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SUMMARY 

 

Enterprise systems are growing larger, more distributed, and increasingly complex.  They 

can be composed of hundreds or thousands of heterogeneous workstations and servers, 

connected via various networking devices, which allow business users to access critical 

data via multi-tier applications and web services.  They can vary in architecture, available 

bandwidth, computing power, and the amount of black-box resources employed.  System 

administrators are often required to assess the impact on business operations when an 

enterprise system component fails, which we refer to as assessing the operational 

impact.  Operational impacts can also be caused inadvertently when enterprise system 

components are reconfigured.  Assessing operational impacts accurately is critical to 

providing business executives with information needed to allocate limited Information 

Technology resources optimally – for example, maintenance personnel, time, and dollars. 

We claim that assessing operational impact requires that administrators relate the 

component failure to the affected users in a manner that is clear and understandable by 

business executives.  A number of approaches have been presented to calculate these 

kinds of impact, but many of these approaches have focused on the calculating the 

dependencies at the application & infrastructure levels.  The applications are important 

only in that they provide a means for the business users to access their critical business 

data stored in files, databases and other (possibly remote) repositories, or to contact other 

users directly in a timely manner.  Furthermore, the importance of different sets data will 

vary over time.  For example, a certain set of financial data, and the ability to access and 
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modify this data, might be significantly more critical to the business operations near the 

end of the fiscal year as opposed to other times.  Consequently, to more accurately 

determine the operational impact, an impact assessment system must also monitor the 

various data sources accessed, the various applications used to access them, and the 

periods of time for which accessing these files are truly critical to the business users. 

This paper presents a framework for monitoring the dependencies between users, 

applications, and other system components, combined with the actual access times and 

frequencies.  We use operating system commands to extract information from the end-

user workstations about the dependencies between system components.  We also record 

the times that system components are accessed, and use data mining tools to detect usage 

patterns.  This information can then be used to predict whether or not the failure of a 

component will cause an impact during certain time periods.  Furthermore, we designed 

this framework to require minimal installation and management overhead, and to 

consume minimal system resources, so that it can be employed on a variety of enterprise 

systems, including those with low-bandwidth and partial-connectivity characteristics.  

Finally, we implemented this framework in a test environment to demonstrate the 

feasibility of this approach.  This combination of understanding how and when users 

access various system components allows us to better assess current and future 

operational impacts. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Description 

System administrators are often required to assess the impact on business operations 

when a component fails, which we will refer to as assessing the operational impact.  

Presenting this assessment to management executives requires that we make the impact 

relevant to the operations of the business.  To say “Our application server has failed” is to 

state a technical event.  This may be clearly understood by the Information Technology 

(IT) staff, but will probably not have much significance for the executives.  A more 

relevant statement for them would be “We will not be able to access our purchasing 

applications for the next two hours because our application server has failed”, where you 

have connected the technical event clearly to one or more business operation impacts.  

Most users outside of the IT staff understand how automated systems affect their business 

only in terms of the applications that they use on a regular basis; therefore, assessing and 

presenting the operational impact effectively requires that we be able to clearly relate 

lower-level technical events to understandable concepts like user-level applications. 

The timing of the events is also important in assessing operational impact.  If 

none of the employees has a need for the purchasing applications at the time of the 

assessment, then there is arguably no significant operational impact.  In some cases, it 

might be practically impossible to guarantee that there won’t be at least one employee 

trying to access the purchasing application; still, we should also develop some 
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understanding of when an application is actually needed in order to more accurately 

assess the impact.  This is also important to minimize the number of false reports.  It is 

our experience that an overabundance of false reports can erode management’s 

confidence in the validity of these assessments as much as not reporting valid impact 

assessments. 

Consequently, to accurately and effectively assess operational impact, we must 

(1) relate the technical events to user-level applications with which executives and other 

users are most familiar, while (2) considering the times that these applications are needed 

to conduct business operations.  These two primary objectives can be complicated by a 

number of factors, including: the size and complexity of the system we are monitoring; 

configuration changes to that system; the variety of application access patterns that might 

be encountered; and handling black-box components, among others.  The following 

sections address these concerns in greater detail. 

Consider the following example in Figure 1, where various users, applications, 

computers and supporting infrastructure devices (e.g. routers) are shown.  The users at 

computer A use the Internet Explorer application to access the remote site.  Similarly, the 

users at computer B use the iCal application to coordinate their schedules with the users 

at computers C and D. 

Now suppose that the router R fails for a 2-hour duration as shown in Figure 2.  

The users at computer A might be unable to access the remote website during the router 

outage.  Similarly, while the users at computer B should still be able to coordinate their 

actions with the users at computer C, they might be unable to contact (and coordinate 

with) the users at computer D. 
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Figure 1 - Sample Enterprise System 

 

 

Figure 2 - Operational Impact of Router Failure 
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Furthermore, if the users at computers A and B did not actually need any of the affected 

services during the outage period, then there was (by our definition) really no adverse 

operational impact.  There will normally be an “operational support” requirement for IT 

staff technicians, engineers and administrators to repair the damage and restore systems 

and services to their normal status, but to significant impact on the other business 

operations.  Along these same lines, we can also use some of these principles to seek 

optimal times for minimizing future operational impact.  For example, instead of 

encountering an unplanned/unexpected router outage, the IT staff might be aware of a 

need to apply a critical security patch to the router firmware, and or upgrade some of the 

hardware components. 

Assessing operational impact is topical and relevant to managing enterprise 

systems in many environments.  Mamaghani examines the role of Information 

Technology (IT) in supporting enterprise business operations [1].  He gives a 

chronological description of how business managers have viewed the effects of IT on 

their operations.  The original focus in the 1980’s was “Are my business and IT 

infrastructure performing?”  Economic pressures and the fast pace of business changes 

forced managers to develop their focus further, and include concepts such as: effective 

linkage of technology and end-to-end operations; total visibility over business processes; 

and, disadvantaged situation prediction and prevention.  Our research focuses on this 

combination of concepts.  Operational impact assessments are intended to provide 

business managers with sufficient visibility to determine when technology failures in 

their enterprise system will have a significant impact on their business operations. 

Furthermore, we integrate timing and usage data to permit managers to predict the 
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potential impacts of failures, instead of being forced to wait until the failures actually 

occur.  Managers must receive clear, accurate and timely operational impact assessments 

in order to run their businesses effectively.  A recent New York Times article reports on 

the impact that web site crashes have on individuals; and, with the growing number of 

online services, on businesses as well [2].  The article discusses a website that users can 

use to test if a particular website is inaccessible for everyone, or just for them.  This kind 

of analysis is becoming more critical as developers leverage pre-existing services and 

components to build ever more complex systems.  This further confirms the importance 

of our focus on developing ways to determine the impact on users and complex, higher-

level systems when lower-level components fail.  There are similar concerns and 

requirements in academic and military environments as well. 

Many military command, control and communications systems are complex, 

multi-layered compositions of various resources that provide critical services to 

operational commanders.  When a resource event occurs, it is important to alert the 

commanders to any services that have been adversely affected by this event as quickly as 

possible, because the lack of these services might have an impact ongoing or upcoming 

operations.  Grimaila, Mills and Fortson document the clear and critical need to link the 

result of a cyber incident – which may result in infrastructure damage, and/or the 

compromise of some cyber resource – to the mission impact experienced by all of the 

affected organizations [3].  They discuss the importance of assessing the potential 

damage in an accurate and timely manner, as well as the need to distinguish between 

damage (i.e. technical impact) and mission (i.e. operational) impact.  They acknowledge 

that many organizations neglect to develop and maintain this type of information because 
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of difficulties in obtaining the raw data, lack of qualified personnel, and/or fear that the 

information collected could be used by their adversaries to target their most critical and 

vulnerable assets.  They also propose a distributed information asset tracking system 

designed to identify information dependencies, which uses Host-Based Security System 

(HBSS) software agents [4].  We concur with Grimaila et. al. on the overall importance 

of assessing operational impact by determining the relationships between technical events 

and operational needs.  Furthermore, we believe that integrating the data about actual 

usage patterns will allow the system administrators to more accurately assess the 

operational impact on the system’s operators.  And while the HBSS referenced seems to 

focus on security issues – detecting intrusions, ensuring that software patches have been 

installed, updating anti-virus signatures on a frequent basis – our systems focus more on 

the raw components as defined in our Dependency Topology Model. 

In fact, a report from Friedman acknowledges that a key objective of the 

Department of Defense’s Critical Infrastructure Protection (DCIP) Program is to allow 

“military commanders and DoD policy makers to effectively manage the impact of 

failing infrastructure assets” [5].  Since an attack on one critical asset can impact the 

operation of larger systems, such as those used for transportation, medical service, 

logistical support, etc., protecting our critical infrastructure requires that we 

“operationalize” the DCIP Program.  This overall effort will require a number of 

coordinated actions, including a systematic effort to “identify critical assets and 

dependencies, and the impact of their degradation or loss.” 

Calculating operational impact involves determining those operator/end-user 

level services that have been affected by one or more resource events, which typically 
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range from complete failure to significantly degraded performance.  Knowledge of the 

affected services can then be used to alert the operators, and determine how to prioritize 

repair resources.  This is similar to the general problem of “root cause analysis”, where 

the goal is to determine the main cause of one or more service or application failures. 

Both problems generally require some knowledge of the system component 

dependencies; however, calculating operational impact is more like a reversal of the root 

cause analysis problem. 

We must also understand how employees use enterprise system components in 

order to link the technology to the end-to-end business operations.  Older, traditional 

views of enterprise systems included desktops connected to servers via local area 

networks.  Given the choice between monitoring the employee-component interactions 

from the desktop end-systems, or from the servers, we choose to monitor from the end-

systems.  In this way, we capture the interactions between an end-system and remote 

servers, as well as the local interactions that involve only components located on the end-

system itself.  Also, enterprise system capabilities have also increased over time.  Modern 

enterprise systems support telecommuting, globalization, and outsourcing.  Shan’s 

analysis indicates that future employees will continue to operate from remote locations 

via electronic means including laptop computers, Personal Digital Assistants (PDAs) and 

other mobile devices [6].  This further supports an end-system based approach, which 

allows monitoring of end-system local interactions during periods of intermittent or low-

bandwidth connectivity.  This is also relevant in certain military environments, where 

deployed units operate over low-bandwidth, high-latency links (i.e. via satellite 
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communications), and operational demands require them to move frequently, causing 

them to break and reestablish their communication channels on a regular basis. 

