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SUMMARY 

An extreme heat event (EHE) or a heat wave is a sustained period of substantially hotter 

and/or more humid weather. EHEs cause a wide range of health problems such as rashes, 

cramps, heat exhaustion, heat stroke, and in some instances, death. While the negative 

consequences of EHEs on health are understood, there is limited information on the 

extent of region-specific adverse health and economic impacts resulting from EHEs. 

Further, estimating excess deaths or economic costs associated with EHEs are impeded 

by several constraints. Some of the major constraints include: a lack of scientific 

consensus on the ideal EHE definition, inadequate understanding of the role of other 

environmental exposures during EHEs (such as air pollutants) in modifying health risk 

attributable to EHEs, and limited access of high-quality fine resolution environmental and 

health datasets to conduct a robust region-specific analysis. The overarching goal of this 

study is to improve the understanding of the adverse environmental and health impacts of 

EHEs in the United States (U.S.), develop metrics to quantify the burden associated with 

EHEs, and lay the ground work for the development of effective strategies to address 

multiple environmental stressors during periods of extreme heat. 

There is no shortage of EHE definitions available from epidemiological and 

meteorological literature. Exploring the predictive power of EHE definitions for health 

research is not only challenging because of the sheer number of definitions, but also due 

to the difficulty in determining an appropriate health end point for evaluation. This study 

employs a hierarchical clustering technique to group EHE definitions into homogenous 

sets and uses deaths that result from exposure to excessive natural heat as the health end 

point to identify EHE definitions suitable for extreme heat surveillance and research.  



 

xv 

 

High temperatures prevailing during EHEs are conducive to the formation of certain air 

pollutants, but very little is known about the relationship between other meteorological 

variables and air pollutants during EHEs. Hence, it is worthwhile to examine the 

prevailing levels of meteorological variables on EHE and non-EHE days, and evaluate 

whether EHEs encapsulate variations in multiple meteorological variables that are 

associated with higher air pollutant concentrations. The relationship between ozone and 

meteorology on EHE and non-EHE days can be successfully characterized using a 

multivariate autoregressive model and a logarithmic response for ozone. The effect 

modification of the relationship between meteorological variables and ozone on EHE 

days varies with meteorological parameter in consideration, climate region, and EHE 

definition. 

 When conducting an assessment involving multiple environmental variables, often the 

limiting factor becomes the availability of highly resolved exposure data that allign        

with the resolution of health data. Air quality measurements and station-based 

meteorological variables are deemed accurate but are limited in geographic scope. 

Alternatively, data from mechanistic and deterministic models, which are available over 

continuous spatial and temporal scales, can be used to assign exposure to populations. 

However, the utility should be weighed against any potential bias and variability, and a 

rigorous evaluation of modeled exposure data is warranted before full-scale adoption. A 

comparison of modeled estimates utilizing an independent set of measurements and using 

health-based metrics to evaluate meaningful differences, shed light on the pros and cons 

of exposure estimates generated from modeled data. 
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The association between air pollution and health, especially mortality, is well understood. 

However, the role of air pollutants in modifying the relationship between EHEs and 

mortality is not well characterized in the U.S., yet is critical to generating accurate 

estimates of health burden. Further, through this work, the sensitivities associated with 

selecting an EHE definition is taken into consideration when providing region-specific 

health and economic burden associated with EHEs. Finally, the framework to generate 

excess deaths and costs presented in this work could be useful to study and quantify the 

adverse health impact of EHEs either in a prospective or a retrospective setting. 
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CHAPTER 1 Introduction 

In the United States (U.S.), extreme temperature-related deaths account for far more 

deaths than hurricanes, lightning, tornadoes, floods, and earthquakes combined (Thacker 

et al. 2008). According to the Centers for Disease Control and Prevention (CDC), a total 

of 7,233
1
 heat-related deaths were reported between 1999 and 2009 (Fowler et al. 2013). 

An extreme heat event (EHE) is defined as a sustained period of abnormally and 

uncomfortably hot, and usually humid, weather (Meehl and Tebaldi 2004). EHEs can 

negatively impact vital aspects of society, including agriculture, power production and 

consumption, and human health (National Research Council [U.S.] et al. 2010; Parry et 

al. 2007). The Third National Climate Assessment report states that there will be 

statistically significant increases in simulated annual mean temperatures across the 

contiguous United States for both A1 and B2 climate scenarios
2
 (Arnell et al. 2004; 

Meehl et al. 2000). Adverse health outcomes associated with extreme heat are 

preventable, and it is imperative to understand the local characteristics of EHEs in order 

to identify such events in advance. Early identification or prediction of these events 

would allow for an adequate response, avoiding a number of public health risks. 

In order to understand the adverse health impacts of EHEs, it is necessary to define what 

constitutes a heat episode. Many EHE definitions are available from the literature 

(Anderson and Bell 2011; Arguez et al. 2012; Burrows 1900; CDC 2013; Easterling et al. 

2000; Hajat et al. 2006; Hajat et al. 2010; Huth et al. 2000; Kent et al. 2014; Kovats and 

                                                 
1
 This figure represents the total count of deaths when exposure to excessive natural heat (Internation 

Classification of Deaths (ICD) code , X30) is listed either as an underlying or a contributing cause. 

Aditionally, this figure includes X30 deaths among  both U.S. resident and non-U.S. resident population.  
2
 The different climate scenarios are based on the emission scenarios defined by the Intergovernmental 

Panel on Climate Change (IPCC). These emission scenarios are organized into groups based on different 

assumptions describing human activity in the future. A1 represents rapid economic growth in a 

homogeneous world; B2 represents ecologically friendly with less rapid technological changes in a 

heterogeneous world. 



 

2 

 

Hajat 2008; Meehl and Tebaldi 2004; Pascal et al. 2006; Pascal et al. 2013; Peng et al. 

2011; Robinson 2001; Zaitchik et al. 2014). As exemplified in these studies, EHEs are 

defined based on meteorological variable deviations from the norm (e.g., temperature). A 

majority of studies apply one definition to all climate regions, and hence, neglect climate 

adaptation by resident populations. Studies that have extensively evaluated EHEs are 

limited to a few geographic areas (Gasparrini and Armstrong 2011; Hajat et al. 2010; 

Ishigami et al. 2008) and extending definitions from such studies to non-study areas 

could result in misidentification of EHEs. As a whole, there is a lack of consensus in the 

environmental health literature on definitions and procedures to accurately identify 

periods of extreme heat with adverse health impacts.  

Several studies have confirmed a relationship between air pollution and its impact on 

human health (Samet 2005). Several epidemiologic and human clinical studies have 

examined the cardiovascular and respiratory health effects of both acute and long-term 

exposures to air pollution (Rom and Samet 2006). The Medicare Air Pollution Study 

(MCAPS), reported a short-term increase in hospital admission rates associated with 

elevated ambient PM2.5 concentrations, for health outcomes such as ischemic heart 

disease, heart failure, chronic obstructive pulmonary disease and respiratory infection 

(Dockery et al. 1993; Dockery and Pope 1994; Pope III et al. 2002). Tropospheric ozone, 

a criteria pollutant regulated under the Clean Air Act of the U.S., is also known to 

adversely impact heath. Numerous studies have identified a positive relationship between 

ambient ozone exposure and hospitalization/ emergency department visits for respiratory 

diseases, such as asthma and chronic obstructive pulmonary disease (Burnett et al. 1997; 

Strickland et al. 2010). Studies have also shown an association between short- and long-
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term air pollutant exposure and mortality (Bell et al. 2004; Bell et al. 2005; Jerrett et al. 

2009; Pope et al. 2001).  

Meteorology plays a dominant role in the formation of air pollutants. In particular, 

extremely high temperatures are conducive to the formation of certain air pollutants. The 

European summer of 2003 was exceptionally warm, with an unprecedented 15-day long 

heat wave. In France alone, there were 14,800 excess deaths during this 2-week heat 

wave period (Vautard et al. 2005). During this heat wave, many western and central 

European countries recorded the highest ozone concentrations on record since the late 

1980s (Solberg et al. 2008; Vautard et al. 2005). A study conducted by U.S. 

Environmental Protection Agency (EPA)(Cox and Chu 1996) explored the relationship 

between meteorology and ozone for years 1983-1993 and concluded that daily maximum 

8-hr ozone levels were considerably higher for the hottest summer (1988) and that the 

lowest number of ozone exceedances were observed during the coolest summer (1992).  

Observed correlations of PM2.5 total mass with meteorological variables are weaker than 

correlations between such variables and ozone; however, for the sulfate fraction of PM2.5, 

correlation increases with temperature (Jacob and Winner 2009). Although PM2.5 total 

mass is not strongly correlated with extreme temperatures, persistently high temperatures 

observed during EHEs could lead to an increase in certain types of emissions. For 

example, biogenic emissions (isoprene and monoterpene) can increase during periods of 

high temperatures, as plants tend to release these volatile organic carbon (VOC) 

compounds as a defense mechanism to combat heat stress (Benjamin et al. 1996; Geron 

et al. 2006; Sharkey et al. 2008). Additionally, the escalation of air conditioning use 

during extreme temperature days lead to a higher electricity demand from electricity 
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generating units (EGU), which in turn leads to emissions of oxides of nitrogen (NOx) (He 

et al. 2013).  

While it is believed that most of the excess mortalities and morbidities during EHEs are 

associated with extreme temperatures, a recent study conducted in Europe (Analitis et al. 

2014) has concluded that heat wave-related mortality was 54% higher on high ozone days 

compared with low ozone days among people age 75-84. Hence, it is worth investigating 

the role of air pollutants in causing adverse health effects during these periods. The 

conduct of health studies requiring weather and air pollution data from stations and 

monitors, respectively, is limited by data availability and completeness. Data from 

weather stations are available from the National Climatic Data Center (NCDC); however, 

these stations are limited in geographic scope. Similarly, ambient air monitoring data are 

available from Environmental Protection Agency’s (EPA) Air Quality System (AQS). 

However, these AQS-based monitors have limited spatial coverage and many monitors 

do not sample for PM2.5 on a daily basis (Vaidyanathan et al. 2013). Further, assigning 

population-level exposures using station- and monitor-based data is constrained by the 

fact that some of them are located in non-residential areas or in remote places (Gallo et 

al. 1996). 

Alternatively, modeled exposure data, which are available over continuous spatial and 

temporal scales, can be used to assign exposure to populations. Meteorological data from 

models are available over continuous spatial and temporal scales, and have found use in 

air pollution modeling, weather forecasting and various other climatological predictions 

(Aiyyer et al. 2007; Glahn and Lowry 1972; Michalakes et al. 2001; Ritter and Geleyn 

1992). Similarly, statistical fusion models, which combine air quality measurements from 
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monitors with predictions from numerical deterministic simulation models, have been 

used to fill temporal and spatial gaps in ambient air monitoring data (Berrocal et al. 2010, 

2012; Fuentes et al. 2006; McMillan et al. 2009). However, the utility of modeled 

exposure estimates for extreme heat surveillance and research should be weighed against 

any potential bias and variability present in these estimates, and an evaluation is needed 

before full-scale adoption. 

Impacts on health are usually estimated to be the largest adverse consequences of EHEs 

when measured in economic terms using standard valuation approaches and dominating 

other losses, such as damage to crops and ecosystems (Yang et al. 2005). The most severe 

of adverse health outcomes associated with EHEs is death, where losses to society and 

the economy extend from the point of premature death forward until that person would 

have died of other causes had they not succumbed to the effects of extreme heat. For 

example, one study (Kovats and Hajat 2008) estimated 22,080 excess deaths in England, 

Wales, France, Italy, and Portugal during and immediately after the heat waves of the 

summer of 2003. Similarly, the 1995 Chicago heat wave, which lasted only for five days, 

resulted in 750 deaths (Semenza et al. 1996). Much of the excess deaths during these heat 

episodes were related to cardiovascular, cerebrovascular, and respiratory causes—

mortality endpoints that are also associated with air pollution. 

The overall goals of this dissertation are to assess the environmental and health impacts 

associated with EHEs in the United States (U.S.). Below are the objectives for individual 

chapters. 
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Chapter 2: Region-specific Evaluation of Extreme Heat Event Definitions Using 

Heat Mortality Data: A Comprehensive National Assessment with a Public Health 

Focus 

In this chapter, we describe a region-specific evaluation of EHE definitions using heat 

mortality data. We use station-based meteorology data from National Climatic Data 

Center and heat mortality data from National Center for Health Statistics for years 1999-

2009 to conduct this evaluation. We employ a combination of hierarchical cluster 

analysis and negative binomial rate regression methods to identify EHE definitions that 

are closely associated with heat-related mortality. This chapter provides insights into the 

spatial and temporal distribution of EHEs nationally, and sheds light on variations in 

regional susceptibility of populations to extreme heat. 

Chapter 3: Exploring the Utility of Modeled Meteorology Data for Extreme Heat-

related Health Research and Surveillance  

In this chapter, we assess the utility of modeled meteorology data from North American 

Land Data Assimilation System (NLDAS) model for use in extreme heat-related health 

research and surveillance in areas without meteorological measurements. We evaluate the 

performance of model-based predictions using measurements from stations from 

Southeastern Aerosol Research and Characterization (SEARCH) network and conduct a 

county-level health analysis using heat-related mortality data. The results generated from 

station- and modeled-based exposure estimates are compared. 

Chapter 4: Characterizing the Relationship between Ozone and Meteorology during 

Extreme Heat Events 
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In this paper, we explore the effect of meteorological variables on ozone levels, 

conditioned on EHE and non-EHE day, and quantify the degree of effect modification by 

EHEs at city and regional scales. We use station-based meteorology data from National 

Climatic Data Center and ozone measurements from EPA for 27 cities in the U.S., 

representing different climate regions. We execute a city-specific multivariate 

autoregressive model to control for the autocorrelation of residuals, and use a logarithmic 

response for ozone to model the relationship between meteorological parameters and 

ozone. We conduct a summary-level pooled analysis, considering the heterogeneity in 

effect sizes arising due to EHE definitions, to generalize the effect of meteorology on 

ozone for each city and climate region. 

Chapter 5: Assessment of Modeled PM2.5: A Public Health Perspective 

In this chapter, we conduct an assessment in the Southeastern U.S. to evaluate the 

accuracy and utility of model-based PM2.5 predictions against measurements, as well as 

compare linked metrics of air quality and health created from model- and monitor-based 

estimates of PM2.5. We consider predictions from Community Multiscale Air Quality 

(CMAQ), Bayesian space-time Downscaler (DS), and Aerosol Optical Depth (AOD) 

based models. We quantify the variability, bias, and the change in mortality rate (  ) 

associated with a 25% reduction in annual PM2.5 levels based on the modeled predictions 

and measurements from the SEARCH and AQS-based monitors. 

 

Chapter 6: Monetizing Health Burden Associated with Extreme Heat Events: 

Exploring the Role of Air Pollution and the Sensitivity Associated with Heat Wave 

Definitions in the Excess Death Estimation Process 
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In this chapter, we explore region-specific interactions between air pollution and EHEs, 

and their collective impact on mortality. We model the region-specific mortality risks 

(rate ratio) associated with EHEs using a negative binomial rate regression model. We 

implement factor analysis to create composite a air pollution score and used that as a 

predictor along with county-level adult smoking prevalence, air conditioning prevalence, 

and proportion of Hispanic population. We compute region-specific excess deaths and 

monetize excess deaths using standard economic metrics. 

Chapter 7: Summary of Conclusions and Future Research 

A summary of the key conclusions of this dissertation are presented and potential future 

research directions are dicsussed. 
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CHAPTER 2 Region-specific Evaluation of Extreme Heat Event Definitions Using 

Heat Mortality Data: A Comprehensive National Assessment with a Public Health 

Focus
3
 

2.1 Introduction 

In the United States (U.S.), extreme temperature related deaths account for far more 

deaths in most years than deaths resulting from hurricanes, lightning, tornadoes, floods, 

and earthquakes combined (Thacker et al. 2008). According to the Centers for Disease 

Control and Prevention (CDC), a total of 7,233 heat-related deaths were reported between 

1999 and 2009 (Fowler et al. 2013). An extreme heat event (EHE) is defined as a 

sustained period of abnormally and uncomfortably hot, and usually humid, weather 

(Meehl and Tebaldi 2004). EHEs can negatively impact vital aspects of society, including 

agriculture, power production and consumption, and human health (National Research 

Council [U.S.] et al. 2010; Parry et al. 2007). The Third National Climate Assessment 

report states that there will be a statistically significant increase in simulated annual mean 

temperatures across the contiguous United States for both A1 and B2 climate scenarios
4
 

(Meehl et al. 2000). Adverse health outcomes associated with extreme heat are often 

preventable, and it is imperative to understand the local characteristics of EHEs that 

would help identify such events in advance and respond adequately to avoid the public 

health risk.  

                                                 
3
 This work has been presented at the American Meterological Society meeting in February 2014.  

4
 The different climate scenarios are based on the emission scenarios defined by the Intergovernmental 

Panel on Climate Change (IPCC). These emission scenarios are organized into groups based on different 

assumptions describing human activity in the future. A1 represents rapid economic growth in a 

homogeneous world; B2 represents ecologically friendly with less rapid technological changes in a 

heterogeneous world. 
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In order to understand the adverse health impacts of EHEs, it is necessary to define what 

constitutes a heat episode. Typical EHE definitions can be decomposed into the following 

core variables: 

1. Daily heat metric: Heat metrics, such as daily maximum temperature, daily apparent 

temperature (heat index), and diurnal temperature difference are used as metrics in 

studies exploring EHE definitions. 

2. Duration: Number of consecutive days of extreme heat needed to constitute an EHE. 

The minimum duration in existing definitions varies from two to four days. 

3. Threshold type: Absolute—based on an observed absolute daily heat metric that does 

not change, or relative—based on an exceedance above a set percentile, which varies 

depending on the underlying daily heat metric distribution for a given location. 

4. Intensity: Indicates the extremity of deviation that is required to constitute an EHE. 

Most definitions refer to the exceedances above absolute thresholds, such as, 90, 95, 

100 or 105 degrees Fahrenheit (℉) or 95
th

, 97
th

, 98
th

, or 99
th

 percentiles.  

Many EHE definitions are available from the literature (Anderson and Bell 2011; Arguez 

et al. 2012; Burrows 1900; CDC 2013; Easterling et al. 2000; Hajat et al. 2006; Hajat et 

al. 2010; Huth et al. 2000; Kent et al. 2014; Kovats and Hajat 2008; Meehl and Tebaldi 

2004; Pascal et al. 2006; Pascal et al. 2013; Peng et al. 2011; Robinson 2001; Zaitchik et 

al. 2014). As exemplified above, EHEs are defined based on meteorological variable 

deviations (e.g., temperature) from the norm. A majority of studies apply one definition 

to all climate regions, and hence, neglect potential climate adaptation by resident 

populations. Studies that have extensively evaluated EHEs are limited to a few 

geographic areas (Gasparrini and Armstrong 2011; Hajat et al. 2010; Ishigami et al. 
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2008) and extending definitions from such studies to non-study areas could result in 

misidentification of EHEs in terms of human health effects. Some studies that have been 

published evaluated EHE definitions using health data (Anderson and Bell 2009; Hajat et 

al. 2010; Kent et al. 2014; Pascal et al. 2013) but almost all of the studies conducted 

nationally failed to evaluate EHE definitions using daily heat-related mortality data. As a 

whole, there is lack of consensus in the environmental health literature on definitions and 

procedures to accurately identify periods of extreme heat having the potential for adverse 

health impacts. Hence, it is important to evaluate EHE definitions using health outcomes 

with clear causal links, such as heat-related mortality, to identify those definitions most 

strongly associated with adverse health effects. In this study, we hypothesize that people 

in different climatic regions might have varying susceptibility to extreme heat, which 

motivates a region-specific investigation of extreme heat and associated heat-related 

mortality. Additionally, we anticipate that the most appropriate definitions of EHEs may 

vary with climate region.  

2.2 Methods 

2.2.1 Meteorology data 

We used station-based meteorology data for years 1999-2009, and any county in the 

conterminous U.S. (lower 48 states) that had an automated surface observing system 

(ASOS) unit was included in this evaluation. Spatial coverage of ASOS stations is shown 

in Figure 2-1.  
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Figure 2-1: Spatial coverage of ASOS weather stations 

 

Further, we checked on the completeness of hourly and daily meteorology data used in 

this analysis. For each station we set a daily completeness threshold of 75% for hourly 

observations in a given day (at least 18 of 24 hourly measurements available) for 

computing daily summaries of the heat metric. For each county we calculated an average 

of all available daily station-based summaries to create county-level estimates of daily 

weather variables. We then applied a 95% completeness threshold for the daily county-

level estimates of the heat metric across the summer months (May 1 through September 

30). Finally, we only included counties for which sufficiently complete data (based on the 

above-mentioned criteria) were available for all 11 years (1999-2009) of the analysis 

period. 
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2.2.2 EHE definitions and core variables 

For this study, we considered a number of EHE definitions that have been used in public 

health research and/or widely cited in the literature. Table 2-1 summarizes the different 

combinations of core variables used to define an EHE in this analysis. We used daily 

maximum temperature (Tmax), daily maximum heat index (HImax), daily average 

temperature (Tavg), and a combination of Tmax and daily minimum temperature (Tmin) as 

daily heat metrics; all heat metrics were represented in ℉ and we used the formula cited 

in Robinson (2001) to compute HImax. We considered EHE definitions with both absolute 

and relative thresholds. Absolute thresholds were set at various intensity values, 

including 90, 95, 100, and 105 
o
F. Relative thresholds were calculated using two different 

approaches. We calculated percentile-based relative thresholds representing different 

intensities, including the 80
th

, 85
th

, 90
th

, 95
th

, 98
th

, 99
th

 percentile values and, for one 

definition (Huth
5
), we used the 81

st
 and 97.5

th
 percentile values. We computed these 

percentiles using heat metric data for the summer months for years 1999-2009. We 

obtained station-level climate normal information from the National Climatic Data Center 

(NCDC), i.e., the mean and standard deviation (SD) of daily heat metrics computed based 

on data from 1981-2010; climate normals were unavailable for the heat index. We 

implemented EHE definitions with minimum duration, i.e., the number of consecutive 

days needed to constitute an EHE, variously ranging from two to four days. Varying 

minimum durations coupled with the various EHE base definitions resulted in a total of 

                                                 
5
 Per Huth’s definition, a heat wave is defined as the longest period of consecutive days satisfying the 

following three conditions: (1) The daily maximum temperature is above T1 (97.5
th
 percentile) for at least 3 

consecutive days; (2) The daily maximum temperature is aboveT2 (81
th

 percentile) during the entire period; 

(3) The average of daily maximum temperature over the entire period is greater than T1. 
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92 variants (Table 1). Appendix Table A-1 provides precise details for each of these 

variant. 

Table 2-1: Core variables used in extreme heat event definitions 

Daily heat 
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   Daily 

maximum 

temperature 

(Tmax) 

> 2 days     X X   X X X X X X X X 

   >  3 days   X X X   X X X X X X X X 

   >  4 days   X X X   X X X X X X X X 

   Daily 

average 

temperature 

(Tavg) 

> 2 days     X X   X X X X X X X X 

   >  3 days   X X X   X X X X X X X X 

   >  4 days   X X X   X X X X X X X X 

   Daily 

maximum 

heat index 

(HImax) 

> 2 days     X X   X X     X X X X 

   > 3 days   X X X   X X     X X X X 

   > 4 days   X X X   X X     X X X X 

   Daily 

maximum 

and 

minimum 

temperature 

(Tmax & Tmin) 

>  3 days X                         

   Huth* >  3 days         X                 

   

X 

Definition used in this 

analysis 

            
X 

Definition published in 

literature 

           
*
 Per Huth’s definition, a heat wave is defined as the longest period of consecutive days satisfying the 

 following three conditions: 

1. The daily maximum temperature is above T1 (97.5
th

 percentile) for at least 3 consecutive days;  

  2. The daily maximum temperature is aboveT2 (81
th 

percentile) during the entire period;  

    3. The average of daily maximum temperature over the entire period is greater than T1. 
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We operationalized each EHE definition/variant
6
 as a binary (Yes (1) / No (0)) variable 

and thereby separately classified each day in each county during the summer months as 

either an “EHE day” or a non-EHE day.”
7
 Days for which daily county-level data were 

not available could in some instances have interrupted a data sequence that might 

otherwise have qualified the surrounding days as EHE days. However, because of the 

high data completeness threshold employed, we believe any such effects to be minimal. 

2.2.3 Mortality and population data 

We obtained mortality data from the National Center for Health Statistics (NCHS) 

National Vital Statistics System and extracted death records for years 1999-2009 based 

on International Classification of Diseases, 10
th

 revision (ICD-10) external cause codes 

(Minino et al. 2011). Specifically, we selected death records for which exposure to 

excessive natural heat (ICD-10 code: X30) was listed as the underlying cause of death; 

the underlying cause of death is defined as the disease or injury that initiated the chain of 

events leading to death (Hanzlick et al. 2006). We summarized the extracted death 

records for the summer months to get counts of heat-related deaths by county and day. 

We then assigned the data for each county to one of the nine U.S. climate regions, which 

are aggregations of states based on homogeneous long-term climatology (Figure 2-2); a 

description of these regions is available from the NCDC 

(http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php). 

Additionally, due to small death counts in the West North Central and Northwest regions, 

we combined these two regions into “North West Central.” We excluded counties that did 

                                                 
6
 In subsequent chapters the term, EHE definition/variant will be refered to as simply EHE definition. 

7
 We added a buffer of 3 days to the start and end of the summer months to account for any potential EHE 

that either started prior to May 1 and ended on or shortly after May 1, or started on or shortly before 

September 30 and ended in the early part of October. The buffer days were not included in the analysis. 

http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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not have meteorology data (or that did not meet the data completeness threshold) and 

made adjustments to account for county boundary changes that occurred between 1999 

and 2009. 

 

Figure 2-2: U.S. climate regions 

2.2.4 Evaluating EHE definitions using heat mortality data 

Separately evaluating 92 different EHE definitions/variants becomes onerous and, hence, 

we used cluster analysis as a preliminary data reduction technique to group EHE 

definitions/variants into homogeneous sets. We differentiated any two EHE 

definitions/variants based on county-day disagreements between the binary variables 

representing the operationalized definitions. For a given county and year, the total count 

of daily disagreements between two definitions is provided by the sum of the off-

diagonal frequencies as shown in Table 2-2. (This sum represents the squared Euclidean 
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distance between two vectors of binary variables.) Because the main research focus is on 

human health effects, these counts were then weighted by the yearly county population 

estimates in order to ensure proportional representation. The population-weighted 

disagreement counts were then summed across counties (nationwide) and years to obtain 

an overall measure of disagreement (or distance) between the two EHE 

definitions/variants. A distance matrix containing the overall disagreement measures for 

all pairs of EHE definitions/variants (4,186 pairs) was used as input to the clustering 

procedure. 

Table 2-2: Two-way frequency table of daily agreements/disagreements for two 

operationalized EHE definitions/variants 

E
H

E
 D

E
F

IN
IT

IO
N

 2
 EHE DEFINITION 1 

 
YES NO 

YES A B 

NO C D 

 

We applied a hierarchical clustering technique, and employed an average distance metric 

to determine distances between clusters that might be merged in each step of the 

clustering process (Zhang et al. 1996). Average distance is calculated using the following 

formula: 

∑ ∑
          

     

  
   

  
                  (1) 

Ca and Cb are two disjoint clusters;  

na and nb are the number  of members within clusters Ca and Cb, respectively; 

d is the Euclidean distance between two members of the two disjoint clusters. 
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We divided the final hierarchical cluster (one large cluster encompassing all definitions) 

into smaller clusters, taking into consideration various diagnostics including the overall 

R-squared, pseudo F and pseudo T-squared indices. The pseudo F index describes the 

ratio of the between-cluster variance to the within-cluster variance and, in general, values 

of this index denote the degree of separation for clusters. The pseudo T-squared index 

quantifies the difference between two clusters that are about to be merged at any given 

step of the clustering process (Edens et al. 1999). Based on these diagnostics, we 

identified relatively distinct high-level clusters. One representative EHE definition was 

then selected from each high-level cluster. Candidate definitions were identified 

according to the following criteria: (1) EHE definitions/variants that are well-recognized 

in the literature; (2) application in studies conducted in the U.S.; and (3) application in 

nationally representative studies, i.e. those studies that covered the various climate 

regions of the U.S. , Among the candidates meeting these criteria to the extent possible, 

we made our final selection of EHE definitions to reflect differentiated combinations of 

the core variables that are used to operationalize the definitions. For each representative 

EHE definition we considered different exposure offsets: no lag (i.e., no offset), 1-day 

lag, and 1-, 2-, 3-day extended (post-heat wave) effects (Figure 2-3).  

 

Figure 2-3: Schematic showing exposure offset indicators 
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2.2.5 Rate regression modeling 

We applied rate regression models to evaluate the relationship between operationalized 

EHE definitions and heat-related deaths. The following model was used to estimate the 

death rate per person-day on a logarithmic scale for each EHE definition/variant and 

exposure offset combination: 

log(E[D] / P) = α + βregion + βEHE∙EHE + βEHE.Region∙EHE∙Region   (2) 

with model terms defined as follows: 

D: count of deaths for each combination of region, year, and EHE status
8
; 

E[D]: expected count of deaths; 

P: person-days of exposure for which D is measured; 

α: intercept; 

βregion: intercept offset for the climate region; 

βEHE: parameter estimate for the binary variable referring to the EHE definition and 

exposure offset combination; 

EHE: binary indicator variable for the operationalized EHE definition/variant and 

exposure offset combination; 

βEHE.Region: parameter estimate for the interaction between region and EHE; 

Region: climate region; 

βk: parameter estimate for covariate k; 

To compensate for over dispersion, we specified a negative binomial link. Using this 

modeling approach, we estimated a baseline rate of heat-related deaths (deaths in the 

absence of EHE), and an EHE rate of heat-related deaths (deaths in the presence of EHE). 

                                                 
8
 To facilitate reliable modeling diagnostics as well as convergence, data were collapsed according to a 

three-way stratification: climate region × year × EHE status (for the EHE definition/variant and exposure 

offset combination under consideration).   
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We termed the estimated increase (on a log-scale) in the rate due to EHE as the “EHE 

effect.” 

We used the estimated EHE effects to identify the “best” EHE definition/variant and 

exposure offset combinations with respect to heat-related deaths. One might hypothesize 

that there is some “gold standard” EHE definition that best explains heat-related 

mortality; the various EHE definitions considered in this evaluation represent 

approximations to this hypothetical gold standard. The extent to which each 

operationalized EHE definition deviates from the hypothetical gold standard can be 

expected to materialize in the form of attenuation bias, i.e., weaker estimated EHE effects 

than might be ideally attained. By this reasoning, the strongest estimates – presumably 

corresponding to those with the least attenuation bias, are assumed to best represent the 

gold standard. We tested this reasoning by simulating an “ideal” dataset, with health 

outcomes following a probability distribution conforming to an arbitrary gold standard 

EHE definition. Our simulation involved three basic steps: (1) we first selected an 

arbitrary operationalized EHE definition/variant and exposure offset combination to 

represent the hypothetical gold standard and used it to estimate a corresponding model; 

(2) using the estimated model parameters, we then simulated a new time series of heat-

related deaths; (3) we then re-estimated the EHE effect estimate and corresponding 95% 

confidence interval (CI) after introducing various random distortions to the originally 

selected EHE definition/variant and exposure offset combination (in the form of false-

positives, false-negatives, or both). Under all forms of distortion, the EHE effect estimate 

and the confidence limits were routinely biased toward the null.  
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After the simulation exercise indicated that the attenuation bias concept is applicable to 

our analysis, we employed model (2) to identify the EHE definition/variant and exposure 

offset combinations having the strongest effect estimates. We evaluated each of the EHE 

definitions/variants selected as high-level cluster representatives crossed with the five 

exposure offsets, and ranked the results in descending order based on the lower 

confidence limit associated with each EHE effect estimate, by climate region. Further, to 

assess the region-specific differences in population-level susceptibility to extreme heat, 

we conducted a random-effects meta-analysis, by region, based on the 10 “best” region-

specific EHE definition/variant and exposure offset combinations, to estimate the mean 

baseline rate, the mean EHE effect, and associated CIs for each region. We carried out 

our data analyses using the Statistical Analysis System (SAS® Version 9.3), 

Environmental Systems Research Institute’s GIS software (ESRI, ArcGIS® Version 9.3), 

and comprehensive meta-analysis software (CMA® Version 2.0).  

2.3 Results 

Table 2-3 summarizes the number of heat-related deaths and counties with 

meteorological data.  Heat-related deaths, based on the underlying cause codes, were 

summed up for all counties in each climate region and also summed up regionally only 

for counties with meteorological data.  The total number of heat-related deaths in the U.S 

for 1999-2009 was 3,829 and among these, 2,218 (58%) occurred in counties with 

meteorological data. The South region had the highest number of heat-related deaths and 

also had the highest number of counties with meteorological data (n=91). The North West 

Central region, which we formed by combining the Northwest and West North Central 

regions, had the lowest number of heat-related deaths (n=118). The West region had the 
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lowest number of counties (n=38) with meteorological data.  The warmer regions, South, 

Southeast, Southwest and West, accounted for 64% (n=2,447) of all heat-related deaths in 

the U.S. during the study period. The percent of U.S. population living in counties with 

meteorological data varied with climate regions. The West and West North Central 

regions had the highest (92%) and the lowest (42%) percent of population living in 

counties with meteorological data, respectively. The percent of total U.S. population 

living in counties with meteorological data was 57%. 

 

Table 2-3: Heat-related deaths and counties with meteorological data, by climate 

region (1999-2009) 

U.S. Climate Region 

Number 

of heat-

related 

deaths 

Number of 

counties with 

meteorological 

data 

Number of heat-

related deaths in 

counties with 

meteorological data 

Percent of the U.S. 

population living in 

counties with 

meteorological data 

(%) 

Central 640 78 314 49 

East North Central 150 54 93 49 

Northeast 474 70 212 47 

Northwest 70 40 51 73 

South 890 91 481 60 

Southeast 541 71 224 49 

Southwest 508 43 367 64 

West 508 38 455 92 

West North Central 48 48 21 42 

Total 3,829 533 2,218 57 

 

Figure 2-4 shows a dendrogram (or cluster tree), which depicts the sequential clustering 

of the EHE definitions/variants in a hierarchical manner. We delineated the final high-

level clusters taking into consideration, pseudo F- and T-squared indices (data not 

shown). The break points were also influenced by subjective assessments of the 
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homogeneity of members within clusters and the heterogeneity across clusters. We 

ultimately settled on five high-level clusters. We labeled each high-level cluster to reflect 

the underlying feature(s) common to the definitions/variants comprising it. “Cluster 1” 

was the first cluster delineated and it contains only definitions/variants that are based on 

absolute thresholds for several of the daily heat metrics considered in the study. “Cluster 

2” contains definitions/variants based on thresholds that are predominantly moderate in 

severity. “Cluster 3” contains definitions/variants based on thresholds that are slightly 

more severe than those for Cluster 2. “Cluster 4” contains definitions/variants based on 

thresholds that are predominantly extreme in nature. “Cluster 5” consists of 

definitions/variants that rely on relative thresholds constructed from long-term climate 

normal data, with thresholds predominantly low. 
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Figure 2-4: Dendrogram of hierarchical clusters 

 

Table 2-4 lists the EHE definition/variant that was selected as the representative from 

each high-level cluster. The five representative EHE definitions/variants crossed with the 
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five exposure offsets resulted in 25 different combinations to be evaluated against heat-

related deaths using the rate regression modeling framework.  

