A PURE REASONING ENGINE FOR
PROGRAMMING BY DEMONSTRATION

Martin R. Frank James D. Foley
{martin,foley}@cc.gatech.edu

Graphics, Visualization & Usability Center
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

ABSTRACT at the user interface level is simple, such as making user in-
terface elements align, resize, center, appear, change color,

We present an inference engine that can be used for creati
and so on.

Programming By Demonstration systems. The class of sy:
tems addressed are those which infer a state change descThis problem is well suited for a Programming By Demon-
tion from examples of state [9,11]. stration approach which uses examples of state for inferenc-
ing. This is because the users already know how to change
the state of the interface using the interface builder. They
can then demonstrate how user interface elements are cre-
The main design goals of the inference engine are respoated, deleted and modified in response to run-time events.
siveness and generality. All demonstrational systems mu . L T
respond quickly because of their interactive use. TheProgramming By Demonstration is a young discipline
should also be general - they should be able to make infeVhich has just recently emerged as a recognized subfield of
ences for any attribute that the user may want to define tUSer intérface software [2]. This becomes apparent when

demonstration, and they should be able fo treat any other "€ compares the prototypes that have been built - the most
tributes as parameters of this definition. striking observation is that each one uses a unique approach

) i . and that most are tightly coupled to the domain they were
The first goal, responsiveness, is best accommodated Iyt for.

limiting the number of attributes that the inference engine

The engine can easily be incorporated into an existing d¢
sign environment that provides an interactive object editor.

takes into consideration. This, however, is in obvious con>€Parate demonstrational systems for separate tasks are bet-
ter than none at all, but is there some common ground? Can

flict with the second goal, generality. ; . . : .
. o i one build a demonstrational inference engine which can be
This conflict is intrinsic to the class of demonstrational sys,sed for a class of demonstrational systems?

tem described above. The challenge is to find an algoritht
which responds quickly but does not heuristically limit the
number of objects it looks at. We present such an algorithi
in this paper.

A companion paper describes Inference Bear [3], an actu
demonstrational system that we have built using this infet
ence engine and an existing user interface builder [5].

The benefit for the builders of Programming By Demonstra-
tion systems would be that they do not have to start from
scratch - they can start with the generic inference engine and
then tune it later.

Even more importantly, the benefit for users of these demon-
strational systems would be that they can rely on a common
methodology for demonstrating behavior.

INTRODUCTION We present such an engine which addresses a subclass of

When one creates an interactive graphical application todadémeonstrational systems. This subclass consists of systems
one typically uses an interface builder as the first step. Intethat infer a generalized state change description given sev-
face builders are easy to use - they are more like structur€ral examples of state. Existing demonstrational systems
drawing editors than programming environments. The mucthat fall into that category are DEMO [11] and the Geomet-
harder part of building a graphical application is specifyinc''C Int_eractlve Technique So_lver [9_]. The constraint solver
thebehaviorof the user interface - it typically involves writ- 0f Chimera [6] roughly falls into this class, but has no no-
ing a textual specification in a scripting or programming lantion of time - it uses “valid” states rather than “before” and
guage. The formal nature of this process excludes a no &fter” states.

technical audience from specifying behavior. This is unforDemonstrational systems not addressed by our engine in-
tunate, especially because most of the desired functionaliclude those that use a domain-specific rule base to guess re-
lationships between objects, such as Peridot [8] and
This is “Frank, M. and J. Fole, Pure Reasoning Druid [10]. These systems can often infer relationships from

Engine for Programming By Demonstratjdrechnical a single example.
Report git-gvu-94-11, Georgia Institute of Technology, Other systems that are not addressed are those that automate
Graphics, Visualization & Usability Center, April 1994{" repetition by watching the user, such as Eager [1] and