1.2 Thesis Statement 

We can integrate dependency discovery techniques with the data received from mining 

usage patterns to allow the administrators of enterprise systems to more easily identify 

and assess the likelihood that a given technical event will cause an operational impact. 

1.3 Organization 

The rest of this dissertation is organized as follows: 

• Chapter 2 clarifies the problem further, defines some of the key terms, and addresses 

some of the challenges faced when assessing operational impact. 

• Chapter 3 examines some of the previous research related to this problem, and 

demonstrates where and how our work diverges from previous efforts. 

• Chapter 4 discusses the dataflow phases of our impact assessment process, with a 

higher-level emphasis on the how the raw data is processed to extract topology and 

usage information. 

• Chapter 5 examines and compares centralized, partially-distributed and fully-

distributed methods for processing impact assessment. 

• Chapter 6 discusses the technical details of our impact assessment system, with a 

lower-level emphasis on the key algorithms used when implementing the prototype. 

• Chapter 7 analyzes our experimental results, including our tests of the smaller-scale 

data, the large-scale data, the centralized and distributed comparisons, and clustering 

data. 
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• Chapter 8 summarizes our conclusions, and presents some suggestions for future 

research.  
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CHAPTER 2 

DEFINITIONS AND CHALLENGES 

 

2.1 Problem Statement, Goals, and Non-Goals 

Our goal is to present a framework that helps system administrators assess the operational 

impact by determining the users affected by a component failure.  This framework 

supports assessments in the current time period, and also provides a predictive capability 

by leveraging the information generated from usage pattern mining to infer the likelihood 

of impacts during future time periods.  We don’t expect this approach to assess the 

operational impact perfectly; the intent is that it will provide clear, operationally focused, 

and timely feedback that assists system administrators in assessing the operational impact 

for the executive users of the system.  Our approach is based on collecting operating 

system data from selected end-systems to construct a model of the intra-system and inter-

system resource dependencies.  This information is then aggregated to construct a 

dependency model for the overall enterprise system.  The data is also time-stamped, and 

data mining techniques are applied to detect usage patterns.  The dependency topology 

and usage pattern information is then used to assess operational impacts. 

 
The aim of our project is to create tools and methodologies to enable 

administrators to better assess the operational impact of a resource failure.  We want our 

tools to: 
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• Assemble a model that captures the resource and resource dependency information 

clearly.  Our model is represented using standard directed graph notation. 

• Determine the users potentially affected by a resource failure.  This is done by using 

the pair-wise dependencies contained in our model to calculate the transitive 

dependencies from the failed resource.   

• Filter the users most likely affected during the designated time window.  The specific 

timing data and detected usage patterns should be used to predict those users that are 

likely to be actively using the affected resources.  If the model is continually updated, 

then the results for users affected at (or very near to) the actual time of the resource 

failure will be more accurate. 

• Provide the impact assessment for a given resource failure in a reasonable amount of 

time.  The impact assessment is needed by executive system users to make critical 

decisions in a timely manner, possibly as part of a larger legal or regulatory 

requirement.  For example, if certain military users or resources have been affected, 

the senior commander may be required to cancel an operation, or take other 

emergency actions, to avoid loss of life.  In a different example, the loss of routing 

capability might require a Network Service Provider to notify their affected 

customers within a certain period of time per an established Service Level 

Agreement.  In our experience, this amount of time can be measured in hours or even 

minutes. 

The requirements for our tools from an installation and management perspective are 

defined here.  The amount of effort needed to install, configure and manage a set of tools 

can affect the decision to implement those tools.  We believe that tools requiring 
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application-specific configurations and/or modifications are less likely to be implemented 

for concerns (real or perceived) that the investments needed to implement the tools will 

outweigh the benefits gained.  Consequently, our tools should: 

• Require minimal application-specific knowledge and configuration, especially where 

administrators are required perform the configuration manually. 

• Require minimal modifications to applications, middleware or other system 

components. 

• Not significantly perturb system performance. 

It is also important to state some of the non-goals for our tools.  It is our belief that truly 

assessing operational impact requires both a technical understanding of the system, and a 

solid understanding of how the users utilize the system’s resources to achieve their 

business objectives: commercial, military or otherwise.  The intent of our tools is to 

provide topology and usage information that complements the administrator’s normally 

technical perspective of the system, and allows the administrators and executive system 

users to more accurately collaborate in assessing the impact.  Consequently, our tools are 

not intended to replace administrators and/or executive users; rather, they are designed to 

assist them with enterprise systems that are increasing in size and complexity.  Also, 

since our tools are not intended to operate autonomously (e.g. directing system 

configuration changes without administrator supervision) we feel that our tools do not 

have to be foolproof: they should be robust, and should minimize false positive and false 

negative assessments as much as possible. 

Many of these large-scale systems also contain hundreds, and possibly thousands, 

of cooperating end-systems.  We believe it is feasible to leverage the idle computing 
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cycles, free disk space and network bandwidth of these end-systems for data collection.  

Our intent is to aggregate the impact assessment data collected at the end-systems to 

provide sufficiently accurate impact assessments for the overall system.  Distributing the 

impact assessment workload of our tools across the end-systems might improve the 

scalability of our approach, but this is not the only reason for using this approach.  The 

users interact with a system’s resources via the end-systems.  We believe that monitoring 

system usage patterns at the end-system level is efficient in that it avoids transmitting that 

data across the network to some other collection point.  Also, it offers potentially more 

complete and efficient coverage of end-system (local-only) operations, as opposed to 

monitoring the local operations for potentially hundreds of end-systems from a remote 

location. 

 

2.2 Key Terms, Concepts and Definitions 

 
We define an Enterprise System as a distributed system of components that are used in 

combination in pursuit of one or more functional objectives.  We model a distributed 

system as a graph of communicating resources.  In our model, the nodes of the graph are 

resources, and the edges of the graph represent the dependencies between resources.  A 

directed edge from resource A to resource B means the resource A is in some way 

dependent on resource B.  We discuss the specific resource and dependency definitions in 

a later chapter.  Consequently, we model an enterprise system as a directed graph of its’ 

distributed resources, where the nodes represent the system’s resources, and the edges 

represent the functional dependencies between resources. An edge from a source node to 
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a sink node implies that the failure of the sink node would likely prevent the source node 

from completing its tasks successfully.  Our terminology and definitions are shown here: 

 
 

  
 

 
 

 
  

 
 

 
 

 
 
We define a Technical Event as a 4-tuple which represents the instance where a certain 

set of resources have Failed at time , and will not be repaired or restored until 

.  In most cases, the average repair time (i.e. MTTR) can be used 

as an approximate duration value.  Status captures the operational status of the system 

resources at the time of failure.  Capturing all system status data might not be possible in 

some environments, but even partial status data can be useful in assessing impact.  We 

then define an operational Impact Assessment as a set of 4-tuples.  Each tuple represents 

how one user will be affected by one of the failed resources along a given Path, during 

the period from  to , with a likelihood of .  The path information is 

generated from the topology data, while the ,  and  values are generated 

from the usage pattern data. 
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2.3 Challenges, Assumptions and Constraints 

 

2.3.1 System Size and Complexity 

Enterprise systems are growing larger, more distributed, and increasingly complex.  They 

can be composed of hundreds or thousands of heterogeneous workstations and servers, 

connected via various networking devices, which allow business users to access critical 

files via multi-tier applications and web services.  They vary in architecture and 

composition: some are composed of fixed-location components, like rack-mounted 

servers, continuously connected by high-bandwidth links.  Others are composed of 

smaller, mobile components – for example, vehicular-mounted systems – connected by 

lower-bandwidth links with partial connectivity.  The variance in these characteristics can 

make it very difficult to monitor and manage these types of systems. 

End users normally interact with a system via desktop and laptop workstations.  

Also, even with the popularity of network-based file storage and thin client computing, 

many users still execute applications and access files on their local workstation, as well 

as accessing network-based services and data.  For these reasons, we argue that an impact 

assessment system must monitor both workstation-local and network-based activities to 

develop accurate impact assessments.  As the number of workstations increases, this can 

affect the way monitoring data is collected – remote data collection might be problematic, 

especially in cases with low bandwidth and/or partially connected links. 

  

2.3.2 Configuration Changes 

Most enterprise systems also require configurations changes for a variety of reasons.  

Security concerns might require that a patch be applied to specific operating system or 
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applications components to prevent a recently discovered vulnerability from being 

exploited.  A series of ports might be blocked at a firewall to prevent infection by a 

rapidly spreading virus.  New servers and software might be installed and configured to 

support new and/or increased capabilities, thus requiring modification to the underlying 

network to support the increased data flow.  A merger of two companies might require 

that the separate business systems and networks be integrated to support the resulting 

corporation.  

In each of these cases, the impact assessment for certain users can be affected by 

changes to the configuration.  Configuration management and monitoring are still 

difficult problems, often complicated by the lack of trained administrators and time 

needed to properly document the changes.  Since manually updating impact assessments 

would be correspondingly difficult, an impact assessment should provide automatic 

monitoring of changes where possible to ensure that the assessments remain accurate 

when enterprise system components are added, reconfigured and/or removed. 

 

2.3.3 Timing & User Access 

Timing is a very relevant factor in assessing operational impact, since the importance of a 

particular set of data often varies over time.  For example, consider an employee tasked 

to prepare a daily report for each morning at 8:00 A.M.  In order to prepare the report 

successfully, that employee will need to access the input information between 6:00 and 

7:45 A.M., which is located on a remote file server.  If a router failure at 6:15 A.M. 

prevents the employee from accessing the needed information, then the “router failure 

event” has caused the operational impact of preventing completion of the morning report.  

On the other hand, if the router failure occurred at 7:55 A.M. or later, then there would be 
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little or no operational impact on that day’s morning report.  Clearly, importance of the 

report information on the remote file server varies over time.  Consequently, the 

applications used to access this information also vary in importance as well.  Since users 

may not be aware of these variations, automated techniques would be helpful in detecting 

these timing relationships. 

