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(c) Extracted ion mobility chronograms for the best 3 
discriminant features from the CF patient sample illustrated in 
(a). 
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Figure 5.16 oPLS-DA model for discrimination of CF patient samples (red 
circles) from control samples (black squares). (a) Cross-validated 
prediction plot using the 3 discriminant metabolic feature panel 
obtained from iPLS-DA variable selection. (b) oPLS-DA 
calibration scores plot for (a). The model consisted of 2 LVs 
with 70.7% and 96.9% total captured X- and Y-block variances, 
respectively. The accuracy, sensitivity, and specificity were all 
100%. 
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Figure A.1 Metabolite perturbations observed in HSC-3 cells treated with 
AuNRs-PPTT (NLS conjugated particles). (a-d) Bar graphs 
showing the normalized abundance of phenylalanine-related 
metabolites altered following PPTT. Normalized abundances of 
metabolites following AuNRs@NLS without PPTT are also 
given for comparison. (a) L-phenylalanine. The result was 
confirmed by MS/MS (shown in e). (b) Glutamylphenylalanine. 
(c) Asparaginyl-phenylalanine. (d) Histidinyl-phenylalanine.  (e) 
Product ion spectrum obtained under data dependent acquisition 
(DDA) conditions for the precursor ion at m/z 164.0710.  
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Figure A.2 Heat map showing fold change (log2) of key metabolites related 
to phenylalanine metabolism in treatment experiments 
(AuNRs@NLS, AuNRs@NLS/PPTT) compared to control 
group. 
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Figure A.3 Quantification accuracy examination of proteomics workflow: 
Log2 ratio distributions of quantified peptides from 2 identical 
test samples (yeast whole proteome sample), each sample having 
3 technical replicates. 
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Figure A.4 Pathway map showing that the phenylalanine metabolism 
pathway was perturbed after PPTT and key proteins (HADHA, 
ACAT1) were down-regulated, which triggers apoptosis. (Red) 
means up-regulation after PPTT, (blue) means down-regulation 
after PPTT. In the thermometer sign, 1 refers to metabolomics 
results, 2 refers to proteomics results. The thermometers are 
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filled to various degrees, corresponding to the amount by which 
the markers were up-regulated or down-regulated. 

Figure A.5 Significant pathways identified from proteomics (red bars) and 
metabolomics (light pink bars) that perturbed by photothermal 
therapy.  
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Figure A.6 (a) Schematic diagram explaining the molecular apoptosis 
mechanisms involved in altering phenylalanine metabolism as 
induced by PPTT. (b-g) Bar graphs showing the normalized 
abundance of key proteins contributing to apoptosis involved in 
altering phenylalanine metabolism following PPTT. Normalized 
abundances of key proteins following AuNRs@NLS without 
PPTT are also given for comparison. (b) HADHA. (c) ACAT1. 
(d) Lamin B1 (LMNB1). (e) PAK1. (f) PPP1R12A. (g) LAMP2. 
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SUMMARY 

Metabolomics is the science of studying small molecule composition of biological 

systems. Non-targeted metabolomics, as the analytical technology for unbiased 

simultaneous measurement and analysis of the collection of low molecular weight 

metabolites within biological samples, has been widely adopted as a novel and powerful 

approach to study pathophysiological processes and discover potential biomarkers for 

disease diagnosis and preventive screening. By comparing and analyzing the global 

metabolome of different classes of samples with different phenotypes, non-targeted 

metabolomics can serve as a top-down strategy to discover disease related metabolic 

perturbations, and it has been applied in studies of various diseases.  

 In this thesis work, mass spectrometry (MS) based non-targeted metabolomics was 

applied to discover potential biomarkers of two kinds of diseases: prostate cancer (PCa) 

and cystic fibrosis (CF) acute pulmonary exacerbations (APEs). Current clinical practices 

for prostate cancer (PCa) diagnosis focus on prostate-specific antigen (PSA) level. 

Although it exibits fair discriminating power for PCa detection, the PSA test for PCa 

screening remains controversial due to the risk of over-diagnosis and overtreatment. 

Another disease we have studied, CF lung disease, has intermittent episodes of acute 

worsening of symptoms termed acute pulmonary exacerbations (APEs), which is a major 

cause of morbidity for CF patients. To date, however, there is no consensus diagnostic 

criteria for CF APEs. Also, there is no preventive screening method for stable CF patients 

to signal an oncoming APE event, which hinders the initiation of early intervention before 

the establishment of substantial immune response. These drawbacks, together with a lack 
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of in-depth information on the pathophysiology of these two diseases may prevent 

clinicians from making the best possible therapeutic interventions and treatment decisions 

to improve patient healthcare. Consequently, there has been a constant drive to discover 

novel biomarkers to improve PCa diagnosis and prediction of APE onset in CF patients via 

non-targeted metabolomics strategy. 

 Mass spectrometry (MS) has been increasingly applied in metabolomics studies due 

to its high sensitivity. MS methods often include chromatography separation prior to ion 

detection, which helps to increase metabolite coverage and resolution, decrease spectral 

congestion and ion suppression (or enhancement) effects. As current metabolomics 

research focuses more on large scale studies with hundreds to thousands of samples, high-

throughput metabolic profiling techniques with fast sample analysis speed become a 

pivotal necessity. Flow injection (FI) and direct infusion (DI) MS are alternative 

approaches involving direct introduction of biological samples into MS systems without 

prior chromatography separation, increasing sample analysis speed. The combination of FI 

or DI methods with ion mobility (IM) MS is generally appealing for its ability to simplify 

spectra, raise signal to noise ratio by eliminating chemical noise, produce cleaner MS/MS 

spectra and provide rapid separation of closely related compounds. Therefore this strategy 

has great potential in non-targeted metabolomics research demanding high sample 

throughput. In this thesis work, liquid chromatography (LC) MS method and LC-free FI-

IM-MS and DI-IM-MS methods were employed for metabolic profiling of biological 

samples to find potential biomarkers for PCa and CF APEs and study the associated 

metabolic perturbations. An introduction to MS-based non-targeted metabolic profiling for 

human disease studies is provided in Chapter 1, with recent developments in disease 
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biomarker discovery reviewed. Sample preparation, MS platforms utilized, metabolite 

identification, innovations in data analysis and pathway mapping were discussed.  

Part I of the dissertation consists of Chapters 2 and 3, which present LC-MS 

based non-targeted metabolomics studies of PCa and CF APE diseases. In Chapter 2, a 

metabolite-based in vitro diagnostic multivariate index assay (IVDMIA) was developed to 

predict PCa in serum samples with a panel of 40 metabolic features, yielding 92.1% 

sensitivity, 94.3% specificity, and 93.0% accuracy. The performance of the IVDMIA was 

demonstrated to be higher than the prevalent PSA test. The identification of amino acids, 

fatty acids, lysophospholipids, and bile acids provided insights into the metabolic 

alterations associated with the disease. In addition, several metabolites were mapped to the 

steroid hormone biosynthesis pathway, indicating its association with PCa. Chapter 3 

discusses the feasibility of predicting APE in CF patients using EBC metabolites. In a pilot 

study, LC-MS was used to profile metabolites in exhaled breath condensate (EBC) samples 

in negative ion mode from 17 clinically stable CF patients, 9 CF patients with an APE 

severe enough to require hospitalization (termed APE), 5 CF patients during recovery from 

a severe APE (termed post-APE), and 4 CF patients who were clinically stable at the time 

of collection but in the subsequent 1 to 3 months developed a severe APE (termed pre-

APE). Using multivariate analysis, a panel containing 2 metabolic discriminant features 

identified as 4-hydroxycyclohexylcarboxylic acid and pyroglutamic acid differentiated the 

APE from the stable CF samples with 84.6% accuracy. In addition, the pre-APE samples 

were distinguished from the stable CF samples with 90.5% accuracy using a panel of two 

discriminant features including lactic acid and pyroglutamic acid. In a larger EBC sample 

cohort (n=210) study, negative ion mode data and the combination of negative and positive 
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ion mode data showed that classification was possible for age and gender-matched samples 

grouped into adult and pediatric patients. Negative ion mode data yielded acceptable 

sensitivities (83.3% and 76.2%), specificities (91.7% and 83.7%), and accuracies (88.9% 

and 81.3%) for discriminating APE from stable CF EBC samples, from pediatric and adult 

patients, respectively. For the pre-APE vs. stable CF comparison, good sensitivities (85.7% 

and 89.5%), specificities (88.4% and 84.1%), and accuracies (87.7% and 85.7%) were 

obtained for EBC samples from pediatric and adult patients, respectively. By combining 

positive with negative ion mode data, improved classification performance was achieved 

for most binary comparisons with accuracies enhanced between 3 and 9.6%. The 

discriminant metabolites identified in the pilot study were also selected in some of the 

discriminant metabolite panels. Some of the identified discriminant metabolites had 

microbial relevance, indicating a possible central role of bacterial metabolism in APE 

development.  

Part II of the dissertation includes Chapters 4 and 5, describing non-targeted 

metabolomics studies on PCa and CF APE disease using LC-free FI-IM-MS and DI-IM-

MS. Chapter 4 presents the application of FI-IM-MS to the non-targeted metabolic 

profiling of serum extracts from 61 PCa patients and 42 controls from the same cohort in 

Chapter 2. Comprehensive data mining of the mobility-mass domain was used to 

discriminate compounds with various charges and filter matrix salt cluster ions. Specific 

criteria were set to ensure correct grouping of adducts, in-source fragments, and 

impurities in the dataset. Endogenous metabolites were identified with high confidence 

using tandem MS experiments and collision cross-section (CCS) matching with chemical 

standards or CCS databases. PCa patient samples were distinguished from control 
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samples with good accuracies (88.3-89.3%), sensitivities (88.5-90.2%), and specificities 

(88.1%) using supervised multivariate classification methods. Results from this study 

show the potential of FI-IM-MS as a high throughput metabolic profiling tool for large 

scale metabolomics studies. In Chapter 5, transmission-mode direct analysis in real time 

(TM-DART) coupled to IM-MS was tested as a high-throughput alternative to 

conventional DI electrospray ionization (ESI) and atmospheric pressure chemical 

ionization (APCI) methods, and the performances of the three ionization methods were 

compared. When using pooled EBC collected from a healthy control, ESI detected the 

most metabolites, and TM-DART the least. TM-DART-TWIM-TOF-MS was used to 

profile metabolites in the EBC samples from 5 healthy individuals and 4 CF patients, and 

a panel of 3 discriminant EBC metabolites was found to differentiate these two classes 

with excellent cross-validated accuracy.  

Appendix A presents a collaborative work that combined results from surface 

enhanced Raman spectroscopy (SERS), metabolomics and proteomics experiments, to 

study the molecular mechanisms of the cellular processes during the plasmonic 

photothermal therapy (PPTT) process. Our metabolomics results showed increased levels 

of phenylalanine and metabolites tentatively identified as its derivatives and 

phenylalanine-containing peptides, aiding in assignments of SERS bands with observed 

changes during PPTT. To better understand the mechanism of phenylalanine increase 

upon PPTT, we combined metabolomics and proteomics results using network analysis, 

which demonstrated that phenylalanine metabolism was perturbed. In addition, several 

apoptosis pathways were activated via key proteins (e.g. HADHA and ACAT1), which 
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are consistent with the proposed role of altered phenylalanine metabolism in inducing 

apoptosis.  

At last, Chapter 6 summarizes the conclusions drawn from the thesis work, and 

also presents the outlook and possible future work.   
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CHAPTER 1. INTRODUCTION 

 
 
 
Adapted with permission from 
Zang X, Monge ME, Fernández FM. Mass Spectrometry-Based Non-targeted Metabolic 
Profiling for Disease Detection: Recent Developments. (in preparation). 

 

1.1 Abstract 

Mass spectrometry (MS) techniques possess great potential in clinical diagnosis 

and non-targeted metabolic profiling of biological samples plays an important role in 

seeking biomarkers for disease detection and prediction. High-quality quantitative data is 

needed for accurate analysis of metabolic perturbations in patients. This introduction 

chapter describes recent developments of MS-based non-targeted metabolomics research 

with applications to the detection of a variety of human diseases (diabetes, liver and 

breast cancer, cardiovascular disease, Parkinson’s disease, etc.), focusing on sample 

preparation, MS platforms utilized, procedures for metabolite identification, innovations 

in data analysis, and efforts towards pathway mapping. Potential disease biomarkers 

discovered are summarized, and limitations and future perspectives discussed. 

 

1.2 MS-based Non-targeted Metabolomics for Disease Biomarker Discovery 

Most current screening tests for disease diagnosis suffer from low specificity or 

sensitivity, among other aspects.1-6 Diagnosis of lung cancer via imaging methods such as 

computed tomography (CT) and magnetic resonance imaging (MRI), for example, cannot 

be performed at an early-enough stage due to instrumental resolution limitations.7 Blood 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Monge%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fern%C3%A1ndez%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
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biomarkers for lung cancer, are often not diagnostic, but only limited to prognostic 

assessment.8 In the case of colorectal cancer, diagnosis and treatment decisions are 

typically based on histopathologic inspection, which often has undesirable precision and 

uniformity.9 For cancers such as extrahepatic cholangiocarcinomas (ECC), a rare tumor 

that arises from epithelial cells of the bile duct and has extremely low survival rate 1, 10, 11, 

imaging methods such as CT, magnetic resonance cholangiopancreatography, and 

positron emission tomography, generally have insufficient sensitivity for diagnosis.1 The 

current gold standard screening method for gestational diabetes mellitus (GDM), the oral 

glucose tolerance test, is complicated and time-consuming.12, 13 Cardiovascular disease is 

commonly diagnosed by CT angiography, which is an invasive method and may cause 

cancer risk due to the high dose of radiation exposure.14 Together, these limitations have 

led to a need to discover new clinical biomarkers to improve diagnosis, enabling more 

accurate clinical decisions to be made, and ultimately leading to increased patient 

survival rates and better clinical outcomes. 

Metabolites, as end products of cellular regulatory processes, play central roles in 

energy metabolism, regulation and signaling, which are essential to life.15, 16 Being close 

in biological proximity to the phenotype, metabolites can act as fingerprints of 

biochemical status, and their dynamic changes could reveal perturbations of a given 

biological system due to a number of factors, including disease development.16, 17 

Metabolomics, the comprehensive analysis of the collection of all small molecules 

(MW<1500) in a biological system (the metabolome), opens a window to discovering 

biomarkers and improving disease diagnosis, showing great promise in clinical 

applications.17-19 Disease-associated metabolic signatures and pathways provide 
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important biological insight into the pathophysiology, revealing the affected underlying 

molecular mechanisms.20  

Over the last decade, mass spectrometry (MS) has witnessed rapid growth and has 

become an indispensable tool in clinical metabolomics to discover biomarkers for human 

disease prediction, diagnosis, prognosis and follow-up care for patients, owing to its 

inherent high sensitivity, specificity, throughput, mass accuracy and wide metabolite 

coverage.2, 6, 16, 18, 21-24 MS-based metabolomics studies are generally divided into targeted 

and non-targeted approaches. Targeted metabolomics experiments quantitatively measure 

a predefined set of metabolites based on a prior hypothesis, commonly by the use of 

isotope-labeled internal standards.25-27 On the other hand, non-targeted metabolomics 

provides the opportunity for novel biomarker discovery, through the global measurement 

of metabolites within a biological sample to identify a specific metabolic fingerprint 

responsible for perturbations such as a disease, without knowledge of the molecular and 

biochemical information of the metabolites being studied.25, 27, 28 However, global 

metabolite measurement is challenged by the fact that no single analytical technique can 

achieve full coverage of the whole metabolome, which contains thousands of metabolites 

with a wide range of physicochemical properties and concentrations in the biological 

system.23, 29 Current non-targeted metabolomics studies are still at the discovery phase, 

and subsequent validation steps are needed before true translation into the clinical 

settings is accomplished. These include pre-validation studies of candidate biomarkers 

through non-targeted metabolomics approaches in a different cohort preferably from a 

geographically distinct area,30 targeted metabolomics studies25 for absolute quantification 

of biomarkers using isotopically labeled compounds as internal standards, and final 
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validation in a larger patient cohort with thousands of samples.30, 31 In recent years, stable 

isotope labeling has been increasingly favored in MS-based metabolomics research to 

study metabolic fluxes.32, 33 It is traditionally used in a highly targeted manner to study 

known metabolites and predicted pathways, and recently has been combined with non-

targeted metabolomics to discover unexpected labeled metabolites and novel pathways.34, 

35 However, wide application of non-targeted stable isotope labeling analysis in 

metabolomics is currently limited to cell studies, and is hindered by a lack of dedicated 

data analysis software tools.34  

MS coupled with chromatography is widely adopted for non-targeted metabolic 

profiling, owing to its wide coverage and efficient separation of a large number of 

metabolites in complex biological matrices.16, 36-38 Gas chromatography (GC) MS39 and 

liquid chromatography (LC) MS40 are the most frequently used MS techniques in non-

targeted metabolic profiling studies, and to a lesser extent capillary electrophoresis MS 

(CE-MS)41. The introduction of ultraperformance LC (UPLC) to MS-based metabolomics 

has greatly improved chromatography efficiency, sensitivity, resolution and throughput in 

complex biological sample matrices when comparing to traditional high performance LC 

(HPLC).42 High resolution (HR) MS with electrospray ionization (ESI) has been 

increasingly embraced by the metabolomics community due to its intrinsic high mass 

accuracy, with time-of-flight (TOF) MS, Orbitrap MS and Fourier transform ion 

cyclotron resonance (FTICR) MS being the most used techniques.43 The coupling of 

UPLC and HRMS is highly attractive for metabolic profiling studies, and has enjoyed 

wide popularity in recent years due to the significantly improved data quality arising 

from the combined advantages of both UPLC and HRMS. 
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As current metabolomics shifts its focus to larger scale studies with hundreds to 

thousands of samples, high-throughput metabolic profiling techniques with high sample 

analysis speed are becoming a necessity. Direct infusion (DI) and flow injection (FI) MS 

are alternative approaches to LC, involving direct introduction of the sample into the MS 

systems without prior chromatographic separation,44-46 therefore maximizing analysis 

speed with the capability of running more than 200 samples per day.44 These high-

throughput methods can be combined with ion mobility spectrometry (IMS), a gas-phase 

electrophoretic technique that rapidly separates ions based on their charges, shapes and 

sizes,47 to provide simplified spectra, enhanced signal to noise ratio, and cleaner tandem 

mass spectrometry (MS/MS) spectra to assist metabolite annotation.48, 49 In addition, the 

collision cross-section (CCS) values derived from IMS experiments serve as an 

orthogonal molecular descriptor in addition to mass-to-charge ratio (m/z) to improve the 

confidence of compound identifications.47, 49 IMS has been routinely hybridized with 

mass spectrometers in the past decade and increasingly employed in the metabolomics 

field.47, 49-53 Currently, the majority of commercial ion mobility-mass spectrometry (IM-

MS) instruments employ traveling wave ion mobility (TWIM)54 or time-dispersive drift 

tube ion mobility (DTIM)55 techniques.  

Since metabolite coverage in non-targeted metabolomics studies is determined by 

both sample preparation and instrument performance, methods must be carefully 

designed to fulfill the experiment purpose. The challenges associated with sample 

preparation and MS instrumentation in global metabolic profiling include ionization 

suppression, matrix effects and inability to achieve full metabolome coverage, leading to 

the development of new ionization methods and chemical derivatization methods to 
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increase ionization efficiency and application of complementary analytical methods to 

improve metabolite coverage.29, 56 In addition, the analysis of sample preparation blanks, 

quality controls and quality assurance are important to ensure the quality of 

metabolomics data acquired in non-targeted studies.57 With the large volume of raw data 

generated from non-targeted metabolomics experiments, picking out the true potential 

biomarkers from a complex dataset with both known and unknown metabolites and 

interpret the result from a biological perspective can be very challenging. To address this 

issue, efficient, dedicated and accurate bioinformatics tools have been developed for data 

processing, modeling and pathway mapping. Also, great efforts have been made in 

developing new algorithms and databases for accurate and comprehensive annotation of 

metabolites, which is often difficult and time consuming due to their class diversity and 

structural heterogeneity.43, 58, 59 In addition, recent advancements in computational tools 

offer integrative analysis of multi-omics data, providing deeper insight into pathway 

dysregulations associated with diseases at a system-wide level.60-63  

 

1.3 Recent MS-based Non-targeted Metabolomics Studies in Human Disease 

Biomarker Discovery  

 

1.3.1 Diabetes 

Diabetes is the most frequently studied disease using MS-based metabolomics in 

the past three years. There are 415 million people affected with diabetes in the world, 

with type 2 diabetes being the most common form.64, 65 It is characterized by insulin 
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resistance caused by lifestyle choices and genetic background, and it accounts for 90% of 

all types of diabetes.13, 65 Diagnosis of type 2 diabetes is often delayed until complications 

occur, with the underlying pathophysiology still remaining elusive.66, 67 Significant 

efforts have been made towards discovering new biomarkers for type 2 diabetes diagnosis 

and prediction using metabolomics.67-72 Peddinti et al. performed non-targeted and 

targeted metabolic profiling of fasting serum samples from a Finnish cohort containing 

543 nondiabetic individuals, including 146 who progressed to type 2 diabetes in a follow-

up period of 10 years, by using UPLC-linear trap quadrupole (LTQ)-MS and GC-MS.68 

By combining these measurements with machine learning-based feature selection 

methods, a panel of discriminant metabolites was found capable of predicting type 2 

diabetes development with an average area under the receiver operating characteristic 

curve (AUC) of 0.75.68 These differentiating metabolites included novel markers such as 

α-tocopherol and bradykinin hydroxyproline, as well as known markers like glucose, 

mannose and α-hydroxybutyrate.68 In a different UPLC-LTQ-MS based non-targeted 

metabolomics study of fasting plasma or serum samples from three Swedish cohorts 

(each consisted of ca. 1000 subjects), elevated deoxycholic acid and monoacylglyceride 

(18:2) and decreased cortisol levels were found to be associated with type 2 diabetes 

risk.69 Another non-targeted metabolomics study applied LC-quadrupole-TOF-MS (LC-

QTOF-MS) and GC-QTOF-MS to collect serum metabolic profiles from 197 type 2 

diabetes and 197 age and gender-matched healthy controls in a Chinese population.73 

Metabolic signatures associated with type 2 diabetes risk were identified with increased 

branched-chain amino acids (BCAAs), non-esterified fatty acids and 

lysophosphatidylinositol (LPI) compounds.73 A panel of 6 metabolites containing proline, 
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glycerol, aminomalonic acid, LPI (16:1), 3-carboxy-4-methyl-5-propyl-2-furanpropionic 

acid and urea predicted high-risk patients with an AUC of 0.935, and 

lysophosphatidylglycerol (LPG) (12:0) and LPI (16:1) predicted low-risk patients with an 

AUC of 0.781.73  

Type 1 diabetes is characterized by absolute insulin deficiency, with an onset age 

that continues to decrease.13, 74 In order to explore the metabolic background of children 

who developed type 1 diabetes, a urine metabolic profiling study of 56 type 1 diabetes 

children and 30 controls was conducted by Galderisi et al. using UPLC-QTOF-MS. A 

total of 59 endogenous metabolites were found to have elevated abundance in children 

with type 1 diabetes, including steroids, fatty acids and glycerolphospholipids, purine 

derivatives, carbohydrate conjugates and phenylalanine derivatives, amino acids and 

small peptides, and gut bacterial metabolites.74 

Gestational diabetes mellitus (GDM) is typically diagnosed during pregnancy. 

The current gold standard screening method is the oral glucose tolerance test, often seen 

as being complicated and time-consuming.12, 13 To find improved ways for GDM 

diagnosis, Hou et al. comprehensively measured serum metabolic profiles of 131 patients 

with GDM and 138 controls using GC-TOF-MS and UPLC-QTOF-MS and UPLC-TQ-

MS. The authors identified a total of 131 metabolites, including compounds like fatty 

acids, lipids, amino acids and bile acids which had significant differential distributions 

between samples from GDM patients and controls.12 GDM detection was achieved with 

an AUC around 0.75 using multi-marker models with different combinations of clinical 

variables and metabolites selected based on the statistical significance between the two 

groups.12 Another assay of global plasma metabolomes from 27 GDM patients and 34 
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healthy controls using UPLC-QTOF-MS revealed significantly decreased abundance of 

polyunsaturated phospholipids in GDM patients.75  

 

1.3.2 Hepatocellular carcinoma (HCC) 

HCC is the fifth most prevalent cancer in the world. The current blood screening 

test using α-fetoprotein (AFP) has low sensitivity in HCC diagnosis.2, 3 Several studies 

have been conducted using a non-targeted metabolomics approach to address this issue.2, 

3, 76-78 A global metabolic profiling study of plasma samples from 70 HCC patients and 65 

age-matched healthy controls was performed using UPLC-TOF-MS.2 Multivariate and 

univatiate analyses of the data identified a panel of five metabolites, including 

deoxycholic acid 3-glucuronide, 6-hydroxymelatonin glucuronide, 4-methoxycinnamic 

acid, 11β-hydroxyprogesterone, and 4-hydroxyretinoic acid, leading to the detection of 

HCC with an AUC of 0.996.2 Gong et al. performed a non-targeted serum metabolic 

profiling analysis of 51 HCC patients, 49 hepatitis B virus (HBV) cirrhosis patients and 

39 healthy controls, using GC-QTOF-MS and UPLC-QTOF-MS. Fourteen metabolites 

were identified to increase or decrease progressively from the healthy group to HBV-

cirrhosis and HCC, and they were therefore identified as to be promising biomarkers.76 

Out of the 14 metabolites, malate, citrate, succinate, lysine, carnitine, proline, ornithine, 

serine, phenylalanine, tyrosine and arachidonic acid increased in abundance from the 

healthy group to HBV-cirrhosis and HCC, and arabinose, galactose and uric acid showed 

a decreasing trend.76 Di Poto et al. conducted non-targeted metabolomics analysis of 

plasma samples from 63 HCC patients and 65 liver cirrhotic controls using GC-

quadrupole-MS (GC-Q-MS) and GC-TOF-MS.77 Eleven metabolites, including amino 
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acids, sugars, alcohols, and fatty acids, were selected by least absolute shrinkage and 

selection operator (LASSO) logistic regression, 79 providing a discrimination of HCC 

from cirrhotic controls with an AUC value of 0.808, greater than the diagnosis 

performance of AFP (AUC 0.723).77 

 

1.3.3 Breast cancer 

Breast cancer is the second leading cause of cancer mortality in women in the 

US.80 Although current screening methods using imaging techniques could help to 

diagnose breast cancer, mortality remained high for tumor at advanced stage, with a 5-

year relative survival rate of ~22% for metastatic or stage IV breast cancers.81, 82 Recent 

metabolomics studies strived to identify new biomarkers to improve breast cancer 

diagnosis and staging, which could also be beneficial to its prognosis.81, 83-85 In a GC-TQ-

MS-based global serum metabolic profiling study of 152 breast cancer patients and 155 

controls, breast cancer was successfully detected with 99% accuracy by multivariate 

analysis, and stages and grades of breast cancer were predicted with ~70% accuracy by 

Decision Tree models.83 Seven metabolites were found to be significantly altered 

between breast cancer patients and healthy controls, including tetradecane, α-D-

glucopyranoside, methyl stearate, dodecane, 1-4-benzene, D-galactose and octadecanoic 

acid.83 Do Canto et al. performed non-targeted metabolic profiling of breast ductal fluid 

samples from affected breasts and the unaffected contralateral breasts from 43 women 

with unilateral breast cancer using UPLC-QTOF-MS.81 The authors found 66 features 

with putative identities that had significant changes between cancerous and non-

cancerous regions based on paired t-tests.81  These tentatively identified features included 
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N-acetyl-tryptophan, N-linoleoyl taurine, trans-2-dodecenoylcarnitine, 

lysophosphatidylcholine (LPC(18:2)), glycerophospholipid(18:0) and phosphatidylserine 

(20:4).81  

 

1.3.4 Cardiovascular disease  

Cardiovascular disease is the leading cause of mortality in the US,86 accounting 

for over 800,000 deaths in 2015.87 CT angiography is a widely used imaging method for 

cardiovascular disease diagnosis, however, it is invasive and may lead to cancer risk in 

patients due to the high dose of radiation exposure.14 As a result, less invasive diagnostic 

methods need to be developed to assess cardiovascular disease risk. In the last three 

years, several global metabolic profiling studies have been performed to provide new 

biomarkers for disease detection and to reveal disease-related underlying metabolic 

mechanisms.88-92 Li et al. conducted a non-targeted plasma metabolic profiling study of 

49 patients with cardiovascular disease and 50 controls using UPLC-TripleTOF-MS.88 

N6,N6,N6-trimethyl-L-lysine, a nutrient precursor for gut microbes to the atherogenic 

metabolite trymethylamine N-oxide, was highlighted to be associated with cardiovascular 

disease risk.88 The result was validated by a study on a larger cohort (n=1,162) and 

confirmed by a targeted assay on an independent sample cohort (n=2,140) using stable 

isotope dilution tandem MS.88 Non-targeted UPLC-QTOF-MS-based serum lipidomics 

studies on samples from patients with severe calcific coronary artery disease (n=17) and 

controls with no calcification (n=26) were performed independently in two laboratories 

from different countries at different times.89 Six lipids including phosphatidylcholines 

(PC(16:0/20:4)), PC(18:2/18:0), PC(18:2/18:2) and sphingomyelins (SM(d18:1/16:0)), 
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SM(d18:1/22:0) and SM(d18:1/23:0) were found to change significantly between patients 

and controls by both laboratories, and were also detected with correlated intensities 

between the two laboratories, demonstrating the reproducibility of the results.89  

 

1.3.5 Parkinson disease 

 Parkinson’s disease (PD) is the most common neurodegenerative movement 

disorder, with its clinical diagnosis based on motor symptoms often delayed from the 

actual onset of the disease.93, 94 PD has been studied using a non-targeted GC-Q-MS 

approach by comparing cerebrospinal fluid (CSF) profiles from 44 early-stage sporadic 

PD patients with those from 43 gender- and age-matched healthy controls.93 By 

combining with a logistic regression-based machine learning method, a model based on 

mannose, threonic acid and fructose was built using a training set of samples (PD 

patients, n=34, controls, n=35), which successfully distinguished the two groups with an 

AUC value of 0.833.93 This model was validated by a small test set (PD, n=10, controls, 

n=8) and an independent external set (PD, n=24, controls, n=12).93 Another non-targeted 

study analyzed CSF and plasma metabolic profiles from early PD patients (n=40 and 80, 

respectively) and gender- and age-matched controls (n=38 and 76, respectively) by 

HPLC-QTOF-MS.94 Using partial least square (PLS) and random forest modeling with a 

70:30 training/testing split, 14 CSF metabolites and 20 plasma metabolites were found to 

be discriminative, detecting early PD with an AUC value of 0.9 and 0.8, respectively.94 

The discriminant metabolites were identified to be associated with glycerophospholipids, 

sphingolipids and amino acid pathways.94 
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1.3.6 Respiratory diseases 

Diagnosis of respiratory diseases is challenging due to various confounding 

factors including environmental exposures,95, 96 tobacco use,97, 98 coexistence of other 

diseases,97, 99 viral and bacterial infections,100, 101 etc. For respiratory disease 

investigation, non-invasive sampling methods using exhaled breath, exhaled breath 

condensate (EBC), sputum and saliva are ideal. Analysis of the metabolomes of patients 

with respiratory diseases may reveal details about the disease pathophysiology, as well as 

links to bacterial infections. Gaisl et al. performed real-time breath analysis of 30 cystic 

fibrosis (CF) patients and 30 healthy subjects by using secondary ESI-HRMS (SESI-

HRMS).102 A support vector machine (SVM) algorithm selected two discriminant 

features, tentatively identified as oxohexanoic acid and C5H10N2O3, which yielded an 

AUC of 0.771 for CF prediction.102 Malkar et al. performed a non-targeted metabolomics 

analysis of saliva samples from 9 asthma patients and 21 healthy individuals using 

UPLC-TOF-MS.103 A partial least squares discriminant analysis (PLS-DA) model using 

10 discriminant features predicted asthma with a cross-validated accuracy of 97%.103 

Global metabolic profiling of serum and EBC samples from 10 idiopathic pulmonary 

fibrosis (IPF) patients and 10 healthy controls were performed by Rindlisbacher et al. 

using UPLC-QTOF-MS.104, 105 Fifty-eight EBC features were found to be differential 

between the two groups, with one feature tentatively assigned with the elemental formula 

of C21H44N2O having a 2.5-fold increase in IPF compared to controls.104 Also, another 

study identified a serum LPC with a two-fold increase in abundance in IPF compared to 

controls, although its structure remains to be elucidated.105  



14 
 

 

1.3.7 Prostate cancer (PCa) 

 PCa is the second leading cause of cancer mortality in men in the US.80 The 

current blood test using prostate specific antigen has low specificity,4, 5 therefore leading 

to constant drives in discovering novel PCa diagnostic markers. In a urine metabolic 

profiling study of 236 PCa patients and age-matched 233 healthy controls by UPLC-

TOF-MS, a panel of three metabolites including glycocholic acid, hippurate, 5-hydroxy-

L-tryptophan was found to detect PCa presence with AUC > 0.95 using multivariate 

analysis.106 McDunn et al. applied GC-MS and UPLC-MS/MS to analyze metabolic 

profiles of from 331 prostate tumor tissues and 178 tumor-free tissues, and identified 

significant decreased levels of metabolites associated with cell energetics, and elevated 

levels of amino acids, peptides, carnitines, cofactors, lipids, nucleotides and metabolites 

associated with stress in tumor tissues.107 Addition of metabolite markers improved the 

AUC for predictions of organ confinement and 5-year recurrence from of 0.53 to 0.62 

and 0.53 to 0.64, respectively.107 Wang et al. performed global metabolomic imaging to 

analyze three human prostate tissue specimens with PCa and non-PCa regions using 

matrix-assisted laser desorption/ionization (MALDI) Q-FTICR MS combined with 

matrix coating assisted by an electric field technique.108 Metabolites with differential 

distributions between PCa and non-PCa tissue regions reflected altered metabolism 

related to PCa, including elevated energy charge and under-expression of neutral acyl 

glycerides.108 Lima et al. analyzed volatile organic compounds profiles in the 

exometabolome of four PCa cell lines and one normal prostate cell line using GC-ion 

trap-MS (GC-IT-MS), highlighting significantly increased pentadecane-2-one and 



15 
 

decanoic acid, and significantly decreased 4-methylbenzaldehyde, nonanoic acid, 

cyclohexanone, 4-methylheptan-2-one, 2-methylpentane-1,3-diol, 1-(3,5-dimethylfuran-

2-yl) ethanone and methyl benzoate in PCa cells.109  

 

1.3.8 Human immunodeficiency virus (HIV) 

 Non-targeted metabolomics has also been applied to elucidate metabolic 

signatures of HIV. In a study by Li et al., non-targeted metabolic profiling was performed 

using GC-Q-MS and UPLC-LTQ-MS on 38 plasma samples from 19 patients with HIV 

before and after antiretroviral treatment, and 18 plasma samples from healthy controls.110 

Out of the 331 identified features, 67 were found to discriminate patients with HIV from 

healthy individuals, belonging to the histidine, tryptophan, fatty acids, and acyl carnitine 

pathways.110 

 

1.3.9 Other diseases 

  MS-based non-targeted metabolomics has been applied in the investigation of a 

number of other diseases including childhood acute myeloid leukemia,111 β-

thalassemia,112 colorectal cancer,113 endometrial cancer,114 pancreatic ductal 

adenocarcinoma,115 nonalcoholic fatty liver disease,116 nephrotic syndromes,117 

pneumonia,118 Crohn’s disease,119 Snyder-Robinson syndrome,120 shock with respiratory 

failure,121 ECC,1 non-small-cell lung cancer,122 etc.  
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1.4 Advances in Sample Preparation for Non-targeted Metabolomics for Disease 

Detection 

 Since non-targeted metabolic profiling aims to collect as much information as 

possible from a sample containing numerous metabolites with various physicochemical 

properties, the sample preparation method should be simple, fast, non-specific and 

reproducible so as to avoid any sort of unwanted bias.28, 123 Appropriate sample 

preparation protocols should be carefully designed and optimized according to the sample 

type and research objectives to ensure comprehensive metabolome coverage. Typical 

pretreatment procedures for various sample types are detailed in Table 1.1. 