Metamouse [7]. AIDE (in [2]) is a proposed domain-inde-« It is extensible.
pendent framework for this class of demonstrational systen The engine comes with three predefined inference types,
strings, integer and boolean variables. Inference types test
PHILOSOPHY OF THE INFERENCE ENGINE when a variable can be computed from other variables. For
Our inference engine is based on the following principles. €*@mPple, a string variable may be computed by concate-
_ _ nating two other string variables, a boolean variable may
* It contains no domain knowledge. be computed as the logical negation of another boolean
The design goal of the inference engine is to be useful fc yariable, and so on.
a range of application domains. Consequently, we canni QOther inference types can be easily added. For example,
base its inferencing on knowledge about a particular d¢ you can define a “color” type by providing code that de-

main. The disadvantage is that we cannot make use ' scribes how a color variable can be computed from other
such knowledge to aid the inference process. The adva color variables.

tage is that our engine can be used for many domains.
can also be used at any level of abstraction. For exampITERMINOLOGY
it can be used to demonstrate how a dragged object fc
lows the mouse pointer, but it can also be used to demo
strate that the number of employees increases by one i
new employee is hired.

The input to the inference engine consists ofderaonstra-

tion. A demonstration can consist of a single example for
simple behavior or two or more examples for more complex
behavior. Anexampleconsists of a Before snapshot, a pa-
It does not guess. rameterized event, and an After snapshot. The event is the
A specialized demonstrational system can incorporate d¢‘stimulus”, the After snapshot the “response” in the termi-
main knowledge to help it make inferences. For examplenology of [11] (the Before snapshot provides context).

Peridot [8] has built-in knowledge about the concepts Orpg jnference engine generalizes from the examples and re-
centering and aligning. This allows it to guess the user'y, g ascript A script describes a change of state triggered
intention when they are centering elements, making thyy o event. Scripts can create, delete and change objects. A
system easy to use. Our engine is an experiment on NCgeyint is said tsolvea demonstration if it transforms each of
far we can push a domain-independent demonstrationjis Before snapshots to the corresponding After snapshots.
system without compromising ease of use.

It finds the simplest possible solution. COORDINATE SYSTEM

This is again in contrast to rule-based systems which céye yse a simple pixel-based coordinate system to describe
infer that a new object should be centered between two ethe |ocation and size of user interface elements (rather than a
isting objects even when it is given only a single exampleresolution-independent coordinate system such as con-
In this case, our engine would infer that the new object istraints). The rationale is to not limit the use of our inference
created at the exact location that was given in the singlengine to the few interface builders that support resolution
example. independence. Using a pixel-based coordinate system is the
« The solution is guaranteed to be correct. Iowe_st common denominat_or - _aII interf_ace bl_JiIder_s we are
Correct here means that the resulting generalized chanfamiliar with can export object information using pixel co-
state description will indeed work for each of the examordinates.
ples you specified. It is not to be confused with “guaran
teed to be what you intended” - it is possible that th¢@BIJECTS, EVENTS AND SCRIPTS
system will respond with a solution which solves yourThe inference engine is based on the abstract data types Ob-
demonstration in a way that you did not intend. In thigject, Event and Script. The environment making use of our
case, you have to provide another example which contriengine may or may not be based on these elements. If it is
dicts the solution that the engine has found but is consinot, it maps its objects and events into this format, hands
tent with the desired solution. them to the inference engine, and then translates the result-

It can infer changes to any attribute. ing script into its native language.
The engine can infer assignment of a constan __ .
(a.color := “blue”) or assignment from another variable®P/ects

(a.color :=b.color) even if it does not know about the typeObjects are a collection of attributes. Attributes of an object
of the attribute. It can make more advanced type-specifihave a name, a type, and zero or more values.

inferences if it does (a.x := a.x + 1/2 * a.width).