By extending this example, we can also show why using uptime/downtime 

percentage metrics are not necessarily sufficient for assessing operational impact 

accurately.  Some service providers measure the amount of time that a service has been 

available during a certain period, divided by the total amount of time in that given period 

(normally days, weeks or months), as the “uptime” for that service.  SLAs and other 

Quality of Service agreements are then based, at least in part, on these uptime 

measurements.  Consider the remote file server mentioned in the example above.  It is 

possible that file server could have a very high uptime measurement, but constantly fail 

for relatively small durations during critical times (i.e. morning report preparation).  This 

would cause a significant operational impact in spite of the high uptime measurement.  

Similarly, suppose the remote file server had to be taken offline on a regular basis for a 

few hours to perform maintenance, reorganize data for faster access, etc.  If care is taken 

to ensure that the file server is available as required during morning report preparation, 

then there will not be any significant operational impact, in spite of the low uptime 

measurement.  Uptime measurement is very helpful from a service provider perspective; 

our intent is to show that this aggregate measurement of performance is not necessarily 

sufficient to measure operational impact accurately. 
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We propose that there are at least two distinct ways to address timing information 

in impact assessments: one way is with respect to fixed dates and times, and the other is 

relative to the execution of other applications.  From a different perspective, certain 

applications are “scheduled” for execution at certain times, while other applications are 

executed “on-demand” with respect to other applications or events.  With respect to 

“scheduled” dates and times, certain applications are executed at certain specific times, 

like the daily morning report mentioned above.  As another practical and widespread 

example, many large organizations have to deal with the concept of a fiscal calendar.  At 

some specific date during the year (i.e. October 1st), the current fiscal year officially 

ends, and the new fiscal year begins.  This normally requires that many financial 

transactions be completed absolutely no later than the day before.  It is a normal 

occurrence in many of these organizations to see financial officers and other supporting 

personnel feverishly completing paperwork at 11:50 P.M. on September 30th.  The files 

that are used for these transactions are important all year long, and are normally updated 

throughout the entire fiscal year to maintain their correctness and consistency.  During 

the last few days before the new fiscal year, however, their importance is significantly 

increased because of the various legal and regulatory requirements. 

On the other hand, some applications are more likely to be executed “on-demand” 

within a certain time frame after other specific applications have recently been executed.  

One example is consider applications and data from a workflow perspective: if 

application X is used to preprocess data for application Y, then the current execution of 

application X implies an inductive probability that application Y will be executed within 

the near future.  Consider the workflow for a military unit that has just decided to conduct 
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a large operation.  In preparing for this operation, the planners will access a database of 

previous operations to generate orders for the mission.  The operators will use these 

orders to execute the mission, and produce a status report with the results.  Though there 

is no specific date, as in the fiscal year example above, that can be used as a measurement 

reference for impact assessment, we can still use relative measurements.  Given this 

example, consider the timeline for planning and executing this mission as shown in 

Figure 3. 

 

Figure 3 - Timeline for Conducting Missions 

 
Suppose the decision to conduct the mission occurs at time .  The planning 

phase (shown in blue) requires 3 days, and the execution phase (shown in red) requires 4 

days.  The application used by the planners to generate orders might be most critical (and 

susceptible to operational impact), between times  and  days.  Similarly, the 

applications used to execute the mission might be most critical between  days 

and  days.  The overlap in criticality from  days to  days is 

normal, and accounts for the handoff of the mission orders from the planners to the 

operators.  Given that mission planning began at , we can use the time periods relative 

to  to assess operational impact.  More specifically, if the planning application is active 
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at , then it is significantly more likely that the execution application will be active 

between  and , and especially during the  to  period.  

We can use the activity status of the planning application to better determine the 

likelihood that the execution application will be operationally impacted. 

 

2.3.4 Black-Box Components 

Many enterprise systems are structured as large-scale distributed systems, and composed 

of multiple communicating components.  They often employ proprietary code, third-party 

services, and similarly protected components that prevent the system administrators from 

gaining complete and in-depth visibility of the entire system.  Understanding the structure 

of such systems can be difficult, especially when they are composed of these “black-box” 

components.  For local components, black-box implies that component’s source code is 

unavailable; for remote components, black-box implies a service hosted by a third-party 

provider, where visibility of the component’s operation is restricted to the interface level. 

The black-box nature of these components complicates the monitoring process, 

but they must still be considered when monitoring the system as a whole.  For impact 

assessment purposes, it is necessary to detect when users and applications are accessing a 

given component X.  Then, to detect transitive dependencies, we should then determine if 

component X, in turn, accesses other components.  If component X is a black-box 

component, we may not be able to gather directly, or infer with sufficient accuracy, 

component X’s dependency information.  A practical example involves using traceroute() 

to detect the path from a source address (normally the host computer) to a designated 

target address.  In some cases, certain routing devices along the path might have been 

configured to ignore the requested ping responses, which prevents those device’s IP 
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addresses from being included in the traceroute() output.  These kinds of actions will 

limit our ability to detect potential impacts, thus limiting the overall coverage of our 

impact assessments. 

Our goal is to design tools that help administrators assess the operational impact 

by determine the users affected by a component failure.  These tools should require 

minimal support from the components themselves, and should avoid assumptions that 

components will provide specific and continued support for our particular methodology.  

We don’t expect these tools to assess the operational impact perfectly; the intent is that 

they will provide clear, operationally focused, and timely feedback that assists system 

administrators in assessing the operational impact for the executive users of the system. 

In this paper, we describe a specific approach towards assessing operational 

impact.  Our approach is based on capturing operating system diagnostic data from 

numerous end-systems in an application-independent, passive manner.  The captured data 

is used to construct a model of the intra-system and inter-system resource dependencies 

for each end-system, and is then aggregated across all of the end-systems to construct a 

dependency model for the overall system.  The data is also time stamped, and data 

mining techniques are applied to detect resource usage patterns.  We show that the 

captured data is sufficient to detect key resources and resource dependencies, and that the 

time stamping allows us to determine if an actual operational impact occurred with 

reasonable success.  The use of passive tracing, and avoidance of application or 

middleware modification, reduces the intrusiveness of our approach, making it more 

widely applicable to a variety of distributed systems. 
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CHAPTER 3 

RELATED WORK 

 

There has been significant research on impact analysis, and translating the effects of 

technical actions into business-relevant effects.  Calton Pu and I have developed tools and 

techniques for assessing operational impact [7]; and, we have also investigated ways to 

implement these techniques in a distributed manner [8].  We will now review related 

research in order to highlight our contributions in these areas. 

 

3.1 Impact Analysis 

Aguilera, et al. note that there are still a significant number of administrators who 

perform impact analysis manually, based on best practices and rules of thumb [9].  

Unfortunately, manually analyzing the impact of a particular change does not scale well 

as the size of the enterprise system increases with respect to the number of devices, and 

the scope and complexity of the subcomponents and applications.  There have been 

attempts to standardize and automate impact analysis to overcome these challenges. 

In some cases, operational impact is determined in a relatively static fashion.  As 

one example, the Department of Defense (DoD) has addressed the subject of operational 

impact as part of its Information Assurance and Computer Network Defense (IA/CND) 

program [10].  This document presents the three Mission Assurance Categories (MACs) 

that can be assigned to DoD information systems.  MACs are assigned by the chief 

owners/operators of a system, and reflect the importance of the information they process 
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relative to the achievement of various missions: MAC I systems are considered vital to 

mission success, and the operational impact of losing such a system could very likely 

result in mission failure; likewise, the loss of a MAC III system would have minimal, if 

any, impact on the outcome of the mission.  The MAC assignments could support 

mapping the loss of a specific application to the operational impact – however, there are 

difficulties with this approach. 

First, the users do not always assign MACs to all relevant systems; and if 

assigned, the MACs are not always updated in a timely manner in response to changes in 

the business workflow and/or system configuration.  MACs are normally assigned at 

system level, so it remains difficult to determine how the loss of a subcomponent will 

affect the overall operation of the system.  Finally, if a system handles a range of 

information levels (from routine to critical), then the highest applicable MAC is assigned 

by default.  This default labeling can be deceptive, especially if the system is used for 

critical data processing only in the most extreme (and infrequent) cases.  In short, some 

systems with a high MAC rating receive an unnecessarily large amount of management 

and maintenance focus, while other mission critical systems are neglected or overlooked. 

More dynamic methods for analyzing impact have also been developed.  

Hanemann et al. propose a high-level framework that focuses on the importance of 

impact analysis in ensuring that quality of service (QoS) metrics and Service Level 

Agreements (SLAs) are met [11].  They articulate the need for impact analysis to be 

integrated with service-oriented event correlation, in order to determine which services 

have been affected by a resource failure.  Event correlation typically deals with resource-

level events (e.g. the crash of a specific application server), and data on these events can 
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be collected from customer technical reports, provider service monitoring, etc. Jobst and 

Priessler make a similar argument using “event clouds” [12].  Business Activity 

Monitoring (BAM) is done at the level of key business objectives and metrics, and BAM 

tools are used to collect business activities in a higher-level event cloud.  The intent is to 

employ user-defined use cases, and event correlations and patterns, to map events in the 

higher-level, business-oriented event cloud to events in the lower-level, technically 

oriented event cloud.  Thereska, Narayanan and Ganger also address the need to consider 

impact analysis in a proactive manner [13].  More specifically, they propose a “what-if” 

approach that supports interactive exploration of the results of system changes, which 

include planning for deliberate configuration and tuning changes, as well as considering 

potentially unplanned resource failures.  Singh, Koropolu and Voruganti examine the 

importance of impact analysis in the more specific scenario of file storage [14], while 

Hariri et al. focus on impact analysis as related to system and network security [15].  

These approaches highlight at least two important aspects of impact analysis: determining 

the user-level applications, systems and services affected when a specific resource fails; 

and, expressing the resulting analysis in a clear, concise and business-relevant manner. 

Jashki et. al. address the important issue of using impact analysis methods to 

reduce operational impacts when modifying software systems [16].  They propose a static 

technique maintains an alignment between the business processes of the organization, and 

the software systems used to support those processes.  They then demonstrate the success 

of their technique when applied to different open source project repositories.  Our current 

techniques simply monitor the system at runtime, and then use the most current 

dependency topology to assess future impacts.  Similarly, Walker et. al. present a 
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technique for assessing the technical risk in an evolutionary development setting [17].  

Their technique can be used vertically within an organization, allowing the development 

staff to discuss and assess the risks together with high-level management.  Even with our 

current focus on dynamically-oriented data collection techniques, there is potential in 

adapting our methods to use some of these statically-oriented techniques in combination, 

which might improve the accuracy of our assessment results. 