Table 2-4: Representative EHE definition from each cluster 

 

Table 2-5 ranks the EHE definition/variant and exposure offset combinations by climate 

region. The representative definition/variant from cluster 3, daily maximum temperature 

greater than the 95
th

 percentile for at least two consecutive days, is most closely 

Cluster 
Cluster 

common name 

EHE definition 

name 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

1 

Absolute 

temperature 

based 

thresholds 

Daily maximum 

heat index 

greater than 

90 ℉ for at least 

3 consecutive 

days 

HImax Absolute >90
o
F 

3+ consecutive 

days 

2 

"Predominantly 

moderate" 

thresholds 

Daily maximum 

and minimum 

temperature 

greater than 80
th

 

percentile for at 

least 3 

consecutive 

days 

Tmax 

and Tmin 
Relative 

>80
th

 

percentile 

3+ consecutive 

days 

3 
"Predominantly 

high" thresholds 

Daily maximum 

temperature 

greater than 95
th

 

percentile for at 

least 2 

consecutive 

days 

Tmax Relative 
>95

th
 

percentile 

2+ consecutive 

days 

4 

"Predominantly 

extreme" 

thresholds 

Huth definition Tmax Relative 

T1: >97.5
th

 

percentile 

T2: >81
st
 

percentile 

Everyday >T2, 

and 3+ 

consecutive 

days >T1, and 

average Tmax 

>T1 for the 

whole time 

period 

5 

Climate normal 

based 

thresholds 

Daily mean 

temperature 

greater than 

mean + 1 SD of 

climate normal 

for at least 3 

consecutive 

days 

Tavg Relative 

>mean + 1 

SD of 

climate 

normal 

3+ 

Consecutive 

days 
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associated with heat-related mortality for six of the eight climate regions. The 

combinations of this definition/variant with exposure offsets representing a 1-day lag 

(Lag1) and no lag (Lag0) show the highest estimated EHE effects for all regions except 

the Southwest and South. The representative definition/variant from cluster 1, daily 

maximum heat index greater than 90°F for three consecutive days, combined with each of 

the different exposure offsets, shows the highest estimated EHE effects for the 

Southwest. The representative definition/variant from cluster 4, the Huth Definition, was 

the best definition for the South but generally shows the weakest estimated EHE effects 

for other regions. The representative definition/variant from cluster 2, daily maximum 

and minimum temperature greater than the 80
th

 percentile for at least three consecutive 

days, ranked fairly high (depending on the exposure offset) for the Central, Northeast, 

and Southeast regions; Lag1 and Lag0 represent the best exposure offsets. The 

representative definition/variant from cluster 5, daily mean temperature greater than the 

mean plus one standard deviation of the long-term climate normal for at least three 

consecutive days,shows the weakest estimated EHE effects overall. For most regions, no 

one definition/variant is distinctly superior to all others. We also provide a table in the 

appendix (Appendix Table A-2) that describes other metrics such as the percent of days 

classified as EHE days and percent of heat-related deaths covered by EHE days for each 

representative EHE definition/variant and exposure offset combination. 
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Table 2-5: Mean (95% CI) EHE effect by U.S. climate regions  
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ExE1 10 13.1 (8.4, 20.4) 7 19.0 (10.7, 33.8) 6 21.7 (13.6, 34.7) 10 10.9 (5.9, 20.3) 14 5.3 (3.3, 8.6) 14 4.4 (2.6, 7.3) 4 10.4 (6.4, 16.9) 7 7.1 (4.7, 10.7)

ExE2 13 12.6 (8.1, 19.7) 6 19.5 (10.9, 34.7) 5 22.0 (13.7, 35.3) 11 9.9 (5.3, 18.3) 11 5.7 (3.5, 9.5) 12 4.9 (2.8, 8.3) 2 11.6 (7.1, 19.0) 8 7.0 (4.6, 10.6)

ExE3 14 12.1 (7.7, 19.1) 9 17.4 (9.7, 31.2) 8 20.1 (12.4, 32.5) 14 8.7 (4.7, 16.1) 12 5.8 (3.5, 9.8) 4 6.4 (3.5, 11.5) 1 11.7 (7.1, 19.4) 9 6.6 (4.4, 10.1)

Lag0 15 11.3 (7.3, 17.4) 10 15.6 (8.8, 27.7) 10 17.3 (10.9, 27.5) 5 12.6 (6.8, 23.5) 20 4.6 (2.9, 7.2) 16 4.3 (2.6, 7.0) 5 9.5 (5.9, 15.1) 4 7.4 (4.9, 11.1)

Lag1 5 14.8 (9.5, 23.0) 3 22.6 (12.7, 40.1) 2 22.3 (14.0, 35.5) 6 11.8 (6.3, 22.1) 15 5.2 (3.3, 8.3) 13 4.4 (2.7, 7.3) 3 10.9 (6.8, 17.6) 5 7.4 (4.9, 11.1)

ExE1 6 14.8 (9.3, 23.5) 12 13.9 (7.7, 24.8) 11 16.8 (10.3, 27.2) 9 11.0 (5.9, 20.6) 19 4.7 (3.0, 7.4) 9 5.6 (3.3, 9.5) 7 7.0 (4.5, 11.0) 13 5.4 (3.5, 8.3)

ExE2 7 14.5 (9.2, 23.0) 13 13.7 (7.7, 24.4) 12 16.7 (10.3, 27.0) 13 9.3 (5.0, 17.2) 16 4.8 (3.1, 7.4) 7 5.6 (3.4, 9.3) 8 6.8 (4.4, 10.6) 14 5.0 (3.3, 7.8)

ExE3 9 13.8 (8.7, 21.8) 15 12.2 (6.9, 21.8) 15 14.6 (9.0, 23.7) 15 8.0 (4.3, 14.9) 18 4.7 (3.0, 7.2) 6 5.6 (3.4, 9.2) 12 6.3 (4.0, 9.7) 15 4.9 (3.2, 7.5)

Lag0 4 15.2 (9.6, 24.0) 14 12.5 (7.0, 22.4) 14 15.1 (9.4, 24.4) 3 13.0 (7.0, 24.2) 13 5.1 (3.3, 8.0) 5 6.0 (3.5, 10.1) 9 6.6 (4.2, 10.3) 12 5.6 (3.6, 8.6)

Lag1 2 17.0 (10.7, 27.0) 11 15.3 (8.5, 27.4) 9 19.4 (12.0, 31.6) 8 11.5 (6.1, 21.7) 17 4.8 (3.1, 7.6) 10 5.5 (3.2, 9.4) 6 7.9 (5.0, 12.5) 11 5.8 (3.7, 9.0)

ExE1 3 16.1 (10.1, 25.7) 2 23.5 (13.0, 42.4) 4 22.8 (13.8, 37.7) 2 14.0 (7.4, 26.6) 4 7.1 (4.5, 11.3) 2 6.2 (3.7, 10.4) 11 6.6 (4.1, 10.7) 3 8.0 (5.1, 12.4)

ExE2 8 14.4 (9.1, 22.9) 4 21.7 (12.1, 39.1) 3 22.8 (13.9, 37.6) 7 11.6 (6.2, 21.8) 6 6.4 (4.1, 10.2) 8 5.6 (3.4, 9.4) 15 6.0 (3.7, 9.6) 6 7.4 (4.8, 11.5)

ExE3 12 13.1 (8.3, 20.7) 5 20.2 (11.2, 36.3) 7 20.7 (12.6, 34.1) 12 9.5 (5.1, 17.8) 7 6.3 (4.0, 9.9) 11 4.8 (2.9, 8.0) 13 6.0 (3.8, 9.6) 10 6.7 (4.3, 10.3)

Lag0 11 13.7 (8.4, 22.5) 8 18.2 (9.8, 33.6) 13 15.9 (9.4, 27.0) 1 14.9 (7.6, 29.0) 3 7.5 (4.6, 12.2) 1 7.2 (4.2, 12.5) 14 6.3 (3.8, 10.5) 2 8.3 (5.2, 13.2)

Lag1 1 18.8 (11.6, 30.6) 1 31.0 (16.9, 56.7) 1 24.8 (14.8, 41.7) 4 13.7 (7.0, 26.9) 2 7.6 (4.6, 12.4) 3 6.2 (3.5, 10.8) 10 6.8 (4.1, 11.3) 1 9.5 (5.9, 15.1)

ExE1 22 5.5 (3.0, 10.1) 20 11.0 (5.6, 21.6) 22 7.7 (4.0, 14.7) 23 4.6 (1.5, 14.0) 5 7.3 (4.2, 12.7) 25 3.6 (1.7, 7.7) 22 3.0 (1.5, 6.1) 23 5.1 (2.4, 10.9)

ExE2 24 5.3 (2.9, 9.6) 21 10.6 (5.5, 20.5) 23 7.4 (3.9, 13.9) 24 3.8 (1.2, 11.8) 8 6.8 (3.9, 11.8) 23 3.7 (1.8, 7.7) 23 2.9 (1.5, 5.8) 19 5.4 (2.6, 11.2)

ExE3 25 4.7 (2.6, 8.5) 25 9.3 (4.8, 18.0) 24 6.6 (3.5, 12.4) 25 3.3 (1.1, 10.2) 10 6.4 (3.7, 11.2) 24 3.6 (1.8, 7.3) 24 2.7 (1.4, 5.3) 22 4.9 (2.4, 10.1)

Lag0 23 5.5 (3.0, 10.3) 23 10.5 (5.2, 20.9) 25 5.9 (2.9, 11.9) 21 5.6 (1.8, 17.2) 9 6.6 (3.8, 11.7) 22 3.9 (1.8, 8.5) 25 2.3 (1.1, 5.2) 24 4.9 (2.2, 10.9)

Lag1 21 5.9 (3.2, 10.8) 16 13.2 (6.7, 25.8) 21 8.6 (4.5, 16.7) 22 5.6 (1.8, 17.3) 1 8.3 (4.8, 14.4) 21 4.3 (2.0, 9.1) 21 3.6 (1.8, 7.4) 25 4.9 (2.2, 10.9)

ExE1 17 7.7 (4.8, 12.4) 19 10.4 (5.7, 18.9) 17 10.8 (6.5, 17.9) 17 5.6 (3.0, 10.5) 24 3.2 (2.0, 5.1) 18 4.2 (2.5, 6.9) 17 3.7 (2.3, 5.9) 17 4.2 (2.7, 6.7)

ExE2 19 7.4 (4.6, 11.9) 18 10.6 (5.8, 19.3) 18 10.2 (6.2, 16.9) 19 4.6 (2.5, 8.6) 22 3.2 (2.0, 5.1) 19 3.8 (2.3, 6.3) 19 3.7 (2.3, 5.8) 20 4.1 (2.6, 6.4)

ExE3 20 6.9 (4.3, 11.0) 22 9.8 (5.4, 18.0) 20 9.0 (5.4, 14.9) 20 3.9 (2.1, 7.4) 25 3.0 (1.9, 4.7) 20 3.7 (2.2, 6.0) 18 3.7 (2.3, 5.8) 21 4.0 (2.5, 6.2)

Lag0 18 7.6 (4.7, 12.3) 24 9.0 (5.0, 16.4) 19 10.1 (6.1, 16.6) 16 6.0 (3.2, 11.4) 23 3.2 (2.0, 5.1) 17 4.2 (2.5, 7.0) 20 3.5 (2.2, 5.5) 18 4.2 (2.6, 6.6)

Lag1 16 8.7 (5.4, 14.0) 17 12.0 (6.6, 21.6) 16 11.2 (6.8, 18.5) 18 5.0 (2.6, 9.5) 21 3.4 (2.1, 5.4) 15 4.3 (2.6, 7.1) 16 3.8 (2.4, 6.0) 16 4.5 (2.9, 7.2)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Huth definition

Daily mean temperature 

greater than  mean + 1 

standard deviation (SD) of 

climate normal  for at least 

3 consecutive days

West

EHE Definition

Exposure 

offset type

Daily maximum heat index 

greater than 90
o
F for at 

least 3 consecutive days

Daily maximum and 

minimum temperature 

greater than  80
th 

percentile for at least 3 

consecutive days

Daily maximum 

temperature greater than 

95
th

 percentile for at least 

2 consecutive days

Ranking and EHE Effect by Climate Regions

Central East North Central North West Central Northeast South Southeast Southwest
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Table 2-6 provides the result of the random effect meta-analyses of the estimated 

baseline rates and EHE effects, based on the top 10 best definitions, for each climate 

region. The North West Central region shows the lowest mean (95% CI) baseline rate, 

1.8 (1.5 – 2.2) deaths per one billion person-days of risk, and the highest mean (95% CI) 

EHE effect of 22.0 (17.7 – 27.3). The South region shows the highest mean (95% CI) 

baseline rate of 10.0 (8.8 – 12.0) deaths per one billion person-days of risk. The lowest 

mean EHE effect was observed in the Southeast. In general, colder regions of the U.S. 

show a relatively low baseline rate and a relatively high EHE effect, while the warmer 

regions of the U.S. show a relatively high baseline rate and a relatively low EHE effect. 

Table 2-6: Meta-analyzed baseline rate and EHE effect by U.S. climate region 

U.S. Climate Region 

Mean (95% CI) baseline heat 

mortality rate (deaths/person-

day) X 10
-9

 

Mean (95% CI)  EHE effect 

Central 4.1 (3.5 - 4.8) 15.0 (12.2 - 18.4) 

East North Central 2.3 (1.9 - 2.8) 20.7 (15.9 - 26.9) 

North West Central 1.8 (1.5 - 2.2) 22.0 (17.7 - 27.3) 

Northeast 2.9 (2.4 - 3.5) 13.1 (9.9 - 17.4) 

South 10.0 (8.8 - 12.0) 7.1 (5.7 - 8.8) 

Southeast 3.8 (3.2 - 4.5) 6.2 (4.9 - 7.9) 

Southwest 5.0 (4.1 - 6.0) 10.1 (8.1 - 12.5) 

West 4.7 (4.0 - 5.5) 7.6 (6.2 - 9.2) 

 

2.4 Summary and Conclusions 

Several local and state health departments are currently interested in issuing heat 

advisories, as well as conducting retrospective health studies to understand the effects of 

extreme heat on mortality and morbidity; health departments are collaborating with local 

and national weather offices to do so. Identification of appropriate region-specific EHE 

definition(s) can contribute to such efforts. 



 

36 

 

EHE definitions used for most heat warning systems to issue alerts are calibrated to the 

extreme end of the daily heat metric spectrum. As noted by (Hajat et al. 2010), using a 

definition that only identifies extreme temperature days may introduce false negatives 

and therefore underestimate the public health burden attributable to extreme heat, 

whereas using a less stringent or a mild threshold for EHE definitions may introduce false 

positives and therefore overestimate the public health burden. Additionally, prior research 

efforts evaluating definitions using mortality data have considered death due to all 

causes. While this is better than not using health data, the relationship between all-cause 

mortality and extreme heat is confounded by several other risk factors. Research studies 

have shown that certain social and demographic variables, which act as surrogates for 

social capital, could influence heat-related health outcomes (Reid et al. 2009; Semenza et 

al. 1996). 

To the best of our knowledge, this effort is the first nationally comprehensive, and at the 

same time region-specific, evaluation of EHE definitions using heat exposure mortality 

data. We comprehensively abstracted and operationalized commonly used EHE 

definitions from the literature, expanded the definitions to cover various combinations of 

the core variables, and considered various exposure offsets.  Our evaluation framework, 

which employed cluster analysis to identify homogeneous groupings of EHE definitions, 

followed by rate regressions to EHE effect estimates for representatives from these 

groupings, provides a robust framework to identify definitions that are most closely 

associated with heat-mortality. Our approach not only identifies a set of definitions that 

are most closely associated with heat-related mortality but may also shed light on some of 

the more weakly associated EHE definitions that appear in the literature. Finally, the 
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random effects meta-analysis summarizes the overall region-specific summertime 

baseline morality rates and the estimated EHE effects, which support informed 

speculations on the ability of populations to adapt to extreme heat.  

Our findings suggest that definitions with thresholds that are either too extreme or too 

moderate tend to be among those most weakly associated with heat-related mortality for 

most climate regions. Of the exposure offsets considered, EHE definitions/variants 

combined with a 1-day lag resulted in  the highest estimated EHE effect in  the Central, 

East North Central, North West Central, South, and West regions.  For the Northeast and 

Southeast regions, definitions/variants  involving no lag resulted in the highest estimated 

EHE effects.  For the Southwest region, a definition/variant combined with an exposure 

offset extending 3 days past the end of the heat event resulted in the highest estimated 

EHE effect.  Our evaluation suggests that the warmer regions of the U.S., such as the 

South, have a relatively low EHE effect and a relatively high baseline heat mortality rate. 

Colder areas of the U.S., such as the North West Central and East North Central regions, 

have a relatively high EHE effect and a low baseline heat mortality rate. This result is 

consistent with the relationship between temperature and mortality for colder versus 

warmer cities of the U.S. noted in prior research (Curriero et al. 2002) and may indicate 

that populations in warmer regions are better adapted to extreme heat than the colder 

regions of the U.S. We speculate that due to persistent extreme heat throughout summer 

over prolonged time periods in warmer regions, people have adapted well to extreme 

heat. In colder regions, EHEs are rare and hence people are less adapted to extreme heat. 

In other words, the populations living in colder regions have a greater a risk associated 

with EHEs than those populations living in warmer regions. 
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Additionally, there could be several social and demographic characteristics for some 

regions which might confound the relationship between extreme heat and mortality. 

Table A-3 in the appendix provides information on the levels of various social and 

demographic variables by U.S. climate regions. AC prevalence is a significant risk factor 

for extreme heat-related mortality (Reid et al. 2009) and relatively high AC prevalence is 

observed in the South and the Southeast regions of the U.S. In addition to the ability of 

the populations to adapt, higher prevalence of AC in these regions could explain a lower 

EHE effect. Studies have shown different degrees of susceptibility to extreme heat among 

ethnic groups, and some of the regional variations we observe could be an artifact of the 

underlying demographic distribution (Klinenberg 2003a; Klinenberg 2003b). 

There are a few limitations in this study. Given the sparseness in the region-wide 

numbers of heat-related deaths, we could not explore the estimation of EHE effects while 

controlling for various socio-demographic risk factors, such as gender, age, poverty status 

and ethnicity. These risk factors could confound the relationship between extreme heat 

and heat-related mortality. However, our ultimate goal was not to estimate the EHE 

effects associated with heat-related mortality but to use the estimated effects as a metric 

to rank the different definitions. Also, we used station-based meteorology data as the 

source of ambient heat data, and characterizing population-level exposures from weather 

stations may misrepresent actual individual-level exposures. Additionally, weather 

stations have limited spatial coverage (especially the ASOS stations) and are located near 

airports or in remote places to measure baseline meteorology for climatological purposes, 

where the majority of population may not reside. This may limit our generalizability of 

the relationship between extreme heat and mortality; however, station-based meteorology 
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data have been used widely in health studies. Further, EHEs extend beyond counties and 

are considered meso-scale events. Therefore, exposure misclassification, even if present, 

is minimal and we believe it does not affect our results. Lastly, mortality data used for 

this analysis is based on what is reported on death certificates, which in some instances 

could lead to misclassification of heat-related deaths (Combs et al. 1999). 

Region-specific evaluation of EHE definitions offers several potential benefits. A recent 

study conducted in Europe by Analitis et al. (Analitis et al. 2014) examined confounding 

and effect modification by air pollutants. A similar study design could be implemented in 

the U.S., given that appropriate definitions have been identified for each climate region. 

Further, the rate regression modeling approach could be extended to quantify excess 

deaths associated with EHEs for all causes or for broad cause groupings such as 

cardiovascular and respiratory deaths. Excess death estimation can be conducted either in 

a historical or in a prospective manner. Knowledge of the historical burden attributable to 

extreme heat may help local and state emergency planners with the development of 

community preparedness initiatives related to future heat waves. Additionally, 

anthropogenic climate change is projected to increase the likelihood and/or magnitude of 

several types of weather extremes, including extreme heat events (Morss et al. 2011). 

Under a climate change scenario, estimates of the public health burden associated with 

EHEs could help identify vulnerable populations and support adaptation efforts. 
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CHAPTER 3 Exploring the Utility of Modeled Meteorology Data for Extreme Heat-

Related Health Research and Surveillance
9
 

3.1 Introduction 

Meteorological data play vital role in the vast and growing realm of environmental health 

research. Meteorological variables such as temperature, wind speed, relative humidity, 

and pressure are often incorporated in studies examining the detrimental impacts of 

environmental exposures on human health. Studies that have explored such relationships 

(B Anderson et al. 2013; Anderson and Bell 2009; Anderson and Bell 2011; Basu 2002; 

Basu et al. 2005; Basu et al. 2010; O'Neill et al. 2002; O'Neill et al. 2003; O'Neill et al. 

2005; Ostro et al. 2010; Zanobetti and Schwartz 2008; Zanobetti et al. 2012) have mostly 

relied on station-based meteorology data. Data from weather stations are available from 

the National Climatic Data Center (NCDC); however, these stations are limited in 

geographic scope. Further, assigning population-level exposures using station-based 

meteorology data is constrained by the fact that some of these stations are located in non-

residential areas, such as airports, or in remote places (Gallo et al. 1996).  

Meteorological data from models are available over continuous spatial and temporal 

scales, and have found use in air pollution modeling, weather forecasting and various 

other climatological predictions (Aiyyer et al. 2007; Glahn and Lowry 1972; Michalakes 

et al. 2001; Ritter and Geleyn 1992). These numerical weather prediction models output 

meteorology fields by grid cells and form the basis for some of most commonly used 

reanalysis
10

 data products such as the North American Regional Reanalysis (NARR) 

                                                 
9
 Manuscript is undergoing internal CDC review. 

10
 Reanalysis data products combine predictions from numerically deterministic simulation models with 

ground based measurements. 
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model predictions (Mesinger et al. 2006). NARR predictions are generated jointly by the 

National Centers for Environmental Prediction (NCEP) and the National Center for 

Atmospheric Research (NCAR). Meteorology fields from the NARR model are provided 

at approximately a 0.3 degrees (32-km) spatial resolution and a 3-hourly temporal 

frequency. The primary motivation behind generating these reanalysis data products is to 

provide consistent long-term climate data on a regional scale for the North American 

domain (Mesinger et al. 2006). The NARR-based meteorological fields are spatially 

interpolated to the finer resolution, approximately 0.125 degree (12-km), and then 

temporally disaggregated to an hourly frequency. Meteorological data from this finer-

scale reanalysis model, also known as the North American Land Data Assimilation 

System Phase 2 (NLDAS) (Luo et al. 2003; Mitchell et al. 2004; Rodell et al. 2004), are 

available to users of the Centers for Disease Control and Prevention’s (CDC) 

Environmental Public Health Tracking Network (Tracking Network) (http:// 

ephtracking.cdc.gov). 

In this study, we assess the accuracy and utility of modeled predictions generated from 

NLDAS model for extreme heat research and surveillance. Our objectives for this 

assessment are to: (1) evaluate the performance of the model-based predictions against 

measurements from stations; (2) conduct a county-level health analysis using heat 

mortality data and compare the results generated from station and modeled based 

exposure estimates. 
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3.2 Methods 

3.2.1 Meteorology data 

We used station-based meteorology data for years 1999-2009 and selected meteorology 

fields from automated surface observing system (ASOS) stations in the conterminous 

United States (U.S.)—lower 48 states. Spatial coverage of ASOS stations is shown in 

Figure 3-1A. Further, we checked on the completeness of hourly and daily meteorology 

data used in this analysis. For each station we set a daily completeness threshold of 75% 

for hourly observations in a given day (at least 18 of 24 hourly measurements available) 

for computing daily summaries of the heat metric. For each county we calculated an 

average of all available daily station-based summaries to create county-level estimates of 

daily weather variables. We then applied a 95% completeness threshold for the daily 

county-level estimates of the heat metric across the summer months (May 1 through 

September 30). Finally, we only included counties for which sufficiently complete data 

were available for all 11 years (1999-2009) of the analysis period. 

We also selected stations from the Southeastern Aerosol Research and Characterization 

(SEARCH) network (SEARCH, 1999) to conduct an independent evaluation of the 

modeled predictions against measuresments. The SEARCH network was developed as 

part of public-private collaboration with EPRI (Electric Power Research Institute), 

Southern Company, and other utilities. SEARCH network was formed primarily to assess 

air quality in the Southeast (Kleindienst et al. 2010; Zheng et al. 2002). We applied the 

completeness criteria we developed for ASOS stations and this resulted in all eight 

SEARCH stations having sufficient records (Figure 3-1B). We selected data from years 

2001-2008 as these eight years had complete data for all eight stations during summer 
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months. Of these eight stations four are in rural or non-urban areas (Centreville, Alabama 

(CTR), Oak Grove, Mississippi (OAK), Outlying Landing Field, Pensacola, Florida 

(OLF), and Yorkville, Georgia (YRK)) and four are in urban areas (Jefferson St, Atlanta, 

Georgia (JST), Gulfport, Mississippi (GFP), North Birmingham, Alabama (BHM), 

Pensacola, Florida (PNS)). 

We extracted temperature and relative humidity only from weather stations in the ASOS 

and SEARCH network with complete records since our focus was to evaluate the utility 

of modeled data for extreme heat research and surveillance. We used the hourly data to 

create daily minimum (Tmin), maximum (Tmax) and mean temperature (Tavg), and 

computed daily maximum heat index (HImax) by combining both temperature and 

humidity; all daily heat metrics were represented in Fahrenheit (℉). We calculated the 

heat index based on Steadman’s formula that was modified using multiple regression 

analysis by Rothfusz (Rothfusz 1990)
11

. We then created an average of all available daily 

station-based data from ASOS stations to create county-level estimates of daily heat 

metric variables. We made adjustments to factor in county boundary changes that 

occurred between 1999-2009 in the conterminous U.S. 

The Centers for Disease Control and Prevention (CDC) has been collaborating with the 

National Aeronautics and Space Administration (NASA) on the development of long-

term weather metrics for the CDC’s Environmental Public Health Tracking Network 

(Tracking Network
12

) using data from the NLDAS model. All daily variables that we 

extracted from weather stations were also available from the NLDAS model. Daily 

                                                 
11

 We used Rothfusz’s formula instead of the formula cited in Robinson (2001) since the modeled data we 

received had used Rothfusz’s formula. 
12

Tracking Network provides nationally consistent data and metrics (indicators and measures) to monitor 

relationships among hazards, exposures, and health effects (CDC, 2013).   
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NLDAS predictions (raw data) available at 0.125 degrees were made available to CDC as 

part of an interagency agreement between CDC and NASA. Containing 464 columns and 

224 rows, the NLDAS grid covers the conterminous U.S., along with parts of northern 

Mexico and southern Canada (Figure 3-1C). The geographic coordinates 

(latitude/longitude) at the four corners of the NLDAS grid are given in Table B-1. 
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Figure 3-1: Spatial coverage of: (A) ASOS, (B) SEARCH stations, and (C) NLDAS 

grid extent with U.S. climate regions 
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We generated NLDAS-based estimates at two different geographic resolutions: (1) 

station-level estimates: we interpolated NLDAS predictions to ASOS and SEARCH 

locations from four nearest NLDAS grid centroids (geometric center) using an inverse 

squared distance weighting approach (Figure B-1), and, (2) county-level estimates: we 

used a multi-stage geo-imputation approach to convert grid-level meteorological data to 

county-level estimates. First, we calculated the population within each NLDAS grid cell 

using population estimates given by U.S. Census Blocks. We then converted NLDAS 

grid polygons with population information to centroids and related all the grid cell 

centroids to the counties in the conterminous U.S. based on a containment relationship. 

For counties that did not have a grid cell centroid within its boundary, we assigned a grid 

cell centroid closest to the county boundary. Finally, we created a population-weighted 

average from all the grid cell centroids to obtain county-level estimates of daily heat 

metrics (Figure B-2). 

3.2.2 Mortality and population data 

We obtained mortality data from the National Center for Health Statistics (NCHS) 

National Vital Statistics System and extracted death records for years 1999-2009 based 

on International Classification of Diseases, 10
th

 revision (ICD-10) external cause codes 

(Minino et al. 2011). Specifically, we selected death records for which exposure to 

excessive natural heat (ICD-10 code: X30) was listed as the underlying cause of death; 

the underlying cause of death is defined as the disease or injury that initiated the chain of 

events leading to death (Hanzlick et al. 2006). We summarized the extracted death 

records for the summer months to get counts of heat-related deaths by county and day. 

We then assigned the data for each county to one of the nine U.S. climate regions, which 
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are aggregations of states based on homogeneous long-term climatology (Figure 3-1C); a 

description of these regions is available from the NCDC  

(http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php). 

Additionally, due to small death counts in the West North Central and Northwest regions, 

we combined these two regions into “North West Central.” We excluded counties that did 

not have meteorology data (or that did not meet the data completeness threshold) and 

made adjustments to account for county boundary changes that occurred between 1999 

and 2009. For incidence rate denominators we used county-level bridged-race population 

estimates developed by NCHS and the U.S. Census Bureau. 

3.2.3 Station-level comparison of model and station data 

We compared station-level estimates of Tmax, Tavg, and HImax with measurements from 

ASOS and SEARCH to assess the performance of the NLDAS model. NLDAS estimates 

use ASOS-based measurements in the model fitting process, and model performance was 

expected to be more accurate in grid cells that have ASOS stations. However, we 

conducted an in-sample evaluation to assess the regional variability in the model fitting 

process. We also used daily heat metrics from stations in the SEARCH network to 

independently evaluate modeled estimates, since SEARCH data were not used to create 

NLDAS-based predictions. We assessed the consistency of the relationship between 

model predictions and measurements using the following performance metrics: (1) 

Pearson correlation coefficient(r), (2) Kendall Tau-B correlation coefficient (t), (3) 

Difference (D), and (4) Root mean squared deviation (RMSD). We provide formulae 

used to calculate these metrics in Table B-2. Additionally, we computed the distance 

between each ASOS station and the U.S. coastline, and examined correlations between 

http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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ASOS and NLDAS-based estimates as a function of distance from the station to the U.S. 

coastline. We obtained U.S. coastline information from National Oceanic and 

Atmospheric Administration’s (NOAA) National Geophysical Data Center. Lastly, we 

compared station-level measurements from SEARCH and model-based estimates using 

Bland-Altman plots; these plots are primarily used for identifying the presence of 

fractional bias (Vaidyanathan et al. 2013). We provide the approach used to create Bland-

Altman plot in Table B-2. 

3.2.4 County-level evaluation of model and station-based exposure estimates using 

heat-related mortality data 

We used rate regression models to evaluate the relationship between heat-related deaths 

and exposure estimates derived from ASOS and NLDAS data at the county-level. We 

only included counties that had both station- and model-based data. The following model 

form was used to estimate the death rate per person-day on a logarithmic scale for each 

EHE definition/variant and exposure offset combination: 

log(E[D] / P) = α + βregion + βEHE∙EHE + βEHE.Region∙EHE∙Region         (1) 

with model terms defined as follows: 

D: count of deaths for each combination of region, year, and EHE status
13

; 

E[D]: expected count of deaths; 

P: person-days of exposure for which D is measured; 

α: intercept; 

βregion: intercept offset for the climate region; 

                                                 
13

 To facilitate reliable modeling diagnostics as well as convergence, data were collapsed according to a 

three-way stratification: climate region × year × EHE status (for the EHE definition/variant and exposure 

offset combination under consideration).   
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βEHE: parameter estimate for the binary variable referring to the EHE definition and 

exposure offset combination; 

EHE: binary indicator variable for the operationalized EHE definition and exposure 

offset combination; 

βEHE.Region: parameter estimate for the interaction between region and EHE; 

Region: climate region; 

To compensate for over dispersion, we specified a negative binomial link. We selected all 

the shortlisted definitions (Table B-3). For each EHE definition, we considered different 

exposure offsets: no lag (i.e., no offset), 1-day lag, and 1-, 2-, 3-day extended (post-heat 

wave) effects (Figure B-3). We operationalized each EHE definition and exposure offset 

combination using station and model-based county-level estimates.  

Using the modeling approach in eq (1), we estimated a baseline rate of heat-related 

deaths (deaths in the absence of EHE), and an EHE rate of heat-related deaths (deaths in 

the presence of EHE). We termed the estimated increase (on a log-scale) in the rate due 

to EHE as the “EHE effect.”We estimated the absolute and relative difference in mean 

EHE effect between ASOS and NLDAS-based county-level estimates. We also plotted 

the mean EHE effect and 95% confidence limits (CI) based on ASOS and NLDAS 

estimates. We carried out our data analyses using the Statistical Analysis System (SAS® 

Version 9.3) and Environmental Systems Research Institute’s GIS software (ESRI, 

ArcGIS® Version 9.3). 
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3.3 Results and Discussion 

3.3.1 Descriptive statistics 

We provide a summary of the number of ASOS stations that passed the completeness 

criteria by climate regions and urbanicity
14

 in Table 3-1. There were 617 ASOS stations 

that were considered complete and were distributed among 533 counties for 1999-2009. 

405 ASOS stations (65%) were located in urban counties, and only 139 (23%) stations 

were located in rural counties. The South had the highest number of ASOS stations 

(n=106), while the Southwest had the fewest ASOS stations (n=44). In most climate 

regions, a majority of the ASOS stations in our research dataset were concentrated in 

urban counties; however, in the West North Central region, 69% of the ASOS stations 

were in rural counties. Also, the West North Central region had a high proportion of rural 

counties compared to other climate regions. Figure B-4 shows a county map with 

urbanicity classification. 

 

 

 

 

 

 

  

                                                 
14

 Urban/rural (urbanicity) nature of each county was assigned to each decedent using urban/rural 

continuum codes (version 2003) provided by department of agriculture;
18

 counties with codes 1, 2, and 3 

were classified as “urban”, while counties with codes 4, 6, and 8 classified as “suburban” and counties with 

codes 5, 7, 9 were classified as “rural.” 
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Table 3-1: Availability of complete ASOS stations by climate region and urbanicity 

U.S. Climate 

Region 

Number of ASOS stations by urbanicity 

Rural Suburban Urban Total 

Central 12 11 63 86 

East North Central 17 6 35 58 

Northeast 11 11 64 86 

Northwest 11 14 26 51 

South 28 10 68 106 

Southeast 4 6 72 82 

Southwest 17 8 19 44 

West 5 2 48 55 

West North Central 34 5 10 49 

Total 139 73 405 617 
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3.3.2 Station-level comparison of model and station data 

We compared daily station-level ASOS and NLDAS-based estimates; performance 

metrics r, D, and RMSD were calculated. Figures 3-2A-C present station-level r 

between ASOS and NLDAS estimates for daily heat metrics Tmax, HImax, and Tavg, 

respectively. The correlation between ASOS and NLDAS estimates was generally high 

with most locations having a correlation coefficient value of 0.8 or greater. Relatively 

weaker correlations were observed in coastal areas of the Southeast, South, and West for 

all daily heat metrics, while Central and Midwestern areas of the U.S. had relatively high 

correlations. We evaluated station-level t as a function of distance (log-scale) from the 

U.S. coastline (Figure B-4) and we noticed that the correlation increased with distance 

from the coastline. 
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Figure 3-2: Station-level Pearson correlation coefficient between ASOS observations 

and NLDAS-based estimates for daily heat metrics  

We present station-level D between ASOS and NLDAS estimates for all the daily heat 

metrics in Figures 4-3A-C. The data ranges for the map display were set at (<-2℉), (-

1.9–0℉), (0.1–1.9℉), and (>=2℉) and the range offset of 2℉ is approximately the 

maximum error associated with ground-level temperature measurements provided by 

ASOS stations ((NOAA) 1998). Most station-level NLDAS estimates for Tmax in the 

Eastern U.S. under predicted ASOS measurements, and most stations in the Northeast 
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consistently under predicted with a magnitude lesser than -2 ℉. Tavg and HImax, did not 

show this pattern of consistent bias in the Eastern U.S., but there was more variability for 

these heat metrics. Performance of NLDAS estimates in Central and parts of East North 

Central areas showed over prediction but the magnitude of over prediction was mostly 

less than 2℉. 

 

Figure 3-3: Station-level median difference between ASOS observations and 

NLDAS-based estimates for daily heat metrics 
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We provide RMSD by climate regions and year in Table B-4. Year-to-year variability in 

RMSD was not evident as much as regional variability. Also, of all the daily heat metrics 

considered, HImax showed the highest variability, whereas, Tavg showed the least 

variability. Among all climate regions, West showed the highest degree of variability for 

Tmax and HImax. 

We provide the results of our comparison of estimates between SEARCH and the nearest 

ASOS station, and between SEARCH and NLDAS in Table 3-2. We tabulate r, t, and 

median D for all daily heat metrics by urbanicity of SEARCH stations. Rural SEARCH 

stations did not have an ASOS station nearby, whereas most urban sites had an ASOS 

station close by. The relationship assessed (based on correlation coefficient and median 

D) between ASOS and urban SEARCH monitors was relatively better than the 

relationship between ASOS and rural SEARCH monitors. Median D computed for daily 

heat metric ranges (0–80℉ 15 was positive for most SEARCH sites, indicating over 

prediction, whereas under prediction was more common for median D computed for daily 

heat metric ranges (>80℉ . NLDAS-based estimates for daily heat metrics showed a 

higher degree of variability than ASOS-based estimates at all SEARCH locations. The 

correlation between NLDAS and SEARCH was slightly lower than the correlations 

observed between ASOS and SEARCH stations. Similar to what was observed between 

ASOS and SEARCH-based estimates, NLDAS estimates were more likely to under 

predict SEARCH measurements at higher temperatures. We provide Bland Altman plots 

in Figure B-5-7 for all daily heat metrics. The plots indicate a high degree of variability 

and under prediction at higher temperatures for most SEARCH locations.  
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 Dichotomizing differences at 80℉ to account for the starting range of the temperature alerts issued by 

National Weather Service.  
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Table 3-2: Station-level comparison at SEARCH locations 

Daily 

Heat 

Metric 

Urbanicity 
SEARCH 

Station 

Distance 

between 

ASOS 

and 

SEARCH 

stations 

(km) 

Correlation 

Coefficients (ASOS 

Vs. SEARCH, and 

NLDAS Vs. 