L]

L]

The above statement should not be confused with “it caObJef,te{ight <Integer> 140
infer changes to any attribubé an arbitrarily complex na- Selected: <Boolean> 1
ture” - all (successful) demonstrational engines look for Type: <String> Container
simple relationships Width: <Integer> 260
X: <Integer> 33
o) .) Y: <Integer> 32
1. An Atrtificial Intelligence subfield called “Automatic Program- children: <String> OnButton OffButton
ming” failed precisely because it tried to infer arbitrary programs mapped: <Boolean> 1

from examples of input and output.

Demonstration

The demonstration
consists of one or
more examples (two
here).

Example 1 Example 2

- = >

Source + Target
Variables, Event

The output of th
compactor contains
just the variables
that changed be-
tween the snap-
shots.

-~ @

Solution

The output of Swe
inferencer is a deri-
vation of each tak-
get variable fro
the source vari
ables.

Before Object { Before Object {

<String> Name b

<String> Name b

Event

on b.pressed() {
b.X := b.X + b.Width

b.pressed()
<Integer> X 100 <Integer> X 250 }

<Integer> Width 80| | <Integer> Width 120 Source Variables
}

Integer b.X [100 250]

Event b.pressed() Integer b.Width [80 120]

Event b.pressed()
After. Object { After. Object {
<String> Name b <String> Name b
<Integer> X 180 <Integer> X 370
<Integer> Width 80| | <Integer> Width 120
}

Target Variables
Integer b.X [180 370]

Figure 1. An Introductory Example.

name: <String> container
} }
The “name” attribute of an object has no special status. I
value can be derived from other attributes just like any othe
attribute of type String.

line.yl :=y + button.Height

INTRODUCTORY EXAMPLE

Figure 1 shows a small but complete example of the infer-
encing process. The user has given two examples of a button
Events moving one button length to its right in response to clicking

From the engine’s perspective, an event is identified by a®" It

event name, such as “moved”, and by the name of the inteThe inferencing is done in two stages. In the first phase, the
face object on which the event occurred, such as “button“Compactor” reduces the amount of objects and attributes
This assumes that there is a layout hierarchy of interface othat the inferencing process has to be concerned with. This
jects so that all events that occur in a window are associatis done by eliminating all objects and attributes which re-
with an object (possibly the root object). Events can alsmain constant in the examples. The result of the Compactor
have parameters. is a list of “source” variables and a list of “target” variables.

button.moved(Integer x 40, Integer y 60) Source variables are potential parameters of a solution. The

The inference engine does not contain knowledge about ticompactor identifies attributes as source variables if they

type of events that could occur. It simply treats the giveichange between any two Before snapshots.

event as the trigger for the behavior it infers. In addition, itsTarget variables are the variables that have to be solved. The

event parameters can become parameters of the inferred lcompactor identifies attributes as target variables if they

havior. change from any Before snapshot to a corresponding After
snapshot.

The source and target variables are the input of the “Infer-
Scripts describe how the state changes given an event.encer” which tries to derive each target variable from the
simple example is given below. source variables and from constant values. If it succeeds, it
produces a script which contains an assignment for each tar-
get variable.

Inferencing - the search for relationships between variables -
is inherently expensive. The Compactor eliminates irrele-
vant information so that the computationally much more ex-
pensive Inferencer is given the least possible information. In
that way, inferencing is efficient even for user interfaces

Scripts

on button.moved(Integer x, Integer y)

line.x1 := x + 1/2 * button.Width

which contain many objects. In this example, there could bare not (exactly) equal. The Compactor constructs the value
many other buttons besides the one for which functionalitvectors once all target variables have been identified.
is demonstrated but the input to the inferencer would remaj, Figure 1, the attributX becomes a target variable be-

the same if the other buttons are not touched during tfcp e jts value changes from a Before to a corresponding
demonsration. After snapshot. For example, it changes from 100 to 180 in
THE COMPACTOR the_ﬁrst example. _Attnbuthdth doe_s not be(_:ome a target

variable because it never changes its value in response to an
There are two ways to find out which variables changed beevent. It remains 80 in the first example and 120 in the sec-
tween snapshots. ond example.

