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Abstract

We outline an Eulerian framework for computing the thick-
ness of tissues between two simply connected boundaries.
Thickness is defined as the length of trajectories which fol-
low a smooth vector field constructed in the region be-
tween the boundaries. A pair of partial differential equa-
tions (PDE’s) are then solved and combined to yield length
without requiring the explicit construction of the trajecto-
ries. An efficient, stable, and computationally fast solution
to these PDE’s is found by careful selection of finite differ-
ences according to an upwinding condition. The behavior
and performance of our method is demonstrated on two sim-
ulations and two magnetic resonance imaging data sets in
two and three dimensions. These experiments reveal very
good performance and show strong potential for applica-
tion in tissue thickness visualization and quantification.

1. Introduction

Measuring the thickness of anatomical objects is an impor-
tant objective in medical image analysis for several reasons.
For one, the thickness of a particular structure might pro-
vide an indication of its functional performance. For exam-
ple, myocardial thickening during systole is an important
indicator of heathly cardiac function [1]. Thickness can also
provide an indication of disease. For example, thinning of
the gray matter in the brain cortex is thought to be associ-
ated with Alzheimer’s disease and other neurodegenerative
disorders [2]. Thickness might also prove to be the basis
for image segmentation. For example, it is well known that
the anterior and posterior banks of the central sulcus in the
human brain cortex can be distinguished by a difference in
thickness alone [3]. Finally, thickness can be used as a ba-
sis for efficient characterization of anatomical shape when
coupled with a central axis representation [4].

In this paper, we present a method for computing the
thickness between two surfaces (or curves) that do not have
point correspondences defined between them. The method
we describe is based on the definition of thickness as the
length of trajectores (curved, in general) from one surface
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to the other. While conceptually analogous to the thickness
definition used in [5], our definition is more general and our
computational approach is fast and stable. After presenting
our algorithm, we give two simulations and two additional
examples from cardiac and brain images demonstrating its
performance.

2. Thickness Definition

There have been many definitions of anatomical thickness
in the literature. Left ventricular myocardial thickness is
most often defined within a cross-sectional image, and is
assumed to be the distance' between the endocardium and
epicardium along a line passing through the long-axis of the
ventricle [6] (thought of as the origin), as shown in Fig. 1(a).
This definition does not capture the three-dimensional as-
pect of the heart wall, requires that the positions of the
endocardium and epicardium are radial functions, and de-
pends on the (arbitrarily defined) location of the long-axis.
Most often, the papillary muscles are not included in the
segmentation of the endocardium in order to make sure that
the endocardium is a radial function. With the increasing
resolution of magnetic resonance (MR) images, a more pre-
cise, three-dimensional, definition of thickness that is not
susceptible to user variation is needed.

Brain cortex thickness has been defined in several ways.
Coupled-surface methods, such as that in [7] and [8] typ-
ically define thickness as the distance between point pairs
uniquely associated between the two surfaces. One prob-
lem with this approach is that the thickness measures will
be artifically high if the two surfaces are displaced relative
to one another, as shown in Fig. 1(b) (solid lines). This
problem is addressed in [2], where the thickness is defined
as the average of the two distances to the closest points on
the opposing surfaces for each of the two paired points, as
shown in Fig. 1(b) (dotted lines). This definition, however,
loses the idea of unique point association between the two
surfaces, and can also yield thickness measures that are too
small, as demonstrated in Fig. 1(c).

YThe word distance means Euclidean distance unless otherwise stated.
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Figure 1: Problems related to thickness definitions.

Uncoupled surface thickness measures do not have a pri-
ort point associations between the two surfaces. A simple
measure of thickness in this case is to simply measure the
distance from each point on a given surface to the closest
point on the opposing surface [9]. The most obvious flaw
with this definition is the lack of symmetry — the thick-
ness is not the same when the surfaces are interchanged.
Also, the thickness can be dramatically underestimated us-
ing this approach when there is a pronounced bulge in the
opposing surface. Both of these problems are demonstrated
in Fig. 1(c). It is possible to create point associations be-
tween the surfaces by shape matching [10, 11]. However,
the standard definitions of thickness for coupled surfaces
would now apply, and these suffer from the flaws outlined
above.