SEARCH) 

Median (5th,  95th Percentile) 

difference between ASOS and 

SEARCH by temperature 

Ranges 

Median (5th, 95th Percentile) 

difference between NLDAS and 

SEARCH by temperature 

ranges 

Pearson  
Kendall 

Tau-B  
(0-80) ℉ (>80) ℉ (0-80) ℉ (>80)℉ 

HImax 

Rural CTR 52.60 (0.82, 0.74) (0.66, 0.57) 0.24 (-3.47, 8.25) -2.48 (-17.12, 2.8) 3.51 (-5.17, 17.23) 0.20 (-14.87, 6.65) 

  OAK 68.00 (0.79, 0.80) (0.65, 0.64) 3.75 (-2.56, 14.95) 0.49 (-5.28, 6.84) 2.00 (-2.86, 14.17) 1.17 (-5.42, 6.83) 

  OLF 20.10 (0.75, 0.68) (0.53, 0.47) 3.84 (-1.02, 15.37) 0.31 (-7.37, 11.46) 1.70 (-4.05, 14.43) -1.53 (-13.28, 7.49) 

  YRK 49.40 (0.82, 0.77) (0.70, 0.63) 3.47 (-1.08, 11.75) 1.88 (-12.76, 6.42) 2.19 (-4.04, 12.49) 1.34 (-14.1, 6.77) 

Urban BHM 5.90 (0.84, 0.79) (0.7, 0.63) -0.08 (-3.15, 8.68) -1.36 (-12.42, 5.76) 1.28 (-5.50, 14.45) -0.14 (-12.32, 7.04) 

  GFP 2.70 (0.65, 0.60) (0.54, 0.46) 1.37 (-2.30, 21.66) -0.79 (-25.20, 4.91) -0.59 (-5.55, 16.94) -2.57 (-27.96, 4.91) 

  JST 9.10 (0.92, 0.85) (0.79, 0.69) 0.26 (-3.21, 6.13) -1.56 (-9.69, 2.24) -0.44 (-5.79, 9.91) -1.37 (-11.03, 3.98) 

  PNS 8.20 (0.86, 0.74) (0.70, 0.55) 0.40 (-1.99, 6.96) -1.22 (-7.68, 4.22) -3.14 (-7.32, 10.99) -5.15 (-14.96, 2.94) 

Tmax 

Rural CTR 52.60 (0.91, 0.82) (0.72, 0.60) 0.64 (-2.85, 5.96) -0.58 (-4.64, 3.36) 2.83 (-5.15, 10.12) -1.01 (-6.84, 4.20) 

  OAK 68.00 (0.78, 0.85) (0.59, 0.64) 3.91 (-1.16, 8.24) -0.2 (-5.37, 4.29) 1.88 (-2.86, 8.05) -0.39 (-5.21, 3.19) 

  OLF 20.10 (0.79, 0.69) (0.57, 0.47) 3.84 (-0.19, 8.25) 1.22 (-2.87, 7.15) 0.74 (-4.05, 7.31) -2.94 (-8.54, 2.18) 

  YRK 49.40 (0.88, 0.81) (0.73, 0.61) 3.94 (-0.56, 8.82) 3.04 (-5.22, 6.54) 1.72 (-4.04, 9.43) 0.26 (-8.84, 5.39) 

Urban BHM 5.90 (0.91, 0.85) (0.76, 0.64) 0.81 (-2.29, 9.15) -0.26 (-3.94, 4.35) 1.21 (-5.5, 10.17) -1.82 (-6.94, 3.59) 

  GFP 2.70 (0.76, 0.72) (0.58, 0.49) 1.99 (-1.30, 15.19) 0.7 (-6.10, 4.29) -0.45 (-5.17, 8.76) -2.42 (-8.95, 1.77) 

  JST 9.10 (0.94, 0.88) (0.79, 0.69) 1.02 (-2.83, 5.40) -0.14 (-3.87, 3.57) -0.08 (-5.41, 7.77) -1.91 (-6.88, 2.41) 

  PNS 8.20 (0.91, 0.63) (0.76, 0.41) 1.15 (-1.21, 3.41) 0.87 (-1.99, 3.68) -3.14 (-7.32, 5.08) -5.13 (-11.19, 0.49) 

Tavg 

Rural CTR 52.60 (0.85, 0.81) (0.63, 0.57) 1.07 (-3.83, 5.12) -1.41 (-6.19, 2.29) 1.88 (-4.57, 7.18) -0.65 (-5.61, 3.85) 

  OAK 68.00 (0.82, 0.82) (0.59, 0.54) 2.49 (-2.45, 6.14) 0.61 (-3.13, 4.10) 2.02 (-3.14, 6.40) 0.73 (-4.02, 4.14) 

  OLF 20.10 (0.79, 0.71) (0.54, 0.42) 3.11 (-1.46, 7.59) 0.81 (-2.45, 4.30) 4.06 (-1.45, 8.05) 0.66 (-4.21, 3.86) 

  YRK 49.40 (0.86, 0.87) (0.64, 0.64) 2.77 (-1.99, 7.35) -0.99 (-6.50, 4.58) 2.18 (-2.9, 6.93) -1.52 (-5.77, 5.53) 

Urban BHM 5.90 (0.88, 0.84) (0.69, 0.63) 0.48 (-3.58, 7.68) -0.88 (-5.01, 2.78) 0.63 (-3.76, 8.97) -0.67 (-5.59, 3.41) 

  GFP 2.70 (0.78, 0.74) (0.55, 0.45) 0.12 (-4.84, 4.35) -1.35 (-7.53, 2.31) 1.56 (-3.66, 6.65) -0.89 (-6.73, 3.11) 

  JST 9.10 (0.88, 0.88) (0.67, 0.67) 0.16 (-4.62, 4.66) -1.76 (-6.53, 1.97) 0.12 (-4.86, 5.12) -0.93 (-5.84, 3.02) 

  PNS 8.20 (0.91, 0.76) (0.71, 0.45) 0.93 (-1.49, 3.94) 0.29 (-2.69, 2.74) 2.64 (-2.45, 6.53) 0.12 (-4.87, 3.40) 
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3.3.3 County-level comparison of mean EHE effect 

We provide information on the absolute and relative change between mean EHE effect 

estimates computed using ASOS- and NLDAS-based exposure estimates in Table 3. The 

degree of agreement between the mean EHE effect estimates varied by climate region 

and EHE definitions. The absolute difference between ASOS- and NLDAS-based mean 

EHE effect estimates was negative, which indicated under prediction. The Huth 

definition (Refer Table B-3) showed maximum variability and consistent under 

prediction across all climate regions and exposure offset combinations. Worth noting, the 

Huth definition uses an extreme relative threshold and was also one of the poorly 

associated EHE definitions with heat-related mortality. The definition, daily mean 

temperature greater than the mean plus one standard deviation of the long-term climate 

normal for at least three consecutive days, showed little variability and better agreement 

between ASOS- and NLDAS-based mean EHE effect. It is important to reiterate that this 

definition was one of the poorly correlated EHE definitions with respect to heat-related 

mortality, and the magnitude of the estimated mean EHE effect was not very high when 

compared to other definitions. Other EHE definitions used in this comparison did not 

follow a consistent pattern of under prediction and the difference in mean EHE effect 

observed for these definitions varied with climate region. Of all climate regions 

considered, the magnitude of the difference in mean EHE effect for all definitions 

(excluding Huth Definition) was comparatively small for West. Similarly, East North 

Central had a relatively higher magnitude of difference for all definitions but one (daily 

maximum and minimum temperature greater than the 80
th

 percentile for at least three 
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consecutive days). Differences in mean EHE effect for other regions varied with EHE 

definitions and exposure offset combinations. 
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Table 3-3: Absolute and relative change in mean EHE effect by U.S. climate region 
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 N/A: Rate regression model for NLDAS-based exposure estimates did not converge for certain exposure offset combinations when using Huth Definition. 

EHE definition 

Exposure 

offset 

type 

Absolute and Relative Change in mean EHE effect, by U.S. Climate Regions 
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Daily maximum heat 

index greater than 90
o
F 

for at least 3 

consecutive days 

ExE1 -1.30 -10 -6.84 -36 -4.63 -21 0.86 8 0.86 16 0.23 5 -0.92 -9 -0.71 -10 

ExE2 -1.07 -8 -7.78 -40 -4.22 -19 0.89 9 0.26 4 -0.21 -4 -1.54 -13 -0.90 -13 

ExE3 -0.86 -7 -5.81 -33 -4.11 -21 1.49 17 0.23 4 -1.22 -19 -1.77 -15 -0.39 -6 

lag0 0.24 2 -5.01 -32 -2.89 -17 0.79 6 1.62 35 0.19 4 -0.61 -6 -0.82 -11 

lag1 -2.50 -17 -7.42 -33 -3.50 -16 0.90 8 0.65 12 0.58 13 -1.19 -11 -0.82 -11 

Daily maximum and 

minimum temperature 

greater than 80
th

 

percentile for at least 3 

consecutive days 

ExE1 -2.90 -20 -0.49 -4 -6.27 -37 -1.50 -14 0.22 5 -1.03 -18 -1.55 -22 -0.35 -6 

ExE2 -3.19 -22 1.25 9 -6.50 -39 -0.83 -9 0.15 3 -1.40 -25 -1.51 -22 -0.08 -2 

ExE3 -2.37 -17 0.68 6 -5.46 -37 -0.72 -9 -0.15 -3 -1.56 -28 -1.23 -20 -0.28 -6 

lag0 -3.33 -22 -2.03 -16 -6.30 -42 -1.83 -14 0.05 1 -1.68 -28 -0.86 -13 -0.06 -1 

lag1 -3.80 -22 -0.35 -2 -7.68 -40 -3.17 -28 0.27 6 -0.52 -9 -2.29 -29 -0.44 -8 

Daily maximum 

temperature greater 

than 95
th

 percentile for 

at least 2 consecutive 

days 

ExE1 -4.91 -31 -6.56 -28 1.86 8 -3.11 -22 -0.61 -9 -0.72 -12 0.56 9 -0.18 -2 

ExE2 -4.32 -30 -5.68 -26 0.62 3 -2.49 -21 -0.25 -4 -0.51 -9 0.73 12 -0.39 -5 

ExE3 -3.68 -28 -5.48 -27 0.34 2 -1.99 -21 0.03 0 -0.37 -8 0.30 5 -0.16 -2 

lag0 -3.69 -27 -4.84 -27 -0.62 -4 -1.78 -12 -0.49 -7 -0.78 -11 1.48 24 0.10 1 

lag1 -6.11 -33 -11.00 -36 2.74 11 -3.80 -28 -1.56 -21 0.54 9 0.68 10 -1.05 -11 

Huth definition 

ExE1 -2.01 -37 -4.37 -40 -1.61 -21 -4.57  N/A
8
 -3.77 -52 -3.06 -85 -1.87 -62 -3.70 -73 

ExE2 -1.98 -37 -4.20 -40 -1.63 -22 -2.52 -66 -3.18 -47 -3.23 -87 -1.91 -65 -4.22 -78 

ExE3 -1.67 -36 -3.57 -38 -1.41 -21 -0.94 -28 -2.87 -45 -3.16 -88 -1.79 -66 -3.66 -74 

lag0 -1.72 -31 -4.07 -39 -0.45 -8 -5.61  N/A
8
 -3.02 -46 -3.28 -84 -1.01 -43 -3.77 -77 

lag1 -1.86 -32 -5.49 -42 -1.35 -16 -5.62  N/A
16

 -4.38 -53 -3.63 -85 -2.31 -63 -3.28 -67 

Daily mean temperature 

greater than mean + 1 

standard deviation (SD) 

of climate normal for at 

least 3 consecutive days 

ExE1 -0.77 -10 -2.16 -21 0.83 8 -1.48 -27 0.36 11 -0.18 -4 -0.63 -17 0.37 9 

ExE2 -1.19 -16 -2.16 -20 0.61 6 -0.84 -18 0.20 6 -0.17 -5 -0.66 -18 0.39 10 

ExE3 -0.97 -14 -1.60 -16 0.96 11 -0.54 -14 0.18 6 -0.23 -6 -0.63 -17 0.26 6 

lag0 -0.46 -6 -1.66 -18 -0.81 -8 -1.39 -23 0.37 11 0.03 1 -0.38 -11 0.49 12 

lag1 -1.37 -16 -2.73 -23 1.70 15 -1.19 -24 0.12 3 0.43 10 -0.47 -12 0.40 9 
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We also compared the mean effect and the 95% confidence limits associated with ASOS 

and NLDAS-based mean EHE effect (Figure B-8-12). For most EHE definitions and 

climate regions (except North West Central), the mean EHE effect estimate from NLDAS 

was lower than the effect produced by ASOS estimates indicating a downward bias. 

However, the width of the confidence interval was very similar or tighter in some cases, 

which indicated comparable variability in the mean EHE effect estimates.  

3.4 Summary and Conclusions 

Daily heat metric data obtained from weather stations have limited geographic coverage 

and possible gaps on a temporal scale. Such limitations can negatively impact our ability 

to conduct extreme heat-related research and surveillance on a routine basis. Thus, 

modeled meteorology predictions may provide a suitable alternative for use in research 

studies and surveillance efforts examining the environmental and health impacts of 

extreme heat. The utility of NLDAS data for extreme heat surveillance and research 

should be weighed against any potential bias and variability present in these predictions, 

and an evaluation is needed to characterize the benefits and limitations of modeled 

weather data. In this evaluation, we assess the utility of model-based estimates of daily 

heat metrics using a framework well suited to identify the pros and cons of the modeled 

meteorology data for health-related surveillance and research. This assessment sheds 

light on aspects that are critical to a large-scale adoption of modeled daily heat metric 

estimates in environmental health.  

Model- and station-based estimates from ASOS comport well with each other. At most 

station locations, the correlation is high and the difference between station- and model-

based estimates are within the maximum measurement error associated with ASOS 
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stations. There are certain areas in the U.S. where estimates from NLDAS do not 

correspond well with station-based measurements. The modeled estimates show 

variability, as indicated by relatively lower correlations, near the coastal areas of the 

South, Southeast and the West. Similarly, Northeast shows a consistent negative 

difference with the magnitude greater than the maximum measurement error of weather 

stations.  

While some of these differences are expected given the location of weather stations, 

certain region-specific discrepancies that we notice could be due to the assumptions made 

in the modeling process. Some of these regional differences arise also due to the lack of 

station-based observations available to calibrate the model. This is evident from our 

independent evaluation of model-based estimates against SEARCH measurements. 

Performance of model-based estimates drops at SEARCH locations which do not have an 

ASOS station nearby. Also, users of model-based meteorology data from NLDAS should 

take note of the variability in performance at high and low temperature ranges. At high 

temperatures (greater than 80℉), particularly of interest in extreme heat-related research 

and surveillance, NLDAS-based estimates under estimate SEARCH measurements. 

County-level analysis provided useful insights into the benefits and limitations of using 

NLDAS-based exposure estimates as well as highlighting certain region-specific and 

EHE definition-specific differences. For combinations of certain EHE definitions and 

regions, the difference in mean EHE effect is relatively high. In general, the degree of 

agreement between the ASOS- and NLDAS-based exposure estimates can be improved 

by omitting certain EHE definitions for certain regions. Under estimation of mean EHE 

effect generated using NLDAS-based estimates, which are more frequently observed, is a 
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factor to consider for health studies. The variability associated with the mean EHE effect, 

based on the 95% CI, is comparable to the variability we see with ASOS-based exposure 

estimates. These insights are helpful to researchers and public health professionals 

interested in conducting health linkage studies, deriving exposure-response relationships, 

and estimating excess deaths related to extreme temperatures. 

Generating county-level heat metric estimates for every single county in the 

conterminous U.S. has wide-ranging potential for use in public health surveillance and 

research. Researchers and public health professionals will greatly benefit from using 

exposure estimates that align with the spatio-temporal resolution of health data. Further, 

NLDAS data are available for years 1979-2011, which makes it an invaluable resource 

for linkage studies exploring health impacts associated with long-term extreme heat 

exposures. There are several positive points present to promote the use of model-based 

daily heat metric estimates for extreme heat-related health research and surveillance. 

Superior spatio-temporal coverage is certainly an appealing attribute, especially given the 

limitations with station-based measurements, to adopt NLDAS-based modeled estimates.  
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CHAPTER 4 Characterizing the Effect of Meteorology on Ozone Levels during 

Extreme Heat Events 

4.1 Introduction 

An extreme heat event (EHE) is defined as a sustained period of abnormally and 

uncomfortably hot, and usually humid, weather (Meehl and Tebaldi 2004). The adverse 

effects of EHEs on mortality and morbidity have been documented in city-specific and 

regional studies (Analitis et al. 2014; Anderson and Bell 2011; Bouchama 2004; Jones et 

al. 1982; Knowlton et al. 2009; Meehl and Tebaldi 2004; Semenza et al. 1996; Semenza 

et al. 1999). Existing literature supports an association between EHEs and health 

outcomes, including cardiovascular diseases, respiratory diseases, renal failure, and 

mental health issues (GB Anderson et al. 2013; Braga et al. 2002; D'Ippoliti et al. 2010; 

Hansen et al. 2008; Kovats et al. 2004; Semenza et al. 1999). Tropospheric ozone, a 

criteria pollutant regulated under the Clean Air Act of the United States (U.S.), is also 

known to adversely impact heath. Several studies have found a consistent positive 

relationship between ambient ozone exposure and hospitalization/ emergency department 

visits for respiratory diseases, such as asthma and chronic obstructive pulmonary disease 

(Burnett et al. 1997; Strickland et al. 2010). Studies have also shown an association 

between short- and long-term ozone exposure and mortality (Bell et al. 2004; Bell et al. 

2005; Jerrett et al. 2009).  

Meteorology plays a dominant role in the formation of air pollutants, in particular 

tropospheric ozone. Several meteorology adjustment analyses conducted in the U.S. have 

explored the relationship between ozone and meteorological variables (Baur et al. 2004; 

Bloomfield et al. 1996; Camalier et al. 2007; Cox and Chu 1996; Lehman et al. 2004; Lu 
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and Chang 2005; Wise and Comrie 2005). Statistical methods used to study the 

relationship between ozone and meteorology are well documented (Thompson et al. 

2001). The primary motivation behind these studies has been to explore the interannual 

variations in ozone concentrations or to account for the variations in meteorology when 

studying the impact of emission-reduction efforts and human activities on ozone levels. 

During the European heat wave of 2003, many western and central European countries 

experienced the highest ozone concentrations on record since the 1980s (García-Herrera 

et al. 2010; Solberg et al. 2008; Vautard et al. 2005). A recent study conducted in Europe 

(Analitis et al. 2014) has concluded that heat wave-related mortality was 54% higher on 

high ozone days compared with low ozone days among people age 75-84. To an extent, 

the impact of EHEs on ozone concentrations can be surmised based on the relationship 

between high temperatures and ozone; however, it is worthwhile to quantify the impacts 

(with certainty) of consecutive days of heat stress on ozone levels in the United States 

(U.S.). Additionally, our understanding on how EHEs modify the relationship between 

meteorological variables and ozone is limited. It is worthwhile for us to examine the 

prevailing levels of meteorological variables on EHE days and non-EHE days, and 

evaluate whether EHEs encapsulate variations in multiple meteorological variables that 

are associated with higher ozone concentrations. In this study, we have the following 

objectives: (1) explore the effect of meteorological variables on ozone levels, conditioned 

on EHE and non-EHE day; (2) if the effect of meteorological variables on ozone is 

significant, characterize the degree of effect modification by EHEs at city and regional 

scales.  
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4.2 Methods 

4.2.1 Meteorology and ozone data 

We used station-based meteorology data for years 1999-2009 and selected stations in the 

conterminous U.S. (lower 48 states) that were automated surface observing system 

(ASOS) units for this analysis. Further, we set a completeness threshold of 75% for 

hourly observations in a given day to compute daily summaries of the weather variables. 

For each station we set a daily completeness threshold of 75% for hourly observations in 

a given day (at least 18 of 24 hourly measurements available) for computing daily 

summaries of the weather variables For each county we calculated an average of all 

available daily station-based summaries to create county-level estimates of daily weather 

variables. We then applied a 95% completeness threshold for the daily county-level 

estimates of the weather variables across the summer months (May 1 through September 

30). Finally, we only included counties for which sufficiently complete data were 

available for all 11 years (1999-2009) of the analysis period.We selected meteorological 

variables, such as: precipitation, pressure, relative humidity, temperature, wind direction, 

and wind speed. In addition to these variables, we selected variables for sky 

characteristics, which were converted to cloud cover fraction and ultimately used to 

compute cloud adjusted solar radiation. We also computed hours of day light (time 

difference between sunrise and sunset). All these weather variables were summarized 

daily but with different averaging periods in a given day: (1) 24-hour period, (2) during 

day light (from sunrise to sunset) hours, and (3) duration between noon to 16:00 hours. 

The list of meteorological variables and various daily metrics associated with each 

variable is provided in Table 3-1.  
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Table 4-1: List of meteorological variables 

Meteorological 

variable 
Daily summary metrics 

Temperature (T)  (℉) 

Maximum, minimum, diurnal temperature change, apparent temperature 

(includes relative humidity), deviation from 11-year summertime daily max 

and mean temperature, deviation from 30-year climate normal daily 

temperature 

Wind Speed (WS) 

(m/s) 

Average and max daily wind speed; wind speed observed at the time of 

maximum and minimum temperature. Also, calculated the following 

parameters based on inverse of wind speed 

Relative 

Humidity(RH) (%) 

Average and max relative humidity; relative humidity observed at the time of 

maximum and minimum temperature 

Pressure (P) (mb) Average and maximum pressure observed at the station 

Cloud Cover (CC) 

(OKTA) 
Average and maximum cloud cover fraction  

Solar Insolation (SI) 

(W/sq.m) 

Total daily net solar insolation, average daily solar insolation, cloud adjusted 

solar insolation 

Precipitation(Precip) 

(mm) 
Average and maximum hourly precipitation, total daily net precipitation 

Other  Weekend indicator; holiday indicator,and year 

 

We obtained daily 8-hour maximum ozone concentrations in parts per billion (ppb) and 

supplemental data fields such as: latitude, longitude, and elevation, for all the monitoring 

sites across the U.S. from the Environmental Protection Agency (EPA). The data are 

obtained only from monitors that are designated as Federal Reference Methods or 

equivalent. We retained observations associated with exceptional events. We then 

selected ozone monitors that were at least 90% complete during the summer months. We 

also restricted our selection of ozone monitors to those that have an ASOS station in 

close proximity, i.e., the distance between ASOS station and ozone monitor does not 

exceed 10 kilometers (km). From these complete stations, we selected 27 cities 

representing different climate regions in the U.S. (http://www.ncdc.noaa.gov/monitoring-

references/maps/us-climate-regions.php). Cities selected for this analysis are shown in 

Figure 4-1. Additionally, due to insufficient monitor-station pairs in West North Central 

http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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and Northwest regions, we combined these two regions and called it “North West 

Central.” 

  

 
Figure 4-1: Cities selected for this analysis 

4.2.2 EHE Definitions 

There is a lack of scientific consensus in the available literature on definitions and 

procedures to accurately identify periods of extreme heat. For this study, we selected 92 

different EHE definitions that have been used in scientific research and/or widely cited in 

the literature. We implemented a total of 92 different EHE definitions (Refer Table A-1) 

and operationalized each EHE definition as a binary (“Yes (1)/ No (0)) variable and 

categorized any day in the summer months as either an “EHE day” or a “non-EHE day.”  

Separately evaluating 92 different EHE definitions/variants becomes onerous and, hence, 

we used cluster analysis as a preliminary data reduction technique to group EHE 

definitions/variants into homogeneous sets. We applied a hierarchical clustering 

technique, and employed an average distance metric to determine distances between 
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clusters that might be merged in each step of the clustering process (Zhang et al. 1996). 

Average distance is calculated using the following formula: 

∑ ∑
          

     

  
   

  
                                (2) 

Ca and Cb are two disjoint clusters;  

na and nb are the number of members within clusters Ca and Cb, respectively; 

d is the Euclidean distance between two members of the two disjoint clusters. 

We divided the final hierarchical cluster, one “big” cluster consisting of all definitions, 

into smaller clusters. We delineated clusters taking certain metrics into consideration, 

such as: overall R-squared, pseudo-F and pseudo-T-square indices (Edens et al. 1999). 

One representative EHE definition was then selected from each high-level cluster. 

Candidate definitions were identified according to the following criteria: (1) EHE 

definitions/variants that are well-recognized in the literature; (2) application in studies 

conducted in the U.S.; and (3) application in nationally representative studies, i.e. those 

studies that covered the various climate regions of the U.S. , Among the candidates 

meeting these criteria to the extent possible, we made our final selection of EHE 

definitions to reflect differentiated combinations of the core variables that are used to 

operationalize the EHE definitions. 

4.2.3 Modeling approach 

We executed a multivariate regression model with all meteorological variables listed in 

Table 4-1. This saturated model was reduced in a step-wise approach (“backward one 

variable deletion”) by eliminating variables that were highly correlated with one another, 

and variables that offered little explanatory power (Camalier et al. 2007). We also 

examined model diagnostics, and specifically evaluated the residuals for autocorrelation. 
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Since autocorrelation was present and it was not due to missing predictors,
17

 we 

employed an autoregressive (AR) modeling approach. Without controlling for 

autocorrelation of residuals, the regression coefficients no longer have the minimum 

variance property. As a result, the variance of the error terms are underestimated. 

Consequently, the parameter estimates are biased with inaccurate confidence limits.  

The order of autocorrelation varied with city and hence, we used a step-wise 

autoregressive approach; we initially fit a higher order (n=20) autocorrelation model with 

autoregressive lags, then sequentially eliminated non-significant autoregressive 

parameters. We used an AR model with a yule-walker estimation method (Kegler et al. 

2001) and used a Durbin-Watson (DW) statistic to test for autocorrelation (Durbin and 

Watson 1971). Our final daily time series model with a correlational structure for the 

residuals is specified as follows: 

Log(O3)     ∑           
 
    + ∑            

 
    ∑               

   
      *      +    

(2a) 

    ∑       
  
                             (2b) 

where, 

O3: ozone concentration (ppb); 

α: intercept; 

    : meteorological variable; 

     
: parameter estimate for the meteorological variable; 

    : binary indicator variable for operationalized EHE; 

                                                 
17

We identified that autocorrelation was not due to missing predictors by purposely excluding a significant 

predictor in the model and examined the residuals for autocorrelation. Then, we included the omitted 

predictor and executed the model again to check whether the residual autocorrelation was present. If 

autocorrelation was present after the inclusion of the missing predictor then we concluded autocorrelation 

was not due to missing predictors. 
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     : parameter estimate for the binary variable referring to the EHE definition and 

exposure offset combination; 

         
: parameter estimate for the term denoting the interaction between 

meteorological variable and EHE; 

  : error term; 

 : autocorrelation parameter; 

  : disturbances (independent, normal random variables) 

s: period (no of days considered) or order of autocorrelation ;  

We evaluated model diagnostics including (but not limited to): regress and total R-

squared, mean absolute error (MAE), and mean relative accuracy (RA) (Hu et al. 2013), 

to assess the goodness of fit at each city. The regress R-squared diagnostic is a metric to 

determine the explanatory value associated with the candidate predictors, whereas, total 

R-squared measures the explanatory value associated with the candidate predictors and 

the autoregressive lag component (SAS 2011). We conducted an out-of-sample model 

validation by using 2010 data, which was not used in the modeling process. 

4.2.4 Sensitivity of meteorology-ozone relationships to EHE definitions 

Meteorology varies by climate regions (and many of these regions have micro-climates 

resulting in local variations), and hence, the effect of meteorological variables on ozone 

could change across the cities we have selected for this analysis. Additionally, the 

relationship between meteorology and ozone during EHE could depend on the definition, 

which could, in turn, influence the effect sizes. We conducted a summary-level pooled 

analysis of mean (95% CI) parameter estimates of meteorological variables, considering 

the heterogeneity in effect sizes arising due to EHE definitions, and to generalize the 
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effect of meteorology on ozone for each city and climate region. This summary-level 

pooled analysis was analogous to a meta-analysis of effect sizes from studies with 

different subjects or study participants (Borenstein and Higgins 2013; Mortimer et al. 

2012; Shah et al. 2005). In our analysis, each of the studies and study participants were 

akin to a model-run executed with different EHE definitions. Specifically, we used a 

random effects model to conduct the summary-level pooled analyses to account for 

differences in effect sizes arising from random variability as well as the error introduced 

by selecting a particular EHE definition. We used diagnostics such as I-squared (Higgins 

et al. 2003), to check for the presence of heterogeneity and the magnitude of 

heterogeneity by city. Further, we also extended this summary-level pooled analysis to 

generate mean and 95% confidence interval (CI) effect sizes by climate region. 

We carried out our data analyses using the Statistical Analysis System (SAS® Version 

9.3), Environmental Systems Research Institute’s GIS software (ESRI, ArcGIS® Version 

9.3), and comprehensive meta-analysis software (CMA® Version 2.0).  

4.3 Results 

4.3.1 Descriptive summary 

Ozone is monitored during the designated ozone season  

(http://epa.gov/ttn/naaqs/ozone/ozonetech/40cfr58d.htm), which varies by state. Ozone 

concentrations are the highest during the warmer months of year, May–September. For 

most cities considered in this analysis, we observed higher ozone concentrations in July 

and August. We also observed that for certain cities in the warmer climate regions, such 

as: Fresno, CA, Las Vegas, NV, and Phoenix, AZ, higher number of days with ozone 

http://epa.gov/ttn/naaqs/ozone/ozonetech/40cfr58d.htm
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concentrations greater than 75 ppb
18

 were seen as early as May. Figure 4-2 shows 

monthly distribution of ozone concentrations in the 27 cities considered in the analysis of 

1999-2009. 

 

 

Figure 4-2: Ozone concentrations by month in 27 cities 

 

The candidate predictors for this analysis were chosen based on the results from ordinary 

least squares (OLS) regression model. In order to maintain consistency when comparing 

the effect of meteorology variables on ozone across all cities, we selected a common 

subset of candidate predictors for all cities. Further, we selected a set of predictors that 

were not correlated with one and another, and offered the best explanatory predictive 

power. We settled for the following predictors in the autoregressive modeling phase: (1) 

                                                 
18

 National ambient air quality standard (NAAQS) is set at 75 (ppb) 
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inverse of daily (24-hour) mean wind speed (InvWS), (2) daily mean relative humidity 

(RH), (3) daily maximum temperature (Tmax), (4) daily cloud cover adjusted net solar 

insolation (SI), (5) EHE definition indicator, (6) interaction term between EHE indicator 

and inverse of daily mean wind speed (EHE*InvWS), (7) interaction term between EHE 

indicator and daily mean relative humidity (EHE*RH), and (8) interaction term between 

EHE indicator and daily maximum temperature (EHE*Tmax).  

We examined the monthly distributions of predictor variables by month to understand the 

city-specific variations in the meteorology (Figures C1-4). Monthly distributions for 

Tmax were similar across cities, with peak Tmax occurring in the month of July and 

August. Most cities in the warmer climate regions had higher extreme temperatures, with 

peak values occurring as early as May or as late as September. InvWS, which could be 

understood as a metric to denote stagnation, showed little variation during summer 

months; however, there were certain cities with noticeably higher stagnation values. 

Baton Rouge, LA, Birmingham, AL, and Portland, OR, are a few cities with a higher 

degree of stagnation. We noticed that patterns in RH did not vary with summer months 

but varied across cities. Cities in the arid regions of the Southwest and West had 

relatively lower levels of RH, while other cities had similar ranges in RH levels. Day-to-

day variations were noticeable in SI, but such variations were common to all cities 

considered in this analysis. 

We used cluster analysis to select EHE definitions for this analysis. We settled for five 

definitions from five different clusters. “Definition 1”, daily maximum heat index greater 

than 90 ℉ for at least 3 consecutive days (Burrows 1900), was selected from a cluster 

with definitions based on absolute thresholds. “Definition 2”, daily maximum and 
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minimum temperature greater than 80th percentile for at least 3 consecutive days 

(Easterling et al. 2000), was selected from a cluster that consisted of definitions that had 

relatively moderate thresholds. “Definition 3”, daily maximum temperature greater than 

95
th

 percentile for at least 2 consecutive days (Anderson and Bell 2011), was selected 

from a cluster with definitions that used a relative high threshold. “Definition 4”, the 

Huth Definition
19

, was selected from a cluster consisting of definitions with extreme 

thresholds. “Definition 5”, daily mean temperature greater than mean + 1 standard 

deviation (SD) of climate normal for at least 3 consecutive days (Arguez et al. 2012; 

Pascal et al. 2006), was selected from a cluster with definitions with climate normal-

based thresholds that were either relatively moderate or low. The list of EHE definitions 

considered in this analysis is provided in Table 4-2. 

  

                                                 
19

Per Huth’s  definition, a heat wave is defined as the longest period of consecutive days satisfying the 

following three conditions: 

1. The daily maximum temperature is above T1(97.5th percentile) for at least 3 consecutive days;  

2. The daily maximum temperature is aboveT2(81th percentile) during the entire period;  

3. The average of daily maximum temperature over the entire period is greater than T1. 
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Table 4-2: EHE definitions used in this analysis 

Cluster 
Definition 

id 
EHE definition name 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

1 Definition 1 

Daily maximum heat index 

greater than 90 ℉ for at least 

3 consecutive days (Burrows 

1900). 

HImax Absolute >90
o
F 

3+ 

consecutive 

days 

2 Definition 2 

Daily maximum and 

minimum temperature greater 

than 80
th

 percentile for at 

least 3 consecutive days 

(Easterling et al. 2000). 

Tmax 

and Tmin 
Relative 

>80
th

 

percentile 

3+ 

consecutive 

days 

3 Definition 3 

Daily maximum temperature 

greater than 95
th

 percentile 

for at least 2 consecutive 

days (Anderson and Bell 

2011). 

Tmax Relative 
>95

th
 

percentile 

2+ 

consecutive 

days 

4 Definition 4 
Huth definition (Bobb et al. 

2011; Huth et al. 2000) 
Tmax Relative 

T1: >97.5
th

 

percentile 

T2: >81
st
 

percentile 

Everyday 

>T2, and 3+ 

consecutive 

days >T1, 

and average 

Tmax >T1 for 

the whole 

time period 

5 Definition 5 

Daily mean temperature 

greater than mean + 1 SD of 

climate normal for at least 3 

consecutive days (Arguez et 

al. 2012; Pascal et al. 2006) 

Tavg Relative 

>mean + 1 

SD of 

climate 

normal 

3+ 

Consecutive 

days 

 

The EHE definitions considered in this analysis varied in severity, and as a result 

predicted different sets of days as EHE and non-EHE days. We examined the levels of 

meteorological predictors (InvWS, Tmax, and RH), that had an interaction term with 

EHE variable, on EHE and non-EHE days. Figures C5-7 show city- and definition-

specific distributions of meteorological variables on EHE and non-EHE days. As 

expected, the range of values for Tmax was higher during EHEs. We observed that 

stagnation, as measured by InvWS, was slightly higher during EHE days than non-EHE 

days for most cities and EHE definitions. During EHEs, most cities have lower RH and, 

of note, the more severe the definition, the lower the RH values. 
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The autoregressive models were executed separately for each city with the same set of 

candidate predictors and different EHE definitions. We noticed for a few cities, some of 

these predictors were not significant and/or were correlated with another predictor. We 

provide scatter plots between candidate predictors and a city-specific Pearson correlation 

coefficient (r) between meteorological predictors in Figure C-8 and Table C-1, 

respectively. SI was positively correlated (r >0.5) with RH for 5 of the 27cities, whereas, 

Tmax was negatively correlated (r < -0.50) with RH for 7 of the 27 cities, for example. In 

such instances, we decided to not exclude those predictors from the modeling process to 

maintain a consistent set of predictors across all cities. Table C-2 provides the goodness 

of fit measures used to assess model performance for all cities and EHE definitions. The 

model performance, evaluated based on the regress R-squared and total R-squared 

statistics, varied with cities but not with EHE definitions. Atlanta, GA had the highest 

total R-squared and Albuquerque, NM had the lowest total R-squared among all cities 

considered in this analysis. While for the majority of cities, most of the explanatory value 

came from the candidate predictors; in certain cities, the autoregressive lag component 

accounted for a substantially high proportion of the explanatory value. In Los Angeles, 

CA, less than 5% of explanatory value came from meteorological predictors or EHE 

definition variable, for example. Results from our out-of-sample validation using 2010 

data corroborated much of the goodness-of-fit metrics obtained from our in-sample 

evaluation. MAE was less than 8 ppb, and MRA was greater than 75% for majority of the 

cities. 
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4.3.2 Impact of meteorology on ozone and effect modification during EHEs 

We used parameter estimates (slope factors) obtained from the autoregressive model to 

describe the effect of meteorology on ozone. The main effect associated with 

meteorological predictors provides a “baseline” effect or relationship between 

meteorology and ozone. This effect is applicable to both EHE and non-EHE days. The 

parameter estimates associated with interaction terms describe the effect modification 

during EHEs or the “EHE day” effect. Table C-3 provides the slope factors for each city 

and for all the predictors used in the model. The slope factors are generated based on the 

summary-level pooled analysis. The baseline effect, which is examining the overall 

summertime relationship between meteorological variables and ozone, is consistent with 

the published literature. We noticed an increase in Tmax resulted in higher ozone levels 

and the magnitude of the effect measured in terms of slope varied with cities. In general, 

cities in the climate regions Central, East North Central, and Northeast, showed a much 

stronger relationship with Tmax. While climate regions Southwest and West showed the 

weakest relationship between Tmax and ozone among all of the climate regions. The 

relationship between Tmax and ozone was positive in the climate regions South, 

Southeast, and North West Central, but that effect was in between regions with the 

highest and lowest effect. 