Ideally, the interface builder allows us to be naotified of eacl
individual change that the user makes when preparing ¢t THE INFERENCER

snapshots. In this case, we can directly find out aboLThe Inferencer is the component which relates target vari-
changes between snapshots, which would make the Corables to source variables.

pactor obsolete. The Inferencer first groups the source and target variables
Unfortunately, many interface builders do not allow externaby type. It then tests each target variable against unordered
access to individual modification events. However, all olsets of source variables of the same type. A single such test
them are able to export information about the complete cuchecks if the target variable can be computed from a combi-
rent state - the lowest common denominator is a file formenation of the source variables. These tests are specific for
for storing and retrieving designs. The Compactor effi-each inference type. The Inferencer itself does not contain
ciently recovers what the user has changed between snzany knowledge about types, it simply calls the test that is
shots from these complete states. supplied by the inference type.

Source variablesire those that changed between any tw(The size of the sets increases over time. Testing ends if (1) a
Before snapshots. Source variables take their values frotest succeeds, (2) the target variable has been tested against
the Before snapshots. The Compactor identifies them by ttall unordered sets, or (3) a type-specific limit on set sizes is
following process. reached.

It first constructs a vector of values for each attribute. Thiin the demonstration of Figure 1, the Inferencer first tests
attribute becomes a source variable if the vector’s minimurthe target variable b.X against the empty source variable set.
value is not approximately equal to the vector’s maximunA test against an empty set succeeds if the target variable
value. “Approximately equal” is defined for each type of at-can be solved by a constant (e.g. b.X := 100), which is not
tribute. By default, strings are required to be exactly equéethe case here. The Inferencer then tests against the single-
but screen coordinates are allowed to differ by up to fifteemember sets {b.X} and {b.Width}. These tests also fail
pixels. here. The test against the set {b.X, b.Width} succeeds as

In Figure 1, the value vector of attributeis [100 250] in Shown in Figure 1.

the Before snapshots. It becomes a source variable becai

100 is not approximately equal to 250. The attribdene PLUG-IN INFERENCE TYPES
does not become a source variable because the elementsThe code which tests a target variable against a set of source
its value vector, [b b], are approximately equal. variables is provided by the inference type. The engine
Identifying source variables is linear in the number of attomes with three common types: integers, booleans, and

tributes in the Before snapshots assuming that accessing Zg:;?isﬁf;heiégfregge engine allows plugging in of addi-
tributes by name takes constant time (hash-based access) _ .yp . .
No attribute can become a source variable if the demonstrDeﬁnlng an additional inference type is easy - all you have

tion consists of a single example because a single value© do is subclass from the generic inference type by provid-

always approximately equal to itself. This is intended - ther'i/na?rigbr::vc\)/ft}[/r?ai ?argecggdbg Lgﬁ'njtéza;réﬁt; ;V;egf 2;3;%?
is no point in designating source variables because the Infe yp P

encer, described below, will always solve single-exampl/2"1aples. We present one type in more detail.
demonstrations by assigning constant values to the targrHE INTEGER INFERENCE TYPE

variables.

Target variablesare those that change from any BeforeA standar_d Integer inference type comes W't.h the engine.
You can either use it for all variables of numeric type or you

shapshot to a corresponding After snapshot. These variabl o y A
can create more specialized types such as “temperature” and

take their values from the After snapshots. The CorT]paCt(“screen coordinate” by further subclassing from the integer

constructs target variables in two phases - it first identifie:t e By distinauishing between those integer tvpes. the en-
target variables and then collects their values. ype. by 9 9 ger types,

