, there is little research on the number of wellness visits infants 

from low-income families are receiving.  The Medicaid population is of particular interest 

because it is a population vulnerable to health disparities [60], given that the beneficiaries 

are often low-income, and may be less likely to receive prenatal care than others [61].  

While the rates of LBW and mortality in this study are compatible with existing 

research [57, 62], the difference between Medicaid-enrolled adolescent and adult mothers 

is not as extreme as previously assumed. In a national study Roth and colleagues conclude 

LBW rates of 9.4% for infants born to adolescent mothers compared to 7.0% for infants 

born to adult mothers [29]. While the difference is statistically significant in our study as 

well, rates of 6.7% and 6.1% respectively paint a different picture. Similarly, the gap 

between the difference in mortality rate in the study is small compared to previous 

literature. [63]. One potential explanation to this difference is the nature of Medicaid 

enrollment itself; young adults have limited access to employer-based insurance and are 

limited financially. According to the Kaiser Family Foundation, approximately 48% of 

individual aged 0-18 are enrolled in Medicaid compared to 18% of adults aged 18-44 [64].  

Our study found new insights into the wellness of these infants; most notable, the 

number of wellness visits. This outcome was chosen to assess if the infant was receiving 



68 

the recommended preventive care (i.e., health and developmental check-ups). Importantly, 

the average wellness visits per infant (both those born to adolescent and adult mothers) was 

4·4 visits, well below the seven recommended number of visits by the American Academy 

of Pediatrics [65]. Wellness visits are important for vaccinations as well as ensuring the 

infant’s physical and cerebral development are normal. This may present an opportunity 

for intervention: Medicaid programs could create policies and practices to support wellness 

visits for all infants of Medicaid-enrolled mothers.  For example, in-home visits or 

education initiatives to the clinicians can assist in improving infant wellness care. 

Assigning case workers, providing performance feedback, phone call reminders and 

providing clinicians information on best practices have been proven to improve the rate of 

wellness visits [66]. 

There were the greatest differences between infants of adolescent mothers and those 

of adult mothers in the number of emergency department (ED) visits, in aggregate, across 

all levels of urbanicity, and across all race/ethnicity groups. While this could reflect a 

greater frequency of illness, accidents, neglect, or abuse, it may also point to insufficient 

access to primary care or lack of experience that adolescent mothers may have to recognize 

a true emergency [67, 68].  A higher rate of ED visits for infants of adolescent mothers is 

consistent with some results in the existing literature; it has been shown that low maternal 

age, non-white race, enrollment in Medicaid [69] and low health literacy [70] are associated 

with an increase in the ED visit frequency. Thus, this is an important area of intervention 

in which adolescent mothers can learn about signs of fatal or emergency health conditions 

of their infants [70]. Further supporting optimal wellness visit frequency, as above, may 

help to reduce unnecessary ED visits.  
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The study found that urban adolescents were driving the increase in LBW. There 

are many factors that have been previously associated with LBW [71], including age less 

than 18, stress and environmental exposures. One proposed solution is group-based 

prenatal care, which has been associated with decreased rates of LBW for adolescents in 

New York City [72].  It has also shown promise of improving other health behaviors during 

and after delivery that may have positive outcomes for infants and their adolescent mothers 

[73]. 

There are several limitations to our study. There are many aspects of adolescent 

motherhood that our data cannot address, such as breastfeeding. We also acknowledge that 

using Medicaid claims data has limitations, since there can be missing or incomplete data. 

For example, if a person has a claim but no eligibility information, mortality cannot be 

measured. Also, previous research has found that MAX data has only been able to capture 

73% of foster care cases [74]. We paired 55% of the Medicaid-enrolled adolescent mothers 

with infants; leaving 45% not included in the study. The bias analysis showed some minor 

bias within the study population from both the pairing and the matching steps.  We found 

the white, suburban and rural populations (study and control) were more likely to be paired 

and matched based on the full criteria. However, we found that adolescent mothers whose 

Medicaid eligibility is low income are more likely to pair (i.e. find the mother’s 

corresponding infant). Urban infant pairs were more likely to have a partial match. Hence, 

the populations included in the study may have higher representation than that of the full 

Medicaid population.   

Our study highlights the importance of analyzing outcome measures across 

different stratifications of the study population. This analysis may help shed light on 
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differences by race and urbanicity, as well as, inform possible policies and programs that 

could impact them. The findings of this study point to the implementation of targeted 

interventions to support Medicaid-insured infants of adolescent mothers in achieving 

optimal and equitable health. For example, group-based prenatal care has been shown to 

provide a lower-cost option for prenatal risk screenings and patient education with high 

levels of patient satisfaction. In addition, community outreach or programming, 

particularly in urban areas with for adolescent mothers may also help to reduce stress and 

provide support for young mothers. This model could be expanded to postpartum care and 

education with joint mother-infant visits to help reduce unnecessary ED visits, increase 

utilization of wellness visits and reduce cost.  

Further, since multiple outcomes are interrelated such as low birth weight and 

mortality, decreasing one negative outcome can have a compounding effect. Finally, 

additional research efforts to uncover the factors or determinants that underlie these 

differences is needed.  To have the greatest potential for impact, this should be done in 

partnership with people from the affected populations.  
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Table 6: Total Counts, Ethnicity, Urbanicity and Average Enrollment Months of 

Study and Control Populations by State 

 

  

State
Total_Paired 

Infants
White Black Hispanic Other  Urban   Suburban   Rural 

Avg Enrollment 

Months Teen 

Baby

Avg Enrollment 

Months Adult 

Baby

Alaska 370 20.27% 3.78% 2.97% 72.97% 47.80% 2.97% 49.19% 11.31 11.64

Arkansas 1375 60.44% 24.80% 7.05% 7.71% 49.31% 28.65% 22.04% 10.95 11.02

Connecticut 478 31.27% 21.86% 43.53% 2.30% 94.18% 3.48% 2.30% 11.37 11.46

Delaware 218 21.78% 31.80% 40.94% 5.05% 89.91% 5.05% 5.05% 11.41 11.72

Florida 565 26.02% 40.35% 17.88% 15.75% 93.19% 4.86% 1.95% 11.56 11.6

Georgia 4120 40.63% 45.61% 1.12% 12.65% 75.95% 17.40% 6.65% 10.22 9.63

Illinois 2406 26.48% 45.05% 23.61% 4.86% 56.10% 24.68% 19.23% 11.51 11.58

Indiana 3217 63.69% 20.70% 13.89% 1.71% 90.23% 7.65% 2.12% 11.47 11.67

Iowa 697 16.07% 3.44% 4.59% 75.90% 75.88% 21.57% 2.55% 11.67 11.71

Kansas 1060 47.36% 14.53% 31.98% 6.13% 61.79% 26.98% 11.23% 5.91 6.36

Kentucky 2129 86.52% 8.41% 3.48% 1.60% 35.56% 23.06% 41.38% 11.59 11.51

Louisiana 1402 35.02% 60.41% 1.57% 3.00% 86.59% 9.63% 3.78% 9.99 10.02

Maine 174 57.56% 6.32% 6.32% 29.56% 87.36% 6.32% 6.32% 10.52 11.08

Maryland 2477 23.29% 49.13% 15.54% 12.03% 96.38% 3.18% 0.44% 11.75 11.76

Massachusetts 739 25.03% 8.80% 11.37% 54.80% 65.12% 23.84% 11.05% 11.64 11.7

Michigan 4430 32.21% 34.81% 5.85% 27.13% 82.44% 11.20% 6.37% 11.39 11.5

Minnesota 915 42.62% 17.70% 13.33% 26.34% 64.26% 17.81% 17.98% 11.45 11.37

Missouri 2353 62.77% 25.88% 4.16% 7.18% 63.20% 20.82% 15.98% 11.62 11.57

Montana 227 58.43% 4.85% 4.85% 31.68% 28.63% 33.04% 38.33% 11.05 11.38

Nebraska 684 48.25% 9.06% 25.29% 17.40% 71.18% 25.95% 2.87% 11.77 11.63

Nevada 126 56.75% 8.73% 25.80% 8.73% 44.15% 11.17% 44.68% 11.23 11.33

New Hampshire 222 79.91% 4.95% 9.88% 4.95% 57.42% 21.00% 21.59% 11.39 11.71

New Mexico 1538 13.85% 1.30% 68.40% 16.45% 57.47% 33.03% 9.50% 11.36 11.64

New York 1208 45.61% 15.81% 28.73% 9.85% 59.56% 33.62% 6.83% 10.71 11.07

North Carolina 3102 35.72% 45.55% 10.83% 7.90% 18.40% 67.20% 14.40% 10.24 10.53

North Dakota 188 46.08% 5.85% 5.85% 41.94% 78.31% 20.45% 1.24% 11.77 11.7

Ohio 3435 61.31% 33.89% 4.37% 0.44% 76.01% 21.89% 2.10% 11.57 11.64

Oklahoma 2983 46.50% 11.00% 24.44% 18.07% 58.08% 28.28% 13.64% 11.67 11.74

Oregon 1535 45.21% 2.61% 35.70% 16.48% 74.92% 27.35% 2.74% 11.36 11.49

Pennsylvania 1459 67.10% 10.83% 17.55% 4.52% 66.28% 27.48% 6.24% 11.55 11.61

Rhode Island 88 12.5% 12.5% 12.5% 62.50% 75.00% 12.50% 12.50% 9.38 9.27

South Carolina 1367 41.92% 40.60% 12.14% 30.82% 77.54% 21.95% 0.51% 11.67 11.68

South Dakota 439 41.46% 2.51% 4.33% 52.16% 36.07% 19.18% 44.75% 11.41 11.49

Tennessee 1623 62.66% 32.10% 4.25% 0.99% 70.19% 23.46% 6.36% 11.75 11.77

Texas 12806 10.88% 8.68% 42.79% 37.65% 82.96% 12.57% 4.47% 11.56 11.65

Utah 1185 83.02% 0.93% 13.54% 2.34% 86.15% 4.48% 9.38% 11.18 11.36

Vermont 53 53.69% NA NA 44.43% 77.54% 9.83% 12.63% 11.59 11.55

Virginia 1496 27.74% 20.52% 19.92% 31.82% 15.04% 41.51% 43.40% 11.53 11.00

Washington 1188 26.18% 2.78% 14.56% 56.48% 87.79% 11.70% 51.00% 11.68 11.62

West Virginia 188 82.45% 5.85% 5.85% 5.85% 77.86% 16.57% 5.57% 11.56 11.55

Wisconsin 1992 29.42% 20.23% 11.70% 38.65% 66.85% 24.46% 8.70% 11.37 11.08

Wyoming 305 71.35% 3.61% 14.27% 10.47% 30.82% 22.62% 46.56% 11.25 11.27

*Percentages are adjusted to account for counts less than 11
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Table 7: Critical Risk Grouping Classifications 