Another class of methods define thickness relative to a
central axis or skeleton [4]. Generally, there is no point as-
sociation between the central axis and the two surfaces, and
thickness is typically treated as the diameter of the largest
enclosed sphere centered at a given point on the central
axis. The problem with this definition is that the skeleton
will have to take on an arbitrary topology in order to prop-
erly describe highly-convoluted objects. An abrupt change
in thickness, for example, might require that the skeleton
grow a branch in order to completely define the geometry
of the two surfaces, as shown in Fig. 1(d). If on the other
hand, the topology of the central axis is restricted — to that
of a simple sheet, for example — then the resulting thick-
ness measurement often underestimates the actual thickness
when either of the two surfaces is bumpy. Other definitions,
such as the distance orthogonal to a central axis, are fraught
with difficulties, as is easily demonstrated by experimenting
with simple examples.

Jones et al. [5] proposed a new measure of cortical thick-
ness based on curved lines connecting the two bounding
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surfaces. They proposed setting the potential of one sur-
face to zero, setting the potential of the other surface to one,
and solving Laplace’s equation for the potential between the
two surfaces (as in an electric field). The lengths of the lines
of flow between the two surfaces then defines the thickness.
These lines have desirable properties: they are orthogonal to
each surface, they do not intersect, and they are nominally
parallel. In this paper, we generalize this framework and
specifically address the computation of trajectory lengths,
which Jones et al. implemented by explicit tracking of the
lines in a Lagrangian framework. Here, we present an Eu-
lerian framework that leads to a computationally stable and
fast algorithm.

3. General Approach

In this section, we outline a mathematical approach for mea-
suring the thickness of segmented tissues using a pair of
linear partial differential equations. Specifically, we show
how a simple linear PDE can be used to compute trajec-
tory lengths at all points using only the vector field of unit
tangents. The unit tangent field can be constructed by any
(reasonable) process, including by computing the normal-
ized gradient of a harmonic function as in Jones et al. [5).
Solution of the identified PDE’s eliminates the need to ex-
plicitly construct and measure any individual trajectory.

‘We assume that the tissue to be measured occupies a spa-
tial region R with exactly two simply connected boundaries
0o R and 8, R, which we call the inner and outer bound-
aries, respectively. We define thickness at any point x € R
as the total arclength of a unique curve, passing through x,
which originates on dp R and terminates on d; R. Uniquness
is necessary in this definition in order to avoid ambiguity;
it implies that we can construct a family of nonintersect-
ing curves connecting the boundaries in a bijective fashion.
These curves, which we refer to as correspondence trajecto-
ries, also associate unique points on the boundaries to each
point x in R.

Correspondence trajectories cannot, in general, be estab-
lished via “closest point” relations between the two bound-
aries (see Section 2). However, there are an infinite number
of vector fields defined on R whose streamlines satisfy the
uniqueness requirements. Additional desirable properties
narrow the list of candidates. For example, correspondence
trajectories should approach a boundary from a normal di-
rection, they should proceed as directly as possible from
one boundary to the other, and their speed should never go
to zero.

It is convenient to construct a unit vector field which co-
incides with the tangent vectors of the correspondence tra-
jectories. There are many possible choices, and the frame-
work we will outline applies equally well to any particular
choice. One possible choice is a normalized gradient vec-



tor flow field [12], where the boundaries play the role of
edge maps. Another choice is the normalized gradient of
the unique harmonic function u over R that interpolates be-
tween O along 9o R and 1 along 8; R. This is the function
used by Jones et al. [5], and is what we also use in the ex-
periments presented in this paper. We obtain the harmonic
function » and the corresponding tangent field T by solving
the Laplace equation over R:

Au=0 a1

©(GpR) =0 and u(01R)=1 )
- Vu

T=—— 3
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Typically the tissue region R to be measured is given as
a set of pixels or voxels on a rectangular grid. Thickness
is defined at each point in R as the length of its correspon-
dence trajectory. We now show that it is not necessary to
explicitly construct the trajectories — e.g., by tracing the
flow of particles — in order to calculate these lengths. The
key is to devise an Eulerian framework that utilizes the fixed
rectangular grid and to exploit the unit tangent field in a par-
ticular differential structure.