 

3.2 Dependency Discovery & Modeling 

There has also been significant research on the importance of dependency analysis in 

determining the impact of a resource failure.  Kar, Keller et al. address the problem of 

discovering and enumerating dependency relationships between applications and lower-

level services in a networked environment, and recognize that this is a difficult problem 

having static and dynamic aspects [18].  They establish a multidimensional framework 

for classifying dependencies, and develop these concepts further in later research.  To 

determine statically-based dependencies, they propose a repository-based approach, 

which discovers dependencies by analyzing the data commonly found in most operating 

systems – for example, the Object Data Manager/ODM in AIX, and the Registry in 

Windows.  Their process then matches the data based on key fields in the repository 

structures.  They later extend this approach to manage application services hosted by 

Network Service Providers [19].  

Other research has focused on determining actively based dependencies. Kar, 

Keller et al. also propose an Active Dependency Discovery procedure that captures 

dynamic dependency information by perturbing the monitored system [20].  The 
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perturbation results are analyzed statistically to infer causal relationships.  Ensel also 

proposes an automated dependency discovery method, but uses neural networks instead 

of the statistical methods normally advocated by other approaches [21].  This is an 

attempt to address the lack of direct dependency information and scalability issues 

commonly encountered with very large, heterogeneous networks.  Chen, Kiciman et al. 

propose an application-generic methodology to better understand inter-component 

relationships and diagnose problems [22].  Their approach exploits a key observation that 

most dynamic, distributed systems have a single system-wide execution path for each 

request; consequently, their methodology traces runtime paths to collect the control flow, 

resources and performance characteristics associated with a request, and uses correlation 

analysis to determine system structure, and deduce resource failures.  They discuss the 

development of the Pinpoint system, which uses instrumented J2EE middleware, and an 

application-layer packet sniffer, to trace client requests and detect both internal and end-

to-end failures [23].  They then apply their Pinpoint system to detecting application 

failures in component-based internet services [24].  Pinpoint is first used to build a 

dynamic model of the system to establish a pattern of “normal” behavior.  This model is 

then used to determine anomalous behavior, and the likely occurrence of a high-level 

fault. 

In automating dependency discovery, the proposed approaches vary significantly 

in the amount system changes required.  Kar, Keller et al. take a relatively passive 

approach, where application programming interfaces are used to pull data from existing 

operating system repositories, and generate static dependencies.  In contrast, Chen, 

Kiciman et al. instrument the middleware system to capture runtime trace data, and 
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Hanemann et al. employ agents to identify critical resource points and calculate impact 

factors in real time.  Kar and Keller’s later research generates dynamic dependencies, but 

requires that the monitored system be instrumented and perturbed in an offline state.  

Some other approaches can be used with a variety of passive and active data gathering 

approaches.  Though instrumentation, offline perturbation and other system modifications 

might yield better overall results, these techniques can also make it much more difficult 

to implement and manage dependency discovery in practice, especially in production 

environments. 

3.3 Data Mining & Usage Monitoring 

Expressing the results of the impact in a clear and understandable manner is very 

important.  We firmly believe that to make the technical impact relevant to users, you 

must have some understanding of how the users utilize the technical resources available 

to them.  Data mining has been used for system, operations and application management.  

Srivatstava et al. investigate approaches for mining usage data in web accesses [25], 

while Van der Aalst et al. survey approaches to mine business workflow patterns [26].  

Jobst and Priessler also address presentation concerns, and propose enterprise 

performance cockpits and dashboard layouts that depict the enterprise system’s 

performance [12].  We believe these mining techniques can be adapted to end user access 

patterns, to support the presentation of business-relevant impact results.  Our approach 

goes beyond previous work by abstracting and integrating system level events and 

application level events.  As an example, in the mining of usage data to detect business 

workflow patterns, Aalst et al. mention the exploitation of timing data as an open 
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problem in workflow mining.  We use timing as the underlying fabric on which we 

integrate events from all system and application components.   

3.4 Commercial Solutions 

There are commercially available solutions that attempt to address the problem of 

assessing operational impact.  One such example is the SMARTS Business Impact 

Manager system produced by EMC2 [27].  Numerous major Internet Service Providers 

use the SMARTS system to provide root cause analysis and business impact assessment 

functionality.  SMARTS uses mathematical techniques to model the system environment, 

and also updates the model automatically when changes are detected.  This provides 

some advantages over systems that require dependency rules to be manually generated 

and maintained, especially in large, dynamic environments.  The Business Impact 

Manager functions by assigning weights to various elements of the system environment, 

and then using the numbers and weights of affected elements to calculate values for 

business impacts.  Unfortunately, the business impact assessment functionality still 

requires manual assignment and adjustments of weights. 

There are other commercial systems that also address key aspects of assessing 

operational impact.  The IBM Tivoli Application Dependency Discovery Manager can be 

used to automatically discover dependencies between various applications, systems and 

infrastructure components [28].  It can also be used to poll the system over time, to detect 

configuration changes.  It operates as an agent-less system: the Discovery Manager 

software can be installed on a server of adequate computing power, and configured to 

contact each workstation or server to be monitored over the local network.  This setup 

still requires that each computer to be monitored be configured to permit remote access, 
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and that commands be enabled on the machine to permit complete visibility of open files.  

Also, internal servers (e.g. web, database, application) and other infrastructure 

components (i.e. network routers) must also be specifically configured to allow the 

Discovery Manager to access them and collect the information needed to build the 

dependency model.  While this is usually very feasible for reasonably fixed, static 

environments with sufficient bandwidth connectivity, this could be more challenging to 

implement on more dynamic, lower-bandwidth connectivity systems.  The requirement to 

allow the Discovery Manager to have root access to such a large number of components 

and to conduct numerous network and port scans while collecting dependency 

information could also raise security concerns in some environments. 

3.5 Research Most Similar to Our Approach 

3.5.1 Operational Impact Analysis 

The framework proposed by Hanemann automatically determines the impact of resource 

failures with respect to services and Service Level Agreements (SLAs) [11].  This 

requires a holistic view of the service provisioning structure, including knowledge of the 

dependencies between the offered services, subservices and resources, and the customer’s 

SLAs.  Their framework is applicable in two time perspectives: in the short-term, where 

current failures are evaluated to determine the services impacted, especially those 

services covered by one or more SLAs; and mid-term, allowing the service provider to 

simulate the effects of resource failures for planning purposes.  One of the strengths of 

their framework is that it covers a significant portion of the impact analysis problem, 

including the modeling, dependency analysis, and SLA monitoring and management 

factors.  This is very rare: most approaches focus solely on one of these areas. 
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Our proposal addresses dependency discovery, while their framework assumes 

that the dependencies are generated by other systems.  Our proposal also varies in our 

method of assessing impact.  We submit that SLAs are normally written to ensure a 

certain level of service for the most operationally critical resources (e.g. programs, 

services), and that SLAs are fairly static once established.  Users, however, will normally 

use whichever resources are available in order to complete their assigned business-level 

tasks in the most efficient way possible.  In some cases, users are restricted to the 

resources designated in the SLA; in other cases, the SLA should be reviewed periodically 

to ensure that the designated resources are still important from an operational perspective.  

Our approach assesses impacts in terms of the user-level resources commonly accessed 

during the time frame being analyzed.  If users change the resources that they use to 

complete business-level tasks, our approach will detect these changes; and, since the 

usage patterns are updated over time, our impact assessments will remain synchronized 

with the operationally relevant resources.  In this manner, our approach also supports 

integrating impact analysis with service-oriented event correlation, such that resource 

failures can be utilized as input for impact analysis. 

In a supporting vein, Stanley, Mills et. al. correlate network services with 

operational mission impact [29].  The object is to align IT services with the supported 

mission services, which they do using their Mission Service Automation Architecture 

(MSAA).  Their approach is based on a framework provided by the Information 

Technology Infrastructure Library (ITIL), and requires that the IT providers and end 

users identify the initial linkages between IT services and supported mission services.  

This requires that IT providers have a solid understanding of the mission/business nature 
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of their organization, and also that the end-users have a solid understanding of how they 

make use of the IT services to accomplish their objectives.  Our contention is that this 

“shared knowledge” amongst IT providers and end users is not as common as is normally 

desired; and, because of this fact, automated approaches are needed to “jump start” this 

communication between the two parties.  That is why we employ automated dependency 

discovery techniques in our approach. 

3.5.2 Black-Box Monitoring 

Given our goal of developing an approach that minimizes installation and management 

overhead, we also examined research that proposed more lightweight, black box 

approaches to monitoring.  Aguilera et al. model a distributed system as a graph of 

communicating nodes, and obtain message-level traces of system activity as passively as 

possible and without any knowledge of node internals or message semantics [9].  This 

approach requires no modifications to applications, middleware or messages.  Similarly, 

Mahajan et al. present an architecture for user-level Internet path diagnosis that requires 

minimal special privileges or network support [30].  These efforts lead me to believe that 

a black-box monitoring approach is feasible, and worth further study. 

3.5.3 Dependency Discovery 

While Keller et al. use static information from operating system repositories, we sought 

to use active information, with the intent of capturing runtime dependencies and user 

access patterns.  Sitaraman et. al. [31] and King et. al. [32] employ the Backtracker tool, 

which is used to help system administrators identify potential entry points for intrusion 

detection.  Backtracker logs runtime events that can then be used to infer dependencies 

between operating system objects.  Similarly, other researchers have demonstrated 
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different ways to leverage the traceroute command to map various environments, 

including client-server and peer-to-peer networks [33], [34], [35].  This information can 

be collected using unmodified operating system commands in most cases, supporting our 

lightweight, black box approach. 

The Backtracker system induces dependency relationships between objects by 

tracking events in which one object affects the state of another object.  They denote a 

dependency to a source object from a sink object as source  sink, along with a time 

interval to reduce false dependencies.  For example, a user logging into a computer using 

a certain password file establishes a file  process dependency because the login process 

needs data from the file.  They are focused on three types of dependencies based on the 

objects being monitored: process/process, process/file and process/filename.  A logger 

component is used to collect event information, and the logger can be implemented as 

part of the Linux kernel, or as a Linux loadable kernel module. 

Our process induces similar types of dependencies using very similar reasoning.  

