
1

This is “Frank, M. and J. Foley,A Pure Reasoning
Engine for Programming By Demonstration, Technical
Report git-gvu-94-11, Georgia Institute of Technology,
Graphics, Visualization & Usability Center, April 1994.”

A PURE REASONING ENGINE FOR
PROGRAMMING BY DEMONSTRATION

Martin R. Frank James D. Foley
{martin,foley}@cc.gatech.edu

Graphics, Visualization & Usability Center
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

ABSTRACT

We present an inference engine that can be used for creating
Programming By Demonstration systems. The class of sys-
tems addressed are those which infer a state change descrip-
tion from examples of state [9,11].

The engine can easily be incorporated into an existing de-
sign environment that provides an interactive object editor.

The main design goals of the inference engine are respon-
siveness and generality. All demonstrational systems must
respond quickly because of their interactive use. They
should also be general - they should be able to make infer-
ences for any attribute that the user may want to define by
demonstration, and they should be able to treat any other at-
tributes as parameters of this definition.

The first goal, responsiveness, is best accommodated by
limiting the number of attributes that the inference engine
takes into consideration. This, however, is in obvious con-
flict with the second goal, generality.

This conflict is intrinsic to the class of demonstrational sys-
tem described above. The challenge is to find an algorithm
which responds quickly but does not heuristically limit the
number of objects it looks at. We present such an algorithm
in this paper.

A companion paper describes Inference Bear [3], an actual
demonstrational system that we have built using this infer-
ence engine and an existing user interface builder [5].

INTRODUCTION

When one creates an interactive graphical application today,
one typically uses an interface builder as the first step. Inter-
face builders are easy to use - they are more like structured
drawing editors than programming environments. The much
harder part of building a graphical application is specifying
thebehavior of the user interface - it typically involves writ-
ing a textual specification in a scripting or programming lan-
guage. The formal nature of this process excludes a non-
technical audience from specifying behavior. This is unfor-
tunate, especially because most of the desired functionality

at the user interface level is simple, such as making user in-
terface elements align, resize, center, appear, change color,
and so on.

This problem is well suited for a Programming By Demon-
stration approach which uses examples of state for inferenc-
ing. This is because the users already know how to change
the state of the interface using the interface builder. They
can then demonstrate how user interface elements are cre-
ated, deleted and modified in response to run-time events.

Programming By Demonstration is a young discipline
which has just recently emerged as a recognized subfield of
user interface software [2]. This becomes apparent when
one compares the prototypes that have been built - the most
striking observation is that each one uses a unique approach
and that most are tightly coupled to the domain they were
built for.

Separate demonstrational systems for separate tasks are bet-
ter than none at all, but is there some common ground? Can
one build a demonstrational inference engine which can be
used for a class of demonstrational systems?

The benefit for the builders of Programming By Demonstra-
tion systems would be that they do not have to start from
scratch - they can start with the generic inference engine and
then tune it later.

Even more importantly, the benefit for users of these demon-
strational systems would be that they can rely on a common
methodology for demonstrating behavior.

We present such an engine which addresses a subclass of
demonstrational systems. This subclass consists of systems
that infer a generalized state change description given sev-
eral examples of state. Existing demonstrational systems
that fall into that category are DEMO [11] and the Geomet-
ric Interactive Technique Solver [9]. The constraint solver
of Chimera [6] roughly falls into this class, but has no no-
tion of time - it uses “valid” states rather than “before” and
“after” states.

Demonstrational systems not addressed by our engine in-
clude those that use a domain-specific rule base to guess re-
lationships between objects, such as Peridot [8] and
Druid [10]. These systems can often infer relationships from
a single example.

Other systems that are not addressed are those that automate
repetition by watching the user, such as Eager [1] and

2

Metamouse [7]. AIDE (in [2]) is a proposed domain-inde-
pendent framework for this class of demonstrational system.