 

Critical Risk Grouping (CRG) Classifications* 

CRG1: Healthy 

CRG2: Recent History of Significant Acute Disease 

CRG3: Single Minor Chronic Disease 

CRG4: Minor Chronic Disease in Multiple Organ Systems 

CRG5a: Single Moderate Chronic Disease 

CRG5b: Single Dominant Chronic Disease 

CRG6: Significant Chronic Disease in Multiple Organ Systems 

CRG7: Dominant Chronic Disease in Three or More Organ Systems 

CRG8: Dominant, Metastatic and Complicated Malignancies 

CRG9: Catastrophic Conditions 

*Patients were aggregated into three groups: non-chronic (CRG1 and CRG2), minor 

(CRG3-CRG5a), and severe (CRG5b-CRG9) 

 

Table 8: RUCC Classifications 

RUCC Code Description   

   

Metropolitan Counties*   
1 Counties in metro areas of 1 million population or more 

2 Counties in metro areas of 250,000 to 1 million population 

3 Counties in metro areas of fewer than 250,000 population 

    
Nonmetropolitan Counties   

4 Urban population of 20,000 or more, adjacent to a metro area 

5 Urban population of 20,000 or more, not adjacent to a metro area 

6 Urban population of 2,500 to 19,999, adjacent to a metro area 

7 Urban population of 2,500 to 19,999, not adjacent to a metro area 

8 

Completely rural or less than 2,500 urban population, adjacent to a 

metro area 

9 

Completely rural or less than 2,500 urban population, not adjacent to a 

metro area 

Source: https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx 

  

https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx
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Table 9: Total Results for Outcome Measures for Infants Born in 2011 for the Study 

Population (Adolescent-Mother Infants) and the Control Population (Adult-Mother 

Infants). Includes Total Counts, Point Estimates, and the P-value for the Statistical 

Test   

Outcomes for All Adolescent Mother Infants (TMI) and Adult Mother Infants (AMI)  

         Proportion Test  

Categorical Outcome  
TMI 

Count  

AMI 

Count  

TMI 

Estimate  

AMI 

Estimate  
p-value  

Substance Exposure   465  571  0.007  0.008  0.57  

Health Status – Low 

Risk*  
61,929  61,697  0.903  0.900  0.04  

Health Status – Medium 

Risk*  
5,037  5,319  0.073  0.078  <0.005  

Health Status – High Risk  1,596  1,546  0.023  0.023  0.37  

Foster care  395  247  0.006  0.004  0.95  

Infant Mortality  213  173  0.003  0.003  0.05  

Low Birth Weight*  4,585  4,205  0.067  0.061  <0.005  

         Poisson Test  

Count Outcome**  
TMI 

Count  

AMI 

Count  
Rate Ratio  p-value  

ED Visits  101,118  77,130  1.311  <0.005  

Wellness Visits  303,118  302,910  1.001  0.79  

*Outcome significant at the 95% confidence interval based on the 68,562 count of 

mother-infant pairs  

**Count outcomes are normalized by enrollment months   

Health status is based on one-year healthcare utilization (i.e. Critical Risk Grouping)   
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Table 10: Total Results for Outcome Measures for Infants Born for 2011 for the 

Study Population(Adolescent-Mother Infants) and the Control Population (Adult- 

Mother Infants).  Point Estimates and the P-Value for the Statistical Test by 

Urbanicity  

 

 

 

 

Categorical Outcome TMI Estimate AMI Estimate p-value

Urban* 0.007 0.009 0.005

Suburban 0.005 0.006 0.722

Rural 0.004 0.007 0.023

Urban 0.719 0.718 0.889

Suburban 0.729 0.729 0.942

Rural 0.735 0.747 0.180

Urban 0.252 0.252 0.960

Suburban 0.249 0.249 1.000

Rural 0.243 0.234 0.317

Urban 0.029 0.030 0.631

Suburban 0.022 0.021 0.718

Rural 0.021 0.018 0.376

Urban* 0.006 0.003 <0.005

Suburban 0.005 0.005 0.525

Rural 0.004 0.004 0.885

Urban 0.003 0.002 0.128

Suburban 0.003 0.003 1.000

Rural 0.004 0.002 0.042

Urban* 0.069 0.062 <0.005

Suburban 0.061 0.061 0.914

Rural 0.058 0.053 0.263

Count Outcome** p-value

Urban* <0.005

Suburban* <0.005

Rural* <0.005

Urban 0.915

Suburban 0.642

Rural 0.948

1.297

Outcomes by Urbanicity for Adolescent Mother Infants (TMI) 

and Adult Mother Infants (AMI)

Substance Exposure

Health Status Low Risk

Health Status Medium Risk

Health Status High Risk

Foster care

Infant Mortality

Low Birth Weight

Poisson Test 

Rate Ratio

ED Visits

1.379

1.301

Wellness Visits

1.000

1.003

0.999

*Outcome significant at the 95% confidence interval or Bonferroni adjusted 

p-value less than 0.017 

**Counts for count outcomes are normalized by enrollment months 

Health status is based on one year of healthcare utilization 

(i.e. Critical Risk Grouping) 
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Table 11: Total Results for Outcome Measures for Infants Born in 2011 for the 

Study Population (Adolescent-Mother Infants) and the Control Population (Adult- 

Mothers Infants) Point Estimates and the P-Value for the Statistical Test by 

Race/Ethnicity 
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CHAPTER 4. STATISTICAL LEARNING METHODS FOR 

DIFFERENCE-IN-DIFFERENCES DESIGN 

4.1  Introduction 

When trying to understand the impact of policies in health care, rarely are the policy 

implementations conducted in randomized settings.  Difference-in-differences (DID) study 

designs are one option to leverage observational data to estimate causal effects in the 

absence of experimentation.  The DID framework is typically structured as two time 

periods relative to the time of intervention (pre and post) and the intervention status of the 

subject (intervention or comparison).  Therefore, DID considers longitudinal data, often 

with multiple time points before and after a policy intervention.  The comparison group 

remains unexposed to the policy intervention in both pre- and post- time periods.  In 

contrast, the intervention group is unexposed in the pre-time periods and exposed in the 

post-time periods.  The goal is then to estimate the average change in outcome trends 

between the two groups.  We use the average treatment effect among the treated (ATT) as 

the parameter to measure this change.  The ATT measures the treatment effect for a 

randomly selected individual within the intervention group.  It quantifies the difference in 

the outcome between an individual within the intervention group who was exposed to the 

policy and an individual within the intervention group who remained unexposed.  

Additionally, a set of causal assumptions specific to difference-in-differences study 

designs are required for an enriched causal interpretation of the target parameter.   
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Health care policy data has specific traits that are distinctive from the attributes of 

much of the data traditionally used in previous DID research.  This is seen in the parametric 

approaches that are largely developed for and applied to scenarios with decades of 

longitudinal data.  However, this would be an atypical setting in health care policy.  The 

volume of observational health care data has drastically increased due to the expansion of 

electronic health records, clinical registries, and other sources.  However, despite these data 

sources, most health care policy studies are limited to only a few years of data. Thus, many 

existing approaches may have differential performance in these settings. These databases 

are typically fraught with multiple complexities, including informative missingness, 

patients clustered within hospitals, and high-dimensional confounder sets.  Consequently, 

there is a need for flexible and robust methodology to analyze various forms of 

observational health care data.  

Parametric models are the most commonly used methods to estimate this average 

change in outcome trends between the intervention and comparison groups.  One common 

method is a fixed-effects outcome regression.  In this approach, the outcome is specified 

as a linear function based on the observations’ baseline covariates, treatment assignment, 

and pre/post time period [75, 76].  The disadvantage of this technique is it assumes additive 

effects of the covariates, which may not be true.  Parametric techniques also restrict the 

model space of the estimator, requiring that the functional form is known up to a finite 

number of parameters, which is unlikely in many practical applications within health care, 

as well as others.   

Another popular approach is inverse propensity score weighting (IPW).  These 

techniques rely on consistent estimation of the propensity score function; the conditional 
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probability of exposure to the intervention given baseline covariates.  The propensity score 

is a balancing score, such that subjects with the same propensity score value have the same 

distribution of the covariates between both intervention groups.  For example, Abrevaya 

used IPW as part of a conditional average treatment effect estimator [77].  Callaway and 

Sant’Anna’s paper [78] showed that normalizing the propensity score weights when using 

IPW can lead to finite sample improvements.  However, inverse propensity score methods 

are generally known to suffer from substantial bias due to misspecification of the 

propensity score function and can have large variance in empirical samples.   

A few newer studies have developed double robust methods for difference-in-

differences to reduce bias due to model misspecification. Zimmert introduced 

nonparametric technique for group average treatment effects.  The nonparametric approach 

provides protection against misspecification and lifts the restriction of parametric models 

that the number of predictors need to be less than the number of observations.  Also, by 

using group average treatment effects, the estimates are less sensitive to heterogeneity [79].  

Han, Yu, & Friedberg used a double robust variant of the IPW approach by Lunceford and 

Davidian [80].  The technique incorporates the expected value of the change in the 

outcome, which is estimated using linear regression, into the estimator [81].  This double 

robust estimator shows improved performance when compared to the traditional IPW 

approach, original least squares, and the generalized linear model.  Sant'Anna created a 

double-robust estimator that weights the regression errors instead of the observed 

outcomes; as is done in IPW [82].  The approach has the additional property that it accounts 

for heterogeneity, one potential problem that arises when using the fixed-effects regression 

for policy evaluation.  This is an important feature since the fixed effect regression assumes 
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a constant treatment effect across all covariates which may not be true.  The estimator’s 

results had smaller standard errors and bias compared to a two-way fixed effects regression 

and IPW.  Li and Li developed a double robust estimator that augments an IPW estimator 

with regression [83].  This double robust estimator has the advantage that it only depends 

on estimating the outcome of the comparison group instead of both intervention groups.  

However, it is also more sensitive to the misspecification of the outcome regression than 

the propensity score model in the case of estimating additive treatment effects, such as the 

average difference between the two intervention groups.  Lu proposed two double robust 

nonparametric methods for DID estimation [84].  For homogenous treatment effects, a 

transformed regression, based on an orthogonal decomposition of the outcome, is used.  

For heterogenous treatment effects, a balancing estimation method using minimax to 

estimate linear weights is presented.  The methods emphasize the importance of 

nonparametric approaches in order to have lower mean squared errors as shown in their 

performance when compared to IPW, original least squares, and a double robust augmented 

IPW [85].   