) -) _ gine will not draw inferences that combine their values.
The Compactor identifies attributes as target variables bThe standard inteqer tvpe can derive a taraet variable from a
comparing the value of each attribute in a Before snapsh; ger typ 9

to its value in the corresponding After snapshot. The a1Iinear combination of source variables. That is, given target
tribute is added to the target variable list if the two value:\"”‘r"fj‘ble tand source variablests , it can determine the

relationship t = ¢s; + &S, + ... + ¢S, + G given n+1 sub- All examples in this paper use demonstrations which can be
stantially different example]s. solved exactly for the sake of simplicity. We discuss later

The algorithm that tests integer target variables againd’0W We use snapping to deal with approximate solutions

source variables works as follows. If the set of source varSUch @s “b.x=1.03, b.width = 0.98"

ables is empty, the algorithm computes the arithmetic meeln the previous example, there were no redundant examples
of the values of the target variable and tests if this consta(“bad examples”), and there were omyexamples fon

is a solution. variables. The following example shows how the algorithm

For example, if the target variable has the values [18 17 2:constructs the matrix in a more general case.
in a three-example demonstration, the algorithm compute
the arithmetic mean, 19, and then tests if the vector [18 1
22] is approximately equal to [19 19 19]. If it is, the algo-In this example, assume that the user has given several dem-
rithm has solved the target variable (t:=19). onstrations that center interface objedietween objecta

If the set of source variables is not empty, the algorithm cor@ndc by movingb (rather than resizing). Figure 2 shows
structs a matrix and a vector that can then be solved ttn€ variables relevant to the demonstration. The formula for
Gaussian elimination. Assume there amsource variables P-XWhich center® in this way is shown below.

S1...%. If there are less thamexamples, the test fails. If
there are exactlp examples, the algorithm tries to derive
the target variable from the source variables without an ac
ditive constant (t =5, + 6S, + ... + ¢S,). If there are more
thann examples it tries to solve the general case (5t €
CoSp + .o+ GiSy + Q). 7w >

Example 2

b.x « ax+ aw+ % (cx- (ax+ aw) —%b.w

This is again best explained through examples. <> Source
< b.w »

Example 1
- C.X >

Consider the introductory example of Figure 1, where th¢
variables are as follows.
Source Variables
Integer b.X [100 250]
Integer b.Width [80 120]
> Target

Target Variables b.x

Integer b.X [180 370]

The algorithm takes these examples and constructs the f Figure 2. Centering Elements.
lowing matrix. The columns of the matrix correspond to the

values of the source variables (b.X and b.Width here), re

spectively. The vector is made up from the values of the ta

get variable that we are trying to solve (b.X here).

100 80| .| bx | _ |180
250 12 b.width 370

Standard Gaussian elimination can then be used to solve il

set of equations.
bx | =
b.width

ﬂ

That is, we have found a relation between the target variab
and the source variables, namely

b.X « 1[b.X + 1 [h.Width

The inference engine then checks if this is indeed a solutic
by re-substitutio A simplifier brings the solution to its fi-
nal form, b.X~ b.X + b.Width.

2. Re-substitution would not be necessary if the exact solution is
1. “Substantially different” is synonymous with “linearly inde- used, of course. However, we also use re-substitution to test if a
pendent” for the integer inference type. “snapped” version of the solution will do as explained later.

Let us assume that the demonstration consists of seven ¢ples than source variables which allows us to add the row of

amples as shown in Table 1. ones which tests for a constant offset (e.g. p.x := g.x + 100).
Example: L] 2] 3 4 5 6 17 200 200 100 600 1 | aw | |450
source variable a.yv 200 200 100 100 |50 {00 [200 100 200 200 800 1 a.x 450
source variable ax 200 200 200 | 0 | 0 100 P00 100 0 200 800 L* | b.w | = |350
source variable b.v 100 100 200 200 |50 | 50 [100 50 0 50 150 cx 75

100 100 50 300 cons 225

source variable c¢.x 800 600 800 800 150 300 [800
targetvariable b.x 550 450 450 350 |75 225 550 Solving the matrix returns