PHILOSOPHY OF THE INFERENCE ENGINE

Our inference engine is based on the following principles.

• It contains no domain knowledge.
The design goal of the inference engine is to be useful for
a range of application domains. Consequently, we cannot
base its inferencing on knowledge about a particular do-
main. The disadvantage is that we cannot make use of
such knowledge to aid the inference process. The advan-
tage is that our engine can be used for many domains. It
can also be used at any level of abstraction. For example,
it can be used to demonstrate how a dragged object fol-
lows the mouse pointer, but it can also be used to demon-
strate that the number of employees increases by one if a
new employee is hired.

• It does not guess.
A specialized demonstrational system can incorporate do-
main knowledge to help it make inferences. For example,
Peridot [8] has built-in knowledge about the concepts of
centering and aligning. This allows it to guess the user’s
intention when they are centering elements, making the
system easy to use. Our engine is an experiment on how
far we can push a domain-independent demonstrational
system without compromising ease of use.

• It finds the simplest possible solution.
This is again in contrast to rule-based systems which can
infer that a new object should be centered between two ex-
isting objects even when it is given only a single example.
In this case, our engine would infer that the new object is
created at the exact location that was given in the single
example.

• The solution is guaranteed to be correct.
Correct here means that the resulting generalized change
state description will indeed work for each of the exam-
ples you specified. It is not to be confused with “guaran-
teed to be what you intended” - it is possible that the
system will respond with a solution which solves your
demonstration in a way that you did not intend. In this
case, you have to provide another example which contra-
dicts the solution that the engine has found but is consis-
tent with the desired solution.

• It can infer changes to any attribute.
The engine can in fer ass ignment o f a constant
(a.color := “blue”) or assignment from another variable
(a.color := b.color) even if it does not know about the type
of the attribute. It can make more advanced type-specific
inferences if it does (a.x := a.x + 1/2 * a.width).
The above statement should not be confused with “it can
infer changes to any attributeof an arbitrarily complex na-
ture” - all (successful) demonstrational engines look for
simple relationships1.

1. An Artificial Intelligence subfield called “Automatic Program-
ming” failed precisely because it tried to infer arbitrary programs
from examples of input and output.

• It is extensible.
The engine comes with three predefined inference types,
strings, integer and boolean variables. Inference types test
when a variable can be computed from other variables. For
example, a string variable may be computed by concate-
nating two other string variables, a boolean variable may
be computed as the logical negation of another boolean
variable, and so on.
Other inference types can be easily added. For example,
you can define a “color” type by providing code that de-
scribes how a color variable can be computed from other
color variables.

TERMINOLOGY

The input to the inference engine consists of onedemonstra-
tion. A demonstration can consist of a single example for
simple behavior or two or more examples for more complex
behavior. Anexample consists of a Before snapshot, a pa-
rameterized event, and an After snapshot. The event is the
“stimulus”, the After snapshot the “response” in the termi-
nology of [11] (the Before snapshot provides context).

The inference engine generalizes from the examples and re-
turns ascript. A script describes a change of state triggered
by an event. Scripts can create, delete and change objects. A
script is said tosolve a demonstration if it transforms each of
its Before snapshots to the corresponding After snapshots.

COORDINATE SYSTEM

We use a simple pixel-based coordinate system to describe
the location and size of user interface elements (rather than a
resolution-independent coordinate system such as con-
straints). The rationale is to not limit the use of our inference
engine to the few interface builders that support resolution
independence. Using a pixel-based coordinate system is the
lowest common denominator - all interface builders we are
familiar with can export object information using pixel co-
ordinates.

OBJECTS, EVENTS AND SCRIPTS

The inference engine is based on the abstract data types Ob-
ject, Event and Script. The environment making use of our
engine may or may not be based on these elements. If it is
not, it maps its objects and events into this format, hands
them to the inference engine, and then translates the result-
ing script into its native language.

Objects

Objects are a collection of attributes. Attributes of an object
have a name, a type, and zero or more values.