One distinction is that we collect event information by issuing operating systems 

commands instead of instrumenting, or loading modules into, the Linux kernel.  This 

supports our goal of minimizing application, middleware or system modifications in 

order to make our system more likely to be used.  Another major distinction in our 

approach is that their model focuses on processes, files and filenames; our model includes 

other objects such as users, devices, network ports, remotes sites and routers.  Another 

minor distinction is that we do not use individual time intervals for each of the 

dependencies; however, we only induce dependency relationships for event information 

collected at the same time (i.e. within the same snapshot). 
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3.5.4 Scalability 

Another goal is that the approach be scalable to large systems.  Mortier, Isaacs and 

Barham developed the Anemone system, which uses end systems to perform network 

management [36].  The user workstations are instrumented to act as ‘traffic sensors’ and 

collect flow data in a distributed manner.  This flow data is combined with topology data 

collected from the routing protocols to provide a richer network management dataset.  

This approach takes advantage of the idle cycles, disk space and network bandwidth 

available on the individual workstations, as well as the fact that placing the data sensor 

closer to the end system offers significant advantages in being able to examine the 

original unencrypted, non-partitioned/“packetized” traffic.  Some of the same advantages 

are also valid for our focus on interactions with applications, files, and other user-

accessible resources. 

Anemone treats end-systems as ‘traffic sensors’ and combines flow-data from 

these systems with topology data inferred from routing protocols.  Our approach does 

treat end-systems as ‘data sensors’, with a broadened focus on areas such users, programs 

and files, as opposed to Anemone’s focus on network management.  Also, our approach 

uses traceroute data collected from the end-systems to infer network topology, as 

opposed to Anemone’s approach of gathering topology data by monitoring the Link State 

Advertisements (LSAs) that are normally flooded to the routers. 
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CHAPTER 4 

PROCESSING DATAFLOW & OVERVIEW 

In this section, we will describe our proposed framework for assessing operational 

impact.  Our approach is motivated by the challenges addressed earlier, and the 

difficulties faced by current approaches.  First, we will focus on the dataflow and 

algorithms that are used for the dependency modeling and user access monitoring aspects 

of assessing operational impact.  We will discuss the basic architecture of our approach, 

along with specific implementation details, in a later section.   

4.1 Impact Assessment Dataflow 

Our approach is divided into four basic phases: Collection, Discovery, Analysis and 

Mining.  Figure 4 captures the basic dataflow and sequencing of the phases. 

 

Figure 4 - Early Version of the Dataflow Architecture 

 
During the Collection Phase, common operating system commands are used to extract 

information from end-user workstations.  This information is collected on a relatively 
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frequent basis, every few seconds or minutes, and the data is stored in files for use during 

the Discovery phase.  Command options are selected to standardize the data output, and 

minimize the use of system resources.  The raw data is processed to eliminate non-

essential attributes from the command output, and handle other syntax issues.  The data is 

also time-stamped to ensure that the data elements for each specific time period can be 

linked correctly during the Discovery phase.  The time-stamping also supports user 

access monitoring during the Mining phase. 

During the Discovery Phase, the raw data files are used to construct a dependency 

model for various system components.  This dependency model can be used to compute 

transitive dependencies between components and applications, allowing Administrators 

to more clearly and concretely explain these relationships as part of the impact 

assessment process.  The Discovery phase also includes determining whether components 

are local or global.  Local components are only relevant impact-wise to the workstation 

where the data was collected, while global components (i.e. routers) may have an impact 

on multiple workstations within the monitored system.  The local/global designation 

supports a system-wide, single-search method for assessing the impact of a designated 

component, as opposed to requiring a separate search on each workstation.  The 

dependency model is further examined as part of the Analysis phase. 

The Analysis Phase employs a top-down search methodology using the 

dependency model to identify those system components that affect one or more users.  

This reduces effective size of dependency model, making searches to determine if an 

impact occurred quicker.  The Analysis phase also calculates the occurrence frequency 

for each of the dependencies to identify the best candidates for the mining phase.  The 
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basic idea is that dependencies that do not occur often enough will not generate enough 

data to satisfy the minimum support and confidence thresholds during the Mining phase; 

therefore, eliminating them now reduces the overall amount of data to be processed, and 

improves performance.  Similarly, if a certain dependency appears during almost every 

collection period, then that dependency is basically continuously active, and attempting 

to detect any other usage patterns will likely not generate any significant information.  

Consequently, the Analysis phase produces a user-focused set of dependencies that are 

most likely to yield significant usage pattern information during the Mining phase. 

Finally, the Mining Phase uses the user-focused dependency information to 

detect usage patterns for the system components.  First, the information is translated into 

a format more suitable for data mining, with a focus on the user-level applications.  Then, 

the data is mined for scheduled and on-demand timing patterns, as discussed earlier in the 

paper.  Mining for scheduled patterns involves using decision trees, association rules and 

other common data mining tools to determine if an application will be active at a certain 

day, date, month and/or hour of the day with a certain level of confidence.  Mining for 

on-demand patterns involves using autocorrelation analysis to determine if an application 

will be active within a certain time window from  to  given the set of 

applications that are active at time .  Administrators can use the mining results to better 

quantify the probabilities that operational impacts will occur after a specific technical 

event has occurred, or to predict potential impacts for planning purposes – for example, 

when determining the best period to apply critical security patches. 

The Discovery and Mining phases capture the dependency modeling and user 

access monitoring aspects, respectively, that are essential to assessing operational impact 
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effectively.  The Collection and Analysis phases are essential to transforming the data 

into standardized formats suitable for further processing, and organizing and reducing the 

amount of data to improve the efficiency of the overall process.  We will cover each of 

these phases in more detail in the following sections. 

4.2 Collection Phase 

The Collection Phase leverages common operating system commands to accumulate data 

about the current state of the workstation being monitored.  My current research focuses 

on Linux and Unix based operating systems.  We use cron-activated batch files to capture 

data about the current state of the workstation being monitored.  The batch files execute 

common Linux operating systems commands like w(), ps(), lsof(), df() and traceroute() to 

collect data about users, programs and processes, open files, and remote sites.  The 

command schema relationships are shown in Figure 5.  The batch files also format the 

output for further processing during the Discovery Phase.  The state of the workstation 

includes information about which users are logged on, which processes are currently 

running, and which files are open, among others.  It also uses some other commands for 

time-stamping and formatting the data. 

The w( ) command is used to determine who is logged onto a system, and what 

each user is doing.  More specifically, we use the command “w –s”, where the “–s” 

option is used to display information in a summarized format.  Using the “–s” option 

omits certain fields, like those used to measure the time consumed by the current 

foreground and background processes. 
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Figure 5 - Operating System Command Schema & Key Field Relationships 

 
 
A sample of the data output from the w() command is given here: 

poseidon% w -s 
 13:05:52  up 71 days, 20:09,  5 users, load average: 0.00, 
0.02, 0.00 
USER  TTY FROM   IDLE WHAT 
adams  pts/0 achilles.cc.gt.a 4days -bash  
brown  pts/1 lawn-128-61-114- 0.00s -bash  
chelsea pts/5 c-24-30-25-54.hs 0.00s w -s  
brown  pts/4 lawn-128-61-114- 1:19 less INSTALL  

 
The USER field represents the actual login name for user.  The names displayed here, 

and elsewhere in the paper, are not the actual user names – they have been changed to 

respect the privacy of the real users.  This substitution does not affect the accuracy of the 

results.  If actually implemented in a production environment, a properly authorized 

administrator would use the real login names in order to more accurately assess 

operational impacts. 
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The TTY field represents the name of the terminal the user is accessing, while the 

FROM field displays the host from which the user is logged in.  As shown above, the 

command has automatically resolved the network addresses into names.  Ideally, we 

would also employ the “–n” option to avoid this translation, if available.  The network 

names are frequently truncated, which makes it much more difficult (though not 

impossible) to use them later when linking records during the Discovery phase; 

consequently, using network addresses is preferable.  Also, eliminating the address-to-

name translation would consume less time and computing resources.  Unfortunately, 

though this option is available on some operating systems (i.e. BSD/Mac OS X), it is not 

available on all Linux systems. 

The IDLE field displays the time since the user last entered any input, while the 

WHAT field displays the current command and options.  For the Discovery phase, the 

only data required is contained in the USER, FROM and WHAT fields.  We used grep() 

and other commands to eliminate unneeded data, and to format the output into the 

following schema: 

w-data := (user-name, access-site, access-program) 
 
 

where “user-name” represents the login-name, “access-site” represents remote network 

names used to access this terminal, and “access-program” represents the name of the 

command being executed to support remote access.  The data from the w() command is 

stored in this format in a file, and loaded into a database during the Discovery phase.  The 

records are also tagged with time-stamp information, and the name of the workstation on 

which the command was executed.  I’ve omitted the time-stamping information and 
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workstation name from this and the following schema definitions for clarity, since this 

information is relevant only during the Discovery and Mining phases. 

 
 The ps( ) command is used to display a list of active processes.  Normally, the 

ps() command lists all processes with the same effective user ID as the current user, and 

associated with same terminal as the invoker.  More specifically, We use the command 

“ps -eo user,pid,ppid,comm”, where the “–e” option is used to designate all processes, 

and the “–o” option allows me to specifically designate the columns to be displayed.  A 

portion of the output from the ps() command is given here: 

poseidon% ps -eo user,pid,ppid,comm 
USER  PID  PPID  COMMAND 
root  1  0  init 
root  1212  1  sshd 
xfs  1406  1  xfs 
daemon 1424  1  atd 
root  20506  1212  sshd 
smith  20508  20506  sshd 
... 

 
The USER field is defined as in the w() command above.  It is important to note that the 

USER field here contains the names of real users (e.g., philip, smith) as well as the names 

of special system accounts (e.g. root) and accounts used to manage services and other 

long-running processes (e.g. xfs, daemon).  The PID and PPID fields contain the process 

and parent process identifiers, respectively.  These values can be used to establish which 

parent process issued a fork() command to create a child process, thus establishing a 

“process tree.”  As an example, the process with pid 1212 spawned the process with pid 

20506, which later spawned the process with pid 20508, which is owned by smith and 

currently running the sshd() program.  

The COMMAND field lists the actual name of the program that is currently 

running inside the process space.  The program running within a process can be changed 
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using the exec() command.  Since process identifiers can change between different 

invocations of the ps() command, we only use the PID and PPID fields to establish 

relationships between the data in the USER and COMMAND fields.  Monitoring the ps() 

command allows us to monitor the situation where different programs are executed in the 

same process space, which is not necessarily possible with other forms of monitoring.  