We observed that an increase in InvWS (or a decrease in wind speed) was associated with 

higher ozone concentrations; however, the effect of InvWS on ozone was mostly felt in 

cities located in the South, Southeast, and West. Also, the magnitude of effect for InvWS 

on ozone was less pronounced as compared to that of Tmax. The effect of RH on ozone 

was present but generally small compared to the effect associated with Tmax or InvWS. 
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An increase in RH levels was associated with a decrease in ozone levels. The effect of SI 

on ozone was negligible for most cities. 

The extent of effect modification during EHEs varied with cities. For certain cities, effect 

modification was sensitive to the EHE definition selected. We examined this 

heterogeneity in effect modification using the I-squared statistic (data not shown) that 

was generated during the summary-level pooled analysis. Table C-4 provides the mean 

(95%) slope factors for the baseline effect and the EHE day effect for those 

meteorological variables that have interaction terms in the autoregressive model. In 

general, EHE definitions that use low to moderate thresholds were better associated with 

a higher magnitude of effect modification. The summary-level pooled analysis provides a 

generalized mean estimate with 95% confidence limits that represents the overall 

magnitude and uncertainty associated with effect modification during EHEs. Figure 4-

3A-B shows profile plots describing the effect of InvWS and Tmax on ozone during EHE 

and non-EHE days; the plots also have two vertical reference lines to indicate the range 

of values observed for the meteorological variables during EHEs. Table 4-3 summarizes 

the extent of effect modification by region based on summary-level pooled analysis 

conducted across cities (and definitions) within each climate region. Effect modification 

of the relationship between Tmax and ozone was most prominent in Boston, MA; 

however other cities in the Northeast showed little or no effect modification during 

EHEs. Similarly, Portland, OR showed significant effect modification during EHEs, but 

the confidence interval associated with the mean estimate was wider compared to Boston. 

Apart from Boston, MA and Portland, OR, Las Vegas, NV and Los Angeles, CA, showed 
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effect modification during EHEs, however, the magnitude of effect modification estimate 

was relatively small. 

Effect modification of the relationship between InvWS and ozone during EHEs was 

observed in 14 of the 27 cities; however the extent of effect modification was lower 

compared to Tmax, for the city-specific ranges of InvWS values observed during EHEs. 

All climate regions except East North Central, Southwest, and West, showed some 

degree of effect modification. The effect modification across these cities ranged 

anywhere between 1 to 3 ppb increase in ozone for a 0.5 s/m increase in InvWS (or a 2 

m/s decrease in wind speed). The effect modification observed during EHEs for the 

relationship between RH and ozone is felt in 14 of the 27 cities, and all regions except 

Central and Northeast showed consistent modification. Figure C-9 describes the effect of 

RH on ozone during EHE and non-EHE days. Although effect modification was present 

in most climate regions, the extent of effect modification did not result in an appreciable 

increase in ozone.  
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Figure 4-3: Effect modification

20
 of the meteorology-ozone relationship during EHE 

and non-EHE days for: (A) daily maximum temperature, and (B) daily mean 

inverse wind speed 

                                                 
20

 EHE day effect for cities is only shown if the summary-level pooled analysis of the effect modification 

(interaction term) in the model was significant. 
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Table 4-3: The effect modification (slope factors
21

 on a logarithmic scale) of the relationship between meteorological variables 

on ozone during EHEs 

Region 

Meteorological variable 

Daily maximum temperature Daily mean relative humidity Inverse daily mean wind speed 

Baseline effect 
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Central 
0.23 0.22 0.25 -0.03 -0.06 0.01 -0.11 -0.12 -0.11 0.00 -0.02 0.01 0.04 0.03 0.05 0.06 0.04 0.08 

East North 

Central 0.28 0.26 0.30 -0.03 -0.06 0.01 -0.08 -0.09 -0.07 0.03 0.01 0.05 0.02 0.01 0.03 0.00 -0.02 0.03 

North West 

Central 0.14 0.13 0.16 0.08 0.03 0.14 -0.09 -0.10 -0.08 0.07 0.04 0.09 0.01 0.00 0.01 0.03 0.01 0.04 

Northeast 
0.28 0.26 0.30 0.03 -0.01 0.07 -0.07 -0.08 -0.05 0.02 0.01 0.04 -0.01 -0.03 0.01 0.03 0.01 0.05 

South 0.10 0.07 0.13 -0.01 -0.07 0.05 -0.14 -0.17 -0.12 0.07 0.04 0.10 0.12 0.10 0.14 0.04 0.02 0.07 

Southeast 
0.16 0.14 0.19 0.03 -0.02 0.07 -0.18 -0.19 -0.18 0.07 0.05 0.09 0.04 0.02 0.05 0.06 0.03 0.08 

Southwest 
0.07 0.05 0.08 0.05 -0.02 0.11 -0.03 -0.04 -0.02 0.06 0.04 0.09 0.05 0.03 0.07 0.00 -0.02 0.02 

West 
0.10 0.07 0.12 0.04 0.02 0.06 -0.01 -0.02 0.00 0.04 0.02 0.05 0.04 0.02 0.06 0.01 -0.01 0.03 

 

                                                 
21

 The slope factors are presented on a log scale for certain predictors were scaled for display purposes. Specifically,  

Baseline effect and effect modification  associated with daily mean inverse wind speed: slope factor represents the change in ozone for a 0.1 (s/m) increase in 

inverse wind speed or a 10 m/s decrease in wind speed; 

Baseline effect and effect modification  associated with daily mean relative humidity: slope factor represents the change in ozone for a 10% increase in RH; 

Baseline effect and effect modification  associated with daily maximum temperature: Slope factor represents the change in ozone for a 10℉  increase in daily 

maximum temperature. 
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4.4 Summary and Conclusions 

Previous studies conducted in the U.S. examining the effect of meteorology on ozone 

have mostly aimed at measuring the influence of meteorological variables to assess ozone 

trends. U.S. Environmental Protection Agency (EPA) routinely conducts 

meteorologically adjusted trend analysis and provides trends that are adjusted for weather 

(http://www.epa.gov/airtrends/weather.html). The other studies that have explored 

relationships between ozone and meteorology have made weather-based adjustments to 

ozone levels to accurately characterize the impact of emission-reduction efforts and 

human activities on prevailing levels. The primary driver behind a majority of these 

studies has always been to facilitate environmental policy-making within a regulatory 

context.  

We successfully employed a multivariate autoregressive model to control for the 

autocorrelation of residuals, and used a logarithmic response for ozone, to model the 

relationship between meteorology and ozone. The goodness-of-fit measures and the 

results of out-of-sample validation using 2010 data indicated that the model adequately 

captured the day-to-day variations in ozone levels for majority of the cities. The model 

fit, based on MAE and total R-squared (Table C-2), was poor in certain cities but the 

performance did not fluctuate between EHE and non-EHE days. Also, in some cities, the 

explanatory value accounted for by predictors is very low; autocorrelation parameters 

account for the majority of the explanatory value.  

Our model-based analysis yielded two sets of results: (1) baseline effect of meteorology 

applicable to both EHE and non-EHE days, and (2) EHE day effect of meteorology on 

ozone. The baseline effect we observed is consistent with the results previously published 

http://www.epa.gov/airtrends/weather.html
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in literature. Higher temperatures are associated with higher ozone and a monotonically 

increasing trend is observed in ozone levels for temperatures above ~70℉. Lower wind 

speeds result in higher ozone as a stagnant air mass facilitates higher local production of 

ozone. Higher humidity levels, which correspond with greater cloud cover, are indicators 

of atmospheric instability, and such conditions interrupt the photochemical process 

leading to the depletion of ozone (Camalier et al. 2007). 

We have shown that the extent of effect modification that varies with cities. The changes 

in ozone concentrations during EHEs could be due to different meteorological variables 

in different parts of the country. This heterogeneity could be explained based on the 

definitions selected for this analysis, but there could be other factors, such as fluctuations 

in emissions of ozone precursors. On days with higher temperatures, certain emissions 

could increase, leading to higher ozone levels not explained by the variations in the 

meteorological variables. For example, biogenic emissions (isoprene and monoterpene) 

can increase due to high temperatures as plants tend to release these volatile organic 

carbon (VOC) compounds as a defense mechanism to combat heat stress (Benjamin et al. 

1996; Geron et al. 2006; Sharkey et al. 2008). The escalation of air conditioning use 

during extreme temperature days generate a higher electricity demand from electricity 

generating units (EGU), which in turn lead to emissions of oxides of nitrogen (NOx) (He 

et al. 2013). Further, evaporative VOC emissions have a temperature correspondence, 

and persistent high temperatures, such as those prevailing during heat waves, could result 

in higher VOC emissions during EHEs. 

Our analysis has limitations. We could only examine the effect of meteorology on ozone 

in 27 cities due to the limited number of ozone monitors in close proximity to ASOS 
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stations. Perhaps in the future, we could reproduce this analysis using modeled weather 

and ozone data. We have compensated for the limited number of study locations and 

were able to generalize the effect by conducting a summary-level pooled analysis. This is 

a novel technique frequently used in health studies, but to our knowledge, is not very 

common in environmental data analysis. In some climate regions, North West Central for 

example, the summary-level pooled analysis may result in unreliable estimates given very 

few study locations. Lastly, we were unable to examine the effect of meteorology on fine 

particulate matter (PM2.5). Although literature doesn’t suggest strong correspondence 

between PM2.5 and meteorology, it is worth examining the relationship on EHE and non-

EHE days as PM2.5 have stronger associations with mortality and morbidity outcomes. 

Although epidemiologic studies focusing on EHEs control for ozone, very few studies 

have investigated effect modification of the relationship between ozone and 

meteorological variables on EHE days and how that impacts results. In general, the 

interactive effects of air pollution and extreme heat observed during EHEs have not been 

well characterized in studies conducted in the U.S. In this study, we were able to quantify 

the relationship between ozone and meteorology, and ascertain the extent of effect 

modification during EHEs. Further, the city-specific analysis using short-listed 

definitions from cluster analysis gave us insights into the sensitivity of results to EHE 

definitions. Also worth noting, is the benefit of the summary-level pooled analysis in 

providing us with a generalized mean effect and associated uncertainty by climate region.  

Climate change is predicted to increase the number of extreme heat events in the future. 

With the projected increase in occurrences of EHEs, demand for electric power 

generation will increase (Brown Jr et al. 2013). This may contribute to further 
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degradation of air quality despite efforts to control EGU emissions. Also, future climate 

is supposed to be more stagnant due to a weaker global circulation and a decreasing 

frequency of mid-latitude cyclones (Jacob and Winner 2009). We have shown in our 

analysis that in certain cities, especially in the South and Southeast, the effect of inverse 

wind speed on ozone and effect modification during EHEs are more common.  

Given these considerations, environmental degradation, measured in terms of poor air 

quality, may exacerbate adverse health impacts already posed by EHEs. Information 

gleaned from this analysis will drive our health effects modeling phase where we intend 

to explore the interactive effects of extreme heat and air pollutants on EHE days and their 

impact on morbidity and mortality.   
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CHAPTER 5 Assessment of Modeled PM2.5: A Public Health Perspective
22

 

5.1 Introduction 

Many epidemiologic and clinical studies have found an association between both acute 

and long- term exposure to particles with an aerodynamic diameter of 2.5 microns or less 

(PM2.5) and adverse cardiovascular and respiratory health effects (Dominici et al. 2006; 

Peters et al. 2001; Pope et al. 2000). PM2.5 ambient air concentration data, which are used 

to characterize population-level exposure, are available from United States (U.S.) 

Environmental Protection Agency’s (EPA) Air Quality System (AQS). However, these 

AQS-based PM2.5 air monitors only cover approximately one fifth of all U.S. counties 

and many monitors do not sample for PM2.5 on a daily basis (Vaidyanathan et al. 2013).  

Exposure estimates of PM2.5 derived from numerical deterministic simulation models, 

such as, the Community Multiscale Air Quality (CMAQ), have been used in 

epidemiologic studies (Hamilton et al. 2009; Marmur et al. 2006). Further, statistical 

models, which combine PM2.5 measurements from monitors with CMAQ predictions or 

use measurements to calibrate model predictions, have been used to fill temporal and 

spatial gaps in ambient air monitoring data (Berrocal et al. 2011; Fuentes et al. 2005; 

McMillan et al, 2010). In general, these statistical models use monitoring data where they 

are available and incorporate results from the CMAQ model to generate PM2.5 

predictions; the Bayesian space-time Downscaler (DS) (Berrocal et al. 2010a, 2010b) 

model is one such model developed by the EPA. Techniques for atmospheric remote 

sensing have advanced rapidly over the years, producing several sensors capable of 

monitoring aerosols, such as, Moderate Resolution Imaging Spectroradiometer (MODIS). 
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These sensors are available on various platforms and measure Aerosol Optical Depth 

(AOD), which represents columnar loading of aerosols and can be used to estimate 

ground-level PM2.5 concentrations. Several studies have examined the feasibility of 

deriving ambient PM2.5 concentrations from AOD in the U.S. (Al-Hamdan et al. 2009; 

Beckerman et al. 2013; Liu et al. 2009; Paciorek et al. 2012). 

PM2.5 predictions from the CMAQ model, AOD-based models, and DS model are all 

currently used to characterize exposure for health studies. Further, PM2.5 predictions 

based on these models are available to users of the Centers for Disease Control and 

Prevention’s (CDC) Environmental Public Health Tracking Network (Tracking Network) 

(http:// ephtracking.cdc.gov). In this study, we assess the accuracy and utility of PM2.5 

predictions generated from these three model types with the following objectives: (1) 

evaluate the performance of the model-based predictions against station-based 

measurements; (2) compare linked metrics of air quality and health—change in mortality 

rate associated with lowering PM2.5 concentration levels created from model- and 

monitor-based estimates of PM2.5. 

5.2 Methods 

5.2.1 Study domain and time period 

The spatial domain of the study was the Southeastern U.S., as seen in Figure 5-1. The 

study area covers approximately 500,000 sq. km and accounts for approximately 24 

million people. Geographic scale of analyses was 12 km x 12 km grid cells; the grid 

resolution and extent aligns with the CMAQ grid definition used in Clausen et al. (2009). 

We chose the year 2006 to conduct this analysis, since 2006 was the latest year for which 
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we had both PM2.5 measurements and modeled predictions available from all data 

sources. 

 

 

5.2.2 Station based PM2.5 measurements 

We selected monitors from AQS that used Federal Reference Methods (FRM) to measure 

PM2.5 concentrations and obtained daily 24 hour average PM2.5 concentrations for the all 

the monitors contained in the study area. We restricted our selection to monitors that 

sample year-round and excluded those that did not have at least 11 measurements in each 

calendar quarter (CDC, 2013). We also selected monitors from the Southeastern Aerosol 

Research and Characterization (SEARCH) network (SEARCH, 1999). SEARCH network 

monitors provided daily PM2.5 measurements using FRM. There are five SEARCH 

Figure 5-1: Spatial domain 
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monitors in the study domain. Of these five monitors, three are in rural areas (Centreville, 

Alabama (CTR), Outlying Landing Field, Pensacola, Florida (OLF), and Yorkville, 

Georgia (YRK)), and two are in urban areas (Jefferson St, Atlanta, Georgia (JST) and 

North Birmingham, Alabama (BHM)). We used SEARCH data to evaluate model-based 

PM2.5 predictions. We computed county-level annual averages from daily monitor-based 

PM2.5 concentrations by first computing monitor level PM2.5 averages per the standard 

EPA protocol (EPA, 2012), and then assigned them to counties where they were located. 

We calculated a mean of all monitor level averages when more than one monitor was 

available in a given county. 

5.2.3 Model-based PM2.5 predictions 

The CMAQ model, a multi-pollutant, multiscale chemical transport model, generates air 

quality predictions at user-defined spatio-temporal scales taking into account land use, 

chemical transport, chemistry, weather, and emission processes (EPA 2006; Clausen et 

al. 2009). Daily CMAQ predictions of PM2.5 for 2006 were available on a 12 km grid 

from the Models-3/CMAQ modeling system (version 4.7 (CBO5)). Modeled predictions 

of PM2.5 from the DS model, were also available to CDC for 2006 (Berrocal et al. 2012). 

The DS combines the FRM-based AQS measurements (where available) and CMAQ 

predictions to predict PM2.5 through space and time (Heaton et al. 2012). DS uses a 

Bayesian approach, and the model structure and additional information are provided in 

Appendix D-1. DS predictions of PM2.5 were available at the centroid (geometric center) 

of Census tract (CT) locations. We then up-converted these CT level predictions to the 12 

km CMAQ grid by relating the CT centroids to the grid cell in which they fall, and 

computed average grid cell level predictions. For grid cells that did not contain a CT 
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centroid, we used the nearest one. Both CMAQ and DS predictions were generated as 

part of an interagency agreement between CDC and EPA to provide modeled air quality 

data for public health surveillance.  

AOD based PM2.5 predictions were generated using a geographically weighted regression 

(GWR) approach (Hu et al. 2013). The GWR model was developed to determine the 

relationship between concentrations of PM2.5 from AQS monitors, AOD values, 

meteorology, and land use information. AOD observations were retrieved from MODIS, 

aboard both Terra and Aqua satellites. Meteorological data were obtained from the North 

American Land Data Assimilation System (NLDAS). A 2006 Landsat-derived land cover 

map of the study area was downloaded from the National Land Cover Database (NLCD) 

to provide land use information. Model predictions were generated for the pixel centroids 

of the 12 km CMAQ grid. A separate GWR model was established for each day. We 

provide the model structure and additional information in Appendix D-2. 

County-level annual averages were created from CMAQ-, DS-, and AOD-based 

predictions of PM2.5. Our geo-imputation method was based on centroid containment and 

relates all 12 km grid cell centroids (geometric) to the county into which they fall. We 

established a relationship between each given county boundary polygon and all the grid 

cell geometric centroids it contains, and then transferred modeled predictions to that 

county. Since many counties contain more than one grid cell centroid, we created a mean 

predicted concentration value for each day from all the grid cells with centroids in a 

given county to create daily county-level estimates of PM2.5 (Vaidyanathan et al. 2013). 

We then computed annual averages using these daily county-level estimates of PM2.5. 
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5.2.4 Evaluation methods: daily grid cell level evaluation 

We compared the grid level PM2.5 predictions to measurements from AQS to assess the 

performance of each model in the study domain. Both DS- and AOD-based predictions 

use AQS-based measurements in the model fitting process, and model performance was 

expected to be more accurate in grid cells that have both model- and AQS-based PM2.5 

concentrations. However, we conduct this in-sample evaluation as a consistency check of 

the model fitting process, and to evaluate the performance of CMAQ predictions against 

AQS-based PM2.5 concentrations in the study domain. We also used PM2.5 measurements 

from monitors in the SEARCH network to independently evaluate modeled predictions, 

since SEARCH data were not used to create these modeled predictions. We assessed the 

consistency of the relationship between model predictions and measurements using the 

following performance metrics: (1) Pearson correlation coefficient(r); (2) Kendall Tau-B 

correlation coefficient (t); (3) Difference (D); (4) Root mean squared deviation (RMSD); 

(5) Relative accuracy (RA) (Hu et al. 2013; Vaidyanathan et al. 2013). We provide 

formulae used to calculate these metrics in Appendix D3-4. 

5.2.5 Comparison of linked metrics of air quality and health 

In order to compare county-level model- and monitor-based linked metrics of air quality 

and health, we computed the change in mortality rate associated with a 25% reduction in 

PM2.5 levels for counties with AQS monitors. Before calculating change in mortality rate, 

we compared county-level annual averages derived using AQS-based measurements and 

model-based predictions using Bland-Altman plots; these plots are primarily used for 

identifying the presence of fractional bias (Vaidyanathan et al 2013). We provide the 

approach used to create Bland-Altman plot in Appendix D-4. We used methods similar 
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to EPA’s Benefits Mapping and Analysis Program (BenMAP), a Geographic Information 

System-based program that allows users to calculate health impacts associated with 

change in pollutant levels. (Fann et al., 2012) In addition to model- and monitor-based 

estimates, we used the following inputs: (1) Concentration–Response (C-R) relationship 

between change in PM2.5 levels and how that influences mortality derived from literature; 

the mean (95% confidence intervals (CI)) effect estimate () for a unit change in PM2.5 

concentration, that was obtained from literature was 0.0057 (0.0036 – 0.0079) (Krewski 

et al.), (2) County-level population data, bridged-race estimates, provided by the National 

Center for Health Statistics and U.S. Census Bureau; (3) Mortality data from National 

Center for Health Statistics to compute mean three-year (2004 – 2006) baseline mortality 

rate (M0)for all causes of death; we excluded non-U.S residents and decedents under 25 

years of age; and (4) The change in PM2.5 annual averages (∆x) were computed for a 25% 

reduction in annual averages for each county. After preparing all the necessary inputs we 

computed the change in mortality rate (    (Anenberg et al. 2010) as 

      (       )                 (1) 

   = Baseline mortality rate expressed as deaths per 100,000 person-years; 

β = Effect estimate coefficient obtained from C-R function; 

∆x = Change in PM2.5 annual average concentration. 

We carried out our data analyses using the Statistical Analysis System (SAS® Version 

9.2) and Environmental Systems Research Institute’s GIS software (ESRI, ArcGIS® 

Version 9.3 and 10.1). 
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5.2 Results 

5.3.1 Data completeness and descriptive statistics 

The study area contained 3,702 12-km grid cells, 96 complete AQS monitors, and 5 

SEACRH monitors. Data completeness for the various PM2.5 data sources is presented in 

Table 5-1. Most of the AQS monitors in the study domain sampled PM2.5 concentrations 

every third day with a few monitors sampling every sixth day or on a daily basis. 

Sampling frequency did not change with calendar quarter and the median daily 

completeness for most monitors was 32%. Mean (range) of annual average PM2.5 

concentrations among all monitors was 14.2 (11.0 – 18.5) g/m
3
. AOD-based PM2.5 

predictions were available for all grid cells in the study domain, however, daily 

completeness varied across grid cells; median daily completeness was 56%. Mean (range) 

of annual averages from AOD-based PM2.5 predictions among all grid cells was 13.8 (9.0 

– 18.2) g/m
3
. Both CMAQ- and DS-based predictions were available daily and for all 

grid cells in the study domain. Mean (range) of annual averages from CMAQ- and DS-

based PM2.5 predictions among all grid cells were 9.6 (4.6 – 45.6) and 12.5 (9.3 – 17.0) 

g/m
3
, respectively. Monitors in the SEARCH network were highly complete with most 

monitors having an annual daily completeness of 90% or higher. Of all the PM2.5 annual 

averages from SEARCH monitors, BHM had the highest (17.3 g/m
3
) concentration and 

OLF had the lowest (11.5 g/m
3
) concentration. We present maps of annual averages 

from model and monitor-based PM2.5 concentrations in Figure D-1.  
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Table 5-1: Completeness of data sources  

Data 

Source 
Spatial unit 

No. of 

spatial units 

in the 

domain  

Median (Range) daily completeness (%) 

Jan - Mar Apr - Jun Jul - Sep Oct - Dec Annual 

AQS 
Point 

(latitude/longitude) 
96 32 (13-99) 32 (15-100) 34 (13-100) 33 (16-100) 32 (15-100) 

Remote 

Sensing 

(AOD) 

Grid cell 3,702 53 (31-63) 56 (35-67) 54 (34-63) 61 (45-71) 56 (40-63) 

CMAQ Grid cell 3,702 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100) 

Downscaler Census Tracts 6,171 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100) 

SEARCH 

Point 

(latitude/longitude) 5 92 (88-96) 96 (86-99) 96 (85-99) 92 (83-97) 93 (90-95) 
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5.3.2 Daily grid level evaluation 

We compared daily grid level model- and AQS-based PM2.5 concentrations; performance 

metrics r, t, D, RMSD, and RA are presented in Table 5-2. CMAQ-based PM2.5 

predictions were weakly correlated with AQS-based PM2.5 measurements (r=0.58, 

t=0.45) with a mean RA of approximately 50%, and a mean RMSD equal to 6.5 g/m
3
. 

CMAQ model performance varies with time of the year. In the warmer months (April 

through September) the mean D between CMAQ-based PM2.5 predictions and PM2.5 

measurements was consistently negative, indicating under prediction, and the magnitude 

of difference was highest for these months. In fall and winter (October through March) 

CMAQ-based predictions are biased slightly high versus the AQS-based PM2.5 

measurements.  
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Table 5-2:Annual and seasonal comparison of AQS-based measurements and modeled estimates of PM2.5 

 

 

Time 

Scale 
Time Period 

Modeled vs. 

Monitor 

Comparison 

Correlation 

Coefficient 

(Pearson (r), 

Kendall Tau-

B (t)) 

Mean Difference 

(25th, 75th %tile) 

(g/m
3
) 

 (D) 

Mean Root Mean 

Squared Deviation      

(25th, 75th %tile) 

(g/m
3
) 

(RMSD) 

Mean Rel. 

Accuracy      

(25th, 75th %tile) 

(%)                       

(RA) 

Annual JAN-DEC 

AQS vs. AOD (0.89, 0.75) -0.6 (-2.8, 1.4) 3.1 (2.3, 3.8) 77.8 (73.9, 83.5) 

AQS vs. CMAQ (0.58, 0.45) -2.1 (-6.7, 1.9) 6.5 (6.0, 7.1) 53.8 (51.4, 58.6) 

AQS vs. DS (0.97, 0.86) -0.2 (-1.3, 0.9) 1.8 (1.3, 2.1) 87.6 (85.4, 90.1) 

Seasonal 

JAN-MAR 

AQS vs. AOD (0.81, 0.70) -0.8 (-3.0, 1.1) 2.8 (1.7, 3.3) 76.0 (72.5, 84.3) 

AQS vs. CMAQ (0.62, 0.48) 0.6 (-3.3, 4.4) 5.4 (4.3, 6.1) 53.4 (47.8, 62.5) 

AQS vs. DS (0.95, 0.84) -0.1 (-1.1, 1.1) 1.6 (1.1, 2.0) 86.3 (83.5, 90.2) 

APR-JUN 

AQS vs. AOD (0.86, 0.74) -0.2 (-2.4, 1.7) 2.8 (2.0, 3.2) 81.4 (79.4, 87.7) 

AQS vs. CMAQ (0.57, 0.42) -4.7 (-9.0, -0.6) 6.9 (6.0, 7.7) 55.1 (50.0, 60.4) 

AQS vs. DS (0.96, 0.85) -0.3 (-1.4, 0.8) 1.6 (1.2, 1.9) 89.5 (87.4, 92.4) 

JUL-SEP 

AQS vs. AOD (0.90, 0.76) -0.4 (-2.6, 1.8) 3.2 (2.3, 3.6) 82.1 (78.9, 87.5) 

AQS vs. CMAQ (0.66, 0.49) -5.1 (-9.6, -0.8) 7.6 (6.9, 8.3) 57.2 (53.5, 61.0) 

AQS vs. DS (0.97, 0.88) -0.3 (-1.4, 0.8) 1.7 (1.2, 1.9) 90.7 (89.7, 93.1) 

OCT-DEC 

AQS vs. AOD (0.86, 0.71) -0.9 (-3.8, 1.4) 3.2 (1.9, 4.1) 72.9 (68.1, 82.6) 

AQS vs. CMAQ (0.74, 0.59) 0.7 (-2.9, 4.3) 5.3 (4.1, 5.9) 54.3 (47.9, 65.7) 

AQS vs. DS (0.95, 0.84) -0.1 (-1.3, 1.1) 1.9 (1.3, 2.2) 84.1 (82.1, 88.8) 
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AOD- and DS-based PM2.5 predictions were strongly correlated with AQS-based 

measurements, as expected since AQS measurements were utilized in the model fitting 

process. Unlike CMAQ-based predictions, AOD-based PM2.5 predictions show less 

variation in the warmer months and mean RA was the highest during this time period. 

The magnitudes of mean D for all calendar quarters was between 0 and 1 g/m
3
, and 

mean RMSD was between 2.8 and 3.1 g/m
3
. DS-based PM2.5 predictions were highly 

correlated with AQS-based measurements (r=0.97, t=0.86), and have the highest mean 

RA (87.6%) among all model-based PM2.5 predictions for all calendar quarters. 

Performance of DS-based predictions does not vary appreciably with the time of the year. 

Table 5-3 provides the results of validation between measurements from SEARCH 

monitors and model-based predictions. For reference, we provide information on the grid 

cell neighborhood around SEARCH monitors in Figure D-2; we also indicate whether 

AQS monitors are present nearby, and if present, distance to the closest AQS monitor.  
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Table 5-3: Annual and seasonal comparison of SEARCH-based measurements and modeled estimates of PM2.5 

Time Scale 
Time 

Period 

SEARCH 

Site 

SEARCH vs. AOD SEARCH vs. CMAQ SEARCH vs. DS 

Correlation 

Coefficient 

(Pearson (r), 

Kendall Tau-

B (t)) 

Root Mean 

Squared 

Deviation 

(g/m3) 

(RMSD) 

Rel. 

Accuracy 

(%)                       

(RA) 

Correlation 

Coefficient 

(Pearson (r), 

Kendall Tau-

B (t)) 

Root Mean 

Squared 

Deviation 

(g/m3) 

(RMSD) 

Rel. 

Accuracy 

(%)                       

(RA) 

Correlation 

Coefficient 

(Pearson (r), 

Kendall Tau-

B (t)) 

Root Mean 

Squared 

Deviation 

(g/m3) 

(RMSD) 

Rel. 

Accuracy 

(%)                       

(RA) 

Annual JAN-

DEC 

BHM (0.93, 0.76) 3.6 79.4 (0.62, 0.43) 7.1 59.3 (0.95, 0.81) 2.8 83.6 

CTR (0.51, 0.42) 9.8 17.1 (0.49, 0.40) 6.5 45.7 (0.86, 0.70) 3.2 72.9 

JST (0.90, 0.78) 3.5 78.8 (0.68, 0.52) 5.6 65.7 (0.95, 0.83) 2.6 84.2 

OLF (0.43, 0.41) 8 30.6 (0.41, 0.28) 6.7 41.8 (0.85, 0.66) 3.1 72.8 

YRK (0.74, 0.61) 6.4 54.3 (0.64, 0.45) 6.1 56.3 (0.93, 0.76) 2.7 80.3 

Seasonal JAN-

MAR 

BHM (0.83, 0.66) 3.6 71.6 (0.52, 0.38) 7 44.1 (0.88, 0.73) 2.7 78.6 

CTR (0.18, 0.22) 7.2 16.8 (0.53, 0.41) 6.1 28.9 (0.79, 0.63) 3.2 62.5 

JST (0.89, 0.71) 2.8 77.4 (0.78, 0.62) 4.9 61.1 (0.94, 0.81) 2 84.4 

OLF (0.67, 0.59) 6.4 32.3 (0.69, 0.43) 5.2 45.3 (0.88, 0.66) 3 68.9 

YRK (0.68, 0.48) 3.9 59.7 (0.72, 0.50) 3.8 60.5 (0.93, 0.76) 2.4 75.2 

APR-

JUN 

BHM (0.91, 0.77) 3.4 81.7 (0.58, 0.44) 7 62.6 (0.93, 0.79) 2.8 84.9 

CTR (0.39, 0.38) 13.5 8.8 (0.46, 0.34) 8.3 44.1 (0.79, 0.60) 3.8 74.6 

JST (0.89, 0.78) 3.5 79.6 (0.74, 0.54) 5.7 67.1 (0.96, 0.84) 2.1 87.6 

OLF (0.36, 0.34) 9.4 32.6 (0.53, 0.43) 8.1 41.8 (0.84, 0.66) 3.8 72.6 

YRK (0.66, 0.58) 7.6 52.2 (0.66, 0.45) 7.2 55.1 (0.93, 0.76) 2.4 84.7 

JUL-

SEP 

BHM (0.95, 0.80) 3 86.1 (0.62, 0.45) 7.6 64.3 (0.97, 0.85) 2.5 88.2 

CTR (0.71, 0.55) 7.7 47 (0.70, 0.48) 6.4 56.1 (0.89, 0.72) 3 79.8 

JST (0.89, 0.74) 3.2 84.7 (0.62, 0.46) 6.4 69.3 (0.96, 0.83) 2.2 89.6 

OLF (-0.14, 0.11) 9.8 21.9 (0.53, 0.34) 6.6 47.7 (0.86, 0.67) 2.9 77.1 

YRK (0.76, 0.69) 6.3 67.1 (0.72, 0.53) 7.5 60.9 (0.92, 0.77) 3.1 84.1 

OCT-

DEC 

BHM (0.92, 0.78) 4.2 74.2 (0.77, 0.57) 6.5 60.1 (0.96, 0.82) 3.3 79.8 

CTR (0.39, 0.20) 9.5 3.5 (0.70, 0.52) 4.5 54.3 (0.87, 0.72) 2.9 71 

JST (0.91, 0.79) 4.2 71.1 (0.83, 0.69) 5.4 63.1 (0.94, 0.81) 3.8 73.8 

OLF (0.46, 0.39) 6.2 37.7 (0.60, 0.47) 6.7 33.1 (0.84, 0.65) 2.8 72 

YRK (0.58, 0.42) 6.7 36.5 (0.70, 0.51) 5 53 (0.85, 0.70) 3 71.5 
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Performance of CMAQ-based predictions was similar to what was observed against 

AQS. RA was relatively higher for the two urban SEARCH monitors, BHM and JST, 

than CTR, OLF, and YRK which are rural sites. The difference in mean RA of CMAQ-

based predictions between urban and rural sites in the SEARCH network was 14.6%. 

CMAQ-based PM2.5 predictions under predict SEARCH measurements in the warmer 

months and over predict in fall and winter months. Performance of AOD-based PM2.5 

predictions varied with SEARCH monitors (Figure 5-2).  

  



 

115 

 

 

Figure 5-2: Comparison model- and SEARCH-based PM2.5 concentrations
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AOD-based predictions were strongly correlated with SEARCH-based measurements at 

BHM (r=0.93, t=0.76) and JST (r=0.90, t=0.78), two urban sites in the network; 

however, the AOD-based predictions had relatively weak correlations at CTR (r=0.51, 

t=0.42), OLF (r=0.43, t=0.41) and YRK (r=0.74, t=0.61), which are sited in rural 

locations. RMSD for CTR (9.8 g/m
3
), OLF (8.0 g/m

3
), and YRK (6.4 g/m

3
) were 

relatively higher than urban SEARCH monitors. The difference in mean RA of AOD-

based predictions between urban and rural sites in the SEARCH network was 45.1%.  

DS-based predictions had the best relationship with SEARCH-based measurements 

among all model-based PM2.5 predictions, with high correlations, low RMSD, and high 

RA. DS-based predictions were strongly correlated with measurements at BHM (r=0.95, 

t=0.81) and JST (r=0.95, t=0.83), and YRK (r=0.93, t=0.76) and the correlations were 

slightly weaker at CTR (r=0.86, t=0.70) and OLF (r=0.85, t=0.66). RA of DS-based 

predictions against all SEARCH monitors was greater than 72% and overall there was 

less variability between measurements and predictions (Figure 2). Performance metrics 

did not fluctuate with calendar quarters for the DS model, however, a slightly better 

performance was observed in warmer months compared to fall and winter months. The 

difference in mean RA of DS-based predictions between urban and rural sites in the 

SEARCH network was 8.6%. In general, the performance of AOD- and DS-based 

predictions against SEARCH measurements depends on the number of AQS observations 

available to calibrate the model; this dependency is more pronounced for AOD-based 

predictions. We provide scatter plots comparing SEARCH-based measurements and 

model-based estimates taking into account two scenarios—Comparison on days when 
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AQS data are available and unavailable to calibrate the model in Figure D3-4, 

respectively. 

5.3.3 Comparison of estimated annual county-level change in mortality rate 

There were 71 counties in the study domain with at least one AQS monitor. The median 

(range) baseline mortality rate (M0) in these counties was 1,566 (677 – 2,123) deaths per 

100,000 person-years. The population sizes of these counties varied from 5,915 to 

477,701 people, with a median county-level population of 66,820 people. A Bland-

Altman plot (Figure 3a) shows annual averages computed from AOD- and DS-based 

PM2.5 estimates strongly agree with AQS-based annual averages. For most counties, the 

difference between annual averages from predictions and measurements was between -

1.5 and +1.5 g/m
3
, and fractional bias was negligible. CMAQ-based annual averages 

show weak associations with AQS-based annual averages and consistently under predict 

AQS-based annual averages. 