Object {
Height: <Integer> 140
Selected: <Boolean> 1
Type: <String> Container
Width: <Integer> 260
X: <Integer> 33
Y: <Integer> 32
children: <String> OnButton OffButton
mapped: <Boolean> 1

3

Compactor

SolutionSource + Target
Variables, Event

Demonstration

Inferencer

Before: Object {
<String> Name b
<Integer> X 100
<Integer> Width 80

}

Event: b.pressed()

After: Object {
<String> Name b
<Integer> X 180
<Integer> Width 80

}

Event:
b.pressed()

Source Variables:
Integer b.X [100 250]
Integer b.Width [80 120]

Target Variables:
Integer b.X [180 370]

Before: Object {
<String> Name b
<Integer> X 250
<Integer> Width 120

}

Event: b.pressed()

After: Object {
<String> Name b
<Integer> X 370
<Integer> Width 120

}

on b.pressed() {
b.X := b.X + b.Width

}

The demonstrat ion
cons is ts o f one or
more examples (two
here).

The output of the
compactor contains
just the variables
that changed be-
tween the snap-
shots.

The output of the
inferencer is a deri-
vation of each tar-
get variable from
the source var i -
ables.

Figure 1. An Introductory Example.

Example 1 Example 2

name: <String> container
}

The “name” attribute of an object has no special status. Its
value can be derived from other attributes just like any other
attribute of type String.

Events

From the engine’s perspective, an event is identified by an
event name, such as “moved”, and by the name of the inter-
face object on which the event occurred, such as “button”.
This assumes that there is a layout hierarchy of interface ob-
jects so that all events that occur in a window are associated
with an object (possibly the root object). Events can also
have parameters.

button.moved(Integer x 40, Integer y 60)

The inference engine does not contain knowledge about the
type of events that could occur. It simply treats the given
event as the trigger for the behavior it infers. In addition, its
event parameters can become parameters of the inferred be-
havior.

Scripts

Scripts describe how the state changes given an event. A
simple example is given below.

on button.moved(Integer x, Integer y)
{

line.x1 := x + 1/2 * button.Width

line.y1 := y + button.Height
}

INTRODUCTORY EXAMPLE

Figure 1 shows a small but complete example of the infer-
encing process. The user has given two examples of a button
moving one button length to its right in response to clicking
on it.

The inferencing is done in two stages. In the first phase, the
“Compactor” reduces the amount of objects and attributes
that the inferencing process has to be concerned with. This
is done by eliminating all objects and attributes which re-
main constant in the examples. The result of the Compactor
is a list of “source” variables and a list of “target” variables.

Source variables are potential parameters of a solution. The
compactor identifies attributes as source variables if they
change between any two Before snapshots.

Target variables are the variables that have to be solved. The
compactor identifies attributes as target variables if they
change from any Before snapshot to a corresponding After
snapshot.

The source and target variables are the input of the “Infer-
encer” which tries to derive each target variable from the
source variables and from constant values. If it succeeds, it
produces a script which contains an assignment for each tar-
get variable.

Inferencing - the search for relationships between variables -
is inherently expensive. The Compactor eliminates irrele-
vant information so that the computationally much more ex-
pensive Inferencer is given the least possible information. In
that way, inferencing is efficient even for user interfaces

4

which contain many objects. In this example, there could be
many other buttons besides the one for which functionality
is demonstrated but the input to the inferencer would remain
the same if the other buttons are not touched during the
demonstration.

THE COMPACTOR

There are two ways to find out which variables changed be-
tween snapshots.

Ideally, the interface builder allows us to be notified of each
individual change that the user makes when preparing the
snapshots. In this case, we can directly find out about
changes between snapshots, which would make the Com-
pactor obsolete.

Unfortunately, many interface builders do not allow external
access to individual modification events. However, all of
them are able to export information about the complete cur-
rent state - the lowest common denominator is a file format
for storing and retrieving designs. The Compactor effi-
ciently recovers what the user has changed between snap-
shots from these complete states.