For example, many Linux and Unix systems offer support for process accounting, which 

is normally managed using the accton( ) command [37].  When enabled, the kernel writes 

an accounting record each time a process terminates, where the record contains the user 

ID, controlling terminal, and program being executed (along with other information) at 

the time the process was terminated.  This system does not record the names of programs 

that executed in that process space prior to termination.  For example, if a process is 

started using program A, which then executes program B, followed by execution of 

program C, only program C will be recorded in the accounting record for that specific 

process.  While using accton() ensures that we will capture a record for every process that 

terminates, along with the terminating program, executing ps() on a frequent basis allows 

us to also capture the initial and intermediate programs that execute in each process space 

as well. 

The data for all of the given output fields is needed for the Discovery phase.  We 

used grep() and other commands to format the output into the following schema: 

ps-data := (user-name, process-id, parent-id, program) 
 
 

where “user-name” represents the login-name; “process-id” and “parent-id” represent the 

process identifier information; and “program” represents the name of the command being 
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executed in the process space at this moment in time.  The data from the ps() command is 

stored in this format in a file, and loaded into a database during the Discovery phase. 

The df( ) command stands for “disk free”, and displays the names and space 

statistics for the accessible file systems.  By default, it displays statistics (e.g. total space, 

available space, percentage of space used) only for those systems for which the user has 

read access.  The command also displays the file system roots, which represent the 

directories below which the file system hierarchies appear.  We use the df() command to 

link files to these directories, and then to link the directories to the drives on which they 

are located.  The file system’s name is contained in the Filesystem field, and the location 

of the directory hierarchy is contained in the Mounted on field.  Some sample output 

from the df() command is given here (the “Mounted on” column is boldfaced for clarity): 

moss-pinata:~ sylviamoss$ df -ah 
Filesystem                           Size   Used  Avail Capacity  
Mounted on 
/dev/disk0s2                        186Gi  136Gi   50Gi    74%    
/ 
devfs                               106Ki  106Ki    0Bi   100%    
/dev 
fdesc                               1.0Ki  1.0Ki    0Bi   100%    
/dev 
map -hosts                            0Bi    0Bi    0Bi   100%    
/net 
map auto_home                         0Bi    0Bi    0Bi   100%    
/home 
//GUEST:@simpleshare:139/NetFolder  149Gi   59Gi   89Gi    40%   
/Volumes/NetFolder 
http://idisk.mac.com/markmoss/       10Gi  183Ki   10Gi     1%    
/Volumes/markmoss 

 
The Filesystem and Mounted on commands are defined above.  We do not make use of 

the other statistics at this time, but they could be incorporated in future versions of the 

system.  For example, most of our impact assessments are focused on component 

failures; however, significantly degrading the performance of a component can also cause 

operational impacts.  Consider the case of a disk drive that is almost full; in many cases, 
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the lack of free space on the drive can cause intermittent failures and faults that are 

otherwise very difficult to determine.  We could use the Capacity field to detect drives 

that are overloaded (e.g. 98+% full), and then assess the operational impact on the users, 

files and programs that access those corresponding file systems.  The data for all of the 

given output fields is needed for the Discovery phase.  We used grep() and other 

commands to format the output into the following schema: 

df-data := (file-system, mount-point) 
 
 

where “file-system” represents the name of the file system, and ; “mount-point” 

represents the directory location.  When linking files to their directories, we attempt to 

match the file with the most specific mount point that is available.  The file names that 

are gathered from the lsof() command are normally the fully-qualified file names, which 

include the complete directory path from the root directory.  Suppose that we are using 

the df() data from our example above, and we have just received the file 

/Volumes/fizz/myfile.txt.  Our first attempt would be to match some valid prefix of 

/Volumes/fizz/myfile.txt against one of the known mount points.  /Volumes/fizz cannot 

be unified with either /Volumes/Netfolder or /Volumes/markmoss.  If the simple 

/Volumes mount point existed, we would use its’ corresponding file system.  However, 

since it doesn’t, we continue our matching attempts until we reach the root directory (/) 

mount point, which matches all directories by default.  Consequently, we would link the 

file Volumes/fizz/myfile.txt to the root directory / file system, which is linked in turn to 

the device /dev/disk0s2.  The data from the df() command is stored in this format in a file, 

and loaded into a database during the Discovery phase. 
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 The lsof( ) command, by default, displays a list of all open files 

corresponding to every process currently running on that computer.  Linux and Unix use 

file structures for many activities, and an open file can represent a regular file, a library, a 

directory, a stream, or a network socket; consequently, the output from a default lsof() 

command is normally very large.  We used command line-options to better divide the 

resulting output into two sets of data: file-oriented and network-oriented data.  Also, 

since certain options of lsof() can be resource intensive, We selected the options carefully 

to minimize the impact on the user’s operations.  One specific example is that we used 

the “-n” and “-P” options to prevent translation of network addresses and ports, 

respectively, into names.  This translation requires the system to perform Domain Name 

Service (DNS) lookups, along with other unnecessary and time-consuming operations.  

Also, the network names are often truncated during output formatting, which makes 

record matching during the later phases more problematic. A sample of the output from 

the file-oriented version of the lsof() command is given here (the “NAME” column is 

boldfaced for clarity): 

poseidon% lsof -nP 
COMMAND     PID     USER   FD   TYPE  DEVICE     SIZE    NODE 
NAME 
init          1     root  mem    REG     8,1    27036    1815225 
/sbin/init 
dhclient    958     root  txt    REG     8,1   344544    1815307 
/sbin/dhclient 
syslogd    1002     root  txt    REG     8,1    33861    1816385 
/sbin/syslogd 
klogd      1006     root  txt    REG     8,1    27080    1816384 
/sbin/klogd 
portmap    1018      rpc  txt    REG     8,1    12476    1815448 
/sbin/portmap 
rpc.statd  1037  rpcuser  txt    REG     8,1    30808    1815449 
/sbin/rpc.statd 
ypbind     1112     root  txt    REG     8,1    30816    1815471 
/sbin/ypbind 
sshd      27793     root  mem    CHR     1,5               40233 
/dev/zero 
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csh       27796      sam  rtd    DIR     8,1     4096          2 
/ 
lsof      27830      sam   2u    CHR   136,1                   3 
/dev/pts/1 

 
The COMMAND, PID and USER fields are as defined for the ps() command above.  The 

FD and TYPE fields are the File Descriptor and Node Type, respectively.  These 

attributes are used to identify the different kinds of files: for example, an FD value of 

“txt” represents a text file containing program code or data, which is normally has a 

TYPE value of “REG”, which stands for a regular file.  Since the focus is on user-level 

programs and data, we can filter out the appropriate records by piping the output through 

the appropriate grep() commands.  The DEVICE field can be used identify where the file 

is stored, is listed in a <major number>, <minor-number> format.  The NAME field 

represents the actual name of the file.  For the Discovery phase, the only data required is 

contained in the COMMAND, PID, USER, DEVICE and NAME fields – the SIZE and 

NODE fields are not required.  We used grep() and other commands to eliminate 

unneeded data, and to format the output into the following schema: 

lsof-file-data := (program, process-id, user-name, device-name, file-name) 
 
 

where “program”, “process-id” and “user-name” are defined as above; “device-name” 

represents the identity of the storage device for the file; and “file-name” represents the 

name of the file.  The data from the file-oriented version of the lsof() command is stored 

in this format in a file, and loaded into a database during the Discovery phase.  The “–i” 

command-line option can be used to generate the network-oriented version of lsof() by 

limiting the output to IPv4 and IPv6 records.  A subset of the output from the network-
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oriented version of the lsof() command is given here (the “NAME” column is boldfaced 

for clarity): 

poseidon% lsof -nP -i 
COMMAND     PID     USER   FD   TYPE DEVICE SIZE NODE 
NAME 
dhclient    958     root    5u  IPv4   1124       UDP 
*:68  
rpc.statd  1037  rpcuser    7u  IPv4   1311       TCP 
*:32768 (LISTEN) 
ypbind     1112     root    5u  IPv4   1442       TCP 
*:869 (LISTEN) 
cupsd      6513     root    2u  IPv4  16610       UDP 
*:631  
sshd      20843     sam    4u  IPv4  75085       TCP 
130.207.5.228:22->24.30.25.54:50267 (ESTABLISHED) 

 
The NODE and NAME fields contain different information when referring to network 

records.  The NODE field normally contains the unique i–node address when dealing 

with file-based information; here, it contains the transport-level communications 

protocol.  Here, the NAME field contains the network information instead of the file 

name.  The network information is displayed in the 

 format for open sockets.  The information for established connections 

is displayed in the format: 

 
 
 

In this case, we use awk() and other commands to extract the address and port data, and 

to format the output into the following schema: 

lsof-network-data := (program, process-id, user-name, local-address, local-port, 
foreign-address, foreign-port) 
 
 
where the foreign-address and foreign-port fields have values for records with established 

connections, and are null otherwise.  Similar information is extracted from the netstat( ) 

command, using the “–a” and “–n” options.  The “–a” option requests all open sockets 
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and connection, and the “–n” option prevents address-to-name translation, similar to the 

“–n” and “–P” options for the lsof() command.  A sample of the output from the netstat() 

command is given here (the “State” column is boldfaced for clarity): 

Active Internet connections (servers and established) 
Proto Recv-Q Send-Q Local Address           Foreign Address         
State       
tcp        0      0 0.0.0.0:512             0.0.0.0:*               
LISTEN       
tcp        0      0 130.207.5.228:697       130.207.117.14:111      
TIME_WAIT    
tcp        0     48 130.207.5.228:22        24.30.25.54:55001       
ESTABLISHED  
udp        0      0 0.0.0.0:514             0.0.0.0:* 

 

where the “Local Address” and “Foreign Address” fields are defined and formatted as in 

the lsof() command.  We use awk() and other commands to format the data into the 

following schema: 

netstat-data := (local-address, local-port, foreign-address, foreign-port) 
 
 

The data from the lsof() and netstat() commands are stored in these formats in distinct 

files, and loaded into a database during the Discovery phase. 