Blood and urine samples are most frequently used for metabolomics.124 The 

pretreatment of blood samples (e.g. serum or plasma) starts with a deproteinization step 

by adding the extraction solvent (or mixture of solvents) to the sample, followed by 

vortex-mixing and centrifugation to collect the supernatant containing the extracted 

metabolites,2, 46 which can then be directly used for MS analysis,24, 125 or lyophilized for 

storage, followed by reconstitution at a later stage. For GC-MS analysis, the supernatant 

is dried by lyophilization followed by chemical derivatization to increase the thermal 

stability and volatility of the metabolites.125-127 Liquid-liquid extraction (LLE) using a 

mixture of organic solvents such as methanol (MeOH) and chloroform (CHCl3) allows 

for simultaneous extraction of polar and lipid metabolites into different phases for 

separate analysis.46, 126, 127
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In a global metabolic profiling study by Pedersen et al., MeOH was used for polar 

metabolite extraction, and a mixture of CHCl3 and MeOH (2:1) was used for lipid 

extraction from serum samples of 291 non-diabetic Danish adults and over 100 Danish 

patients with diabetes. They detected a total of 325 polar metabolites including 94 known 

and 231 unknown species, and 876 serum lipids including 289 known and 587 unknown 

species, using two dimensional GC (GC×GC) TOF-MS and UPLC-QTOF-MS, 

respectively.127 Hadi et al. prepared serum samples for metabolomics experiments by 

using MeOH for protein precipitation, followed by solid phase extraction (SPE) in a 96 

well plate.83 The eluate was evaporated under N2, then dried and derivatized for GC-TQ-

MS analysis, with a total of 424 features detected in 307 serum sample extracts from 152 

breast cancer patients and 155 healthy controls.83  

For urine samples, sample preparation is relatively simple due to the high water 

and low protein content.46, 136 Urine samples are commonly centrifuged to remove solid 

debris, and the supernatant may be analyzed with or without dilution.1, 3, 28, 137, 138 In a 

metabolic profiling study to understand underlying metabolic mechanisms related to type 

1 diabetes in children, urine samples were centrifuged and then diluted in 1:5 ratio with 

0.1% (v/v) aqueous formic acid solution for UPLC-QTOF-MS analysis, with a total of 

2381 and 1435 features detected in positive and negative ionization modes, respectively, 

from a cohort consisting of 56 children with type 1 diabetes and 30 controls.74  

Recently there has been an increasing interest in using EBC for probing 

pathophysiological processes occurring within the lung due the ease and non-invasive 

nature of the sample collection.104, 130, 139-141 EBC consists of aerosolized epithelial lining 

fluid containing volatile and nonvolatile compounds trapped and diluted by water vapor 
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condensation,139, 140 resulting in low metabolite concentrations ranging from  nM to 

µM.142 Therefore, a preconcentration step is typically recommended for EBC 

metabolomics.130, 131 Different EBC sample preparation methods for LC-MS-based 

metabolic profiling have been compared, with the lyophilization method shown to have a 

higher number of metabolites detected than methods using protein precipitation or 

SPE.143 In our own work (Chapter 3 and 5), we processed EBC samples by lyophilization 

followed by resuspension in water H2O/MeOH (90:10) to provide a 20-fold up-

concentration, resulting in a total of 491 features extracted from UPLC-QTOF-MS data 

of EBC samples from CF patients.130 

Another type of valuable biological fluid is CSF, which is produced by the 

choroid plexus within the central nervous system and it is an excellent source of 

information for the study of neurological disorders.93 In a non-targeted metabolomics 

study of PD, CSF was extracted using MeOH/H2O (8:1), vortexed and centrifuged.93 The 

collected supernatant was dried in a refrigerated rotary vacuum evaporator and 

derivatized before GC-Q-MS analysis.93  

 Tissue sample preparation for MS analysis generally includes tissue 

homogenization and metabolite extraction.46, 113 The extracts are then dried and 

resuspended in appropriate solvents before MS analysis.46, 113 In a non-targeted CE-MS-

based metabolic profiling experiment, colorectal cancer and paracancerous tissues were 

pestled in liquid nitrogen. Metabolites were extracted with a MeOH/CHCl3/H2O (1:1:0.4) 

solution, followed by filtering using 5-kDa cutoff membranes, lyophilization, and 

resuspension before CE-MS analysis.113 For MSI experiments using MALDI or 

desorption electrospray ionization (DESI), cryosectioning of frozen tissues followed by 
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thaw-mounting of tissue slices on glass slides are the most common sample pretreatment 

steps.108, 133, 144-146 An alternative strategy is the use of tissue smears, produced by 

physically spreading a tiny amount of tissue on a glass slide to form a uniform and 

diffuse layer.133 By eliminating the freezing and sectioning tissue preparation steps, tissue 

smears enabled fast diagnosis of brain human tumor and intraoperative implementation of 

DESI-MSI.133 

Sample preparation for mammalian cell endometabolome analysis generally 

includes quenching and extraction.147 Martano et al. developed a fast sampling method 

for LC-MS-based metabolic profiling of intracellular metabolites in adherent mammalian 

cells, by applying a 2 s fast wash step in water, followed by cell metabolism quenching 

using a -20 °C cold MeOH/acetonitrile (ACN)/0.5 M formic acid (2:2:1) solvent mixture, 

followed by freeze drying, and resuspension prior to nanoLC-MS analysis.148 We have 

applied this protocol to extract intracellular metabolites from human oral squamous cell 

carcinoma cells that underwent plasmonic photothermal therapy (PPTT) for UPLC-

QTOF-MS profiling, identifying metabolic changes associated with cancer cell death 

mechanisms induced by PPTT (Appendix).149 Cuykx et al. prepared HepaRG cells by 

quenching the cell metabolism with liquid nitrogen, followed by addition of 80% MeOH 

solution, and LLE with a H2O/MeOH/CHCl3 (2:3:2) solution to separate polar and non-

polar phases, which were then separately analyzed by different UPLC-MS platforms.150 

A lipid profiling method for single cells using a novel biocompatible surface-coated 

probe coupled with nanoESI (nESI) MS was developed by Deng et al. 151 In this 

approach, lipids were extracted using the biocompatible surface-coated solid-phase 

microextraction probe, which was inserted into a nanospray tip and subject to analysis in 
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a LTQ Orbitrap or a FTICR mass spectrometer. A total of sixty lipids were identified 

from lipid profiling of 100 HepG2 cells using this method.151 For LC or GC-MS-based 

cell exometabolomics, conditioned medium is collected, followed by protein precipitation 

and extraction with methanol, or a centrifugation step to collect the supernatant for 

analysis.109, 152 The medium without cells, treated in the same way as the samples, serves 

as a blank comparison to help identify the metabolites secreted by cells in the samples.109, 

153 In MSI-based exometabolomics, direct analysis by spatially defined 

desorption/ionization techniques is used to provide a map of metabolite distribution in the 

cell medium.153 

 

1.5 MS-based Metabolic Profiling Platforms 

 When selecting a proper MS platform for a metabolic profiling study, sensitivity, 

resolution, throughput and metabolite coverage should be considered, since no single 

analytical method can offer a complete coverage of the metabolome due to the diversity 

and heterogeneity of metabolites present in the sample.154-156 This section covers the 

recent developments in various MS-based platforms for metabolic profiling, including 

classical GC-MS and LC-MS methods, CE-MS, high-throughput direct infusion and flow 

injection techniques, ambient and imaging MS, IM-MS, and other new techniques.  

 

1.5.1 GC-MS and LC-MS 

 Hyphenated chromatographic techniques such as GC-MS and LC-MS are by far 

the most widely applied in non-targeted metabolic profiling studies due to their high 
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sensitivity, resolution and reproducibility.16, 157 GC-MS typically has high reproducibility 

for the analysis of volatile compounds with low molecular weights.158, 159 Non-volatile 

compounds, however, need to be chemically derivatized to achieve increased thermal 

stability and volatility.159 Comprehensive GC×GC TOF-MS drastically improves the 

peak capacity and resolution, with larger number of compounds detected in a single 

analysis run compared to GC-MS.159  

LC-MS is typically used to profile non-volatile metabolites, with polar 

metabolites analyzed by hydrophilic interaction chromatography (HILIC) and non-polar 

species by reversed phase (RP) chromatography.127, 160 In recent years, UPLC-HRMS has 

been increasingly favored for metabolomics studies due to the significant enhancement 

offered in terms of sensitivity, resolution and mass accuracy. For example, Wang et al. 

developed a novel on-line heart-cutting two-dimensional (2D) UPLC-HRMS method for 

comprehensive coverage of both polar and lipid metabolites in a single analytical run.161 

In this method, a C8 pre-column was used to divide the plasma extract into metabolomic 

and lipidomic fractions, with the former analyzed on a C18 column and the later on a T3 

column. This new approach covered 99% features detected by conventional metabolomic 

and lipidomic UPLC-HRMS approaches, with 447 and 289 metabolites from diverse 

classes identified in the positive and negative mode, respectively.161 Some studies have 

combined both GC- and LC-MS platforms to enhance metabolome coverage. A serum 

metabolomics study using GC×GC-TOF-MS and UPLC-QTOF-MS identified a 

metabolome signature of insulin-resistant non-diabetic individuals characterized by 

increased branched chain amino acid biosynthesis, which also correlated with gut 

microbiome functional modules.127  
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1.5.2 CE-MS 

To date, retention and separation of highly charged and polar compounds still 

remains challenging for LC-MS. CE-MS solves this problem with its capability to 

analyze polar ionogenic metabolites in small-volume biological samples. 162, 163 Recently, 

new interface designs for CE-MS have been tested for metabolomics to increase 

metabolite coverage and lower detection limits.164, 165 Gulersonmez and co-workers 

evaluated the use of sheathless CE-MS with a porous sprayer in anionic metabolic 

profiling and demonstrated its high separation efficiency, acceptable repeatability, and 

improved detection limits compared to conventional CE-MS.165 They implemented this 

approach for profiling of intracellular metabolites from glioblastoma cell line extracts and 

identified small organic acids, sugar phosphates and nucleotides by accurate mass and 

migration time matching to chemical standards.165 CE-MS was also investigated for 

tissue metabolic profiling to discriminate advanced adenoma from colorectal cancer, with 

metabolite enrichment analysis revealing altered pathways of protein biosynthesis and 

metabolisms of several amino acids.113  

 

1.5.3 High-throughput MS: direct and flow injection methods 

Large scale metabolic profiling studies involving thousands of samples calls for 

high-throughput analytical platforms, giving rise to the application of DIMS and FIMS in 

metabolomics. Ultrahigh resolution MS detectors such as Orbitrap and FTICR are ideal 

for DIMS or FIMS due to the significant improvement in metabolite annotation accuracy 
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and peak capacity46. Habchi et al. demonstrated FIMS using FTICR with a dynamically 

harmonized cell as a robust analytical tool for large-scale high-throughput metabolomics 

studies.166 With a resolving power greater than 106, mass accuracy less than 1 ppm, and 

accurate relative isotopic mass defect measurements, the number of possible elemental 

compositions was considerably reduced, therefore enhancing compound annotation 

accuracy and efficiency.166 Compared to ESI, nanoESI (nESI) has higher sensitivity with 

reduced ion suppression and enhancement effects owing to the low flow rates.46, 167 

Southam et al. presented a protocol of high resolution spectral-stitching nESI DIMS for 

high-throughput non-targeted metabolomic and lipidomic fingerprinting using an 

automated chip-based ion source coupled to FTICR or Orbitrap MS.46 By recording data 

from a series of overlapping m/z windows and subsequently stitching them together to 

produce a complete spectrum, the dynamic range and sensitivity were considerably 

increased while still maintaining high mass accuracy.46 Recently, Sun et al. developed a 

new plasmonic gold chip for laser desorption/ionization (LDI) TOF/TOF-MS-based 

metabolic profiling of biofluids, with high sensitivity and reproducibility and second-

scale sample analysis speed.128 By coupling with microarrays, this technique allowed for 

automated sampling using only 500 nL of biofluids including serum, cerebrospinal fluid 

and urine.128 For the first time, on-chip LDI-MS was applied for global serum metabolic 

profiling, successfully differentiating patients with non-small-cell lung cancer from 

healthy controls through the use of orthogonal partial least squares discriminant analysis 

(oPLS-DA).128  

 

1.5.4 Ambient MS and Imaging MS 
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The development of ambient MS in the last decade has significantly decreased the  

sample preparation and handling requirements in metabolomics.23 By combining different 

desorption and ionization techniques, ambient MS allows for detection of both polar and 

non-polar, volatile and non-volatile compounds.168 Direct analysis in real time (DART) is 

an open air direct sampling plasma ionization technique, in which the sample is exposed 

to a stream of heated gas flow with excited metastable species that are responsible for 

ionization through gas-phase mechanisms.131, 169 Our group coupled transmission mode 

(TM) DART to IM-MS to perform global metabolic profiling of EBC samples from CF 

patients and controls, and a panel of three metabolites was found to discriminate the two 

groups with excellent cross-validated accuracy by oPLS-DA analysis (Chapter 5).131 Gu 

et al. combined DART-MS, nuclear magnetic resonance (NMR) and multivariate 

statistical methods for metabolomic analysis of serum samples from 27 breast cancer 

patients and 30 healthy controls, providing discrimination between the two classes.170 

Rapid evaporative ionization MS (REIMS) was developed for online tissue sample 

analysis leveraging the detection of compounds in tissue aerosols produced from 

electrosurgical dissection.171 REIMS is highly suitable for intra-operative diagnosis by 

analyzing lipid-based fingerprints obtained in real-time by means of multivariate 

analysis.171 This technique was applied to perform lipidomics analysis during 

electrosurgical dissection of gynecological tissues and successfully discriminated ovarian 

cancer from normal or borderline tissues with accuracies of 93.5% and 90.0%, 

respectively.132 REIMS has also been applied to analyze tissue lipidome from 28 patients 

with colorectal cancer, distinguishing between cancer and normal adjacent mucosa 

(NAM) with an AUC of 0.96 and between NAM and adenoma with an AUC of 0.99.172 
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Lipidomic fingerprints of cancer, healthy mucosa and adenomas were characterized by 

over-expression of long-chain phosphatidylserines and bacterial phosphatidylglycerols, 

plasmalogens and triacylglycerols, and ceramides, respectively.172 MS-based imaging 

capabilities can be achieved with DESI, among other ambient MS techniques. DESI-MSI 

allows measuring spatial distribution of metabolites and lipids in tissue samples, 

providing chemical information related to histopathological states that could be utilized 

for disease diagnosis and resection guidance.6, 134, 173, 174 In DESI, electrospray charged 

droplets are directed onto the sample surface to create a desorption event, followed by 

analyte ionization via ESI mechanisms.175 DESI-MSI has the advantages of fast sample 

analysis and little sample preparation, and it has been applied for diagnosis of brain 

tumor,133 oral tongue squamous cell carcinoma6 and PCa134. Banerjee et al. applied 

DESI-MSI for metabolite and lipid profiling of human cancerous and normal prostate 

tissues and detected PCa with ~90% accuracy using LASSO.134 The authors found the 

abundance ratio of glucose/citrate to be capable of identifying PCa specimens, which 

showed great promise for real-time diagnosis to guide resection in the surgery.134 

Secondary electrospray ionization (SESI) MS was developed for rapid and 

sensitive analysis of trace volatile compounds in breath and vapors.176, 177 In SESI, neutral 

vapors are ionized by interacting with a pure electrospray solvent at atmospheric pressure 

via gas phase chemical ionization.177, 178 Gaisl et al. performed real-time exhaled breath 

profiling of 30 CF patients and 30 controls by SESI-HRMS.102 From a total of 3273 

features detected, 49 were found to be have significantly changes between CF and control 

samples, including several fatty acids and compounds related to airway bacteria 

colonization.102 Martinez-Lozano Sinues et al. coupled a laboratory-built SESI ion source 
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and IT mass spectrometer to analyze breath samples from 14 breast cancer patients and 

11 controls.179 SVM modeling analysis of the breath profiles discriminated breast cancer 

patients from healthy controls with high classification sensitivity and specificity above 

90%.179  

 

1.5.5 IM-MS 

 Although still relatively new in terms of applications to non-targeted 

metabolomics, a few examples in the literature already explore the use of IM-MS in 

metabolic profiling of biological samples. Paglia and Astarita, for example, established a 

protocol for metabolic and lipidomic profiling by using a UPLC-TWIM-MS platform.52 

The addition of IMS to UPLC-MS was shown to provide increased peak capacity and 

spectral clarity, with various classes of lipids and metabolites mapped to distinct trend 

lines on the 2D CCS‒mass plot.52 The authors also demonstrated the utility of LC-

TWIM-MS for improving metabolite identification confidence, thanks to the use of CCS 

as an additional orthogonal descriptor and the increased fragmentation specificity 

obtained following TWIM separations.52 In another study, the performance of UPLC-IM-

MS was evaluated for human plasma and HaCaT cell metabolic profiling, with results 

showing the benefits of IMS in reducing chemical noise, increasing peak capacity, and 

improving isomer separation and compound annotation.180 Zhang et al. established a 

novel metabolic profiling platform by combining RapidFire ultra-fast online SPE with an 

IM-MS system, reporting that this technique was capable of profiling endogenous 

metabolites and xenobiotics in human plasma and urine with excellent reproducibility 

and sensitivity, and a 10-s sample-to-sample duty cycle.129 The authors applied SPE-IM-
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MS for global metabolic profiling of urine samples from type 1 diabetes (T1D) patients 

and controls, and they identified disaccharides and a previously unreported isomer with 

significant alterations between T1D patients and controls.129 Maleki et al. investigated the 

potential of using IM-MS coupled with gas-phase hydrogen/deuterium exchange (HDX) 

for metabolomics, and showed that the combination of ion mobility with HDX reactivity 

data facilitated metabolite identification.181  

 

1.5.6 Multiplexed activity metabolomics  

 In a recent study by Earl et al., a multiplexed activity metabolomics (MAM) 

method was developed by combining cytometry and single-cell biology with 

metabolomic arrays in non-targeted HPLC-MS analysis, with the aim to identify 

anticancer metabolites that could target primary human leukemia cells.182 In this 

methodology, microbial crude extracts were subject to split-flow polarity-switching 

HPLC-MS to generate metabolomics data and simultaneously produce metabolomic 

arrays in a microtiter plate. Bone marrow mononuclear cells from an acute myeloid 

leukemia patient were added and incubated with the metabolomic arrays in the microtiter 

plate wells to allow for interaction and biological response production. Fluorescence 

cytometry cell barcoding and immunoassays were used for quantitation of biological 

responses for each cell type.182 Targeting effects of the metabolomic arrays were 

identified by correlation analysis of the bioassay result and metabolomics data from 

HPLC-MS analysis. Using this approach, the authors discovered a microbial 

anthracycline that could target leukemia blasts and a polyene macrolactam that could 

target either leukemia blasts or nonmalignant cells, depending on the 
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photoisomerization.182 MAM therefore proved to be useful for elucidating the specific 

targeting effects of microbial metabolites to the bioactivities of different types of cells 

from cancer patients, demonstrating a high potential in drug discovery applications.182  

 

1.6 Data Analysis 

 Development of robust and efficient data processing software tools for 

metabolomics is challenging due to the complex and large-volume nature of the 

associated data, and the diverse analytical platforms used by different laboratories.183, 184 

The most widely used free software tools for LC-MS and GC-MS-based metabolomics 

data preprocessing and analysis have been recently reviewed by Spicer et al., with 

XCMS185 and MZmine 2186 being the most popular ones.184 However, some of these 

software packages suffer from problems in feature extraction and integration, leading to 

incentives to develop new algorithms for improved feature quantification. For example, a 

new metabolomics data preprocessing method named bakedpi was developed to reduce 

unnecessary quantification variability in XCMS or MZmine 2, by applying intensity-

weighted bivariate kernel density estimation to the 2D m/z−retention time space of a 

metasample created from pooling of all samples in an experiment.187 Mass spectral 

feature list optimizer (MS-FLO) was developed by DeFelice et al. for non-targeted 

metabolomics data processing, which could identify the erroneous features including 

duplicate peaks, isotopic peaks and adducts that failed to be removed or grouped by 

common software packages based on retention time alignment, accurate mass matching, 

and peak height correlation.188 Common software packages for LC-MS metabolomics 

data processing cannot handle FIMS data directly due to the high variability of peak 
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shapes in the flowgram, therefore a software tool named proFIA was developed for 

automatic preprocessing of FI-HRMS data.183 In proFIA, an innovative approach was 

adopted for feature detection and quantification using analyte flowgram modeling by 

taking into account matrix effects, solvent baseline, and experimental noise.183  

Various normalization methods have been applied to non-targeted metabolomics 

datasets with extracted spectral features to reduce unwanted biological and experimental 

variations,189 including MS total useful signal (MSTUS) normalization,190 median 

normalization,191 probabilistic quotient normalization (PQN),192 quality control sample 

based robust LOESS (locally estimated scatterplot smoothing) signal correction (QC-

RLSC),16 etc. Normalization methods should be carefully selected to obtain correct 

results from non-targeted metabolomics studies. Li et al. developed an online tool named 

NOREVA for comprehensive evaluation of the performance of 24 popular MS-based 

metabolomics data normalization methods using multiple criteria, allowing users to 

choose the best normalization method for their dataset.193 Gagnebin et al. proposed a 

normalization strategy with three sequential steps: normalization by osmolality dilution, 

QC-RLSC normalization, and MSTUS or PQN normalization.137 Application of this 

strategy to UPLC-MS urine metabolomics data collected from patients with kidney 

failure and healthy controls showed the sequential normalization method improved the 

predictive ability and reduced the complexity of the oPLS-DA models.137 An R-based 

mixture modeling approach named mixnorm was developed for large-scale non-targeted 

GC-MS metabolomics data normalization.194 This method accounted for batch order, run 

order, and threshold of detectability, making it more suitable than other normalization 
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methods for handling low abundance metabolites with varied detectability thresholds 

across batches.194  

 Metabolic features with normalized abundances are typically analyzed by 

univariate and multivariate methods to select discriminant metabolites that are 

statistically significant and important for sample classification. Univariate analyses 

consist of parametric tests including Student’s t-test, 12, 83, 113, 144 a nested analysis of 

variance (ANOVA) test,6, 83 and non-parametric tests including the Mann-Witney U 

test,12, 127 Wilcoxon rank-sum test,132 and Kruskal–Wallis test132, 133.195, 196 When 

performing univariate analyses on multiple potential biomarkers, Bonferroni correction197 

or Benjamini-Hochberg procedure198 should be applied to adjust the false discovery rate. 

Multivariate analyses consist of unsupervised methods such as principal component 

analysis (PCA),1, 3, 74, 75, 104, 121, 132, 135 supervised classification methods such as PLS-DA 

or oPLS-DA,1, 3, 12, 74, 75, 83, 104, 121, 130, 135 linear discriminant analysis (LDA),132 SVMs,102, 

179, 199, random forests,3, 94 etc.200-204 For feature selection, commonly used approaches 

include univariate tests, PLS-DA model-embedded features including interval PLS-DA 

(iPLS-DA),130 variable importance on projection (VIP) and loading weights,202 recursive 

feature elimination,4 greedy feature-selection for regularized least-squares (RLS) 

(GreedyRLS),68, 205 and LASSO regression77, 79.  

ominiClassifier was developed as a prediction modeling method for big data 

analysis, where the prediction model parameters are optimized using cross validation and 

the final model validated by an external dataset.206 It has been applied to analyze UPLC-

MS serum metabolomics data from rats with traumatic brain injury.207 From the 120 

models built based on various classifiers, the best models were chosen, yielding a panel 
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of 26 lipid compounds which differentiated injured and uninjured samples with 85.3% 

accuracy.207  

Huang et al. described a novel strategy to construct pathway-based metabolomics 

data from the original dataset, which was then subject to feature selection and 

multivariate modeling for classification.208 This method was tested on a dataset generated 

by the metabolic profiling of breast cancer and control blood samples using LC-MS and 

GC-MS, with the results showing increased classification power compared to metabolite-

based data and revealing potential pathways associated with breast cancer.208 

Recently, deep learning (DL) has gained attention in many aspects in 

computational biology and genomics research.209-212 DL is superior to shallow machine 

learning methods in the sense that it transforms simple features of the data into a high-

level hierarchical structure with multiple layers of neurons to maximize the model 

accuracy and find robust features.209, 213 Alakwaa et al. evaluated the performance of DL 

in the analysis of data collected from GC-MS based metabolic profiling of breast cancer 

tissue samples.213 Compared with other commonly used machine learning methods, DL 

yielded the highest average AUC of 0.93 for classification of estrogen receptor status in 

breast cancer, and revealed significantly enriched pathways of protein digestion and 

absorption, and ATP-binding cassette transporters.213 

 

1.7 Metabolite Annotation and Identification 

 The major challenge in non-targeted metabolomics data analysis is the 

comprehensive and accurate identification of metabolites. The most common approach is 
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data-dependent acquisition (DDA), in which a tandem MS scan is triggered for a 

precursor ion that passes a certain intensity threshold in the MS survey scan.214, 215 DDA 

is capable of producing good quality MS/MS spectra, however, it is biased towards high 

abundant precursor ions and therefore the coverage is not ideal.216-218 To improve MS/MS 

efficiency and the coverage for low signal intensity precursor ions, data independent 

acquisition (DIA) approaches have been developed, including sequential window 

acquisition of all theoretical mass spectra (SWATH-MS),219, 220 all ion fragmentation 

(AIF),221 and MSE222, for unbiased and systematic generation of MS/MS data.215, 223, 224 In 

DIA, MS/MS is acquired for each predefined m/z interval without the need for a survey 

scan, thus it is independent of the precursor ion intensity.224, 225 The common strategy for 

metabolite identification is to compare experimental MS/MS spectra to those in reference 

libraries including NIST and Wiley for GC-MS, and Metlin, Massbank, mzCloud, the 

Human Metabolome Database (HMDB), and LipidMaps for LC-MS/MS.215, 217, 223, 226 A 

detailed review on databases and software tools for MS/MS identification of small 

molecule metabolites was reported by Kind et al.215 However, accurate and unique 

compound identification using LC-MS/MS still remains a bottleneck in non-targeted 

metabolomics studies due to the limited number of MS/MS spectra in public databases, 

and the variation of MS/MS relative ion abundances across different instruments and 

conditions.217 These limitations have triggered new developments of in-house databases 

and algorithms to improve metabolite identification coverage and accuracy. Along these 

lines, a LC-MS/MS metabolomic spectral library was constructed using SWATH 

acquisition on 532 metabolites from HMDB, at 16 discrete collision energies with a wide 

range from 5 to 100 eV, aiming to generate more informative MS/MS for DIA metabolite 
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identification.223 An in-house LC-HRMS metabolomics library of 408 metabolites was 

created using all ion fragmentation (ALF) acquisition, with product/precursor ion ratio 

added to conventional identification criteria based on accurate mass, retention time and 

MS/MS.221 Chen et al. developed a bioinformatics tool named MetaboDIA to allow users 

to build customized MS/MS spectral libraries using their own consensus DDA data, 

maximizing the utility of MS/MS data for metabolite identification.217 Uppal et al. 

implemented an automated workflow using a multistage scoring algorithm named 

xMSannotator to assign confidence levels to tentative identities of spectral features from 

database searches, accounting for intensity correlations, retention time clustering, mass 

defect, isotope and adduct characteristics, and biological pathway information.227 Li et al. 

developed MetDIA to analyze metabolomics data acquired using SWATH by targeted 

extraction of metabolites according to accurate mass match to 786 metabolites from an 

in-house spectral library.224 Metabolite identification was based on the correlation score 

calculated for the extracted ion chromatograms of the precursor and fragments and the 

similarity score calculated between the extracted experimental MS/MS and the 

corresponding MS/MS spectra in the library.224 When applied to biological sample 

analysis, MetDIA identified 152, 138 and 192 metabolites in human serum, E. coli 

bacteria, and rat liver tissue, respectively.224 In addition to SWATH library search, LC 

retention time prediction could further support metabolite identification when authentic 

standards are not available.228-231 Bruderer et al. evaluated LC retention time prediction 

for a metabolomics database with 532 compounds in HMDB.231 A quantitative structure 

retention relationship model was built with 16 compounds representing the whole library 

for retention time prediction, using logD2 (consensus logP and classic pKa) and the 
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molecular volume as molecular descriptors, which was validated on two types of C18 

columns with comparable prediction accuracy.231 Combined with SWATH MS/MS 

spectra, LC retention time prediction aided in assignment of isomeric metabolites in 

human urine, enhancing metabolite identification confidence and reducing false 

positives.231  

Recently, a unified method to annotate metabolites by integrating three 

cheminformatics tools was proposed by Lai et al.,232 in which BinVestigate was used to 

query BinBase, a large GC-MS non-targeted metabolomics database containing 1,561 

studies with 114,795 samples, to obtain biological metadata of the metabolites. Then, 

MS-DIAL was applied for spectral deconvolution for unknown compounds from GC-MS 

or LC-MS/MS data, followed by the use of MS-FINDER for formula prediction and 

structural annotation of compounds.232 By adding to MS-FINDER all the Metabolic In 

silico Network Expansions Database (MINE-DB) virtual epimetabolites, predicted by 

applying enzymatic transformations on KEGG metabolites, this novel systematic strategy 

offered new possibilities for improving the chances of correct annotation of unknown 

metabolites.232 For example, an unknown compound was identified and confirmed as N-

methyl-uridine monophosphate (UMP), a predicted metabolite in MINE-DB that has 

never been detected in biological samples.232  

With the increasing popularity of IM-MS technology in metabolomics research, 

compound identification accuracy is improved by the use of CCS as an additional 

physiochemical descriptor to provide structural information of the ion.233 To date, many 

CCS databases have been constructed to support metabolite identification by 

measurement of a large number of standards using commercial IM-MS instruments or by 
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CCS prediction using computational tools.234 Zheng et al. created a CCS database of over 

500 metabolites and xenobiotics measured by DTIM-MS.235 Zhou and coworkers 

developed a support vector regression-based CCS prediction algorithm with 14 molecular 

descriptors, which was validated to have higher prediction precision than MOBCAL (a 

software for theoretical CCS calculation) using an external set of metabolites.233 With 

this approach, the authors generated a large-scale database of predicted CCS for 35,203 

HMDB metabolites named MetCCS.233 A web server MetCCS predictor was later 

developed by the same group for rapid prediction of compound CCS values using HMDB 

ID or other chemical identifiers from user input.236 

 

1.8 Pathway Mapping and Multi-omics Analysis 

 Metabolic pathway mapping and multi-omics analysis by combining 

metabolomics data with transcriptomics and proteomics data could offer systematic 

understanding of the dynamic interactions among biomolecules in different layers of the 

hierarchical biological system.18 Popular bioinformatics tools for pathway analysis in 

non-targeted metabolomics studies include MetaboAnalyst,1, 3, 113, 135, 237 Galaxy-M,238 

mummichog,239 and Open MS240. In 2018, MetaboAnalyst was updated to version 4.0 

with a new feature to integrate metabolomics, metagenomics and transcriptomics data for 

network analysis.61 Another tool to link metabolomics data to other omics data is 

xMWAS, which is capable performing integrative analysis of four datasets from different 

omics platforms, differential network analysis and grouping of related metabolites, genes 

and proteins into communities.241 WikiPathways is an open and collaborative platform 

for the research community to edit and curate pathway information obtained from 
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integrated transcriptomics, proteomics and metabolomics data, promoting the growth and 

accuracy of the pathway database.62, 242 A novel debiased sparse partial correlation 

algorithm was developed to calculate partial correlation networks among features in 

large-scale metabolomics data using the CorrelationCalculator program, and the network 

can be visualized using the Metscape tool.243 This algorithm aided the annotation of 

unknown features in non-targeted metabolomics by comparing with related features that 

were identified in the same network or adjacent subnetwork, providing the chance to 

discover unexpected interactions between metabolites.243 

Most of the current pathway analysis software tools require preprocessed data 

and/or validation of metabolite identities using other programs,244 therefore increasing the 

total time required for analysis and the complexity of the workflow. Huan et al. provided 

an online XCMS workflow encompassing all steps in global metabolomics data analysis 

including raw LC-MS data preprocessing, differential analysis, dysregulated pathway 

analysis, and combining proteomic and transcriptomic data to provide a deeper insight 

into metabolic mechanisms on a system-wide scale, which significantly increased 

analysis efficiency with the whole process taking around 1.5-3.5 h.63, 244 Chemical 

similarity enrichment analysis (ChemRICH) was developed by Barupal et al. as an 

alternative approach to pathway mapping for metabolomics studies. In this approach 

metabolites are clustered into non-overlapping sets based on chemical structure similarity 

and ontologies, from which statistical significant metabolite sets were identified by 

Kolmogorov-Smirnov testing.245 Using this method to analyze published plasma 

metabolomics data from non-obese diabetic mice and controls, 90% coverage was 

achieved for the identified metabolites, in contrast to only 40% coverage using classical 
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pathway mapping.245 Significant altered metabolite sets including complex lipids, branch-

chain amino acids and compounds related to carbohydrate metabolism were found, which 

were not clearly identified in the original literature.245   

 

1.9 Limitations and Outlook 

Rapid developments in MS-based non-targeted metabolic profiling strategies in 

the last decade have greatly promoted disease biomarker discovery in clinical 

metabolomics science. Nonetheless, significant efforts have yet to be made towards 

standardization of workflows and stringent validation of the discovered biomarkers using 

targeted assays, independent patient cohorts with larger numbers of samples, and 

repetition on different analytical platforms in different laboratories.246, 247 In addition, 

there is still space for improvement in metabolite coverage and efficient and accurate 

compound identification to ensure correct biological interpretation. As more high-

throughput large-scale MS-based metabolomics experiments are being performed, the 

number and size of the datasets continues to grow. Public data repositories such as 

Metabolomics Workbench 248 and MetaboLights 249 make it possible for researchers from 

different laboratories around the world to share and re-analyze data,250 expanding our 

knowledge gained from such experiments and promoting the healthy growth of the 

metabolomics community.250, 251 At present, metabolomics is at the research laboratory-

based discovery level. With continuous and collaborative efforts from the metabolomics 

community, we see hope for a true translation into the clinic in the future. This transition 

will provide tremendous benefit for improving early disease diagnosis to help guide 



41 
 

clinical intervention, ultimately leading to higher survival rates, better patient care, and 

lower health care costs.30
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PART I: LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY BASED 

NON-TARGETED METABOLOMICS FOR DISEASE DETECTION AND 

EARLY PREDICTION
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CHAPTER 2. PROSTATE CANCER DETECTION BY ULTRAPERFORMANCE 

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY SERUM 

METABOLOMICS 

 
 
 
Adapted with permission from  
Zang X†, Jones CM†, Long TQ, Monge ME, Zhou M, Walker LD, Mezencev R, Gray A, 
McDonald JF, Fernández FM. Feasibility of detecting prostate cancer by 
ultraperformance liquid chromatography-mass spectrometry serum metabolomics. 
Journal of Proteome Research. 2014, 13, 3444-3454. Copyright © 2014 American 
Chemical Society. 
†equal contributing author 

C. M. Jones and M. Zhou optimized sample preparation and UPLC-MS methods and 
acquired UPLC-MS data. C. M. Jones and M.E. Monge processed UPLC-MS data and 
performed data analysis. T.Q. Long performed multivariate statistical analysis. X. Zang 
generated subpanels of discriminant features based on their prevalence in samples and 
searched database for tentative annotation of all discriminant metabolites. X. Zang, M.E. 
Monge and C. M. Jones conducted UPLC-MS/MS experiments. X. Zang analyzed UPLC-
MS/MS data to confirm discriminant metabolite identifications, performed chemical 
standard validation experiments with assistance from M. E. Monge., R. Mezencev, C. M 
Jones, X. Zang and M.E. Monge determined the biological relevance of discriminant 
metabolites.  
 

2.1 Abstract 

Prostate cancer (PCa) is the second leading cause of cancer-related mortality in 

American men. The prevalent diagnosis method is based on the serum Prostate-specific 

antigen (PSA) screening test, which suffers from low specificity, over-diagnosis and 

over-treatment. In this study, non-targeted metabolomic profiling of age-matched serum 

samples from PCa patients and control individuals was performed using ultra 

performance liquid chromatography coupled to high resolution mass spectrometry 

(UPLC-MS) and machine learning methods. A metabolite-based in vitro diagnostic 

multivariate index assay (IVDMIA) was developed to predict the presence of PCa in 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jones%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Long%20TQ%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Monge%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Walker%20LD%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mezencev%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gray%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=McDonald%20JF%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fern%C3%A1ndez%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=24922590
https://www.ncbi.nlm.nih.gov/pubmed/24922590
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serum samples with high classification sensitivity, specificity and accuracy. A panel of 40 

metabolic features was found to be differential with 92.1% sensitivity, 94.3% specificity, 

and 93.0% accuracy. The performance of the IVDMIA was higher than the prevalent PSA 

test. Within the discriminant panel, 31 metabolites were identified by MS and MS/MS, 

with 10 further confirmed chromatographically by standards. The identification of fatty 

acids, amino acids, lysophospholipids, and bile acids provided insights into the metabolic 

alterations associated with the disease. In addition, several metabolites were mapped to 

the steroid hormone biosynthesis pathway, providing further insights into PCa related 

biological pathway perturbation. With additional work, the results presented here show 

great potential towards implementation in clinical settings. 

 

2.2 Prostate Cancer Diagnosis 

 

2.2.1 Prostate Cancer Screening  

Prostate cancer (PCa) is the second leading cause of cancer-related mortality in 

American men, with ~29,430 estimated deaths in the United States in 2018.1 The 

prevalent diagnosis method is based on the triad of digital rectal examination (DRE), 

blood Prostate-Specific Antigen (PSA) measurement, and ultrasound-guided prostate 

biopsy. Although its death rate has dropped 52% from 1993 to 2015,1 the use of PSA as a 

diagnostic serum marker still presents several drawbacks. The concentration of this 

protein in the blood stream increases during the development of cancer, but also can be 

secreted as a result of benign prostatic hyperplasia, prostatitis, or other traumas to 

prostate cells.2 Therefore, this method suffers from low specificity and consequent over-
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diagnosis and over-treatment.3-6 In addition, DRE has low detection rate for non-palpable 

growth in PCa tumors7 and transrectal ultrasound-guided biopsy is limited by 

undersampling significant cases and oversampling insignificant ones8.  