Source variables are those that changed between any two
Before snapshots. Source variables take their values from
the Before snapshots. The Compactor identifies them by the
following process.

It first constructs a vector of values for each attribute. This
attribute becomes a source variable if the vector’s minimum
value is not approximately equal to the vector’s maximum
value. “Approximately equal” is defined for each type of at-
tribute. By default, strings are required to be exactly equal
but screen coordinates are allowed to differ by up to fifteen
pixels.

In Figure 1, the value vector of attributeX is [100 250] in
the Before snapshots. It becomes a source variable because
100 is not approximately equal to 250. The attributeName
does not become a source variable because the elements of
its value vector, [b b], are approximately equal.

Identifying source variables is linear in the number of at-
tributes in the Before snapshots assuming that accessing at-
tributes by name takes constant time (hash-based access).

No attribute can become a source variable if the demonstra-
tion consists of a single example because a single value is
always approximately equal to itself. This is intended - there
is no point in designating source variables because the Infer-
encer, described below, will always solve single-example
demonstrations by assigning constant values to the target
variables.

Target variables are those that change from any Before
snapshot to a corresponding After snapshot. These variables
take their values from the After snapshots. The Compactor
constructs target variables in two phases - it first identifies
target variables and then collects their values.

The Compactor identifies attributes as target variables by
comparing the value of each attribute in a Before snapshot
to its value in the corresponding After snapshot. The at-
tribute is added to the target variable list if the two values

are not (exactly) equal. The Compactor constructs the value
vectors once all target variables have been identified.

In Figure 1, the attributeX becomes a target variable be-
cause its value changes from a Before to a corresponding
After snapshot. For example, it changes from 100 to 180 in
the first example. AttributeWidth does not become a target
variable because it never changes its value in response to an
event. It remains 80 in the first example and 120 in the sec-
ond example.

THE INFERENCER

The Inferencer is the component which relates target vari-
ables to source variables.

The Inferencer first groups the source and target variables
by type. It then tests each target variable against unordered
sets of source variables of the same type. A single such test
checks if the target variable can be computed from a combi-
nation of the source variables. These tests are specific for
each inference type. The Inferencer itself does not contain
any knowledge about types, it simply calls the test that is
supplied by the inference type.

The size of the sets increases over time. Testing ends if (1) a
test succeeds, (2) the target variable has been tested against
all unordered sets, or (3) a type-specific limit on set sizes is
reached.

In the demonstration of Figure 1, the Inferencer first tests
the target variable b.X against the empty source variable set.
A test against an empty set succeeds if the target variable
can be solved by a constant (e.g. b.X := 100), which is not
the case here. The Inferencer then tests against the single-
member sets {b.X} and {b.Width}. These tests also fail
here. The test against the set {b.X, b.Width} succeeds as
shown in Figure 1.

PLUG-IN INFERENCE TYPES

The code which tests a target variable against a set of source
variables is provided by the inference type. The engine
comes with three common types: integers, booleans, and
strings. The inference engine allows plugging in of addi-
tional inference types.

Defining an additional inference type is easy - all you have
to do is subclass from the generic inference type by provid-
ing a new type name and a routine that tests when a target
variable of that type can be computed from a set of source
variables. We present one type in more detail.

THE INTEGER INFERENCE TYPE

A standard integer inference type comes with the engine.
You can either use it for all variables of numeric type or you
can create more specialized types such as “temperature” and
“screen coordinate” by further subclassing from the integer
type. By distinguishing between those integer types, the en-
gine will not draw inferences that combine their values.

The standard integer type can derive a target variable from a
linear combination of source variables. That is, given target
variable t and source variables s1 to sn it can determine the

5

relationship t = c1s1 + c2s2 + ... + cnsn + c0 given n+1 sub-
stantially different examples.1

The algorithm that tests integer target variables against
source variables works as follows. If the set of source vari-
ables is empty, the algorithm computes the arithmetic mean
of the values of the target variable and tests if this constant
is a solution.