Except for air quality estimates, all other inputs used to calculate the change in mortality 

rate (  ) were held constant. The mean (range) ∆x for AQS-based PM2.5 annual 

averages was 3.5 (2.7 – 4.2) g/m
3
. The mean (95% CI) of AQS-based    estimates was 

30 (19 – 41) deaths per 100,000 person-years. The mean (range) ∆x for AOD-, CMAQ-, 

and DS-based PM2.5 annual averages was 3.5 (2.8 – 4.0), 2.7 (1.4 – 3.8), and 3.3 (2.5 – 

4.1)g/m
3
, respectively. The mean (95% CI) for AOD-, CMAQ-, and DS-based 

   estimates was 29 (18 – 40), 22 (14 – 31), and 30 (19 – 42) deaths per 100,000 

person-years, respectively. CMAQ-based    estimates is relatively less 

correlated(r=0.78) and consistently under predicts the AQS-based    estimates (Figure 

3b). AOD- and DS-based    were in very good agreement with the    calculated using 
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AQS-based estimates, while    from CMAQ are slightly lower. Pearson correlation 

coefficient for AOD- and DS-based estimates was 0.90 and 0.92, respectively. 
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Figure 5-3: County-level annual comparison of model- and AQS-based metrics: (A) Bland Altman Plot, and (B) Comparison 

of change in mortality rate
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5.3 Discussion 

In our study domain, approximately 15% of the counties had PM2.5 measurements via 

AQS monitors. Most of the AQS monitors sample every third day, leaving approximately 

66% of the days in a year without data. These limitations could hinder our ability to 

accurately ascertain population-level ambient exposure and could introduce uncertainty 

when used to quantify health risks. Our analyses focused on the three most commonly 

used modeling approaches in the context of public health by researchers and public health 

practitioners. 

Advances in remote sensing technologies, coupled with rigorous statistical 

methodologies, help generate AOD-based predictions of PM2.5. The GWR model used to 

generate AOD-based PM2.5 predictions produces parameter estimates of AOD and other 

meteorological variables that are adjusted locally. AOD data from satellite sensors, such 

as MODIS, are provided in a 10 km x 10 km spatial resolution and allow for the creation 

of PM2.5 predictions at geographic scales finer than county, such as, zip codes and census 

tracts. Temporal data completeness for AOD-based PM2.5 predictions is approximately 

50%, which is greater than the completeness offered by AQS-based monitor data. 

Further, AOD data can be retrieved within a time lag of a few months and processing 

AOD data to generate PM2.5 predictions is computationally less intensive than executing 

numerical deterministic simulation models. 

There are a few limitations that should be taken into consideration before using AOD-

based PM2.5 predictions. Daily PM2.5 predictions generated using AOD data for each grid 

cell is based on at most two data points (dictated by the number of passes the satellite 

makes over the earth). In certain seasons, data availability is limited by cloud cover and 
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other atmospheric factors. Additionally, the calibration process depends on the 

availability of AQS monitor data and to some extent, the accuracy of the modeled 

predictions depends on the number of AQS monitors available to calibrate the model. In 

an area with sufficient monitoring data, AOD-based predictions compare well with 

observed PM2.5 concentrations. On the other hand, in areas where there are no monitors or 

when the number of daily observations needed to calibrate AOD is limited, due to lack of 

monitor-based measurements or missing AOD data, AOD-based PM2.5 predictions are 

less accurate. This is evident from comparisons performed against monitors in the 

SEARCH network. SEARCH monitors that are located in urban areas (BHM and JST) 

have many AQS monitors nearby, and hence SEARCH- and AQS-based PM2.5 

measurements are highly correlated. We provide a comparison between SEARCH- and 

AQS-based measurements in Figure D-5. As a result, AOD-based predictions, which are 

calibrated using AQS-based PM2.5 concentrations, are correlated with SEARCH-based 

measurements. On the contrary, rural SEARCH sites, such as CTR and OLF do not have 

a dense enough AQS monitoring network to represent the PM2.5 spatial variability in the 

region and expectedly, AOD-based PM2.5 predictions are weakly associated with PM2.5 

measurements at these locations. The performance of AOD-based predictions at YRK is 

in between what is observed at rural and urban SEARCH sites, likely due to the fact that 

the YRK site has an AQS site nearby which operates once-every-third day. On days 

where PM2.5 measurements are available to calibrate the model, AOD-based predictions 

are in agreement with SEARCH-based measurements.  

The CMAQ model offers PM2.5 predictions at continuous space and time scales. Given 

the wealth of emission, meteorology, land use and other pertinent information supplied to 
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the model, the CMAQ modeling framework does capture the dynamics of the air 

pollution processes to an extent (Jun et al. 2004). However, CMAQ-based PM2.5 

predictions show the weakest association with observed PM2.5 concentrations among the 

models evaluated in this paper. This is not surprising as AOD- and DS-based methods are 

directly linked to observed air quality via their calibration approach, while CMAQ is not. 

It is clear that CMAQ does not currently have the ability to fully capture day-to-day 

variability (Marmur et al., 2006). On the other hand, CMAQ is well suited for 

ascertaining the background concentrations and computing long-term averages. CMAQ-

based predictions can be used to augment monitor data and are currently being used as 

input to data fusion models. CMAQ can also provide information on speciated PM2.5, 

whereas, AOD-based models and Bayesian space time models, such as the Downscaler, 

are typically used to estimate total PM2.5. 

Data fusion models, such as DS, use a Bayesian approach and generate robust predictions 

using AQS monitor data where available, and CMAQ predictions in places without 

monitor data. The DS model has some additional advantages over earlier versions of prior 

Bayesian space time models; the current DS has the ability to borrow useful information 

from neighboring grid cells and provide a smoothed prediction, which tends to improve 

performance against observed concentrations. In our study domain, DS-based modeled 

results show the strongest association with observed PM2.5 concentrations. Evaluation of 

the predictions from DS model using measurements from SEARCH sites suggest that 

DS-based predictions and SEARCH-based measurements are highly correlated. One of 

the few drawbacks of using DS model is the long wait time associated with executing 
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CMAQ, which is a needed input. However, CMAQ data may be available from prior 

studies, facilitating this approach. 

Summary measures, such as, annual averages created from either AOD- or DS-based 

methods comport well with AQS-based annual averages; bias and variability observed on 

an annual scale is minimal. Computing linked metrics of air quality and health, such as 

the change in mortality rate associated with lowering PM2.5 levels, using annual averages 

from AOD- and DS-based models match closely with those derived using AQS-based 

annual averages. CMAQ-based annual averages consistently under predict AQS-based 

annual averages and hence the change in mortality rate computed from CMAQ-based 

annual averages are negatively biased when compared to those derived from AQS-based 

annual averages. In general, computing linked metrics of air quality and health at 

aggregate geographic or longer time scales could reduce uncertainty and circumvent 

some of the limitations related to missing data and variability observed in places without 

monitors. 

Even considering the limitations of the models, model-based predictions are a viable 

option for public health. Misrepresentation of prevailing air quality levels can be 

minimized if end users identify a suitable use for a model after considering the trade-offs, 

for example, the enhanced spatial and temporal coverage offered by the model with the 

associated uncertainty. For example, a potential use of AOD-based models could be 

generating annual averages at finer geographic scales in places where adequate monitor-

based measurements are available to calibrate. Although missing data could affect the 

reliability of these estimates and diminish the representativeness of the annual averages, 

AOD-based estimates may be utilized when the quarterly completeness is higher than 
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33% (most PM2.5 monitors sample once-every-third day) and when data are present for 

all calendar quarters. In areas without monitors, the DS model has a superior performance 

when compared to predictions from both AOD-based and CMAQ model, and the 

performance of CMAQ is slightly better than the AOD-based method. Given these 

findings, relying on statistical models that incorporate both monitoring data and CMAQ 

in a Bayesian approach, such as DS, is prudent when monitoring data is locally 

unavailable and/or when calculating annual metrics for public health.  

5.4 Conclusion 

One of the primary goals of the CDC’s Tracking Network is to advance the state of 

science in surveillance by creating metrics of exposure at a finer geographic scale, and 

identifying vulnerable places and populations. Understanding the benefits and limitations 

of the modeled data sources of PM2.5 is a necessary first step to utilizing these alternative 

data sources in facilitating linkages with health and population data. We have conducted 

an evaluation of different approaches to estimate PM2.5 concentrations using an 

independent set of monitors, identified deficiencies, and suggested an appropriate use of 

each modeled data source. Although this study is conducted in the Southeast, our 

assessment sheds light on model performance that goes beyond the study domain and 

could help researchers and public health practitioners choose the appropriate modeled 

data source(s) of PM2.5 for health studies and public health surveillance.  
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CHAPTER 6 Monetizing Health Burden Associated with Extreme Heat Events: 

Exploring the Role of Air Pollution and the Sensitivity Associated with Heat Wave 

Definitions in the Excess Death Estimation Process 

6.1 Introduction 

Severe weather, especially extreme temperatures, adversely impacts human health 

(Anderson and Bell 2011; Basu 2002; Basu et al. 2005; Knowlton et al. 2009). The 

National Oceanic and Atmospheric Administration’s (NOAA) National Climatic Data 

Center (NCDC) assesses the burden of severe weather and climate events from a 

historical perspective in the United States (U.S.), and has been compiling a database that 

provides information on extreme weather events and natural disasters 

(http://www.ncdc.noaa.gov/billions/). Specifically, the database describes the nature of 

damage and costs associated with severe weather and natural disasters (such as droughts, 

flooding, freeze, severe storms, tropical cyclones, wildfires, and winter storms) in the 

U.S. since 1980 (Smith and Katz 2013). While this database is comprehensive, it 

provides limited information on the economic impact of mortality associated with severe 

weather events and natural disasters.  In addition, some extreme temperature events are 

not captured in the NOAA database, such as the 2006 North American heat wave, which 

lasted for more than a month. In California alone, this extreme heat event (EHE) resulted 

in 140 direct hyperthermia deaths, as well as many more excess deaths over a 17-day 

period in July (Margolis et al. 2008). Further, this database does not quantify the excess 

deaths that are associated with EHEs. 

 

http://www.ncdc.noaa.gov/billions/
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A European study estimated 22,080 excess deaths in England, Wales, France, Italy, and 

Portugal during and immediately after the heat wave of the summer of 2003 (Kovats and 

Hajat 2008). Similarly, a 1995 Chicago heat wave, which lasted for only five days, 

resulted in 750 deaths (Semenza et al. 1996). Several studies have quantified the health 

burden attributable to air pollution. U.S. Environmental Protection Agency (EPA) 

estimates that 130,000 PM2.5-related deaths and 4,700 ozone-related deaths resulted from 

2005 air quality levels (Fann et al. 2012). While it is believed that most of the deaths and 

illnesses during EHEs are associated with extreme temperatures, a recent study conducted 

in Europe has concluded that heat wave-related mortality was 54% higher on high ozone 

days compared with low ozone days among people age 75-84 (Analitis et al. 2014). 

Hence, it is worth investigating the role of air pollutants in causing adverse health effects 

during EHEs. 

Additionally, impacts on health are usually estimated to be the largest adverse 

consequences of EHEs when measured in economic terms using standard valuation 

approaches and dominating other losses, such as damage to crops and ecosystems (Yang 

et al. 2005). The most severe of adverse health outcomes associated with EHEs is death, 

where losses to society and the economy extend from the point of premature death 

forward until that person would have died of other causes had they not succumbed to the 

effects of extreme heat. To truly understand the full impact of the EHE-related fatalities, 

we should not only enumerate the monetary losses from infrastructure damage but also 

account for the economic loss these deaths have on the decedent’s household, 

community, and society in general. In this effort, we have the following objectives: (1) 

model the region-specific exposure – response (E-R) relationship between EHEs and 
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mortality, adjusting for air pollution levels observed during EHEs (2) estimate excess 

deaths associated with EHEs, and monetize those excess deaths using standard economic 

metrics.  

6.2 Methods 

6.2.1 Meteorology data 

We used station based meteorology data for years 2001-2009, and included any county in 

the conterminous U.S. (lower 48 states) that had an automated surface observing system 

(ASOS) unit in this evaluation. Further, we checked on the completeness of hourly and 

daily meteorology data used in this analysis. For each station we set a daily completeness 

threshold of 75% for hourly observations in a given day (at least 18 of 24 hourly 

measurements available) for computing daily summaries of the heat metric.  For each 

county we calculated an average of all available daily station-based summaries to create 

county-level estimates of daily weather variables. We then applied a 95% completeness 

threshold for the daily county-level estimates of the heat metric across the summer 

months (May 1 through September 30). Finally, we only included counties for which 

sufficiently complete data were available for all 11 years (1999-2009) of the analysis 

period. 

6.2.2 Air pollution data 

We used air pollution data for the years 2001-2009 from the Downscaler (DS) model, a 

space-time hierarchical Bayesian model (Berrocal et al. 2010, 2012) . DS-based estimates 

of daily 8-hr maximum ozone concentrations (parts per billion or ppb) and daily 24-hour 

average PM2.5 concentrations (micrograms per cubic meter or g/m
3
) are available by 
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census tracts. Daily county-level modeled estimates are obtained using a population-

weighted approach, where tract populations are used to weight daily tract level ozone and 

PM2.5 predictions. The population-weighted approach is described below: 

                 ∑          
  
     

        

∑         
  
   

    (1) 

Where,  

                  daily DS estimate at the county-level for county k; 

           daily DS estimate at the census tract level for a tract j located within county k; 

          total population for a census tract j located within county k; 

    number of census tracts in county k. 

In health studies exploring the relationship between individual air pollutants, such as 

ozone and PM2.5, and health outcomes is complicated by multicollinearity (Marcus and 

Kegler 2001). To remedy this issue, we created a composite air pollution (AP) score, by 

combining ozone and PM2.5, using factor analysis. Factor analysis or principal 

components analysis has been used in health studies involving air pollutants and health 

outcomes (Jerrett et al. 2005; Nikolov et al. 2011). We examined the Eigenvalues 

associated with the factors and took note of the proportion of the variance accounted for 

by each factor.  

6.2.3 Mortality data 

We obtained mortality data from the National Center for Health Statistics (NCHS) 

National Vital Statistics System and extracted death records for years 1999-2009 based 

on International Classification of Diseases, 10
th

 revision (ICD-10) external cause codes 

(Minino et al. 2011). Specifically, we selected death records from all causes except those 
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that had injury conditions listed as the underlying cause of death; the underlying cause of 

death is defined as the disease or injury that initiated the chain of events leading to death 

(Hanzlick et al. 2006). Additionally, we extracted individual-level covariates (such as 

age, gender, race, and ethnicity) from death records, and attached county-level covariates 

based on county of residence. We summarized the extracted death records for the summer 

months to get counts of deaths by county and day. We then assigned each county to one 

of the nine U.S. climate regions, which are aggregations of states based on homogenous 

long-term climatology (Figure E-1); a description of these regions is available from 

National Climatic Data Center (http://www.ncdc.noaa.gov/monitoring-

references/maps/us-climate-regions.php).
 
Additionally, due to small death counts in the 

West North Central and Northwest regions, we combined these two regions into “North 

West Central.” We excluded counties that did not have meteorology data (or that did not 

meet the data completeness threshold) and made adjustments to account for county 

boundary changes that occurred between 1999 and 2009. 

6.2.4 Population and other ancillary data 

For incidence rate denominators we used county-level bridged-race population estimates 

developed by NCHS and the U.S. Census Bureau. We restricted our analysis to counties 

with a resident population of greater than 100,000. For use as model covariates we 

obtained a number of county-level health and behavioral measures
23

 from several 

different sources. Percentages of residents of all ages living in poverty and percentages of 

residents aged 0-64 years without health insurance were obtained from the U.S. Census 

                                                 
23

 County-level health and behavioral covariates were categorized based on tertiles of the distribution of 

measure values by each region and categorized as following:(1) the lowest tertile was called “Low”, (2) the 

middle tertile was called “Medium”, and (3) the highest tertile was called “High”. 

http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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Bureau. Prevalence estimates of current adult smokers were obtained from CDC’s 

Behavioral and Risk Factor Surveillance System. We obtained data on diabetes 

prevalence, adults that reported no leisure time physical activity, and obesity prevalence 

(body mass index > 30) from the National Center for Chronic Disease Prevention and 

Health Promotion, Division of Diabetes Translation at CDC. We obtained county-level 

air conditioning (AC) prevalence data from a private vendor, Efficiency 2.0. 

6.2.5 EHE definitions 

We considered all the shortlisted definitions (Table E-2) as well as exposure offsets 

shown in Figure E-2. But, we restricted our selection to the top 10
24

 (Table E-3) EHE 

definition and exposure offset combinations for each climate region. We operationalized 

each EHE definition and exposure offset combination as a binary (Yes (1) / No (0)) 

variable and thereby separately classified each day in each county during the summer 

months as either an “EHE day” or a non-EHE day.”
25

  

6.2.6 Estimation of exposure-response (E-R) relationship 

We used a rate regression modeling approach with negative binomial link to estimate the 

E-R relationships. We selected several candidate predictors including, but not limited to: 

the binary variable for each EHE definition and exposure offset indicator combination, 

combined AP score, air conditioning (AC) prevalence, adult smoking prevalence, and 

month. We used a summary-level model to explore the relationship between EHEs and 

mortality, and generated the rate ratios (RR) at various levels of AP scores. Additionally, 

                                                 
24

 The top15 EHE definitions are based on the evaluation from previous work, which examines the 

predictive power of each EHE definition against heat mortality data. 
25

 We added a buffer of 3 days to the start and end of the summer months to account for any potential EHE 

that either started prior to May 1 and ended on or shortly after May 1, or started on or shortly before 

September 30 and ended in the early part of October.  The buffer days were not included in the analysis. 
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in certain regions and for most EHE definitions, there is little overlap between levels of 

standardized AP scores observed on EHE and non-EHE days. In order to achieve a model 

fit that is reliable for both EHE and non-EHE days, we filtered out extreme values of 

standardized AP scores and used values that were common to both sets of days. We fitted 

a region-specific model for each of the top 10 EHE definitions and exposure offset 

variables. The following region-specific model was used to derive E-R relationships: 

   (
    

 
)                                      ∑                        (2) 

with model terms defined as follows: 

D: count of deaths (stratification level: county, year, month and EHE status)
26

; 

E[D]: expected count of deaths; 

P: size of the population over which D is measured 

α: intercept 

EHE: binary indicator variable for operationalized EHE definition and exposure offset  

combination 

AP: factor score 

Ck: represents the  kth covariate used as a control 

T: month 

    : parameter estimate for the binary variable referring to the EHE definition  

and lag type combination 

   : parameter estimate for factor score 

       :  parameter estimate for the term denoting the interaction between EHE  

                                                 
26

 To facilitate reliable modeling diagnostics as well as convergence, data were collapsed according to a 

four-way stratification: county × year × month ×  EHE status (for the EHE definition/variant and exposure 

offset combination under consideration).   
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and factor score 

  : parameter estimate for kth covariate 

  : parameter estimate for month (Refer to Appendix Table E-1 for the list of candidate  

covariates). 

We estimated RRs
27

 by region for each definition and exposure offset combination. We 

estimated region-specific RRs without and with air pollution terms in the model.  

6.2.7 Excess death estimation  

We estimated the excess deaths associated with each EHE definition and exposure offset 

combination, and county using the modeled output generated by the negative binominal 

rate regression model. We first estimated the total deaths from all EHE days combined 

for each definition,     , i.e., we summed up all deaths (obtained from the model) when 

EHE indicator was one (         ). Then, we computed the total model-estimated 

deaths on non-EHE days or baseline deaths, by summing up when EHE indicator was set 

to zero (         ). We calculated daily county-level baseline deaths (       ) as 

follows: 

        
∑         

                      
       (3a) 

Subsequently, we summed the county-level baseline deaths on all EHE days (     , 

where 

                                     (3b) 

We finally calculated county-level excess deaths (           )
28

 on EHE days for each 

county as 

                                                 
27

 We used the estimate statement in Proc GenMOD procedure available from Statistical Analysis System 

(SAS® Version 9.3) to compute RRs without and with air pollution terms in the model. 
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                               (3c) 

We summed all the             values in our study dataset (counties with complete 

meteorological information), across months, and years by climate region to obtain a 

regional estimate of excess deaths,             . We then scaled this estimate of regional 

excess deaths to account for all the population contained with each climate region using a 

population-adjusted scaling factor,         .  

             
 
           

       
        (3d) 

Where  

          
∑ ∑                                   
    
      

∑ ∑                                 
    
      

     (3e) 

We also generated the interquartile range (IQR) for the top 10 definitions based on the 

bootstrap-generated empirical distributions of excess death estimates.  

6.2.8 Region-level summary of E-R relationship and excess deaths 

We conducted a summary-level pooled analysis, using the top 10 EHE definitions and 

exposure offset variables, to estimate the mean and 95% confidence interval (CI) RR by 

different regions (with and without air pollution terms). This summary-level pooled 

analysis was analogous to a meta-analysis of effect sizes from studies with different 

subjects or study participants (Borenstein and Higgins 2013; Mortimer et al. 2012; Shah 

et al. 2005). In our analysis, each of the studies and study participants were akin to a 

model-run executed with different EHE definitions. Specifically, we used a random 

                                                                                                                                                 
28

The only time this process would break down would be in instances where every day of the month is 

classified as an EHE day. In such instances, we inserted dummy records in the negative binomial rate 

regression modeling procedure with complete list of predictors and missing dependent variable, deaths.  

The modeling procedure does not include this record in the model fitting procedure but generates    .  
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effects model to conduct the summary-level pooled analyses to account for differences in 

effect sizes arising from random variability as well as the error introduced by selecting a 

particular EHE definition. We used diagnostics such as I-squared (Higgins et al. 2003), to 

check for the presence of heterogeneity and the magnitude of heterogeneity by region.  

Further, we estimated the excess deaths per EHE day from all causes, except injury, using 

the mean and 95% confidence interval (CI) RR generated from the summary-level pooled 

analysis. We deduced the following formula from equation (2) to calculate excess deaths 

(ExD) per EHE day for each region: 

   

       
                                         (4) 

Where, 

   

       
 = region-level excess deaths per EHE day for each region based on all EHE 

definitions and exposure offset indicators; 

    = rate ratio generated by the summary-level pooled analysis using the random effects 

model; 

        = daily regional baseline rate
29

 (deaths/population) on EHE day;  

Population = total regional population. 

6.2.9 Monetizing Excess deaths 

We assessed the monetized mortality burden in terms of lifetime work loss (LWL) costs 

resulting from premature death. LWL costs include: lost wages, lost benefits, and self-

reported lost household benefits; lifetime work loss costs are determined by the age and 

                                                 
29

We first calculated daily county-level baseline deaths,       , based on the model generated output using 

formula 3a. We generated a county-level daily baseline rate by dividing        by the county population. 

We then used a random effects model to generate a mean daily baseline rate by each climate region. 
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gender of the decedent (Lawrence et al. 2009). LWL cost coefficients were obtained by 

single year of age and gender from CDC’s Web-based Injury Statistics Query and 

Reporting System (WISQARS) (www.cdc.gov/ncipc/wisqars). 

LWL cost coefficients were indexed to 2010 dollar-value and assigned according to the 

gender and age of the decedent. Figure E-3 shows the unit LWL costs in millions ($) by 

age and gender. We created a baseline LWL cost per death (       ) by region for 

deaths due to all-causes that are not injury related. We then monetized the excess deaths 

per EHE day,                  as 

                 
   

       
                           (5) 

Where, 

                = regional LWL cost associated with excess deaths; 

   

       
 = region-level excess deaths per EHE day for each region based on all EHE 

definitions and exposure offset indicators; 

        = region-level baseline LWL cost per decedent. 

As a sensitivity analysis for our economic estimation, we also used the “value of 

statistical life (VSL)” metric to quantify the mortality burden in economic terms (EPA 

2010; Kochi et al. 2006).
 
We used a baseline VSL estimate of 7.6 million (M) dollars 

from 2006 and adjusted it to $8.1M per 2010 prices, using a cumulative inflation rate of 

8.2%. (http://www.usinflationcalculator.com/) 

 

We carried out our data analyses using the Statistical Analysis System (SAS® Version 

9.3), Environmental Systems Research Institute’s GIS software (ESRI, ArcGIS® Version 

9.3), and comprehensive meta-analysis software (CMA® Version 2.0).  

http://www.cdc.gov/ncipc/wisqars
http://www.usinflationcalculator.com/
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6.3 Results and Discussion 

6.3.1 Descriptive statistics 

Table 6-1 summarizes the number of all cause, non-injury deaths by climate regions for 

years, 2001-2009. Total number of deaths from all causes, except injury, in the 

coterminous U.S for 2001-2009 was 20.2 M and, out of those deaths, 10.90M (54 %) 

deaths occurred in counties with meteorological data. In counties with meterological data, 

the Northeast region had the highest number of deaths (n=2.1M) and the Southwest 

region (n=0.5 M) had the lowest number of deaths. The North West Central region, 

which we created by combining regions Northwest and West North Central, had the 

second lowest number of deaths (n=0.6 million). The South region had the highest 

number of counties with meteorological data (n=91). The West region had the lowest 

number of counties (n=38) with meteorological data. 

Table 6-2 provides the levels of air pollutants and the standardized AP score during EHE 

and non-EHE days by climate regions. We notice that air pollution levels on EHE-days 

are higher than non-EHE day levels for most climate regions. On EHE days, highest 

county-level average monthly ozone levels were observed in the Northeast region (mean 

= 61.7 ppb; IQR = 16.4 ppb) and the lowest ozone levels were observed in the North 

West Central region (mean = 50.4 ppb; IQR = 12.1 ppb). Highest county-level average 

monthly PM2.5 levels were observed in the Northeast region (mean = 21.9 g/m
3
; IQR = 

8.6 g/m
3
) and the lowest county-level average monthly PM2.5 levels were observed in 

the Southwest region (mean = 8.0 g/m
3
; IQR = 2.2 g/m

3
).  

Standardized air pollution scores derived using factor analysis provides control for 

confounding while avoiding multicollinearity among ozone and PM2.5. Before adopting 
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these standardized air pollution scores based on factor analysis, we verified the 

proportion of variance accounted for by the factors. We ended up using the factor that 

consistently accounted for a high proportion of variance across all climate regions. 

Figures E-4-8, show three-dimensional (3-D) plots of factors scores on EHE and non-

EHE days as a function of ozone and PM2.5 by climate regions and different EHE 

definitions (plots shown only for lag0 definitions). Similarly to the pattern observed for 

PM2.5 and ozone, county-level average monthly factor scores are relatively higher during 

EHE-days than non-EHE days for most EHE definitions.  
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Table 6-1: Descriptive summary statistics 

U.S. Climate Region 
Number of 

deaths 

Number of 

counties with 

meteorological 

data 

Number of 

deaths in 

counties with 

meteorological 

data 

Number of 

counties with 

population 

greater than 

100,000 and  

meteorological 

data 

Number of 

deaths in 

counties with 

population 

greater than 

100,000 and  

meteorological 

data 

Percent of people 

living in counties 

with population 

greater than 100,000 

and  meteorological 

data (%) 

Central 3,690,858 78 1,728,583 47 1,588,783 45 

East North Central 1,665,304 54 797,120 27 706,240 44 

North West Central 1,066,930 88 647,112 19 471,177 45 

Northeast 4,495,488 70 2,135,716 49 2,046,717 49 

South 2,613,039 91 1,358,598 46 1,214,403 55 

Southeast 3,773,684 71 1,782,648 53 1,686,756 47 

Southwest 826,136 43 545,396 14 498,143 59 

West 2,111,975 38 1,912,455 30 1,894,269 91 

All regions 20,243,414 533 10,907,628 285 10,106,488 54 
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Table 6-2: Levels of air pollutants and standardized AP scores on EHE and non-EHE days 

Region 

County-level average monthly levels of air pollutants and standardized air pollution score 

non-EHE day EHE day 

Ozone PM2.5 
Standardized 

AP score 
Ozone PM2.5 

Standardized 

AP score 

Mean 

(ppb) 

IQR 

(ppb) 

Mean 

(g/m
3
) 

IQR  

(g/m
3
) 

Mean IQR 
Mean 

(ppb) 

IQR 

(ppb) 

Mean 

(g/m
3
) 

IQR  

(g/m
3
) 

Mean IQR 

Central 49.8 8.6 14.6 4.8 -0.2 1.1 57.3 11.7 19.7 8.6 0.9 1.6 

East North 

Central 44.0 8.1 10.2 3.8 -0.3 1.0 55.0 12.1 15.6 6.9 1.1 1.6 

North West 

Central 42.5 8.4 7.2 2.3 -0.3 0.9 50.4 8.0 10.2 3.3 1.0 1.0 

Northeast 45.6 10.2 11.7 5.2 -0.3 0.9 61.7 16.4 21.9 8.6 1.3 1.4 

South 46.9 8.2 10.7 3.9 -0.1 1.2 53.7 10.6 11.9 5.1 0.7 1.7 

Southeast 46.8 13.0 13.2 5.7 -0.1 1.3 52.7 16.3 16.7 8.3 0.6 1.7 

Southwest 51.7 7.4 6.4 1.7 -0.2 1.1 55.9 7.9 8.0 2.2 0.8 1.3 

West 49.3 15.7 9.4 4.0 -0.3 1.2 60.8 17.7 11.8 4.3 0.6 1.3 
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6.3.2 Modeling results 

We considered several candidate predictors. In addition to predictors such as standardized 

AP score, EHE definition and exposure offset indicator, we decided to include county-

level percentage of Hispanic population, AC prevalence, and adult smoking prevalence in 

the final model. We settled for these social and behavioral risk factors as these factors 

were commonly cited in literature as indicators of heat vulnerability and/or risk factors 

for mortality (Klinenberg 2003a, b; Reid et al. 2009; Semenza et al. 1996). Once we 

settled for these predictors, we executed a summary-level model mentioned in equation 

(2). We examined patterns of residuals and goodness-of-fit parameters to identify 

instances where the data were stratified too finely. Some of the regions had counties in 

our study dataset that did not have sufficient number of deaths (even at the monthly 

level), and this is primarily the reason why we restricted our analysis to counties with a 

resident population of greater than 100,000. After applying this filter, we had 285 

counties spread across different climate regions. Of note, these counties accounted for 

10.1 million (50%) deaths and 54% of the total conterminous U.S. population. A tally of 

deaths and percent of people living in counties with a population of over 100,000 is 

provided in Table 6-1.  

6.3.3 E-R relationships 

We executed a region-specific model for each of the top 10 definitions and exposure 

offset indicators. We examined the model diagnostics to assess the goodness-of-fit and 

intercept offsets for social and behavioral predictors. We observe that higher levels of AC 

prevalence correspond with lower mortality rate. AC prevalence is a significant risk 
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factor for extreme heat related mortality (Reid et al. 2009) and relatively high AC 

prevalence is observed in the South and the Southeast regions of the U.S. We also note 

that in areas with higher levels of Hispanic population, the mortality rate is relatively 

lower. It has been speculated that higher levels of Hispanic population could be a proxy 

for the lack of certain risk factors, such as, people living alone (without a family) or lack 

of social support during times of health discomfort (Klinenberg 2003a, b). Finally, higher 

levels of smoking correspond with a higher mortality rate. This relationship between 

smoking and mortality is corroborated in previous studies (Jerrett et al. 2009; Pope III et 

al. 2002). Table E-4 in the appendix provides information on the levels of various social 

and demographic variables by U.S. climate region. 

In order to assess the relationship between EHE and mortality, considering air pollution 

terms, we first checked the significance level (p-value) of the parameter estimate for the 

term denoting interaction between EHE indicator and AP score. We noticed that the 

interaction term was significant only for the Southeast and West regions based on most of 

the EHE definitions and exposure offsets considered. Hence, for other climate regions, 

we removed the interaction term and decided to retain only the main terms for AP score 

and EHE indicator. We executed this model without an interaction term (but with all the 

other covariates) and examined the p-value of the parameter estimate for the EHE 

indicator. We noticed that for certain climate regions parameter estimate for the EHE 

term that was not statistically significant (p-value >0.05) for majority of the EHE 

definitions. In some cases, the Southwest region for example, the EHE term was not 

significant regardless of the definition selected.  
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Figure 6-1 shows that the E-R relationship between mortality and EHEs (with and 

without air pollution terms)
30

. We estimate the mean (95%CI) RR by region, based on the 

random effects summary-level analysis. The RRs are provided by region and they 

illustrate that there is confounding by air pollutants in all regions. Additionally, the level 

of confounding varies with climate region. The effect sizes without air pollution are 

different from what we observe when considering air pollution terms. The differences in 

the effect sizes are prominent in regions where the interaction term between EHE and AP 

scores is significant (Southeast and West). Also, the difference in the effect size for the 

Northeast region is significantly different with and without air pollution. The RR for the 

Northeast regionwithout considering air pollution is positively significant and with air 

pollution in the model, RR is negatively significant. We are unable to speculate as to why 

this pattern is observed in the Northeast and more research is needed. 

  

                                                 
30

 In Southeast and West, regions with significant interaction term between EHE indicator and standardized 

AP scores, we estimated RR at the mean levels of AP scores. 
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Figure 6-1: Rate ratios by climate regions generated from the random effects summary-level analysis, controlling for social 

and demographic factors, and with and without adjustment for air pollution (standardized AP score).  
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6.3.4 Excess deaths and economic costs associated with EHEs 

We observed significantly different estimates of excess deaths depending on the EHE 

definition and exposure offset indicator used in the rate regression model. These 

estimates are based on first estimating county-level excess deaths and then summing 

them up to obtain regional estimates. The variability in excess death estimate, across 

different EHE definitions, could potentially be due to the combination of unstable 

county-level baseline rate and slight variation in definition-specific RRs estimated from 

the model.  

We tried to reduce the variability introduced by different EHE definitions and unstable 

baseline rates by estimating excess deaths at the regional-level using RRs from the 

random effects summary-level pooled analysis. We generated an average daily regional 

baseline rate, considering all top 10 EHE definitions, using a random effects summary-

level pooled analysis. The magnitude of average regional daily baseline rate was 

comparable across regions and was approximately 2 deaths per 100,000 population. We 

provide excess deaths per EHE day estimates for climate regions based on RRs generated 

from models with and without air pollution terms. We notice that patterns observed in 

excess deaths per EHE days vary with climate regions. Daily excess death estimates 

drastically vary when air pollution terms are included in the model, especially for the 

Northeast, Southeast and West regions. In the East North Central and North West Central 

regions, mean estimate of excess deaths are approximately equal but the 95%CI are 

considerably wider when air pollution based RRs are used. In the South region, there isn’t 

much variation in excess deaths per EHE day estimates regardless of whether the model 
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used air pollution terms. Region-specific excess death estimates per EHE-day are 

provided in Table 3. 

Table 6-3: Excess deaths per EHE day using RR generated from a model with and 

without air pollution terms 

U.S. Climate Region 

With air pollution  Without air pollution 

Mean (95% CI) excess 

deaths per EHE day 

Mean (95% CI) excess 

deaths per EHE day 

Mean 
Lower 

limit 

Upper 

limit 
Mean 

Lower 

limit 

Upper 

limit 

Central -14 -26 0 3 -4 10 

East North Central 4 -1 9 7 3 12 

North West Central 5 -3 14 5 3 7 

Northeast -54 -64 -45 37 20 54 

South -11 -21 -2 -13 -21 -4 

Southeast 49 28 71 -28 -63 7 

Southwest -1 -5 4 4 -1 11 

West 14 11 18 -10 -20 0 

 

In most regions, the mortality burden is higher among older populations and this reflected 

in the lower average daily cost per death estimates. The average cost per deaths from all 

causes except injury is very much comparable among regions and it hovers around $0.3 

M per death. Hence, the observed patterns in excess economic costs per EHE day are 

similar to that of excess deaths per EHE day. Region-specific monetized health burden 

estimates per EHE-day are provided in Table 4. 
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Table 6-4: Excess costs per EHE day using RRs generated from a model with and without air pollution terms 

U.S. Climate Region 

With air pollution Without air pollution 

Mean (95% CI) excess costs ($ million) 

per EHE day 

Mean (95% CI) excess costs ($ million) 

per EHE day 

LWL-based 

estimates 

VSL-based 

estimates 

LWL-based 

estimates 

VSL-based 

estimates 

Mean 

Lower 

limit 

Upper 

limit Mean 

Lower 

limit 

Upper 

limit Mean 

Lower 

limit 

Upper 

limit Mean 

Lower 

limit 
Upper 

limit 

Central -4.2 -8.2 -0.1 -110.0 -214.0 -3.6 0.9 -1.2 3.1 23.7 -32.6 80.4 

East North Central 1.1 -0.1 2.4 32.2 -4.2 68.9 2.1 0.7 3.4 58.6 21.0 96.6 

North West Central 1.4 -0.9 3.8 40.5 -27.2 110.2 1.5 0.9 2.0 42.0 27.1 57.1 

Northeast -15.7 -18.5 -12.9 -440.0 -517.0 -362.0 10.6 5.7 15.6 296.5 158.5 436.2 

South -3.8 -7.1 -0.5 -90.9 -168.0 -12.3 -4.3 -7.0 -1.4 -101.0 -168.0 -34.2 

Southeast 15.9 9.0 23.0 398.6 226.2 574.3 -9.1 -20.3 2.4 -229.0 -508.0 59.9 

Southwest -0.3 -1.6 1.2 -6.5 -41.7 29.4 1.4 -0.5 3.4 36.3 -11.9 85.6 

West 4.6 3.4 5.9 117.2 85.7 149.0 -3.2 -6.5 0.1 -81.2 -164.0 3.3 
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The estimates of economic burden derived using VSL and LWL costs reflect different 

methodological approaches with different interpretations. According to EPA’s (EPA 

2010) guidelines for preparing economic analyses, the VSL-based estimates encapsulate 

the amount that people would be willing to pay to avoid certain environmental risks or 

natural hazards in order to reduce the statistical probability of death from these causes. 