Let us assume that we are given a unit vector field 7'(x)
defined on R such that the orientations of these tangents
follow correspondence trajectories directed from the inner
boundary o R to the outer boundary O R. It follows that
—T'(x) follows the same correspondence trajectories but is
directed from 8 R to 8p.R. We define two length functions,
Lo and L1, where Lg(x) gives the arclength of the corre-
spondence trajectory between 9p R and x, and L, (x) gives
the arclength of the trajectory between J; R and x.

It follows from elementary differential geometry that the
length functions L and L; must satisfy the following first-
order linear partial differential equations:

Vi T
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We describe an efficient numerical scheme to simultane-
ously solve these PDE’s in Section 4. Then, since the length
functions Ly and L; measure the arclengths starting from
opposite endpoints of each correspondence trajectory, the
total arclength of the trajectory through any point x is ob-
tained by adding Lo(x) and Ly (x):
Thickness = Lo + L;. 6
In this fashion, thickness is computed at every point in R
without ever explicitly constructing a correspondence tra-

Jjectory. We now proceed to describe the numerical solution
of (4) and (5).

4. Numerical Implementation

Since there:are many standard numerical methods for solv-
ing (1) in order to obtain T via (3), and since there are many
other natural ways to choose the tangent field without us-
ing the Laplace equation, we will not go into detail about
the numerical computation of T'. Instead, we focus our at-
tention here on the development of a numerical scheme for

. solving the PDE’s (4) and (5) to obtain the length functions

Ly and L, assuming we are given the tangent field T. We
note that the characteristics of these PDE’s are exactly the
correspondence trajectories. Therefore, because the corre-
spondence trajectories never intersect, we do not need to
worry about shocks, in contrast to many first-order bound-
ary value problems (such as the Eikonal equation, which
would yield “closest point” correspondences). Because of
this, we do not need to be concerned with entropy condi-
tions in the numerical schemes to solve these PDE’s, al-
though appropriate upwinding will be crucial.

Here, we will consider only the case of a 3D rectangu-

. lar grid with spacing h;, hy, and h, between neighboring
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grid points (voxels) in the z, y, and z directions respectively.
The 2D case is simply a special case of the 3D case. The no-
tation T3 (¢, j, k], Ty (¢, 4, k], and T . [3, j, k] denotes the com-
ponents of T at the grid point (i, j, k), and backward and
forward differences are given by the following standard no-
tation [14, 15, 16}

th]v k]—L['L—l,J,k] L["'+1y.77k]—L[t7]7 k]

D L= , DIL:
D;LzL[z,J,kl—L[z,J-l,k]’ D;*L‘=L["J+l’k]“l‘[’13’k]
D;LzL[z,J,k]—hL[l,J,k—-l]’ D;*LzL[”]’k‘*;]‘L[”J’ K]

Upwind differencing. = We start by considering various
combinations of the above first-order differences to approx-
imate VLq in (4), yielding various linear expressions for
Lo[i, 7, k] in terms of three of its six neighbors Lg[i+1, j, k],
Lofi,j£1,k], and Lo, j, k£1].

1 = T, j K] (D5 Loli,, k] or D} Loli,  ¥))
+ Tyli, 5, K1 (Dy Lali, 3, Kl or D Lali, 5, K1) (7)
+ T2, 3, ) (D Loli, 3, K] or D¥ Lofi, ,k1)

Since (4) is a first order PDE with known boundary values,
its solution may be constructed by integration along char-
acteristic curves starting from the known boundary. By de-
sign, the characteristics of (4) are precisely the correspon-
dence trajectories, and therefore the tangent vector T[i, Ji K
tells us which direction the characteristic through the grid
point [z, 7, k] is flowing.