For example, if the target variable has the values [18 17 22]
in a three-example demonstration, the algorithm computes
the arithmetic mean, 19, and then tests if the vector [18 17
22] is approximately equal to [19 19 19]. If it is, the algo-
rithm has solved the target variable (t:=19).

If the set of source variables is not empty, the algorithm con-
structs a matrix and a vector that can then be solved by
Gaussian elimination. Assume there aren source variables
s1...sn. If there are less thann examples, the test fails. If
there are exactlyn examples, the algorithm tries to derive
the target variable from the source variables without an ad-
ditive constant (t = c1s1 + c2s2 + ... + cnsn). If there are more
thann examples it tries to solve the general case (t = c1s1 +
c2s2 + ... + cnsn + c0).

This is again best explained through examples.

Example 1

Consider the introductory example of Figure 1, where the
variables are as follows.

Source Variables:
Integer b.X [100 250]
Integer b.Width [80 120]

Target Variables:
Integer b.X [180 370]

The algorithm takes these examples and constructs the fol-
lowing matrix. The columns of the matrix correspond to the
values of the source variables (b.X and b.Width here), re-
spectively. The vector is made up from the values of the tar-
get variable that we are trying to solve (b.X here).

Standard Gaussian elimination can then be used to solve this
set of equations.

That is, we have found a relation between the target variable
and the source variables, namely

The inference engine then checks if this is indeed a solution
by re-substitution2. A simplifier brings the solution to its fi-
nal form, b.X← b.X + b.Width.

1. “Substantially different” is synonymous with “linearly inde-
pendent” for the integer inference type.

100 80
250 120

b.x
b.width

× 180
370

=

b.x
b.width

1
1

=

b.X 1 b.X⋅ 1 b.Width⋅+←

All examples in this paper use demonstrations which can be
solved exactly for the sake of simplicity. We discuss later
how we use snapping to deal with approximate solutions
such as “b.x =1.03, b.width = 0.98”

In the previous example, there were no redundant examples
(“bad examples”), and there were onlyn examples forn
variables. The following example shows how the algorithm
constructs the matrix in a more general case.

Example 2

In this example, assume that the user has given several dem-
onstrations that center interface objectb between objectsa
andc by movingb (rather than resizingb). Figure 2 shows
the variables relevant to the demonstration. The formula for
b.x which centersb in this way is shown below.

2. Re-substitution would not be necessary if the exact solution is
used, of course. However, we also use re-substitution to test if a
“snapped” version of the solution will do as explained later.

Figure 2. Centering Elements.

b.x a.x a.w
1
2

c.x a.x a.w+()−()
1
2

b.w−+ +←

a b c

b.x

c.x

b.w
a.x

a.w

Source

Target

6

Let us assume that the demonstration consists of seven ex-
amples as shown in Table 1.

If we have more examples than needed, which ones should
we select? Ideally, we want to use the most “unique” exam-
ples. Seen from a demonstrational standpoint, one intu-
itively feels that using identical examples will not give the
inference engine more useful information. Seen from a
“math” standpoint, one does not want to have rows in the
matrix that are nearly identical because that increases the
likelihood that one row is linearly dependent on the others
(that the augmented matrix is unsolvable).

We use the following method to select examples that will be
used in the matrix1. We define thedistance between two ex-
amples as the count of source variables that are not approxi-
mately equal between them. We define theuniqueness of an
example as the sum of its distances to the other examples.
We then select the most unique examples for inclusion in the
matrix. Table 2 lists the distances for each example in
Table 1. For example, the distance between the first and sec-
ond example in Table 1 is one becausec.x is the only source
variable with a differing value. The distance between the
first and fifth example is four because all four source vari-
ables differ between them. The uniqueness can be defined
and computed for other inference types in the same way.