Even with this previous work, there remains a need for flexible methodology to 

analyze various forms of observational health care data. For difference-in-differences 

studies in health care, bringing machine learning to handle the common design where we 

have few pre-intervention and post-intervention time periods in billing claims data is a gap 

in the literature we aim to address here.  Thus, in this chapter, we extend the ensemble 

machine-learning method, super learner, to the DID study setting, developing an estimator 

and realistic simulation study. 
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The motivating study for our research assessed the impact of episode-based 

payments (EBP) on perinatal costs in Arkansas [3].  Under this payment policy, physicians 

are rewarded for keeping the aggregated costs of a designated health care event (i.e. an 

episode) below a pre-determined spending cap and penalized for spending above it.  

Arkansas costs were compared to that of nearby states that had not implemented the policy.  

These comparison states included: Alabama, Kentucky, Louisiana, and Oklahoma.  The 

study found a 3.8% decrease in perinatal spending in Arkansas under the policy. It used a 

parametric regression analysis approach to estimate the ATT and incorporated maternal 

demographics and clinical characteristics as covariates.  The study contributed to the 

understanding of financial incentives of physician behavior.  Fee-for-service 

reimbursement has been linked to higher levels of healthcare utilization as compared to 

EBP [86] and conflicting incentives for the physician and the patient.  Additional research 

has found that episode-based payments had reduced cost for outpatient hospital care within 

the Medicaid population [87, 88].  However, the Arkansas study found that it also reduced 

cost for a longer-term episode (such as prenatal through post-partum care) and under 

private insurance.     

This chapter is organized as the following. In section 2, we introduce the model, 

target parameter of interest, and required assumptions.  Next, we present the simulation 

study and the application of the super learner algorithm for the difference-in-differences 

setting.  Lastly, we present concluding remarks and discuss future work including double 

robust approaches. 

4.2 Study Framework  
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We design our estimator and simulation study based on the prior 2018 analysis on 

Arkansas perinatal costs during the years of 2009 to 2014 to access the impact of the 

episode-based payment policy.  The Episode-based Payment (EBP) implementation was 

fully implemented in 2014 with 80% of births in the large market being covered under 

EBP.  Blue Cross Blue Shield, the largest commercial insurer in Arkansas , QualChoice 

Arkansas, the third largest commercial insurer, and Baptist Health, the third largest 

employer in Arkansas , had all implemented EBP by this time.  Perinatal care claims from 

Arkansas were considered exposed to the intervention, and claims from the four 

comparison states: Alabama, Kentucky, Louisiana, and Oklahoma, were considered 

unexposed.  The total perinatal costs included the associated costs of insurance claims for 

prenatal care in the 40 weeks prior to the live birth, delivery, and postnatal care up to 60 

days after the birth.  Each episode’s aggregated costs are assigned to the quarter of the 

episode’s inception (i.e. live birth).  In addition to costs, several relevant characteristics of 

the mother are available from the claims data and considered in the study.  These included: 

maternal age (under 25, 25-29, 30-34, 35+), policy holder status (policy holder, spouse, 

dependent), clinical characteristics of the delivery (fetal malpresentation, fetal distress, 

multiple gestation, preterm birth, and previous cesarean) and insurance plan type (HMO, 

PPO, POS, HDHP). 

4.2.1 Data Description 

The data, O, consist of the outcome, Y; intervention status indicator, A; and eight 

baseline covariates X = (maternal age, maternal policy holder, maternal plan type, fetal 

malpresentation, multiple gestation, previous cesarean, preterm birth, and fetal distress) 

observed at intervention time-period indicator 𝑇. The value of A = 1 indicates the 
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observation is in the intervention group and the value T = 1 indicates the observation is in 

the post-intervention time period. We will use lowercase letters to signify specific values 

for random variables.  Let P(O) be the data generating distribution of O and can be 

factorized based on the time-ordering of the data P(O)=P(Y(t)|A,X(t))*P(A|X(t)) *P(X(t)). 

The outcome, Y, is the spending for an episode and a continuous variable that depends on 

the baseline covariates of the subjects, the intervention status, and the intervention time-

period. The underlying data-generating mechanism for intervention status, A, is a function 

of the baseline covariates.    

4.2.2 Parameter of Interest 

 We are interested in assessing the effect of a policy, and in our motivating study 

this is the impact of EBP policy on perinatal costs in Arkansas.  That is, we are interested 

in the ATT or the perinatal costs in Arkansas under EBP compared to the perinatal costs in 

Arkansas without EBP.   

We now define 𝑌𝑡
𝑎 as the counterfactual, i.e. potential outcomes, in which A=a and 

T=t.  The four potential outcomes are: comparison group pre-intervention (𝑌0
0), 

comparison group post-intervention (𝑌1
0), intervention group pre-intervention (𝑌0

1) and 

then intervention group post-intervention (𝑌1
1).     We write our target parameter, Ψ, as: 

Ψ = 𝐸[𝑌1
1 − 𝑌1

0|A=1]. However, though (𝑌1
1|𝐴 = 1) is observed, the term (𝑌1

0|𝐴 = 1) is 

not.  To estimate (𝑌1
0|𝐴 = 1) , we need make some assumptions. The first assumption, 

parallel trends, states the difference in the outcomes of the comparison group pre- and post- 

intervention is a good proxy for the difference in the outcomes for the  intervention group, 

if the group were not treated.  In our example, it would be said that we expect the Arkansas 
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perinatal costs to increase at the same rate as the comparison states given that EBP was not 

implemented.  We demonstrate this assumption mathematically as: 

 E[𝑌1
0 − 𝑌0

0|𝐴 = 1] =  E[𝑌1
0 − 𝑌0

0|𝐴 = 0]   

=> 𝐸[𝑌1
0|𝐴 = 1] = 𝐸[𝑌0

0|𝐴 = 1] + E[𝑌1
0 − 𝑌0

0|𝐴 = 0] (1) 

 This assumption is not testable because the left-hand side of the equation includes 

unobserved counterfactuals.  However, we use the right-hand side of the equation as the 

first step to identify the target parameter.  The second assumption, stable unit treatment 

value (SUTVA), assumes no interference (i.e. no spillover effects) and consistency.  Under 

the no inference assumption, the treatment of one unit does not “spillover” and impact the 

outcome of another.  For example, we assume that Arkansas’ use of EBP does not impact 

how clinicians in the control states deliver care.  The consistency assumption states we can 

only observe one of the two potential post-intervention outcome (i.e. the outcome of the 

actual treatment).  More simply, a live birth could have only occurred in Arkansas or in 

one of the comparison states.  Therefore, we are always missing data for one of the two 

potential post-intervention outcomes. However, since the intervention does not impact 

outcomes retroactively, the two potential pre-intervention outcome are equal to the 

observed value for that group.  Applying this to our example, the actual perinatal cost for 

an episode in Arkansas represents both the actual outcome for the episode that occurred in 

Arkansas as well as the counterfactual outcome for an episode that occurred in a 

comparison state given it was in Arkansas.  Precisely, 
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 (𝑌0
0|𝐴 = 0) = (𝑌0

0|𝐴 = 1) = 𝑌(0,1)      (2) 

 With these assumptions in place, we can now apply them to the target parameter.  We 

begin with:  

Ψ = 𝐸[𝑌1
1 − 𝑌1

0|𝐴 = 1] (target parameter: ATT) 

 =  𝐸[𝑌1
1] − 𝐸[𝑌1

0|𝐴 = 1]  

 =  𝐸[𝑌1
1] −  𝐸[𝑌0

0|𝐴 = 1] − E[𝑌1
0 − 𝑌0

0|𝐴 = 0] (using equation (1) from the 

parallel trends assumption) 

 =  𝐸[𝑌(1,1) −  𝑌(1,0)] − E[𝑌(0,1) − 𝑌(0,0)] (using equation (2) from the 

SUTVA assumptions) 

    

By making this set of key causal assumptions, we were able to identify the 

parameter (i.e. all terms are observed values). Even though the assumptions cannot be 

tested, when applied, they can also provide an enriched causal interpretation of the 

parameter.  Hence, the difference-in-differences (DID) study setting, where the target 

parameter is ATT can be estimated using  Ψ = 𝐸[(𝑌1
1 − 𝑌0

1) − (𝑌1
0 − 𝑌0

0)].   

4.3 Super Learner Estimator for DID 

We follow the steps of G-computation to estimate the ATT, the sample data is 

presented in  
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Table 12.   

First, the outcome algorithm that will used to predict the outcome is selected.  The 

selected algorithm is trained on the sample and then the trained algorithm is used to predict 

Y (column 4) for all observations in the sample.  Next, the trained algorithm of interest is 

used to predict the four potential outcomes (columns 5-8): comparison group pre-

intervention (𝑌0
0), the comparison group post-intervention (𝑌1

0), the intervention group pre-

intervention (𝑌0
1) and then intervention group post-intervention (𝑌1

1).  The potential 

outcomes are predicted for each observation by using the covariates for each observation 

and then choosing the corresponding values for A and T.  Explicitly, for the prediction of 

𝑌0
0 for observation i, A = 0 and T = 0 is used in conjunction with the observed values for 

the other covariates for observation i.   The four values can then be substituted into: (𝑌1
1 −

𝑌0
1) - (𝑌1

0 − 𝑌0
0) for each observation in the sample (column 9). The value of the column 

labeled ATT is the estimated ATT for that sample.  We repeat this process 500 times and 

take the mean of the ATT across the 500 samples. 

Super learner is an ensemble machine learning algorithm used for prediction.  

Ensemble techniques incorporate several machine learning algorithms into the prediction. 

The advantage of these techniques is they out perform better using any single algorithm.  

Super learner implements a library of prediction algorithms and then creates a prediction 

based on the weighted average of the algorithms in the library.  We incorporate a library 

of three algorithms: generalized linear model (glm), penalized regression with a lasso 

(glmnet), and random forests (randomForest).  Glmnet fits a generalized linear model via 

penalized maximum likelihood.  The penalty can be a weighted sum of L1 (lasso) and L2 
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(ridge) regularization which help with variable selection and shrinkage.  Random Forests 

create an ensemble of decision trees, trained on different randomly selected samples.  Each 

observation’s final predicted value is the mode value (i.e. majority vote) across all the 

decision trees.  The same steps for G-computation are used but super learner is being used 

as the prediction algorithm instead of regression.  In this case, we input all six variables 

into the algorithm: age, fetal.distress, fetal.malpresentation, multiple.gestation, 

preterm.birth, and previous.cesarean. 