We do not need to worry about shocks and entropy con-
ditions [13, 14, 15, 16] since the characteristics of the linear
PDE’s (4)—(5) never intersect. On the other hand, informa-
tion does flow in the forward direction (downwind) along
the characteristics, so it is important to choose our differ-
encing scheme (i.e. D7 vs. D, ...) so that the value of
Lyli, 4, k] only depends upon values of Ly in the backward
direction (upwind) along the characteristic passing_‘through
the grid point {i,j,k]. This direction is given by —T'[1, j, k].
Therefore, upwinding dictates the following choice for (7).

_ . D;LO[Zajvk]’ — -"J[i’jik]<0
1= Tz[zv D k] { D:Lo[i,j, k], otherwise
.. D~L0[i:j’k]7 - y[iaj, k]<0
y
+ Ty[i, 5, k] { D;f Loli, 4, k], otherwise @
L. D;Lo[i,], k], —Tz{i1j7 k]<0
+ T,[i, 5, k] { DjLo['i,j, k], otherwise

Solving (8) for Ly, 7, k] and an analogous upwind scheme
for L1z, j, k] (noting that the upwind direction for L, is
given by T rather than —T') yields the following finite dif-
ference approximations (where, for simplicity, we assume
that he =hy=h,=1):

Loli, j, k] = ®
1+ |T:|Loli1, j, k] + |Ty|Loli, 5F 1, k] + |T:| Loli, 4, kF1]
Te| + |Ty| + |T|
Li[s,j,k] = (10)
1+ |To|Li[i£l, 5, k] + |Ty|La[3, j 31, k] + |T2(La 3, 5, k+1]

. _fi+l, To>0 j+1, T, >0 k+1, T, >0
tﬂ:{i—l, T, <0 ’ﬂz{;-x, T, <0 ":”lz{k-x, T, <0

Iterative procedure. We now use (9) and (10) in the fol-
lowing iterative procedure to solve for the correspondence
trajectory lengths Ly and L; (given the tangent field T'):

1. Set Lo=L; =0 at all grid points.
(Values outside R will serve as boundary conditions.)

2. Use (9)-(10) to update Lo and L; at points inside R.

3. Repeat step 2 until the values Ly and L; converge.

If the values of Lo and L; are updated in place so that
new values at each point are used when updating the values
of the next point (a Gauss-Siedel type procedure), then con-
vergence will occur very quickly, assuming that points in R
are visited in a reasonable order. In particular, if we visit
the points in the order that they are reached by the charac-
teristic curves (the correspondence trajectories) as they flow
from the known boundary, then only one full pass through
the grid points in R is required for each length function.
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This would require an algorithm similar to “Fast Marching”
(used to solve the Eikonal equation, see [16, 17]) in which
the values of Ly and Ly are computed outward from the
known boundaries along the characteristics. Note that the
“marching order” would be different for Ly and L;.

A simpler scheme that still converges very quickly (but
avoids the book-keeping required for the optimal scheme)
is to cyclically alternate the order that the grid points in R
are updated during each iteration using orderings related to
the rectangular grid structure. For example, in the first it-
eration, grid points [¢, j, k] could be visited in order of in-
creasing 7, increasing j, and increasing k; while in the next
iteration they could be visited in order of decreasing i, in-
creasing j, and increasing k, and so on (8 different combi-
nations for a 3D grid or 4 combinations for a 2D grid). If the
correspondence trajectories are not highly convoluted, there
will be large sub-regions of R during each iteration, where
the characteristics run approximately along the current ¢, 7,
and k directions, and thus the optimal marching procedure
will be closely approximated within these sub-regions. This
cyclical Gauss-Siedel procedure converges in fewer than 10
iterations for all the experiments in Section §.

Finally, note that although we initialize Ly and L; to be O
outside both boundaries (even though each length function
should have a boundary condition of 0 along only one of the
two boundaries), the update equations (9) and (10) are de-
signed to look in opposite directions. Thus, one scheme
will affected by the zero boundary condition only along
the inner boundary, while the outher will be affected only
along the outer boundary. Therefore, it is possible to up-
date Lo and L; simultaneously (as indicated in step 2), us-
ing zero boundary conditions (from step 1) on both sides,
which greatly simplifies the procedure.