Thus, we select examples two through six to construct the
matrix below. In this demonstration, we have more exam-

1. There is actually a superior selection method for the integer
inference type. This method consists of adding vectors to a new
matrix one by one, making sure that every new vector is linearly
independent from the ones already there. We present the above
method because it can be used for all inference types, not just for
integers.

Example: 1. 2. 3. 4. 5. 6. 7.

source variable a.w 200 200 100 100 50 100 200

source variable a.x 200 200 200 0 0 100 200

source variable b.w 100 100 200 200 50 50 100

source variable c.x 800 600 800 800 150 300 800

target variable b.x 550 450 450 350 75 225 550

Table 1. Example values.

Example: 1. 2. 3. 4. 5. 6. 7.

1. - 1 2 3 4 4 0

2. 1 - 3 4 4 4 1

3. 2 3 - 1 4 3 2

4. 3 4 1 - 3 3 3

5. 4 4 4 3 - 4 4

6. 4 4 3 3 4 - 4

7. 0 1 2 3 4 4 -

Uniqueness: 14 17 15 17 23 22 14

Table 2. Computing the “uniqueness” of examples.

ples than source variables which allows us to add the row of
ones which tests for a constant offset (e.g. p.x := q.x + 100).

Solving the matrix returns

which results in the following derivation after running it
through the simplifier. The formula indeed centersb such
that it has equidistant edges toa andc.

DYNAMIC OBJECT CREATION AND DELETION

So far, we have presented how the inference engine deals
with single attributes by computing their value from other
attributes. In this section, we explain how it deals with the
run-time creation and deletion of objects.

After each demonstration, the engine first looks for objects
that have been deleted, then for objects that have been cre-
ated, and finally for relationships between single attributes
as discussed above.

If an object has consistently been deleted from the Before
snapshots it puts a Delete statement in the resulting script
(“o.delete()”). If an object has been created in all examples,
the engine puts a Create statement in the resulting script
(“object o = prototype.copy()”).

The inference algorithm deals with object creations by using
prototype objects. That is, when a new object is created it is
in fact copied from an existing (but often invisible) proto-
type object. Attributes of the newly created object can then
be computed using the single-attribute inference mecha-
nism. For example, it can be demonstrated that a newly cre-
ated object should appear at the center of its layout parent.

By default, an object can serve as a prototype if it is of the
same type as the newly created object, and if no more than
ten attributes differ between them. If multiple prototypes
qualify the algorithm chooses the one with the fewest differ-
ing attributes. If there is no such prototype for the new ob-
ject the inference engine will automatically create one. This
is done by permanently copying the new object into the up-
per left corner of its parent and by making it invisible. It can
then serve as a prototype for this object and for others.

200 200 100 600 1
100 200 200 800 1
100 0 200 800 1
50 0 50 150 1
100 100 50 300 1

a.w
a.x
b.w
c.x

const

×

450
450
350
75
225

=

a.w
a.x
b.w
c.x

const

0.50
0.50
0.50−

0.50
0

=

b.x
1
2

a.width
1
2

a.x
1
2

b.width−
1
2

c.x+ +←

7

SNAPPING

The numerical examples above all use equations that can be
solved exactly. This will rarely be the case in actual demon-
strations where raw solutions often read “b.x := 1.03*b.x +
0.48*b.width + 3.1” when the user intended “b.x := b.x +
1/2*b.width”.

We deal with these cases by first trying if the non-constant
factors can be snapped to halves and the constant factor
snapped to zero (which is the case in the example above).
We then try snapping the non-constant factors to halves and
rounding the constant factor. If both these snapped versions
of the solution fail we use the original solution.