 

2.2.2 Overview of Biomarker Discovery Approaches for Prostate Cancer Detection 

The drawbacks associated to the current PCa diagnostic methods have led to an 

increased interest in using non-targeted metabolite profiling to discover new potential 

metabolic biomarkers that could improve the specificity of PCa diagnosis.9-11 Different 

metabolites have been suggested in the literature to be considered as potential biomarkers 

for PCa, but they still need further validation before reaching clinical practice. 9-11 

Different metabolic alterations have been associated with PCa. For example, 

tissue sarcosine levels have been shown to increase in the aggressive form of the disease 

during PCa progression to metastasis, but differences in urine were much less marked, 

using both LC-MS and GC-MS.12 These results have been very prominent but somewhat 

controversial as other targeted studies failed in the attempt of differentiating controls 

from cancer patients based on sarcosine concentration in biological fluids and cancerous 

tissues.9, 13-15 The analysis of cancerous tissues by proton high-resolution magic angle 

spinning NMR spectroscopy has shown a decrease in the concentrations of citrate and 

polyamines, and increases in cholines, glycerophospholipids, and lactate concentrations 

during PCa proliferation.16, 17 Increased levels of cholesterol as well as alterations in 

amino acid metabolism were detected in metastatic bone samples by GC-MS.18 However, 

all of these studies included too few patients to offer strong leads on the metabolic 

alterations associated with PCa. McDunn et al. analyzed metabolic profiles of from 331 
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prostate tumor tissues and 178 tumor-free tissues by GC-MS and LC-MS/MS and 

revealed significant decreased levels of metabolites associated with cell energetics, and 

increased levels of amino acids, peptides, carnitines, cofactors, lipids, nucleotides and 

metabolites related to stress in tumor tissues.19 The authors showed that inclusion of 

metabolite markers improved the AUC for predictions of organ confinement and 5-year 

recurrence from of 0.53 to 0.62 and 0.53 to 0.64, respectively.19 A non-targeted metabolic 

profiling study analyzed prostate tissue samples from 48 PCa patients by NMR and 

distinguished cancerous from normal adjacent tissue with a sensitivity of 86.9% and a 

specificity of 85.2% using multivariate analysis.20 Significantly changed metabolites 

included choline, lactate, glutamate, glycine, leucine, glucose, and succinate, among 

others, and concentrations of spermine, citrate and the ratio 

(choline+creatine+polyamines)/citrate were found to be significantly altered between 

high and low grade PCa.20 Interestingly, metabolic profiles were significantly correlated 

to tissue composition, defined as the percentage of benign glandular tissue, stroma and 

cancer, but not to serum PSA levels in patients.20 Zhang et al. conducted non-targeted 

LC-MS based metabolic profiling of urine samples from 60 PCa patients and 30 healthy 

controls and identified a panel of four metabolites including ureidoisobutyric acid, 

indolylacryloyglycine, acetylvanilalinine and 2-oxoglutarate that detected PCa with an 

AUC of 0.896, comparable to the value of 0.94 provided by PSA test.21 A panel of plasma 

lipids that included phosphatidylethanolamines, ether-linked phosphatidylethanolamines, 

and ether-linked phosphatidylcholines was proposed to discriminate PCa patients from 

controls through direct infusion ESI tandem MS.22 The authors demonstrated that a 

combination of multiple biomarkers yielded better predictive power for the diagnosis of 
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PCa than univariate analysis of single lipid species when analyzing 105 PCa patients and 

36 controls. However, the predictive power was not compared with that of PSA, as this 

information was not available at the time of cohort design.22  

 

2.3 Hypothesis 

In this study, we hypothesize that a specific signature is associated with PCa 

serum metabolic profile, which is distinct from that of age-matched non-PCa controls 

based on a panel of discriminant metabolites. To test this hypothesis, we performed a LC-

MS based non-targeted metabolomics study of serum samples collected from PCa 

patients and controls (without PCa), in an attempt to detect PCa by developing a 

metabolite-based in vitro diagnostic multivariate index assay (IVDMIA)23 based on 

machine learning algorithms. 

 

2.4 Materials and Methods 

 

2.4.1 Chemicals 

Healthy human blood serum (S7023-50 mL) and acetic acid (≥99.7%) were 

purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). Omnisolv LC-MS grade 

acetonitrile, Omnisolv high purity dichloromethane and HPLC grade acetone were 

purchased from EMD (Billerica, MA, USA). LC-MS grade methanol and 2-propanol 

were purchased from J.T. Baker Avantor Performance Materials, Inc. (Center Valley, PA, 

USA). Ultrapure water with 18.2 MΩ cm resistivity (Barnstead Nanopure UV ultrapure 

water system, USA) was used to prepare mobile phases. Uric acid (≥99%), azelaic acid 
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(98%), undecanedioic acid (97%), heptadecanoic acid (≥98%) and decanoic acid (≥98%) 

were purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). Hexadecanedioic acid 

(98%) was purchased from Ark Pharm, Inc. (Libertyville, IL, USA). Phenylalanyl 

phenylalanine was purchased from MP Biomedicals (Solon, OH, USA). Phenylacetyl 

glutamine was purchased from Bachem (Hauptstrasse, Bubendorf, Sitzerland). Indoxyl 

sulfate potassium was purchased from Alfa Aesar (Ward Hill, MA, USA). 

Lysophosphatidylcholine (LPC(18:0/0:0)) (1-stearoyl-2-hydroxy-sn-glycerol-3-

phosphocholine was purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). 

 

2.4.2 Cohort Description 

Age-matched blood serum samples were obtained from 64 PCa patients (age range 

49-65, mean (standard deviation (SD)) age 59 (4) years) and 50 PCa free controls (age 

range: 45-76, mean age 57 (7) years). At the 0.05 level, the population means of PCa and 

controls were not significantly different with the two-sample t-test. The cohort ethnicity 

was as follows: 28 African American (24.6%); 76 Caucasian (66.7%); 5 Hispanic (4.4%); 

2 Asian (1.8%); 2 Jewish ancestry (1.8%); and 1 unknown (0.9%). After approval by the 

Institutional Review Board (IRB), blood samples were collected at Saint Joseph´s 

Hospital of Atlanta (GA, USA) by venipuncture from each donor into evacuated blood 

collection tubes that contained no anticoagulant. Serum was obtained by centrifugation at 

5000 rpm for 5 min at 4 °C. Immediately after centrifugation, 200 µL aliquots of serum 

were frozen and stored at -80 °C for further use. The sample collection and storage 

procedures for PCa patients and controls were identical. Gleason scores were obtained for 

61 PCa patients. 
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2.4.3 Sample Preparation  

A stock sample of healthy human blood serum was used to develop the serum sample 

preparation protocol and UPLC-MS method. Serum samples were thawed on ice, and 

protein precipitation was performed by the addition of a mixture of acetone, acetonitrile 

and methanol (1:1:1 v/v) to 100 µL of serum in a 3:1 volume ratio. Samples were vortex-

mixed for 20 s, and centrifuged at 16000 × g for 5 min. After centrifugation, 800 µL of 

dichloromethane were added to 350 µL of supernatant, and vortex-mixed. Following the 

addition of 250 µL of deionized water, samples were vortex-mixed again to extract the 

non-polar lipid fraction. The aqueous phase was used for metabolite analysis by UPLC-

MS. Samples were randomly separated into 7 batches and consecutively analyzed.  

 

2.4.4 Metabolic Profiling by UPLC-MS 

UPLC-MS analysis was performed using a Waters ACQUITY Ultra Performance LC 

(Waters Corporation, Manchester, UK) system, fitted with a Waters ACQUITY UPLC 

BEH C18 column (2.1 × 50 mm, 1.7 µm particle size), and coupled to a high resolution 

Synapt G2 high-definition mass spectrometry (HDMS) system (Waters Corporation, 

Manchester, UK). The Synapt G2 HDMS is a hybrid quadrupole-ion mobility-orthogonal 

acceleration time-of-flight (TOF) instrument with typical resolving power of 20,000 Full 

width at half maximum (FWHM) and mass accuracy of 9 ppm at m/z 554.2615. The 

instrument was operated in negative ion mode with a probe capillary voltage of 2.3 kV, 

and a sampling cone voltage of 45 V. The source and desolvation temperatures were 

120 °C and 350 °C, respectively; and the nitrogen desolvation flow rate was 650 L h-1. 
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The mass spectrometer was calibrated across the range of m/z 50-1800 using a 0.5 mM 

sodium formate solution prepared in 90:10 2-propanol:water v/v. Data were mass 

corrected during acquisition using a leucine enkephalin reference spray infused at 2 µL 

min-1. Data were acquired in the range of m/z 50-1750 and the scan time was set to 1 s. 

Data acquisition and processing was carried out using MassLynx v4.1. The 

chromatographic method for sample analysis involved elution with acetonitrile (mobile 

phase A) and water with 0.1% acetic acid (mobile phase B) using the following gradient 

program: 0-1 min 0-10% A; 1-2.5 min 10-15% A; 2.5-4 min 15-22% A; 4-6 min 22-38% 

A; 6-9 min 38-65% A; 9-12 min 65-80% A; 12-16 min 80-100% A; 16-18 min 100% A. 

The flow rate was constant at 0.25 mL min-1 for 12 min. It was increased to 0.30 mL min-

1 between 12 and 16 min, and from 0.30 to 0.45 mL min-1 between 16 and 18 min. The 

gradient was returned to its initial conditions over a period of 8 minutes after each sample 

injection. The column temperature was set to 35 °C, the autosampler tray temperature 

was set to 5 °C, and the injection volume was 10 µL. UPLC-tandem mass spectrometry 

(MS/MS) experiments were performed by acquiring mass spectra with applied voltages 

between 5 and 50 V in the trap cell, using ultra purity argon (≥ 99.999%) as the collision 

gas. The instrument was calibrated before analysis and solvent and sample preparation 

blanks were jointly analyzed with the samples in a random order. 

 

2.4.5 Data Analysis 

After UPLC-MS analysis, metabolic features (retention time (Rt), m/z pairs) were 

extracted from chromatograms using MarkerLynx XS software. This procedure involved 

chromatogram alignment, peak picking and integration, peak area extraction, and 
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normalization. The matrix containing sample peak areas for each feature (Rt, m/z) was 

utilized to build a model for sample classification and to find the minimum set of 

discriminant features by means of linear support vector machines (SVMs).24 This 

supervised classification technique is effective at handling high dimensionality data as 

those produced in the work described in this chapter. For a binary classification problem, 

linearly-separable samples represented as a row vector x, had membership of two classes 

g (= H or D), where H stands for control and D for PCa disease with labels c = -1 for 

class H, and +1 for class D. In order to build the classification model, 70% of the samples 

were randomly selected as a training set, and 30% as a test set. Within the training set, 

10% of samples were used for validation and to find the minimum set of discriminant 

features that maximized accuracy in the classification through a recursive feature 

elimination (RFE) method.25 The decision function that separated the two classes, defined 

here as “PCa metabolic score” for the IVDMIA23, was as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚 = 𝑚𝑚 + �𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

𝐽𝐽

𝑗𝑗=1

       [1] 

𝑔𝑔(𝒙𝒙𝑖𝑖) = 𝑠𝑠𝑔𝑔𝑠𝑠�𝒘𝒘𝒙𝒙𝑖𝑖′  + 𝑚𝑚� = 𝑠𝑠𝑔𝑔𝑠𝑠(𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚)       [2] 

where w and b are the weight and bias parameters that were determined from the training 

set, i is the sample number, j is the feature number and J is the total number of features. 

The sign of the PCa metabolic score determined which class a sample was assigned to: 

class H if negative and class D if positive. In this classification function, the two classes 

were divided in the dataspace by a hyperplane 𝒘𝒘𝒙𝒙′ + 𝑚𝑚 = 0 that maximized the margins 

between samples of different classes. The margin between the two classes was defined 

such that:  
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 𝒘𝒘𝒙𝒙′ + 𝑚𝑚 ≥ 1, 𝑚𝑚 = +1                [3] 

𝒘𝒘𝒙𝒙′ + 𝑚𝑚 ≤ −1,      𝑚𝑚 = −1              [4] 

To estimate the classification and feature selection performance, ten iterative validations 

were performed to randomly select the training and test sets. The statistical significance 

of the model was further assessed through hypothesis testing by permutation tests. No 

assumptions were made in this non-parametric approach to hypothesis testing regarding 

the data distribution, and the p value was computed as the cumulative sum using the 

empirical distribution. Two permutation tests were performed using 100 permutation 

samples with the following null hypothesis:  

i) Null hypothesis 1: feature and labels (positive/negative) are independent (i.e. 

indifference when class labels are permutated).  

ii) Null hypothesis 2: features are independent within each class (i.e. indifference 

when value of each features are permutated within each class).   

If the p value < α (α=0.05), the null hypothesis H0 was rejected; otherwise the observed 

result was not statistically significant.  

Additionally, principal component analysis (PCA) was used to evaluate the 

performance of all extracted metabolic features or subsets of them in an unsupervised 

manner using MATLAB R2011b (Version 7.13.0, The MathWorks, Inc., Natick, MA, 

USA) and the PLS Toolbox (v.6.71, Eigenvector Research, Inc., Wenatchee, WA, USA). 

Data were preprocessed by autoscaling. 

 

2.4.6 Metabolite Identification Procedure 

Compound identification was attempted for the 40 discriminant features remaining 
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after the feature selection processes. Due to the biological complexity of serum samples, 

adduct ion analysis was first performed to ensure the unambiguous assignment of the 

signal of interest in each mass spectrum. Adduct ions corresponding to SVM-selected 

variables that were investigated in the mass spectra included [M - H]-, [M + Cl]-, [M + 

CH3COO]-, [M + HCOO]-, [M + Na - 2H]-, [M + K - 2H]-, [M - H2O - H]- and [M + H2O 

- H]-, which are typically observed in negative ion mode ESI. The expected m/z values for 

common adduct species were calculated and compared with the experimental values from 

peaks within the spectra. For spectra in which no confirmatory adducts were present, the 

accurate mass of the candidate neutral molecule was calculated based on the assumption 

that the peak of interest corresponded to [M - H]-. Elemental formulae were generated 

based on the mass accuracy of the peak of interest and isotopic patterns with a mass error 

of 8 mDa, using MassLynx 4.1. The list of elements included in the search was C, H, N, 

O, P, S, and Cl. The list of generated elemental formulae were searched against the 

Metlin database26 and the Human Metabolome Database (HMDB)27 in order to determine 

the possible endogenous metabolite candidates. The MS/MS Metlin26 and MassBank28 

databases and a literature survey were subsequently used to confirm the identity of 

putative candidates. Fragmentation patterns were also manually analyzed to discriminate 

between different isobaric species. 

 

2.5 Results and Discussion 

 

2.5.1 Classification Performance 
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A total of 480 features (Rt, m/z pairs) were extracted from UPLC-MS negative ion 

mode data from serum samples of PCa patients and controls. These features were used to 

build a discriminant SVM model for sample classification. An optimum set of 51 

discriminant features were found to maximize classification accuracy through a recursive 

feature elimination method,25 as illustrated in Figure 2.1. Out of the 51 selected features, 

7 were found to be only present in less than 2% of the samples; 2 features were identified 

as acetaminophen and its sulfite adduct, and 2 additional features were identified as 

adducts or fragments of other features in the subset, and were thus removed from further 

consideration. The optimum panel that best discriminated PCa patients from controls was 

thus reduced to 40 features, demonstrating that the feature selection process 

accomplished a high reduction in problem dimensionality.  

 

 

 

Figure 2.1: Evolution of classification accuracy for a validation sample subset consisting 
of 10% of the training samples as a function of the number of features retained. The 
minimum discriminant feature set that maximizes classification accuracy is highlighted 
with a dashed line. 
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Figure 2.2 illustrates the “PCa metabolic scores” obtained for the training and the test 

sets of randomly selected samples that were used to construct and evaluate the 

classification model, respectively. The separation of the two sample classes (H or D) was 

determined in the data space by the optimal separating hyperplane for which the margin 

between the most similar samples in each group was largest, illustrated with a dotted line 

in the figure. The samples with scores equal to 1 or -1 are the support vectors of the 

model. For the particular cross-validation iteration illustrated in Figure 2.2 only one 

sample was misclassified as a false negative. Based on these 40 discriminant features, 

serum samples were successfully classified with 93.0% accuracy, 92.1% sensitivity, and 

94.3% specificity. These values were calculated as the averages from 10 distinct test sets.  

In addition, the statistical significance of the model was further evaluated through 

hypothesis testing and, at 0.05 significance level, the null hypothesis was rejected for all 

permutations generated (p value = 0.0099). Unambiguously, the classifier did not yield a 

better leave-one-out-cross validation (LOOCV) accuracy rate than the original data. 

These results suggest a promising approach that could form the basis for a PCa IVDMIA. 

In particular, of the 40 differential features, 24 were found to increase in PCa patients, 

and 16 were found to decrease in PCa, as illustrated in Figure 2.3. It is important to 

underline, however, that the strength of this IVDMIA resides in the combination of 

multiple metabolic features using an interpretation function to yield a single, patient-

specific result to be used in the disease diagnosis, and not on the average fold change of 

each differential feature. 
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Figure 2.2: Visualization of the PCa metabolic scores obtained by SVMs in one out of 10 
iterative model validations based on 40 discriminant features. Green circles correspond to 
PCa patients in the training set, black triangles correspond to controls in the training set, 
red circles correspond to PCa patients in the test set built for the iteration shown, and blue 
triangles correspond to controls in the test set. The dotted line shows the projection of the 
separating hyperplane: 𝒘𝒘𝒙𝒙′ + 𝑚𝑚 = 0. 
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Figure 2.3: Fold change of average peak areas of each discriminant feature. Positive fold 
changes are calculated as the ratio of average peak areas between PCa patients and controls, 
and negative fold changes are calculated as the negative value of the ratio of average peak 
areas between controls and PCa patients. Features are labeled with their codes. 

 

 

2.5.2 IVDMIA vs. PSA Diagnosis  

Table 2.1 summarizes the Gleason scores for the PCa patients, indicating that the 

most common tumor patterns presented by the patients derived from moderate to 

aggressive cancers. However, the PSA test performed at surgery did not follow this 

histological evidence for the entire PCa cohort, as 33% of patients with PCa (n=20) had 

PSA values lower than the commonly used cutoff point of 4.0 ng mL-1. Figure 2.4 

compares PSA and IVDMIA results in terms of true positive and false negative outputs, 

highlighted in red and black, respectively. The IVDMIA outputs provided by the 

randomly-selected 10 test sets are visualized as box plots in the figure, and show that the 

IVDMIA was able to correctly predict 100% of the true positives that were incorrectly 

diagnosed as negatives by the PSA test. The false negative results provided by the 
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IVDMIA derived from one sample that was misclassified in all test sets and 4 samples 

that were misclassified in at least one test set. The classification performance obtained 

with this cohort shows promise towards detection of PCa that would be missed by the 

PSA method. The use of multiple discriminant features by this metabolic IVDMIA yields 

higher predictive power for PCa diagnosis than the univariate analysis of a single marker 

such as with the PSA method. 

 

 

Table 2.1: Gleason scores for PCa patients. 

Gleason Sum # of patients; (%) 
3+3 = 6 13; (20.3) 
3+4 = 7 27; (42.2) 

3+3 = 6; tert=4 6; (9.4) 
4+3 = 7 3; (4.7) 

3+4=7; tert=5 2; (3.1) 
4+3=7; tert= 5 2; (3.1) 

(R) 3+4 = 7; (L) 4+3 = 7 1; (1.6) 
4+5 = 9 1; (1.6) 
5+4 = 9 1; (1.6) 

(R)3+4=7; tert= 5; (L) 3+3=6 1; (1.6) 
(R)3+4=7; (L) 4+3 = 7; tert= 5 1; (1.6) 

3+5=8; tert= 4 1; (1.6) 
(R) 3+3 = 6; (L) 4+5 = 9 1; (1.6) 

(R)3+3=6; (L)3+3=6 tert= 4 1; (1.6) 
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Figure 2.4: Comparison of IVDMIA vs. PSA diagnosis performance for 62 PCa patients. 
True positive and false negative outputs are highlighted in red and black, respectively. The 
cutoff point of 4.0 ng mL-1 used in PSA-based diagnosis is indicated with a dotted line. The 
IVDMIA score output is presented as box plots in the figure, each of which is generated by 
results obtained for each of the 10 test sets where each sample was selected for validation. 
No comparison is shown for 2 of the 64 PCa samples as they were not randomly selected 
in any of the 10 cross-validation iterations. 

 

 

2.5.3 IVDMIA Potential in Clinical Applications 

To determine the prevalence of the discriminant features in samples, and to evaluate 

the feasibility of implementing the PCa IVDMIA in clinical laboratory settings through 

targeted triple-quadrupole MS-based assays, smaller subgroups of the optimum 40 

discriminant features, subsequently referred to as “panel A”, were investigated (Table 

2.2). These subpanels were chosen to provide the minimum number of features that 

collectively captured metabolic PCa patterns with a high level of accuracy, specificity 

and sensitivity. The selection of these additional subpanels was based on the fraction of 

features that were present in 50, 70 or 90% of the entire sample cohort, in either PCa 
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patients or controls. Table 2.2 summarizes the different panels constructed following 

these criteria, with their corresponding subset of discriminant features. These panels were 

used to build new SVM models, and cross-validated to provide average values of 

accuracy, specificity and sensitivity from 10-independent randomly-selected training and 

testing sets. Thirty eight out of 40 discriminant features were present in more than 50% of 

controls (Panel B) and 35 out of 40 were present in more than 50% of PCa samples 

(Panel C), providing similar accuracy, specificity, and sensitivity as panel A. When the 

criterion for feature prevalence was set to be more stringent, from panel A to panel G; the 

accuracy, specificity and sensitivity decreased by only ~10%, suggesting the robust 

biological role that the detected features might have. In other words, the different feature 

subpanels were not highly sensitive to a reduction in the number of discriminant features, 

suggesting that the smaller number of metabolites contained in subpanel G could still be 

potentially useful for building a more focused, simpler IVDMIA for PCa detection in a 

clinical setting.  

To further test this finding, another SVM model was created with only those 13 

features that could be confidently assigned to metabolites in subpanel G by high 

resolution MS and MS/MS (Table 2.3). It was found that this model still provided high 

classification sensitivity (88.3%), specificity (80.3%), and accuracy (85.0%). The mass 

spectrometric assay for such model would be much simpler to implement in a targeted 

fashion due to the reduced number of transitions that a UPLC-MS/MS triple quadrupole 

method would require, allowing higher analysis throughput and minimizing cost. 

The set of 40 SVM weights obtained for panel A from the optimal classification 

model are shown in Figure 2.5. The figure shows the individual contribution of each of 
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the 40 discriminant metabolic features in the computed PCa metabolic score, i.e., the 

weight of each discriminant metabolite in the classification. Figure 2.6 shows a 

comparison of the different sets of weights for the different panels described in Table 2.2, 

sorted from the largest to lowest value in panel A and expanded to panels B-G. The figure 

shows that the sign of the weights generally remained the same across the panels, in 

agreement with the fact that accuracy, specificity and sensitivity were highly conserved 

even after restricting the presence of discriminant features to those present in a majority 

of the patients within the cohort. It was seen that for the most restrictive panels, those 

features with weights equal to zero, i.e., those that do not contribute to the panels, are 

those with lower weights in panel A. 
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Table 2.3: IVDMIA performance for identified metabolites. 

Feature subpanel Accuracy 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Discriminant 
features (#) 

Discriminant feature 
codes 

Identified in Panel G by 
MS/MS 85.0 80.3 88.3 13 

60, 36, 84, 71, 157, 176, 
55, 343, 429, 384, 409, 

386, 173 

Identified in Panel A by 
MS/MS 91.1 91.3 90.9 31 

60, 36, 84, 71, 157, 176, 
55, 343, 429, 384, 409, 
386, 173, 223, 43, 63, 

376, 250, 211, 107, 214, 
76, 444, 174, 128, 398, 
93, 153, 364, 21, 242 

Identified in Panel A by 
MS/MS and confirmed 

chromatographically with 
standards 

76.3 70.6 79.9 10 60, 36, 71, 384, 43, 211, 
76, 174, 128, 153 

Identified in Panel A by 
MS/MS with xenobiotics 
and marker 63 excluded 

90.2 90.7 89.7 28 

60, 36, 84, 71, 157, 176, 
55, 343, 429, 384, 409, 
386, 173, 223, 43, 376, 
250, 211, 107, 214, 76, 
444, 174, 128, 398, 93, 

153, 242 

 

 

 

 

Figure 2.5: Weights for the 40 discriminant metabolic features in panel A. Metabolic 
features are labeled with their codes. 
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Figure 2.6: Weights for the discriminant metabolic features from panels A-G (indicated in 
Table 2.2) obtained by the classification model using the total cohort. 

 

 

2.5.4 Identification of Metabolites Used in the IVDMIA  

Once the robustness of the model was established, chemical identification of the 40 

discriminant metabolic features was attempted. The high resolving power of the TOF 

analyzer used allowed generating highly-selective extracted ion chromatograms for each 

discriminant feature. Adduct ion analysis was used to ensure the unambiguous 

assignment of the signal of interest in the ESI mass spectrum, and the isotopic pattern and 

accurate masses were used to generate a list of possible candidate elemental formulae that 

were searched against databases. Moreover, UPLC-MS/MS experiments were performed 

to confirm the identities of these candidate metabolites responsible for classification. 

Tandem MS spectra were compared to those in databases or literature, and fragmentation 

patterns were manually analyzed as well. Finally, available chemical standards were 
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subject to UPLC-MS and MS/MS to verify the identity of the candidates by retention 

time and mass spectral matching.  

Of the 40 spectral features in panel A, 31 were identified by high resolution MS and 

MS/MS, with 10 further confirmed chromatographically by standards. The group of 31 

metabolites provided 90.9% sensitivity, 91.3% specificity, and 91.1% accuracy; whereas 

the 10 differential metabolites confirmed by standards, when considered alone, provided 

79.9% sensitivity, 70.6% specificity, and 76.3% accuracy (Table 2.3). It should be noted 

that among the 31 identified metabolites, 1-α-amino-1H-pyrrole-1-hexanoic acid (feature 

code 63) had the highest mass error (11.4 mDa), and its identity should be viewed as 

tentative. However, a classification model built using the set of 30 metabolites excluding 

feature 63 still provided 92.8% sensitivity, 89.2% specificity and 91.2% accuracy. 

 

2.5.5 Biological Relevance of the IVDMIA Metabolites 

Table 2.4 shows the chemical identification for the 40 discriminant features. 

Metabolites confirmed by retention time and MS/MS matching with standards are shown 

in bold, and can be viewed as the ones with the higher confidence in the panel. Several 

discriminant metabolites were identified as fatty acids, amino acids, lysophospholipids, 

and bile acids, suggesting perturbations in their respective metabolism in PCa. Previous 

findings have shown abnormality in fatty acid,29 and amino acid12, 30, 31 metabolism in 

PCa patients. Alterations in fatty acid metabolism through an enhanced β-oxidation 

pathway have been suggested to provide bioenergy for abnormal cell proliferation.29 

Among the different lysophospholipids identified that may play a role in cell signaling,32 

LPC(18:2) and LPC(18:0) have been reported as biomarkers for PCa detection within a 



94 
 

panel of plasma lipids.22 Uric acid has also been suggested to be a disease risk marker 

due to its pro-inflammatory properties,33, 34 and a prospective epidemiological study 

demonstrated positive association between serum uric acid levels and risk of PCa 

development.35 In addition, increased levels of serum uric acid are often found due to 

tumor lysis syndrome observed as a result of cancer therapy.36 Interestingly, indoxyl 

sulfate, a toxic product of dietary tryptophan metabolism that accumulates in the blood of 

patients with impaired renal function,37 was also identified among the 40 discriminant 

features. The reason behind elevated indoxyl sulfate in the sera of PCa patients is not yet 

fully understood; nonetheless, this nephrotoxic metabolite likely contributes to the 

disease or its complications via multiple mechanisms, including enhanced oxidative 

stress due to decreased levels of glutathione.38 

Interestingly, many identified metabolites in the discriminant panel were found to be 

involved in the steroid hormone biosynthesis pathway. As illustrated in Figure 2.7, the 

pathway supplies androgens39-41 such as testosterone and 5α-dihydrotestosterone, to 

support the growth of androgen-dependent PCa.42 An average increase of pregnanetriol 

and androstenedione concentrations in PCa serum suggests that there is a metabolic 

alteration of the steroid pathway that mimics congenital adrenal hyperplasia (CAH), a 

metabolic disease that is accompanied by androgen excess due to the diversion of 17-

hydroxyprogesterone into the pathway for androgen biosynthesis.43, 44 In addition, the 

average decrease of azelaic acid concentration in serum of PCa patients, an inhibitor of 

5α-reductase,45 suggests the disinhibition of 5α-reductase, an enzyme that catalyzes the 

synthesis of highly active androgen 5α-dihydrotestosterone to support PCa growth. 

Indeed, azelaic acid, which has a large contribution in the models, has been postulated to 
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be a potential antitumoral agent.46 However, the origin of azelaic acid and its monoester 

identified in the discriminant panel needs further investigation since they have also been 

reported to originate from corn oil.47 
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Figure 2.7: Kyoto Encyclopedia of Genes and Genomes (KEGG) steroid hormone 
biosynthesis pathway (hsa00140). The identified discriminant metabolites are indicated in 
the pathway. Average increase and decrease of metabolite concentrations in PCa serum is 
highlighted in red and blue, respectively. Green rectangles: human metabolic enzymes. 
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Table 2.4 also includes several xenobiotics that can be grouped into two classes 

based on their origin. Menthol, citronellol, carvacrol, and t-butylhydroquinone are most 

likely related to food components. Assuming that both PCa patients and controls were 

equally exposed, on average, to food components/additives, their different metabolism 

could explain the different levels of these xenometabolites in serum. For instance, the 

terpenoids menthol, carvacrol and citronellol are metabolized by CYP2A6,48, 49 which is 

also involved in steroid metabolism. As a result, average lower concentrations of these 

terpenoids relative to controls may be suggestive of higher activity of CYP2A6 in PCa 

patients, supporting inclusion of these xenometabolites in the models. The second group 

of xenobiotics comprises indole-3-carboxaldehyde and 5'-carboxy-α-chromanol 

glucuronide, which could possibly result from the consumption of dietary supplements 

used by cancer patients. Self-medicating with an over-the-counter indole-3-carbinol (I3C) 

supplement may explain the increased average concentration of indole-3-carboxaldehyde 

in PCa serum.50 Indeed, indole-3-carboxaldehyde demonstrated activity against PCa in 

both in vitro and in vivo models.51 Similarly, α-tocopherol, a form of vitamin E and a 

precursor of 5'-carboxy-α-chromanol glucuronide, have been suggested to influence the 

development of PCa due to their antioxidant activity.52 As humans do not normally 

produce indole-3-carbaldehyde or 5'-carboxy-α-chromanol, and their consideration in the 

models may reflect dietary supplementation differences rather than endogenous metabolic 

differences, PCa detection was attempted using 28 of the 31 identified metabolites, 

excluding from the SVM classification model two metabolites which might result from 

dietary supplementation and one metabolite with highest mass error (1-α-amino-1H-

pyrrole-1-hexanoic acid). This modified classification model yielded 89.7% sensitivity, 
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90.7% specificity, and 90.2% accuracy (Table 2.3), indicating that the three excluded 

metabolites had little effect on the overall assay performance, as supported by their low 

weights in panel A (Figure 2.5 and 2.6).  

 

2.6 Conclusions 

This study shows the combined application of UPLC-MS/MS and machine learning 

methods in the development of a metabolite-based IVDMIA that allows PCa detection in 

serum samples with high classification sensitivity, specificity and accuracy. A panel of 40 

metabolic features was found to be differential with 92.1% sensitivity, 94.3% specificity, 

and 93.0% accuracy. Of further significance, the detection performance of the IVDMIA 

was proven to be higher than the prevalent PSA test, highlighting that a combination of 

multiple discriminant features yields higher predictive power for PCa detection than the 

univariate analysis. Within the discriminant panel, 31 metabolites were identified by high 

resolution MS and MS/MS, with 10 further confirmed chromatographically by standards. 

Fatty acids, amino acids, lysophospholipids, and bile acids have been identified among 

the discriminant metabolites, suggesting alterations in their metabolism in PCa patients 

compared to controls. Additionally, several metabolites were mapped to the steroid 

hormone biosynthesis pathway. These observations demonstrate some of the plausible 

metabolic alterations in PCa, and provide further insight into the biological pathway 

changes associated with the disease. The combination of multiple metabolites yielding a 

single, patient-specific result for disease detection is the strength of the IVDMIA 

developed in the work presented in this chapter. When the assay is based on the 28 

identified disease-related metabolites, PCa can still be detected with 89.7% sensitivity, 
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90.7% specificity, and 90.2% accuracy. If higher throughput analysis and lower analysis 

cost and complexity are needed, 13 metabolites that were found to be present in 90% of 

the entire sample cohort would still offer high classification sensitivity (88.3%), 

specificity (80.3%), and accuracy (85.0%). Therefore, this assay shows promise towards 

implementation in the clinical laboratory setting once it is fully validated by the 

examination of a larger patient cohort. 
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CHAPTER 3. EARLY DETECTION OF CYSTIC FIBROSIS ACUTE 

PULMONARY EXACERBATIONS BY ULTRAPERFORMANCE LIQUID 

CHROMATOGRAPHY-MASS SPECTROMETRY EXHALED BREATH 

CONDENSATE METABOLOMICS 

 
 
 
Adapted with permission from 
Zang X, Monge ME, McCarty NA, Stecenko AA, Fernández FM. Feasibility of Early 
Detection of Cystic Fibrosis Acute Pulmonary Exacerbations by Exhaled Breath 
Condensate Metabolomics: A Pilot Study. Journal of Proteome Research. 2017, 16, 550-
558. Copyright © 2017 American Chemical Society. 

 
Zang X, Monge ME, Gaul D, McCarty NA, Stecenko AA, Fernández FM. Early 
Detection of Cystic Fibrosis Acute Pulmonary Exacerbations in Adult and Pediatric 
Patients by Exhaled Breath Condensate Metabolomics. (in preparation). 
 
For the pilot study, M. E. Monge optimized sample preparation and UPLC-MS analysis 
methods. X. Zang performed sample preparation and acquired UPLC-MS data with 
assistance from M. E. Monge. X. Zang performed data processing and analysis, and 
identified all metabolites by using UPLC-MS/MS experiments. For the large cohort 
study, X. Zang optimized UPLC-MS analysis methods and prepared the samples. UPLC-
MS data was acquired by X. Zang with assistance of D. Gaul. X. Zang performed data 
processing and analysis, discriminant metabolite identification and pathway analysis. N. 
A. McCarty and A. A. Stecenko provided EBC samples for both studies and clinical 
expertise. 
 

3.1 Abstract 

The most common cause of death in patients with cystic fibrosis (CF) is 

progressive lung function decline and, ultimately, respiratory failure. This decline is 

punctuated by acute pulmonary exacerbations (APEs), and, in many cases, there is failure 

to return to baseline lung function. In a pilot study, ultraperformance liquid 

chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS) was 

used to profile metabolites in exhaled breath condensate (EBC) samples in negative ion 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Monge%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=McCarty%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stecenko%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fern%C3%A1ndez%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/24922590
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Monge%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=McCarty%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stecenko%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fern%C3%A1ndez%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
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mode from 17 clinically stable CF patients, 9 CF patients with an APE severe enough to 

require hospitalization (termed APE), 5 CF patients during recovery from a severe APE 

(termed post-APE), and 4 CF patients who were clinically stable at the time of collection 

but in the subsequent 1 to 3 months developed a severe APE (termed pre-APE). Using 

orthogonal partial least-squares-discriminant-analysis (oPLS-DA), a panel containing 2 

metabolic discriminant features identified as 4-hydroxycyclohexylcarboxylic acid and 

pyroglutamic acid differentiated the APE from the stable CF samples with 84.6% 

accuracy. Furthermore, the pre-APE samples were distinguished from the stable CF 

samples with 90.5% accuracy using a panel of two discriminant features including lactic 

acid and pyroglutamic acid. 

Metabolic profiling of a larger EBC sample cohort (n=210) was performed using 

UPLC coupled to ultra-high mass accuracy Orbitrap MS. Negative ion mode data and the 

combination of negative and positive ion mode data showed that classification was 

possible for age and gender-matched samples grouped into adult and pediatric patients. 

APE and pre-APE samples were differentiated from stable CF samples for both patient 

cohorts using oPLS-DA multivariate classification models. Negative ion mode data, 

yielded acceptable sensitivities (83.3% and 76.2%), specificities (91.7% and 83.7%), and 

accuracies (88.9% and 81.3%) for discriminating APE from stable CF EBC samples, 

from pediatric and adult patients, respectively. For the pre-APE vs. stable CF 

comparison, good sensitivities (85.7% and 89.5%), specificities (88.4% and 84.1%), and 

accuracies (87.7% and 85.7%) were obtained for EBC samples from pediatric and adult 

patients, respectively. By combining positive with negative ion mode data, improved 

classification performance was achieved for most binary comparisons with accuracies 
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enhanced between 3 and 9.6%. Interestingly, two of the discriminant metabolites 

identified in the pilot study, lactic acid and 4-hydroxycyclohexylcarboxylic acid, were 

also selected by machine learning algorithms in some of the optimized discriminant 

metabolite panels. Some of the other identified discriminant metabolites had microbial 

relevance, indicating a possible central role of bacterial metabolism in APE development. 

Further investigation of these bacterial metabolites may provide insight into the 

relationship between human-microbial co-metabolism and the trigger for APE, leading to 

better treatment and patient care to prevent the morbidity and mortality associated with 

APEs. 