Table 1. Example values. aw 0.50

a.x 0.50

If we have more examples than needed, which ones shot bw| = [-05

we select? ldeally, we want to use the most “unique” exarr c.X 0.50
ples. Seen from a demonstrational standpoint, one intt cons 0

itively feels that using identical examples will not give the
inference engine more useful information. Seen from awhich results in the following derivation after running it
“math” standpoint, one does not want to have rows in ththrough the simplifier. The formula indeed centersuch
matrix that are nearly identical because that increases tlthat it has equidistant edgesaandc.
likelihood that one row is linearly dependent on the other.

i i 1 . 1 1, . 1
(that the augmented matrix is unsolvable). b.x < —a.width+ -ax - ~b.width + =c.x

We use the following method to select examples that will b 2 2 2 2
used in the matrix We define thelistancebetween two ex-

amples as the count of source variables that are not approDYNAMIC OBJECT CREATION AND DELETION
mately equal between them. We defineuh&uenes®sf an
example as the sum of its distances to the other exampl¢
We then select the most unique examples for inclusion in tr

So far, we have presented how the inference engine deals
with single attributes by computing their value from other

matrix. Table 2 lists the distances for each example ilattributes. In this section, we explain how it deals with the

Table 1. For example, the distance between the first and s¢'UN-time creation and deletion of objects.

ond example in Table 1 is one becaosas the only source After each demonstration, the engine first looks for objects
variable with a differing value. The distance between thihat have been deleted, then for objects that have been cre-
first and fifth example is four because all four source variated, and finally for relationships between single attributes
ables differ between them. The unigueness can be defin@as discussed above.

and computed for other inference types in the same way. f an object has consistently been deleted from the Before
Example: | 1] 2] 3] 4] 5 6 1. snapshots it puts a Delete statement in the resulting script
(“o.delete()"). If an object has been created in all examples,
the engine puts a Create statement in the resulting script
(“object o = prototype.copy()”).

The inference algorithm deals with object creations by using
prototype objects. That is, when a new object is created it is
in fact copied from an existing (but often invisible) proto-

type object. Attributes of the newly created object can then
be computed using the single-attribute inference mecha-
nism. For example, it can be demonstrated that a newly cre-
ated object should appear at the center of its layout parent.

By default, an object can serve as a prototype if it is of the
Table 2. Computing the “uniqueness” of examples. ~ same type as the newly created object, and if no more than

ten attributes differ between them. If multiple prototypes

Thus, we select examples two through six to construct thqualify the algorithm chooses the one with the fewest differ-

matrix below. In this demonstration, we have more examing attributes. If there is no such prototype for the new ob-

ject the inference engine will automatically create one. This

is done by permanently copying the new object into the up-

1. There is actually a superior selection method for the integeper left corner of its parent and by making it invisible. It can

inference type. This method consists of adding vectors to a neithen serve as a prototype for this object and for others.

matrix one by one, making sure that every new vector is linearly

independent from the ones already there. We present the abo\

method because it can be used for all inference types, not just fc

integers.

1123
-3 a
1

W DS

Al W W A~ D

RIS I
NENEIEN R E-)

Ol | | W N| P
[l I B B S IOV)
Nl W~
Wl wWw| w

SN

'

7.
Uniqueness] 14 1F 15 17 23 22 [4

SNAPPING

The numerical examples above all use equations that can
solved exactly. This will rarely be the case in actual demor

from the presentation component of a demonstrational sys-
tem, and that this separation has many benefits including in-
creased generality and portability.

strations where raw solutions often read “b.x := 1.03*b.x A CKNOWLEDGEMENTS

0.48*b.width + 3.1” when the user intended “b.x := b.x +
1/2*b.width”.

We deal with these cases by first trying if the non-constar

We would like to thank Siemens for their partial support of
this research.

factors can be snapped to halves and the constant faC‘REFERENCES

shapped to zero (which is the case in the example abov¢
We then try snapping the non-constant factors to halves a1l
rounding the constant factor. If both these snapped versio
of the solution fail we use the original solution.