 

Table 12: Sample of Simulated Data with Predicted Outcomes Based on Correctly 

Specified Regression Model. Data has True Effect Size = -250  

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

ID A T Y 𝑌0
1 𝑌0

0 𝑌1
1 𝑌1

0 ATT 

36044 0 0 
      
5,719.69  

      
5,013.34  

      
6,498.98  

      
6,757.91  

      
8,485.09  

     
(241.54) 

802089 1 1 
    
10,575.68  

    
10,414.67  

    
11,900.32  

    
12,159.24  

    
13,886.42  

     
(241.54) 

77387 0 1 
    
21,554.49  

    
17,542.05  

    
19,027.69  

    
19,286.61  

    
21,013.79  

     
(241.54) 

55939 0 1 
      
9,377.47  

      
4,907.42  

      
6,393.06  

      
6,651.99  

      
8,379.17  

     
(241.54) 

342480 1 0 
    
12,079.57  

    
12,537.81  

    
14,023.45  

    
14,282.38  

    
16,009.56  

     
(241.54) 

987954 1 0 
      
5,361.09  

      
6,832.07  

      
8,317.71  

      
8,576.64  

    
10,303.82  

     
(241.54) 

 

4.4 Simulation Study Design 

To determine the performance of our proposed super learner estimator, we tested the 

method under a set of simulated data with different characteristics.  The simulated data was 

based on the data from the Arkansas study; we incorporated the distributions and 
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relationships of the variables.  For the simulation, we generated a population of 1 million 

observations.   

4.4.1 Baseline Covariates 

Maternal age (𝑎𝑔𝑒) was drawn from a truncated normal distribution with the 

following parameters: 𝑚𝑖𝑛 = 18, 𝑚𝑎𝑥 = 45, 𝑚𝑒𝑎𝑛 = 28.4, and 𝑠𝑑 = 8.  Maternal plan 

type (plan.type) considers the type of health insurance plan and serve as a proxy for 

unobserved characteristics of the mother, such as household income.  Maternal plan type 

was also generated from a multinomial distribution with four categories: Health 

Maintenance Organization (HMO), Preferred Provider Organization (PPO), Point of 

Service (POS), and High Deductible Health Plan (HDHP) and respective probability vector 

𝑝𝑝𝑙𝑎𝑛.𝑡𝑦𝑝𝑒 = (0.02, 0.71, 0.14, 0.13).  The indicator variables for each of these categories 

are referred to as (plan.type_HMO, plan.type_PPO, 𝑝𝑙𝑎𝑛. 𝑡𝑦𝑝𝑒_POS, 𝑝𝑙𝑎𝑛. 𝑡𝑦𝑝𝑒_HDHP).   

Maternal policy holder (𝑝𝑜𝑙𝑖𝑐𝑦) identifies the main person who is covered by the insurance 

and responsible for paying the premiums, also referred to as the primary policy holder. The 

variable, policy, was generated from a multinomial distribution with three categories 

(policy holder, spouse, and dependent) and probability vector, 𝑝𝑝𝑜𝑙𝑖𝑐𝑦 = (0.37, 0.4, 0.23), 

respectively. The indicator variables for each of these categories are referred to as 

(policy_PH, policy_SP, and 𝑝𝑜𝑙𝑖𝑐𝑦_𝐷𝐸𝑃), respectively. Maternal policy holder serves as 

a proxy to incorporate unobserved characteristics of the mother.  The remaining covariates, 

fetal distress (fetal.distress), fetal malpresentation (fetal.malp), multiple gestation 

(multi.gestation), preterm birth (preterm.birth), previous cesarean (prev.cesarean),  and 

metropolitan statistical area (msa) are modeled as truncated normal distribution between 0 
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and 1.  The higher the value for each is interpreted as a higher probability of the individual 

having the characteristic.  For example, the higher the value of msa the higher probability 

the observation lives in a rural area.  Each was generated with a mean and a standard 

deviation.  The mean vector 𝑝𝑏 = (0.07, 0.02, 0.02, 0.07, 0.18, 0.3) for each covariate 

respectively.  The standard deviation vector 𝑠𝑏 = (0.04, 0.01, 0.01, 0.04, 0.1, 0.15).  

Figure 14 shows the simulated data of the baseline covariates.    

 

  

Figure 14: Simulated Data of Maternal Characteristics 

 

4.4.2 Policy Intervention Status 

The time-period variable, T, is an indicator for the post-intervention time period 

and generated by a series of binomial distributions and subsequent assignments to avoid 
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time conflicts.  The intervention assignment variable, A, was generated from a binomial 

distribution with a probability, 𝑝𝐴 = exp (0.65 + 0.1 ∗ 𝑚𝑠𝑎 − 0.05 ∗ 𝑝𝑜𝑙𝑖𝑐𝑦𝑃𝐻 − 0.08 ∗

𝑝𝑙𝑎𝑛. 𝑡𝑦𝑝𝑒𝐻𝑀𝑂)−1. The intervention assignment variable is dependent on msa,  policy, and 

plan.type to reflect the relationships observed in the study data.  Figure 15 shows the 

simulated data of the baseline covariates that influence the intervention assignment. 

 

 

Figure 15: Simulated Data of Maternal Policy, MSA, and Insurance Plan Type 

 

4.4.3 Perinatal Episode Spending 

We introduce an unmeasured confounder, 𝑈𝑌 , for such considerations as physician 

price sensitivity.  𝑈𝑌 is generated from a normal distribution with a mean = 0 and sd = 250. 

The outcome variable, 𝑌, is the perinatal spending for an episode. For the simulation, Y 

was generated to produce three different effect sizes (-250, -400 and -750) referred to as 𝑌𝐼 
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, 𝑌𝐼𝐼 , and 𝑌𝐼𝐼𝐼 respectively.  The effect size is the cost difference, in dollars, for a randomly 

selected individual within the treatment group.  Therefore, a negative sign would indicate 

cost savings.  𝑌 is generated from a normal distribution.   

𝑌𝐼 has a mean of : 6200 –  1500 ∗ A −  250 ∗ (𝑇 ∗ A) + exp (
𝑎𝑔𝑒

4
) + 800 ∗ 𝑓𝑒𝑡𝑎𝑙. 𝑚𝑎𝑙𝑝 +

1200 ∗ 𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + 500 ∗ 𝑝𝑟𝑒𝑣. 𝑐𝑒𝑠𝑎𝑟𝑒𝑎𝑛 + (𝑎𝑔𝑒2) ∗ 𝑓𝑒𝑡𝑎𝑙. 𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠 +

1800 ∗ 𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ + (105) ∗ 𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ∗ 𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ + 𝑈𝑌 and SD = 

750.   

 𝑌𝐼𝐼 has a mean of : 6200 –  1500 ∗ A −  400 ∗ (𝑇 ∗ A) + exp (
𝑎𝑔𝑒

4
) + 800 ∗

𝑓𝑒𝑡𝑎𝑙. 𝑚𝑎𝑙𝑝 + 1200 ∗ 𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + 500 ∗ 𝑝𝑟𝑒𝑣. 𝑐𝑒𝑠𝑎𝑟𝑒𝑎𝑛 + (𝑎𝑔𝑒2) ∗

𝑓𝑒𝑡𝑎𝑙. 𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠 + 1800 ∗ 𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ + (105) ∗ 𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ∗

𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ + 𝑈𝑌 and SD = 1200.    

 𝑌𝐼𝐼𝐼 has a mean of: 6200 –  1500 ∗ A −  750 ∗ (𝑇 ∗ A) + exp (
𝑎𝑔𝑒

4
) + 800 ∗

𝑓𝑒𝑡𝑎𝑙. 𝑚𝑎𝑙𝑝 + 1200 ∗ 𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + 500 ∗ 𝑝𝑟𝑒𝑣. 𝑐𝑒𝑠𝑎𝑟𝑒𝑎𝑛 + (𝑎𝑔𝑒2) ∗

𝑓𝑒𝑡𝑎𝑙. 𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠 + 1800 ∗ 𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ + (105) ∗ 𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ∗

𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ + 𝑈𝑌 and SD = 2250.   

The distribution for the 𝑌𝐼 , 𝑌𝐼𝐼 , and 𝑌𝐼𝐼𝐼 can be see in Figure 15. 
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Figure 16: Density of Simulated Perinatal Spending 

 

4.4.4 Simulation Scenarios and Results  

We use the simulation to demonstrate the following.  First, we know if we knew 

the true data-generating distribution of the outcome, we could correctly predict the outcome 

values.  However, this rarely happens in practice.  Hence, the goal is to get as close as 

possible to the true value.  To show this, we estimate the ATT using a correct specification 

for the outcome regression.  This represents the ideal scenario.  Next, we use a regression 

that is misspecified, the common scenario in real-world practice.  Third, we use super 

learner which predicts the outcome without needing to make strict assumptions about its 

functional form. The bias for two sample sizes (2,000 and 5,000) is calculated for all three 

effect sizes (𝑌𝐼 , 𝑌𝐼𝐼 , and 𝑌𝐼𝐼𝐼) and for each of the three estimators.  
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4.4.4.1 Regression Outcome 

In our first example, the fit will be based on the correctly specified regression model 

where  E(Y|A, 𝐗) =   A +  𝑇 + (𝑇 ∗ A) +  exp (
𝑎𝑔𝑒

4
)  +  𝑓𝑒𝑡𝑎𝑙. 𝑚𝑎𝑙𝑝 +

𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + p𝑟𝑒𝑣. 𝑐𝑒𝑠𝑎𝑟𝑒𝑎𝑛 + (𝑎𝑔𝑒2) ∗ 𝑓𝑒𝑡𝑎𝑙. 𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠 +  𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ +

 𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ∗ 𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ.  The results of the completed procedures for all six 

scenarios are listed in Table 13.   

 

Table 13: Average Treatment Effect Among the Treated (ATT) Estimates and the 

Standard Error by Effect Size and Sample Size for Correctly Specified Regression 

Model 

True Effect Size Sample = 2,000 Sample = 5,000 

-252.39 -252.6 (SE =78.92) -251.6 (SE =46.06) 

-403.82 -398.4 (SE =112.19) -400.2 (SE =72.36) 

-757.16 -749.2 (SE =201.6) -750.7 (SE =127.37) 

 

In the second scenario, we use a regression algorithm that is misspecified by leaving 

out the variable age and all the interaction terms.  Hence, the regression model is:  

E(Y|A, T, 𝐗) =  𝐴 +  𝑇 +  A ∗ 𝑇 +  𝑓𝑒𝑡𝑎𝑙. 𝑚𝑎𝑙𝑝 + 𝑚𝑢𝑙𝑡𝑖. 𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 +

𝑝𝑟𝑒𝑣. 𝑐𝑒𝑠𝑎𝑟𝑒𝑎𝑛 + 𝑓𝑒𝑡𝑎𝑙. 𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠 + 𝑝𝑟𝑒𝑡𝑒𝑟𝑚. 𝑏𝑖𝑟𝑡ℎ.  The results are listed in Table 14.   
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Table 14: Average Treatment Effect Among the Treated (ATT) Estimates and the 

Standard Error by Effect Size and Sample Size for Misspecified Regression Model 

True Effect Size Sample = 2,000 Sample = 5,000 

-252.39 -152.9 (SE =922.69) -197.5 (SE =616.15) 

-403.82 -268.0 (SE =915.87) -334.8 (SE =595.29) 

-757.16 -617.7 (SE =932.61) -689.4 (SE =604.24) 

 

4.4.4.2 Super Learner 

In the third scenario, we use super learner.  For super learner we include all the 

covariates used in the generation of Y: T, A, age, fetal.malp, multi.gestation, prev.cesarean, 

fetal.distress, and preterm.birth. However, we do not assume a functional form for Y.  The 

results for super learner are listed in Table 15.   