  

3.2 Detection and Prediction of Cystic Fibrosis Acute Pulmonary Exacerbations 

 

3.2.1 Introduction: Cystic Fibrosis Acute Pulmonary Exacerbations 

Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding 

the cystic fibrosis transmembrane conductance regulator (CFTR) protein, leading to 

abnormal ion and water transport across epithelial cells.1, 2 Although multiple organs are 

affected by CF, over 90% of patients die from progressive pulmonary disease and 

subsequent respiratory failure.3 CF lung disease is characterized by the triad of impaired 

mucociliary clearance, chronic poly-microbial bacterial infection, and neutrophil-

dominated inflammation. This triad results in progressive decline in lung function that is 

punctuated by acute episodes of increased respiratory symptoms and often decline in lung 

function that can be marked. These episodes are termed acute pulmonary exacerbations 
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(APEs). Therapies are intensified and hospitalization is often required in an attempt to 

restore lung function to baseline. For example, The CF Foundation Patient Registry 

showed that 24% of children with CF and 43% of adults with CF had one or more APEs 

that required intravenous antibiotics treatment in 2017.4 It is known that the frequency of 

APEs severe enough to require hospitalization adversely impacts the life quality and life 

expectancy of patients5 and associated health care costs,6 but despite the clinical 

importance of APEs, there is still a general lack of knowledge regarding their 

pathophysiology,7-10 resulting in non-uniform treatment decisions.11 

Different from asthma, the triggers for APEs in CF are still poorly defined. Viral 

infections, particularly RSV, rhinovirus, and influenza are thought to be important 

initiating factors in CF APEs.12, 13 In addition, exposure to cigarette smoke or other 

pollutants14 as well as non-adherence to daily maintenance therapy shown to prevent 

APEs15 may also be important. Controversy exists on the role of bacteria with some 

evidence suggesting that increased bacterial load of resident organisms is associated with 

APEs versus infection with new bacteria. Regardless of the trigger, a generally held 

notion is that intensification of bacterial infection and inflammation drives the clinical 

manifestations of APEs, so the mainstay of therapy is intensive antibiotic treatment and 

physically clearing the airways of debris.16 However, there is a flaw with this approach, 

as 25% of CF patients with APEs severe enough to require hospitalization do not recover 

to their baseline lung function.17 As we know, there has yet to be consensus diagnostic 

criteria for CF APE, as most of the current criteria are based on empirical data which has 

not been formally validated, and thus may cause problematic treatment decisions.18 In 

addition, there is no preventive screening method for stable CF patients to signal an 



112 
 

oncoming APE event, which hinders the initiation of early intervention before the 

establishment of substantial immune response.19 These drawbacks trigger the motivation 

to search for novel biomarkers to improve APE diagnosis, and to predict an oncoming 

APE event. 

 

3.2.2 Overview of Biomarker Discovery Approaches for Cystic Fibrosis Acute Pulmonary 

Exacerbation Detection and Prediction 

Biomarkers indicating CF APEs have been explored in different studies in various 

biofluids, however, only a few have been demonstrated to be predictive for an 

exacerbation. The most extensively studied blood biomarker is the C-reactive protein 

(CRP), which was found to correlate with CF disease severity with a significant increase 

in APEs compared to baseline in stable CF patients, and a significant decrease after 

treatment.20 Matouk et al. measured plasma CRP concentration and collected clinical data 

from 51 stable CF patients, and they demonstrated that the combination of elevated 

baseline CRP and clinical disease activity scores could predict future APEs.21 In another 

study of 13 CF patients with longitudinal plasma samples collected during APEs, CRP 

and interleukin (IL)-8 were demonstrated to be promising in predicting re-exacerbations, 

with significantly elevated levels in CF patients who developed a next APE within 42.5 

days.22 A different promising biomarker for CF APEs is calprotectin, which was proved 

to perform better than CRP in predicting the time to exacerbation and pulmonary function 

decline.23-25 In a study of 15 CF patients by Quon et al., plasma soluble cluster of 

differentiation 14 (sCD14) was shown to be useful for predicting CF exacerbations 

requiring intravenous therapy within 4 months.26 Another targeted proteomics study by 
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the same group measured 117 peptides from 79 proteins in plasma of 104 CF patients by 

multiple reaction monitoring MS and identified a six-protein panel that predicted the CF 

APE onset within 4 months with an area under the curve (AUC) of 0.74, better than 

predictions using forced expiratory volume in 1 second (FEV1) that yielded an AUC of 

0.55. The top ranking candidate markers of this protein-based panel included CRP and 

IL-6.27 

Other biofluids have been investigated as sources of potential APE biomarkers. 

Promising biomarkers found in nasal lavage fluid include γ-induced protein 10 kDa (IP-

10), IL-6 and IL-10.28 In sputum, a less invasive to collect biofluid, neutrophil elastase 

and IL-8 have been proposed as tentative biomarkers, although the later was not 

consistently found to have significant changes in APE, perhaps as a result of differences 

in the children and adult cohorts involved in the studies.23, 25, 29, 30 Sputum collection in 

pediatric CF patients, however, is challenging due to the fact that some children cannot 

expectorate sputum, and sputum induction is time consuming and expensive in clinical 

settings.31, 32 In contrast, exhaled breath condensate (EBC) can be more easily collected 

from people of all ages.33, 34 For this reason EBC has been one of the preferred biofluids 

to study biochemical changes in the lung environment. EBC consists of aerosolized 

epithelial lining fluid containing volatile and non-volatile compounds trapped and diluted 

by water vapor condensation.35, 36 However, EBC components may be present at trace 

levels (nM to µM concentration range), necessitating very sensitive techniques for 

analysis.  A study by Robrocks et al. reported the detection of CF APEs in 6 patients with 

a 2-feature multivariate logistic regression model using EBC 8-isoprostane and nitrite 

concentrations, with a sensitivity of 40% and a specificity of 97%.37 Carpagnano et al. 
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detected significant increased concentrations  of EBC leukotriene B4 (LTB4) and IL-6 in 

20 CF APE patients compared to 15 age-matched healthy controls, and the levels of these 

markers decreasing significantly in 6 patients who returned to a stable CF state after 2 

weeks of antibiotic treatment.38 Another study by van Horck et al. measured levels of 

inflammatory markers including IL-6, IL-8, tumor necrosis factor α and macrophage 

migration inhibitory factor in EBC from CF pediatric patients. 39 By combining these 

markers with other clinical or demographic parameters, the best model could only predict 

APE events with 55% accuracy in the validation set.  

Most of the above studies have been focused on finding protein biomarkers for 

discrimination of APE from stable CF patients based on targeted assays. The difficulty 

with targeted approaches becomes more evident in studies of inflammatory biomarkers. 

For example, comparison of sputum from clinically stable CF patients and patients during 

exacerbations has suggested a correlation between APEs and inflammatory mediators 

such as IL-1β, IL-8, and myeloperoxidase.40-43 Other studies, however, failed to 

differentiate CF patients based on IL-8 alone, finding instead other potential protein 

biomarkers, such as soluble intercellular adhesion molecule-1, calprotectin, and 

calgranulin A and B.44, 45 Overall, the literature evidence so far strongly suggests that new 

APE biomarkers and better understanding of pathways that are aberrant in CF patients 

with APEs compared to clinically stable CF patients are needed to develop better 

mechanistic hypotheses on CF pathophysiology, aiding in APE early detection and 

development of therapeutic strategies.  

Compared to proteins, metabolites are closer in proximity to the phenotype and 

their changes can better reflect the status of a biological system.46, 47 A few metabolomics 



115 
 

studies have revealed metabolic alterations associated with CF APEs. Quinn et al. 

identified platelet activating factor and related lipids as potential biomarkers for CF APEs 

in sputum samples collected from 11 CF patients.48 This study also demonstrated the 

personalized nature of the CF sputum metabolome. In a plasma metabolomics study by 

Laguna et al., metabolic profiles of matched paired samples from 25 CF patients 

collected during an APE and during outpatient clinic visit were analyzed by LC-MS and 

gas chromatography-MS.49 Five out of 398 identified metabolites showed significant 

alterations between APE and stable CF states, including hypoxanthine, N4-acetylcytidine, 

N-acetylmethionine, mannose, and cortisol.49 Alvarez et al. applied LC-MS-based plasma 

metabolic profiling to study the metabolic effects of high-dose vitamin D3 to CF patients 

with exacerbations.50 By comparing the metabolomes of the vitamin D3-treated group (n 

= 12) with the placebo group (n = 12), 316 out of 9,258 metabolites showed significant 

group-by-time interaction and 15 pathways were differential between the two groups, 

with the amino acid pathway being the dominant one.50 A possible anti-catabolic 

mechanism of high-dose vitamin D3 treatment of CF APE was revealed.50 To the best of 

our knowledge, only one study has investigated the discrimination of stable CF patients 

(n = 29) from unstable CF patients during exacerbations (n = 24), identifying ethanol, 

acetic acid, 2-propanol and methanol as the best discriminating EBC metabolites using 

NMR.51 Although these potential biomarkers offered insight into the possible perturbed 

biological pathways and pathophysiology associated with CF APEs, the study suffered 

from insufficient statistical power for predicting an oncoming APE event.  

 

3.3 Hypothesis 
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In this study, we hypothesize that, regardless of the initiating trigger, CF 

exacerbations severe enough to require hospitalization are associated with a specific 

metabolic signature in EBC. We further hypothesize that this metabolic fingerprint 

precedes any symptoms or signs of an APE, signaling an impending exacerbation that can 

be treated preemptively. Finally, we hypothesize that this chemical signature returns to 

the clinically stable EBC signature following treatment for the APE.  

We utilized a discovery-based metabolomics approach to investigate EBC 

samples collected from CF patients who are clinically stable compared to those with 

APEs severe enough to require hospitalization. Once a discriminant metabolite profile is 

identified, we investigated its presence in the pre-symptomatic phase of an APE event 

and also its persistence following treatment for the APE. A pilot study was performed on 

EBC samples from a small cohort including 4 pre-APE, 9 APE and 17 stable CF samples 

to evaluate the possibility of detecting and predicting CF APEs. After demonstration of 

the feasibility, we proceeded to investigate a larger cohort that included 97 stable CF 

patients, 36 pre-APE patients, 41 APE patients and 36 post-APE patients with two aims: 

first, to compare the results with those from the pilot study; second, to identify more 

robust EBC biomarkers for CF APE prediction and detection in adult and pediatric 

cohorts. 

 

3.4 Materials and Methods 

 

3.4.1 Chemicals 
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3.4.1.1  Pilot study 

LC-MS grade methanol, purchased from J.T. Baker Avantor Performance 

Materials, Inc. (Center Valley, PA, USA), and ultrapure water with 18.2 MΩ∙cm 

resistivity (Barnstead Nanopure UV ultrapure water system, USA) were used to prepare 

mobile phases and solutions. DL-Lactic acid lithium salt (~99%) and myristoleic acid 

(≥99%), were purchased from MP Biomedicals, LLC (Solon, OH, USA), pyroglutamic 

acid (5-oxoproline) from Anaspec, Inc. (San Jose, CA, USA), hydroxyacetone (96.4%) 

from TCI America (Portland, OR, USA), 2-methylbutyric acid (98%), 3,3-

dimethylglutaric acid (≥98%) and pimelic acid (≥98%) from Alfa Aesar (Ward Hill, MA, 

USA), 4-methylvaleric acid (98.5%) from Acros Organics (Morris, NJ, USA), 4-

hydroxycyclohexanecarboxylic acid, D-lactaldehyde solution (1M in H2O), 3-

hydroxybenzoic acid (99%), 4-hydroxybenzoic acid (99%), propionic acid (99%), 

isovaleric acid (99%), valeric acid (99%), adenosine (≥99%), trans-4-hydroxy-L-proline 

(≥ 99%), L-proline (≥ 99%), sucrose (≥ 99%),  L-glutathione reduced (≥ 98.0%), D-

tyrosine (99%), D-(+)-glucose monohydrate (≥ 99%) and D-(-)-fructose (≥ 99%) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA), 8-isoprostane-d4 (1050 mg/L), 

5(S), 6(R)-lipoxin A4 (100 mg/L) and 5(S), 6(S)-lipoxin A4  (100 mg/L) from Cayman 

Chemical Company (Ann Arbor, MI, USA).  

 

3.4.1.2  Large cohort study 

 Ultrapure water with 18.2 MΩ∙cm resistivity (Barnstead Nanopure UV ultrapure 

water system, USA), Optima LC-MS grade acetonitrile and methanol (Fisher Scientific, 
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Suwannee, GA, USA), were used for mobile phase preparation, sample preparation and 

chemical standard solution preparation. LC-MS grade acetic acid, lactic acid, 4-

hydroxycyclohexanecarboxylic acid, N-formylanthranilic acid, butyric acid (≥99%), L-

tryptophan (≥98%), DL-malic acid (≥99%), sebacic acid (99%), L-carnitine inner salt 

(≥98%), (E)-3-methylglutaconic acid (≥97%), (E)-2-methylglutaconic acid, trans-β-

hydromuconic acid/3-hexenedioic acid, nonanedioic acid (azelaic acid) (98%), propionic 

acid, lysine, salicylic acid, leucine, isoleucine (≥98%), levulinic acid (98%), butyric acid, 

glutamic acid, proline, and arginine were purchased from Sigma-Aldrich Corporation (St. 

Louis, MO, USA). Pyroglutamic acid (5-oxoproline) was purchased from Anaspec, Inc. 

(San Jose, CA, USA). 

 

3.4.2 Cohort Description 

CF patients are usually seen in CF clinic every three months when stable and 

more frequently with exacerbations. EBC was collected during these regular clinic visits 

to the Emory+Children’s CF Care Center in Atlanta, Georgia, after obtaining informed 

consent. The patient’s clinical course was then followed over the subsequent months so 

that they could be grouped according to their APE status. Clinically stable CF was 

defined as CF subjects whose symptoms were at baseline, physical examination of the 

lungs was at baseline, FEV1 was within 10% of the yearly baseline, and no new therapies 

(particularly antibiotics) were added at that clinic visit, plus the patient was seen at the 

next clinic visit three months later and was again classified as clinically stable. In the 

pilot study, EBC was collected on 17 CF subjects meeting this definition of clinically 
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stable (age range 14-39, mean (SD) age 28 (7) years, 29.4% females). A severe APE was 

defined as an increase in respiratory symptoms (cough, sputum production) and/or 

changes in physical examination of the lungs (increase in crackles, decrease in airflow), 

at least a 10% decrease in FEV1, and (in the opinion of the clinician) requiring 

hospitalization for treatment of the APE. For the pilot study, EBC was collected in 9 of 

such subjects with a severe APE at the time of hospitalization (age range 15-39, mean age 

26 (7) years, 55.6% females). In 5 subjects, EBC was collected 1 to 3 months after an 

APE event requiring hospitalization, labeled as post-APE (age range 19-30, mean age 26 

(5) years, 40% females). Finally, EBC was collected in 4 subjects who were clinically 

stable as defined above but in the subsequent 1 to 3 months developed APEs severe 

enough to require hospitalization, labeled as pre-APE (age range 15-39, mean age 27 (10) 

years, 50% females). At the 0.05 level, the age population means were not significantly 

different with the two-sample t-test for all possible pairs of sample classes.  Among the 

26 patients from whom all the 35 EBC samples (17 CFs, 9 APEs, 5 post-APEs and 4 pre-

APEs) were collected, 6 patients had multiple samples collected in different groups of 

disease severity. In most cases the samples were not drawn from the same APE episode, 

so they don’t meet the criteria of paired samples. Due to the small number of samples 

available, we tried to include all the samples to maximize sample size in each group of 

disease severity.    

For the large cohort study, EBC samples were collected from 97 stable CF 

patients (age range 5-66, 50% female), 36 patients at pre-APE stage (age range 8-61, 

61% female), 41 APE patients (age range 8-58, 56% female), and 36 patients at post-APE 

stage (age range 8-64, 64% female). Due to the wide age distribution in the large cohort, 
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samples were separated into adult and pediatric groups within each class. Principal 

component analysis (PCA) was performed for samples in each age group, and the outliers 

outside 95% confidence intervals were removed. Subsequently, oPLS-DA binary 

classifications were performed for age-matched samples in each group (Table 3.1). 

Table 3.1: Age- and gender-matched samples in the large cohort study used for oPLS-DA 
analyses. 

Data type Classes Compared Age 
group Class Number of 

samples Mean age (SD) 

Negative ion mode APE vs. stable CF Pediatric APE 18 15 (3) 

  Pediatric Stable CF 36 14 (2) 

  Adult APE 21 29 (10) 

  Adult Stable CF 43 33 (12) 

 Pre-APE vs. stable CF Pediatric APE 14 13 (3) 

  Pediatric Stable CF 43 12 (3) 

  Adult APE 19 32 (15) 

  Adult Stable CF 44 33 (12) 

Combined negative and 
positive ion mode APE vs. stable CF Pediatric APE 16 15 (2) 

  Pediatric Stable CF 39 14 (2) 

  Adult APE 19 28 (11) 

  Adult Stable CF 44 33 (12) 

 Pre-APE vs. stable CF Pediatric APE 14 13 (3) 

  Pediatric Stable CF 48 13 (3) 

  Adult APE 21 32 (15) 

  Adult Stable CF 44 33 (12) 

 

 

3.4.3 EBC Sample Collection and Preparation 

This study used EBC samples made available by the CF Biospecimen Registry, a 

part of the Emory+Children’s Center for CF and Airways Disease Research. EBC sample 

collection followed the guidelines approved by the Georgia Institute of Technology and 
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the Emory University Institutional Review Boards (approval number IRB00000372). An 

R-Tube collector (Respiratory Research, Inc., Austin, TX, USA) was used to collect EBC 

samples, which were immediately frozen at -80 °C until processed.  

For the pilot study, EBC samples were thawed and lyophilized at -40 °C and ~100 

mTorr for 24 hours using a VirTis bench top freeze-dryer (SP Industries, Stone Ridge, 

NY, USA). Sample residues were reconstituted in water/methanol (90:10 v/v) with a 

concentration factor of 20, and analyzed by UPLC-MS. Blank samples containing 

ultrapure water went through the same sample preparation procedure. Prior to UPLC-MS, 

samples were randomly separated into two batches and analyzed on consecutive days 

together with solvent and sample preparation blanks. Quality control (QC) samples (5.50 

μM L-glutathione (reduced), trans-4-hydroxy-L-proline, adenosine, D-(+)-glucose 

monohydrate, D-(-)-fructose, sucrose, 5(S), 6(R)-lipoxin A4 and 5(S), 6(S)-lipoxin A4, 

8.85 μM D-tyrosine, 5.49 μM L-proline and 5.51 μM 8-isoprostane-d4 solution) were 

analyzed every 5 hours to verify the stability of retention times, peak shapes and areas 

during the analysis. Chemical standards for metabolite identity validation were prepared 

in ultrapure water or methanol (or a mixture of those solvents), depending on their 

solubility. For the large cohort study, the sample preparation procedure was identical to 

the pilot study. QC samples were prepared by combining 40 μL of each EBC sample and 

mixing them together, followed by lyophilization and resuspension to provide a 20 times 

up-concentration. 

 

3.4.4 Metabolic Profiling by UPLC-MS 
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For the pilot study, UPLC-MS analyses were performed using a Waters 

ACQUITY UPLC H Class system fitted with a Waters ACQUITY UPLC BEH C18 

column (2.1×50 mm, 1.7 μm particle size, Waters Corporation, Milford, MA, USA), 

coupled to a Xevo G2 QTOF mass spectrometer (Waters Corporation, Manchester, UK) 

with an electrospray ionization (ESI) source. The typical resolving power and mass 

accuracy of the Xevo G2 QTOF mass spectrometer were 25,000 FWHM and 1.8 ppm at 

m/z 554.2615, respectively. Gradient elution was employed in the chromatographic 

separation method using water (mobile phase A) and methanol (mobile phase B), with the 

following program: 0-1 min, 90%-80% A, 1-3 min 80%-60% A, 3-5 min 60%-50% A, 5-

10 min 50%-40% A, 10-15 min 40%-10% A, 15-20 min 10% A. The flow rate was 

constant at 0.3 mL min-1. After each sample run, the column was re-equilibrated to the 

initial conditions in 6 min. The injection volume was 5 μL. The column and autosampler 

tray temperatures were set at 60 and 5 °C, respectively. The mass spectrometer was 

operated in negative ion mode with a probe capillary voltage of 2.0 kV and a sampling 

cone voltage of 12.0 V. The source and desolvation gas temperatures were set to 120 and 

350 °C, respectively. The nitrogen gas desolvation flow rate was 650 L h-1. The mass 

spectrometer was calibrated across the range of m/z 50-1500 using a 0.5 mM sodium 

formate solution prepared in 2-propanol/water (90:10 v/v). Data were drift corrected 

during acquisition using a leucine enkephalin (m/z 554.2615) reference spray infused at 4 

μL min-1. Data were acquired in the range of m/z 50-1500, and the scan time was set to 1 

s. Technical duplicates were acquired in all cases, except for 3 samples with too little 

volume for replicates. For UPLC-MS/MS experiments, the product ion mass spectra were 

acquired with collision cell voltages between 7 and 35 V, and sampling cone voltages of 
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12V or 30V, depending on the analyte. Ultra-high-purity argon (≥ 99.999%) was used as 

the collision gas in UPLC-MS/MS experiments. Data acquisition and processing were 

carried out using MassLynx version 4.1 (Waters Corp., Milford, MA, USA). 

For the large cohort study, UPLC-MS metabolic profiling were also performed on 

a Dionex Ultimate 3000 UHPLC system (Thermo Scientific, Dionex, Sunnyvale, 

California, USA) equipped with a Waters ACQUITY UPLC BEH C18 column (2.1×50 

mm, 1.7 μm particle size, Waters Corporation, Milford, MA, USA), coupled to a Thermo 

ScientificTM Q ExactiveTM HF hybrid quadruple-Orbitrap mass spectrometer. The mass 

spectrometer parameters were as follows: capillary voltage 3.1 kV, capillary temperature 

300 °C, S-lens RF 50.0%, sheath gas, auxiliary gas and sweep gas flow rate 48, 11, and 2 

arbitrary units, respectively, and auxiliary gas heater temperature 413 °C. The m/z scan 

range was 50.0 to 750.0 with an AGC target of 3×106 and maximum injection time of 

512 ms. The mass resolution setting was 240,000. The mass spectrometer was calibrated 

with PierceTM LTQ ESI positive ion calibration solution (including caffeine, Met-Arg-

Phe-Ala (MRFA) and Ultramark 1621) and negative ion calibration solution (including 

sodium dodecyl sulfate, sodium taurocholate and Ultramark 1621). Data were acquired in 

both positive and negative ion modes. LC gradient elution was employed using water 

(mobile phase A) and methanol (mobile phase B), with the following program: 0-1 min, 

90% A, 1-2 min 90%-80% A, 2-6 min 80%-10% A, 6-10 min 10% A. The flow rate was 

constant at 0.3 mL min-1. After each sample run, the column was re-equilibrated to the 

initial conditions in 8 min. The injection volume was 5 μL. The column and autosampler 

tray temperatures were set at 60 and 5 °C, respectively. Each sample was run once. For 

UPLC-MS/MS experiments, the product ion mass spectra were acquired with a resolution 
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of 30,000, AGC target of 1×105, maximum injection time of 64 ms, isolation window of 

0.4 m/z and normalized collision cell voltages between 10 and 100, depending on the 

analyte. Data acquisition and processing were carried out using Thermo ScientificTM 

XCaliburTM software. 

 

3.4.5 Flow Injection-Traveling Wave Ion Mobility-MS Analysis 

For collision cross section (CCS) measurement in the large cohort study, flow 

injection-traveling wave ion mobility-MS (FI-TWIM-MS) technique was applied to 

analyze EBC samples and chemical standards. A Waters ACQUITY UPLC I-Class 

system fitted with a stainless steel union to bypass the chromatographic column, was 

coupled to a Synapt G2-S high-definition mass spectrometry (HDMS) system (Waters 

Corporation, Manchester, UK) equipped with an electrospray ionization (ESI) source 

operated in negative mode. The column compartment was operated at room temperature, 

and the autosampler temperature was set to 5 °C. Instrument settings were as follows: 

capillary voltage 3.0 kV for positive mode and 2.0 kV for negative mode, cone voltage 40 

V for positive mode and 12 V for negative mode, source offset 30 V, source temperature 

120 °C, desolvation gas temperature 350 °C, desolvation gas flow rate 650 L h-1, 

nebulizer gas flow 4.0 bar, trap cell voltage 4 V (default in MS mode), transfer cell 

voltage 2 V (default in MS mode), EDC delay coefficient 1.41 V, helium cell gas flow 

rate 180 mL min-1, IMS gas (N2) flow rate 90 mL min-1, trap DC entrance 3.0 V, bias 

45.0 V, trap DC 0.0 V, exit -6.0 V, IMS DC settings entrance 25.0 V, helium cell DC 

50.0 V, helium exit -10.0 V, bias 7.0 V, exit 0.0 V, transfer DC entrance 5.0 V, exit 15.0 

V, trap wave velocity 311 m s-1, wave height 4.0 V, IMS wave velocity 650 m s-1, wave 
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height 40.0 V, transfer wave velocity 175 m s-1, wave height 4.0 V, StepWave 1 wave 

velocity 300 m s-1, wave height 15.0 V, StepWave 2 wave velocity 300 m s-1, wave 

height 15.0 V, StepWave 2 offset 25.0 V, StepWave differential aperture1 3.0 V, 

StepWave differential aperture2 0.0 V, source ion guide wave velocity 300 m s-1, wave 

height 1.0 V, StepWave RF offset 300.0 V, ion guide RF offset 350.0 V, IMS wave delay 

1000 µs. IM resolution was ~40 (FWHM). IM cell pressure was ~3.15 mbar. The 

instrument was calibrated in the range of m/z 50‒1200 using a 0.5 mM sodium formate 

solution prepared in 90:10 2-propanol/water v/v. The injection volume was 5 µL using 

partial-loop needle overfill mode. The flow rate was set to 0.05 mL min-1 with 

methanol/water (50:50 v/v) as the mobile phase. The duration of each flow injection run 

was 3 min. Mass spectra were acquired in profile mode over the range of m/z 50‒1200 in 

the “mobility-TOF” resolution mode. During data acquisition, spectra were collected with 

a scan time of 1 s and corrected using a 2 ng µL-1 leucine enkephalin reference spray 

infused at 2 µL min-1. Data acquisition was carried out using MassLynx ver. 4.1 (Waters 

Corp., Milford, MA, USA). A poly-DL-alanine solution was used as CCS reference in 

negative ion mode (10 mg L-1 in 50:50 v/v acetonitrile/water). Calibration was performed 

using singly charged oligomers from n = 3 to 14, covering a mass range from 230 to 1012 

Da and a CCS range from 150 to 308 Å2. CCS values were derived using previously 

described procedures.52  

 

3.4.6 Data Analysis 

The general workflow for the pilot study is shown in Figure 3.1. Spectral features 

(retention time (Rt), m/z pairs) were extracted from UPLC-MS data using Progenesis QI 
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version 2.0 (Nonlinear Dynamics, Waters Corp.). The procedure included Rt alignment, 

peak picking, integration, and deconvolution to group together adducts derived from the 

same compound. Subsequently, m/z values of all extracted features were input into the 

Metlin database53 to perform a broad search for chemical compound candidates with an 

error window of 20 ppm, and 16.7% features with no candidates in the database were 

removed from the list. The remaining features were normalized after blank subtraction. 

Further, only features that were present in at least 50% of one group class were retained. 

These were subject to a more stringent search against the Human Metabolome Database 

(HMDB)54 using the elemental formula of the compound candidates in Metlin, and only 

those features that had candidates with endogenous human or microbial origins were 

retained. The remaining features were further confirmed by MS/MS experiments. The 

feature matrix obtained after this procedure was utilized to build models for sample 

discrimination via oPLS-DA55, 56 by comparing the sample classes pairwise (MATLAB, 

R2015a, The MathWorks, Natick, MA with PLS-Toolbox, version 8.0, Eigenvector 

Research, Inc., Manson, WA). Reverse interval PLS-DA (iPLS-DA) was applied to 

autoscaled feature abundances to find the optimum number of latent variables (LVs) and 

a feature panel that maximized classification accuracy. The iPLS-DA interval size was 

set to 1 and the maximum number of LVs set to 6. Leave-one-out cross-validation 

(LOOCV) and contiguous block cross-validation (CV) with 3 data splits were used for 

oPLS-DA model building. Permutation tests were performed to validate the models and 

prevent over-fitting. 

For the large cohort study, the procedures were modified to improve data analysis 

efficiency due to the higher number of features extracted (Figure 3.2). In addition, 



127 
 

samples were separated into adult and pediatric groups based on an age cut-off of 18 for 

binary classifications, to better account for the wider age distribution and possible age-

related metabolic differences. After data pre-processing, quality control sample-based 

robust LOESS (locally estimated scatterplot smoothing) signal correction (QC-RLSC) 

was applied, followed by quality assurance check, in which features with a relative 

standard deviation (RSD) > 30% in QC samples were removed.46 Subsequently, signals 

from sample blanks, contaminants, chloride salt clusters and high mass defect ions were 

removed, and the data was normalized by total ion intensity. Then, data matrices were 

subject to a 50% sample prevalence filter and a putative identity filter search against the 

HMDB54 using accurate mass, and only those that had candidates with endogenous 

human or microbial origins were kept. The samples in each binary class comparison were 

separated into pediatric and adult groups. After deletion of outliers in each age group for 

each comparison, samples were age-matched, and the abundances of the remaining 

features in these samples autoscaled and investigated by reverse iPLS-DA, followed by 

oPLS-DA classification with three-block CV. Further validation was performed by 

rigorous permutation testing.57 
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Figure 3.1: Data analysis workflow for the pilot study.
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Figure 3.2: Data analysis workflow for the large cohort study. Main differences with the 
pilot study include application of signal correction by QC-RLSC and quality assurance and 
identification of discriminant features after feature selection and modeling. 

 

 

3.4.7 Metabolite Identification and Pathway Analysis 

Spectral features with tentative candidates in the HMDB were targeted for 

identification based on i) the accurate mass and isotopic pattern, ii) tandem MS 

experiments where the respective precursor ions were quadrupole selected, and iii) 

further validation against chemical standards (when available). For those cases in which 

MS/MS spectra were not available in the Metlin database, fragmentation patterns were 

manually interpreted for metabolite annotation. Commercially available standards were 

analyzed under identical conditions as EBC samples to validate putative metabolite 

identities by chromatographic Rt matching and MS/MS fragmentation pattern matching. 
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In the large cohort study, for metabolites with Rt at the solvent front, CCS values were 

measured using ion mobility (IM) MS to provide an additional molecular descriptor to 

increase identification confidence by comparing to those of chemical standards. Pathway 

analysis was performed by Metaboanalyst v3.0.58 A total of 23 uniquely identified 

discriminant metabolites from all panels in the large cohort study were chosen for 

analysis. Data were autoscaled, with other parameters kept as default. 

 

3.5 Results and Discussion for the Pilot Study 

 

3.5.1 Data Processing 

A total of 491 features were extracted from UPLC-MS negative ion mode data of 

the entire sample cohort by Progenesis software. Following Metlin filtering, 409 spectral 

features were kept. After deleting contaminant compounds such as known surfactants or 

plasticizers, background subtraction was applied to remove features in EBC samples that 

were also present in the sample blanks. If a feature had a maximum peak area in the blank 

runs which was one-third or more of the peak area of the same feature in EBC samples, it 

was considered a contaminant59 and its peak area in the corresponding EBC sample was 

set to 0. Otherwise, the maximum peak area in the blank samples was deducted from the 

feature peak areas in the EBC samples. Following background subtraction, features that 

had zero peak areas in 70% or more of the EBC samples from the studied class pairs were 

removed, resulting in 176 features that remained in the APE/stable CF class pair and 185 

features in the pre-APE/stable CF class pair. This step was aimed at pruning out less 

significant groups of features. Of these, only features present in at least half of any group 
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class were selected to increase the robustness of the final marker panel, leaving 144 

features for the APE/stable CF classes, and 159 features for the pre-APE/stable CF 

classes, when considered pairwise. As described in Figure 3.1, the feature datasets were 

further filtered to keep only those that also had tentative identities based on elemental 

formula searches in the HMDB. Following this filtering, 20 features remained in the 

APE/stable CF class pair and 21 features in the pre-APE/stable CF class pair, and of these 

only 9 and 10, respectively, could be confirmed by MS/MS experiments (Table 3.2) and 

were then subject to iPLS-DA feature selection process, as described in the next section. 

This rather stringent filtering approach was chosen to ensure that the features used for 

multivariate classification had a high certainty in terms of biochemical identity, and 

therefore improve the chances of understanding their significance in the context of CF 

APE pathophysiology. 
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3.5.2 Classification Performance 

Results for the discrimination of 9 APE EBC samples vs. 17 stable CF EBC 

samples are shown in Table 3.3 and Figure 3.3 (A). An optimum panel of 2 discriminant 

features (panel #1) was selected through the iterative iPLS-DA process. Following a 

three-block CV approach, the corresponding oPLS-DA model yielded a classification 

accuracy of 84.6%, a sensitivity of 77.8% and a specificity of 88.2%. One latent variable 

was used to build the oPLS-DA model that interpreted 44.7 and 36.3% variance from the 

X- (feature peak areas) and Y- (EBC class membership) blocks, respectively. Two EBC 

samples from the stable CF patient class and two samples from the APE class were 

systematically misclassified. Figures 3.3 (B) and (C) show box plots of peak areas for 

each discriminant feature in panel #1, and denote fold changes obtained between the 

compared sample classes. Median instead of mean peak area values were used to 

calculate fold changes to account for sample variability resulting from the relatively small 

sample size used in this class comparison. Interestingly, when the 4 pre-APE samples 

were used as an unknown sample set and input into this classification model, 3 out of 4 

pre-APE samples were predicted as being similar to APE samples (Figure 3.3 (A)), 

foreshadowing a metabolic fingerprint of APEs in the pre-APE EBC samples. 

Conversely, when the 5 post-APE samples were input into the APE vs. stable CF oPLS-

DA model, 4 out of 5 post-APE samples were predicted as being like stable CF samples 

(Figure 3.3 (A)), possibly suggesting that following APE treatment, the EBC metabolic 

profiles of the discriminant features of most post-APE patients resembled those of the 

stable CF patients. 

 



134 
 

Table 3.3: Comparison of discriminant feature panels. 

Model
/Panel 

# 

Classes 
compared 

Type of 
CV 

No. of 
features 
in initial 

set 

No. of 
discriminant 

features in oPLS-
DA model 

Discriminant 
feature codes 

Model 
accuracy 

Model 
specificity 

Model 
sensitivity 

1 APE (9); 
Stable CF (17) 3-block 9 2 397, 407 84.6 88.2 77.8 

2 Pre-APE (4); 
Stable CF (17) LOOCV 10 2 40, 407 90.5 94.1 75.0 

 
 
 

 

Figure 3.3: (A) oPLS-DA cross-validated classification plot and (B) Box plots of peak 
areas of each discriminant feature in panel #1. (A) The x-axis represents sample number, 
and y-axis represents the cross-validated predicted scores of the oPLS-DA classification 
model. APE and stable CF samples are represented by red circles and black squares, 
respectively. The pre- and post-APE samples projected into the model are represented by 
blue triangles and magenta diamonds, respectively. The threshold for sample classification 
is represented by the green dashed line. “Pre-APE” samples are collected within 3 months 
before an APE event; “APE” samples are collected during an APE event; “post-APE” 
samples are collected within 3 months after an APE event; “stable CF” samples are 
collected for stable CF patients (3 months before or after collection there were no APE 
events).  (B, C) Box plots for pyroglutamic acid and 4-hydroxycyclohexylcarboxylic acid, 
respectively, in EBC samples from stable CF and APE patient groups. Mean values are 
represented by a filled circle in the box; median values are represented by a line in the box; 
the edges of the box are 25th and 75th percentiles; the whisker extends to the most extreme 
values in data not including outliers, with a 99.3% coverage; outliers are represented by 
asterisks. The positive fold change is calculated as the ratio of median peak areas between 
APE and stable CF samples. The negative fold change is calculated as the negative value 
of the ratio of median peak areas between stable CF and APE samples. p values are 
calculated from Wilcoxon rank-sum test.  
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With the purpose of investigating if discriminating the 4 EBC samples collected from 

patients in a pre-APE state from those 17 EBC samples from stable CF patients was 

possible, a new oPLS-DA model was developed using a leave-one-out cross-validation 

(LOOCV) approach. This approach was chosen due to the small number of pre-APE 

samples. Table 3.3 shows that using a two-feature discriminant metabolite panel (panel 

#2) selected by iPLS-DA, classification was indeed possible with an accuracy of 90.5%, a 

sensitivity of 75.0% and a specificity of 94.1% (Figure 3.4 (A)). One EBC sample from a 

pre-APE patient and one sample from a stable CF patient were misclassified with this 

model, which used 1 latent variable and interpreted 87.2 and 44.6% variance from the X- 

and Y-blocks, respectively. Figures 3.4 (B) and (C) show box plots for each discriminant 

feature in panel #2, with the respective median fold changes obtained for the compared 

sample classes. Interestingly, feature #407 was common to panels #1 and #2, but feature 

#40 was only selected in panel #2, suggesting that biomarkers of the asymptomatic phase 

preceding an APE event may be somewhat different from those associated with 

biochemical processes occurring during an exacerbation. Overall, these results highlight 

the feasibility of early indication of an oncoming APE event using these small metabolite 

panels (Tables 3.3 and 3.4), a possibility that could have significant implications in terms 

of pre-emptive APE diagnostics, enabling detection and treatment before irreversible 

damage to lung function occurs. Although CV could prevent over-fitting to some extent, 

we further performed permutation tests to validate the robustness of the models. A 

pairwise Wilcoxon signed rank test was chosen for the cross-validated residuals since the 

population couldn’t be assumed to be normally distributed due to the small sample size. 

For the model classifying pre-APE/stable CF class pair, the probability that the un-



136 
 

permuted model was not significantly different from the permuted models was 0.024, 

indicating that the original model was significant and not over-fitting at the 95% 

confidence level. For the model classifying APE/stable CF class pair, the probability that 

the un-permuted and permuted models were indistinguishable was 0.087, indicating that 

the model was significant at the 90% confidence level.  
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Figure 3.4: (A) oPLS-DA cross-validated classification plot and (B) Box plots of peak 
areas of each discriminant feature in panel #2. (A) The x-axis represents sample number, 
and y-axis represents the cross-validated predicted scores by the oPLS-DA classification 
model. Pre-APE and stable CF samples are represented by red circles and black squares, 
respectively. The threshold for sample classification is represented by a green dashed line. 
(B, C) Box plots for lactic acid and pyroglutamic acid, respectively, in EBC samples from 
stable CF and pre-APE patient groups. Mean values are represented by a filled circle in the 
box; median values are represented by a line in the box; the edges of the box are 25th and 
75th percentiles; the whisker extends to the most extreme values in data not including 
outliers, with a 99.3% coverage; outliers are represented by asterisks. Fold changes are 
calculated as the ratio of median peak areas between pre-APE and stable CF samples. p 
values are calculated from Wilcoxon rank-sum test.  
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3.5.3 Identification of Discriminant Metabolites and Their Biological Roles 

Figure 3.5 displays the procedure used for unambiguous chemical identification of 

the discriminant features used in the oPLS-DA panels, using feature #40 as an example. 