Total economic burden estimates using this as the unitary cost is intended to reflect the 

economic value society places on avoiding these premature deaths. On the other hand, 

LWL costs represent direct costs (such as lost wages, benefits, and self-provided 

household services) associated with a premature death.  

6.3.5 Limitations 

Our study had a few limitations. We were unable to model the relationship between 

EHEs and mortality with certainty in some climate regions, which could be due to region-

specific differences, such as: (1) the mortality response to extreme heat could be 

confounded by factors not considered in this assessment, (2) deaths from all-causes 

excluding injury may not be an ideal mortality endpoint to consider in these regions, and 

(3) the lack of information on the effectiveness of heat alerts and advisories issued during 

EHEs and/or sub-regional differences in behavioral modification as a result of heeding to 

alerts. We had insufficient death counts in some of the less populous (population less 

than or equal to100,000) counties and we had to exclude them from the analysis. These 

counties, which are mostly in rural areas, could have a different E-R relationship between 

EHEs and mortality. Although rural areas typically have lower air pollution levels, other 

risk factors that determine mortality response to extreme heat may be more prevalent in 

less populated areas. For example, access to care and/or access to cooling shelters may be 
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limited. Also, the certain sub-populations, such as older populations, are more vulnerable 

to extreme heat and air pollution. Our analysis does not factor differences in age or levels 

of other individual level covariates when estimating RRs. This was mainly to prevent fine 

stratification of data in certain climate regions. Further, we used modeled estimates of air 

pollution to create standardized factor scores. While the DS model has been thoroughly 

evaluated, E-R relationships, or for that matter, excess death estimates, could be different 

if this analysis were to be reproduced using air quality measurements. As future work, we 

would like to employ small area Bayesian approaches to explore E-R relationships and 

estimate excess deaths to get around some of the limitations associated with small death 

counts. 

6.4 Conclusions 

Economic burden associated with mortality is important to capture because in extreme 

temperature events, especially heat, infrastructure damage is often minimal compared to 

hurricanes or tornadoes. More often than not, the burden is underestimated if the costs 

resulting from mortality are overlooked. Further, the public health community strives to 

minimize mortality risks associated with environmental hazards. Efforts to minimize the 

adverse health impacts from extreme heat, as well to reduce exposure to air pollution, are 

carried out on an ongoing basis but are often treated as two separate efforts. In this study, 

we examine the nexus between air pollution and heat waves by climate regions. We have 

successfully explored the role of air pollutants in modifying or confounding the 

relationship between EHEs and deaths from all causes that are non-injury related. We 

observe that air pollution confounds the relationship between EHE and non-injury 

mortality and the extent of confounding varies with climate regions. Further, the E-R 
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relationship and excess deaths estimates are sensitive to EHE definitions. Hence we 

present a mean estimate of excess deaths and associated costs per day, using random 

effects meta-analysis and considering different EHE definitions that are closely related to 

heat mortality. We feel that there will always be some subjectivity in selecting the best 

EHE definition and these “per day” estimates are useful since they could be used as 

“excess death/cost multipliers” to estimate the total mortality burden prospectively or for 

years not considered in this assessment.   
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CHAPTER 7 Summary of Conclusions and Future Research 

7.1 Summary of Conclusions 

7.1.1 Region-Specific Evaluation of Extreme Heat Event Definitions Using Heat 

Mortality Data 

Several local and state health departments are currently interested in issuing heat 

advisories, as well as conducting retrospective health studies to understand the effects of 

extreme heat on mortality and morbidity; health departments are collaborating with local 

and national weather offices to do so. EHE definitions used by most heat warning 

systems to issue alerts are calibrated to the extreme end of the daily heat metric spectrum. 

This effort is the first nationally comprehensive, region-specific evaluation of EHE 

definitions using heat mortality data. Further, this evaluation framework, which 

employed cluster analyses to identify cluster groupings of EHE definitions and 

subsequently estimating the EHE effect of a representative definition from each cluster 

using rate regression modeling, provides a robust framework to identify definitions that 

are closely associated with heat-mortality data. This approach not only identifies a set of 

“ideal” definitions that are closely associated with heat-related mortality but also sheds 

light on some of the poorly associated EHE definitions that are used in literature. 

Research findings from this study suggest that definitions with thresholds that are either 

too extreme or too moderate are poorly associated with heat-related mortality for most 

climate regions. Of the exposure offset indicators considered, definition combinations 

involving a 1-day lag seem to produce a higher EHE effect in most of the regions except 

Northeast, Southeast, and Southwest; in Northeast and Southwest, definitions involving 

no-lag exposure offset indicator produce a higher EHE effect. Our evaluation indicates 
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that the warmer regions of the U.S., such as the South and Southeast, have a relatively 

lower EHE effect and a relatively higher baseline heat mortality rate. Meanwhile, colder 

areas of the U.S., such as the North West Central and East North Central, have a 

relatively higher EHE effect and a lower baseline heat mortality rate. 

7.1.2 Exploring the Utility of Modeled Meteorology Data for Extreme Heat-Related 

Health Research and Surveillance  

The benefits of utilizing model-based estimates should be considered in light of the added 

uncertainty which they introduce, as a thorough evaluation then becomes a prerequisite. 

Estimates from North American Land Data Assimilation Model (NLDAS) and station-

based estimates from automated surface observing system (ASOS) comport well with 

each other. At most station locations, the correlation is high and the difference between 

station- and model-based estimates are within the maximum measurement error 

associated with ASOS stations. There are certain areas in the U.S. where estimates from 

NLDAS do not correspond well with station-based measurements. The modeled 

estimates show variability, as indicated by relatively lower correlations, near the coastal 

areas of the South, Southeast and the West. Similarly, Northeast shows a consistent 

negative difference with the magnitude greater than the maximum measurement error of 

weather stations.  

Performance of model-based estimates drops at station locations that are part of the 

Southeastern Aerosol Research and Characterization (SEARCH) network which do not 

have an ASOS nearby. Also, users of model-based meteorology data from NLDAS 

should take note of the variability in performance at high and low temperature ranges. At 

high temperatures (greater than 80), particularly of interest in extreme heat-related 
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research and surveillance, NLDAS-based estimates under predict SEARCH 

measurements. County-level health effects analysis provided useful insights into the 

benefits and limitations of using NLDAS-based exposure estimates as well as 

highlighting certain region-specific and EHE definition-specific differences. In general, 

the degree of agreement between the ASOS- and NLDAS-based exposure estimates can 

be improved by omitting certain EHE definitions for particular regions. Under prediction 

of mean EHE effect generated using NLDAS-based estimates, which are more frequently 

observed, is a factor to consider for health studies. The variability associated with the 

mean EHE effect, observed based on the 95% CI, is comparable to the variability we see 

with ASOS-based exposure estimates. These insights are helpful to researchers and 

public health professionals interested in conducting health linkage studies, deriving 

exposure-response relationships, and estimating excess deaths related to extreme 

temperatures. 

7.1.3 Characterizing the Effect of Meteorology on Ozone levels during Extreme Heat 

Events 

Studies that have explored relationships between ozone and meteorology have made 

weather-based adjustments to ozone levels to accurately characterize the impact of 

emission-reduction efforts and human activities on prevailing levels. The primary driver 

behind a majority of these studies has always been to facilitate environmental policy-

making within a regulatory context. The relationship between ozone and meteorology on 

EHE and non-EHE days can be successfully characterized using a multivariate 

autoregressive model and a logarithmic response for ozone.  
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The baseline effect, the relationship between meteorology and ozone applicable to both 

EHE and non-EHE days, is consistent with the results previously published in literature. 

Higher temperatures result in higher ozone and a monotonically increasing trend is 

observed in ozone levels for temperatures above ~70°F. Lower wind speeds result in 

higher ozone as a stagnant air mass facilitates higher production of ozone. Higher 

humidity levels, which correspond with greater cloud cover, are indicators of atmospheric 

instability; such conditions interrupt the photochemical process leading to the depletion 

of ozone. The extent of effect modification during EHE days varies across cities and 

could be due to different meteorological variables in different parts of the country. This 

heterogeneity could be explained based on the definitions selected for this analysis, but 

there could be other factors, such as fluctuations in emissions of ozone precursors. 

7.1.4 Assessment of Modeled data sources of PM2.5: A public health perspective 

Most of the Air Quality System (AQS) monitors sample every third day, leaving 

approximately 66% of the days in a year without data. These limitations could hinder our 

ability to accurately ascertain population-level ambient exposure and could introduce 

uncertainty when used to quantify health risks. This analysis focused on the three most 

commonly used modeling approaches in the context of public health by researchers and 

public health practitioners: Community Multiscale Air Quality (CMAQ), Bayesian space-

time Downscaler (DS), and Aerosol Optical Depth (AOD) based models. 

Advances in remote sensing technologies, coupled with rigorous statistical 

methodologies, help generate AOD-based predictions of PM2.5 at finer geographic scale. 

However, there are a few limitations that should be taken into consideration before using 

AOD-based PM2.5 predictions. In certain seasons, data availability is limited by cloud 
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cover and other atmospheric factors. Additionally, the calibration process depends on the 

availability of AQS monitor data and to some extent, the accuracy of the modeled 

predictions depends on the number of AQS monitors available to calibrate the model. The 

CMAQ model offers PM2.5 predictions at continuous space and time scales. Given the 

wealth of emission, meteorology, land use and other pertinent information supplied to the 

model, the CMAQ modeling framework does capture the dynamics of the air pollution 

processes to an extent. However, CMAQ-based PM2.5 predictions show the weakest 

association with observed PM2.5 concentrations among the models evaluated in this study. 

CMAQ is well suited for ascertaining the background concentrations and computing 

long-term averages. CMAQ-based predictions can be used to augment monitor data and 

are currently being used as input to data fusion models.  

Data fusion models, such as DS, use a Bayesian approach and generate robust predictions 

using AQS monitor data where available, and CMAQ predictions in places without 

monitor data. The DS model has the ability to borrow useful information from 

neighboring grid cells and provide a smoothed prediction, which tends to improve 

performance against observed concentrations. Overall, the DS model offers the best 

performance among the models considered in this assessment. This evaluation further 

identifies the pros and cons of each model and suggests a potential use after considering 

the trade-offs, for example, the enhanced spatial and temporal coverage offered by the 

model with the associated uncertainty. 

7.1.5 Monetizing Health Burden Associated with Extreme Heat Events 

For the years 2001 – 2009, we estimate a total of 5,454 excess all-cause non-injury deaths 

associated with EHEs in the U.S.; the model used to estimate excess deaths utilized the 
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best region-specific EHE definition, accounted for air pollution, and controlled for adult 

smoking prevalence, AC prevalence, Hispanic status and month as covariates. In 

comparison, during this time period, there were 2,979 direct heat-related deaths reported 

in the U.S.
31

 Relying on death certificate information alone to determine the total deaths 

associated with extreme heat could under estimate the mortality burden by a factor of 

approximately 2. Moreover, monetizing excess deaths, assuming a baseline lifetime work 

loss costs of $0.3 million, suggests that the economic costs associated with the excess 

mortality burden is under estimated by about $1.6 billion. 

Economic burden associated with mortality is important to capture because in extreme 

temperature events, especially heat, infrastructure damage is often minimal compared to 

hurricanes or tornadoes. More often than not, the burden is underestimated if the costs 

resulting from mortality are overlooked. Further, the public health community strives to 

minimize mortality risks associated with environmental hazards. Efforts to minimize the 

adverse health impacts from extreme heat as well reduce exposure to air pollution are 

carried out on an ongoing basis, but are often treated as two separate efforts. This study 

examines the nexus between air pollution and heat waves by exploring the interactive 

effects of air pollution and extreme heat on all mortality causes that are non-injury 

related. The strength of the exposure-response (E-R) relationship between EHEs and 

mortality varies with climate regions. Further, the E-R relationship and excess deaths 

estimates are sensitive to EHE definitions. Mean estimate of excess deaths and associated 

costs are provided on a per EHE day basis, using random effects meta-analysis. There 

will always be some subjectivity in selecting the best EHE definition and these “per day” 

                                                 
31

 There were 5,201 direct heat-related deaths among U.S. and non-U.S. residents between the years 1999 – 

2009. We excluded non-U.S. residents and restricted the year range to 2001 – 2009, and this resulted in 

2,979 direct heat-related deaths. 
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estimates are useful since they could be used as “excess death/cost multipliers” to 

estimate the total mortality burden prospectively or for years not considered in this 

assessment.   

7.2 Future Directions 

Health effects modeling 

In this work, the relationship between extreme heat events and health outcomes was 

largely assessed using a summary-level rate regression model. While this approach 

adequately captures the relationship, it has limitation when dealing with small death 

counts. Further, even though our inputs were at the county-level, we were unable to make 

assertions on the nature of E-R relationship at the county or sub-county-levels. This can 

be remedied by using a Bayesian approach. A Bayesian approach is widely used in 

modeling E-R relationships when the counts are sparse.  

Sensitivity associated with defining an EHE 

Constructing a national database with as many as 92 different EHE definitions is an 

onerous undertaking. Of the core parameters that make up an EHE definition, sensitivity 

associated with selection of each parameter is still a question at large. Meta-regression 

can directly utilize the results from summary-level pooled analysis and can be used to 

measure sensitivities associated with each core parameter. Additionally, the daily heat 

metric threshold used in different EHE definitions is set based on deviations from the 

historical norm or on an absolute value. One singular threshold and exposure offset are 

used for all sensitive sub-populations. However, thresholds and exposure offset can vary 

with age and other individual factors. Modeling sub-population-specific exposure offsets 

can be achieved using distributed lag non-linear models (DLNM). As defined by Dr. 
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Antonio Gasparrini, DLNMs represent a modeling framework to flexibly describe 

associations showing potentially non-linear and delayed effects in time series data. 

Cause-specific mortality end points 

While mortality from all causes has been used as a dependent variable for previous 

studies exploring relationship between EHEs and mortality, it has confounded several 

factors that are non-environmental and unrelated to extreme heat. Selecting end points 

such as cardiopulmonary, cardiovascular, and respiratory mortality could lead to better 

characterization of the effects of EHEs on mortality. There is always a risk of stratifying 

the data too finely, but a hierarchical Bayesian framework could circumvent this issue. 
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APPENDIX A  

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

Table A-1: List of EHE definitions used in the analysis 

Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

1 

Absolute 

temperature based 

thresholds 

Definition 1 

Daily Maximum Temperature 

> 90 ℉ for at least 2 

consecutive days 

Maximum 

Temperature 
Absolute > 90 ℉ 

2+ Consecutive 

days 

1 

Absolute 

temperature based 

thresholds 

Definition 2 

Daily Maximum Temperature  

> 90 ℉ for at least 3 

consecutive days 

Maximum 

Temperature 
Absolute > 90 ℉ 

3+ Consecutive 

days 

1 

Absolute 

temperature based 

thresholds 

Definition 3 

Daily Maximum Temperature  

> 90 ℉ for at least 4 

consecutive days 

Maximum 

Temperature 
Absolute > 90 ℉ 

4+ Consecutive 

days 

1 

Absolute 

temperature based 

thresholds 

Definition 4 

Daily Maximum Heat Index  > 

90 ℉ for at least 2 consecutive 

days 

Maximum 

Heat Index 
Absolute > 90 ℉ 

2+ Consecutive 

days 

1 

Absolute 

temperature based 

thresholds 

Definition 5 

Daily Maximum Heat Index  > 

95 ℉ for at least 2 consecutive 

days 

Maximum 

Heat Index 
Absolute > 95 ℉ 

2+ Consecutive 

days 

1 

Absolute 

temperature based 

thresholds 

Definition 6 

Daily Maximum Heat Index  > 

90 ℉ for at least 3 consecutive 

days 

Maximum 

Heat Index 
Absolute > 90 ℉ 

3+ Consecutive 

days 

1 

Absolute 

temperature based 

thresholds 

Definition 7 

Daily Maximum Heat Index  > 

95 ℉ for at least 3 consecutive 

days 

Maximum 

Heat Index 
Absolute > 95 ℉ 

3+ Consecutive 

days 

1 

Absolute 

temperature based 

thresholds 

Definition 8 

Daily Maximum Heat Index  > 

90 ℉ for at least 4 consecutive 

days 

Maximum 

Heat Index 
Absolute > 90 ℉ 

4+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

1 

Absolute 

temperature based 

thresholds 

Definition 9 

Daily Maximum Heat Index  > 

95 ℉ for at least 4 consecutive 

days 

Maximum 

Heat Index 
Absolute > 95 ℉ 

4+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 10 

Daily Maximum Temperature 

>  90th Percentile for at least 2 

consecutive days 

Maximum 

Temperature 
Relative 

> 90th 

Percentile 

2+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 11 

Daily Maximum Temperature 

>  85th Percentile for at least 3 

consecutive days 

Maximum 

Temperature 
Relative 

> 85th 

Percentile 

3+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 12 

Daily Maximum Temperature 

>  90th Percentile for at least 3 

consecutive days 

Maximum 

Temperature 
Relative 

> 90th 

Percentile 

3+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 13 

Daily Maximum Temperature 

>  85th Percentile for at least 4 

consecutive days 

Maximum 

Temperature 
Relative 

> 85th 

Percentile 

4+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 14 

Daily Maximum Temperature 

>  90th Percentile for at least 4 

consecutive days 

Maximum 

Temperature 
Relative 

> 90th 

Percentile 

4+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 15 

Daily Maximum Temperature  

> 95 ℉ for at least 2 

consecutive days 

Maximum 

Temperature 
Absolute > 95 ℉ 

2+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 16 

Daily Maximum Temperature  

> 95 ℉ for at least 3 

consecutive days 

Maximum 

Temperature 
Absolute > 95 ℉ 

3+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 17 

Daily Maximum Temperature  

> 95 ℉ for at least 4 

consecutive days 

Maximum 

Temperature 
Absolute > 95 ℉ 

4+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 18 

Daily Mean Temperature >  

90th Percentile for at least 2 

consecutive days 

Mean 

Temperature 
Relative 

> 90th 

Percentile 

2+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

2 
"Predominantly 

moderate" thresholds 
Definition 19 

Daily Mean Temperature >  

85th Percentile for at least 3 

consecutive days 

Mean 

Temperature 
Relative 

> 85th 

Percentile 

3+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 20 

Daily Mean Temperature >  

90th Percentile for at least 3 

consecutive days 

Mean 

Temperature 
Relative 

> 90th 

Percentile 

3+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 21 

Daily Mean Temperature >  

85th Percentile for at least 4 

consecutive days 

Mean 

Temperature 
Relative 

> 85th 

Percentile 

4+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 22 

Daily Mean Temperature >  

90th Percentile for at least 4 

consecutive days 

Mean 

Temperature 
Relative 

> 90th 

Percentile 

4+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 23 

Daily Maximum Heat Index >  

90th Percentile for at least 2 

consecutive days 

Maximum 

Heat Index 
Relative 

> 90th 

Percentile 

2+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 24 

Daily Maximum Heat Index >  

85th Percentile for at least 3 

consecutive days 

Maximum 

Heat Index 
Relative 

> 85th 

Percentile 

3+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 25 

Daily Maximum Heat Index >  

90th Percentile for at least 3 

consecutive days 

Maximum 

Heat Index 
Relative 

> 90th 

Percentile 

3+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 26 

Daily Maximum Heat Index >  

85th Percentile for at least 4 

consecutive days 

Maximum 

Heat Index 
Relative 

> 85th 

Percentile 

4+ Consecutive 

days 

2 
"Predominantly 

moderate" thresholds 
Definition 27 

Daily Maximum Heat Index >  

90th Percentile for at least 4 

consecutive days 

Maximum 

Heat Index 
Relative 

> 90th 

Percentile 

4+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

2 
"Predominantly 

moderate" thresholds 
Definition 28 

Daily Maximum  & Minimum. 

Temperature >  80th 

Percentile for at least 3 

consecutive days 

Maximum 

and 

MinimumTe

mperature 

Relative 
> 80th 

Percentile 

3+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 29 

Daily Maximum Temperature 

>  95th Percentile for at least 2 

consecutive days 

Maximum 

Temperature 
Relative 

> 95th 

Percentile 

2+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 30 

Daily Maximum Temperature 

>  95th Percentile for at least 3 

consecutive days 

Maximum 

Temperature 
Relative 

> 95th 

Percentile 

3+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 31 

Daily Maximum Temperature 

>  95th Percentile for at least 4 

consecutive days 

Maximum 

Temperature 
Relative 

> 95th 

Percentile 

4+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 32 

Daily Maximum Temperature  

> 100 ℉ for at least 2 

consecutive days 

Maximum 

Temperature 
Absolute > 100 ℉ 

2+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 33 

Daily Maximum Temperature  

> 100 ℉ for at least 3 

consecutive days 

Maximum 

Temperature 
Absolute > 100 ℉ 

3+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 34 

Daily Maximum Temperature  

> 100 ℉ for at least 4 

consecutive days 

Maximum 

Temperature 
Absolute > 100 ℉ 

4+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 35 

Daily Mean Temperature >  

95th Percentile for at least 2 

consecutive days 

Mean 

Temperature 
Relative 

> 95th 

Percentile 

2+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 36 

Daily Mean Temperature >  

95th Percentile for at least 3 

consecutive days 

Mean 

Temperature 
Relative 

> 95th 

Percentile 

3+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

3 
"Predominantly 

high" thresholds 
Definition 37 

Daily Mean Temperature >  

95th Percentile for at least 4 

consecutive days 

Mean 

Temperature 
Relative 

> 95th 

Percentile 

4+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 38 

Daily Maximum Heat Index >  

95th Percentile for at least 2 

consecutive days 

Maximum 

Heat Index 
Relative 

> 95th 

Percentile 

2+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 39 

Daily Maximum Heat Index >  

95th Percentile for at least 3 

consecutive days 

Maximum 

Heat Index 
Relative 

> 95th 

Percentile 

3+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 40 

Daily Maximum Heat Index >  

95th Percentile for at least 4 

consecutive days 

Maximum 

Heat Index 
Relative 

> 95th 

Percentile 

4+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 41 

Daily Maximum Heat Index  > 

100 ℉ for at least 2 

consecutive days 

Maximum 

Heat Index 
Absolute > 100 ℉ 

2+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 42 

Daily Maximum Heat Index  > 

100 ℉ for at least 3 

consecutive days 

Maximum 

Heat Index 
Absolute > 100 ℉ 

3+ Consecutive 

days 

3 
"Predominantly 

high" thresholds 
Definition 43 

Daily Maximum Heat Index  > 

100 ℉ for at least 4 

consecutive days 

Maximum 

Heat Index 
Absolute > 100 ℉ 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 44 

Daily Maximum Temperature 

> Mean + 2SD of Climate 

Normal  for at least 2 

consecutive days 

Maximum 

Temperature 
Relative 

>  Mean + 

2SD 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 45 

Daily Maximum Temperature 

> Mean + 2SD of Climate 

Normal  for at least 3 

consecutive days 

Maximum 

Temperature 
Relative 

> Mean + 

2SD 

3+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

4 
"Predominantly 

extreme" thresholds 
Definition 46 

Daily Maximum Temperature 

> Mean + 2SD of Climate 

Normal  for at least 4 

consecutive days 

Maximum 

Temperature 
Relative 

> Mean + 

2SD 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 47 

Daily Maximum Temperature 

>  98th Percentile for at least 2 

consecutive days 

Maximum 

Temperature 
Relative 

> 98th 

Percentile 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 48 

Daily Maximum Temperature 

>  99th Percentile for at least 2 

consecutive days 

Maximum 

Temperature 
Relative 

> 99th 

Percentile 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 49 

Daily Maximum Temperature 

>  98th Percentile for at least 3 

consecutive days 

Maximum 

Temperature 
Relative 

> 98th 

Percentile 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 50 

Daily Maximum Temperature 

>  99th Percentile for at least 3 

consecutive days 

Maximum 

Temperature 
Relative 

> 99th 

Percentile 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 51 

Daily Maximum Temperature 

>  98th Percentile for at least 4 

consecutive days 

Maximum 

Temperature 
Relative 

> 98th 

Percentile 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 52 

Daily Maximum Temperature 

>  99th Percentile for at least 4 

consecutive days 

Maximum 

Temperature 
Relative 

> 99th 

Percentile 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 53 

Daily Maximum Temperature  

> 105 ℉ for at least 2 

consecutive days 

Maximum 

Temperature 
Absolute > 105 ℉ 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 54 

Daily Maximum Temperature  

> 105 ℉ for at least 3 

consecutive days 

Maximum 

Temperature 
Absolute > 105 ℉ 

3+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

4 
"Predominantly 

extreme" thresholds 
Definition 55 

Daily Maximum Temperature  

> 105 ℉ for at least 4 

consecutive days 

Maximum 

Temperature 
Absolute > 105 ℉ 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 56 

Daily Mean Temperature >  

98th Percentile for at least 2 

consecutive days 

Mean 

Temperature 
Relative 

> 98th 

Percentile 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 57 

Daily Mean Temperature >  

99th Percentile for at least 2 

consecutive days 

Mean 

Temperature 
Relative 

> 99th 

Percentile 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 58 

Daily Mean Temperature >  

98th Percentile for at least 3 

consecutive days 

Mean 

Temperature 
Relative 

> 98th 

Percentile 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 59 

Daily Mean Temperature >  

99th Percentile for at least 3 

consecutive days 

Mean 

Temperature 
Relative 

> 99th 

Percentile 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 60 

Daily Mean Temperature >  

98th Percentile for at least 4 

consecutive days 

Mean 

Temperature 
Relative 

> 98th 

Percentile 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 61 

Daily Mean Temperature >  

99th Percentile for at least 4 

consecutive days 

Mean 

Temperature 
Relative 

> 99th 

Percentile 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 62 

Daily Mean Temperature > 

Mean + 2SD of Climate 

Normal  for at least 2 

consecutive days 

Mean 

Temperature 
Relative 

> Mean + 

2SD 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 63 

Daily Mean Temperature > 

Mean + 2SD of Climate 

Normal  for at least 3 

consecutive days 

Mean 

Temperature 
Relative 

> Mean + 

2SD 

3+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

4 
"Predominantly 

extreme" thresholds 
Definition 64 

Daily Mean Temperature > 

Mean + 2SD of Climate 

Normal  for at least 4 

consecutive days 

Mean 

Temperature 
Relative 

> Mean + 

2SD 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 65 

Daily Mean Temperature  > 

90 ℉ for at least 2 consecutive 

days 

Mean 

Temperature 
Absolute > 90 ℉ 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 66 

Daily Mean Temperature  > 

95 ℉ for at least 2 consecutive 

days 

Mean 

Temperature 
Absolute > 95 ℉ 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 67 

Daily Mean Temperature  > 

100 ℉ for at least 2 

consecutive days 

Mean 

Temperature 
Absolute > 100 ℉ 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 68 

Daily Mean Temperature  > 

105 ℉ for at least 2 

consecutive days 

Mean 

Temperature 
Absolute > 105 ℉ 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 69 

Daily Mean Temperature  > 

90 ℉ for at least 3 consecutive 

days 

Mean 

Temperature 
Absolute > 90 ℉ 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 70 

Daily Mean Temperature  > 

95 ℉ for at least 3 consecutive 

days 

Mean 

Temperature 
Absolute > 95 ℉ 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 71 

Daily Mean Temperature  > 

100 ℉ for at least 3 

consecutive days 

Mean 

Temperature 
Absolute > 100 ℉ 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 72 

Daily Mean Temperature  > 

105 ℉ for at least 3 

consecutive days 

Mean 

Temperature 
Absolute > 105 ℉ 

3+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

4 
"Predominantly 

extreme" thresholds 
Definition 73 

Daily Mean Temperature  > 

90 ℉ for at least 4 consecutive 

days 

Mean 

Temperature 
Absolute > 90 ℉ 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 74 

Daily Mean Temperature  > 

95 ℉ for at least 4 consecutive 

days 

Mean 

Temperature 
Absolute > 95 ℉ 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 75 

Daily Mean Temperature  > 

100 ℉ for at least 4 

consecutive days 

Mean 

Temperature 
Absolute > 100 ℉ 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 76 

Daily Mean Temperature  > 

105 ℉ for at least 4 

consecutive days 

Mean 

Temperature 
Absolute > 105 ℉ 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 77 

Daily Maximum Heat Index >  

98th Percentile for at least 2 

consecutive days 

Maximum 

Heat Index 
Relative 

> 98th 

Percentile 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 78 

Daily Maximum Heat Index >  

99th Percentile for at least 2 

consecutive days 

Maximum 

Heat Index 
Relative 

> 99th 

Percentile 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 79 

Daily Maximum Heat Index >  

98th Percentile for at least 3 

consecutive days 

Maximum 

Heat Index 
Relative 

> 98th 

Percentile 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 80 

Daily Maximum Heat Index >  

99th Percentile for at least 3 

consecutive days 

Maximum 

Heat Index 
Relative 

> 99th 

Percentile 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 81 

Daily Maximum Heat Index >  

98th Percentile for at least 4 

consecutive days 

Maximum 

Heat Index 
Relative 

> 98th 

Percentile 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 82 

Daily Maximum Heat Index >  

99th Percentile for at least 4 

consecutive days 

Maximum 

Heat Index 
Relative 

> 99th 

Percentile 

4+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

4 
"Predominantly 

extreme" thresholds 
Definition 83 

Daily Maximum Heat Index  > 

105 ℉ for at least 2 

consecutive days 

Maximum 

Heat Index 
Absolute > 105 ℉ 

2+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 84 

Daily Maximum Heat Index  > 

105 ℉ for at least 3 

consecutive days 

Maximum 

Heat Index 
Absolute > 105 ℉ 

3+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 85 

Daily Maximum Heat Index  > 

105 ℉ for at least 4 

consecutive days 

Maximum 

Heat Index 
Absolute > 105 ℉ 

4+ Consecutive 

days 

4 
"Predominantly 

extreme" thresholds 
Definition 86 

Daily Maximum Temperature 

>  Huth Thresholds 

Maximum 

Temperature 
Relative 

> 81th/97.5th 

Percentile 

3+ Consecutive 

days 

5 
Climate normal 

based thresholds 
Definition 87 

Daily Maximum Temperature 

> Mean + 1SD of Climate 

Normal  for at least 2 

consecutive days 

Maximum 

Temperature 
Relative 

>  Mean + 

1SD 

2+ Consecutive 

days 

5 
Climate normal 

based thresholds 
Definition 88 

Daily Maximum Temperature 

> Mean + 1SD of Climate 

Normal  for at least 3 

consecutive days 

Maximum 

Temperature 
Relative 

> Mean + 

1SD 

3+ Consecutive 

days 

5 
Climate normal 

based thresholds 
Definition 89 

Daily Maximum Temperature 

> Mean + 1SD of Climate 

Normal  for at least 4 

consecutive days 

Maximum 

Temperature 
Relative 

> Mean + 

1SD 

4+ Consecutive 

days 

5 
Climate normal 

based thresholds 
Definition 90 

Daily Mean Temperature > 

Mean + 1SD of Climate 

Normal  for at least 2 

consecutive days 

Mean 

Temperature 
Relative 

> Mean + 

1SD 

2+ Consecutive 

days 
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Cluster 

number 

Cluster common 

name 

Definition 

number 
Description 

Daily 

heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

5 
Climate normal 

based thresholds 
Definition 91 

Daily Mean Temperature > 

Mean + 1SD of Climate 

Normal  for at least 3 

consecutive days 

Mean 

Temperature 
Relative 

> Mean + 

1SD 

3+ Consecutive 

days 

5 
Climate normal 

based thresholds 
Definition 92 

Daily Mean Temperature > 

Mean + 1SD of Climate 

Normal  for at least 4 

consecutive days 

Mean 

Temperature 
Relative 

> Mean + 

1SD 

4+ Consecutive 

days 
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Table A-2: Percent of days classified as EHE days and percent of X30 deaths on EHE days, by EHE definition and exposure 

offset combinations for U.S. Climate Regions 

EHE definition 

Exposure 

offset 

type 

U.S. Climate Regions 
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Daily maximum 

heat index greater 

than 90
o
F for at 

least 3 consecutive 

days 

ExE1 16 71 5 54 7 32 5 64 55 91 46 85 12 88 22 63 

ExE2 19 74 6 59 8 33 6 68 59 93 50 88 14 89 24 65 

ExE3 21 75 7 60 9 33 7 70 61 93 53 91 15 90 26 65 

lag0 14 64 4 43 5 31 4 53 51 88 42 82 11 86 20 61 

lag1 14 70 4 53 5 29 4 59 51 89 42 83 11 87 20 61 

Daily maximum 

and minimum 

temperature 

greater than 80
th

 

percentile for at 

least 3 consecutive 

days 

ExE1 6 57 6 53 6 39 6 61 6 27 5 21 5 35 7 38 

ExE2 7 61 7 57 7 39 8 65 7 30 6 25 6 38 8 40 

ExE3 8 62 9 58 8 39 9 65 8 32 6 27 7 39 9 42 

lag0 5 52 5 44 5 38 5 53 5 25 4 19 4 29 6 34 

lag1 5 55 5 49 5 35 5 59 5 24 4 18 4 33 6 35 

Daily maximum 

temperature 

greater than 95
th

 

percentile for at 

least 2 consecutive 

days 

ExE1 4 44 4 51 4 35 4 52 4 24 4 21 4 22 5 31 

ExE2 5 47 5 55 5 36 5 58 5 26 5 24 5 24 6 34 

ExE3 6 49 6 58 6 36 6 60 6 28 6 24 5 27 7 36 

lag0 3 32 3 37 3 29 3 36 3 20 3 19 3 16 3 26 

lag1 3 40 3 49 3 28 3 47 3 20 3 17 3 17 3 28 

Huth definition ExE1 2 10 2 25 2 6 2 12 2 11 2 5 1 4 1 3 
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EHE definition 

Exposure 

offset 

type 

U.S. Climate Regions 

Central 

East 

North 

Central 

North 

West 

Central 

Northeast South Southeast Southwest West 
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ExE2 2 11 3 27 2 6 2 13 2 11 2 6 1 5 1 4 

ExE3 3 11 3 27 2 6 2 14 3 11 2 7 1 5 1 4 

lag0 2 9 2 20 1 6 1 8 2 9 1 5 1 3 1 2 

lag1 2 9 2 25 1 6 1 11 2 11 1 5 1 4 1 2 

Daily mean 

temperature 

greater than 

mean + 1 

standard 

deviation (SD) of 

climate normal 

for at least 3 

consecutive days 

ExE1 13 58 11 59 13 47 14 63 15 37 13 39 22 58 18 54 

ExE2 16 61 14 65 15 47 16 67 17 41 15 41 25 61 21 56 

ExE3 18 63 16 67 18 47 18 67 19 42 17 43 27 65 23 59 

lag0 11 52 9 49 11 43 11 56 12 33 11 35 18 51 15 49 

lag1 11 55 9 57 11 39 11 58 12 34 11 35 18 53 15 51 
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Table A-3: Mean (5th, and 95th percentile) levels of demographic and social variables, by U.S. Climate Regions 

  

Demographic 

Social Variables 

U.S. Climate Region 

Central 
East North 

Central 

North West 

Central 
Northeast South Southeast Southwest West 

M
ea

n
 

(5
th
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n
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p
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p
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p
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p
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5
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p
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c
en
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) 

Air conditioning prevalence (%) 57 (33, 80) 40 (17, 63) 22 (5, 60) 13 (1, 48) 72 (53, 85) 83 (60, 94) 23 (8, 70) 36 (6, 72) 

Diabetes prevalence (%) 10 (7, 13) 9 (6, 12) 9 (6, 12) 9 (7, 11) 10 (7, 13) 11 (8, 15) 7 (5, 10) 8 (7, 10) 

Obesity prevalence (body mass index 

>= 30) (%) 31 (27, 37) 30 (24, 36) 28 (23, 34) 26 (19, 32) 31 (27, 36) 29 (24, 36) 23(16, 32) 25 (20, 31) 

Percent of Hispanic population (%) 4 (1, 13) 5 (1, 13) 8 (1, 30) 7 (1, 21) 20 (2, 67) 9 (2, 25) 23 (8, 48) 31 (10, 55) 

Percent of adult smokers (%) 22 (15, 30) 20 (12, 27) 18 (12, 26) 19 (13, 26) 20 (13, 28) 19 (13, 26) 18 (10, 24) 15 (10, 24) 

Percent of adults that report no leisure 

time physical activity (%) 28 (23, 34) 23 (18, 30) 24 (16, 32) 24 (18, 30) 28 (22, 35) 26 (19, 35) 21 (15, 27) 19 (14, 26) 

Percent of population in poverty (%) 17 (10, 24) 15 (10, 22) 15 (10, 24) 13 (7, 19) 18 (11, 27) 18 (8, 27) 17 (10, 24) 16 (9, 23) 

Percent of population over 65 (%) 14 (10, 18) 15 (10, 21) 15 (10, 23) 15 (11, 19) 13 (8, 23) 14 (9, 24) 14 (9, 24) 13 (9, 20) 

Percent of population under 65 

uninsured (%) 16 (11, 20) 12 (9, 17) 18 (11, 26) 11 (5, 17) 23 (15, 31) 20 (13, 27) 21 (16, 26) 20 (13, 26) 

Population density (population/per sq. 

mile) 

576  

(44, 2,193) 

368 

 (12, 1886) 

101  

(1, 482) 

2,341 

(30, 10417) 

323 

 (4, 1286) 

653 

 (80, 1,784) 

191 

 (2, 718) 

521 

 (1, 2,388) 
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APPENDIX B  

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

 

Table B-1: Grid extent of the NLDAS grid 

Position 
Grid 

Column 
Grid Row Longitude Latitude 

Lower Left 1 1 -124.9375 25.0625 

Lower Right 464 1 -67.0625 25.0625 

Upper Right 464 224 -67.0625 52.9375 

Upper Left 1 224 -124.9375 52.9375 
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H
~

: Interpolated value 

H1, H2, H3, H4: Grid cell centroids 

H: Station location 

 : Epsilon, a small infinitesimal value to account for a scenario where grid cell centroid is right on top of a monitor location. 