 

Table 15: Average Treatment Effect Among the Treated (ATT) Estimates and the 

Standard Error by Effect Size and Sample Size for Super Learner  

True Effect Size Sample = 2,000 Sample = 5,000 

-252.39 -190.2 (SE =150.96) -203.3 (SE =92.36) 

-403.82 -342.1 (SE =120.1) -356.5 (SE =76.28) 

-757.16 -593.6 (SE =211.2) -651.5 (SE =146.85) 

 

 

In this simulation study, we used G-computation with correctly specified and 

misspecified parametric regressions and super learner to estimate the ATT.  The results in 

Table 13 show, as expected, that the correctly specified regression has the lowest bias 

across all effect sizes and sample sizes.  We also see from all three tables (Table 13, Table 
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14 and Table 15)  that larger sample sizes assist in decreasing bias.  The misspecified 

regression produced (Figure 17 and Figure 18)  the highest percentage bias for the lower 

effect sizes (-250 and -400).  Super learner shows significant bias reduction over the 

misspecified regression for the lower effect sizes.  Super learner’s performance gains are 

even greater at the smaller size.  For example, we see for the effect size of 400 at the sample 

size = 2,000, there is over a 50% reduction in bias.  This is an important finding, that super 

learner had comparable bias at a sample size of 2,000 as the misspecified regression at a 

sample size of 5,000.  In practice, where we often have small sample sizes relative to the 

full population, super learner allows us to obtain estimates with the bias percentage of a far 

larger sample size.  However, super learner has the highest percentage bias for the higher 

effect size (-750).  G-computation showed minimal bias when the outcome was correctly 

specified, demonstrating its value as an estimator.  Though it is important to note, for both 

the misspecified outcome regression and the super learner with G-computation there is 

significant bias, with most of the simulation scenarios yielding over 10% bias.  This 

highlights the limitations of G-computation, that when the prediction algorithm for Y is 

misspecified, we can expect bias.  
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Figure 17: Percentage Bias by Estimator - Sample Size = 2,000 

 

 

Figure 18: Percentage Bias by Estimator - Sample Size = 5,000 
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4.5 Discussion  

G-computation is a popular method to estimate causal effects in observational 

studies, although it has been infrequently used in DID studies.  Some previous research has 

shown G-computation’s effectiveness for estimating ATT with parametric regression [89].  

However, other research has shown that G-computation is sensitive to model 

misspecification in DID [83, 90].  In practice, researchers rarely know the correct 

specification of the data which can lead to estimates with high bias.  In this chapter, we 

attempt to address this limitation by implementing a machine learning algorithm for the 

relationship between the outcome and the covariates.  We created a simulation study to 

evaluate the G-computation estimator with super learner to estimate the ATT, which is a 

novel contribution to the literature.  We base the simulation on a previous study that 

assessed the impact of episode-based payment policy on perinatal costs.    Machine learning 

methods, such as random forest, can account for complex data structures and do not require 

the researcher to choose the functional form of the data.  Furthermore, by using an 

ensemble machine learning method, we can implement multiple algorithms providing 

additional flexibility to best model the data.  Given that observational data can often be 

complex, these methods can greatly reduce bias.  In the simulation, we saw bias reductions 

of over 50%.  An additional benefit we found in our work, was there was substantially 

lower standard deviation in the estimates with super learner.  This can be an important 

feature if sample sizes are smaller and could explain the larger performance gains we see 

in the smaller sample sizes.   Nevertheless, our proposed method did not reduce bias for 

the largest effect size.  Therefore, we propose future work to implement double robust 

targeted learning with super learner to the simulation data.  The advantages of the double-
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robust estimator may provide further bias reduction than that of the G-computation with 

super learner. If such is the result, we also suggest a replication study in which we apply 

TMLE to the real data of the original study.       

4.6 Targeted Learning 

Targeted maximum likelihood estimation (TMLE) is a nonparametric estimator that 

has been shown to reduce bias and improve the accuracy over commonly used methods. 

The double robust feature protects the estimator from misspecification of either the 

outcome mechanism or the exposure mechanism.  This is due to TMLE’s approach of 

incorporating both the outcome and the exposure mechanism into its estimation sequence. 

These features of TMLE allow for a more realistic and flexible estimator within a health 

care setting.   

Previous studies have used TMLE to estimate a variety of parameters and in a wide 

range of applications. Weber used TMLE for three estimands (outcome post-intervention, 

difference of community level means and DID) and demonstrated the bias that occurs when 

a target parameter’s identification assumptions aren’t held [91].  Schuler and Rose 

presented an overview of TMLE for estimating the average treatment effect and discussed 

its benefits over IPW and G-computation [90].  Van der Laan et al. showed a one-step 

TMLE for the ATT [92]. Rose and Normand used TMLE to estimate the patient outcome 

for coronary artery stents; further developing the approach to accommodate multiple 

unordered treatment options and cluster observations [93]. TMLE has also been used for 

longitudinal data to determine the impact of an exposure that occurs over time [94].  This 

study implemented longitudinal TMLE to estimate the risk of ischemic heart disease.  
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Nevertheless, TMLE has not been implemented for the DID study design like the one 

described here, in which there is a pre-intervention and a post-intervention time period.  

The methodological contribution of this proposed future work is to extend TMLE to this 

setting and assess its performance compared to G-computation.   
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CHAPTER 5.  EDGE WEIGHT ESTIMATION FOR SOCIAL 

NETWORKS 

5.1 Introduction  

Social networks have been demonstrated to be valuable tools in visualizing 

relationships and assessing interdependencies.  Hence, they can provide powerful insight 

for heath care problems.  Social networks have been used to assess the impact of social 

influence on health outcomes such as smoking [95-97], obesity [98, 99], and diabetes [100, 

101].  They have be used to track disease spread such as HIV transmissions [102] and are 

increasingly used in a range of epidemiological applications [103].  Health insurance 

claims have also served as a data source to create social networks as well.  These networks 

offer unique connections that can be used to evaluate physician behavior.  Appel, et al used 

health insurance claims to track physician activities across 18 months [104].  The paper 

demonstrated the value of claims data for social network analysis by creating networks to 

evaluate three types of physician relationships: physician-patient, physician-physician and 

physician-health care provider.  Herrin et al showed how physician peer groups can be 

identified with high accuracy using a patient-sharing network developed from claims data 

[105].  Landon et al showed how social networks derived from claims data can identify 

naturally occurring networks of physicians.  The results can be used to inform the structure 

of Accountable Care Organizations (ACOs),  a group of health care providers that offer 

coordinated care for the chronically ill [106]. In addition patient-sharing social networks 

from claims data were able to identify professional networks of physicians and evaluate 

the varying network characteristics of the professional network [107].  Medical claims data 
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has proven to be a rich source for social network analysis research and to be of good quality 

[108].  However, there can be missing elements in the data [109].   When choosing to use 

claims data to create social networks, the weight of the edges contain pertinent information 

regarding the strength of the relationship between the two entities.  Hence, it is important 

that the information regarding the weight of the edges is as complete as possible.  Accurate 

weight estimation can  be useful for social networks as they can serve as a data quality tool 

to check if the weights provided in the social network are correct.  Edge weight prediction 

can also help determine which relationships will strengthen (i.e. increase in weight) or 

weaken (decrease in weight) in the next few time periods. In this chapter, we address this 

issue by presenting three methods to estimate weights of existing edges.  

Network Science research related to estimation of edge characteristics has primarily 

focused on edge existence.  For example, Wasserman used a range of logit and logistic 

regression models to estimate edge existence on a range of generated social networks [110].  

Clauset and Moore presented a general technique for inferring hierarchical structure from 

network data [111].  They showed how knowledge of the hierachical structure can be used 

to predict edge existence with high accuracy.  Zhao et al approached edge prediction for a 

partially observed network by ranking the probabilty of an edge existing based on observed 

edges and node covariates [112].  The authors relied on an assumption that if one pair of 

nodes is similar to another pair of nodes then the probability of a edge existing hierarchical 

structure between the second pair is directly proportional to their similarity.  Then they 

predict the probability of the missing edge using the similarity matrix based on a node 

similarity measure.  Fire et al used network topology features to predict edge existence 

[113].  The additional contribution was the selected features were scalable for large social 
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networks.  Many other methods have been used including using common neighbors [114], 

deep learning [115] and graph neural nets [116].    

Despite extensive research on prediction of edge existence, much less work has been 

done on weighted graphs. Zhao et al used similarity measures based on reliable routes that 

incorporated the weights of the paths between two non-adjacent nodes of the network to 

predict the existence of edges and their weights using logistic regression [117].  The 

approach performed a transformation of the weights to normalize them between 0 and 1 

and then performed logistic regression to estimate the log odds ratio.  The work carried the 

assumption that the product of the weights along a path from one node to the next is a 

reliable estimator for weights (i.e. that nodes are more likely to have a edge if they share 

similar paths.  This may be true for protein-protein interactions (as seen in the paper) but 

not necessarily true for social networks.  Hou and Holder used deep learning with similarity 

of the nodes based on their common neighbors [118].  Though a promising approach that 

provided good accuracy, interpretability of the data is lost with this estimation method.   Sa 

and Prudencio focused on a supervised learning approach for edge prediction based on 

topological features of weighted social  networks [119].  We intend to expand on this work 

by using weighted network characteristics but instead of edge prediction, we will focus on 

weight prediction. 

For this chapter, the problem statement is to develop a supervised estimation 

technique for edge weight prediction of a partially observed social network.  We leverage 

a range of topological characteristics of the graph to inform and train the model.  Additional 

benefits for the approach is the flexibility to incorporate metadata, something that has only 

been done for prediction of edge existence.   
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5.2 Problem Set-up and Definition 

We consider the problem of weight estimation of an existing edge.  We define the 

graph, G = (V,E,W), 𝑉 is a vector of all the nodes of the network and |𝑉| is the cardinality, 

or the number of nodes in the network.  Likewise,  |𝐸| is the number of edges and 𝐸𝑣𝑥𝑣 is 

a matrix of the edges where 𝐸𝑖,𝑗  = 1 indicates an edge exists from node i  to node  j.  𝑊𝑣𝑥𝑣 

is the matrix of the weights of the edges.  Let 𝑤𝑖,𝑗 be the entry of the ith row and jth column 

of the W matrix and represents the weight of the edge between nodes i and j.  The setting 

for this study consists of having observed all the edges of the network and partially 

observed  the weights.  Hence, W will contain some missing values.       