Metabolic fingerprints from the same patient at 3 different CF states: pre-APE, stable, 

and during an APE event are illustrated with the corresponding base peak intensity 

chromatograms (BPI) displayed in Figures 3.5 (A), (B) and (C), respectively. Extracted 

ion chromatograms (EICs) (Figure 3.5 (D)) and corresponding mass spectra (Figure 3.5 

(E) top) were obtained for features selected by iPLS-DA. According to the experimental 

monoisotopic mass of each feature, a series of possible candidates were generated from 

database searches in Metlin database followed by the HMDB, and selected after matching 

of the observed and theoretical isotopic patterns (Figure 3.5 (E)). Next, fragmentation 

patterns obtained from MS/MS experiments were compared to MS/MS spectra of the 

candidates in Metlin, if available, or interpreted manually. Finally, the tentatively 

identified metabolites were confirmed by matching Rt and fragmentation pattern to those 

of chemical standards, whenever possible (Figure 3.5 (D, F)). Feature #40 in the example 

was identified as lactic acid. The identities of the discriminant features in the models are 

summarized in Table 3.4. 



139 
 

 

Figure 3.5: Base peak intensity (BPI) chromatograms obtained for EBC samples from the 
same patient at 3 different CF states: (A) pre-APE, (B) stable CF, and (C) during an APE 
event. (D) Extracted ion chromatogram for the discriminant feature with m/z 89.0239 ± 
0.005 (lactic acid) generated from data in (A), (B), (C) and lithium lactate standard. (E) 
Experimental (top) and theoretical (bottom) mass spectra for the discriminant feature with 
m/z 89.0239 and Rt= 0.48 min. (F) MS/MS spectrum for m/z 89.0239 precursor ion using 
a collision cell voltage of 8V and a sampling cone voltage of 30V. The matching of MS/MS 
fragmentation between the experimental spectrum (top) and the chemical standard (bottom) 
is shown. 

 
 
 

Table 3.4: Chemical identification of discriminant EBC features in the pilot study. 

Feature 
code 

Used in 
model/ 
panel 

Rt 
(min) 

Experimental 
m/z 

Ion 
type 

Elemental 
formula 

∆m 
(mDa) 

Tentative 
annotation 

Method for 
tentative 

annotation 

Metabolite ID 
validation  

(with 
standard) 

40 2 0.48 89.0231 [M-H]- C3H6O3 -0.8 Lactic acid a, MS/MSb Rt, MS/MS 
match 

407 1,2 0.48 128.0343 [M-H]- C5H7NO3 -0.5 Pyroglutamic acid   
(5-Oxoproline) 

a, MS/MSb Rt, MS/MS 
match 

397 1 0.82 143.0701 [M-H]- C7H12O3 -0.7 
4-

Hydroxycyclohexyl
-carboxylic acid 

a Rt, MS/MS 
match 

a Accurate mass and isotopic pattern matched; b Metlin database matched.
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Feature # 40 was selected by iPLS-DA for the model comparing pre-APE patient 

samples with stable CF ones, and it was identified as lactic acid. Lactic acid had a 

significant median fold increase of 3.2 from stable CF to pre-APE patient samples 

(p<0.05, Figure 3.4 (B)). Interestingly, a previous study using NMR reported increased 

levels of lactate in bronchoalveolar lavage fluid  (BALF) from CF patients with high 

inflammation compared to those with low inflammation,60 confirming that increased 

inflammation both prior to and during an APE event could be also detected in EBC by 

LC-MS. Increased lactate production has also been reported in patients with respiratory 

distress syndrome, finding it proportional to lung injury severity.61 Lactic acid levels in 

the studied cohort possibly reflect the status of different stages preceding and following 

an APE event (Figure 3.6 (A)). The higher levels of lactic acid in the pre-APE and APE 

patients compared to stable CF patients could possibly result from the increasingly 

hypoxic environment in CF lungs due to poorly cleared thick mucus developing on 

epithelial surfaces,62 known to lead to an increased lactate conversion from pyruvate in 

anaerobic glycolysis. Lactate is also a glucose precursor in gluconeogenesis, and elevated 

gluconeogenesis has been found in CF-related diabetes, possibly contributing to 

abnormal glucose tolerance in CF.63 In addition, lactic acid as a fermentation product of 

the CF anaerobic bacteria, was suggested as a potential biomarker for CF progression.64 

The decreasing trend of lactic acid from the pre-APE to the APE group in the studied 

cohort might be understood by considering that APE patients were treated with 

intravenous antibiotic therapy, so their inflammatory phenotype might be different from 

pre-APE patients, who had not yet been aggressively treated. 
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Figure 3.6: Box plots for the three discriminant metabolites: (A) lactic acid, (B) 
pyroglutamic acid, and (C) 4-hydroxycyclohexylcarboxylic acid in different subgroups of 
the sample cohort. Mean values are represented by a filled circle in the box; median values 
are represented by a line in the box; the edges of the box are 25th and 75th percentiles; the 
whisker extends to the most extreme values in data not including outliers, with a 99.3% 
coverage; outliers are represented by asterisks. 

 

 

Feature #407, identified as pyroglutamic acid (5-oxoproline), was present in both 

marker panels (Table 3.4), suggesting that its relative alterations may reflect processes 

occurring both during APE as well as during the 3-months-time window preceding the 

APE episode. Pyroglutamic acid had median fold increases from stable CF to APE and to 

pre-APE samples of 2.5 and 3.8, respectively (Figure 3.3 (B) and Figure 3.4 (C)). 

Interestingly, in a recent serum metabolomics study of 31 CF vs. 31 non-CF children 

reported by Joseloff et al., pyroglutamic acid was also identified as an important 

metabolite responsible for discrimination between CF and non-CF subjects.65 This 

metabolite is a known intermediate in the γ-glutamyl cycle, a pathway for the 

biosynthesis and degradation of glutathione, and is thus related to redox imbalance. CF 

mutations cause a primary dysfunction in the glutathione system, leading to a systematic 
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glutathione deficiency in the respiratory epithelial lining fluid, which is aggravated by 

oxidative burden.66, 67 Interestingly, decreased levels of glutathione have also been 

detected during exacerbations in EBC of children with asthma, hinting at some common 

mechanisms.68 Figure 3.6 (B) illustrates the relative concentrations of pyroglutamic acid 

in the different sample classes.  

Feature #397 was selected by iPLS-DA for the model classifying APE from stable 

CF EBC samples, with a median fold decrease of 1.8 from stable CF to APE samples 

(Figure 3.3 (C)). This feature was identified by both UPLC-MS and MS/MS, and 

validated with a standard as 4-hydroxycyclohexylcarboxylic acid, which is a relatively 

rare organic acid involved in gut microbial mammalian cometabolism. It is a metabolite 

typically found in urine,69, 70 but never before reported in EBC to our knowledge. 

Interestingly, this type of metabolic gut-lung crosstalk has been found to be also 

associated with inflammatory bowel diseases, in which the pulmonary inflammation is 

reported to accompany the main inflammatory processes in the bowel.71 It is yet unclear, 

however, if these inflammatory processes are manifested through similar alterations in 

the respective lung and bowel metabolomes, as suggested by this finding. Figure 3.6 (C) 

illustrates the relative concentrations of 4-hydroxycyclohexylcarboxylic acid in the 

different sample classes.  

 

3.6 Results and Discussion for the Large Cohort Study 

 

3.6.1 Data Processing Results 
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A total of 1334 and 923 features were obtained from UPLC-MS data in negative 

and positive ion modes, respectively. Adducts, in-source fragment ions, and chloride salt 

cluster ions were grouped according to criteria in Table 3.5. QC-RLSC was applied to the 

data, followed by removal of features with RSD >30% in quality control (QC) samples.46 

After blank correction, features with zero values in >80% of samples considering all 

classes (stable CF, pre-APE, APE and post-APE) were removed, leaving 1015 and 635 

features in negative and positive ion mode data, respectively. Subsequently, contaminants 

and ESI artifacts such as chloride salt cluster ions and high mass defect ions defined by 

McMillan filter72 were removed, leaving 745 and 538 features in negative and positive 

ion mode data, respectively. The resulting data matrices were normalized by total ion 

intensity and then passed through a 50% sample prevalence filter in each class, yielding 

281 and 262 features in negative and positive ion mode data for APE/stable CF classes, 

and 278 and 268 features in negative and positive ion mode data for pre-APE/stable CF 

classes. The remaining features were then searched in the HMDB and only those with 

endogenous human or microbial candidate IDs were retained. Following this step, 58 and 

46 compounds remained in negative ion mode and positive ion mode data for the 

APE/stable CF class pair, and 57 and 44 compounds for the pre-APE/stable CF class pair. 

These remaining features constituted the final datasets used for subsequent multivariate 

analyses. PCA was performed for each set, and outliers outside 95% confidence intervals 

were removed. Then, iPLS-DA feature selection and oPLS-DA binary classifications 

were performed for age-matched samples in each age-based group (Table 3.1).
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Table 3.5: Criteria applied for grouping adduct/in-source fragment ions, and chloride salt 

clusters in the large cohort UPLC-MS dataset. 

Criterion ∆m 
(mDa) 

∆Rt 
(min) Specific rules Numbers of compounds or features 

Adduct/in-source fragment ion 
groupinga. 

Adduct/in-source fragment ions 
considered:  

Negative mode: adduct ions: [M-H]-, 
[M+Na-2H]-; in-source fragment 
ions: [M-H2O-H]-, [M-SO3-H]-, [M-
CO2-H]-, [M-NH3-H]-, [M-
CH3COOH-H]-, [M-HCOOH-H]- 

Positive mode: adduct ions: [M+H]+, 
[M+Na]+; in-source fragment ions: 
[M-H2O+H]+, [M-SO3+H]+, [M-
CO2+H]+, [M-NH3+H]+, [M-
CH3COOH+H]+, [M-HCOOH+H]+ 

1.5 0.1 1. [M-H]- or [M+H]+ ion must be present 
in group in negative or positive mode, 
respectively. [M-H]- or [M+H]+ ion must 
be most abundant ion for >90% samples. 

2. Only singly charged compounds are 
considered. 

3. Either all ion adducts in a group 
should be present, or all should be 
absent for >90% of samples. 

4. Correlation between featuresb >0.85 
to ensure they correspond to different 
adducts of the same compound.73 

Twenty-six features were grouped into 
11 compounds in negative mode data 
and 22 peaks were grouped into 11 
compounds in positive mode data, 
based on the presence of multiple 
adducts or in-source fragments.  

Manual grouping or assigning of all 
chloride salt cluster isotopic signals 
not correctly grouped by Progenesis. 

 

Possible isotopes considered: X, 
X+1.9971, X+1.9971×2, 
X+1.9971×3, X+1.9971×4, 
X+1.9971×5. 

4 0.1 1. Ratio between the second largest 
isotope abundance and the most 
abundant isotope >0.3. 

2. Mass defect >0.3. 

3. Satisfy rules 2-4 in adduct/in-source 
fragment ion grouping criteria. 

Ten chloride-containing species were 
grouped into 3 chloride salt cluster 
compounds in negative mode, and 2 
chloride-containing species were 
grouped into 1 chloride salt cluster 
compound in positive mode. All 
species overlapped with features 
filtered by the McMillan filter72. 

Identification of cases where 
Progenesis only identified a single 
isotopic peak from a chloride salt 
cluster.  

N/A N/A 1. Mass defect >0.3. 

2. m/z match theoretical value of known 
chloride salt cluster ions. 

Four sodium chloride cluster ions 
([NanCln+1]- (n=2‒5)), and 2 iron 
chloride cluster ions ([FeCl3]- and 
[FeCl4]-) in negative mode; 1 sodium 
chloride cluster ion of [Na3Cl2]+ in 
positive mode. 
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3.6.2 Classification Performance 

 Data analysis of negative ion mode data showed that discrimination of APE from 

stable CF samples was possible for age-matched samples in both adult and pediatric 

groups (Table 3.6, Figure 3.7). For classification of pediatric patients, 9 discriminant 

features were selected by iPLS-DA, yielding a sensitivity of 83.3%, specificity of 91.7% 

and accuracy of 88.9%. For the adult group, the oPLS-DA model provided a sensitivity 

of 76.2%, specificity of 83.7%, and accuracy of 81.3% in distinguishing 21 APE samples 

from 43 stable CF samples, using a panel of 10 discriminant features with 6 latent 

variables. For discrimination of pre-APE samples from stable CF EBC samples, another 

set of oPLS-DA models was built that provided sensitivities of 85.7% and 89.5%, 

specificities of 88.4% and 84.1%, and accuracies of 87.7% and 85.7% for differentiating 

samples from 14 pre-APE pediatric patients or 19 adult patients from 43 stable pediatric 

patients or 44 adult patients. All models had good AUC values ranging from 0.8 to 0.9, 

with permutation testing showing no over-fitting. 

 

 

Table 3.6: Comparison of oPLS-DA models using negative ion mode data. 

Classes 
compared 

Age 
group 

No. of 
features 
in initial 

set 

No. of 
discriminant 
features in 
oPLS-DA 

model 

Model 
accuracy 

Model 
specificity 

Model 
sensitivity 

AUC 
(CV) 

Percent 
variance X1, 
X-block, Y-

block 

Cross-
validated 
Wilcoxon 

signed 
rank test 
p value 

for 
permutat
ion test 

APE (18); 
Stable CF (36) Pediatric 58 9 88.9 91.7 83.3 0.8873 9.2, 59.4, 

58.4 0.0010 

APE (21); 
Stable CF (43) Adult 58 10 81.3 83.7 76.2 0.7940 12.0, 71.6, 

42.3 0.0060 

Pre-APE (14); 
Stable CF (43) Pediatric 57 11 87.7 88.4 85.7 0.8787 10.5, 43.1, 

42.1 0.013 

Pre-APE (19); 
Stable CF (44) Adult 57 5 85.7 84.1 89.5 0.8301 31.2, 31.2, 

30.3 0.0080 
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Figure 3.7: oPLS-DA cross-validated classification plots using negative ion mode data, 
including comparison of APE vs. stable CF samples in age- and gender-matched EBC 
samples from pediatric patients (A) and those from adult patients (B), and comparison of 
pre-APE vs. stable CF samples in age- and gender-matched EBC samples from pediatric 
patients (C) and those from adult patients (D). The x-axis represents sample number, and 
y-axis represents the cross-validated predicted scores of the oPLS-DA classification model. 
APE/pre-APE and stable CF samples are represented by red circles and black squares, 
respectively. 
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Data analysis was also performed on the dataset combining positive and negative 

ion mode features. Results showed classification was also feasible when samples were 

separated into adult and pediatric groups (Table 3.7, Figure 3.8) and improved 

classification performance was obtained for most comparisons with this feature dataset. 

For the comparison of APE and stable CF classes, good classification sensitivities (87.5% 

and 84.2%), specificities (94.9% and 90.9%) and accuracies (92.7% and 88.9%) were 

achieved by oPLS-DA in discriminating APE from stable patients for pediatric and adult 

cohorts, respectively. For the classification between pre-APE and stable CF, oPLS-DA 

modeling provided good sensitivities (100% and 85.7%), specificities (87.5% and 97.7%) 

and accuracies (90.3% and 93.9%) for pediatric and adult groups, respectively. All 

models had high AUC values of approximately 0.9, and no indication of overfitting as 

suggested by permutation test results. 

 

 

Table 3.7: Comparison of oPLS-DA models using combined negative and positive ion 
mode data. 

Classes 
compared 

Age 
group 

No. of 
features 
in initial 

set 

No. of 
discrimina
nt features 
in oPLS-

DA model 

Model 
accuracy 

Model 
specificity 

Model 
sensitivity 

AUC 
(CV) 

Percent 
variance X1, X-
block, Y-block 

Cross-
validated 
Wilcoxon 

signed rank 
test p value 

for 
permutation 

test 
APE (16); 
Stable CF 

(39) 
Pediatric 104 6 92.7 94.9 87.5 0.9103 13.6, 36.7, 55.9 0.0010 

APE (19); 
Stable CF 

(44) 
Adult 104 9 88.9 90.9 84.2 0.8911 8.6, 34.1, 49.4 0.0020 

Pre-APE 
(14); Stable 

CF (48) 
Pediatric 101 8 90.3 87.5 100.0 0.9330 8.9, 82.5, 47.5 0.0080 

Pre-APE 
(21); Stable 

CF (44) 
Adult 101 11 93.9 97.7 85.7 0.9075 14.9, 39.2, 59.6 0.0 
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Figure 3.8: oPLS-DA cross-validated classification plots using combined positive and 
negative ion mode data, including comparison of APE vs. stable CF samples in age- and 
gender-matched EBC samples from pediatric patients (A) and those from adult patients (B), 
and comparison of pre-APE vs. stable CF samples in age- and gender-matched EBC 
samples from pediatric patients (C) and those from adult patients (D). The x-axis represents 
sample number, and y-axis represents the cross-validated predicted scores of the oPLS-DA 
classification model. APE/pre-APE and stable CF samples are represented by red circles 
and black squares, respectively. 

 

 

 

 

 



149 
 

3.6.3 Identification of Discriminant Metabolites and Their Biological Relevance 

 Features in the discriminant model panels were searched in the HMDB with a 

mass error of 2 mDa. Experimental MS/MS spectra of discriminant features were then 

matched to entries in the Metlin database, or manually analyzed if no database spectra 

were available. In addition, if a chemical standard was available, both Rt and MS/MS of 

the discriminant feature were compared to it. Since some features co-eluted with the 

chromatographic solvent front (Rt=0.5-0.6 min), CCS was used as an additional 

molecular descriptor for identification instead of Rt. A more confident identity is reported 

if CCS values matched with chemical standards within 2% (Table 3.8.1-3.9.2). Figure 3.9 

shows an example of a positive mode identification of a discriminant feature with m/z 

175.1188 by comparison of its MS/MS spectrum to the arginine chemical standard. In 

addition, Rt and CCS were also matched (Table 8.2) 
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Figure 3.9: Positive ion mode MS/MS spectrum of the feature with m/z 175.1188 in a 
stable CF EBC sample. The experimental fragmentation pattern matches to that of the 
arginine standard, with mass differences between experimental and theoretical values 
shown in brackets.  
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Table 3.8.1: Identification of discriminant features in oPLS-DA classification of APE from 
stable CF samples using negative ion mode data. 

Age 
Group m/z Rt 

(min) 
Ion 
type Tentative identity Elemental 

formula 

Median fold 
change 

(APE/stable CF) 
Identification 

Pediatric 

89.0232 0.55 [M-H]- Lactic acid C3H6O3 2.5 CCSa and MS/MSa, b 

128.0342 0.53 [M-H]- Pyroglutamic acid C5H7NO3 1.5 CCSa and MS/MSa, b 

127.0503 0.87 [M-H]- Dihydrothymine C5H8N2O2 3.0 MS/MSc 

59.0125 0.56 [M-H]- Acetic acid C2H4O2 -1.7 CCSa 

130.0499 0.57 [M-H]-  C5H9NO3 1.6 d 

143.0340 0.58 [M-H]- 

3-Methylglutaconic acid, 2-
Methylglutaconic acid, 2-

Hexenedioic acid, 3-
Hexenedioic acid 

C6H8O4 -1.4 

MS/MSc for 2-
hexenedioic acid, 

MS/MSa for the other 
candidates 

227.1036 0.66 [M-H]- Prolylhydroxyproline C10H16N2O4 1.8 MS/MSc 

165.0549 1.77 [M-H]-  C9H10O3 2.4 d 

187.0064 0.64 [M-H]-  C7H8O4S N/A1 d 

Adult 

143.0704 0.67 [M-H]- 4-Hydroxycyclohexylcarboxylic 
acid  C7H12O3 1.5 CCSa and MS/MSa, c 

187.0970 0.63 [M-H]- Nonanedioic acid/Azelaic acid C9H16O4 2.5 CCSa and MS/MSa, b 

201.1128 1.07 [M-H]- Sebacic acid C10H18O4 1.6 Rta and MS/MSa, b 

85.0283 0.61 [M-H]- γ-Butyrolactone, Oxolan-3-one C4H6O2 1.6 MS/MSc 

115.0389 0.59 [M-H]- Levulinic acid C5H8O3 N/A MS/MSa, c 

157.0862 0.97 [M-H]- 4-Hydroxycyclohexylacetic acid C8H14O3 1.5 MS/MSc 

59.0125 0.56 [M-H]- Acetic acid C2H4O2 -1.4 CCSa 

165.0549 1.77 [M-H]-  C9H10O3 3.3 d 

168.0658 0.73 [M-H]-  C8H11NO3 -1.3 d 

177.0397 0.53 [M-H]-  C6H10O6 1.6 d 

a match chemical standard; b match Metlin MS/MS; c match manual analysis; d no endogenous ID, not a, b or 
c. Significant median fold change is shown in italics. 1Unable to calculate median fold change because the 
denominator is 0.  
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Table 3.8.2: Identification of discriminant features in oPLS-DA classification of pre-APE 
from stable CF samples using negative ion mode data. 

Age 
Group m/z Rt 

(min) 
Ion 
type Tentative identity Elemental 

formula 

Median fold 
change (pre-
APE/stable 

CF) 

Identification 

Pediatric 

89.0232 0.55 [M-H]- Lactic acid C3H6O3 1.3 CCSa and MS/MSa, b  

133.0132 0.86 [M-H]- Malic acid  C4H6O5 -2.0×102 Rta and MS/MSa, b 

189.0762 0.59 [M-H]- 3-Hydroxysuberic acid C8H14O5 1.4 MS/MSc 

329.2338 6.73 [M-H]- 9,10,13-TriHOME C18H34O5 1.3 MS/MSc 

73.0277 0.64 [M-H]- Propionic acid C3H6O2 -1.1 CCSa and MS/MSa, c 

130.0499 0.57 [M-H]-  C5H9NO3 1.9 d 

145.0973 0.70 [M-H]- Lysine C6H14N2O2 2.9 Rta and MS/MSa, b for 
positive mode 

101.0596 0.80 [M-H]-  C5H10O2 N/A1 d 

122.0237 1.40 [M-H]-  C6H5NO2 N/A d 

187.0064 0.64 [M-H]-  C7H8O4S N/A d 

213.1493 5.97 [M-H]-  C12H22O3 1.6 d 

Adult 

143.0704 0.67 [M-H]- 4-Hydroxycyclohexylcarboxylic 
acid C7H12O3 1.8 CCSa and MS/MSa, c 

137.0234 0.74 [M-H]- Salicylic acid C7H6O3 2.5 Rta and MS/MSa, b 

157.0862 0.97 [M-H]- 4-Hydroxycyclohexylacetic acid C8H14O3 2.1 MS/MSc 

171.0655 0.64 [M-H]- 
2-Octenedioic acid, 4-

Octenedioic acid, 3-Octenedioic 
acid 

C8H12O4 2.0 MS/MSc 

130.0499 0.57 [M-H]-  C5H9NO3 1.0 d 

a match chemical standard; b match Metlin MS/MS; c match manual analysis; d no endogenous ID, not a, b or 
c.  Significant median fold change is shown in italics. 1Unable to calculate median fold change because the 
denominator is 0.  
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Table 3.9.1: Identifications of discriminant features in oPLS-DA classification of APE 
from stable CF samples using combined positive and negative ion mode data. 

Age 
Group m/z Rt 

(min) 
Ion 
type Tentative identity Elemental 

formula 

Median fold 
change 

(APE/stable CF) 
Identification 

Pediatric 

203.0822 1.21 [M-H]- Tryptophan C11H12N2O2 -1.4 Rta and MS/MSa, b 

171.0655 0.64 [M-H]- 
2-Octenedioic acid,  4-

Octenedioic acid,  3-Octenedioic 
acid 

C8H12O4 1.2 MS/MSc  

134.0599 3.88 [M+H]+ Indoxyl, Oxindole2 C8H7NO  N/A1 MS/MSc for indoxyl, b for 
oxindole 

130.0499 0.57 [M-H]-  C5H9NO3 1.6 d 

89.0602 1.33 [M+H]+  C4H8O2 -16 d 

187.0064 0.64 [M-H]-  C7H8O4S N/A d 

Adult 

143.0704 0.67 [M-H]- 4-Hydroxycyclohexylcarboxylic 
acid  C7H12O3 1.5 CCSa and MS/MSa, c 

130.0863 0.75 [M-H]- Leucine, Isoleucine C6H13NO2 1.2 Rta and MS/MSa, c 

162.1122 0.52 [M+H]+ Carnitine C7H15NO3  1.5 CCSa and MS/MSa, b 

187.0970 0.63 [M-H]- Azelaic acid C9H16O4 2.5 CCSa and MS/MSa, b 

85.0283 0.61 [M-H]- γ-Butyrolactone, Oxolan-3-one C4H6O2 2.0 MS/MSc 

87.0439 0.64 [M-H]- Butyric acid C4H8O2 -1.9  

134.0599 3.88 [M+H]+ Indoxyl, Oxindole C8H7NO -1.4 MS/MSc for indoxyl, b for 
oxindole 

137.0683 0.98 [M+H]+   2.7 
e; Experimental isotopic 
pattern doesn’t match to 

theoretical value of candidate 

179.0377 0.63 [M-H]-  C6H12O4S N/A d 

a match chemical standard; b match Metlin MS/MS; c match manual analysis; d no endogenous ID, not a, b or 
c; e no good MS/MS. Significant median fold change is shown in italics. 1Unable to calculate median fold 
change because the denominator is 0. 2A bacterial metabolite not in HMDB.  
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Table 3.9.2: Identification of discriminant features in oPLS-DA classification of pre-APE 
from stable CF samples using combined positive and negative ion mode data. 

Age 
Group m/z Rt 

(min) Ion type Tentative identity Elemental 
formula 

Median fold 
change 

(APE/stable CF) 
Identification 

Pediatric 

89.0232 0.55 [M-H]- Lactic acid C3H6O3 -1.0 CCSa and MS/MSa, b 

146.0449 0.53 [M-H]- Glutamic acid C5H9NO4 1.3 CCSa and MS/MSa, b 

116.0707 0.64 [M+H]+ Proline C5H9NO2 -2.4 MS/MSa, b 

130.0499 0.57 [M-H]-  C5H9NO3 1.4 d 

161.0320 0.61 [M+Na]+  C6H6N2O2 4.9 e 

169.0833 1.16 [M+Na]+  C7H14O3 -1.4 e 

101.0596 0.80 [M-H]-  C5H10O2 0 d 

113.0575 0.88 [M+Na]+  C4H10O2 N/A1 d 

Adult 

143.0704 0.67 [M-H]- 4-Hydroxycyclohexylcarboxylic 
acid  C7H12O3 1.7 CCSa and MS/MSa, c 

164.0345 0.74 [M-H]- Formylanthranilic acid C8H7NO3 1.3 Rta and MS/MSa, b 

175.1188 0.65 [M+H]+ Arginine C6H14N4O2 3.1 CCSa and MS/MSa, b 

157.0862 0.97 [M-H]- 4-Hydroxycyclohexylacetic acid C8H14O3 2.1 MS/MSc 

171.0655 0.64 [M-H]- 
2-Octenedioic acid, 4-

Octenedioic acid,  3-Octenedioic 
acid 

C8H12O4 2.1 MS/MSc 

59.0125 0.56 [M-H]- Acetic acid C2H4O2 1.2 CCSa 

139.0514 2.24 [M+H]+  C6H6N2O2 17 d 

139.0839 1.86 [M+Na]+  C5H12N2O 2.2 e 

161.0320 0.61 [M+Na]+  C6H6N2O2 N/A e 

169.0833 1.16 [M+Na]+  C7H14O3 2.6 e 

181.0232 0.77 [M+Na]+  C5H6N2O4 N/A d 

a match chemical standard; b match Metlin MS/MS; c match manual analysis; d no endogenous ID, not a, b or 
c; e no good MS/MS. Significant median fold change is shown in italics. 1Unable to calculate median fold 
change because the denominator is 0.  
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Of all discriminant features, several showed interesting trends in their abundances 

in EBC samples from patients at different stages preceding and following an APE event, 

in either adult or pediatric patients, including lactic acid, leucine/isoleucine, 

indoxyl/oxindole, butyric acid, azelaic acid and formylanthranilic acid (Figure 3.10). In 

EBC samples from pediatric patients, lactic acid was significantly elevated in APE 

samples compared to stable and pre-APE ones (Figure 3.10 (A)). It was also selected by 

iPLS-DA in the model comparing EBC samples from pre-APE patients with those from 

stable CF patients in the pilot study.74 Lactic acid is a fermentation metabolite of the 

anaerobic microbial community in CF and a potential biomarker associated with CF 

progression.64 In a sputum metabolomics study, lactic acid was detected with significant 

increased level in samples from APE patients compared to those from stable CF patients 

using LC-MS/MS.75 Butyric acid has been found to be secreted by anaerobic bacteria 

found in CF airways, and it was also detected in BALF samples from CF patients.76, 77 In 

this study, butyric acid had an increasing trend in EBC samples from stable CF to pre-

APE pediatric patients, and a decreasing trend from pre-APE to APE, and from APE to 

post-APE (Figure 3.10 (B)). The decrease in abundance of butyric acid from the pre-APE 

to the APE group in the cohort might be due to the fact that over 50% of the APE patients 

had already started intravenous antibiotic treatment at the time of EBC collection, 

resulting in a different inflammatory phenotype from that in pre-APE patients, who had 

not yet been aggressively treated. Butyric acid, together with acetic acid and propionic 

acid, which also appeared in the discriminant feature panels (Table 3.8.1-3.9.2), are short-

chain fatty acids associated with immune and inflammatory processes in CF airways.76 

Interestingly, acetic acid was identified as one of the potential EBC biomarkers for 
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discriminating stable CF patients from unstable CF patients during exacerbations in a 

metabolomics study using NMR.51 Leucine/isoleucine levels exhibited a similar trend as 

butyric acid in EBC samples from pediatric patients of this cohort (Figure 3.10 (C)). The 

rate of appearance of leucine, a measure of protein breakdown using stable isotope and 

MS analysis, was reported to be significantly higher in CF children compared with age- 

and gender- matched healthy controls78 and leucine synthesis has been found to be 

significantly higher in malnourished CF patients compared to well-nourished ones79. In 

addition, leucine was reported as an important discriminant metabolite for classification 

of CF patients with high and low inflammation.60 An overall higher amino acid content, 

including leucine and isoleucine, was detected in sputum from CF patients compared to 

non-CF controls, suggesting that it may provide nutrition supplement to auxotrophic P. 

aeruginosa in CF.80 In the adult group, formylanthranilic acid had an elevated mean 

value in pre-APE patients compared to CF patients at other stages (Figure 3.10 (D)). 

Formylanthranilic acid is a bacterial metabolite from indole,81 which is known to promote 

P. aeruginosa biofilm formation, causing infections in CF patients.82 In addition, 

formylanthranilic acid, indoxyl and oxindole (Figure 3.10 (E)) are involved in tryptophan 

metabolism,77, 83 and tryptophan was also selected as a discriminant feature in the 

classification model of APE vs. stable CF pediatric samples (Table 3.9.1). Tryptophan 

metabolism plays a crucial role in gut mucosal homeostasis and microbiome regulation,84 

and it was found to be significantly altered in primary human airway epithelial cells from 

CF patients compared to those from non-CF individuals in a metabolic profiling study by 

Wetmore et al.85. The remaining metabolite, azelaic acid (Figure 3.10 (F)) has not yet 

been reported in EBC and its association with CF needs further investigation. 
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Interestingly, 4-hydroxycyclohexanecarboxylic acid, which is a metabolite 

associated with gut microbial mammalian cometabolism and one of the two discriminant 

features in the model for APE vs. stable CF sample classification in the pilot study,74 

appeared in multiple discriminant panels in the large cohort study (Table 3.8.1-3.9.2). In 

addition, pyroglutamic acid, which is involved in the γ-glutamyl cycle and present in both 

APE vs. stable CF and pre-APE vs. stable CF discriminant panels in the pilot study,74 

also appeared in the 9-feature negative mode data model differentiating APE from stable 

CF pediatric samples of the large cohort (Table 3.8.1). These metabolites selected for 

discrimination in both the pilot and the large cohort studies in a non-supervised fashion, 

corroborated the biological significance and implications for future diagnostic approaches 

of the panels described here. 
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Malic acid, which was present in the 11-feature negative ion mode oPLS-DA model 

for classification of pre-APE and stable CF pediatric patient samples, was significantly 

decreased in pre-APE , with a large median fold change of 2.0×102 (Table 3.8.2). Malic 

acid has been recently detected in exhaled breath for the first time by secondary 

electrospray ionization high resolution MS,86 and it was reported to have cardioprotective 

effects possibly due to its anti-inflammatory properties87. In addition, it is involved in 

pyruvate metabolism, expected to be significantly altered between APE and stable CF 

pediatric samples (Figure 3.11). Free carnitine, which was identified in the adult APE vs. 

stable CF discriminant panel of the model using combined negative and positive ion mode 

data, had a 1.5 fold up-regulation in APE samples (Table 3.9.1). Carnitine can be either 

synthesized in the human body or obtained from dietary red meat, and metabolized by 

intestinal bacteria.77, 88 It is involved in fatty acid transportation to mitochondria, and 

abnormal fatty acid metabolism has been associated with CF.88-91 Interestingly, free 

carnitine levels in plasma have been reported to be significantly higher in CF patients 

compared to healthy controls.92 To the best of our knowledge, it has not been previously 

detected in EBC. 

A number of identified discriminant metabolites have been reported as being 

connected with microbial metabolism, re-emphasizing the important role that the CF 

microbiome has in terms of interacting with the host and participating in inflammatory 

mechanisms during and before the onset of an APE. Further investigation of the 

microbial metabolites and integration of CF microbiome studies with metabolomics 

should improve our current understanding of host-pathogen interactions in APE 
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development and progression, guiding clinical decisions for early intervention and 

personalized APE treatment.93  

 

3.6.4 Pathway Analysis 

Pathway analysis of the 23 uniquely identified discriminant metabolites from all 

panels revealed pathways with significant changes in APE and pre-APE compared to 

stable CF patients. These included arginine and proline metabolism, which was found to 

be significantly altered in pre-APE adult and pediatric samples, and pyruvate metabolism, 

which was significantly changed between APE and stable pediatric patients (Figure 3.11). 

The discriminant metabolites involved in arginine and proline metabolism were arginine, 

proline and glutamic acid. Arginine was one of the 11 discriminant features responsible 

for classification of adult pre-APE from stable CF samples, with a 3.1-fold increase in the 

pre-APE group (Table 3.9.2). Arginine serves as the precursor for nitric oxide production 

and could be de novo synthesized by citrulline.94, 95 Its concentration in EBC has been 

shown to be associated with lung function, with a significant negative correlation with 

percent predicted forced vital capacity and a nearly significant negative correlation with 

percent predicted FEV1.94 Another study reported decreased plasma arginine 

concentration during CF APE, with its level recovering after antibiotic therapy.96 

Grasemann et al. showed disturbed arginine metabolism in CF patients.96 Proline and 

glutamic acid are downstream products of arginase,96 and proline had a 2.4-fold decrease 

in abundance between pre-APE and stable CF pediatric patients (Table 3.9.2). 

Significantly increased proline and glutamic acid levels were found after antibiotic 
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treatment of APE.96 Further research is needed to elucidate the mechanisms involved in 

the observed alterations of arginine and proline metabolism during CF APE progression.  

Pyruvate metabolism, including lactic acid, malic acid, and acetic acid, was found 

to be significantly altered in EBC samples collected from pediatric patients during an 

APE compared to those from stable pediatric patients. Pyruvate metabolism is at a key 

intersection of many pathways in human biological systems including glycolysis and the 

citric acid cycle.97 Abnormalities in pyruvate metabolism have been strongly associated 

with various diseases.97 The flux of pyruvate metabolism is highly diverse in different 

strains of P. aeruginosa,98 and its relationship to CF also warrants further investigation.



162 
 

 

Figure 3.11: Pathway analysis of the 23 uniquely-identified discriminant metabolites from 
all panels, including EBC samples from APE vs. stable CF (A) pediatric and (B) adult 
patients, and pre-APE vs. stable CF in (C) pediatric and (D) adult patients. Each circle on 
the map represents a pathway, and the size and color of the circle are based on the p value, 
indicating the significance of the changes in the matched metabolites in the pathway, and 
the pathway impact score, which is correlated with the centrality of the metabolites 
involved.99, 100 

 

 

3.7 Conclusion 

Feasibility of detecting EBC metabolites related to APE events in CF patients was 

demonstrated with a pilot study, by means of an non-targeted UPLC-MS-based 

metabolomics method coupled to multivariate statistical analysis.  oPLS-DA multivariate 

classification on negative ion mode data yielded acceptable accuracies (84.6%, 90.5%), 

sensitivities (77.8%, 75.0%) and specificities (88.2%, 94.1%) in distinguishing 9 APE or 
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4 pre-APE EBC samples from 17 stable CF samples, respectively. A larger cohort study 

(n= 210) was conducted to validate these findings and to discover novel potential 

biomarkers for APE detection and prediction. Both negative ion mode data and combined 

positive and negative ion mode data showed classification of APE and pre-APE vs. stable 

CF patients in adult and pediatric cohorts. Supervised multivariate models yielded good 

classification accuracies ranging between 81.3 and 93.9%, depending on the binary 

comparison, with AUC values of ~0.8-0.9; and provided different discriminant EBC 

metabolite panels for APE and pre-APE detection in adult and pediatric patients. 