The traceroute( ) command is used display the route that packets take to reach a 

designated network host.  Because it uses multiple ping() requests, executing traceroute() 

commands can create a significant load on the network if used without caution.  We use 

the “–n” and “–q” command line options to minimize the load on the network.  The “–n” 

option avoids the address-to-name lookup for each hop along the path, as in the lsof() and 

netstat() commands.  Also, traceroute() normally send three ping() requests to each 

gateway along the path, in order to measure the average round-trip time to that gateway.  
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Since we are not interested in time measurements, we use the “–q” option to issue only 

one ping() request per gateway, in order to learn the gateway’s network address.  

Also, the traceroute() command requires an extra, dynamic argument that was not 

required in the previous commands: a target network address (or name) must be 

designated.  The target network addresses used will be drawn from the foreign addresses 

collected from the lsof() and netstat() commands.  A portion of output from the 

traceroute() command is given here: 

poseidon% traceroute -n -q 1 24.30.25.54 
traceroute to 24.30.25.54 (24.30.25.54), 30 hops max, 38 
byte packets 
 1  130.207.5.1  0.388 ms 
 2  130.207.251.1  0.396 ms 
... 
11  * 
12  * 
... 

 
The gateway addresses are listed in increasing number of hops away from the source 

address from which the traceroute() is being conducted.  Certain gateways will not return 

their address, and so the traceroute() result will return a “*” for that gateway.  We use 

grep() and other commands to remove these records from the resulting output, to re-

sequence the records after removing those records where the gateway didn’t return an 

address, and to format the output into the following schema: 

traceroute-data := (target-address, sequence-number, gateway-address) 
 
 

where “target-address” is the network address of the host the traceroute() was trying to 

reach; the “sequence-number” corresponds the order of “gateway-address”, from the 

source address to the target address.  The data from the traceroute() command is stored in 

this format in a file, and loaded into a database during the Discovery phase. 
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There are other systems and approaches that can be used to generate more 

comprehensive coverage of the system dependencies; for example, Unix, Linux, Mac OS, 

Windows, and a number of other operating systems offer different built-in logging 

facilities.  While we continually look for a way to leverage these built-in facilities, we 

also have to ensure that they will provide enough information to allow us to link 

resources during the Discovery Phase.  My experience is that some of these systems 

record when specific components are used, as opposed to recording when the 

dependencies between components are active.  Time stamping the components, as 

opposed to the dependencies, can cause ambiguity problems when assessing impacts. As 

an example, consider the problem shown in Figure 6.   

 
Figure 6 - Ambiguity Problem (Insufficient Log Information) 

 
The hard drive component has just failed, preventing program Y from being able to 

access the file on the hard drive.  User B, who only uses program Y, will be operationally 

impacted if he/she is using program Y during the failure duration.  Consider user A, 

where he/she might be using program X or Y.  Program X is operating normally, and 

users access program X will not be operationally impacted.  Suppose that our logs only 

indicate events at the component level: for example, programs X and Y are active, and 
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user A is online.  If the data is time stamped at the component level, as opposed to the 

dependency level, then we will not be able to determine whether user A is being impacted 

by the failed component.  A key aspect of the data collected during the Collection Phase 

is that it contains enough information to determine which programs are being executed by 

which users, which files are being accessed by which programs, etc.  If we could leverage 

more built-in logging systems, and ensure that the data received would be sufficient to 

generate the required dependencies, then we could improve the overall coverage of the 

systems dependency topology, consequently improve the quality of the assessments. 

4.3 Discovery Phase 

4.3.1 Dependency Model – Resources and Zones 

The Discovery Phase uses the collected data during the Collection phase to establish the 

dependency relationships between various components.  The topology is modeled as a 

directed graph, where the nodes of the graph represent system resources, and the edges 

represent dependency relationships.  An edge from resource A  resource B means that 

resource A is dependent on resource B in some defined manner.  My proposed model 

identifies seven distinct resources, and eleven dependency relationships between those 

resources.  Figure 7 displays the dependency model, including the resources, 

dependencies, and zones. 

The resources are represented as 3-tuples of the form <zone, type, identifier>, 

where identifier is the distinguishing name within each resource type.  The identifier, 

type combinations are used to avoid machine-wide naming conflicts, since two different 

resources may have the same identifier; for example, a user’s login name may be 

identical to the name of an executable program.  The nine different types of resources are: 
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• USERS – represent actual users, who may access the system at a local terminal, or 

from a remote terminal via some communication program like ssh(); can also 

represent “system accounts”, where the name represents an account created to 

manage one or more system services 

• PROGRAMS – represent the executable code segments that are used to access, 

manage and modify data 

• SITES – represent remote locations, such as web sites, that contain data and/or 

provide computing services 

• FILES – represent collections of data in various formats 

• DEVICES – represent the system elements that store files and other data; they can be 

local elements like hard drives, or network accessible like storage appliances 

 
 

 

Figure 7 - Dependency Topology Model 
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• PORTS – represent the transport-layer elements used to coordinate and de-conflict 

communication with various local and remote services and sites 

• ROUTERS – represent the elements used to forward data between different sites; for 

our purposes, the term “router” is used to represent a generic forwarding system: no 

distinction is made between routers, switches, and any other packet forwarding 

systems 

• DIRECTORIES – represent the hierarchies used to organize and help manage access 

to files 

• ORIGINS – represent the computers and systems used to communicate with remote 

sites via routers 

 
Resources can be local to a specific machine, or accessible by two or more machines 

within the system being monitored.  Zones are used to capture this distinction, and can be 

either local or global.  If a resource is accessible on the local computer only, then the 

machine-name, or some other uniquely identifying tag, is used for the zone value.  If a 

resource is network accessible by two or more systems, then the static tag “global” is 

used for the zone value. 

Zones support more comprehensive searching of the dependency topology while 

avoiding name conflicts.  As an example, program X might be executing on two different 

computers – computer A and computer B.  Assume that program X requires a library file 

F, which is stored on the local hard drive; and, a configuration file N, which is stored on a 

network accessible drive, which is used by all instantiations of X on the system.  Since 

file F is stored locally, corruption of file F on computer A should only affect the 

execution of program X on computer A – program X’s execution on computer B should 
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be unaffected.  Likewise, if configuration file N is corrupted, it will potentially affect 

program X’s execution on both computers A and B, along with any other programs that 

require N via remote access.  A system topology view consists of the combined 

dependencies from one specific collection period.  We use Graphviz to render the system 

topology and impact topology graphs [38]. 

In most traditional computer architectures, programs are loaded into memory on 

the designated computer, and then executed.  Based on this, programs are always 

considered to be in the local zone.  In most cases program files, along with some 

supporting library, configuration and data files, are stored on a local hard drive.  In this 

situation the files, and the devices on which they are stored, are located in the local zone.  

However, files could also be stored on a network attached storage appliance, remote web 

site, or similar remotely accessible device.  In these cases, the devices, and consequently 

the files stored on these devices, are located in the global zone.  Similarly, remote sites, 

and the routers used to support communications between the local computer and these 

sites, are considered to be in the global zone.  The ports used for communication are 

located in the local zone.  This is consistent with current capabilities such as host-based 

firewalls, which means that port settings can be unique to, and reconfigured at, the local 

computer level.  Finally, users are always considered to be in the global zone, since most 

modern systems support user login at many different computers. 

 

4.3.2 Discovering Dependencies from the Event Data 

In the following sections, we will describe how the data gathered during the Collection 

phase is used to identify and generate the dependency topology.  Each data file, or 

combination of data files, is used to generate dependencies that are captured in the 
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snapshot set.  Only data files that were collected at the same time (having the same 

timestamp) are used to generate a specific snapshot, to ensure the consistency of 

information like process IDs. 

The w-data file contains data in the (user-name, foreign-address, program) format.  

Each record represents a specific user executing a program on the given computer.  In 

many cases, the program is a shell to support user interaction, or remote access.  If 

remote access is being used, then the foreign address will list the domain name or IP 

address of the remote terminal.  This information can be used to generate the following 

dependencies: 

• the user is executing the program to accomplish a goal, such that user-name  

program 

• if remote access is being used, then the user needs the remote site at foreign-address 

in order to access this system, such that user-name  foreign-address; also, 

• the gaining access from the remote site depends on the successful execution of the 

remote access program, such that foreign-address  program 

 
The ps-data file contains data in the (user-name, process-id, parent-id, program) format.  

Each record represents a specific user executing a program on a given computer.  In some 

cases, the user-name does not correspond to a real user, but to a system account used to 

manage one or more services.  The Analysis phase takes steps to identify and focus on 

the real users.  Also, the programs execute in the context of a process space, which can be 

uniquely identified by the process-id.  And since new processes are created by executing 

the fork() command on an existing process, the parent-id is the unique identifier of the 
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process used to create this “child” process. This information can be used to generate the 

following new dependencies in addition to the dependencies mentioned above: 

• the program executing in the parent process has spawned a new process and program 

in order to accomplish one or more useful tasks, so that the parent program is 

dependent on the child program to accomplish its’ goals; consequently, parent-

program child-program 

Since the name of the parent program is not given in the record, this information must be 

referenced from the appropriate record in the ps-data file. 

The lsof-file-data file contains data in the (program, process-id, user-name, 

device-name, file-name) format.  Each record represents a specific user employing a 

program (running in the process-id space) to access a file located on a specific device.  

As mentioned in the zoning discussion, the files and devices could be local to the 

computer where the data was collected, or network-based.  Users must normally use one 

or more programs to access and modify the data in a file, and the programs used are often 

determined by the format and location of the file.  If the program used to access a 

particular type of file is non-functional, then it will impact the user’s ability to manage 

that data. This information can be used to generate the following new dependencies in 

addition to the dependencies mentioned above: 

• the user is also accessing the file to accomplish a goal, such that user-name  file-

name 

• the file can’t be read directly by the user, but must be accessed using one or more 

programs, such that file-name  program 
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• if the device that stores the given file encounters faults, then the user’s ability to 

access that file will potentially be affected; consequently, file-name  device-name 

 
The lsof-network-data file contains data in the (program, process-id, user-name, local-

address, local-port, foreign-address, foreign-port) format.  Each record represents a 

specific user employing a program to communicate via a local address and port.  In some 

cases, the communication represents a program or service listening for activity; in other 

cases, communications have been actively established with a foreign address and port.  