5.2.1 Sample Problem 

 

Figure 19: Sample of Faculty Network 

 

We present a simplified example made from a small sample of a faculty hiring 

network for business schools.  In this directed network, each node represents an institution 
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and the weight of the directed edge (𝑤𝑖,𝑗)  is the total number of individuals who received 

their PhD from institution i and was hired as a faculty member at institution j.   

 

Table 16: Adjacency Matrix of Sample Faculty Network 

Nodes 1 3 4 12 43 

1 20 21 18 23 4 

3 9 60 8 30 ? 

4 6 6 ? 10 7 

12 2 ? 3 8 2 

43 0 1 0 0 5 

 

 

 

Table 17: Metadata of Sample Network 

Node ID USN2012 Region Institution 

1 1 West Stanford  

3 2 Northeast Harvard  

4 7 West UC Berkeley 

12 3 Northeast University of Pennsylvania 

43 34 Northeast Boston University  

 

In this setting, we see there is high variation among the values of the edge weight.  For 

example, there are lower frequencies, such as the edge e12,4 , and higher frequencies, such 

as the edge e3,12.  Self-connections are permitted, and it appears that most schools prefer 

hiring alumni from their own institution.  There is metadata available for the nodes and it 

is listed in Table 17.  

 



104 

5.2.2 Data Description 

The faculty hiring dataset is found in the Index of Complex Networks (ICON) 

[120].  It contains information of faculty hiring for years 2011-2013 and including 

approximately 19,000 tenure-track or tenured faculty from 461 North American 

departments in business (206 nodes), computer science (113 nodes), and history (145 

nodes).  Nodes are academic institutions and a directed weighted edge from node i to node 

j represents that the number of graduates from institution i who are now faculty members 

at institution j.  The attributes and their descriptions are listed below.  We used a subset of 

the observed attributes that were relevant to weight prediction.  The institutions that were 

not included in the 461 institutions but granted PhDs to current faculty members within the 

sample, were aggregated into the observations of “All others.” 

The data provides information for each specific hire. Weight of the edge is 

determined by aggregating all the hires from a PhD-issuing university to the hiring 

institution.  A network was created for each discipline (Figure 20).  The business network 

has the most nodes and is also the most dense (i.e. highest average node degree).  Four 

attributes are provided in the data set for each node.  US News and World Report ranking 

is a factor variable that is the ranking of the specific department from the US News college 

ranking for the year 2012.  Canadian schools were included within the computer science 

departments and were given a NA for this variable.  Geographic region is a factor variable 

with values Northeast, Midwest, South and West for the US as well as Canada.  The factor 

level “Earth” is used for the “All others” observation.  Percentage of male is a continuous 

variable between 0 and 1 and is the percentage of hires from that PhD-issuing node (source 

node) that were male.  This is a derived feature since the data only provided the gender for 
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each hire.  Percentage of assistant professors is the percentage of the hires for the hiring 

institution that are the assistant professors.  This also is a derived feature since the data 

only provides the current rank for each hire.  

 

Figure 20: Sample Networks with the Mean Number of Edges per a Node for 

Faculty Hiring Data  

 

5.3 Statistical Modeling 

5.3.1 Deriving and Incorporating Covariates  

We introduce 𝑆𝑖,𝑗, the calculated similarity measure of the two nodes i and j, where 

the  𝑆𝑣𝑥𝑣 matrix contains the similarity measures for all the nodes in the network.  The 

similarity measure quantifies the closeness of two vectors 𝑠𝑖 and 𝑠𝑗; the vector comprised 

of the covariate values (metadata) for nodes i and j respectively.  To calculate the similarity 

measure, 𝑆𝑖,𝑗, we have to consider two scenarios.  The first, is when all the covariates are 
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numerical values that have been standardized, then we can calculate 𝑆𝑖,𝑗 using any version 

of a p-norm, such as the exponential decay kernel [112].  That is,  𝑆𝑖,𝑗 = 𝑒𝑥𝑝 {
‖𝑠𝑖−𝑠𝑗‖

2

𝜎2
}.   

However, when the data is not continuous, we cannot use functions based on the p-

norm.  This is because if a variable is categorial with multiple categories, the categories 

are not necessarily ordered.  Therefore, the magnitude of the difference is arbitrary based 

on the number assigned to each category.  For example, if a variable is school subject and 

Business is assigned the number 1, History the number 2 and Computer Science the number 

3. Business is not any more similar to History than Computer Science, but the number 

assignment would indicate that Business is 2x more similar to History than Computer 

Science.  It is possible to create dummy variables for each categorical variable, if the 

number of categories is not too great.  This is a helpful approach when the data is mixed 

with continuous and categorical data.  Our example is a case where this could work because 

USN is an ordered categorical variable and Region does not contain too many categories.   

However, this is not the case for all situations, so in this case we propose calculating 𝑆𝑖,𝑗 

as an average of the similarity for each covariate.  We let 𝑆𝑖,𝑗(𝑟) represent the closeness of 

node i to node j for covariate r.  We then calculate 𝑆𝑖,𝑗(𝑟) across all R categorical attributes 

and take the mean.  Numerous metrics exist to calculate 𝑆𝑖,𝑗(𝑟), but we suggest Eskin’s 

work [121] due to its simplicity and its consistent performance under a range of data 

characteristics [122].  The Eskin similarity measure assigns weights to mismatches that is 

proportional to the number of categories within each attribute.  A mismatch that has more 

categories gets weighted heavier than those attributes with less categories. Eskin’s 

limitation is that it does not perform well if the data has a large number of attributes.  Given 
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metadata is often not available for networks and if available contains very few attributes 

(i.e. covariates), we do not believe this limitation will affect the metric’s appropriateness 

for our use.  See Boriah paper for a summary of similarity measures for categorical data 

[122].  We let 𝑑𝑟 represent the number of categories within attribute r, and 𝑠𝑖(𝑟) is the rth 

component of vector 𝑠𝑖 .   For example, if r were an indication variable for female gender 

and the ith node was a female, then 𝑑𝑟 = 2 and 𝑠𝑖(𝑟) = 1.  Using Eskin, we calculate 𝑆𝑖,𝑗(𝑟)  

and 𝑆𝑖𝑗 as the following:  

𝑆𝑖,𝑗(𝑟) = {

1  𝑖𝑓 𝑠𝑖(𝑟) = 𝑠𝑗(𝑟) 

𝑑𝑟
2

𝑑𝑟
2 + 2

  𝑖𝑓 𝑠𝑖(𝑟) ≠ 𝑠𝑗(𝑟)
 

 
 

𝑆𝑖,𝑗 = ∑
1

𝑅
 𝑆𝑖,𝑗(𝑟)

𝑅

𝑟=1

 

 

 

As aforementioned, metadata is often not used for the edge prediction and weight 

prediction because the information is rarely available.  More often, topological features of 

the network are used to create the predictors.  This information is valuable because it 

incorporates relational information of nodes since the metrics are derived for the edge 

instead of the node.  Given that we are interested in an attribute of the edge (i.e. weight), 

this means that unlike the node measures, these metrics can be directly entered into the 

algorithm.  We specific the features derived from the topology of the network as 𝑥𝑚 , where 

𝑚 ∈ {1,2, … 𝑝} is the index for the topological feature we include in the model and  p is the 

number of topological features considered.  Note, that XpxE is a matrix in which each 

column contains the values of the topological features an edge.  
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5.3.2 Description of Considered Topological Features 

In this section, we discuss the definitions of the topological features used as 

predictors for estimation.  Both local and macro metrics are included in the study.  Local 

metrics provide local structural information around the nodes of an edge, such as common 

neighbors.  Macro metrics are based on information of the network a few degrees away 

from the nodes connected by an edge.   We introduce the features and discuss their 

derivation when appropriate.  We specify each feature with italics to indicate that it is a 

variable.  

Source Node ID and Target Node ID are factor variables that specify the 

identification numbers of the two nodes that an edge connects.  A directed edge begins at 

the source node and ends at the target node.  If the network is undirected then the source 

and target node ids can be interchangeable.  However, we distinguish between the source 

and target node for directed graphs so we can account for reciprocity. Reciprocity considers 

the edge from node i to node j and the existence of its inverse (edge from node j to node i).  

Reciprocity is featured as an indicator variable that specifies if the inverse of the edge exists 

and Reciprocity Weight is the weight of the inverse edge. If the inverse edge does not exist, 

the reciprocity weight is designated as 0.  Average Source Outcoming Weight is the average 

weight of the outgoing edges from the source node and Average Target Incoming Weight 

is the average weight of the incoming edges to the target node.  Source Weight is also 

included and is the total sum of the outgoing weights of source node.  

Three common neighbor similarity metrics are calculated:  inverse log-weighted 

[123], Jaccard [113], and Dice [124] .  To find the common neighbors of two connected 
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nodes i and j, you first identify the set of node i’s neighbors (i.e. nodes to which i is 

connected) and the set of node j’s neighbors.  Common neighbors is the intersection of 

both of those sets.  Each of the common neighbor similarity measures are based on the 

number of common neighbors but not the weight of the edges between them.  Hence, for 

each of these features, we also derived a weighted version to incorporate the strength of 

the connections to the common neighbors.  A node’s degree is the number of edges 

connected to it.  The inverse log similarity of two nodes is the number of common 

neighbors multiplied by the inverse logarithm of their degrees.  For the weighted version, 

instead of the multiplying by the inverse logarithm of their degrees, we would multiply by 

the inverse logarithm of the edge weights of the common neighbors.   The Jaccard similarity 

is calculated by the unique number of common neighbors shared by both nodes divided by 

the total degree of the source and target node.  The Dice similarity metric is calculated as 

twice the number of common neighbors divided by the total degree of the source and target 

node.  For Jaccard and Dice metrics, we replace the number of common neighbors with the 

weights of the edges to the common neighbors.   

Community Membership is an indicator variable which specifies if the source and 

target node belong to the same community.  Community assignment was determined via a 

fast-greedy algorithm based on modularity optimization as in Clauset work [125].  Edge 

Betweenness is the feature that is the number of shortest paths that go through the edge.    

In addition, we include several directed motifs.  A directed motif is a directed triangle in 

which three nodes (u, v, w) are connected in a certain pattern.  If a directed motif exists for 

the edge of interest, the edge of interest is one of the edges that connects the three nodes in 

the specified pattern.  The value for the directed motif feature is the average weight of the 
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other two edges included in the directed motif. We first consider Direct Motif  which is the 

variable for the pattern u-> v -> w-> u.  For example, in Figure 21, let u =1, v=2, and w = 

12.  The edge e1,2  would have the Direct Motif value of 14.5 from the average of the edge, 

e2,12 , from node 2 to node 12 and the edge, e12,1 , from node 12 to node 1.  If there are 

multiple such triangles, we can take the average of across all triangles. 