Metabolites exhibiting significant changes at different stages of an APE event were 

discussed in relation to the altered metabolic pathways and their microbial relevance. All 

three discriminant metabolites in the pilot study were also selected in the larger cohort in 

a non-supervised fashion, validating the biological significance of the panels identified 

for APE detection and prediction. Limitations of the studies include a lack of sufficient 

number of longitudinal EBC samples collected from the same patient at different stages 

of APE progression for time series analysis. Further investigation of the CF microbiome 

should aid to improve our current understanding of the link between host and pathogen 

interactions in APE development and progression, and to obtain chemical information on 

pathogen-specific metabolites that may assist in personalized clinical decisions for early 

intervention and better APE treatment.  The results presented here show promise for 

detecting APEs and even predicting an oncoming APE event using EBC metabolites, and 

provide insight into the molecular mechanisms of CF APE development. 
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PART II: FLOW INJECTION-ION MOBILITY-MS AND DIRECT INFUSION-

ION MOBILITY-MS BASED NON-TARGETED METABOLOMICS FOR 

DISEASE DETECTION AND EARLY PREDICTION



176 
 

CHAPTER 4. FLOW INJECTION-TRAVELING WAVE ION MOBILITY-MASS 

SPECTROMETRY FOR HIGH THROUGHPUT PROSTATE CANCER 

METABOLOMICS 

 
 
 
Adapted with permission from 
Zang X, Monge ME, David A. Gaul, Fernández FM. Flow Injection-Traveling Wave Ion 
mobility-Mass Spectrometry for Rapid Serum Metabolic Profiling. (to be submitted to 
Analytical Chemistry). 
 

4.1 Abstract 

Flow injection-traveling wave ion mobility-mass spectrometry (FI-TWIM-MS) 

was applied to the non-targeted metabolic profiling of serum extracts from 61 prostate 

cancer (PCa) patients and 42 controls with an analysis speed of 6 minutes per sample, 

including a wash run. Comprehensive data mining of the mobility-mass domain was used 

to discriminate species with various charge states and filter matrix salt cluster ions. 

Specific criteria were developed to ensure correct grouping of adducts, in-source 

fragments, and impurities in the dataset. Endogenous metabolites were identified with 

high confidence using FI-TWIM-MS/MS and collision cross-section (CCS) matching 

with chemical standards or CCS databases. PCa patient samples were distinguished from 

control samples with good accuracies (88.3-89.3%), sensitivities (88.5-90.2%), and 

specificities (88.1%) using supervised multivariate classification methods. Although 

largely underutilized in metabolomics studies, FI-TWIM-MS proved advantageous in 

terms of analysis speed, separation of ions in complex mixtures, improved signal-to-noise 

ratio, and reduction of spectral congestion. Results from this study showcase the potential 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Monge%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fern%C3%A1ndez%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=28152602
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of FI-TWIM-MS as a high throughput metabolic profiling tool for large scale 

metabolomics studies. 

 

4.2 MS-based Metabolic Profiling Strategies for High Sample Throughput 

 

4.2.1 Direct Infusion and Flow Injection Mass Spectrometry in Metabolomics  

The most commonly used MS-based metabolomics platform is the hyphenated 

technique of LC-MS. As mentioned in Chapter 1, LC-MS is widely adopted for non-

targeted metabolic profiling, owing to its wide coverage and efficient separation of a 

large number of metabolites in complex biological matrices.1-3 Coupling of LC to MS 

adds an orthogonal axis to mass-to-charge ratio (m/z) separations, therefore helping with 

metabolite identification in non-targeted studies, and lessening the extent of ion 

suppression in complex matrices.  

Evaluation of biological alterations in human metabolomes is often confounded 

by the inherent biological variance within patient cohorts. One strategy to overcome this 

challenge is to increase the sample cohort size to hundreds or even thousands of patient 

samples, leading to the discovery of more robust metabolic signatures.4, 5 Increasing 

cohort size, however, necessarily comes at the expense of higher study cost and larger 

instrument time demands. Most of that instrument time is typically consumed by the 

front-end LC separation. 
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Flow injection (FI) or direct infusion (DI) MS, without LC, maximizes analytical 

throughput and eliminate problems of retention time shifts due to column aging,6, 7 

therefore being well suited for larger patient cohorts. Compared to DI-MS, FI-MS can be 

more easily automated, with the added advantage of reducing the amount of sample 

required for analysis. Furthermore, addition of a post-ionization IMS dimension to FI-MS 

provides rapid separation of gas-phase ions based on CCS differences.8, 9 Compared to 

FI-MS alone, the inclusion of an IM dimension i) reduces spectral congestion by 

separating compounds with different charge states and structural motifs that are 

distributed into distinct regions on the mobility‒mass plot, ii) improves signal-to-noise 

ratios, iii) increases peak capacity, iv) incorporates CCS values that provide an additional 

molecular descriptor useful in assigning chemical structures,10 and v) provides cleaner 

MS/MS spectra by avoiding precursor ion co-selection, while still maintaining high 

analysis speed.11, 12 DI-IM-MS and FI-IM-MS, however, still remain largely unexplored 

in metabolomics, with the former applied only in a handful of studies without fully 

exploiting MS/MS or CCS information for metabolite identification.13-15  

 

4.2.2 Biomarker Discovery for Prostate Cancer Detection 

As described in Chapter 2, there has been a constant drive to discover new 

biomarkers for Prostate Cancer (PCa) detection to complement or replace existing ones.16 

Metabolomics studies have reported potential PCa biomarkers that include amino 

acids,17-19 organic acids,19-21 polyamines,20, 21 lipids,19, 22, 23 and carbohydrates,18, 24 with 

the majority of these studies employing the more time-consuming LC-MS approach.16, 25  
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4.3 Hypothesis 

In this study, we hypothesize that FI-IM-MS produces data that is comparable in 

terms of PCa detection performance to LC-MS, with the added advantage of faster 

sample analysis speed.  To test this hypothesis, we performed a FI-IM-MS based non-

targeted metabolomics study of serum samples from the same cohort described in 

Chapter 2 and analyzed the data, by combining with univariate and multivariate methods 

Based on this hypothesis, we expect to detect discriminant metabolites found in the LC-

MS study described in Chapter 2, and discover new metabolites that contribute to sample 

classification, providing deeper insight into the perturbed biological pathways associated 

with PCa. 

 

4.4 Materials and Methods 

 

4.4.1 Chemicals 

Ultrapure water with 18.2 MΩ∙cm resistivity (Barnstead Nanopure UV ultrapure 

water system, USA), Optima LC-MS grade acetonitrile and methanol (Fisher Scientific, 

Suwannee, GA, USA), Omnisolv high-purity dichloromethane and HPLC grade acetone 

(EMD, Billerica, MA, USA) were used for mobile phase preparation, sample preparation 

and chemical standard solution preparation. LC-MS grade acetic acid, uric acid (≥99%), 

nonanedioic acid (azelaic acid) (98%), tryptophan, inosine (≥99%), glutamine, histidine, 
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leucine, isoleucine, L-allo-isoleucine, L-lysine (≥98%), uridine (≥99%), guanosine 

(≥98%), taurine (≥99%), indole (≥99%), phenylalanine, m-cresol (99%), p-cresol (99%), 

o-cresol and sodium cholesterol sulfate were purchased from Sigma-Aldrich Corporation 

(St. Louis, MO, USA). Phenylalanyl phenylalanine was purchased from MP Biomedicals 

(Solon, OH, USA). Phenylacetylglutamine was purchased from Bachem (Hauptstrasse, 

Bubendorf, Sitzerland). Lysophosphatidylcholine (LPC(18:0/0:0)) (1-stearoyl-2-hydroxy-

sn-glycerol-3-phosphocholine) was purchased from Avanti Polar Lipids Inc. (Alabaster, 

AL, USA).  

 

4.4.2 Cohort Description 

Age-matched blood serum samples were obtained from 61 PCa patients (age 

range 49‒65, mean age 59(4) years) and 42 controls (age range 45‒76, mean age 58(7) 

years). At the 0.05 level, the population age means were not significantly different with 

the two-sample t test. The cohort ethnicity was as follows: 21 African American (20.4%); 

72 Caucasian (69.9%); 5 Hispanic (4.9%); 2 Asian (1.9%); 2 Jewish ancestry (1.9%); and 

1 unknown (1.0%). Serum samples correspond to a subgroup of the patient cohort 

described in Chapter 2. Thus, sample collection at Saint Joseph’s Hospital of Atlanta 

after approval by the IRB was performed as previously described.   

 

4.4.3 Sample Preparation 

Sample preparation was performed as described in Chapter 2 to compare results. 

Briefly, frozen serum samples were thawed on ice, and 300 µL of extraction solution 
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(acetone: acetonitrile: methanol 1:1:1, cooled to -20 ˚C) was added to 100 µL of serum. 

Samples were vortex-mixed for 20 s and centrifuged at 16,000 × g for 5 min to pellet 

proteins. To remove most lipids and other non-polar metabolites, 800 µL of 

dichloromethane was added to ~350 µL of supernatant and vortex-mixed. Following the 

addition of 250 µL deionized water, samples were vortex-mixed and kept on ice for 10 

min. The aqueous phase was subject to FI traveling wave IM (TWIM)-MS analysis. 

Sample blanks were prepared using deionized water instead of serum following the same 

procedure. 

 

4.4.4 Metabolic Profiling by FI-TWIM-MS  

Metabolomic analysis was performed on a Waters ACQUITY UPLC I-Class 

System fitted with a stainless steel union to bypass the chromatographic column, coupled 

to a Synapt G2-S HDMS system (Waters Corporation, Manchester, UK) equipped with 

an ESI source operated in negative mode. The column compartment was operated at 

room temperature. Instrument settings were as follows: capillary voltage 2.2 kV, cone 

voltage 45 V, source offset 50 V, source temperature 120 °C, desolvation gas temperature 

300 °C, desolvation gas flow rate 600 L h-1, nebulizer gas flow 7.0 bar, trap cell voltage 4 

V (default in MS mode), transfer cell voltage 2 V (default in MS mode), EDC delay 

coefficient 1.41 V, helium cell gas flow rate 180 mL min-1, IMS gas (N2) flow rate 90 mL 

min-1, trap DC entrance 3.0 V, bias 45 V, trap DC 0.0 V, exit -6.0 V, IMS DC settings 

entrance 25.0 V, helium cell DC 50.0 V, helium exit -10.0 V, bias 7.0 V, exit 0.0 V, 

transfer DC entrance 5.0 V, exit 15.0 V, trap wave velocity 311 m s-1, wave height 4.0 V, 

IMS wave velocity 650 m s-1, wave height 40.0 V, transfer wave velocity 175 m s-1, wave 
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height 4.0 V, StepWave 1 wave velocity 300 m s-1, wave height 15.0 V, StepWave 2 

wave velocity 300 m s-1, wave height 15.0 V, StepWave 2 offset 25.0 V, StepWave 

differential aperture1 3.0 V, StepWave differential aperture2 0.0 V, source ion guide 

wave velocity 300 m s-1, wave height 1.0 V, StepWave Radio frequency (RF) offset 

300.0 V, ion guide RF offset 350.0 V, IMS wave delay 1000 µs. IM resolution was ~40 

(FWHM). IM cell pressure was ~3.13 mbar. The instrument was calibrated in the range 

of m/z 50‒1200 using a 0.5 mM sodium formate solution prepared in 90:10 2-

propanol/water v/v. The injection volume was 5 µL using partial-loop needle overfill 

mode. The flow rate was set to 0.05 mL min-1 with a mobile phase consisting of 

acetonitrile/water (50:50 v/v) with 0.1% acetic acid. Mass spectra were acquired in 

profile mode over the range of m/z 50‒1200 in the “mobility-TOF” resolution mode. Scan 

time was 1 s and run time per sample was 3 min, followed by a 3 min wash run. During 

data acquisition, spectra were drift corrected using a 2 ng µL-1 leucine enkephalin 

reference spray infused at 2 µL min-1. Data acquisition was carried out using MassLynx 

ver. 4.1 (Waters Corp., Milford, MA, USA). Sample run order was randomized and 

sample preparation blanks were included. A wash run followed each sample, and was 

used to prevent carryover by injecting 5 µL of deionized water using the same analytical 

method as for samples. After each injection, 200 µL of the strong wash solvent 

acetonitrile and 600 µL of the weak wash solvent (10:90 acetonitrile:water) were used to 

wash the needle.  

 

4.4.5 Compound Identification 
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For FI-TWIM-MS/MS experiments, precursor ions were fragmented in the 

transfer cell with ultrahigh-purity argon (≥99.999%) as the collision gas. Instrument 

settings were the same as those in MS mode and the trap cell voltage was kept at 4 V. LM 

resolution was set to 15.0. Two methods were used for tandem MS experiments: 

automated data dependent acquisition (DDA) and individual MS/MS. For the DDA 

method, a list of precursor m/z values was entered. The scan range was m/z 50‒600, 

covering leucine enkephalin at m/z 554.262 in negative mode to ensure mass correction 

could be applied. Survey scan time was set from 0.3 to 0.9 min with 0.2 s scan time. The 

intensity threshold was set to 5000 so the survey scan switched to MS/MS when the 

individual ion intensity exceeded this value. The criteria for MS/MS switching to MS was 

set to be either when accumulated total ion intensity was above 105, or when acquisition 

time reached 0.25 s. Tandem MS scan time was set to 0.1 s. Interscan time was 0.01 s for 

both survey and MS/MS scans. A voltage of 25 V was applied to the transfer cell. For 

individual MS/MS methods, different voltage values between 20 to 50 V were applied to 

the transfer cell, depending on the specific precursor ion under investigation.  

For CCS measurement, a poly-DL-alanine solution was used as CCS reference in 

negative ion mode (10 mg L-1 in 50:50 v/v acetonitrile/water). Calibration was performed 

using singly charged oligomers from n = 3 to 14, covering a mass range from 230 to 1012 

Da and a CCS range from 150 to 308 Å2. CCS values were derived using previously 

described procedures.26 In MS/MS mode, Dt values were shorter due to elevated collision 

voltage applied in the transfer cell, leading to increased speed of the ions traversing that 

chamber. In order to correct for this shift, CCS calibration was performed at each 

elevated collision voltage applied to the transfer cell in MS/MS experiments. CCS values 
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for precursor ions in both MS and MS/MS modes were derived, and compared well 

within 2% tolerance. 

 

4.4.6 Data Processing and Analysis 

A general data acquisition and analysis workflow is shown in Figure 4.1. FI-

TWIM-MS data was loaded into Progenesis QI ver. 2.0 (Nonlinear Dynamics, Waters 

Corp.) for processing. Adduct ions such as [M-H]-, [M-2H]2- and [M-3H]3- were selected 

and no alignment was chosen since there was no chromatography. For the peak picking 

step, the “retention time” range was set between 0.3 and 0.8 min to remove ghost peaks 

with apexes outside this range. Sensitivity was set to automatic (default value of 3), and 

no peak width was set in order to maximize the number of detected features. Each feature 

was associated with specific m/z, Dt, and run time (FI time) value. Manual investigation 

of the detected spectral features on the mobility‒mass plot indicated a few cases where 

the charge state assignment by the Progenesis software was incorrect, due to either low 

ion abundance and poor peak shape, or false positive isotope cluster grouping based on 

adjacent noisy peaks. These wrongly-assigned charge states were manually corrected 

(Table 4.1). 
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Table 4.1: Compound charge states found in various areas of mobility‒mass plots. 

mobility‒
mass plot 

area 

charge state assigned by Progenesis software 

-1 -2 -3 

1st 
Singly charged species, 
including all identified 
endogenous metabolites 

Only a few signals, mostly 
doubly charged compounds 
that were manually checked 

Only a few triply charged 
species. Many noisy 
peaks with low intensity 
and poor peak shape, 
which were manually re-
assigned. 

2nd Mostly singly charged 
chloride salt cluster ions Doubly charged compounds 

Only a few signals, 
including singly charged 
chloride salt cluster ions, 
triply charged compounds 
and low intensity peaks, 
which were manual re-
assigned. 

3rd Unidentified low intensity singly charged features 
 

 

Features with the similar m/z (4 mDa tolerance) and Dt (0.06 ms tolerance), but 

different run times were combined into a single compound (Table 4.2). Following this 

grouping, features corresponding to adduct ions and in-source generated fragment ions 

were grouped with the corresponding [M-H]- ion. Stringent criteria were adopted to avoid 

false positives, including specific m/z differences, relative abundances, and ion species 

correlations (Table 4.2).  
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Table 4.2: Criteria applied for combining features, adduct ions, in-source fragment ions, 
and salt clusters in FI-TWIM-MS data. 

Criterion ∆m 
(mDa) 

∆Dt  
(ms) 

Specific Rules Numbers of Compounds or Features 

Spectral feature grouping by m/z and 
Dt 
 

4 0.06 N/A 361 features with different FI run times, but 
similar m/z and Dt were found. 

Adduct/in-source fragment ion 
groupinga. 
 
Adduct ions considered included: 
[M-H]-, [M+Na-2H]-, [M+ 
CH3COO]-,[M-CH3]-

 [M+CH3COO]- 
and [M+HCOO]-(for 
lysophosphatidylcholine adducts). In-
source fragment ions considered 
included: [M-H2O-H]-, [M-SO3-H]-, 
[M-CO2-H]-, [M-NH3-H]-,    [M-
CH3COOH-H]-, [M-HCOOH-H]-. 

1.5 N/A 1. [M-H]- ion must be present in group, 
[M-H]- ion must be most abundant ion 
for >90% samples, except for LPC 
adducts (no [M-H]-). 
2. Only singly charged compounds are 
considered. 
3. After blank filtering, either all ion 
adducts in a group should be present, 
or all should be absent for >90% of 
samples. 
4. Correlation between featuresb >0.85 
to ensure they correspond to different 
adducts of the same compound27 
5. Compounds in the group should be 
in the same mobility‒mass plot region. 

83 features were grouped into 37 
compounds based on the presence of 
multiple adducts or in-source fragments.  

Manual grouping of all chloride salt 
cluster isotopic signals not correctly 
grouped by Progenesis. 
 
Possible isotopes considered: X, 
X+1.9971, X+1.9971×2, 
X+1.9971×3, X+1.9971×4, 
X+1.9971×5. 

4 0.06 1. Ratio between the second largest 
isotope abundance and the most 
abundant isotope >0.3. 
2. Mass defect >0.3. 
3. Satisfy rules 2-5 in adduct/in-source 
fragment ion grouping criteria. 

A total of 248 chloride-containing species 
were found, these were grouped into 104 
NaCl cluster compounds including 
[NanCln+1]- (n=3‒9). Of the 248 species, 139 
overlapped with compounds filtered by the 
McMillan filter28. 

Identification of cases where 
Progenesis only identified a single 
isotopic peak from a chloride salt 
cluster.  
 
Features belonging to salt clusters 
that matched these specific criteria 
were manually removed.  

N/A N/A 1. Feature should be in the second 
mobility‒mass plot region. 
2. Feature should be singly charged 
with even nominal mass and mass 
defect >0.3. 

A total of 492 features matched. Of these, 
316 overlapped with compounds filtered by 
McMillan filter28. 

Identification of sodium acetate 
clusters 
[CH3COO(CH3COONa)n]- (n=3‒11) 

1.5 N/A N/A A total of 9 cluster ion species were 
detected.  

aAdduct ions, in-source fragment ions, and cluster ions often detected under the described experimental conditions are shown. Adduct/in-source fragment 
ion grouping was determined by comparing the mass differences between each adduct/in-source fragment ion and the [M-H]- ion.  

bCorr𝐴𝐴𝐴𝐴 = ∑ �𝑥𝑥𝐴𝐴,𝑖𝑖−�̅�𝑥𝐴𝐴�𝑛𝑛
𝑖𝑖=1 �𝑥𝑥𝐵𝐵,𝑖𝑖−�̅�𝑥𝐵𝐵�

�∑ (𝑥𝑥𝐴𝐴,𝑖𝑖−�̅�𝑥𝐴𝐴)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑥𝑥𝐵𝐵,𝑖𝑖−�̅�𝑥𝐵𝐵)2𝑛𝑛

𝑖𝑖=1

  (A and B represent two features; n is the number of samples). 
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Salt cluster ions, including sodium chloride clusters ([NanCln+1]-, (n=3‒9)) and 

sodium acetate clusters ([CH3COO(CH3COONa)n]-, (n=3‒11)), which are known artifacts 

observed in ESI of complex samples28, were also detected and grouped according to 

criteria outlined in Table 4.2. Many of these cluster ion signals were incorrectly grouped 

or were incorrectly assigned by Progenesis, and required manual curation of the feature 

list. An example of a sodium chloride cluster ion, annotated as [Na4Cl5]-, is shown in 

Figure 4.2. The distinct isotopic pattern due to the presence of multiple chlorine atoms is 

clearly observed in Figure 4.2A (top), with an excellent match to the expected 

abundances (Figure 4.2A bottom, 4.2B). Its identity was confirmed by FI-TWIM-MS/MS 

experiments (Figure 4.2C). The average of the isotopic distributions of a variety of other 

sodium chloride cluster ions across all samples was calculated (Figure 4.2D), which 

allowed to develop rules for the grouping of these species in the dataset (Table 4.2).   
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Figure 4.2: (A) Negative ion mode isotopic cluster for the species observed with m/z 
266.8039 (top) and the theoretical mass spectrum for [Na4Cl5]- (bottom). (B) TWIM 
extracted ion chronograms for each isotopic peak observed in the top spectrum of (A). (C) 
FI-TWIM-MS/MS for the precursor with m/z 266.8039 for a 25 V transfer cell voltage. (D) 
Average ratios of isotopic to monoisotopic peak of [NanCln+1]- (n=3-9) in the raw data 
matrix. 
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Following grouping of adduct/in-source fragment ions and salt cluster ions, the 

dataset was processed using four filters applied sequentially. First, a blank filter was 

applied where if the compound abundance in the sample was smaller than 5 times the 

average abundance in the sample blanks, it was set to zero, and compounds with zero 

values in more than 80% of the samples were removed. Next, a McMillan filter28 was 

applied to screen for salt cluster ions with high mass defects. The equation suggested by 

McMillan et al. for positive mode was modified for its application in the negative ion 

mode; i.e., y = 0.00112([M-H]- + 2H) + 0.01953 – 2H +2. Next, any remaining salt 

cluster ions that were not removed by the McMilllan filter28 were manually eliminated 

using the grouping criteria described in Table 4.2. Lastly, only compounds with m/z <610 

were retained since most of the species of interest in the LC-MS PCa study19 described in 

Chapter 2 were in this range. The resulting dataset was normalized by total ion intensity, 

yielding a dataset named “dataset #1”. A different dataset (dataset #2) was generated by 

total ion intensity normalization after the deletion of species identified as dicarboxylic 

acids and their monoesters (see discussion below) which might be of either endogenous 

or exogenous origin. This second dataset was useful in investigating the effect of deletion 

of these compounds with uncertain origin on the following univariate and multivariate 

analyses results.  

Following normalization, a prevalence filter was applied to the data so that only 

compounds present in at least 50% of any class were kept, leaving 237 compounds in 

dataset #1 and 226 in dataset #2. The features in these datasets were searched in the 

HMDB29 with a mass tolerance of 4 mDa, and only those matching metabolites of 

endogenous origin were kept. These features were identified based on i) matching 
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accurate mass and isotopic pattern to theoretical values, ii) matching MS/MS spectra 

within 8 mDa mass accuracy, and iii) matching experimental CCS values within ~ ±3% 

of chemical standard and/or database values.  

The identified compounds in dataset #1 matching discriminant metabolites from 

the  LC-MS PCa metabolomics study19 described in Chapter 2 were grouped into a new 

dataset named “dataset A”, which was used to build a model for sample classification via 

oPLS-DA,30, 31 using Matlab R2015a (The Mathworks, Natick, MA with PLS-Toolbox, 

ver. 8.0, Eigenvector Research, Inc., Manson, WA).  All identified endogenous 

metabolites in dataset #2 were grouped into a new dataset named “dataset B”. Reverse 

interval PLS-DA (iPLS-DA) was applied to this dataset after autoscale pre-processing to 

find the optimum number of oPLS-DA latent variables (LVs) and optimum set of 

discriminant metabolites that maximized model classification accuracy. The maximum 

number of LV was set to 6 and three-block cross-validation was applied.  

 

4.5 Results and Discussion 

4.5.1 FI-TWIM-MS serum profiling 

As discussed in Chapter 2, PCa detection was achieved using UPLC-MS-based 

serum metabolic profiling,19 with each sample and wash run taking 18 and 8 min, 

respectively. In this study, FI-TWIM-MS was investigated as a new approach for 

metabolic fingerprinting with an analysis speed of 3 min for each run followed by a 3 min 

wash run. A typical FI-TWIM-MS profile of a serum extract from a PCa patient is shown 

in Figure 4.3. The total ion chronogram reached maximum intensity after ~0.5 min with 
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analytes eluting within ~1 min after injection, and beginning to tail off slowly as 

compounds dispersed in the flow system (Figure 4.3A). Figure 4.3B shows the 

corresponding TWIM total ion chronogram that, as expected, suggests the presence of 

ionic species with a variety of shapes and charge states exhibiting drift times in the 1-10 

ms range. The combined mass spectrum corresponding to the data in Figure 4.3A and 

4.3B is shown in Figure 4.3C. These raw data were cleaned up by stringent data 

processing methods to filter out unwanted features and group redundant ionic species. 

The number of species remaining after each major step in the data processing and 

analysis workflow is shown in Table 4.3. 

 

 

 

Figure 4.3: Typical FI total ion chronogram (A), TWIM total ion chronogram (B), and 
combined mass spectrum (C) of a serum extract from a PCa patient. 
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Table 4.3: Number of ionic compounds retained after each major data processing step. 

 mobility‒mass plot area total 
 1st 2nd 3rd  

charge -1 -2 -3 -1 -2 -3 -1 -2 -3  
total 

compoundsa 1065 11 6 670 211 10 413 195 26 2607 

after blank 
filter 691 10 2 407 205 10 381 148 24 1878 

after 
McMillan 
filter24 and 
manual salt 
cluster ion 
removal 

535 10 1 18 202 3 367 148 21 1305 

after m/z range 
& prevalence 

filters 
229 8 0  237 

aAfter combining features and grouping adducts/in-source fragment ions. 

 

 

4.5.2 Compound Identification and Validation 

Following application of different filters and dataset normalization, features were 

searched in the HMDB29 and only those with tentative endogenous identities based on 

accurate mass matching were retained. The remaining species were identified by 

matching CCS values and tandem MS spectra to databases, and, whenever possible, their 

identity was validated by comparing Dt, CCS and FI-TWIM-MS/MS spectra with 

chemical standards. An example of such identification workflow is illustrated in Figure 

4.4 for a feature detected in MS mode with m/z 267.0734 and Dt 2.39 ms. Figure 4.4A 

shows the FI total ion chronogram of a PCa serum sample when performing MS/MS 

experiments (top panel), the associated TWIM total ion chronogram (middle panel) and 

the corresponding combined MS/MS spectrum (bottom panel) extracted across Dt=1.5-3 

ms. Each of the three peaks shown in the TWIM total ion chronogram with drift times of 

1.88, 2.28 and 2.63 ms provided different MS/MS spectra (Figure 4.4B). Following CCS 
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calibration, only the precursor ion extracted from the MS/MS mobility species with Dt = 

2.28 ms matched the CCS of the feature of interest (m/z 267.0733) observed in the MS 

run (Figure 4.4A, middle panel inset) with an error of 0.66%. This species yielded the 

MS/MS spectrum shown in Figure 4.4B (middle panel). To further confirm that the 

species detected in Figure 4.4B (middle) correspond to the precursor of interest, fragment 

ions drift times were matched to that of the precursor ion. Figure 4.4C shows that only 3 

out of 5 fragment ions observed in the MS/MS spectrum of Figure 4.4B (middle panel) 

were actually product ions that aligned with the Dt of the precursor ion of interest. 

Further analysis of the spectral data indicated that the species at m/z 92.9272, identified 

as [NaCl2]-, was a fragment ion of the cluster [Na4Cl5]- with Dt = 1.88 ms and m/z 

266.8039 (Figure 4.2), which partially overlapped with the species at Dt = 2.28 ms in the 

TWIM chronogram (Figure 4.4A, middle). Accurate mass-based search in the HMDB29 

suggested inosine as the most likely candidate for this compound. Its tentative identity 

was confirmed by matching the experimental MS/MS spectrum with that of an inosine 

chemical standard (Figure 4.4D), and by comparing the MS/MS spectrum in the Metlin 

database32 (Figure 4.4E). Further validation of this metabolite’s identity was achieved by 

matching the MS-mode Dt and CCS with those of an inosine chemical standard and 

literature CCS values8. Similar procedures were applied to the identification of all 

compounds retained following application of data filters (Table 4.4 and 4.5).  
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Figure 4.4: (A) FI-TWIM-MS/MS results for a PCa serum extract sample feature detected 
in MS mode with m/z 267.0734 and Dt 2.39 ms. Tandem MS data was acquired by applying 
25 V applied to the transfer cell. Typical FI chronogram (top plot), TWIM total ion 
chronogram (middle plot, with inset showing calibrated CCS values of precursor ions 
detected in both MS and MS/MS modes), and the corresponding total MS/MS spectrum 
(bottom plot). Small drift time differences were observed between MS and MS/MS modes 
due to elevated bias voltage in the transfer cell when performing fragmentation 
experiments (B) Extracted MS/MS spectra derived at 1.88, 2.28, and 2.63 ms. (C) TWIM 
extracted ion chronograms for fragment ions with a mass tolerance of 10 mDa. Product ion 
peaks aligned with the precursor ion with m/z 267.0734 are labeled with asterisks. (D) 
Inosine standard MS/MS spectrum obtained in negative ion mode using 25 V in the transfer 
cell. The observed Dt and CCS for this standard were 2.44 ms and 152 A2, respectively. 
(E) Metlin MS/MS spectrum for inosine obtained in negative ion mode with a collision cell 
voltage of 20 V. All product ions matched within a 4 mDa error. 
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4.5.3 Distribution of Compounds in the Mobility‒Mass Plot 

The distribution of different classes of ionic species in the FI-TWIM-MS dataset 

is shown in a mobility‒mass plot (Figure 4.5), with each symbol representing an ionic 

compound with a specific pair of Dt and m/z values. Ionic species were distributed across 

three distinct areas, separated by linear boundaries. The first area consisted mostly of 

singly charged compounds, including identified polar and lipid metabolites, dicarboxylic 

acids and their corresponding monoesters, and sodium acetate clusters. Features with 

high mass defect as defined by the McMillan filter28 laid between the first and second 

plot regions. The second plot area mostly consisted of doubly charged compounds, 

together with some singly charged sodium chloride cluster ions, and very few triply 

charged compounds. The third plot area contained unidentified, low intensity, singly 

charged features with m/z > 600. Due to their relatively poor signal-to-noise ratios, 

species in this region were removed from the dataset. 
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Figure 4.5: Mobility‒mass plot for all ionic species detected in the FI-TWIM-MS dataset. 
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The subset of features detected in the sample preparation blanks included 9 

different sodium acetate clusters, 229 chloride salt cluster ions, and 297 high mass defect 

features, of which 217 were cluster ions (Figure 4.6). These comprised 12.2% of the total 

detected features shown in Figure 4.5. Following blank filtering, a total of 1878 features 

were retained in the dataset (Figure 4.7). A number of salt clusters still remained even 

after filtering for signals present in the blank, likely originating from the sample matrix28. 

Most of these salt clusters were removed by mass defect filtering due to their high mass 

defect m/z values.28 Features retained following the application of all remaining filters are 

displayed in Figure 4.8, with all endogenous metabolites with identities confirmed by 

MS/MS and/or chemical standards shown in Figure 4.9. Less stringent filtering 

approaches could also be applied to the dataset, with the caveat that identification of the 

involved compounds may be difficult or even impossible, therefore limiting the 

biological interpretation of the role of the metabolites involved in PCa pathogenesis. 
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Figure 4.6: Mobility‒mass plot of features detected in sample preparation blanks. 
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Figure 4.7: Mobility‒mass plot of ionic species after blank filtering. 
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Figure 4.8: Mobility‒mass plot after all filters were applied. 
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Figure 4.9: Mobility‒mass plot of identified polar and lipid compounds grouped by classes 
in the final dataset after all filters applied. 
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4.5.4 Multivariate Analysis 

After data processing, the final datasets consisting of 11 (“dataset A”) and 28 

(“dataset B”) features were subjected to supervised multivariate analysis. Two oPLS-DA 

models were built with these datasets using three-block cross-validation. The 

performance of these two models is shown in Table 4.6. Model A was built using only 

the 11 identified compounds that were part of the discriminant panel obtained in the LC-

MS PCa metabolomics study described in Chapter 2.19 This model yielded an overall 

classification accuracy of 89.3%, sensitivity of 90.2% and specificity of 88.1% (Table 4.6 

and Figure 4.10). When PCA was performed on this dataset, acceptable unsupervised 

sample clustering was achieved according to class membership (Figure 4.11).  

Azelaic acid was identified as a key differentiating metabolite for PCa detection 

in the LC-MS study19 described in Chapter 2. The omission of an LC separation step in 

FI-TWIM-MS experiments confounds the origin of azelaic acid signals which can 

originate both from the free acid itself, and from in-source cleavage of its monoesters 

(Figure 4.12). Since azelaic acid and its esters might be of exogenous origin33 and their 

biological role is still unclear, we tested removing the corresponding signals, as well as 

signals from other dicarboxylic acids and their corresponding esters (Table 4.7) to see if a 

discriminant metabolite panel could be obtained without their contribution.  
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Table 4.6: oPLS-DA model classification performance. 

Model/ 
dataset 

No. of 
compounds in 

initial set 

No. of 
compounds 
in oPLS-DA 

model 

Compound 
codes 

Model 
accuracy 

Model 
sensitivity 

Model 
specificity R2 Q2 AUC 

Cross-
validated 
Wilcoxon 

signed 
rank test 
p value 

for 
permutat
ion test 

A 

11 (matching 
identified 

compounds in 
previous 
study19) 

11 1,2,4,6,7,9,
11-15 89.3 90.2 88.1 0.68 0.60 0.96 0.0 

B 

28 (after 
deleting 

compounds in 
Table 4.7) 

10 (iPLSDA-
selected) 1-10 88.3 88.5 88.1 0.56 0.51 0.93 0.0 

 

 

A second oPLS-DA model (“model B”) was generated using dataset B. Out of the 

initial set of 28 metabolites, 10 were selected by iPLS-DA variable selection as being the 

optimum, yielding a discriminant metabolite panel with maximum classification accuracy 

of 88.3%, sensitivity of 88.5%, and specificity of 88.1% (Table 4.6 and Figure 4.10B). 

Both models yielded Q2 values (model predictive ability) larger than 0.5, and an area 

under the receiver operating characteristic curve (AUC) larger than 0.9. In addition, 

permutation test results suggested low probability of data overfitting, demonstrating the 

robustness of the oPLS-DA models and the reliability of both discriminant compound 

panels.  

Table 4.4 details the tentative identifications of the discriminant compounds 

involved in each of the oPLS-DA models, together with the methods used for validation 

of their identities. All compounds were identified within 2.5 mDa error for precursor 

ions, and 8 mDa for fragment ions in their MS/MS spectra. Experimental CCS values 

were matched within ~ ±3% of database and/or chemical standard values analyzed under 
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identical conditions. Table 4.5 details the identities of the compounds not selected by 

iPLS-DA to create model B.  