(2]

First Try Second Try Third Try
1.0 1 1.0 1 1.0
0.48 — |0.5 0.48 — |0.5 0.4 [3]
3.1 0 3.1 3 3.1

INTEGRATION WITH THE INTERFACE BUILDER

Most interface builders contain an interpreted scripting lan[4]
guage which allows testing behavior without going througt
an edit-compile-link cycle. If the interface builder provides
such a language the engine’s inferred scripts can be ma
executable by simply translating them into the builder’s na
tive language. If the interface builder does not provide suctol
a language one has to write a small interpreter which inte
prets the inference engine’s scripts (so that one can inters
tively test the engine’s inferences).

(6]

FUTURE WORK

An important shortcoming of the current engine is that it cai
only refer to objects by absolute name but not based on ti
attributes of that object. That is, it can infer a script like “ob-
j3.width := 50; obj7.width := 50" but it cannot infer [7]
“(*.width>50).width := 50”. We are currently exploring sev-
eral inferencing alternatives.

Many other improvements can also be made. It is our hog
that others will use and contribute to the engine. 8]
IMPLEMENTATION

(9]

The inference engine is written in C++. It is fully imple-
mented as described and consists of approximately 50(
lines of code. The engine is freely available for academi
purposes (contact the first author). (10]

CONCLUSION

The main difference between our inference engine and mo
existing demonstrational systems is that our engine does n
make use of domain knowledge. The Compactor seems [11]
be a viable alternative to using domain knowledge for re
ducing the amount of computation. The Inferencer can ur
cover linear relationships including many common one:
such as aligning and centering without having domait
knowledge about those special relationships. Overall, w
feel that it is possible to separate the inferencing compone

Cypher, A.,Eager: Programming Repetitive Tasks by
Example Proceedings of CHI'91, New Orleans,
Louisiana, pp. 33-39.

Cypher, A. (ed.)Watch What | Do: Programming By
Demonstration MIT Press, Cambridge,
Massachusetts, 1993.

Frank, M. and J. Foleynference Bear: Inferring
Behavior from Before and After Snapshdischnical
Report git-gvu-94-12, Georgia Institute of
Technology, Graphics, Visualization and Usability
Center, Apr. 1994.

Hudson, S. and R. Kingsemantic Feedback in the
Higgens UIMS IEEE Transactions on Software
Engineering, Vol. 14, No. 8, August 1988, pp. 1188-
1206.

Kihme, T. and M. Schneider-Hufschmi&X/Tools -
An Open Design Environment for Adaptable
Multimedia User InterfacesComputer Graphics
Forum, 11(3), Sept. 1992, pp. 93-105.

Kurlander, D. and S. Feinelmferring Constraints
from Multiple SnapshotsTechnical Report CUCS-
008-91, Computer Science Department, Columbia
University, May 1991 (also to appear in the ACM
Transactions On Graphics).

Maulsby, D., I. Witten and K. KittlitzMetamouse:
Specifying Graphical Procedures by Example
Proceedings of Siggraph’'89, Boston, Massachusetts,
pp. 127-136.

Myers, B., Creating User Interfaces By Demon-
stration, Academic Press, Boston, 1988.

Olsen, D. and K. AllanCreating Interactive
Techniques by Symbolically Solving Geometric
Constraints Proceedings of UIST'90, Snowbird,
Utah, Oct 1990, pp. 102-107.

Singh, G., C. Kok and T. NgaBruid: A System For
Demonstrational Rapid User Interface Development
Proceedings of UIST’90, Snowbird, Utah, Oct. 1990,
pp. 167-177.

Wolber, D. and G. Fisheh Demonstrational
Technique For Developing Interfaces With
Dynamically Created Objectsroceedings of
UIST'91, Hilton Head, South Carolina, November
1991, pp. 221-230.