 

Figure 21: Sample Network with Directed Motifs 

 

Feed Forward W Motif has the pattern u -> v -> w , u -> w.  From Figure 21, we 

see the Feed Forward W Motif variable for the edge e1,2  would be the average of edges 

e1,12 and e2,12 which is 25 (the mean of 23 and 27).  Feed Forward V Motif has the pattern  

w->u->v, w->v and the value for the edge e1,2  in  Figure 21 would be the average of  edges 

e12,1 and e12,2  which is 4 (mean of 2 and 6).   
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5.4 Proposed Estimators  

In this section, we discuss the three different estimators that we compare in the study.  

We introduce the estimator and then discuss how we apply it for the purpose of predicting 

edge weights for a social network.  

5.4.1 Poisson Regression with Covariates 

The baseline estimator provides the least flexibility for estimation by constraining 

it to the functional form of a single Poisson distribution.  Poisson regression is appropriate 

since we are only looking at social networks.  Weights in social networks are a discrete 

variable based on some metric of strength that is used (i.e. number of interactions, counts, 

etc).  For ease of notation, we collapse the indexes i,j to 𝑔 where 𝑔 ∈ {1, … |𝐸|} represents 

the edge number.  Let  𝑤𝑔 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑔).  Hence, we model the weight as the following:   

𝑃(w𝑔) =
λ𝑔

wg

w𝑔!
𝑒−𝜆𝑔 

 

We use the canonical link function for the Poisson Regression.  The similarity 

measure and the topological metrics are predictors for the weight.  𝛽1 is  the coefficient of 

similarity measure, 𝑆𝑔, which is derived using one of the methods discussed in 5.3.1. This 

includes the node specific information (metadata).  For the faculty hiring example, this 

includes: US News Ranking, Region, Percentage Male, Percentage Assistant Professors.  

Since the data is mixed (categorical and continuous), the Eskin similarity measure is used 

to calculate 𝑆𝑔.   𝛽𝑚 is the coefficient for the topological metric, 𝑥𝑚,𝑔 for edge eg  (described 
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in 5.3.2) and 𝑚 ∈ {1,2, … 𝑝}  is the index for the topological feature we include in the 

model.  For our example, 𝑝 = 14, and includes Source ID, Target ID, Community 

Membership,  Edge Betweenness, Similarity Inverse log-weighted, Similarity Jaccard, 

Similarity Dice, Direct Motif, Feed Forward V Motif, Feed Forward W Motif, Avg Source 

Outcoming Weight, Average Target Incoming Weight,  Reciprocity,  and Reciprocity 

Weight.  This yields the following regression:   

𝑙𝑜𝑔(𝑤𝑔) = 𝛽0 + 𝛽1 ⋅ 𝑆𝑔 + ∑ 𝛽𝑚𝑥𝑚,𝑔
𝑝
𝑚=1   

 

5.4.2 Comparative Estimator: Finite Mixture Model 

We suspect that in many cases there is more than one Poisson distribution from 

which the weights of the social network are drawn.  For example, in an online social 

network we expect the social influencers (i.e. hubs) to have higher weights than the average 

user.  Therefore, we want to have an estimator that can account for multiple subpopulations 

each with its own individual rate (i.e. one for the hubs and one for the non-hubs).  To 

account for this, we introduce the finite mixture model [126, 127], where the edge weight, 

𝑤𝑔, can be modeled as a finite mixture of Poisson distributions.  Each Poisson distribution 

is the distribution for one of the subpopulations of the data.  We focus on the generalized 

case of a finite mixture model in which the number of subpopulations, called components, 

is known a priori.  We let C represent the total number of components.  Hence, the edge 

𝑒𝑔, can belong to one of C number of components and be estimated via Poisson regression 

for that component.  The indicator variable Z contains the label of the component 

membership.    The label vector  𝑍𝑔 = (𝑧𝑔1, 𝑧𝑔2, … 𝑧𝑔𝐶) consists of the component 

indicators for edge 𝑒𝑔.     Let  
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𝑧𝑔𝑘 = {
1

0

  𝑖𝑓 𝑒𝑑𝑔𝑒 𝑔 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑘
  𝑜/𝑤

 

Each component, k, has its own Poisson distribution of 𝑓Λ(𝑤𝑔, λk) and its own proportion 

(i.e. mixing weight) π𝑘. The model for the edge weight can then be written as: 

𝑓(w𝑔 , Λ) = ∑ π𝑘𝑓Λ(𝑤𝑔, 𝜆𝑘)

𝐶

𝑘=1

 

The ∑ π𝑘
𝐶
𝑘=1 = 1, Λ = {𝜆1, . . . , 𝜆𝐶} is the vector of the parameters (i.e. rates) for all C 

clusters and Θ = {π1, . . . , πC} is the vector of mixing weights.  We want to solve for the 

maximum likelihood estimate (MLE) of Λ and Θ, given the data (W).  We show how the 

EM algorithm can be used to solve the MLE.  First, we identify the likelihood for the 

occurrence of (𝑤𝑔 , 𝑧𝑔1, … , 𝑧𝑔𝐶)
𝑇
 as the joint distribution and using the Law of Total 

Probability we get 

𝑃(𝑊𝑔 = 𝑤𝑔, 𝑍𝑔1 = 𝑧𝑔1, … , 𝑍𝑔𝐶 = 𝑧𝑔𝐶) 

= 𝑃(𝑊𝑔 = 𝑤𝑔 | 𝑍𝑔1 = 𝑧𝑔1, … , 𝑍𝑔𝐶 = 𝑧𝑔𝐶) 𝑃(𝑍𝑔1 = 𝑧𝑔1, … , 𝑍𝑔𝐶 = 𝑧𝑔𝐶) 

= ∏ π𝑔

𝑧𝑔𝑘𝑓Λ(𝑤𝑔, 𝜆𝑘)
𝑧𝑔𝑘

𝐶

𝑘=1

 

Leading to the likelihood and log-likelihood being the following, respectively: 

𝐿(Λ, Θ) = ∏ ∏ π𝑔

𝑧𝑔𝑘𝑓Λ(𝑤𝑔, 𝜆𝑘)
𝑧𝑔𝑘

𝐶

𝑘=1

𝐸

𝑔=1
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log 𝐿(Λ, Θ) = ∑ ∑ 𝑧𝑔𝑘 log π𝑔 +

𝐶

𝑘=1

∑ ∑ 𝑧𝑔𝑘 log 𝑓Λ(𝑤𝑔 , 𝜆𝑘)

𝐶

𝑘=1

𝐸

𝑔=1

𝐸

𝑔=1

 (3) 

 

 

Next, we can implement the expectation step (E-step); the first step of the EM 

algorithm, by replacing the unobserved data, 𝑍𝑔𝑘, with the conditional expectation given 

the observed weights, W 

𝑃(𝑍𝑔𝑘 = 1|𝑊) =
𝑃(𝑊|𝑍𝑔𝑘 = 1)𝑃(𝑍𝑔𝑘 = 1)

∑ 𝑃(𝑊|𝑍𝑔𝑘 = 1)𝑃(𝑍𝑔𝑘 = 1)𝑘

 

 

=
π𝑘𝑓Λ(𝑤𝑔, 𝜆𝑘)

∑ π𝑘𝑓Λ(𝑤𝑔 , 𝜆𝑘)𝑘

= �̃�𝑔𝑘 

Plugging in �̃�𝑔𝑘, the expected value of 𝑧𝑔𝑘, for 𝑧𝑔𝑘 in Equation (3) , the update rule for 

the MLE  becomes:  

Q(Λ(𝑙), Θ(𝑙)) = ∑ ∑ �̃�𝑔𝑘 log π𝑘 +

𝐶

𝑘=1

∑ ∑ �̃�𝑔𝑘 log 𝑓Λ(𝑤𝑔, 𝜆𝑘)

𝐶

𝑘=1

𝐸

𝑔=1

𝐸

𝑔=1

 

The maximization step (M-step) is the second step in the EM algorithm.  We update 

the current parameters with the expected value using the complete data likelihood.  The 

mixing weights, Θ , can be found via the mean of the expected value of the conditional 

expectation, where |𝐸| is the number of edges.  You can see here that the proportion is 

equal to the mean probability across all the edges belonging to component k.   
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π𝑘
(𝑙+1)

=
∑ �̃�𝑔𝑘𝑔

|𝐸| 
 

If the component parameters (i.e. rate of the component) are unknown as well, we can 

estimate the rate of component k by taking the mean of the conditional expectations, as 

seen here:  

λ𝑘
(𝑙+1)

=
∑ �̃�𝑒𝑘w𝑒𝑒

∑ �̃�𝑒𝑘𝑒
 

 

5.4.2.1 Incorporating Topological Information via Covariates  

We have determined how to solve for the parameters and the mixing weights of the 

components.  We now move to the next step of incorporating the derived features to use as 

predictors for the finite mixture model.  We start with the same log-likelihood model as 

before, except the probability distribution of w is now also dependent on the features 

(𝑋𝑔, 𝑆𝑔) : 

log 𝐿(Λ, Θ) = ∑ ∑ 𝑧𝑔𝑘 log π𝑔 +

𝐶

𝑘=1

∑ ∑ 𝑧𝑔𝑘 log 𝑓Λ(𝑤𝑔, 𝜆𝑘 , 𝑋𝑔, 𝑆𝑔)

𝐶

𝑘=1

𝐸

𝑔=1

𝐸

𝑔=1

 

 

The EM equations are similar from the previous scenario, except now there is this 

added dependency.  Recall, �̃�𝑔𝑘, is the probability that an observed edge g belongs to 

component k based on the observations, W.  Now �̃�𝑔𝑘 will consider the similarity measure, 
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𝑆𝑔, and all of the edge metrics, 𝑋𝑔 .  Z can be estimated using a logistic regression and 

solving for the coefficients via MLE.   

𝑃(𝑍𝑔𝑘 = 1|𝑋𝑔, 𝑊, 𝑆𝑔) =
exp (𝐵0𝑘 + 𝛽1 ⋅ 𝑆𝑔 + ∑ 𝐵𝑚𝑘𝑥𝑚𝑔)𝑝

𝑚=1

∑ exp (𝐵0𝑘 + 𝛽1 ⋅ 𝑆𝑔 + ∑ 𝐵𝑚𝑘𝑥𝑚𝑔)𝑝
𝑚=1

𝐶
𝑘=1

= �̃�𝑔𝑘 

The weight is estimated using our initial formula:        

𝑓(w𝑔, 𝜆𝑘|𝑋𝑔, 𝑆𝑔) = ∑ 𝑃(𝑍𝑔𝑘 = 1|𝑋𝑔, 𝑊, 𝑆𝑔)𝑓Λ(𝑤𝑔, 𝜆𝑘 , 𝑋𝑔, 𝑆𝑔)

𝐶

𝑘=1

 

Additional discussion on how to incorporate covariates into mixture models can be found 

in work by Gudicha and Vermunt [128]. 