 

Figure 4.10: (A, B) oPLS-DA three-block cross-validated classification plots for models 
A and B, respectively. The x-axis represents sample number, and the y-axis represents the 
cross-validated predicted scores by the oPLS-DA classification model. PCa and control 
samples are represented by filled red circles and blue squares, respectively. The threshold 
for sample classification is represented by a black dashed line. (C, D) Control-based z-
score plot of the 11 compounds in panel A and 10 discriminant compounds in panel B, 
respectively. PCa and control samples are represented by open red and blue squares, 
respectively. The z-scores are calculated as (x-µ)/σ, where x is the normalized peak 
abundance of the compound in each sample, µ is the mean normalized peak abundance of 
the compound in the control samples, and σ is the standard deviation of the normalized 
peak abundance of the compound in control samples. The red and blue line at z-score =0 
connect the average z-scores of each compound in PCa and control samples, respectively. 
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Figure 4.11: PCA plot of all samples using normalized abundances of compounds in panel 
A. The x-, y- and z- axes represent scores on PC1, PC2 and PC3, respectively. PCa and 
control samples are represented by red and blue dots, respectively. 
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Table 4.7: Dicarboxylic acids and corresponding monoesters identified by negative mode 
FI-TWIM-MS/MS and removed from the dataset. 

dicarboxylic acids elemental 
formula [M-H]- 

mono-hydroxy-propyl 
ester [M-H+C3H6O]- 

mono-hydroxy-
pentyl ester [M-

H+C5H10O]- 

suberic acid C8H14O4  231.1229 259.1545 
azelaic acid C9H16O4 187.0973 245.1390 273.1711 
sebacic acid C10H18O4 201.1123 259.1545 287.1863 

undecanedioic acid C11H20O4 215.1279 273.1711 301.2016 
dodecanedioic acid C12H22O4 229.1425 287.1863  

1,11-
undecanedicarboxylic 

acid 

C13H24O4  301.2016  

 

 

Univariate analysis was also performed for the discriminant compounds in panels 

A and B. Compounds that presented statistically significant fold changes with Bonferroni 

correction between PCa and control samples are indicated in Table 4.4. The z-score plots 

for discriminant compounds from panels A and B normalized to the mean abundances of 

the control samples are shown in Figures 4.10C and 4.10D, respectively. The 

discriminant compounds with significant changes between PCa and control sample 

classes were univocally identified as uric acid (significant changes in both panels), 

phenylalanyl phenylalanine (significant changes in both panels), phenylacetyl glutamine 

(panel B), azelaic acid and its corresponding monoesters (panel A), and sebacic acid 

monoester (panel A). The fact that all compounds that were observed as being 

significantly altered in this study coincided with the discriminant metabolite panel 

described in Chapter 2, with identical fold change direction between PCa and controls, 

corroborated the feasibility and accuracy of the FI-TWIM-MS method proposed here. 
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4.5.5 Biological Roles of Discriminant Metabolites 

Uric acid, with a significant positive fold change between PCa and control serum 

samples, has pro-inflammatory properties, and elevated serum uric acid (hyperuricemia) 

has been reported to be associated with increased cancer (including PCa) risk, recurrence 

and mortality.34, 35 Tryptophan levels were significantly decreased in PCa patient samples 

compared to controls in panel B. Consumption of tryptophan has been revealed to be a 

crucial factor in cancer progression;36 inhibition of tryptophan 2,3-dioxygenase which 

degrades tryptophan in the kynurenine pathway has been reported to reverse tumor 

immune resistance in mice.37 Interestingly, indole, which is a bacterial degradation 

product of tryptophan, was also identified among the discriminant compounds in panel B 

with an average abundance elevation in serum of PCa patients compared to that of 

controls. LPC(18:0) has been reported to be one of the discriminant plasma lipids for 

PCa, with a significant increase in PCa patients compared to controls,23 in agreement 

with our findings. Azelaic acid, reported to be a potential antitumoral agent,38 had a 

significant increase in controls compared to PCa patients in panel A, with the same trend 

observed for its corresponding monoesters. However, the origin of azelaic acid and 

related monoesters warrants further investigation, as these species have also been 

reported as originating from corn oil.33  

Uniquely identified metabolites in dataset #2 were input into Metaboanalyst39 for 

pathway analysis, with several metabolic pathways with more than 1 metabolite hit 

indicated as significantly altered between PCa patients and controls (p <0.05). These 

included purine metabolism, phenylalanine metabolism, aminoacyl-tRNA metabolism, 

and tryptophan metabolism (Figure 4.13). Elevated purine nucleotide levels have been 
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reported to be sufficient to induce major histocompatibility class I chain-related protein A 

(MICA) expression on abnormal or stressed cells including cancer cells.40 De novo purine 

biosynthesis has been suggested to support elevated transcription and cell division levels 

in PCa cells and may provide as a target for PCa treatment.41 Phenylalanine and tyrosine 

restriction has been found to induce PCa cell death via glucose metabolism modulation.42 

In addition, phenylalanine has also been reported to be significantly increased in PCa 

metastatic bone tissue compared to normal bone in a non-targeted metabolomics study 

using GC-MS.22 Aminoacyl-tRNA synthetases (AARSs) function as enzymes to catalyze 

the covalent linkage of amino acids to their corresponding tRNAs, and they play a crucial 

role in translation and cell signaling that are vital for cell function and viability.43, 44 

AARSs have been suggested as potential therapeutic targets for cancer due to their 

cancer-related genetic profiles, mutations, and biological pathway deregulations.43, 44  

Metabolites involved in tryptophan metabolic pathways have been found to be 

significantly changed in urine samples of PCa patients compared to healthy controls.45 

 

4.6 Limitations of the Proposed Approach 

Despite the advantages of the FI-TWIM-MS approach for rapid metabolomics 

fingerprinting, this technique is not without limitations. Table 4.8 summarizes the 

strengths and limitations of FI-MS, FI-IM-MS, LC-MS and LC-IM-MS according to 

various performance parameters. Clearly, a compromise between sample throughput and 

peak capacity is achieved in FI-IM-MS, with the lack of front-end LC separation being 

beneficial in terms of speed, but detrimental in terms of differentiating intact ionic 

species from molecular compounds resulting from in-source fragmentation. Nevertheless, 
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the power of FI-TWIM-MS resides in its speed and economy, rather than in its 

comprehensive separation power, as already extensively discussed. 

 

 

 

Figure 4.13: Metaboanalyst pathway analysis of uniquely identified metabolites in dataset 
#2. Each circle on the map represents a pathway, and the size and color of the circle are 
based on the p value, indicating the significance of the changes in the matched metabolites 
in the pathway, and the pathway impact score, which is correlated with the centrality of the 
metabolites involved.39, 46 
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Table 4.8: Comparison of four popular MS-based techniques implemented in non-targeted 
metabolomics applications. 

properties FI-MS FI-IM-MS LC-MS LC-IM-MS 
novelty relatively new largely unexplored traditional relatively new 

analysis time per 
sample <5 min <5 min ~20-30 min ~20-30 min 

maximum number of 
samples analyzed per 

day 
~200 ~200 ~30 ~30 

instrument setup simple simple normal complex 
CCS information no yes no yes 
data dimension 2 3 3 4 
ion suppression yes yes reduced reduced 
signal to noise OK good good excellent 

metabolite annotation 
confidence OK good good excellent 

separation of different 
classes of compounds no yes yes yes 

separation of 
compounds with 

different charge states 
no yes no yes 

separation of structural 
isomers poor medium high highest 

discriminate peaks of 
intact compounds from 
those resulting from in-
source fragmentation of 

other compounds 

no no yes yes 

 

 

 

 

 

 

 

 



 

217 
 

4.7 Conclusion 

In this study, a fast FI-TWIM-MS serum metabolic profiling method was applied 

for PCa detection, with an analysis speed of 3 min per sample, followed by a 3 min wash 

run. These times can likely be shortened by increasing the mobile phase flow rate or 

replacing the current front-end FI system with a faster injection platform such as the 

RapidFire platform.47 PCa patient and control samples were distinguished with 88.3-

89.3% accuracies, 88.5-90.2% sensitivities and 88.1% specificity by using oPLS-DA 

classification. Discriminant metabolites were identified by matching accurate mass, CCS, 

and fragmentation patterns in FI-TWIM-MS/MS to those in databases and/or to authentic 

chemical standards. CCS calibration was utilized to account for ion drift time shifts in 

TWIM-MS/MS experiments compared to those in TWIM-MS, greatly aiding in assigning 

the correct precursor ions. Stringent criteria were utilized for combining spectral features, 

grouping adduct ions, in-source fragments, and salt cluster ions. Overall, results indicated 

that FI-TWIM-MS is a promising analytical tool that could be successfully applied to 

metabolic fingerprinting of large scale cohorts, with its fast analysis speed and ion 

separation capabilities being useful for interrogation of complex biological mixtures. 

Further improvements in sample throughput and development of an automated metabolite 

identification pipeline will further increase the efficiency of the proposed metabolomics 

workflow. 
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CHAPTER 5. EXHALED BREATH CONDENSATE METABOLIC 

FINGERPRINTING FOR CYSTIC FIBROSIS STUDIES BY TRAVELING 

WAVE ION MOBILITY-MASS SPECTROMETRY  

 
 
 
Adapted with permission from 
Zang X†, Pérez JJ†, Jones CM, Monge ME, McCarty NA, Stecenko AA, Fernández FM. 
Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis 
Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics. Journal of 
the American Society for Mass Spectrometry. 2017, 28, 1489-1496. Copyright © 2017 
Springer Publishing Company. 
 †equal contributing author 
 
J. J. Pérez, C. M. Jones and M. E. Monge optimized the DI-TWIM-MS and TM-DART-
TWIM-MS methods for EBC analysis. J. J. Pérez conducted sample analysis with 
assistance from M. E. Monge. X. Zang performed data processing and analysis, 
discriminant metabolite annotation and biological relevance search. 
 
 

5.1 Abstract 

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the 

gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) 

protein. The vast majority of the CF mortality results from progressive lung disease. 

Targeted and non-targeted CF breath metabolomics investigations via exhaled breath 

condensate (EBC) analyses offer the chance to reveal metabolic alterations associated 

with CF pathology and aid in assessing the effectiveness of CF treatment. Here, 

transmission-mode direct analysis in real time traveling wave ion mobility time-of-flight 

mass spectrometry (TM-DART-TWIM-TOF-MS) was tested as a high-throughput 

alternative to conventional direct infusion (DI) electrospray ionization (ESI) and 

atmospheric pressure chemical ionization (APCI) methods, and the performances of the 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=28364225
https://www.ncbi.nlm.nih.gov/pubmed/?term=P%C3%A9rez%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=28364225
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jones%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=28364225
https://www.ncbi.nlm.nih.gov/pubmed/?term=Monge%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=28364225
https://www.ncbi.nlm.nih.gov/pubmed/?term=McCarty%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=28364225
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stecenko%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=28364225
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fern%C3%A1ndez%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=28364225


 225 

three ionization methods were critically compared. EBC was chosen as the noninvasive 

surrogate for airway sampling over expectorated sputum as EBC can be collected in all 

CF subjects regardless of age and lung disease severity. When using pooled EBC 

collected from a healthy volunteer, ESI detected the most metabolites, APCI a log order 

less, and TM-DART the least. TM-DART-TWIM-TOF-MS was used to profile 

metabolites in EBC samples from 4 CF patients and 5 controls, finding that a panel of 3 

discriminant EBC metabolites, some of which had been previously detected by other 

methods, differentiating these two classes with excellent cross-validated accuracy. 

 

5.2 Mass Spectrometry-Based Approaches for Rapid Exhaled Breath Condensate 

Metabolomics 

 

5.2.1 Exhaled Breath Condensate Metabolomics to Study Respiratory Diseases 

As discussed in the Chapter 1, EBC is being increasingly favored as a non-

invasive means for investigating pathophysiological processes occurring within the lung1-

3. For pulmonary diseases such as asthma, chronic obstructive pulmonary disease 

(COPD), and cystic fibrosis (CF), the chemical composition of EBC is systematically 

altered.3, 4 Targeted and non-targeted breath metabolomics approaches are therefore 

useful for EBC profiling in an effort to identify markers of airway inflammation, 

characterize pulmonary disease states, and yield a better understanding of disease 

pathophysiology.5-12 

 

5.2.2 Ambient and Atmospheric Pressure Ion Sources for EBC Metabolomics 
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MS and NMR spectroscopy have been utilized in EBC metabolomics 

experiments.10, 13-16 The higher sensitivity offered by MS13, makes it highly suitable for 

the detection of epithelial lining fluid (ELF) metabolites that are 103 to 104-fold diluted in 

EBC17. As discussed in Chapter 4, MS-based platforms often rely on GC or LC 

separations, requiring run times in the tens of minutes. DI ESI or APCI methods can be 

alternatively used to speed up analysis,18 but often suffer from limited peak capacity, the 

inability to distinguish overlapping compounds in crowded spectra, and ionization 

suppression. As demonstrated in the previous chapter, coupling DI methods with IMS can 

reduce spectra complexity, improve signal to noise ratio by eliminating chemical noise, 

generate cleaner MS/MS data even when precursor ion co-selection occurs, and separate 

closely-related compounds such as isobaric species on a millisecond timescale. Various 

IMS techniques are currently available, including drift tube IMS (DTIMS), differential 

mobility spectrometry (DMS), and traveling wave ion mobility spectrometry (TWIMS), 

each offering varying degrees of separation power and ion focusing capabilities 19. In 

combination with MS, these mobility techniques have found applications in proteomics,20 

glycomics,21 clinical analysis,22 and metabolomics23. 

Direct analysis in real time (DART), first reported by Cody et al.24, is an open air, 

direct sampling, plasma ionization technique capable of fast analysis of solids, liquids, or 

gases. It has been combined with stand-alone DTIMS25, 26, and TWIM-MS27, but not to 

stand alone DMS or DMS-MS. In DART-MS, a heated gas stream of metastable atomic 

or molecular species, typically He or N2, is directed at a sample placed within the 

ionization region. Thermally-desorbed analytes are then ionized via a number of gas-

phase mechanisms,28-30 and subsequently suctioned into the mass spectrometer. Fluid 
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dynamics play a critical role in DART-MS, determining not only the extent of ion 

transmission efficiency31, but also its reproducibility32. To stabilize detrimental fluid 

dynamic effects, the transmission mode (TM)-DART geometry, in which a sample is 

directly deposited on a stainless steel mesh in a flow-through fashion, has been 

proposed33. This approach has been shown to be superior to probe DART approaches in 

terms of precision34. 

Building on previous results from our group where two LC-MS methods were 

compared with DI-TWIM-MS to quantify expected EBC glucose levels in controls and 

patients with CF,35 this chapter describes the implementation of TM-DART-TWIM-TOF-

MS as a feasible approach for rapid, high-throughput non-targeted EBC metabolomics 

studies in CF, with the goal of expanding the toolbox available for exposing metabolic 

alterations associated with CF disease pathology and aiding in assessing CF therapy 

effectiveness36.  

 

5.3 Hypothesis 

In this study, we hypothesize that APCI, ESI and TM-DART-TWIM-TOF-MS are 

feasible high-throughput alternatives to conventional LC-MS-based methods for EBC 

metabolomics with different metabolome coverages. To test that, we compared DART 

with ESI and APCI approaches in DI mode to evaluate the degree of overlap between 

metabolic features produced by each ionization technique.  Furthermore, we explored the 

capability of TM-DART-TWIM-TOF-MS combined with multivariate analysis to 

discriminate between CF and control EBC samples.  
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5.4 Materials and Methods 

 

5.4.1 Chemicals 

Omnisolv LC-MS grade acetonitrile was purchased from EMD (Billerica, MA, 

USA). Ultrapure water with 18.2 MΩ cm resistivity (Thermo Scientific Barnstead 

Nanopure UV ultrapure water system, Marietta, OH, USA) was used in all sample 

preparation protocols. 

 

5.4.2 Sample Collection and Preparation 

 

5.4.2.1  EBC for Method Development and Comparison 

EBC from a healthy volunteer was collected using an R-Tube collector 

(Respiratory Research, Inc., Austin, TX, USA), pooled to obtain a single, homogenous 

sample for method development, and kept frozen at −80 °C until processed. Prior to 

analysis, EBC was thawed, and 2-mL aliquots of the sample were placed into separate 

vials, stored at −80 °C for a minimum of 2 h, and lyophilized overnight using a VirTis 

Genesis 25EL lyophilizer (SP Industries, Stone Ridge, NY, USA) according to the 

program detailed in Table 5.1. The lyophilized residues were resuspended without 

derivatization in 100 μL of acetonitrile:water 80:20 v/v (concentration factor = 20) and 

recombined to make a single, homogenous EBC concentrate. This concentrate was then 

comparatively analyzed by both TM-DART-TWIM-MS and DI electrospray chemical 

ionization (ESCi) TWIM-MS. Three technical replicates were performed for each 

method. 
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Table 5.1: Lyophilization program for EBC sample processing. 

Step Temp (°C) Time (min) 
Pressure 
(mTorr) Ramp/Hold 

1 -34 360 200 H 
2 -20 15 200 R 
3 -20 120 200 H 
4 0 20 200 H 
5 0 120 200 R 
6 20 20 200 H 
7 20 180 200 H 
8 24 20 200 R 
9 24 600a 200 H 

aRun time of this step is not critical, and samples can be removed at any 
point within this time. 

 

 

5.4.2.2  EBC of Controls and Cystic Fibrosis Patients 

Samples were collected by the CF Discovery Core, part of the Emory+Children’s 

Center for CF and Airways Disease Research, under the guidelines approved by the 

Emory University Institutional Review Boards (approval number IRB00000372) and the 

Georgia Institute of Technology. 

EBC samples collected from 5 controls and 4 patients diagnosed with CF were 

processed individually using same method described in the previous section. These 

samples were analyzed by TM-DART-TWIM-MS in the negative ion mode to test the 

applicability of this technique to CF metabolomics investigations. Two technical 

replicates were performed for each sample. 

 

5.4.3. Transmission-Mode Direct Analysis in Real-Time (TM-DART)  
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A DART SVP 100 ion source and transmission module (IonSense, Saugus, MA) 

were used to conduct TM-DART experiments at a 1 L min-1 He gas flow rate. The 

discharge gas was heated to either 250 °C (positive mode) or 300 °C (negative mode). A 

custom-built flange and gas-ion separator tube (GIST), connected to a Vacuubrand 2C 

diaphragm pump (Vacuubrand, Wertheim, Germany), were used to couple the DART ion 

source to the mass spectrometer in order to reduce the amount of gas flowing into the 

atmospheric pressure inlet. The exit grid voltage was set at 300 V for both ion polarities. 

Individual 1-cm stainless steel mesh discs were placed within the 10-position 

transmission module, and 4 µL of sample (e.g., solvent blank or EBC concentrate) were 

deposited in the center of the exposed mesh area and allowed to dry for approximately 5 

min. A blank mesh was used between sample runs to minimize cross-contamination. An 

automated software method was used to introduce the transmission module into the 

DART ionization region at 10 mm s-1, and each position was held within the DART 

ionization region for 2 min. To avoid disturbing the DART ionizing gas stream, a 1 s hold 

time was used when the transmission module was advanced to the next position. These 

experiments generated a transient peak-shaped chronogram with a typical FWHM of 

approximately 6 s for positive ion mode and between 1–2 s for negative ion mode. 

 

5.4.4 Direct Infusion Electrospray Chemical Ionization (DI-ESCi) 

An ESCi multi-mode ion source (Waters Corporation, Manchester, UK) was used 

for high-speed switching between ESI and APCI within the same analytical run. Polarity 

specific ion source parameters were as follows: capillary voltage: 3 kV(+)/2.2 kV(-); 

corona current: 15 µA(+)/20 µA(-). All other source parameters were as follows: 
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sampling cone voltage 35 V, source temperature 120 °C, desolvation temperature 250 °C, 

and nitrogen desolvation gas flow rate 650 L h-1. Samples were introduced into the ESCi 

source using direct infusion at a flow rate of 2 µL min-1, and each run was acquired for 2 

minutes. 

 

5.4.5 Traveling Wave Ion Mobility Time-of-Flight Mass Spectrometry (TWIM-TOF-MS) 

TWIM-TOF-MS analysis was performed on a Synapt G2 High Definition Mass 

Spectrometry system (Waters Corporation, Manchester, UK), a hybrid quadrupole-ion 

mobility-TOF mass spectrometer with a typical resolving power of 20,000 m/∆m 

(FWHM) and mass accuracy of 9 ppm at m/z 554.2615. Initial TWIM-TOF-MS 

experiments were performed using a control EBC concentrate sample to optimize ion 

source parameters for maximum signal-to-noise ratio, and TWIMS parameters for ion 

separation, in both positive and negative ion modes. Optimized TWIMS parameters were 

as follows: wave height ramped between 10–40 V, wave velocity ramped between 200 

and 800 m s-1 in positive ion mode and between 400 and 1000 m s-1 in negative ion mode, 

IMS gas flow rate 95 mL min-1 in positive ion mode and 40 mL min-1 in negative ion 

mode, and a helium gas flow rate 180 mL min-1. The mass spectrometer was calibrated 

across the m/z 50–1000 range using a 0.5 mM sodium formate solution prepared in 90:10 

(v/v) 2-propanol:water. An option within the MS acquisition method was selected to add 

a drift time function which would contain mobility total ion current chronogram data for 

each data file. Raw data were examined using MassLynx v4.1 (Waters Corp., Milford, 

MA, USA). 
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5.4.6 Data Analysis 

 Spectral features were extracted from TWIM-TOF-MS data as (drift time, m/z) 

“compounds” using Progenesis QI version 2.0 (Nonlinear Dynamics, Waters Corp). 

Although originally designed for mining chromatographic data, the acquired TWIM-

TOF-MS data could be similarly processed by importing the drift time function of each 

raw data file generated by the TWIM-MS system. The feature extraction workflow 

included mass detection followed by drift time alignment, peak picking, integration, and 

deconvolution to group together adducts derived from the same compound. In all cases, 

EBC sample data were corrected by corresponding solvent blank data to determine EBC-

specific features, filtering out signals with peak areas less than or equal to 2 times of 

those present in solvent blanks. 

After blank correction, the resulting matrix containing TM-DART-TWIM-MS 

spectral features in 4 CF patients and 5 controls was normalized by total ion intensity. 

Subsequently, m/z values of all extracted features were searched in the HMDB 37 with a 

mass error window of 10 mDa, and only those that had candidates with endogenous 

human and/or microbial origins were retained. The remaining features were utilized to 

build a model for class discrimination via oPLS-DA38 (MATLAB, R2015a, The 

MathWorks, Natick, MA with PLS-Toolbox, version 8.0, Eigenvector Research, Inc., 

Manson). Reverse interval PLS-DA (iPLS-DA) was applied to autoscaled data to select 

an optimum panel of discriminant features and number of latent variables (LVs) that 

maximized the classification accuracy. The iPLS-DA interval size was set to 1 and the 

maximum number of LVs set to 6. Leave-one-out cross-validation (LOOCV) as was used 

for oPLS-DA model building due to the small sample size. 
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5.5 Results and Discussion 

 

5.5.1 TM-DART-TWIM-TOF-MS Optimization 

Parameters that need to be optimized in TM-DART typically include source-to-

sample distance and DART gas temperature33. Previous work had shown that the greatest 

sensitivity was obtained when the DART gas outlet and the sample were in close 

proximity to one another.34 A similar effect was observed in these experiments and, 

therefore, this parameter was not investigated further, with all TM-DART experiments 

using a DART-to-sample distance of ≤ 1 mm, the minimum possible. The plasma gas 

temperature was optimized in negative ion mode, having an important effect on the 

number of detected EBC spectral features, as illustrated in Figure 5.1. A compromise 

between sensitivity and number of detected features was achieved by using a high enough 

temperature for fast analyte desorption while still minimizing thermal ion fragmentation. 

The average number of detected features (after blank correction) increased when the gas 

temperature was augmented from 250 to 300°C, with more reproducible results at 300 

°C; beyond 300 °C the number of detected features decreased, and therefore, 300 °C was 

used in all subsequent experiments. 
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Figure 5.1: Number of compounds detected as a function of plasma gas temperature during 
TM-DART-TWIMS-TOF-MS optimization in negative ion mode for pooled EBC from a 
healthy volunteer. Error bars represent standard deviations between duplicate runs. 

 

 

5.5.2 Comparison of TM-DART and DI- ESCi MS for EBC Analysis 

TM-DART and DI-ESCi were compared to investigate if unique and/or 

complementary EBC metabolome coverage was produced from these different methods. 

Both positive and negative ion mass spectra of EBC from a healthy volunteer were 

acquired with both techniques, yielding different mass spectral patterns. 

Figure 5.2 shows 2D drift time vs. m/z plots in positive and negative ion modes 

corresponding to the compounds detected after data mining and blank correction. TM-

DART (Figures 5.2 (a) and (b)) resulted in the detection of only singly-charged EBC 

metabolites for both ion modes, most of which were grouped in compact trend lines. DI-
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ESI  produced a comparatively higher number of compounds (Figures 5.2 (c) and (d)) 

than DART (~23- and 83-fold higher for positive and negative ion modes, respectively), 

most likely associated with this technique’s characteristic production of both singly and 

multiply charged ions, as well as the ability to ionize very polar and non-volatile species. 

The ESCi APCI mode (Figures 5.2 (e) and (f)) yielded ~3- and 4-fold more EBC-specific 

features than DART, but ~7- and 21-fold less than ESI, in positive and negative ion 

modes, respectively. 

Despite the fact that DART makes use of ionization mechanisms that 

predominantly follow APCI-like pathways28, 30, the 2D drift time vs. m/z plots of TM-

DART appeared to be different from those of DI-APCI for both ion polarities. As 

indicated above, the ESCi APCI function produced more ions than DART in both ion 

modes, producing a few multiply charged ions in positive ion mode (Figure 5.2 (e)), and 

predominantly singly charged ions in negative ion mode (Figure 5.2 (f)). DART only 

produced singly charged species in both positive and negative ionization modes (Figures 

5.2 (a) and (b)). These differences may arise from the way in which the specific dual 

ESCi ion source operates, i.e., the desolvation parameters (temperature and nitrogen gas 

flow rate) used in ESCi were unchanged during the alternating switching between ESI 

and APCI modes. Therefore, analytes may not be exposed to true APCI-like conditions 

where they are fully desolvated and vaporized at a higher temperature than that utilized in 

the dual ion source. 
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Figure 5.2: Drift time vs. m/z plots for datasets obtained with different techniques from a 
healthy volunteer’s EBC. Data were blank-corrected, de-isotoped, and corrected for 
multiple adducts ((a) TM-DART (+): 106 compounds; (b) TM-DART (-): 31 compounds; 
(c) ESI (+): 2449 compounds; (d) ESI (-): 2559 compounds; (e) APCI (+): 357 compounds; 
and (f) APCI (-) 122 compounds). 
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The data shown in Figure 5.2 were further analyzed to quantitatively determine 

the number of unique and overlapping features between DART, ESI, and APCI, as shown 

in Figure 5.3. For the three ionization methods, a total of 2686 and 2619 EBC-specific 

compounds were detected for positive and negative ion modes, respectively, evidencing 

the capability of EBC metabolomics approaches to profile airway secretions. Not 

surprisingly, ESI accounted for a large number of species, detecting 91% of the total 

compounds in positive ion mode, and 98% in negative ion mode. In contrast, APCI 

produced about 13% and 5%, and DART detected about 4% and 1% of the total number 

of compounds in positive and negative ion modes, respectively. Many of the EBC signals 

produced using DART were removed after blank correction, and therefore the number of 

DART-detected compounds was much lower, overall. 

 

 

 

Figure 5.3: Venn diagrams illustrating EBC metabolome overlap in coverage for the 
investigated ionization techniques, in terms of the number of compounds detected after 
blank correction. 
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It is noted that there are numerous unique compounds produced by only one 

ionization method (Figure 5.3). The proportions of unique compounds to total 

compounds detected by any of the three ionization methods are 78% and 90% for DART 

positive and negative ion modes, 91% and 96% for ESI positive and negative ion modes, 

and 40% and 26% for APCI positive and negative ion modes, respectively. The 

proportions of compounds detected by APCI overlapping with those detected by ESI 

reached 57% and 74% for positive and negative ion modes, respectively. However, the 

compounds detected by DART had a much smaller overlap with the other two ionization 

methods, with 10% for both positive and negative ESI, and 13% and 0% with positive 

and negative mode APCI, respectively. These results indicate that although DART 

produced a lower number of features, these were rather unique and may be an important 

complement to EBC metabolomics experiments performed by either ESI or APCI. 

To explore the signal abundances obtained from the three different ionization 

methods, scatter plots of average peak areas of overlapping compounds were created 

(Figures 5.4 to 5.13). In general, for compounds overlapping between ESI and APCI, 

signal intensities were higher in ESI than in APCI for both positive and negative ion 

modes (Figures 5.4 to 5.8, 5.11 and 5.12) with a median increase from APCI to ESI of 

26-fold for positive ion mode and 64-fold for negative ion mode. For compounds 

overlapping between ESI and DART, there was no obvious trend in the signal intensities 

(Figures 5.9 and 5.13). For overlapping compounds between APCI and DART in positive 

ion mode, signal intensities were higher in DART than in APCI, with a median increase 

of 6-fold from APCI to DART (Figure 5.10). 
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Relative standard deviations (RSDs) of overlapping compounds in Figure 5.3 

were calculated to compare the precision of each method. The results are shown as box 

plots in Figure 5.14. In general, ESI had a higher precision than APCI, which had a 

higher precision than DART. For overlapping compounds between ESI and APCI in 

positive ion mode, the median RSDs were 7% and 12%, respectively; and 6% and 15% in 

negative ion mode, respectively. For overlapping compounds between ESI and DART, 

the median RSD was 8% for both ionization methods in positive ion mode; and 9% and 

17% in negative ion mode, respectively. The median RSDs of overlapping compounds 

between APCI and DART in positive ion mode were 7% and 10%, respectively. 

 

 

 

Figure 5.4: Scatter plot of average peak areas (>5000 for ESI) of overlapping compounds 
between ESI and APCI (+). Error bars represent standard deviations among triplicate runs. 
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Figure 5.5: Scatter plot of average peak areas (1000–5000 for ESI) of overlapping 
compounds between ESI and APCI (+). Error bars represent standard deviations among 
triplicate runs. 

 

 

 

 

Figure 5.6: Scatter plot of average peak areas (500–1000 for ESI) of overlapping 
compounds between ESI and APCI (+). Error bars represent standard deviations among 
triplicate runs. 
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Figure 5.7: Scatter plot of average peak areas (100–500 for ESI) of overlapping 
compounds between ESI and APCI (+). Error bars represent standard deviations among 
triplicate runs. 
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Figure 5.8: Scatter plot of average peak areas (0–100 for ESI) of overlapping compounds 
between ESI and APCI (+). Error bars represent standard deviations among triplicate runs. 

 

 

 

 

Figure 5.9: Scatter plot of average peak areas of overlapping compounds between ESI and 
DART (+). Error bars represent standard deviations among triplicate runs. 
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Figure 5.10: Scatter plot of average peak areas of overlapping compounds between APCI 
and DART (+). Error bars represent standard deviations among triplicate runs. 

 

 

 

 

Figure 5.11: Scatter plot of average peak areas (>1000 for ESI) of overlapping compounds 
between ESI and APCI (-). Error bars represent standard deviations among triplicate runs. 
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Figure 5.12: Scatter plot of average peak areas (0–1000 for ESI) of overlapping 
compounds between ESI and APCI (-). Error bars represent standard deviations among 
triplicate runs. 
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Figure 5.13: Scatter plot of average peak areas of overlapping compounds between ESI 
and DART (-). Error bars represent standard deviations among triplicate runs. 

 

 

 

 

Figure 5.14: Box plots of RSDs of overlapping compounds in Figure 5.3 ((a) ESI and 
APCI (+): 203 compounds; (b) ESI and DART (+): 11 compounds; (c) APCI and DART 
(+): 14 compounds; (d) ESI and APCI (-): 90 compounds; (e) ESI and DART (-): 3 
compounds). Mean values are represented by a filled circle in the box; median values are 
represented by a line in the box; the edges of the box are 25th and 75th percentiles; the 
whisker extends to the most extreme values in the data not including outliers, with a 99.3% 
coverage; outliers are represented by asterisks. 
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Regarding analysis time, DART experiments presented the advantage that they 

did not require rinsing tubing which connected the pump propelling the liquid samples to 

the ion source as in DI-ESCi, which was translated into higher-throughput sample 

analysis. In addition, the fact that no wetted tubing is involved in DART, also made this 

technique much more resistant to carry-over effects. 

 

5.5.3 CF Sample Analysis and Multivariate Classification 

The capability of TM-DART-TWIM-TOF-MS to rapidly acquire metabolic 

profiles from EBC was tested to investigate if the metabolic differences between 4 CF 

patients and 5 controls could be rapidly established using this approach. Negative ion 

mode was chosen because the EBC pH in CF patients is known to be lower than in 

controls39, suggesting that acidic metabolites may be important discriminant species. 

Overall, metabolic profile acquisition required less than 20 min per sample following 

lyophilization, considering ~5 min for sample reconstitution, 5–10 min for sample 

deposition and drying, and ~4 min per sample for replicate DART analysis. This last step 

is ~5–15 times faster than a typical 10–30 min LC-MS run. Representative data for two 

EBC samples from a selected CF patient and a control subject are shown in Figures 5.15 

(a) and (b), respectively, depicting mass spectra in the range of m/z 50–400. Some 

differences could be readily observed. A feature with m/z 128.0382 (marked with an 

asterisk), for example, showed much higher abundance in the CF patient sample than in 

the control sample. A total of 29 metabolic features were extracted from the TM-DART 

metabolic profiles. Of these features, 11 had candidates with endogenous human and/or 

microbial origins in the HMDB, which were subjected to multivariate classification. 
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Figures 5.16 (a) and (b) display the multivariate classification result of EBC 

samples from the 4 CF patients and those from the 5 controls. A set of 3 metabolic 

features and 2 LVs was selected by the reverse iPLS-DA feature selection process. The 

resulting oPLS-DA model (Figure 5.16 (a)) yielded 100% cross-validated accuracy, 

sensitivity, and specificity. This model captured 70.7% and 96.9% of the X- and Y-block 

variances, respectively. 
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Figure 5.15: Negative ion TM-DART-TWIM-TOF mass spectrum from (a) a sample from 
a CF patient, and (b) a sample from a control subject (inset shows a zoomed in view of the 
m/z 120–140 range). The asterisk indicates the spectral peak at m/z 128.0382. (c) Extracted 
ion mobility chronograms for the best 3 discriminant features from the CF patient sample 
illustrated in (a). 
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Figure 5.16: oPLS-DA model for discrimination of CF patient samples (red circles) from 
control samples (black squares). (a) Cross-validated prediction plot using the 3 
discriminant metabolic feature panel obtained from iPLS-DA variable selection. (b) oPLS-
DA calibration scores plot for (a). The model consisted of 2 LVs with 70.7% and 96.9% 
total captured X- and Y-block variances, respectively. The accuracy, sensitivity, and 
specificity were all 100%. 

 

 

Figure 5.15 (c) shows the TM-DART extracted ion mobility chronograms of the 

three discriminant features used in the oPLS-DA model, which vary in relative 

abundances. Metabolites in the 3-feature panel were tentatively identified (Table 5.2) 

based on accurate mass measurements and database searches. Different metabolites were 

separated in drift time in TWIMS based on their m/z and structure types. Feature #1 had a 

mean fold increase of 17.4 from control to CF samples, and was tentatively identified as 

pyroglutamic acid or its structural isomers. Interestingly, in a metabolomics study by 

Joseloff et al.,40 pyroglutamic acid was found as an important metabolite responsible for 

distinguishing 31 CF from 31 non-CF serum samples from children, with a CF to non-CF 

fold change of 1.2. As well, this metabolite, which is involved in the γ-glutamyl cycle, 
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was identified as increased in CF patients before an acute pulmonary exacerbation in the 

pilot study described in Chapter 3,41 and also selected in the 9-feature negative mode data 

model differentiating APE from stable CF pediatric samples of the larger cohort study 

(Table 3.8.1). Feature #2 had tentative identifications matching short chain carboxylic 

acids (dimethylmalonic acid, 2-acetolactate, glutaric acid, monoethyl malonic acid, 

ethylmalonic acid and methylsuccinic acid, amino acids/peptides (glycyl-glycine and 

asparagine), and intermediates in amino acid (N-carbamoylsarcosine) or uracil 

(ureidopropionic acid) metabolic pathways. Feature #3 had a mean fold increase of 14.2 

from control to CF samples. It was tentatively assigned to several 

hydroxyeicosatetraenoic acids (HETEs) (5-, 8-, 9-, 11-, 12-, 15-, 16-, 17-, 18-, 19- and 

20-HETE) and epoxyeicosatrienoic acids (EETs) (5,6-, 8,9-, 11,12- and 14,15-EET) 

involved in arachidonic acid metabolism. Interestingly, an increased arachidonic acid 

ratio has been reported in bronchial phospholipids in CF patients compared to normal 

controls, suggesting abnormal arachidonic acid metabolism in CF patients.42 
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Table 5.2: Metabolites tentatively identified as discriminatory between cystic fibrosis 
patients and controls. 

Feature 
Code  

Drift 
time 
(ms)  

m/z  Ion 
type  

Elemental 
formula  

∆m 
(mDa) 

Mean fold change  
(CF patients to 

controls)  

Tentative metabolite 
identification  

1 2.06 128.0382 [M-H]- C5H7NO3 3.4 17.4 

Pyroglutamic acid; 1-Pyrroline-4-
hydroxy-2-carboxylate; N-
Acryloylglycine; Pyrroline 

hydroxycarboxylic acid 

2 2.06 131.0371 [M-H]- 

C5H8O4 2.7 

N/Aa 

Dimethylmalonic acid; 2-
Acetolactate; Glutaric acid; 
Monoethyl malonic acid; 

Ethylmalonic acid; Methylsuccinic 
acid 

C4H8N2O3 -8.6 
Glycyl-glycine; Asparagine; 

Ureidopropionic acid;  
N-Carbamoylsarcosine 

3 3.80 319.2313 [M-H]- C20H32O3 4.0 14.2 

5-HETEb; 8-HETE; 9-HETE; 11-
HETE; 12-HETE; 15-HETE; 16-
HETE; 17-HETE; 18-HETE; 19-

HETE; 20-HETE;  
5,6-EETc; 8,9-EET; 11,12-EET; 

14,15-EET  
 

aN/A: the fold change cannot be calculated since the abundances are all 0 in controls. 

bHETE: hydroxyeicosatetraenoic acid. cEET: epoxyeicosatrienoic acid. 
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5.6 Conclusions 

TWIM-TOF-MS for CF non-targeted EBC metabolomics studies is demonstrated 

as a potential high-throughput alternative to conventional LC-MS-based methods 

typically used in present investigations. The EBC metabolome coverage provided by 

DART ionization is found to be an important complement to ESI and APCI-based 

methods. The metabolites detected by DART can provide biochemical information 

pertinent in metabolomics applications for studying pathophysiological processes 

occurring within the lung. The analysis of a small set of samples from a cohort of CF 

patients and controls shows the initial application of DART in EBC metabolomics. 

Multivariate analyses of the resulting TM-DART-TWIM-TOF-MS datasets successfully 

discriminated between EBC samples from CF patients and controls.  
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CHAPTER 6. CONCLUSIONS AND OUTLOOK 

 
 
 

6.1 Abstract 

 This chapter summarizes conclusions drawn from this thesis work focused on 

non-targeted metabolomics for disease detection and prediction using ultraperformance 

liquid chromatography-mass spectrometry (UPLC-MS) as well as MS-based methods for 

rapid metabolomics workflows, including flow injection (FI), direct infusion (DI) and 

transmission-mode direct analysis in real time (TM-DART) ion mobility MS (IM-MS). 

Impact, outlook and possible future work are also discussed. 