 

Figure B-1: Inverse squared distance weighted interpolation to obtain station-level modeled daily heat metric estimates 
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Relate block level population 

data to grid cells 

Assign population 

to grid cells 

Convert grid cell 

polygons to point 

(centroid) 

Relate grid cell 

centroids to 

counties 

Assign population-weighted 

daily heat metrics to counties 

 

 

 

 

 Figure B-2: Generating population-weighted county-level modeled daily heat metric estimates 
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Table B-2: Performance evaluation metrics used in this analysis 
Performance evaluation metric Formula/Description 

Pearson Correlation Coefficient (r): For a set of daily data points (MON1, MOD1), (MON2, MOD2), …, (MONn, MODn) r is defined as 

   
∑ (         ̅̅ ̅̅ ̅̅ ̅) (         ̅̅ ̅̅ ̅̅ ̅)

 

   

 √∑ (         ̅̅ ̅̅ ̅̅ ̅)
  

   
√∑ (         ̅̅ ̅̅ ̅̅ ̅)

  
   

                                                                    

Where, n: number of observations; 

    : Station-based daily heat metric measurements; 

    : Model-based daily heat metric estimates; 

   ̅̅ ̅̅ ̅̅ ̅: Station-based daily heat metric average; 

   ̅̅ ̅̅ ̅̅ ̅: Model-based daily heat metric estimates. 

Kendall Tau-B correlation Coefficient (t) To calculate t, n(n-1)/2 pairs of data points are classified as concordant or discordant. A concordant pair is any pair for 

which the ranks of ASOS and NLDAS estimates agree, i.e., for any pair of observations (MONi, MODi) and (MONj, 

MODj), both MONi > MONj and MODi > MODj or both MONi < MONj and MODi < MODj. A discordant pair is any pair 

of observations for which the ranks for MON and MOD disagree, i.e., either MONi > MONj and MODi < MODj or MONi 

< MONj and MODi > MODj.  With C and D respectively denoting the number of concordant and discordant pairs 

(assuming no ties), the value of tis then defined as 

   
   

        
         

The denominator is adjusted accordingly in the event of ties.  

Difference (D) D for a grid cell k and day i is defined as 

   
          

   
    

       
   

    
          

     
   

     
: Daily heat metric from ASOS for day i and at station k 

     
   

     
: Daily heat metric from NLDAS for day i and at station k                                                                                      

Relative Difference (RD) RD for a grid cell k and day i is defined as 

   
               

   
    

       
   

    
   ) /       

   
    

    

     
   

     
: Daily heat metric from ASOS for day i and at station k 

     
   

     
: Daily heat metric from NLDAS for day i and at station k                                                                                      

Root mean squared deviation (RMSD) RMSD at a staion k is defined as 

      √∑
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: Daily heat metric from ASOS for day i and at station k 

     
   

     
: Daily heat metric from NLDAS for day i and at station k 

Bland Altman Plot A Bland-Altman plot is a scatter plot with (  ,  ) points defined as 

   
     ̅̅ ̅̅ ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 
         

        
̅̅ ̅̅ ̅̅ ̅̅  

      
̅̅ ̅̅ ̅̅ ̅̅                        

where: 

    
̅̅ ̅̅ ̅̅ ̅̅  : Station-based daily heat metric for station k; 

    
̅̅ ̅̅ ̅̅ ̅̅  : Model-based daily heat metric for station k; 
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Table B-3: Short-listed EHE definitions used to evaluate ASOS- and NLDAS-based exposure estimates 

 

 

 

 

 

 

 

 

 

Cluster 
Cluster 

common name 
EHE definition name 

Daily heat 

metric 
Threshold type Threshold value Duration 

1 

Absolute 

temperature 

based 

thresholds 

Daily maximum heat 

index greater than 

90 ℉ for at least 3 

consecutive days 

HImax Absolute >90
o
F 3+ consecutive days 

2 

"Predominantly 

moderate" 

thresholds 

Daily maximum and 

minimum temperature 

greater than 80
th

 

percentile for at least 3 

consecutive days 

Tmax and 

Tmin 
Relative >80

th
 percentile 3+ consecutive days 

3 
"Predominantly 

high" thresholds 

Daily maximum 

temperature greater 

than 95
th

 percentile for 

at least 2 consecutive 

days 

Tmax Relative >95
th

 percentile 2+ consecutive days 

4 

"Predominantly 

extreme" 

thresholds 

Huth definition Tmax Relative 
T1: >97.5

th
 percentile 

T2: >81
st
 percentile 

Everyday >T2, and 3+ consecutive 

days >T1, and average Tmax >T1 for 

the whole time period 

5 

Climate normal 

based 

thresholds 

Daily mean 

temperature greater 

than mean + 1 SD of 

climate normal for at 

least 3 consecutive 

days 

Tavg Relative 
>mean + 1 SD of 

climate normal 
3+ Consecutive days 
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Figure B-3: Schematic showing exposure offset indicators 
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Figure B-4: Urban/Rural (Urbanicity) classification of counties in the U.S. 
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Figure B-5: Station-level correlation as a function of proximity to the U.S. coastline 
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Table B-4: Annual station-level RMSD for daily heat metrics 

 

Central
East North 

Central
Northeast Northwest South Southeast Southwest West

West North 

Central
1999 3.63 (3.04, 4.54) 3.78 (3.28, 5.20) 4.16 (3.37, 7.93) 3.93 (2.84, 7.36) 4.06 (3.20, 5.88) 3.75 (3.20, 5.83) 3.36 (2.52, 5.92) 5.38 (3.03, 10.69) 4.20 (3.44, 5.17)

2000 4.06 (3.34, 5.00) 4.53 (3.20, 6.22) 3.92 (3.00, 8.00) 3.32 (2.36, 7.01) 3.93 (2.92, 5.28) 3.57 (2.85, 5.17) 3.09 (2.11, 5.51) 5.61 (2.90, 11.83) 4.29 (3.10, 6.07)

2001 3.54 (2.96, 4.55) 4.04 (3.01, 5.77) 3.90 (3.11, 8.10) 3.55 (2.60, 7.07) 3.62 (2.70, 4.76) 3.69 (2.73, 6.08) 2.95 (2.13, 6.00) 5.86 (3.26, 10.74) 3.90 (2.83, 5.89)

2002 3.84 (3.27, 4.59) 4.27 (3.66, 6.05) 3.98 (3.26, 7.70) 3.48 (2.81, 7.97) 3.93 (3.12, 4.87) 3.75 (3.30, 5.25) 3.30 (2.10, 7.31) 5.93 (3.46, 10.26) 4.21 (3.41, 5.53)

2003 3.77 (3.13, 4.58) 3.80 (2.98, 5.35) 3.81 (2.91, 8.73) 3.81 (2.64, 7.89) 4.14 (3.21, 5.59) 3.76 (3.10, 5.64) 3.00 (2.22, 5.70) 5.96 (3.86, 10.78) 3.65 (2.97, 5.69)

2004 3.52 (2.95, 5.22) 3.91 (3.08, 6.05) 3.73 (3.02, 7.34) 3.75 (2.57, 7.55) 3.97 (3.11, 5.54) 3.24 (2.67, 5.73) 3.14 (1.85, 5.61) 6.04 (3.18, 11.07) 3.90 (3.20, 5.12)

2005 3.84 (2.98, 4.50) 4.24 (3.19, 5.30) 3.74 (2.97, 6.99) 3.19 (2.57, 7.17) 3.84 (2.89, 5.62) 3.57 (2.90, 4.76) 3.07 (2.03, 5.67) 5.52 (2.74, 9.56) 4.03 (3.25, 5.43)

2006 4.34 (3.24, 5.55) 4.81 (3.81, 6.23) 3.72 (3.17, 6.85) 3.41 (2.61, 7.98) 4.30 (2.67, 5.68) 3.27 (2.68, 4.28) 2.98 (2.25, 5.60) 5.78 (3.24, 10.28) 3.72 (2.79, 5.27)

2007 3.86 (2.77, 5.07) 4.96 (3.36, 6.05) 4.03 (3.29, 8.19) 3.46 (2.49, 8.28) 4.01 (3.00, 5.42) 3.39 (2.57, 4.36) 2.63 (1.82, 6.36) 5.61 (2.83, 11.34) 4.20 (3.05, 6.14)

2008 3.73 (2.71, 5.29) 4.17 (3.12, 5.65) 3.44 (2.68, 7.17) 4.05 (2.56, 7.49) 4.25 (2.85, 5.38) 3.35 (2.60, 4.39) 3.05 (2.05, 6.23) 5.85 (2.99, 12.36) 3.81 (2.68, 5.02)

2009 4.25 (3.43, 5.40) 4.46 (3.04, 6.26) 3.56 (3.00, 7.58) 3.40 (2.46, 7.95) 5.28 (3.36, 8.77) 4.62 (2.91, 6.43) 3.62 (2.25, 6.06) 5.47 (2.48, 10.66) 4.39 (2.75, 5.87)

1999 3.38 (2.88, 4.82) 3.40 (2.76, 5.64) 4.37 (3.30, 8.53) 4.44 (3.21, 8.19) 3.56 (2.42, 4.47) 3.20 (2.54, 5.31) 3.63 (2.52, 8.37) 5.85 (3.41, 11.64) 3.95 (3.16, 5.85)

2000 3.05 (2.61, 5.09) 3.88 (2.71, 6.18) 4.03 (2.81, 7.99) 3.72 (2.65, 8.48) 3.16 (2.33, 4.42) 3.12 (2.4, 4.61) 3.48 (2.29, 7.70) 6.43 (3.19, 13.34) 4.43 (3.36, 6.48)

2001 3.00 (2.47, 3.86) 3.59 (2.81, 5.73) 4.31 (2.97, 8.77) 4.23 (2.90, 8.20) 3.06 (2.43, 3.95) 3.18 (2.39, 4.89) 3.43 (2.19, 8.28) 6.77 (3.30, 11.88) 3.97 (2.91, 6.40)

2002 3.76 (2.97, 4.68) 3.96 (3.17, 5.28) 4.15 (2.99, 8.19) 4.24 (3.03, 8.87) 3.36 (2.58, 4.44) 3.13 (2.51, 5.19) 3.67 (2.56, 8.74) 6.40 (3.24, 12.42) 4.40 (3.62, 5.81)

2003 3.12 (2.69, 4.92) 3.85 (2.89, 5.61) 3.88 (2.64, 9.19) 4.63 (3.05, 10.46) 3.44 (2.49, 4.66) 3.20 (2.36, 5.02) 3.39 (2.45, 8.14) 6.46 (3.37, 12.52) 4.05 (3.02, 6.85)

2004 2.90 (2.48, 4.43) 3.52 (2.71, 5.53) 3.86 (2.67, 8.07) 4.42 (2.73, 9.39) 3.38 (2.27, 4.92) 2.98 (2.36, 5.43) 3.69 (2.07, 7.84) 6.85 (3.67, 12.31) 3.92 (3.24, 6.10)

2005 3.58 (2.72, 4.85) 3.73 (3.08, 5.50) 4.40 (3.01, 7.70) 3.97 (2.90, 9.31) 3.20 (2.49, 4.49) 3.46 (2.34, 5.17) 3.66 (2.21, 7.75) 5.88 (3.32, 11.75) 4.01 (3.34, 5.64)

2006 3.37 (2.82, 4.60) 4.36 (3.51, 6.98) 4.01 (2.95, 7.23) 3.96 (2.91, 9.60) 3.51 (2.38, 4.92) 3.08 (2.31, 5.1) 3.41 (2.29, 8.40) 6.46 (3.28, 11.90) 4.02 (3.01, 6.45)

2007 3.62 (2.74, 4.58) 4.38 (3.23, 6.41) 4.46 (3.24, 9.04) 4.04 (2.83, 9.87) 2.83 (2.31, 3.60) 3.00 (2.24, 4.53) 3.06 (2.19, 8.64) 6.55 (2.74, 12.33) 4.34 (3.16, 7.16)

2008 3.09 (2.62, 4.43) 3.41 (2.79, 5.56) 4.00 (2.72, 7.49) 4.33 (3.02, 9.81) 3.12 (2.58, 4.30) 2.97 (2.24, 4.77) 3.53 (2.14, 8.46) 6.92 (3.62, 13.62) 3.65 (2.95, 6.79)

2009 3.45 (3.05, 4.89) 4.50 (2.99, 6.66) 3.79 (2.78, 7.79) 4.09 (2.95, 9.35) 5.50 (3.13, 9.47) 4.76 (2.40, 6.27) 4.28 (2.52, 8.59) 6.41 (3.12, 12.47) 4.76 (3.02, 6.40)

1999 2.52 (2.12, 3.15) 2.66 (2.35, 3.42) 2.70 (2.23, 4.63) 3.25 (2.36, 7.18) 2.66 (1.84, 4.06) 2.32 (1.63, 3.42) 4.29 (2.38, 6.16) 3.52 (2.34, 7.09) 4.38 (2.71, 6.74)

2000 2.46 (2.05, 3.62) 2.79 (2.08, 4.50) 2.54 (2.13, 4.37) 3.44 (2.16, 7.73) 2.76 (1.76, 4.37) 2.35 (1.70, 3.74) 4.46 (2.37, 8.58) 4.17 (2.26, 8.03) 5.03 (2.83, 7.00)

2001 2.45 (1.97, 6.69) 2.75 (2.17, 10.11) 2.65 (2.13, 6.85) 3.64 (2.08, 7.88) 2.53 (1.84, 7.29) 2.18 (1.64, 7.08) 4.83 (2.50, 9.65) 4.03 (2.20- 9.90) 4.80 (2.66, 8.96)

2002 2.45 (1.98, 9.45) 2.77 (2.18, 6.59) 2.77 (1.99, 8.76) 4.35 (2.30, 8.40) 2.77 (1.85, 7.84) 2.21 (1.65, 6.76) 4.61 (2.4, 10.47) 4.25 (2.46, 8.06) 4.59 (3.11, 10.02)

2003 2.37 (1.97, 7.03) 3.19 (2.12, 6.69) 2.50 (1.95, 9.77) 3.42 (2.17, 9.84) 3.08 (1.88, 7.77) 2.17 (1.58, 8.10) 4.74 (2.38, 10.79) 4.49 (2.64, 8.89) 5.17 (3.41, 9.49)

2004 2.48 (1.91, 6.33) 2.99 (2.15, 4.19) 2.61 (1.91, 6.10) 3.23 (2.47, 6.48) 2.83 (1.96, 6.39) 2.04 (1.62, 10.35) 4.27 (2.22, 7.56) 4.27 (2.45, 7.77) 4.46 (2.73, 7.96)

2005 2.37 (1.94, 3.45) 2.82 (2.06, 4.40) 2.58 (1.91, 4.46) 3.10 (2.13, 7.15) 2.74 (1.79, 4.13) 2.12 (1.63, 2.63) 4.09 (2.26, 7.9) 3.74 (2.22, 7.12) 4.41 (2.86, 6.09)

2006 2.46 (2.05, 3.73) 2.92 (2.28, 4.18) 2.46 (2.01, 4.63) 3.43 (2.24, 7.36) 2.97 (1.80, 4.27) 2.13 (1.69, 2.97) 4.05 (2.34, 7.35) 3.90 (2.32, 7.66) 4.62 (2.70, 5.95)

2007 2.46 (1.93, 3.81) 3.17 (2.48, 4.49) 2.74 (2.12, 4.68) 3.06 (1.98, 6.59) 2.22 (1.70, 4.05) 2.20 (1.56, 3.52) 3.60 (2.17, 7.44) 3.68 (2.55, 7.71) 4.33 (2.69, 5.80)

2008 2.29 (1.97, 3.12) 2.45 (1.93, 4.53) 2.41 (1.84, 3.95) 3.41 (2.22, 6.41) 2.43 (1.90, 3.88) 2.02 (1.59, 2.79) 3.36 (2.12, 6.57) 4.36 (2.32, 8.51) 4.57 (2.55, 5.85)

2009 2.41 (2.05, 3.20) 3.11 (2.17, 4.53) 2.40 (1.95, 3.81) 3.27 (2.04, 6.86) 4.33 (2.33, 6.82) 2.94 (1.81, 4.97) 3.77 (2.35, 6.80) 4.29 (2.14, 8.02) 4.62 (2.73, 6.08)

Median (5th, 95th Percentile) Station level root mean squared deviation (
o
F) Summarized by Climate Region

HImax

Tmax

Tavg

Daily 

Heat 

Metric

Year
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Figure B-6: Bland Altman plots for Tmax at SEARCH locations 
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Figure B-7: Bland Altman plots for HImax at SEARCH locations 
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Figure B-8: Bland Altman plots for Tavg at SEARCH locations 
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Figure B-9: Comparison of mean (95% CI) EHE effect from ASOS- and NLDAS-based 

exposure estimates for Definition 1 
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Figure B-10: Comparison of mean (95% CI) EHE effect from ASOS- and NLDAS-based 

exposure estimates for Definition 2 
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Figure B-11: Comparison of mean (95% CI) EHE effect from ASOS- and NLDAS-based 

exposure estimates for Definition 3 
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Figure B-12: Comparison of mean (95% CI) EHE effect from ASOS- and NLDAS-based 

exposure estimates for Definition 4 
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Figure B-13: Comparison of mean (95% CI) EHE effect from ASOS- and NLDAS-based 

exposure estimates for Definition 5 
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APPENDIX C  

SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

 

Figure C-1: Daily mean inverse wind speed by month in 27 cities 
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Figure C-2: Daily mean relative humidity by month in 27 cities 
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Figure C-3: Daily maximum temperature by month in 27 cities 
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Figure C-4: Daily cloud-adjusted net solar insolation by month in 27 cities 
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A: non-EHE day 

 
B: EHE day 

 
Figure C-5: Daily maximum temperature distribution by EHE definitions

32
 in 27 

cities on (A) non-EHE day, and (B) EHE day 

  

                                                 
32Definition 1: Daily maximum heat index greater than 90℉  for at least 3 consecutive days  
Definition 2: Daily maximum and minimum temperature greater than  80th percentile for at least 3 consecutive days 

Definition 3: Daily maximum temperature greater than 95th percentile for at least 2 consecutive days 

Definition 4: Huth definition 

Definition 5: Daily mean temperature greater than  mean + 1 standard deviation (SD) of climate normal  for at least 3 consecutive days 
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A: non-EHE day 

 
B: EHE day 

 
Figure C-6: Daily mean inverse wind speed distribution by EHE definitions

33
 in 27 

cities on (A) non-EHE day, and (B) EHE day 

  

                                                 
33Definition 1: Daily maximum heat index greater than 90℉  for at least 3 consecutive days  
Definition 2: Daily maximum and minimum temperature greater than  80th percentile for at least 3 consecutive days 

Definition 3: Daily maximum temperature greater than 95th percentile for at least 2 consecutive days 

Definition 4: Huth definition 

Definition 5: Daily mean temperature greater than  mean + 1 standard deviation (SD) of climate normal  for at least 3 consecutive days 
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A: non-EHE day 

 
B: EHE day 

 
Figure C-7: Daily maximum relative humidity by EHE definitions

34
 in 27 cities on 

(A) non-EHE day, and (B) EHE day 

                                                 
34Definition 1: Daily maximum heat index greater than 90℉  for at least 3 consecutive days  
Definition 2: Daily maximum and minimum temperature greater than  80th percentile for at least 3 consecutive days 

Definition 3: Daily maximum temperature greater than 95th percentile for at least 2 consecutive days 

Definition 4: Huth definition 

Definition 5: Daily mean temperature greater than  mean + 1 standard deviation (SD) of climate normal  for at least 3 consecutive days 
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Figure C-8: Scatter plot showing relationship between meteorological variables used in this analysis
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Table C-1: City-specific Pearson correlation coefficient between meteorological 

variables  

City 
Meteorological 

variable 

Meteorological variable 

Inv. Mean WS 

(s/m) 

Mean RH 

(%) 

SI 

(KW/sq.m) 

Tmax 

(℉) 

Albuquerque 

Inv. Mean WS (s/m) 1 0.06 -0.29 0.13 

Mean RH (%) 0.06 1 0.22 -0.23 

SI (KW/sq.m) -0.29 0.22 1 -0.02 

Tmax(deg F) 0.13 -0.23 -0.02 1 

Atlanta 

Inv. Mean WS (s/m) 1 -0.27 -0.14 0.32 

Mean RH (%) -0.27 1 0.53 -0.26 

SI (KW/sq.m) -0.14 0.53 1 -0.16 

Tmax(deg F) 0.32 -0.26 -0.16 1 

Baton Rouge 

Inv. Mean WS (s/m) 1 -0.08 -0.16 0.21 

Mean RH (%) -0.08 1 0.28 -0.28 

SI (KW/sq.m) -0.16 0.28 1 -0.07 

Tmax(deg F) 0.21 -0.28 -0.07 1 

Birmingham 

Inv. Mean WS (s/m) 1 -0.19 -0.15 0.19 

Mean RH (%) -0.19 1 0.58 -0.37 

SI (KW/sq.m) -0.15 0.58 1 -0.18 

Tmax(deg F) 0.19 -0.37 -0.18 1 

Boston 

Inv. Mean WS (s/m) 1 0.26 0 -0.13 

Mean RH (%) 0.26 1 0.32 -0.23 

SI (KW/sq.m) 0 0.32 1 0.05 

Tmax(deg F) -0.13 -0.23 0.05 1 

Buffalo 

Inv. Mean WS (s/m) 1 -0.08 -0.11 0.08 

Mean RH (%) -0.08 1 0.51 -0.17 

SI (KW/sq.m) -0.11 0.51 1 0.07 

Tmax(deg F) 0.08 -0.17 0.07 1 

Chicago 

Inv. Mean WS (s/m) 1 0.18 0.01 0.06 

Mean RH (%) 0.18 1 0.4 -0.07 

SI (KW/sq.m) 0.01 0.4 1 0.2 

Tmax(deg F) 0.06 -0.07 0.2 1 

Columbus 

Inv. Mean WS (s/m) 1 0.04 0.02 0.1 

Mean RH (%) 0.04 1 0.47 -0.18 

SI (KW/sq.m) 0.02 0.47 1 0.08 

Tmax(deg F) 0.1 -0.18 0.08 1 

Dallas 

Inv. Mean WS (s/m) 1 -0.21 -0.16 0 

Mean RH (%) -0.21 1 0.54 -0.52 

SI (KW/sq.m) -0.16 0.54 1 -0.15 

Tmax(deg F) 0 -0.52 -0.15 1 

Denver 

Inv. Mean WS (s/m) 1 0.1 -0.12 -0.07 

Mean RH (%) 0.1 1 0.56 -0.57 

SI (KW/sq.m) -0.12 0.56 1 -0.13 

Tmax(deg F) -0.07 -0.57 -0.13 1 

Detroit 

Inv. Mean WS (s/m) 1 0.16 0.01 0.18 

Mean RH (%) 0.16 1 0.36 -0.13 

SI (KW/sq.m) 0.01 0.36 1 0.23 

Tmax(deg F) 0.18 -0.13 0.23 1 

Fargo 
Inv. Mean WS (s/m) 1 0.13 -0.04 0.07 

Mean RH (%) 0.13 1 0.26 -0.39 
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City 
Meteorological 

variable 

Meteorological variable 

Inv. Mean WS 

(s/m) 

Mean RH 

(%) 

SI 

(KW/sq.m) 

Tmax 

(℉) 
SI (KW/sq.m) -0.04 0.26 1 0.01 

Tmax(deg F) 0.07 -0.39 0.01 1 

Fresno 

Inv. Mean WS (s/m) 1 -0.06 -0.47 0.28 

Mean RH (%) -0.06 1 -0.26 -0.68 

SI (KW/sq.m) -0.47 -0.26 1 0.13 

Tmax(deg F) 0.28 -0.68 0.13 1 

Grand Rapids 

Inv. Mean WS (s/m) 1 0.1 0 0.15 

Mean RH (%) 0.1 1 0.3 -0.05 

SI (KW/sq.m) 0 0.3 1 0.27 

Tmax(deg F) 0.15 -0.05 0.27 1 

Indianapolis 

Inv. Mean WS (s/m) 1 -0.23 -0.15 0.13 

Mean RH (%) -0.23 1 0.65 -0.06 

SI (KW/sq.m) -0.15 0.65 1 -0.07 

Tmax(deg F) 0.13 -0.06 -0.07 1 

Las Vegas 

Inv. Mean WS (s/m) 1 -0.06 -0.24 -0.02 

Mean RH (%) -0.06 1 0.06 -0.31 

SI (KW/sq.m) -0.24 0.06 1 0.06 

Tmax(deg F) -0.02 -0.31 0.06 1 

Los Angeles 

Inv. Mean WS (s/m) 1 0.15 -0.05 0.28 

Mean RH (%) 0.15 1 0.09 -0.65 

SI (KW/sq.m) -0.05 0.09 1 -0.11 

Tmax(deg F) 0.28 -0.65 -0.11 1 

McAllen 

Inv. Mean WS (s/m) 1 -0.28 -0.17 0.06 

Mean RH (%) -0.28 1 0.44 -0.49 

SI (KW/sq.m) -0.17 0.44 1 -0.43 

Tmax(deg F) 0.06 -0.49 -0.43 1 

Minneapolis 

Inv. Mean WS (s/m) 1 -0.04 -0.01 -0.03 

Mean RH (%) -0.04 1 0.36 -0.24 

SI (KW/sq.m) -0.01 0.36 1 0.02 

Tmax(deg F) -0.03 -0.24 0.02 1 

Phoenix 

Inv. Mean WS (s/m) 1 -0.22 -0.13 0.06 

Mean RH (%) -0.22 1 -0.25 -0.02 

SI (KW/sq.m) -0.13 -0.25 1 0.03 

Tmax(deg F) 0.06 -0.02 0.03 1 

Pittsburgh 

Inv. Mean WS (s/m) 1 -0.23 -0.13 0.06 

Mean RH (%) -0.23 1 0.41 -0.24 

SI (KW/sq.m) -0.13 0.41 1 0.02 

Tmax(deg F) 0.06 -0.24 0.02 1 

Portland 

Inv. Mean WS (s/m) 1 0.11 -0.17 0.16 

Mean RH (%) 0.11 1 0.24 -0.7 

SI (KW/sq.m) -0.17 0.24 1 -0.17 

Tmax(deg F) 0.16 -0.7 -0.17 1 

Reno 

Inv. Mean WS (s/m) 1 -0.18 -0.4 0.29 

Mean RH (%) -0.18 1 0 -0.67 

SI (KW/sq.m) -0.4 0 1 0.05 

Tmax(deg F) 0.29 -0.67 0.05 1 

St. Louis 

Inv. Mean WS (s/m) 1 -0.11 -0.17 -0.01 

Mean RH (%) -0.11 1 0.37 -0.24 

SI (KW/sq.m) -0.17 0.37 1 0.12 

Tmax(deg F) -0.01 -0.24 0.12 1 
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City 
Meteorological 

variable 

Meteorological variable 

Inv. Mean WS 

(s/m) 

Mean RH 

(%) 

SI 

(KW/sq.m) 

Tmax 

(℉) 

Tampa 

Inv. Mean WS (s/m) 1 0.05 0.08 -0.03 

Mean RH (%) 0.05 1 0.45 -0.49 

SI (KW/sq.m) 0.08 0.45 1 -0.32 

Tmax(deg F) -0.03 -0.49 -0.32 1 

Tulsa 

Inv. Mean WS (s/m) 1 0.27 0.02 -0.14 

Mean RH (%) 0.27 1 0.38 -0.48 

SI (KW/sq.m) 0.02 0.38 1 -0.04 

Tmax(deg F) -0.14 -0.48 -0.04 1 

Washington 

D.C. 

Inv. Mean WS (s/m) 1 -0.05 -0.13 0.16 

Mean RH (%) -0.05 1 0.36 -0.2 

SI (KW/sq.m) -0.13 0.36 1 0.05 

Tmax(deg F) 0.16 -0.2 0.05 1 
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Table C-2: Model performance for 27 cities 

Region City 

EHE definitions 

Definition 1 Definition 2 Definition 3 Definition 4 Definition 5 
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Central 

Chicago 0.44 0.59 7 80 0.44 0.59 7 80 0.43 0.59 7 80 0.43 0.59 7 80 0.44 0.59 7 80 

Columbus 0.55 0.70 8 80 0.54 0.70 8 80 0.54 0.70 7 80 0.54 0.70 7 81 0.55 0.70 7 80 

Indianapolis 0.54 0.68 14 62 0.54 0.68 14 63 0.54 0.68 14 62 0.54 0.68 14 62 0.54 0.68 14 62 

St. Louis 0.49 0.64 9 76 0.49 0.64 9 75 0.49 0.64 10 74 0.49 0.64 9 75 0.49 0.64 10 75 

East North 

Central 

Detroit 0.53 0.66 9 75 0.53 0.66 9 78 0.53 0.66 9 78 0.53 0.66 9 76 0.53 0.66 9 78 

Grand Rapids 0.48 0.64 8 78 0.49 0.64 7 79 0.48 0.64 8 77 0.48 0.64 8 79 0.48 0.64 8 79 

Minneapolis 0.46 0.64 8 74 0.46 0.65 8 73 0.45 0.64 8 75 0.45 0.64 8 75 0.46 0.65 8 76 

North West 

Central 

Fargo 0.48 0.64 7 76 0.48 0.65 7 76 0.48 0.64 7 76 0.48 0.64 7 77 0.48 0.65 7 77 

Portland 0.42 0.58 8 72 0.42 0.58 7 73 0.41 0.58 7 73 0.42 0.58 8 72 0.43 0.59 7 73 

Northeast 

Boston 0.39 0.55 9 76 0.39 0.55 9 73 0.39 0.55 9 76 0.39 0.55 9 75 0.40 0.55 9 73 

Buffalo 0.49 0.64 11 73 0.49 0.64 11 73 0.49 0.64 10 73 0.49 0.64 10 74 0.49 0.64 11 73 

Pittsburgh 0.58 0.70 9 76 0.58 0.70 9 76 0.58 0.70 9 77 0.58 0.70 9 76 0.58 0.70 9 77 
Washington 

D.C. 0.41 0.60 11 75 0.41 0.60 10 77 0.41 0.60 10 77 0.41 0.60 11 76 0.41 0.60 10 78 

South 

Baton Rouge 0.41 0.62 9 71 0.39 0.62 9 71 0.40 0.62 9 71 0.40 0.62 9 71 0.40 0.62 9 72 

Dallas 0.46 0.68 14 62 0.44 0.67 14 62 0.42 0.66 15 59 0.43 0.66 14 61 0.43 0.66 14 61 

McAllen 0.27 0.70 6 72 0.26 0.70 7 71 0.26 0.70 7 71 0.26 0.70 7 71 0.26 0.70 7 71 

Tulsa 0.35 0.59 11 72 0.32 0.58 11 72 0.30 0.57 11 71 0.30 0.57 11 71 0.32 0.58 10 73 

Southeast 

Atlanta 0.55 0.72 14 68 0.54 0.72 15 64 0.54 0.72 14 66 0.53 0.72 14 66 0.54 0.72 13 69 

Birmingham 0.52 0.66 10 74 0.51 0.66 9 75 0.52 0.67 10 74 0.51 0.66 10 74 0.52 0.67 9 72 

Tampa 0.20 0.50 8 69 0.19 0.50 8 70 0.19 0.50 9 69 0.19 0.50 9 69 0.19 0.50 8 69 

Southwest 

Albuquerque 0.11 0.43 6 86 0.11 0.42 6 86 0.11 0.43 6 86 0.11 0.43 6 85 0.11 0.43 6 86 

Denver 0.31 0.59 7 84 0.31 0.59 7 84 0.31 0.59 7 84 0.31 0.59 7 84 0.32 0.60 7 84 

Phoenix 0.22 0.42 6 86 0.15 0.37 7 85 0.15 0.37 7 85 0.15 0.37 7 85 0.15 0.37 7 85 

West 

Fresno 0.52 0.71 8 84 0.51 0.71 8 84 0.50 0.70 8 84 0.50 0.70 8 84 0.51 0.71 8 84 

Las Vegas 0.13 0.41 5 88 0.12 0.40 5 88 0.11 0.40 6 87 0.11 0.40 6 87 0.11 0.40 6 87 

Los Angeles 0.02 0.48 6 83 0.03 0.48 6 83 0.04 0.49 6 83 0.03 0.48 6 83 0.03 0.48 6 83 

Reno 0.16 0.45 6 85 0.16 0.45 6 85 0.16 0.45 6 85 0.15 0.44 6 85 0.16 0.45 6 85 
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Table C-3: The effect (slope factors on a logarithmic scale
35

) of meteorological variables on ozone and effect modification by 

EHEs 

 
  

                                                 
35

 The slope factors are presented on a log scale for certain predictors were scaled for display purposes. Specifically,  

InWS and EHE*InvWS: Slope factor represents the change in ozone for a 0.1 (s/m) increase in InvWS or a 10 m/s decrease in wind speed; 

RH and EHE*RH: Slope factor represents the change in ozone for a 10% increase in RH; 

Tmax and EHE*Tmax: Slope factor represents the change in ozone for a 10℉  increase in Tmax; 

SI: Slope factor represents the change in ozone for a 1KW/ sq.m increase in SI. 