5.4.3 Comparative Estimator: Ensemble Machine Learning 

For the third estimator, we consider super learner [129].  Super learner is an 

ensemble machine learning algorithm used for prediction.  It implements a library of 

prediction algorithm.  Using cross validation, each algorithm is trained and gives a 

prediction for each observation.  Then the predictions of each algorithm are used as the 

predictors in a linear regression with the outcome.  Hence, the final prediction is a weighted 

average of each algorithm’s prediction.  We incorporate five algorithms into the library: 

generalized linear model (SL.glm), glm with an elastic net penalty (SL.glmnet),  random 

forest (SL.randomForest), neural net (SL.nnet), stepwise regression (SL.step) .   
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5.5 Evaluation of Faculty Hiring Social Network  

In this section, we discuss the evaluation process and the results from the three 

estimators for the faculty hiring example.  We use precision error to assess the performance 

of each estimator: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =
∑ (𝑤𝑔 − �̂�𝑔)

2𝐸
𝑔=1

∑ (𝑤𝑔 − �̅�𝑔)
2𝐸

𝑔=1

 

 

We first create the training and test sets. Random sampling is not an effective way 

to sample networks because the random selection can result in a disconnected sample graph 

and essential network features lost.  Therefore, we sample the network using shortest paths; 

a method proven to work well for social networks [130].  The process for shortest path 

sampling is as follows.   

(1) Two nodes are randomly selected in the network 

(2) The shortest path between those two nodes are calculated using Dijkstra’s algorithm 

and all the nodes on the shortest path are logged.  For this example, the distance 

between two nodes is the inverse of their edge weight, since we wanted the edges 

in the sample network to be those with the highest weights.   

(3) Repeat steps (1) and (2) n times (we use n=2*|E|)  

(4)  The nodes are ranked in descending order based on how many times each appeared 

in a shortest path 



118 

(5) The top 60% of the nodes are kept and their corresponding edges are used to create 

the core sample network.  Another set of nodes from the bottom 40% are selected 

at random to bring the total to 80% of nodes in the sample network.   

(6) Derive all the features based on the sample network and use it to train the estimators  

(7) Estimate all the weights in the sample network 

(8) Repeat steps (5) to (7) for 50 runs and then take the mean precision across all the 

runs   

The results of the analysis by discipline are presented in Table 18.  We see that 

increasing the number of components from the glm (k=1) to the 3-component finite mixture 

model improves the performance; demonstrating our assumption that there are multiple 

subpopulations within the network.  From Figure 20, we know that the network based on 

the business hires has the highest mean degree.  The results suggest that more dense 

networks produce lower precision error for the regression estimators.  We also see that 

super learner has a major improvement in performance.  This lends us to believe the 

ensemble machine learning method is the best estimator for the edge weights.   

 

Table 18: Precision Measure by Faculty Discipline for Varying Number of Sub-

Components (k) of a Mixed Poisson Estimation for the Training Set 

  Precision Measure 

Faculty Discipline k=1 k=2 k=3 SL 

Business 0.37 0.21 0.15 0.06 

Computer Science 0.45 0.28 0.27 0.05 

History 0.44 0.40 0.26 0.04 
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5.6 Conclusions and Health Care Application  

The motivation of this work is to predict the edge weights for social networks.  Within 

health care, social networks are often used to measure the impact of social influence and 

the strength of the ties to one’s community on health care outcomes and decisions.  Hence, 

knowing the strengths of these relationships can be particularly useful.   Unlike in our work, 

previous research in edge weight prediction focused on metrics originally designed for 

unweighted networks.  The metrics were not adjusted to leverage the additional information 

provided by the strength of the relationship between the two nodes.  In addition, to our 

knowledge, metadata has not been used in previous work to assess weight prediction in 

social networks.  Given that metadata allows for some additional intuitive understanding 

of how node characteristics affect the strength of a relationship, this is a desired feature for 

health care applications.  Our initial results are promising and showed that the finite 

mixture model does have higher performance with lower precision error.  The 

implementation of super learner provides significant gains in performance, validating this 

approach for weight prediction.  After demonstrating the value of this approach, we 

propose to implement the work on other social networks to see how different characteristics 

of the network can impact the precision of the estimator, such as mean degree.  In addition, 

since our work only included a subset of potential topological features, more features can 

be added to improve estimation.   Furthermore,  we propose applying the work of this study 

to a health care network.     

As interest in opioid research grows in the US, social networks from claims data is 

being used to identify networks with high-volume opioid prescribers [131].  Prescription 

claims data are also used in social network analysis to identify patients who are doctor 
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shopping [132].  The network specified opioid prescription recipients as nodes and an edge 

indicated that the two recipients shared a physician.  The weight of the edge was the number 

of shared physicians between recipients.  The research leveraged the knowledge that doctor 

shopping was a social process and provided a method to identify “pill mills”.  Expanding 

on this work, we suggest applying our approach to a network based on Medicaid claims 

data.  Two networks could be created and assessed, a patient-sharing network among 

clinicians of opioid patients and a physician-sharing network among opioid users.  In the 

patient-sharing network, the nodes are clinicians, determined by the NPI, and an edge 

indicates that the two clinicians share patients.  The weight would be the number of patients 

the two clinicians share.  For the physician-sharing network, it would be the opposite.  The 

nodes would be patients and an edge would indicate that two patients share a physician.  

The weight of the edge would be the number of physicians shared between the two patients.  

With a near zero precision error, our estimator could perform quality assurance on the 

Medicaid network and predict which relationships will increase or decrease in strength in 

the next few time periods.  Being able to predict changes in the relationships of the network 

can inform near-term effects such as health outcomes and help target high- risk individuals.   
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CHAPTER 6. CONCLUSION 

In this thesis, we present a series of health care problems that are solved with 

techniques from analytics and machine learning.  We focus our work on data-driven 

solutions from large data sets and show different approaches for addressing the limitations 

that arise with these data sets.    

We begin with chapter 2, where we assess the impact of the CDC’s contraceptive 

recommendations in the MEC.  Since almost half of all US pregnancies are unintended 

[133], the study had major implications for women within the US.  Our analysis included 

over 12 million reproductive-aged women enrolled in Medicaid across 14 states and over 

4 years resulting in over 4 billion administrative claims.  We identified women with chronic 

medical conditions by aggregating their claims across a two-year period.  We also 

identified women who had undergone bariatric surgery or a solid organ transplant within 

the two-year period.  The analysis informed an important question regarding the efficacy 

of the CDC’s massive dissemination strategy for the new policy.  We found there was an 

increase in the overall use of contraceptives for women with the identified chronic health 

conditions.  However, not all conditions showed an increase in the use of contraceptives 

with the highest efficacy.  A major takeaway is that since many women do not receive their 

routine gynecological care from an OB/gyn specialist.  Therefore, it is important to also 

focus education efforts on the physician specialists that treat women with these chronic 

conditions.  After assessing contraception and unintended pregnancies, we focused on 

adolescent pregnancy – the second highest age group for unintended pregnancy [133].     
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In chapter 3, we assess the health and wellness outcomes of infants born to adolescent 

mothers within their first year of life. Our study focused on Medicaid claims from over 

65,000 infants across 42 states.  We used the casual inference method of matching to isolate 

the causal effect of the age of the mother.  We developed a sequential matching process 

based on the mother’s demographics which can be used for future studies based on 

Medicaid claims data.  An additional contribution is no previous study has included such a 

large cohort of infants enrolled in Medicaid.  Nor has any study included such a broad 

range of outcomes within the first year of the infant’s life.  Our study found that for many 

of the outcomes the differences between the infants born to adolescent mothers versus adult 

mothers are not as large as previously believed.  This indicates that there have been some 

changes that have improved situations for adolescent mothers and supports the research 

that stigma for adolescent pregnancy is unwarranted [134].  However, we do find that 

infants born to adolescent mothers had a higher number of emergency department visits 

(over 30% more visits) for infants with comparable health.  Second, all infants were getting 

less wellness visits than recommended.  We found a mean of 4.4 visits per a year instead 

of the recommended 7.  This is a finding relevant to all mothers and suggests clinicians 

may not be informing mothers of the importance of preventive care for their infants.     

In the first two studies, we established how advanced analytics and data pipelines on 

large data sets of administrative claims can be used to assess a health care policy and 

perform exact matching to determine causality.  Next, we shifted to using machine learning 

to estimate a causal treatment effect of a health care policy.  We use a motivating example 

with DID study setting for perinatal costs.    The work extends existing machine learning 

methods to target the ATT.  We demonstrate the performance of super learner through a 



123 

simulation in which compare its performance to the traditional outcome regression 

algorithm. The project applies the new approach to estimate the effects of episode-based 

payments on perinatal spending.  We evaluate the algorithms under three effect sizes and 

two sample sizes.  Our results show a decrease in bias when using super learner on the 

smaller effect sizes.  Super learner also had a lower standard error and larger gains over the 

outcome regression for smaller sample sizes.  This demonstrates the value of using machine 

learning, but the lack of improvement over all three effect sizes suggests a double robust 

technique may offer better results.   

In the final project, presented in chapter 5, we apply machine learning to edge weight 

estimation for social network analysis.  Network analysis is used to visualize and assess 

dependent relationships and within healthcare, social networks can be used to quantify the 

impact of social influence on healthcare interventions.  Weight estimation can be a data 

quality tool to check if the weights provided in a network are correct.  In this study, we 

derive 14 network metrics to include in the prediction of the edge weight.  We alter current 

metrics made for unweighted graphs to account for the strength of the relationships 

between edges.  We also incorporate metadata (i.e. covariates) through a similarity metric 

to account for node attributes.  This technique leverages all available information for the 

weight prediction.  We implement three different estimators and compare the results via 

precision error.  The baseline estimator was Poisson regression and we used a Poisson finite 

mixture model and super learner as the comparative estimators.  Super learner resulted in 

the lowest precision error of the three methods for our example of a faculty hiring network.  

Suggested future work will include applying these estimators to other data sets with 

different characteristics to further validate the technique.  The final goal is to use this 
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method for a social network of Medicaid enrollees with substance dependence.  We will 

analyze the patient-sharing network of their clinicians to evaluate health outcomes and how 

physician relationships may affect quality of care.  We will also create and analyze a 

clinician-sharing network to try to identify abuses within the Medicaid system and what 

naturally occurring groups occur within patients.     
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