 

6.2 Major Accomplishments 

 

6.2.1 Ultraperformance Liquid Chromatography-Mass Spectrometry Based Non-targeted 

Metabolomics for Disease Detection   

Chapter 2 described a non-targeted metabolomics study for prostate cancer (PCa) 

detection, in which metabolic profiling of age-matched serum samples from 64 PCa 

patients and 50 controls was performed using ultraperformance liquid chromatography 

coupled to high resolution mass spectrometry (UPLC-HRMS). A metabolite-based in 

vitro diagnostic multivariate index assay (IVDMIA) was developed to detect the presence 

of PCa in serum samples. A panel of 40 metabolic features was found to be differential 

with 92.1% sensitivity, 94.3% specificity, and 93.0% accuracy, higher than the prevalent 
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PSA test.1, 2 Within this discriminant panel, 31 metabolites were identified by MS/MS, in 

which 10 were further validated against chemical standards by retention time and MS/MS 

matching. The identification of amino acids, fatty acids, lysophospholipids and bile acids 

among the discriminant metabolites suggests that alterations in their metabolism were 

potentially associated with PCa. In addition, several metabolites were mapped to the 

steroid hormone biosynthesis pathway, providing further insights into PCa related 

biological pathway perturbation. When the assay was based on 28 identified disease-

related metabolites, PCa was detected with 89.7% sensitivity, 90.7% specificity, and 

90.2% accuracy. For higher throughput analysis and lower analysis cost and complexity 

are needed, 13 metabolites that were found to be present in 90% of the entire sample 

cohort still provided good classification performance of 88.3% sensitivity, 80.3% 

specificity and 85.0% accuracy.  

Chapter 3 presented two non-targeted metabolomics studies that aimed at early 

detection of cystic fibrosis (CF) acute pulmonary exacerbations (APEs) by means of 

UPLC-HRMS coupled to multivariate statistical analysis. In a first pilot study, we 

demonstrated the feasibility of differentiating exhaled breath condensate (EBC) samples 

from 9 patients with an APE severe enough to require hospitalization from 17 clinically 

stable patients at the time of EBC collection, with 77.8% sensitivity, 88.2 specificity and 

84.6% accuracy, based on the relative levels of 4-hydroxycyclohexylcarboxylic acids and 

pyroglutamic acid. Moreover, EBC samples from 4 patients clinically stable at the time 

of EBC collection but in the subsequent 1-3 months developed a severe APE, were 

discriminated from 17 stable patients with 75.0% sensitivity, 94.1% specificity, and 

90.5% accuracy, based on lactic acid and pyroglutamic acid.   
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In a second study, metabolic profiling of a larger EBC sample cohort (n=210) was 

performed using UPLC coupled to ultra-high mass accuracy Orbitrap MS. Both negative 

ion mode data and combined positive and negative ion mode data showed classification 

of APE vs. stable CF and pre-APE vs. stable CF patients in adult and pediatric cohorts 

with good accuracies ranging between 81.3 and 93.9%. Discriminant metabolites found 

in the pilot study were also selected in the larger cohort study, corroborating the 

biological significance of the metabolite panels identified for APE detection and 

prediction. Metabolites exhibiting changes at different stages of an APE event were 

discussed in terms of their associated metabolic pathways and microbial relevance. The 

results from these two studies show promise for detecting APEs and even predicting an 

oncoming APE event using EBC metabolites, as well as providing insight into the 

molecular mechanisms of CF APE development. 

 

6.2.2 Flow Injection-Ion Mobility-MS and Direct Infusion- Ion Mobility-MS Based Non-

targeted Metabolomics for Disease Detection and Early Prediction 

Chapter 4 presented the application of flow injection traveling wave ion mobility-

time-of-flight-MS (FI-TWIM-TOF-MS) for PCa detection. In this study, non-targeted 

metabolic profiling was conducted on subgroup of the same sample cohort (n= 103) 

analyzed in Chapter 2. The high resolution and mass accuracy of FI-TWIM-TOF MS data 

was extensively exploited and thoroughly analyzed to provide a comprehensive 

compound annotation on the mobility‒mass plane for the purpose of discerning between 

compounds with different charges and filtering out salt cluster ions, aiding in compound 

discrimination and dataset cleanup. For FI-TWIM-MS experiments, the software 
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currently available was designed for LC-MS data processing and efforts were put towards 

mining FI-TWIM-MS metabolomics data to enable correct data pre-processing. We also 

developed important criteria to ensure correct grouping of adducts, in source fragments 

and salt cluster peaks in FI-TWIM-MS data. Endogenous metabolites were identified 

with high confidence by matching FI-TWIM-MS/MS fragmentation patterns and 

collision cross-sections (CCSs) to those of authentic chemical standards or in databases. 

By combining FI-TWIM-MS and supervised classification methods, PCa patient samples 

were distinguished from control samples with good sensitivities (88.5-90.2%), 

specificities (88.1%) and accuracies (88.3-89.3%). Results from this study showed the 

potential of FI-TWIM-TOF-MS for high-throughput metabolic profiling in large scale 

non-targeted metabolomics studies, based on high analysis speed, effective compound 

separation and screening for endogenous metabolites in complex biological mixtures, and 

capability of identifying compounds with high confidence. 

In Chapter 4, a transmission-mode (TM) Direct analysis in real time (DART) 

coupled to TWIM-TOF MS method was tested as a high-throughput alternative to 

conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure 

chemical ionization (APCI) methods, and a critical comparison of the three ionization 

methods was conducted, with the goal of expanding the toolbox available for analyzing 

metabolic alterations associated with CF disease pathology in EBC samples. When using 

pooled EBC collected from a healthy volunteer, ESI detected the most metabolites and 

TM-DART the least. It was found that the EBC metabolome coverage provided by 

DART ionization is an important complement to ESI and APCI methods, which may 

provide biochemical information pertinent in metabolomics applications for studying 
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pathophysiologic processes occurring within the lung. We described the first application 

of TM-DART-TWIM-TOF MS in EBC metabolomics, showing feasibility of 

differentiating samples from four CF patients and five controls based on a panel of three 

discriminant EBC metabolites with excellent cross-validated accuracy. Pyroglutamic acid 

was identified within this panel, in agreement with the findings reported in Chapter 3 for 

CF acute pulmonary exacerbation detection. The TWIM-TOF MS method applied for CF 

non-targeted EBC metabolomics studies was demonstrated to be a feasible high-

throughput alternative to conventional LC-MS based methods typically used for these 

investigations.  

 

6.3 Impact and Future Direction 

 This thesis work has contributed meaningfully to the metabolomics field by 

discovering potential biomarkers that might be useful for PCa diagnosis and early 

detection of APEs for CF patients, as well as by expanding our knowledge of the 

metabolic perturbations associated with both diseases. One of the great challenges in the 

metabolomics field is to find and identify useful biomarkers with high confidence. Since 

the majority of the metabolite composition in biological samples remains poorly 

understood, a comprehensive coverage and annotation of the metabolome using MS is 

very challenging. In order to make contribution to this scientific endeavor, significant 

efforts have been put into de novo identification of compounds not present in existing 

databases by manual analysis of fragmentation patterns. In addition to conventional LC-

MS methods, high-throughput LC-free FI-TWIM-MS, DI-TWIM-MS and TM-DART-

TWIM-MS metabolomics strategies were employed, which provided a mobility−mass 
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description of compounds and offered great assistance in dataset cleanup, hence enabling 

accurate data analysis and metabolite identification in subsequent steps. In addition, FI-

TWIM-MS/MS was applied for metabolite identification, in which endogenous 

metabolites were identified by matching MS/MS fragmentation patterns and CCSs to 

those of authentic chemical standards or in databases. We performed in-depth analysis on 

TWIM-TOF-MS data to increase the confidence in compound identification, by 

developing important criteria for correct grouping of adducts, in-source fragments and 

salt cluster ions, reducing the number of false-positive or negative compound 

assignments.  

Although the present non-targeted metabolomics studies show promise in clinical 

laboratory implementation for PCa detection and CF APE early detection, they are still at 

the discovery stage and future efforts related to this thesis work may include further 

validation of the candidate biomarkers through non-targeted metabolomics strategies in a 

different cohort, preferably from a geographically distinct area, and then with targeted 

metabolomics for absolute quantification of the biomarkers using isotopically labeled 

compounds as internal standards.3-5 Finally, the potential biomarkers may be validated in 

a larger patient cohort with thousands of samples to assess their robustness and reliability, 

reaching towards the ultimate goal of translation of metabolomics research into the 

clinic.5 For the PCa study specifically, María Eugenia Monge, a former research scientist 

in the Fernández research group and a current Research Staff member from CONICET 

(Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina), is currently 

involved in a PCa study of a large Argentine cohort (n =800), including samples from 

healthy individuals, PCa patients and patients with benign prostatitis with their associated 
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clinical metadata and PSA values recorded for all subjects, to validate the results 

described in Chapter 2. Regarding the prediction of a CF APE onset, it would be useful to 

perform time-series analysis on EBC samples collected from CF patients at different 

stages during disease progression, which could provide insightful knowledge on the 

dynamics of APE development by offering snapshots of the metabolic status of the 

patient.6, 7 More importantly, time-series metabolomics analysis can also take into 

account the personalized nature of EBC,8 ensuring reliable phenotype biomarkers for 

anticipating an oncoming APE event.  

Additionally, Yafeng Li, a postdoctoral fellow in the Fernández research group, is 

currently conducting research to analyze a subset of EBC samples from the large CF 

cohort study described in Chapter 3, using direct nanoESI (nESI) MS with high electric 

potential generated by triboelectric nanogenerators (TENGs)9. Compared to UPLC-MS, 

TENG-nESI has larger sample analysis speed with low sample consumption, highly 

suitable for analyzing limited EBC sample volumes. TENG-nESI also has higher 

sensitivity and lower detection limits compared to standard nESI,9 offering the possibility 

of detecting low concentration metabolites in highly diluted EBC samples. This study 

aims to evaluate the feasibility of using TENG-nESI for detecting a CF APE onset and 

also to compare the results obtained to those from our UPLC-MS study.  

Regarding high-throughput LC-free FI-TWIM-MS, DI-TWIM-MS and TM-

DART-TWIM-MS metabolic profiling strategies, the methods developed for conducting 

experiments and data analyses can be applied to various metabolomics studies using 

different biological samples. Regarding method improvements, sample analysis speed in 

FI-TWIM-MS, can be shortened by increasing the mobile phase flow rate or replacing the 



265 
 

current front-end FI system with a faster injection platform such as the RapidFire 

platform.10 In addition, further development of an automated metabolite identification 

pipeline would increase the efficiency of the proposed metabolomics workflow.  

Metabolomics could provide insight into system biology, revealing the 

interactions between different components in cellular networks, relationships among 

molecular participants in the cell, including genes, proteins and metabolites, and 

perturbations due to disease or environment stimuli.11 If additional omics data could be 

collected in the future, integrative analysis of metabolomics, transcriptomics and 

proteomics data could help to understand the perturbed biological pathways in a more 

systematic and comprehensive manner, providing deeper insight into the underlying 

molecular mechanisms associated with the diseases. For early detection of CF APE, 

investigation of the CF microbiome would improve our current understanding of the host-

pathogen interactions during APE development and progression, and provide chemical 

information on pathogen-specific metabolites that may assist in personalized clinical 

decisions for early intervention for APE.  

In the next 5 to 10 years, non-targeted metabolomics will shift to large scale 

studies with thousands of samples analyzed by high-throughput MS techniques, and 

targeted metabolomics will be the focus for validation of the novel biomarkers identified 

through non-targeted studies. The advancement in MS techniques and optimization of 

data analysis methods will enhance the diagnostic and prediction accuracy of the studied 

diseases. Collaborative efforts of the metabolomics community towards expanding the 

metabolite databases will greatly improve the coverage and efficiency in metabolite 

identification. The potential biomarkers identified will also be validated in different 
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laboratories, in different geographic regions, using different instruments, to affirm the 

robustness and reproducibility of the biomarkers,12 which could be facilitated by the web-

based data sharing across different laboratories over the world. Standardization of 

metabolomics workflow is also a pivotal necessity to ensure the quality and validity of 

the data. Sample collection from patients will be more non-invasive, easier and faster. 

Improvement in sensitivity and resolution in IMS and MS will improve the coverage for 

trace-level metabolites in biological matrices. Real-time MS analysis will become 

popular, and fast and automated data analysis strategy will enable rapid diagnosis and 

prompt treatment decision making in the hospital. Collaboration between researchers in 

fields of MS and physical chemistry can improve the prediction accuracy of the 

fragmentation pattern in tandem MS experiments, improving the metabolite identification 

coverage and confidence. In addition to MS techniques, combination with other 

techniques such as NMR will increase the power of metabolomics and confidence of 

metabolite identification. To realize the futuristic goal of successfully translation of 

metabolomics into clinics, collaboration among hospitals, pharmacy agencies and 

academic institutes is required to tightly link the skills, knowledge and practices among 

these areas.13 
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APPENDIX A: LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY 

BASED CELL CULTURE METABOLOMICS TO UNDERSTAND 

MECHANISMS OF CANCER CELL DEATH INDUCED BY GOLD NANOROD 

PHOTOTHERMAL THERAPY 

 
 
 
Adapted with permission from 
Ali MR, Wu Y, Han T, Zang X, Xiao H, Tang Y, Wu R, Fernández FM, El-Sayed MA. 
Simultaneous Time-Dependent Surface-Enhanced Raman Spectroscopy, Metabolomics, 
and Proteomics Reveal Cancer Cell Death Mechanisms Associated with Gold Nanorod 
Photothermal Therapy. Journal of the American Chemical Society. 2016, 138, 15434–
15442. Copyright © 2016 American Chemical Society. 
 
 
M. R. Ali and Y. Wu synthesized AuNRs, cultured the cells and performed PPTT and 
SERS experiments. X. Zang performed metabolomics experiments. H. Xiao performed 
proteomics experiments. T. Han conducted bioinformatics analysis. 
 

A.1 Abstract 

In cancer plasmonic photothermal therapy (PPTT), plasmonic nanoparticles are 

used to convert light into localized heat leading to cancer cell death. Among plasmonic 

nanoparticles, gold nanorods (AuNRs) with specific dimensions that allow them to ab-

sorb the near-infrared (NIR) laser light have been widely used. However, the detailed 

mechanism of PPTT therapy still remains elusive. Typically, surface enhanced Raman 

spectroscopy (SERS) has been used to detect time-dependent changes in the intensity of 

the vibration frequencies of molecules that appear or disappear during different cellular 

processes.  A complete proven assignment of the molecular identity of these vibrations 

and their biological importance have not yet been achieved. In this work, we comple-

https://academictree.org/chemistry/publications.php?pid=87571


270 

 

mented the study of changes in SERS spectra with MS-based metabolomics and prote-

omics to identify the chemical species responsible for the observed changes in SERS 

band intensities. Using PPTT, the bands at around 1000, 1207 and 1580 cm−1 were ob-

served to increase in intensity, which were assigned in the literature to phenylalanine, alt-

hough with dispute. Our metabolomics results showed increased levels of phenylalanine 

and metabolites tentatively identified as its derivatives and phenylalanine-containing pep-

tides, providing evidence for more confidence in SERS peak assignments. To better un-

derstand the mechanism of phenylalanine increase upon PPTT, we combined metabolom-

ics and proteomics results using network analysis, which demonstrated that phenylalanine 

metabolism was perturbed. Furthermore, several apoptosis pathways were activated via 

key proteins (e.g. HADHA and ACAT1), which are consistent with the proposed role of 

altered phenylalanine metabolism in inducing apoptosis. This study shows that the inte-

gration of the SERS with MS-based metabolomics and proteomics can aid the assignment 

of signals in SERS spectra and further characterize the related molecular mechanisms of 

the cellular processes involved in PPTT. 

 

A.2 Introduction 

Plasmonic nanoparticles offer a powerful means to follow dynamic changes asso-

ciated with intracellular molecular events in real-time.1-3 Their localized surface plasmon 

resonance (LSPR) confers these particles unique optical properties. For example, the 

electromagnetic fields on the surface of plasmonic nanoparticles are greatly increased, 

and exhibit exponential decay patterns following non-radiative (heat) or radiative (e. g. 

light scattering) processes.4, 5 Raman scattering from the molecules localized near the 
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plasmonic nanoparticles’ surface is therefore enhanced by orders of magnitude, resulting 

in the well-known surface enhanced resonance (SERS) phenomenon.6, 7 SERS has been 

successfully applied to single-cell analysis, where plasmonic gold nanoparticles are 

placed inside the cell and the resulting SERS spectrum collected in order to record the in-

tracellular microenvironment changes occurring in time near the nanoparticles. Molecular 

event dynamics during cancer cell apoptosis has been observed in real-time by using 

SERS.5, 8 However, the molecular species associated with the observed SERS bands 

could not be confidently assigned, preventing from elucidating the molecular mecha-

nisms involved in these critical cellular processes.4, 6-8  

Photothermal therapy has its foundation in the targeted destruction of cancerous 

cells via the heat released by gold nanorods (AuNRs) following near-infrared (NIR) radi-

ation absorption. The so called “water wavelength window” between 700–1200 nm is 

widely considered to be the optimal spectral region for conducting plasmonic photother-

mal therapy (PPTT),9, 10 as tissue and water absorption are minimized in this range. 

AuNRs, on the other hand, readily absorb near-infrared laser light, resulting in effective 

photothermal generators, for both in vitro and in vivo applications. AuNRs-based PPTT 

has been successful at inducing cancer cell apoptosis,11 resulting in in vivo tumor re-

moval.12-14 

Despite the operational success of PPTT, the molecular mechanisms associated 

with PPTT-induced apoptosis remain largely unknown or under dispute. Mostafa El-

Sayed’s group observed PPTT induce apoptosis initiate through heat shock proteins pre-

viously,15 while several reports indicate it is mediated by the mitochondrial apoptotic 

pathway via Bid activation and caspase 3 activity.16, 17 Although SERS reports on the 
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real-time biomolecular dynamics in the microenvironment associated with the PPTT pro-

cess, SERS spectra from cells are incredibly complex, reflecting overlapping signals from 

a variety of proteins and metabolites that are difficult to assign to individual species. It 

has been reported, for example, that the 1000 and 1580 cm-1 peaks showed significant in-

crease during cell apoptosis,8, 18 with great debate in their assignment.19 According to one 

published literature, the 1000 cm-1 signal has been assigned to phenylalanine,20 while a 

different report assigned it to tryptophan.19 Furthermore, it has been argued21 that these 

SERS signals actually reflect changes in protein structure, a topic still being intensively 

debated. One hypothesis states that the 1000 cm-1 signal is indicative of the exposure of 

protein hydrophobic rings following conformational changes,21 while others report that 

the protein conformation change induced by adding methanol or SDS22 or increasing tem-

perature23 does not alter the intensity of the 1000 cm-1 peak, contradicting the hypothesis 

that this signal is associated with alterations in protein conformation.  

In this study, we monitored the SERS spectral signature in vitro during apoptosis 

as a function of PPTT exposure time. We also performed metabolomics and proteomic 

studies on cell lysates under the same exact PPTT conditions. Integrative multi-omics 

network analysis revealed specific alterations that explain the underlying changes in 

SERS spectral data, demonstrating the power of combining SERS with MS for studying 

cellular processes following PPTT.  

 

A.3 Materials and Methods 
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A.3.1 Sample Preparation for Metabolomics Experiments 

Cells were cultured in 60 mm petri dishes. The culture media was removed and 

cells were washed 3 times with PBS, followed by a wash with deionized water for 2 s and 

immediate removal of the wash solution. Seven mL of metabolite extraction solvents 

(HPLC grade methanol: acetonitrile: 0.5 M formic acid, 2:2:1 v/v, -20 oC) was added im-

mediately for quenching and lysing the cells.24 Cells were then scraped down, and the cell 

suspension was transferred to centrifuge tubes, followed by vortexing and sonication in 

ice-water bath and incubation on ice for 15 min for metabolite extraction. The cell sus-

pension was then centrifuged at 20,400 × g at 4 oC for 15 min. Solvent in the sample was 

evaporated using a CentriVap Vacuum Concentrator until dryness. The dried samples 

were kept at -80 °C until analysis.24 

 

A.3.2 Sample Preparation for Proteomics Experiments 

Cells were cultured in 60 mm Petri dishes. Ice-cold lysis buffer (50 mM HEPES, 

pH 7.8, 150 mM NaCl 0.1% SDS (optional) 0.5% sodium deoxycholate 1% Triton X 100 

or NP-40, phosphatase inhibitors) was added directly to the cells after washing with PBS 

twice. The cells were subsequently scraped down and the obtained mixtures homogenized 

with sonication and vortexing. Cell debris was then removed by centrifugation at 18,000 

× g for 20 min at 4 °C. Four volumes of ice-cold acetone/ethanol/acetic acid (v/v/v = 

50/50/0.1) was added to the supernatant to precipitate the proteins at -20 °C overnight. 

After centrifugation, the protein pellet was re-dissolved in denaturing buffer (pH 8.0) 

containing 8 M urea and 50 mM HEPES, and the protein concentration was tested using a 
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Bradford assay. The disulfide bonds in the protein solution were reduced by 2 mM dithio-

threitol (DTT) at 37 °C for 2 h and subsequently alkylated by adding 6 mM iodoacetam-

ide (IAA) and kept in darkness at room temperature for 40 min.25 

 

A.3.3 UPLC-MS Based Metabolomics Analysis 

Before analysis, ultrapure water was added to each dried sample to obtain a final 

biomass concentration of ~50,000 cells μL-1. Samples were further vortexed and then 

centrifuged at 15,000 rpm for 10 min at 4 °C. The supernatant of each biological sample 

was transferred to autosampler vials for UPLC-MS analysis using a Waters ACQUITY 

UPLC H Class system fitted with a Waters ACQUITY UPLC BEH C18 column (2.1×50 

mm, 1.7 μm particle size, Waters Corporation, Milford, MA, USA), coupled to a Xevo 

G2 QTOF mass spectrometer (Waters Corporation, Manchester, UK) with an ESI source. 

Gradient elution was employed in the chromatographic separation method using 0.1% 

acetic acid in water (mobile phase A) and acetonitrile (mobile phase B), with the follow-

ing program: 0-1 min, 98% A, 1-3 min 98%-70% A, 3-8 min 70%-50% A, 8-10 min 

50%-5% A, 10-15 min 5% A. The flow rate was constant at 0.3 mL min-1. After each 

sample run, the column was re-equilibrated to the initial conditions in 6 min. The injec-

tion volume was 5 μL. The column and auto sampler tray temperatures were set at 35 and 

5 °C, respectively. The mass spectrometer was operated in negative ion polarity and reso-

lution mode with a probe capillary voltage of 2.2 kV and a sampling cone voltage of 45.0 

V. The source and desolvation gas temperatures were set to 120 and 350 °C, respectively. 
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The nitrogen gas desolvation flow rate was 650 Lh-1. The mass spectrometer was cali-

brated across the range of m/z 50-1200 using a 0.5 mM sodium formate solution prepared 

in 2-propanol/water (90:10 v/v). Data were drift corrected during acquisition using a leu-

cine encephalin (m/z 554.2615) reference spray infused at 3 μL min-1. Data were acquired 

in the range of m/z 50-1200, and the scan time was set to 1 s. Technical duplicates were 

acquired in all cases. Tandem MS experiments were performed using a Waters 

ACQUITY UPLC I Class system fitted with the same column used for UPLC-MS analy-

sis, coupled to a Synapt G2-S HDMS system (Waters Corporation, Manchester, UK) 

equipped with an ESI source operated in negative polarity and resolution mode. For the 

fast data dependent acquisition method, targeted ions for MS/MS were entered in an in-

clude list. A 0.2 s continuum MS survey scan was collected from 50 to 650 Da until the 

intensity of an individual precursor ion raised above 5000, then switched to MS/MS ac-

quisition, in which a 0.1s continuum scan was collected from 30 to 650 Da. The MS/MS 

scan switched off once the accumulated total ion current reached 100,000 or after 0.25 s. 

A collision energy profile of 15, 25 and 35 V was applied to the trap cell for ion fragmen-

tation. For the MS/MS method, a scan time was 1s and collision voltages between 8 to 30 

V were applied to the trap cell. Data acquisition and processing were performed with 

Masslynx ver. 4.1 (Waters Corp., Milford, MA, USA).  

 

A.3.4 LC-MS/MS Analysis for Proteomic Experiments 

Purified and dried peptide samples were dissolved in a 10 μL solution containing 

5% ACN and 4% formic acid (FA), and 3 μL was loaded onto a micro capillary column 
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packed with C18 beads (Magic C18AQ, 3 μm, 200 Å, 100 μm x 16 cm, Michrom Biore-

sources) by a Dionex WPS-3000T PLUS auto sampler (UltiMate 3000 thermostatted 

Rapid Separation Pulled Loop Well Plate Sampler). Peptides were separated by reverse-

phase chromatography using an UltraMate 3000 binary pump with a 110 min gradient of 

8-38% ACN (with 0.125% FA) for the triplicates. Peptides were detected with a data-de-

pendent Top 20 method (the 20 most abundant ions were selected for MS2),26 in a hybrid 

dual-cell quadrupole linear ion trap – Orbitrap mass spectrometer (LTQ Orbitrap Elite, 

Thermo Fisher, with Xcalibur 3.0.63 software). For each cycle, each full MS scan (reso-

lution: 60,000) in the Orbitrap at 106 AGC target was followed by up to 20 MS/MS for 

the most intense ions in the LTQ. The selected ions were excluded from further analysis 

for 90 seconds. Ions with singly or unassigned charge were not sequenced. For each full 

MS scan, the maximum ion accumulation time was 1000 ms and the one for MS/MS 

scans was 50 ms. Mass spectra Raw files were converted into mzXML format, then 

searched using the SEQUEST algorithm (version 28).27 Spectra were matched against a 

database containing sequences of all proteins in the UniProt Human (Homo sapiens) data-

base (downloaded in February 2014). The search was performed using following parame-

ters: fully digested with trypsin; up to 3 missed cleavages; fixed modifications: carbami-

domethylation of cysteine (+57.0214); variable modifications: oxidation of methionine 

(+15.9949). False discovery rates (FDR) of peptide and protein identifications were con-

trolled by the target-decoy method.28, 29 Linear discriminant analysis (LDA) was used to 

control the quality of peptide identifications using parameters such as Xcorr, precursor 

mass error, and charge state.30, 31 Peptides fewer than seven amino acid residues in length 

were deleted. Furthermore, peptide spectral matches were filtered to <1% FDR.  
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A.3.5 Data Analysis  

For metabolomics, spectral features (retention time (Rt), m/z pairs) were extracted 

from UPLC-MS data using Progenesis QI version 2.0 (Nonlinear Dynamics, Waters 

Corp.). The data preprocessing procedures included retention time alignment, peak pick-

ing, integration, and de-convolution to group the adducts derived from the same com-

pound.  

Raw data from metabolomics were normalized using supervised normalization of 

microarray (SNM).32 In the SNM procedure, variances due to biological and technical 

replicates were adjusted by setting them as variables in the model. Variance explained by 

different experimental treatments (control, AuNRs functionalized with nuclear localiza-

tion signal (AuNRs@NLS), and AuNRs@NLS/PPTT) was fitted as a biological variable 

in the model. Metabolomics data were log2 transformed before analysis of variance 

(ANOVA) which was used to detect differential levels of metabolites between control 

and treatment groups. We fitted models with treatment conditions as fixed effects. A 

Benjamini-Hochberg 5% false discovery rate (FDR) correction was used to select differ-

ential metabolites.33 For identified differential metabolites perturbed by PPTT, we used 

the Mummichog program for network-level metabolites annotation.34 The MS mode con-

sidered in Mummichog was negative ion in order to compute isotopic and adduct species. 

The metabolites identified as being affected by PPTT were subjected to pathway analysis 

using the MetaCore pathway analysis software (“MetaCore from Thomson Reuters”).  
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For proteomics, raw data were also normalized using SNM. The identified pro-

teins were subjected to pathway analysis using the MetaCore pathway analysis software 

(“MetaCore from Thomson Reuters”) to study the effect of PPTT. 

 

A.4 Results and Discussion 

 

A.4.1 Metabolomics Results 

Metabolic profiling of cell extracts was performed using LC-MS, with two bio-

logical replicates and two technical replicates. A total of 1122 spectral features (retention 

time, m/z pairs) were detected in metabolite extracts. Specifically, many of these features 

corresponded to an increase in the relative amount of phenylalanine (Figure A.1a) and re-

lated species after PPTT (Figure A.1b-A.1d, Figure A.2). Tentatively identified phenylal-

anine derivatives and phenylalanine-containing short peptides, such as glutamylphenylal-

anine (Figure A.1b), asparaginyl-phenylalanine (Figure A.1c), histidinyl-phenylalanine 

(Figure A.1d) were amongst those altered, explaining the trends observed in the SERS 

data. Tandem MS experiments confirmed the identity of the phenylalanine detected by 

MS with excellent accuracy (Figure A.1e).
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Figure A.1: Metabolite perturbations observed in HSC-3 cells treated with AuNRs-PPTT 
(NLS conjugated particles). (a-d) Bar graphs showing the normalized abundance of phe-
nylalanine-related metabolites altered following PPTT. Normalized abundances of metab-
olites following AuNRs@NLS without PPTT are also given for comparison. (a) L-phenyl-
alanine. The result was confirmed by MS/MS (shown in e). (b) Glutamylphenylalanine. (c) 
Asparaginyl-phenylalanine. (d) Histidinyl-phenylalanine.  (e) Product ion spectrum ob-
tained under data dependent acquisition (DDA) conditions for the precursor ion at m/z 
164.0710. Matching of this mass spectrum to the Metlin database MS/MS reference spec-
trum of phenylalanine (10 V collision energy) is shown with mass accuracies indicated for 
each ionic species detected. 
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Figure A.2: Heat map showing fold change (log2) of key metabolites related to phenylal-
anine metabolism in treatment experiments (AuNRs@NLS, AuNRs@NLS/PPTT) com-
pared to control group. 
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A.4.2 Proteomics Results 

Furthermore, we also conducted a label-free quantitative proteomics experiment 

for studying alterations in protein abundances and seeking possible evidence for, and un-

derstanding of the mechanisms responsible for the phenylalanine concentration increase. 

A test experiment was done to measure the accuracy of our proteomics workflow using 

the reported method,25 where 99% of the proteins have shown accurate quantification 

(Figure A.3). In our proteomics experiment, two biological replicates and three technical 

replicates were conducted. In total, 1341 proteins were identified.  

 

 

 

Figure A.3: Quantification accuracy examination of proteomics workflow: Log2 ratio dis-
tributions of quantified peptides from 2 identical test samples (yeast whole proteome sam-
ple), each sample having 3 technical replicates. 
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A.4.3 Integrative Analysis of Metabolomics and Proteomics Results 

We conducted an integrative analysis of metabolomics and proteomics results to 

provide a more holistic understanding of the biological processes involved. Integrated 

pathway analysis showed that the phenylalanine metabolism pathway was significantly 

perturbed by PPTT (Figure A.4 and A.5). Approximately half of the metabolites in the 

phenylalanine metabolism pathway were identified as changed, including 2-phenyl-acet-

amide (increase), phenylpiruvate (decrease), 2-hydroxy-3-phenyl-acrylic acid (decrease), 

3-oxobutanoate (increase), fumarate (increase), phenylacetaldehyde (increase), L-tyrosine 

(decrease), 4-fumarylacetoacetate (decrease) and 4-maleylacetoacetate (decrease). These 

alterations were accompanied by perturbations in several key proteins in the phenylala-

nine metabolism pathway.  

Phenylalanine is known to induce apoptosis,35-37 which is consistent with the 

apoptotic phenotype observed in PPTT-treated cells. An overview of the pathways identi-

fied to be associated with phenylalanine-induced apoptosis is schematically shown in 

Figure A.6a. Two proteins in the phenylalanine metabolism pathway have been previ-

ously associated with apoptosis. Mitochondrial acetyl-CoA acetyltransferase (ACAT1) 

has been shown to be involved in the development of doxorubicin resistance to decrease 

cell apoptosis.38 Another mitochondrial protein, hydroxyl-coenzyme A dehydrogenase/3-

ketoacyl-coenzyme A thiolase/enoyl-coenzyme (HADHA), has been shown to prevent 

chemically-induced apoptosis in cancer treatment.39, 40 In our experiments, both proteins 

were observed to be down-regulated following PPTT treatment, suggesting that the anti-

apoptotic protection was turned off resulting in enhanced vulnerability to apoptosis (Fig-

ure A.6b and c).  
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Figure A.4: Pathway map showing that the phenylalanine metabolism pathway was per-
turbed after PPTT and key proteins (HADHA, ACAT1) were down-regulated, which trig-
gers apoptosis. (Red) means up-regulation after PPTT, (blue) means down-regulation after 
PPTT. In the thermometer sign, 1 refers to metabolomics results, 2 refers to proteomics 
results. The thermometers are filled to various degrees, corresponding to the amount by 
which the markers were up-regulated or down-regulated. 

Note: in the figure, “Acetyl-CoA acyltransferase” represents “hydroxyacyl-CoA dehydrogenase/3-ketoacyl-
CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit”, which is a protein complex cata-
lyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities. HADHA and HADHB 
are both subunits of this protein complex.  HADHA is down-regulated, while the HADHB is up-regulated. 
However, the down-regulation of HADHA is the rate limiting step forming the effective protein complex. 
Therefore, the activity of protein complex Acetyl-CoA acyltransferase is down-regulated, contributing to the 
mitochondria mediated apoptosis process. 

ACAT1 is acetyl-CoA acetyltransferase 1, which is a mitochondrially localized enzyme that catalyzes the 
reversible formation of acetoacetyl-CoA from two molecules of acetyl-CoA. ACAT2 is cytosolic localized 
acetyl-CoA acetyltransferase 2, which involved in lipid metabolism. The mitochondrial isoform ACAT1 is 
down-regulated hints its perturbation contributes to mitochondria mediated apoptosis processes, while the 
cytosolic isoform ACAT2 is not related to this process. 
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Figure A.5: Significant pathways identified from proteomics (red bars) and metabolomics 
(light pink bars) that perturbed by photothermal therapy.  
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Figure A.6: (a) Schematic diagram explaining the molecular apoptosis mechanisms 
involved in altering phenylalanine metabolism as induced by PPTT. (b-g) Bar graphs 
showing the normalized abundance of key proteins contributing to apoptosis involved in 
altering phenylalanine metabolism following PPTT. Normalized abundances of key 
proteins following AuNRs@NLS without PPTT are also given for comparison. (b) 
HADHA. (c) ACAT1. (d) Lamin B1 (LMNB1). (e) PAK1. (f) PPP1R12A. (g) LAMP2. 
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In addition to the phenylalanine metabolism pathway, three possible mechanisms 

of phenylalanine-induced apoptosis were suggested by the results. Firstly, increased phe-

nylalanine was shown to induce apoptosis by involvement of the Fas receptor (FasR)-me-

diated cell death receptor pathway.35 In this study, two proteins (Lamin B1 and PAK1) in 

the Fas/Fas ligand death receptor pathway were identified. These two proteins have been 

previously demonstrated to be associated with apoptosis. Lamin B1, as the major compo-

nent of the nuclear lamina underlying the nuclear membrane, plays an important role in 

maintaining nuclear membrane integrity. Destruction of nuclear membrane integrity be-

ing a hallmark of apoptosis. During apoptosis, Lamin B1 mRNA level have been shown 

to decrease,41 which could result from induction of either p53 or pRB tumor suppressor 

pathways.42, 43 Literature results also show that the Fas/Fas ligand complex downstream 

effector PAK1 is required to prevent apoptosis by limiting the expression of pro-apoptotic 

proteins or modulating post-translational modifications on effectors.44-46 In this study, 

both of these proteins were down-regulated, suggesting a cellular shift towards apoptosis, 

and reduced anti-apoptotic protection (Figure A.6d and e).  

Phenylalanine has also been shown to activate mitochondria-mediated apoptosis 

through the Rho/ROCK pathway.47, 48 In this study, we identified down-regulation of the 

myosin phosphatase targeting subunit 1 (PPP1R12A) in PPTT-treated cells, this being a 

downstream effector of ROCK (Figure A.6f) that would contribute to the apoptotic phe-

notype following PPTT. In apoptotic cells, PPP1R12A is cleaved, with the cleaved 

PPP1R12A inhibiting myosin II binding, which results in membrane blebbing and apop-

tosis.49 
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A third mechanism of phenylalanine-induced cell death involves a component in 

Granzyme B signaling-mediated apoptosis, known as lysosome-associated membrane 

protein 2 (LAMP2). This protein was down-regulated following PPTT treatment (Figure 

A.6g).  LAMP2 is critical to maintain lysosome integrity and normal cellular function, 

and lower levels of LAMP proteins have been positively associated with apoptosis.45 It is 

not yet conclusively established, however, whether decreased LAMP2 levels are also di-

rectly associated with phenylalanine-induced apoptosis.  

Further investigations into the mechanism of how PPTT treatment increases phe-

nylalanine levels in cells focused on the fact that phenylalanine can be converted to L-ty-

rosine.50-52 Metabolomics data indicated that after PPTT treatment, the level of L-tyrosine 

was actually decreased (Figure A.4). Based on our results, the channel allowing for the 

conversion from phenylalanine to L-tyrosine could have contributed to the accumulation 

of phenylalanine, which further induced mitochondria-mediated apoptosis. Besides phe-

nylalanine dependent process, we further identified significantly perturbed pathways by 

integrative analysis of proteomics and metabolomics (Figure A.5). Other amino acids me-

tabolism pathways are enriched, including methionine-cysteine-glutamate, and lysine me-

tabolism, which are very essential for cell survival. Interestingly, we also found clues on 

the perturbation of pathways related to lipid metabolism and ketone body metabolism.15, 

53, 54 

 

A.5 Conclusion 

In this work, we combined results from SERS, metabolomics and proteomics ex-

periments, aiming to study the change of the subcellular microenvironment around 
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AuNRs during the PPTT process. The SERS data showed that the 1000, 1207 and 1580 

cm-1 bands increased during PPTT, which suggested an increase of phenylalanine and its 

derivatives. These findings were confirmed by integrative analysis of Raman spectros-

copy, metabolomics and proteomics MS data, showing that free phenylalanine and tenta-

tively identified phenylalanine associated metabolites are significantly perturbed by 

PPTT, leading to cell apoptosis. We therefore propose that phenylalanine measurements 

by SERS can be developed as a sensitive and convenient readout for non-invasive direct 

apoptosis characterization. 
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