INTEGRATION WITH THE INTERFACE BUILDER

Most interface builders contain an interpreted scripting lan-
guage which allows testing behavior without going through
an edit-compile-link cycle. If the interface builder provides
such a language the engine’s inferred scripts can be made
executable by simply translating them into the builder’s na-
tive language. If the interface builder does not provide such
a language one has to write a small interpreter which inter-
prets the inference engine’s scripts (so that one can interac-
tively test the engine’s inferences).

FUTURE WORK

An important shortcoming of the current engine is that it can
only refer to objects by absolute name but not based on the
attributes of that object. That is, it can infer a script like “ob-
j3.width := 50; obj7.width := 50” but it cannot infer
“(*.width>50).width := 50”. We are currently exploring sev-
eral inferencing alternatives.

Many other improvements can also be made. It is our hope
that others will use and contribute to the engine.

IMPLEMENTATION

The inference engine is written in C++. It is fully imple-
mented as described and consists of approximately 5000
lines of code. The engine is freely available for academic
purposes (contact the first author).

CONCLUSION

The main difference between our inference engine and most
existing demonstrational systems is that our engine does not
make use of domain knowledge. The Compactor seems to
be a viable alternative to using domain knowledge for re-
ducing the amount of computation. The Inferencer can un-
cover linear relationships including many common ones
such as aligning and centering without having domain
knowledge about those special relationships. Overall, we
feel that it is possible to separate the inferencing component

First Try

1.03
0.48
3.1

1
0.5
0

→

Second Try

1.03
0.48
3.1

1
0.5
3

→

Third Try

1.03
0.48
3.1

from the presentation component of a demonstrational sys-
tem, and that this separation has many benefits including in-
creased generality and portability.

ACKNOWLEDGEMENTS

We would like to thank Siemens for their partial support of
this research.

REFERENCES

[1] Cypher, A.,Eager: Programming Repetitive Tasks by
Example, Proceedings of CHI’91, New Orleans,
Louisiana, pp. 33-39.

[2] Cypher, A. (ed.),Watch What I Do: Programming By
Demons t ra t ion, M IT Press , Cambr idge ,
Massachusetts, 1993.

[3] Frank, M. and J. Foley,Inference Bear: Inferring
Behavior from Before and After Snapshots, Technical
Repor t g i t -gvu-94-12, Georg ia Ins t i tu te o f
Technology, Graphics, Visualization and Usability
Center, Apr. 1994.

[4] Hudson, S. and R. King,Semantic Feedback in the
Higgens UIMS, IEEE Transactions on Software
Engineering, Vol. 14, No. 8, August 1988, pp. 1188-
1206.

[5] Kühme, T. and M. Schneider-Hufschmidt,SX/Tools -
An Open Design Environment for Adaptable
Multimedia User Interfaces, Computer Graphics
Forum, 11(3), Sept. 1992, pp. 93-105.

[6] Kurlander, D. and S. Feiner,Inferring Constraints
from Multiple Snapshots, Technical Report CUCS-
008-91, Computer Science Department, Columbia
University, May 1991 (also to appear in the ACM
Transactions On Graphics).

[7] Maulsby, D., I. Witten and K. Kittlitz,Metamouse:
Specifying Graphical Procedures by Example,
Proceedings of Siggraph’89, Boston, Massachusetts,
pp. 127-136.

[8] Myers, B., Creating User Interfaces By Demon-
stration, Academic Press, Boston, 1988.

[9] Olsen, D. and K. Allan,Creating Interactive
Techniques by Symbolically Solving Geometric
Constraints, Proceedings of UIST’90, Snowbird,
Utah, Oct 1990, pp. 102-107.

[10] Singh, G., C. Kok and T. Ngan,Druid: A System For
Demonstrational Rapid User Interface Development,
Proceedings of UIST’90, Snowbird, Utah, Oct. 1990,
pp. 167-177.

[11] Wolber, D. and G. Fisher,A Demonstrational
Technique For Deve lop ing In ter faces Wi th
Dynamically Created Objects, Proceedings of
UIST’91, Hilton Head, South Carolina, November
1991, pp. 221-230.