EHE InvWS EHE*InvWS RH EHE*RH Tmax EHE*Tmax SI

Mean (95%  CI) Mean (95%  CI) Mean (95%  CI) Mean (95%  CI) Mean (95%  CI) Mean (95%  CI) Mean (95%  CI) Mean (95%  CI) 

Albuquerque -0.34 (-0.76, 0.083) 0.028 (0.022, 0.035) -0.01 (-0.04, 0.016) -0.02 (-0.03, -0.02) 0.043 (0.023, 0.063) 0.049 (0.042, 0.056) 0.03 (-0.01, 0.073) -0 (-0, 0.001)

Atlanta -1.03 (-1.85, -0.21) 0.012 (0.008, 0.015) 0.1 (0.071, 0.129) -0.18 (-0.19, -0.18) 0.096 (0.069, 0.123) 0.22 (0.207, 0.233) 0.028 (-0.05, 0.104) -0.02 (-0.02, -0.01)

Baton Rouge -0.54 (-1.52, 0.446) 0.084 (0.077, 0.09) 0.008 (-0.03, 0.045) -0.24 (-0.25, -0.23) 0.043 (-0.04, 0.127) 0.149 (0.128, 0.169) 0.057 (-0.03, 0.149) -0.01 (-0.01, -0)

Birmingham -0.42 (-1.33, 0.485) 0.069 (0.065, 0.074) 0.028 (0.014, 0.043) -0.18 (-0.19, -0.17) 0.05 (0.024, 0.075) 0.141 (0.128, 0.153) -0.01 (-0.1, 0.086) -0.01 (-0.01, -0)

Boston -1.25 (-1.89, -0.61) -0.06 (-0.08, -0.04) 0.096 (-0.01, 0.201) -0.01 (-0.02, -0.01) 0.016 (-0.03, 0.057) 0.225 (0.217, 0.232) 0.135 (0.074, 0.196) 69E-5 (-0, 0.003)

Buffalo -0.13 (-0.84, 0.569) -0.07 (-0.08, -0.06) -0.01 (-0.04, 0.026) -0.05 (-0.05, -0.04) 0.031 (-0.01, 0.069) 0.281 (0.273, 0.288) 0.004 (-0.05, 0.061) -0 (-0, -0)

Chicago -0.22 (-0.91, 0.475) 0.013 (0.003, 0.023) 0.142 (0.094, 0.19) -0.1 (-0.1, -0.09) -0 (-0.03, 0.028) 0.231 (0.223, 0.239) 0.008 (-0.06, 0.077) -0.01 (-0.01, -0)

Columbus 0.517 (-0.67, 1.702) 0.036 (0.033, 0.04) 0.021 (0.005, 0.037) -0.13 (-0.13, -0.12) 0.003 (-0.02, 0.027) 0.234 (0.226, 0.242) -0.06 (-0.18, 0.055) -0 (-0, -0)

Dallas -0.06 (-1.56, 1.44) 0.139 (0.118, 0.16) 0.105 (0.042, 0.169) -0.13 (-0.13, -0.12) 0.076 (0.003, 0.149) 0.153 (0.132, 0.175) -0.05 (-0.2, 0.088) -0.01 (-0.01, -0)

Denver -0.32 (-1.07, 0.437) 0.019 (0.006, 0.032) 0.072 (0.007, 0.137) -0.04 (-0.05, -0.04) 0.078 (0.04, 0.117) 0.089 (0.08, 0.098) -0.01 (-0.08, 0.065) -0.01 (-0.01, -0)

Detroit 0.053 (-0.86, 0.964) 0.041 (0.036, 0.045) 0.058 (0.025, 0.092) -0.11 (-0.12, -0.1) 0.018 (-0.02, 0.051) 0.299 (0.291, 0.307) -0.02 (-0.1, 0.062) -0 (-0, 0.001)

Fargo -0.53 (-1.18, 0.123) 0.008 (0.002, 0.014) -0.01 (-0.05, 0.015) -0.07 (-0.08, -0.07) 0.047 (0.024, 0.07) 0.168 (0.162, 0.174) 0.034 (-0.03, 0.096) 0.012 (0.011, 0.013)

Fresno -0.46 (-1.13, 0.21) 0.074 (0.068, 0.08) -0.02 (-0.04, 0.006) -0 (-0.01, 0.007) 0.071 (0.053, 0.089) 0.203 (0.189, 0.217) 0.025 (-0.04, 0.088) 0.006 (0.004, 0.009)

Grand Rapids 0.499 (-0.17, 1.17) 0.014 (0.007, 0.021) -0.03 (-0.06, 0.009) -0.07 (-0.08, -0.06) -0 (-0.03, 0.031) 0.318 (0.309, 0.327) -0.05 (-0.12, 0.015) -0 (-0, -0)

Indianapolis 0.718 (-0.28, 1.716) 0.044 (0.038, 0.05) 0.052 (0.008, 0.096) -0.13 (-0.14, -0.13) -0.01 (-0.04, 0.012) 0.276 (0.268, 0.284) -0.08 (-0.17, 0.009) -0 (-0, -0)

Las Vegas -0.42 (-0.72, -0.12) 0.028 (0.019, 0.037) 0.038 (0.014, 0.062) -0.03 (-0.04, -0.03) 0.035 (0.021, 0.05) 0.058 (0.051, 0.065) 0.028 (0.003, 0.054) 0.003 (74E-5, 0.005)

Los Angeles -0.47 (-1.24, 0.309) 0.067 (0.05, 0.085) -0.07 (-0.15, 0.019) 0.03 (0.021, 0.04) -0.01 (-0.04, 0.017) 0.054 (0.038, 0.07) 0.103 (0.024, 0.181) 0.003 (82E-5, 0.005)

McAllen -1.55 (-4.67, 1.573) 0.245 (0.215, 0.274) 0.153 (0.093, 0.213) -0.13 (-0.15, -0.12) 0.069 (-0.04, 0.18) -0.07 (-0.1, -0.04) 0.089 (-0.18, 0.355) -0.01 (-0.01, -0)

Minneapolis -0.22 (-0.93, 0.489) 0.007 (0.004, 0.009) -0.02 (-0.04, 23E-6) -0.05 (-0.06, -0.05) 0.05 (0.024, 0.076) 0.225 (0.218, 0.232) -0.01 (-0.06, 0.047) 0.001 (-0, 0.003)

Phoenix -0.81 (-2.2, 0.568) 0.094 (0.087, 0.102) -0.01 (-0.03, 0.018) -0.03 (-0.05, -0.01) 0.065 (0.017, 0.113) 0.061 (0.032, 0.09) 0.067 (-0.06, 0.194) 0.014 (0.01, 0.018)

Pittsburgh -0.44 (-1.15, 0.272) 0.006 (0.002, 0.01) 0.05 (0.023, 0.077) -0.11 (-0.11, -0.1) 0.033 (0.007, 0.059) 0.298 (0.29, 0.306) 0.014 (-0.06, 0.087) 77E-5 (-0, 0.002)

Portland -1.82 (-2.42, -1.22) 0.006 (0.005, 0.007) 0.035 (0.025, 0.046) -0.11 (-0.12, -0.1) 0.107 (0.073, 0.141) 0.115 (0.106, 0.124) 0.136 (0.083, 0.189) 0.008 (0.006, 0.01)

Reno -0.29 (-0.63, 0.058) -0 (-0.01, 0.004) 0.01 (-0.02, 0.042) -0.04 (-0.05, -0.04) 0.034 (-0.01, 0.079) 0.066 (0.06, 0.072) 0.033 (-0, 0.066) 0.007 (0.005, 0.01)

St. Louis 0.091 (-0.43, 0.608) 0.06 (0.054, 0.066) 0.077 (0.044, 0.11) -0.1 (-0.1, -0.09) -0 (-0.02, 0.021) 0.196 (0.189, 0.204) -0.02 (-0.07, 0.025) -0 (-0.01, -0)

Tampa -1.4 (-2.66, -0.14) 0.035 (0.021, 0.049) 0.042 (-0.04, 0.126) -0.21 (-0.22, -0.19) 0.052 (0.008, 0.096) 0.114 (0.086, 0.142) 0.096 (-0.03, 0.22) -0 (-0, 22E-5)

Tulsa -0.41 (-0.88, 0.067) 0.033 (0.029, 0.036) 0.017 (-0, 0.037) -0.08 (-0.09, -0.08) 0.092 (0.052, 0.131) 0.135 (0.121, 0.149) -0.02 (-0.08, 0.026) 0.003 (0.002, 0.004)

Washington D.C. 0.264 (-0.52, 1.052) 0.075 (0.062, 0.088) 0.057 (-0.01, 0.119) -0.09 (-0.1, -0.09) 0.012 (-0.02, 0.044) 0.319 (0.308, 0.33) -0.05 (-0.12, 0.026) -0 (-0, 9E-4)

City

Slope factors (Effect)on associated with meteorological varibles (Log scale)
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Table C-4: The effect modification (slope factors
36

 on a logarithmic scale) of the relationship between meteorological variables 

on ozone during EHEs by region and definition 

Meteorological 

variable 
Region Definition 

Baseline effect Effect Modification 

Mean 
Lower 

limit 

Upper 

limit 
Mean 

Lower 

limit 

Upper 

limit 

Daily Maximum 

Temperature 

Central 

Definition 1 0.23 0.20 0.26 -0.07 -0.17 0.03 

Definition 2 0.23 0.20 0.26 -0.04 -0.13 0.04 

Definition 3 0.24 0.20 0.27 0.00 -0.25 0.25 

Definition 4 0.23 0.20 0.27 -0.08 -0.22 0.06 

Definition 5 0.24 0.20 0.27 0.00 -0.05 0.05 

All definitions 0.23 0.22 0.25 -0.03 -0.06 0.01 

East North 

Central 

Definition 1 0.28 0.22 0.34 -0.02 -0.14 0.11 

Definition 2 0.28 0.22 0.34 -0.02 -0.08 0.05 

Definition 3 0.28 0.23 0.34 -0.02 -0.23 0.20 

Definition 4 0.28 0.23 0.34 -0.03 -0.16 0.10 

Definition 5 0.28 0.22 0.34 -0.04 -0.09 0.01 

All definitions 0.28 0.26 0.30 -0.03 -0.06 0.01 

North West 

Central 

Definition 1 0.14 0.09 0.20 0.09 -0.02 0.20 

Definition 2 0.14 0.08 0.19 0.13 0.06 0.20 

Definition 3 0.15 0.09 0.20 0.10 -0.04 0.25 

Definition 4 0.15 0.11 0.19 0.03 -0.19 0.25 

Definition 5 0.14 0.08 0.19 0.05 -0.09 0.19 

All definitions 0.14 0.13 0.16 0.08 0.03 0.14 

Northeast 

Definition 1 0.28 0.24 0.32 -0.05 -0.16 0.05 

Definition 2 0.28 0.24 0.32 0.06 -0.01 0.13 

Definition 3 0.28 0.25 0.32 0.13 -0.22 0.48 

Definition 4 0.28 0.24 0.32 0.06 -0.08 0.20 

                                                 
36

 The slope factors are presented on a log scale for certain predictors were scaled for display purposes. Specifically,  

Baseline effect and effect modification  associated with daily mean inverse wind speed: slope factor represents the change in ozone for a 0.1 (s/m) increase in 

inverse wind speed or a 10 m/s decrease in wind speed; 

Baseline effect and effect modification  associated with daily mean relative humidity: slope factor represents the change in ozone for a 10% increase in RH; 

Baseline effect and effect modification associated with daily maximum temperature: Slope factor represents the change in ozone for a 10℉  increase in daily 

maximum temperature. 
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Meteorological 

variable 
Region Definition 

Baseline effect Effect Modification 

Mean 
Lower 

limit 

Upper 

limit 
Mean 

Lower 

limit 

Upper 

limit 

Definition 5 0.28 0.24 0.32 0.03 -0.05 0.12 

All definitions 0.28 0.26 0.30 0.03 -0.01 0.07 

South 

Definition 1 0.17 0.13 0.21 -0.08 -0.14 -0.01 

Definition 2 0.09 0.00 0.18 0.05 -0.12 0.22 

Definition 3 0.08 -0.01 0.17 -0.14 -0.40 0.12 

Definition 4 0.08 0.00 0.17 -0.04 -0.22 0.14 

Definition 5 0.09 0.00 0.18 0.11 0.01 0.21 

All definitions 0.10 0.07 0.13 -0.01 -0.07 0.05 

Southeast 

Definition 1 0.17 0.10 0.23 0.07 0.01 0.13 

Definition 2 0.16 0.10 0.22 -0.06 -0.20 0.07 

Definition 3 0.16 0.10 0.23 -0.07 -0.51 0.37 

Definition 4 0.16 0.09 0.22 0.11 -0.32 0.54 

Definition 5 0.17 0.10 0.23 -0.01 -0.10 0.08 

All definitions 0.16 0.14 0.19 0.03 -0.02 0.07 

Southwest 

Definition 1 0.03 -0.02 0.09 0.15 -0.05 0.35 

Definition 2 0.07 0.05 0.09 0.05 -0.03 0.13 

Definition 3 0.07 0.05 0.10 -0.05 -0.54 0.44 

Definition 4 0.07 0.05 0.10 -0.02 -0.23 0.20 

Definition 5 0.07 0.05 0.10 0.01 -0.02 0.04 

All definitions 0.07 0.05 0.08 0.05 -0.02 0.11 

West 

Definition 1 0.09 0.03 0.15 0.05 0.01 0.10 

Definition 2 0.09 0.02 0.17 0.06 0.01 0.11 

Definition 3 0.10 0.02 0.18 -0.02 -0.17 0.13 

Definition 4 0.10 0.02 0.18 -0.13 -0.42 0.16 

Definition 5 0.09 0.02 0.17 0.03 0.00 0.06 

All definitions 0.10 0.07 0.12 0.04 0.02 0.06 

All Regions 

Definition 1 0.18 0.14 0.21 0.00 -0.04 0.05 

Definition 2 0.17 0.13 0.20 0.03 0.00 0.06 

Definition 3 0.17 0.14 0.21 0.01 -0.06 0.08 

Definition 4 0.17 0.14 0.21 -0.02 -0.08 0.04 

Definition 5 0.17 0.14 0.21 0.02 0.00 0.04 
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Meteorological 

variable 
Region Definition 

Baseline effect Effect Modification 

Mean 
Lower 

limit 

Upper 

limit 
Mean 

Lower 

limit 

Upper 

limit 

Daily Mean 

Relative Humidity 

Central 

Definition 1 -0.11 -0.13 -0.09 -0.02 -0.04 0.01 

Definition 2 -0.11 -0.13 -0.09 0.00 -0.02 0.03 

Definition 3 -0.11 -0.13 -0.09 0.02 -0.04 0.08 

Definition 4 -0.11 -0.13 -0.09 0.03 -0.02 0.08 

Definition 5 -0.11 -0.13 -0.09 0.00 -0.02 0.02 

All definitions -0.11 -0.12 -0.11 0.00 -0.02 0.01 

East North 

Central 

Definition 1 -0.08 -0.11 -0.04 0.02 -0.05 0.09 

Definition 2 -0.08 -0.11 -0.05 0.04 0.02 0.07 

Definition 3 -0.08 -0.11 -0.04 0.04 -0.01 0.10 

Definition 4 -0.08 -0.11 -0.04 0.04 -0.03 0.12 

Definition 5 -0.08 -0.11 -0.04 0.01 -0.02 0.03 

All definitions -0.08 -0.09 -0.07 0.03 0.01 0.05 

North West 

Central 

Definition 1 -0.09 -0.12 -0.05 0.05 -0.03 0.12 

Definition 2 -0.09 -0.13 -0.06 0.08 0.05 0.12 

Definition 3 -0.09 -0.13 -0.05 0.07 -0.03 0.17 

Definition 4 -0.09 -0.12 -0.05 0.00 -0.15 0.15 

Definition 5 -0.09 -0.14 -0.05 0.07 0.01 0.13 

All definitions -0.09 -0.10 -0.08 0.07 0.04 0.09 

Northeast 

Definition 1 -0.07 -0.11 -0.02 0.00 -0.03 0.04 

Definition 2 -0.07 -0.11 -0.02 0.03 0.00 0.06 

Definition 3 -0.06 -0.11 -0.02 0.07 0.01 0.13 

Definition 4 -0.06 -0.11 -0.02 0.10 0.04 0.16 

Definition 5 -0.06 -0.11 -0.02 0.00 -0.02 0.03 

All definitions -0.07 -0.08 -0.05 0.02 0.01 0.04 

South 

Definition 1 -0.14 -0.18 -0.09 0.00 -0.04 0.05 

Definition 2 -0.15 -0.21 -0.09 0.12 0.08 0.16 

Definition 3 -0.15 -0.21 -0.08 0.08 0.00 0.16 

Definition 4 -0.15 -0.21 -0.08 0.14 0.05 0.24 

Definition 5 -0.15 -0.21 -0.09 0.09 0.05 0.13 

All definitions -0.14 -0.17 -0.12 0.07 0.04 0.10 

Southeast Definition 1 -0.19 -0.20 -0.18 0.07 0.03 0.10 
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Meteorological 

variable 
Region Definition 

Baseline effect Effect Modification 

Mean 
Lower 

limit 

Upper 

limit 
Mean 

Lower 

limit 

Upper 

limit 

Definition 2 -0.19 -0.20 -0.17 0.08 0.02 0.14 

Definition 3 -0.18 -0.20 -0.17 0.12 0.04 0.21 

Definition 4 -0.18 -0.20 -0.17 0.24 0.00 0.47 

Definition 5 -0.19 -0.20 -0.17 0.04 0.00 0.09 

All definitions -0.18 -0.19 -0.18 0.07 0.05 0.09 

Southwest 

Definition 1 -0.05 -0.09 -0.02 0.10 0.03 0.16 

Definition 2 -0.03 -0.04 -0.01 0.06 0.03 0.08 

Definition 3 -0.03 -0.04 -0.01 0.07 -0.03 0.18 

Definition 4 -0.03 -0.04 -0.01 0.10 0.02 0.18 

Definition 5 -0.03 -0.05 -0.01 0.04 0.02 0.06 

All definitions -0.03 -0.04 -0.02 0.06 0.04 0.09 

West 

Definition 1 -0.02 -0.05 0.01 0.05 0.02 0.08 

Definition 2 -0.01 -0.04 0.01 0.04 0.00 0.08 

Definition 3 -0.01 -0.04 0.02 0.03 -0.01 0.08 

Definition 4 -0.01 -0.04 0.02 0.09 -0.23 0.40 

Definition 5 -0.01 -0.04 0.02 0.01 -0.02 0.05 

All definitions -0.01 -0.02 0.00 0.04 0.02 0.05 

All Regions 

Definition 1 -0.09 -0.11 -0.07 0.03 0.01 0.05 

Definition 2 -0.09 -0.11 -0.07 0.05 0.03 0.06 

Definition 3 -0.09 -0.11 -0.07 0.05 0.03 0.07 

Definition 4 -0.09 -0.11 -0.07 0.07 0.04 0.10 

Definition 5 -0.09 -0.11 -0.07 0.02 0.01 0.04 

Inverse Daily 

Mean Wind Speed 

Central 

Definition 1 0.04 0.03 0.05 0.06 0.02 0.11 

Definition 2 0.04 0.02 0.05 0.06 0.02 0.11 

Definition 3 0.04 0.03 0.06 0.10 -0.03 0.23 

Definition 4 0.04 0.03 0.06 0.03 -0.06 0.12 

Definition 5 0.04 0.02 0.05 0.07 0.03 0.10 

All definitions 0.04 0.03 0.05 0.06 0.04 0.08 

East North 

Central 

Definition 1 0.02 0.00 0.04 0.02 -0.04 0.09 

Definition 2 0.02 0.00 0.04 0.01 -0.04 0.06 

Definition 3 0.02 0.00 0.04 -0.04 -0.16 0.09 
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Meteorological 

variable 
Region Definition 

Baseline effect Effect Modification 

Mean 
Lower 

limit 

Upper 

limit 
Mean 

Lower 

limit 

Upper 

limit 

Definition 4 0.02 0.00 0.04 0.01 -0.09 0.10 

Definition 5 0.02 0.00 0.04 0.00 -0.03 0.02 

All definitions 0.02 0.01 0.03 0.00 -0.02 0.03 

North West 

Central 

Definition 1 0.01 0.00 0.01 0.02 -0.02 0.06 

Definition 2 0.01 0.00 0.01 0.01 -0.04 0.07 

Definition 3 0.01 0.00 0.01 0.01 -0.02 0.05 

Definition 4 0.01 0.00 0.01 0.05 -0.02 0.13 

Definition 5 0.01 0.00 0.01 0.02 -0.02 0.06 

All definitions 0.01 0.00 0.01 0.03 0.01 0.04 

Northeast 

Definition 1 -0.01 -0.07 0.04 0.05 -0.01 0.11 

Definition 2 -0.01 -0.07 0.04 0.04 -0.01 0.09 

Definition 3 -0.01 -0.07 0.05 0.03 -0.07 0.12 

Definition 4 -0.01 -0.07 0.05 0.00 -0.09 0.09 

Definition 5 -0.01 -0.07 0.04 0.03 -0.01 0.07 

All definitions -0.01 -0.03 0.01 0.03 0.01 0.05 

South 

Definition 1 0.07 0.03 0.11 0.08 0.03 0.14 

Definition 2 0.13 0.06 0.20 0.06 -0.04 0.15 

Definition 3 0.13 0.06 0.21 0.00 -0.07 0.07 

Definition 4 0.13 0.06 0.21 0.04 -0.08 0.17 

Definition 5 0.13 0.06 0.21 0.03 0.01 0.05 

All definitions 0.12 0.10 0.14 0.04 0.02 0.07 

Southeast 

Definition 1 0.03 -0.02 0.07 0.06 0.00 0.11 

Definition 2 0.04 -0.01 0.08 0.05 -0.03 0.13 

Definition 3 0.04 0.00 0.08 0.10 -0.02 0.21 

Definition 4 0.04 0.00 0.09 0.11 -0.08 0.30 

Definition 5 0.04 0.00 0.08 0.05 0.01 0.10 

All definitions 0.04 0.02 0.05 0.06 0.03 0.08 

Southwest 

Definition 1 0.05 0.00 0.10 0.01 -0.02 0.03 

Definition 2 0.05 0.00 0.10 0.01 -0.04 0.05 

Definition 3 0.05 0.00 0.10 0.02 -0.12 0.15 

Definition 4 0.05 0.00 0.10 0.05 -0.06 0.16 
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Meteorological 

variable 
Region Definition 

Baseline effect Effect Modification 

Mean 
Lower 

limit 

Upper 

limit 
Mean 

Lower 

limit 

Upper 

limit 

Definition 5 0.05 -0.01 0.10 0.01 -0.06 0.07 

All definitions 0.05 0.03 0.07 0.00 -0.02 0.02 

West 

Definition 1 0.03 -0.01 0.08 0.03 -0.01 0.07 

Definition 2 0.04 0.00 0.08 0.02 -0.01 0.05 

Definition 3 0.04 0.00 0.08 0.02 -0.05 0.09 

Definition 4 0.04 0.00 0.08 -0.10 -0.43 0.22 

Definition 5 0.05 0.00 0.09 -0.02 -0.04 0.01 

All definitions 0.04 0.02 0.06 0.01 -0.01 0.03 

All Regions 

Definition 1 0.03 0.02 0.04 0.05 0.03 0.06 

Definition 2 0.04 0.03 0.05 0.03 0.01 0.05 

Definition 3 0.04 0.03 0.06 0.02 0.00 0.05 

Definition 4 0.04 0.03 0.06 0.02 -0.02 0.05 

Definition 5 0.04 0.03 0.05 0.02 0.01 0.04 
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Figure C-9: Effect modification

37
 of the RH-ozone relationship during EHEs 

                                                 
37

 EHE day effect for cities is only shown if the summary-level pooled analysis of the effect modification (interaction term) in the model was significant. 
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APPENDIX D  

SUPPLEMENTAL MATERIAL FOR CHAPTER 5 

D1: Downscaler model structure 

In its most general form, the DS model can be expressed in an equation similar to that of 

linear regression (Berrocal et al. 2010a, 2010b, 2012): 

           ̃          ̃                           (1) 

Where,      : observed concentration at point s and time t; 

      : CMAQ concentration at time t. This value is a weighted average of both the grid 

cell containing the monitor and neighboring grid cells; 

  ̃     : intercept, and is composed of both a global and a local component; 

  ̃     : global slope; local components of the slope are contained in the        term; 

       : model error. 

This Bayesian approach involves drawing random samples of model parameters from 

built-in "prior" distributions and assessing their fit on the data iteratively. The resulting 

collection of intercept and slope values at each space-time point are used to predict 

concentrations and associated uncertainties at new spatial locations. 
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D2: Geographically weighted regression (GWR) model structure 

In its most general form, the GWR model can be expressed (Hu et al. 2013): 

 

 

 

Where PM
2.5,st

: daily ground-level PM
2.5 

concentrations (µg/m
3

) at site s in day t; 

HPBL
st
: boundary layer height (m) at site s in day t; 

RH
st
 : relative humidity (%) at site s in day t; 

TEMP
st
: air temperature (K) at site s in day t; 

WIND_SPEED
st
: refers to the surface wind speed (m/sec) at site s in day t; 

 FOREST_COVER
st
: percentage of the forest cover (unitless) at site s in day t; 

MODIS_AOD
st
: MODIS AOD value (unitless) at site s in day t; 

β
0,s

 and β
i,s

 :location-specific intercept and slopes, respectively. 

β is calculated by incorporating the geographical weighting of each observation (e.g., a 

PM
2.5

 monitoring site) relative to the location of the regression point (e.g., a PM
2.5

 

monitoring site or the centroid of a gird cell). The weighting is calculated by a Gaussian 

distance-decay weighting function, and thus the weighting of each observation for the 

regression point will decrease according to a Gaussian curve as the distance between 

them increases. In addition, a bandwidth needs to be determined for the weighting 

function. Due to the unevenly distribution of PM
2.5

 monitoring sites, we obtained the 

adaptive bandwidth by minimizing the corrected Akaike Information Criterion (AIC
c
) 

value.  

  

ststssts

stsstsstsstssst

AODMODISCOVERFOREST
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D3-4: Calculations of performance metrics (Hu et al. 2013; Vaidyanathan et al. 

2013) 

1. Pearson Correlation Coefficient (r): For a set of daily data points (MON1, MOD1), 

(MON2, MOD2), …, (MONn, MODn) r is defined as 

   
∑ (         ̅̅ ̅̅ ̅̅ ̅) (         ̅̅ ̅̅ ̅̅ ̅)

 

   

 √∑ (         ̅̅ ̅̅ ̅̅ ̅)
  

   
√∑ (         ̅̅ ̅̅ ̅̅ ̅)

  
   

                                                                 (3) 

Where, n: number of observations; 

    : Monitor-based daily PM2.5 measurements; 

    : Model-based daily PM2.5 predictions; 

   ̅̅ ̅̅ ̅̅ ̅: Monitor-based PM2.5 average; 

   ̅̅ ̅̅ ̅̅ ̅: Model-based PM2.5 average. 

2. Kendall Tau-B correlation Coefficient (t): To calculate t, n(n-1)/2 pairs of data points 

are classified as concordant or discordant. A concordant pair is any pair for which the 

ranks of AQS and AOD agree, i.e., for any pair of observations (MONi, MODi) and 

(MONj, MODj), both MONi > MONj and MODi > MODj or both MONi < MONj and 

MODi < MODj. A discordant pair is any pair of observations for which the ranks for 

MON and MOD disagree, i.e., either MONi > MONj and MODi < MODj or MONi < 

MONj and MODi > MODj.  With C and D respectively denoting the number of 

concordant and discordant pairs (assuming no ties), the value of tis then defined as 

   
   

        
                                              (4) 

The denominator is adjusted accordingly in the event of ties.  

3. Difference (D) for a grid cell k and day i is defined as 

   
        

       
     

       
                                                                                   (5) 
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4. Root mean squared deviation (RMSD) for a grid cell k is defined as 

      
√∑

    
   

     
     

   
     

  

 
 
                      (6) 

5. Relative accuracy (RA) for a grid cell k is defined as  

    
      

√
∑

    
   

     
     

   
    

  

 
 
   

∑

   
   

     

 
 
   

                         (7) 

   
       

 = Model-based PM2.5 predictions for day i and county k; 

   
       

 = monitor-based PM2.5 measurement for day i and county k. 

6. A Bland-Altman plot is a scatter plot with (  ,  ) points defined as 

   
     ̅̅ ̅̅ ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅̅  

 
                                  (8a) 

        
̅̅ ̅̅ ̅̅ ̅̅  

      ̅̅ ̅̅ ̅̅ ̅                                                (8b) 

where: 

    ̅̅ ̅̅ ̅̅ ̅= AQS-based annual average for county k; 

    
̅̅ ̅̅ ̅̅ ̅̅    annual average for county k from model-based estimates. 
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Figure D-1: Annual averages of PM2.5: (a) Monitor (AQS/SEARCH); (b) AOD; (c) 

CMAQ; (d) DS 
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Figure D-2: Description of the grid cell neighborhood around SEARCH monitors 
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Figure D-3: Comparison of model- and SEARCH-based PM2.5 concentrations, when measurements from nearby AQS monitor 

are present 
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Figure D-4: Comparison of model- and SEARCH-based PM2.5 concentrations, when measurements from 

nearby AQS monitor are absent 
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Figure D-5: Comparison of SEARCH- and nearby AQS-based PM2.5 measurements 
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APPENDIX E  

SUPPLEMENTAL MATERIAL FOR CHAPTER 6 

 

Figure E-1: U.S. climate regions 
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Table E-1: List of covariates and data sources 
Candidate predictor Name Description and Source 

Air conditioning (AC) prevalence AC prevalence. AC prevalence data from a private vendor Efficiency 2.0. 

Poverty status Levels of poverty. Poverty data from U.S. Census Bureau 

Smoking Adult smoking prevalence. Data from CDC’s Behavioral Risk Factor Surveillance System. 

Uninsured population (under 65) Percent of population (under 65) uninsured is available from U.S. Census Bureau 

Population over 65 Percent of population over 65 is available from U.S. Census Bureau. 

Obesity  Adult obesity prevalence (percent of adults that report a BMI >= 30) is available from National Center for 

Chronic Disease Prevention and Health Promotion, Division of Diabetes Translation 

Physical inactivity Physical inactivity (percent of adults that report no leisure time physical activity) is available from National 

Center for Chronic Disease Prevention and Health Promotion, Division of Diabetes Translation 

Diabetes Diabetes prevalence is available from National Center for Chronic Disease Prevention and Health Promotion, 

Division of Diabetes Translation 

Population density Population density is calculated using population estimates from U.S. Census Bureau 
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Table E-2: Short-listed EHE definitions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Cluster 
Cluster 

common name 
EHE definition name 

Daily heat 

metric 

Threshold 

type 

Threshold 

value 
Duration 

1 

Absolute 

temperature 

based 

thresholds 

Daily maximum heat index 

greater than 90 ℉ for at least 3 

consecutive days 

HImax Absolute >90
o
F 3+ consecutive days 

2 

"Predominantly 

moderate" 

thresholds 

Daily maximum and minimum 

temperature greater than  80
th

 

percentile for at least 3 

consecutive days 

Tmax and 

Tmin 
Relative 

>80
th

 

percentile 
3+ consecutive days 

3 
"Predominantly 

high" thresholds 

Daily maximum temperature 

greater than 95
th

 percentile for 

at least 2 consecutive days 

Tmax Relative 
>95

th
 

percentile 
2+ consecutive days 

4 

"Predominantly  

extreme" 

thresholds 

Huth definition Tmax Relative 

T1: >97.5
th

 

percentile 

T2: >81
st
 

percentile 

Everyday >T2, and                      

3+ consecutive days 

>T1, and average Tmax 

>T1 for the whole 

time period 

5 

Climate normal 

based 

thresholds 

Daily mean temperature 

greater than mean + 1 SD of 

climate normal for at least 3 

consecutive days 

Tavg Relative 

>mean + 1 

SD of 

climate 

normal 

3+ Consecutive days 
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Figure E-2: Schematic showing exposure offset indicators 
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Table E-3: Rankings for the combination of EHE definitions and exposure offset indicators by regions 

EHE Definition 

Exposure 

offset 

type 

Ranking of EHE definitions by Climate Regions 

Central 

East North 

Central 

North West 

Central Northeast South Southeast Southwest West R a n k
 

R a n k
 

R a n k
 

R a n k
 

R a n k
 

R a n k
 

R a n k
 

R a n k
 

Daily maximum heat index greater 

than 90
o
F for at least 3 consecutive 

days 

 

ExE1 10 7 6 10 14 14 4 7 

ExE2 13 6 5 11 11 12 2 8 

ExE3 14 9 8 14 12 4 1 9 

Lag0 15 10 10 5 20 16 5 4 

Lag1 5 3 2 6 15 13 3 5 

Daily maximum and minimum 

temperature greater than 80
th

 

percentile for at least 3 consecutive 

days 

ExE1 6 12 11 9 19 9 7 13 

ExE2 7 13 12 13 16 7 8 14 

ExE3 9 15 15 15 18 6 12 15 

Lag0 4 14 14 3 13 5 9 12 

Lag1 2 11 9 8 17 10 6 11 

Daily maximum temperature 

greater than 95
th

 percentile for at 

least 2 consecutive days 

ExE1 3 2 4 2 4 2 11 3 

ExE2 8 4 3 7 6 8 15 6 

ExE3 12 5 7 12 7 11 13 10 

Lag0 11 8 13 1 3 1 14 2 

Lag1 1 1 1 4 2 3 10 1 

Huth definition 

ExE1 22 20 22 23 5 25 22 23 

ExE2 24 21 23 24 8 23 23 19 

ExE3 25 25 24 25 10 24 24 22 

Lag0 23 23 25 21 9 22 25 24 

Lag1 21 16 21 22 1 21 21 25 

Daily mean temperature greater 

than mean + 1 standard deviation 

(SD) of climate normal for at least 

3 consecutive days 

ExE1 17 19 17 17 24 18 17 17 

ExE2 19 18 18 19 22 19 19 20 

ExE3 20 22 20 20 25 20 18 21 

Lag0 18 24 19 16 23 17 20 18 

Lag1 16 17 16 18 21 15 16 16 

  
 Rank1  Rank2 Rank3   Rank4 Rank5 
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Figure E-3: Unit lifetime work lost costs in millions ($) by age and gender  
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Figure E-4: Air pollution levels on EHE and non-EHE days for definition 1 (Daily maximum heat index greater than 90 ℉ for 

at least 3 consecutive days) 
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Figure E-5: Air pollution levels on EHE and non-EHE days for definition 2 (Daily maximum and minimum temperature 

greater than 80th percentile for at least 3 consecutive days) 
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Figure E-6: Air pollution levels on EHE and non-EHE days for definition 3 (Daily maximum temperature greater than 95th 

percentile for at least 2 consecutive days) 
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Figure E-7: Air pollution levels on EHE and non-EHE days for definition 4 (Huth definition) 
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Figure E-8: Air pollution levels on EHE and non-EHE days for definition 5 (Daily mean temperature greater than mean + 1 

standard deviation (SD) of climate normal for at least 3 consecutive days)  
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Table E-4: Mean (5th, and 95th percentile) levels of demographic and social variables, by U.S. Climate Regions 

  

Demographic 

Social Variables 

U.S. Climate Region 

Central 
East North 

Central 

North West 

Central 
Northeast South Southeast Southwest West 

M
ea

n
 

(5
th

, 
a

n
d

 9
5

th
 

p
er

c
en

ti
le

s)
 

M
ea

n
 

(5
th

, 
a

n
d

 9
5

th
 

p
er

c
en

ti
le

) 

M
ea

n
 

(5
th

, 
a

n
d

 9
5

th
 

p
er

c
en

ti
le

) 

M
ea

n
 

(5
th

, 
a

n
d

 9
5

th
 

p
er

c
en

ti
le

) 

M
ea

n
 

(5
th

, 
a

n
d

 9
5

th
 

p
er

c
en

ti
le

) 

M
ea

n
 

(5
th

, 
a

n
d

 9
5

th
 

p
er

c
en

ti
le

) 

M
ea

n
 

(5
th

, 
a

n
d

 9
5

th
 

p
er

c
en

ti
le

) 

M
ea

n
 

(5
th

, 
a

n
d

 9
5

th
 

p
er

c
en

ti
le

) 

Air conditioning prevalence (%) 57 (33, 80) 40 (17, 63) 22 (5, 60) 13 (1, 48) 72 (53, 85) 83 (60, 94) 23 (8, 70) 36 (6, 72) 

Diabetes prevalence (%) 10 (7, 13) 9 (6, 12) 9 (6, 12) 9 (7, 11) 10 (7, 13) 11 (8, 15) 7 (5, 10) 8 (7, 10) 

Obesity prevalence (body mass index 

>= 30) (%) 31 (27, 37) 30 (24, 36) 28 (23, 34) 26 (19, 32) 31 (27, 36) 29 (24, 36) 23(16, 32) 25 (20, 31) 

Percent of Hispanic population (%) 4 (1, 13) 5 (1, 13) 8 (1, 30) 7 (1, 21) 20 (2, 67) 9 (2, 25) 23 (8, 48) 31 (10, 55) 

Percent of adult smokers (%) 22 (15, 30) 20 (12, 27) 18 (12, 26) 19 (13, 26) 20 (13, 28) 19 (13, 26) 18 (10, 24) 15 (10, 24) 

Percent of adults that report no leisure 

time physical activity (%) 28 (23, 34) 23 (18, 30) 24 (16, 32) 24 (18, 30) 28 (22, 35) 26 (19, 35) 21 (15, 27) 19 (14, 26) 

Percent of population in poverty (%) 17 (10, 24) 15 (10, 22) 15 (10, 24) 13 (7, 19) 18 (11, 27) 18 (8, 27) 17 (10, 24) 16 (9, 23) 

Percent of population over 65 (%) 14 (10, 18) 15 (10, 21) 15 (10, 23) 15 (11, 19) 13 (8, 23) 14 (9, 24) 14 (9, 24) 13 (9, 20) 

Percent of population under 65 

uninsured (%) 16 (11, 20) 12 (9, 17) 18 (11, 26) 11 (5, 17) 23 (15, 31) 20 (13, 27) 21 (16, 26) 20 (13, 26) 

Population density (population/per sq. 

mile) 

576  

(44, 2,193) 

368 

 (12, 1886) 

101  

(1, 482) 

2,341 

(30, 10417) 

323 

 (4, 1286) 

653 

 (80, 1,784) 

191 

 (2, 718) 

521 

 (1, 2,388) 
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Figure E-9: E-R relationship between mortality and EHEs for Southeast based on different top 10 EHE definitions  
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Figure E-10: E-R relationship between mortality and EHEs for West based on different top 10 EHE definitions 
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