5. Experimental Results

In this section, we demonstrate our approach for computing
thickness on both synthetic test regions with known values
and segmented tissue regions in real images. The first three
experiments are on 2D regions (which can be fully visual-
ized), while the last experiment is in 3D.

To test our algorithm, we constructed an annulus be-
tween two concentric circles of radii 80 and 160 (all units in
pixels), as shown in Fig. 2(a). It is clear that the thickness
of this region should be 80 everywhere. Fig. 2(b) shows
the harmonic function v which interpolates between 0 and
1 along the inner and outer boundaries, and the normalized
gradient of u, which comprises the tangent field T, is shown
in Fig. 2(c). The trajectory lengths Ly and L; were com-
puted using (9) and (10), and their sum, the thickness, is
shown in Fig. 2(d). The experimental values ranged be-
tween 79.84 and 80.30.

As another test, we constructed an annulus between a cir-
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Figure 2: (a) Annular region and its (b) harmonic interpolant. (c)
The tangent field and (d) the computed thickness.

cle of radius 40 (all units in pixels) and an ellipse with minor
and major radii of 80 and 160, as shown in Fig. 3(a). This
time, the computed thickness values ranged from (approx-
imately) 40 to 120 as we move from points near the minor
axis towards points near the major axis. Note that the cor-
respondence trajectories are straight lines only along these
two axes. Away from these axes, the trajectories are slightly
curved in order to remain perpendicular to both boundaries
and to avoid intersection. The computed trajectories can be
visualized in Fig. 4, which gives some level sets of the com-
puted thickness function shown in Fig. 3(d).

Next, we applied our method to a segmentation of the
myocardium obtained from a short-axis MR image of the
heart, both of which are shown in Fig. 5(a). A subsample
of the tangent vectors computed from solution of Laplace’s
equation are shown in Fig. 5(b). Evidence of the need
to form curved correspondence trajectoried is apparent in-
side the papillary muscle appearing at about 3 o’clock on
the inside boundary. The calculated thickness is shown
in Fig. 5(c), which shows brighter regions where one sees
thicker myocardium. An isocontour plot showing some of
the correspondence trajectories is shown in Fig. 5(d). These
show the curved trajectories over which thickness is (im-
plicitly) computed.

Finally, we applied our method to a 3D segmentation
of the cortex obtained from MR images of the brain. One
of the original coronal cross-sections is shown in Fig. 6(a)
and the inner and outer segmentation results are shown in
Figs 6(b) and 6(c), respectively. Thickness was computed in
the region between these two boundaries, and the results for
the cross-section shown in Fig. 6(a) are shown in Fig. 6(d).
The result is brighter (meaning thicker) in regions where
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Figure 3: (a) Region between a circle and an ellipse, (b) harmonic
interpolant, (c) the tangent field, and (d) the computed thickness.
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Figure 4: Level sets of thickness function.

one would expect this given the segmentation (although one
has to be cautious about interpreting the thickness of a 3D
object from its cross-sections). The fact that there are er-
roneous thickness measures occur around several sulci (in-
ward folds of the cortex) and the hippocampus and thala-
mus are included reflect on the quality of the segmentation
result (which was not optimized for this experiment), not
the thickness computation.

6. Conclusion

‘We have presented a fast and accurate method for comput-
ing the thickness of segmented objects bounded by two con-
tours or surfaces. Our method was motivated by the need
to measure thickness in various tissues seen in medical im-
ages. The method uses a two-stage approach in which a unit
tangent field is first constructed by appropriate means —
e.g., the solution of Laplace’s equation within the object —
and then the thickness is computed by combining the solu-
tion of two linear, first-order PDE’s. The numerical method
is constructed by using appropriate upwinding conditions
within an iterative finite differencing framework. In certain
medical imaging applications, this algorithm might even-
tually be thought of as a companion to segmentation, pro-
ducing thickness data carrying significant diagnostic and/or
scientific value. As well, we believe that this overall two-
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Figure 5: Myocardial thickness from a short-axis MR im-
age.
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Figure 6: 3D cortical thickness calculation.
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stage Eulerian PDE approach has potential for use in other
applications besides medical imaging, and for other compu-
tations besides thickness.
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