Similar to the reasoning given in the lsof-file-data section, users must normally use one 

or more programs to access and modify the data located at a remote site. This information 

can be used to generate the following new dependencies in addition to the dependencies 

mentioned above: 

• the program needs the local-port to be open and accessible to traffic for successful 

operation, such that program  local-port 

Also, if the foreign address and port are valid (i.e. a connection is established), then the 

following dependencies can be generated as well: 

• the user is also accessing the remote site to accomplish a goal, such that user-name  

foreign-address 

• the remote site can’t be accessed directly by the user, but must be accessed using one 

or more programs, such that foreign-address  program 

• the program and foreign sites require the local and foreign ports to be open to ensure 

successful communications; consequently, program  foreign-port, foreign-address 

 local-port and foreign-address  foreign-port 
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It makes sense to consider the netstat-data file in conjunction with the lsof-network-data 

file.  Since the netstat-data file contains data in the (local-address, local-port, foreign-

address, foreign-port) format, the lack of user-name and program data prevents us from 

generating certain dependencies directly.  We can use the common local address and 

local port information from the lsof-network-data and netstat-data files in combination to 

generate more dependencies of the forms listed above. 

The traceroute-data file contains data in the (target-address, sequence-number, 

gateway-address) format.  Each record represents a generic routing/forwarding system 

located at gateway-address, located sequence-number of hops away from the local 

computer, used to communicate with the remote site located at target-address.  

Communication with the remote site normally depends on these routers being functional, 

and this information can be used to generate the following dependencies: 

• communication from the local machine must make at least the first hop towards the 

remote site successfully; consequently, target-address  gateway-address when 

sequence-number =1 

• in other cases, the router at sequence-number = k must forward it’s data to the router 

at sequence-number = (k+1) such that routerk  routerk+1 

The main goal for the Discovery phase is to generate likely dependencies that can be 

derived from the collected data.  We understand that dependencies generated might not 

capture all system dependencies; and, as such, we will need to be careful when assessing 

the impact on the user based on the failure of one or more resources in this model.  As an 

example, consider communications with a remote site, and packets being forwarded 

along a path of routers.  If one router fails in a well-designed network, chances are that 
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packets will automatically be rerouted along a different path, thus minimizing the impact 

to the users.  The current dependency model will signal an alert that the users might be 

impacted, but different techniques can be used to confirm the actual impact, and to 

reconcile this data with the current model to improve it for future predictions.  One 

method involves updating the dependency model when a fault is reported.  In the router 

example cited above, a new traceroute() command to the target address would probably 

uncover the rerouted path, and this data could then be integrated into an updated 

dependency model.  The dependency model provides a reasonable, first-order assessment 

of which users might be affected by a given fault; the degrees to which users will be 

affected, and methods that can be used to improve these assessments, are discussed later. 

4.4 Analysis Phase 

The Analysis Phase employs various techniques to optimize the dependency model 

search, and more quickly identify and focus on those system components that affect one 

or more users.  The dependency model generated from the Discovery phase can be very 

large, and can include hundreds of resources and thousands of dependencies; 

furthermore, many of the resources and dependency relationships included might not 

have any impact on user access to programs, files and remote sites. 

4.4.1 Determine Relationships with an Effect on Real Users 

As an example, consider that the user names in the ps-data and lsof-file/network-data 

files normally include system accounts that do not represent real users.  Similarly, the 

dependencies generated based on these system accounts might represent the dependencies 

for standard system services, which might not be accessed by any of the real system 

users. 
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Consequently, to optimize the dependency model search when assessing impact, 

we will extract only those dependencies that affect one or more real users.  To determine 

real users, we use the contents of the w-data files.  Because each w-data file only 

represents the users logged in at one moment in time, we use the accumulation of all w-

data files we have gathered to generate a list of all real users.  Then, we execute top-down 

search in the current dependency model for each real user to determine all of the 

dependency relationships (and corresponding resources) that would affect that user, and 

extract those relationships into an impact dependency model.  This assures us that each 

dependency in the minimized impact model affects at least one real user. 

4.4.2 Determine Relationships Most Likely to Yield Mining Results 

The Analysis Phase also employs techniques to determine the dependency relationships 

most likely to yield significant results for data mining.  The Mining phase uses fairly 

common algorithms to detect frequent patterns and associations in the dependency model.  

Generally, detecting patterns with a strong degree of confidence for a requires some 

minimal level of data support – if there are too few examples of a specific resource being 

used, then it will be difficult to detect any significant usage patterns for that resource.  

Though some mining algorithms provide configuration parameters (i.e. minimum support 

threshold) to address these issues, we take steps in the Analysis phase to remove data that 

unlikely to yield significant usage patterns. 

More specifically, the Analysis phase first measures whether each dependency is 

active during each snapshot.  For efficiency, it tests only those dependencies that impact 

one or more real system users.  These results are captured in an activity matrix, which 

produces a summary of which dependencies are active at any moment in time.  Then, for 
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any specific dependency, we can calculate an average amount of usage as the arithmetic 

mean of the number of active snapshots divided by the total number of snapshots.  If this 

value is too low, then it is unlikely that there will be enough activity to detect any usage 

pattern with a significantly strong degree of confidence.  Likewise, if the resource is 

continually being used, then it is also unlikely that significant “non-usage” patterns will 

be detected.  Correspondingly, we establish a low-threshold and high-threshold to filter 

out these kinds of resources.  Resources with an average usage level below the low-

threshold are referred to as “sparse” resources, while resources with an average usage 

level above the high-threshold are referred to as “continual” resources.  The remaining 

resources are the “frequent” resources, and their average usage levels are more likely to 

generate significant usage patterns. 

4.4.3 Identify User-Level Programs and Resources 

The Analysis phase identifies “top-level” programs, in order to focus on those programs 

that will be more relevant for the user.  Programs invoking subprograms is captured 

during the Discovery phase.  When programs invoke other subprograms, the user-name 

for the subprogram is that of the program owner.  Consequently, when reviewing the 

output of the ps() command, the user name will be associated with the top-level program 

and all of the subprogram invoked to support its execution.  Normally, however, the user 

is only aware of, and concerned with, the top-level programs.  Understanding how the 

subprograms impact the top-level programs is important for accurately assessing the 

overall impact; however, the subprograms should be prioritized at a low-level when 

reporting impacts to the end users.  Also, we do remove the subprograms during certain 

portions of the Mining phase, since the high-level of correlation between a top-level 
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program and its’ subprograms can also cause difficulties for some pattern detection 

algorithms. 

4.4.4 Identify Common Resources 

The last section of the Analysis phase involves identifying “common resources.”  

Common resources are those resources that are shared by a significant percentage of the 

real users, and/or by one or more programs.  As an example, certain programs are used by 

every real user who logs on to a system; therefore, the impact of this program is 

independent of any specific user, and its failure will (in principle) affect any user logged 

on at the time of the fault.  Similarly, a certain library file might be used every time a 

certain program is executed; therefore, this file is also independent of the user executing 

the program.  This “user-independence” value is calculated as percentage of the 

occurrences that a real user executes a certain program, or a program being executed 

accesses a certain file or remote site.  These resources are common to all users, or to all 

users executing a specific program.  Many of these resources provide support for other 

directly user-accessible, top-level resources.  Similarly to the subprograms mentioned 

above, these programs are important, but should be prioritized at a low-level when 

reporting impacts to the end users. 

4.5 Mining Phase 

The Mining Phase uses the results of the Analysis phase to detect significant patterns in 

the resource usage data.  Specifically, we assemble and preprocess the mining data for 

two general scenarios: scheduled patterns, where a resource is used at certain specific 

times; and demand patterns, where a resource is used within a certain time frame based 

on the current usage states of other resources.  The usage for each resource has been 
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captured in the Analysis phase, and the timestamps  have been used to capture the 

specific date and time information for each snapshot. 

For each distinct resource in the selected set of dependencies, we calculate the 

tuples for scheduled and demand pattern detection.  The scheduled pattern detection 

implemented below corresponds to search for partial periodic patterns in time-series data.  

The demand pattern detection that is implemented below similarly corresponds to 

detecting cyclic or periodic association rules, and can also be seen as an extension of 

autocorrelation analysis.  Autocorrelation analysis is normally used in trend analysis to 

detect seasonal patterns by looking for correlations between each pair of  and 

 elements in the series [39].  The mining dataset formats are given here: 

 

 

 

 

 

 

 

The tuples for scheduled pattern detection take the form: 

 

 

The timestamp  contains the day, month, date and hour attributes for the  snapshot.  

The label is the  value.  The  value is 1 if 
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resource was used (i.e. exists in at least one relationship of the form   S or Q  

) during snapshot , and is 0 otherwise. 

The tuples for demand pattern detection take the form: 

  

 
The attributes are states of the other resources (excluding ) during the  

snapshot.  The label is the usage for resource  for the periods from the  snapshot 

through the  snapshot, inclusive.  This can be achieved simply by taking a 

logical-OR of the  values for resource for each snapshot in this 

time period. 

Once the tuples are generated, we applied fairly common data mining algorithms 

to generate rules for each resource.  The current implementation uses the C4.5 decision 

tree algorithm for both the scheduled and demand pattern detection processes.  We also 

use an iterative rule generation technique we have loosely named “uprooting” to generate 

multiple rule sets.  When the initial tuples are fed into the C4.5 algorithm, it generates a 

decision tree, which determines the value of the class label based on the attributed 

selected for the tree with a certain confidence level.  Rules are then extracted from the 

tree, along with the corresponding confidence level, and recorded in the appropriate rule 

set.  Uprooting involves removing the attribute that was used as the root node of the 

decision tree, and re-evaluating the tuples with the now reduced attribute set.  The result 

is a new decision tree with a new (and normally slightly reduced) confidence level.  Rules 

are extracted from this new tree, and this process continues until the confidence level 

falls below a certain threshold, or we run out of attributes.  Uprooting is useful in the 
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event we do not have the values for a certain attribute at assessment time, and are thus 

unable to use that attribute for predictive purposes. 

We also use the activity frequency and correlation values to reduce the number of 

dependencies to be considered during the Mining Phase.  Dependencies with a very low 

activity frequency will be unlikely to cause an operational impact, and will also be likely 

to yield trivial patterns during the mining process.  Dependencies with a very high 

activity frequency will, on the other hand, almost certainly cause an impact; however, 

they will also be likely to yield trivial patterns.  Consequently, dependencies with 

frequencies lower or higher than our established thresholds (e.g. 10% and 90%) are 

removed from mining consideration.  We calculate the correlation value for dependency 

pairs that have equivalent activity frequencies, or where the difference of their activity 

frequencies is smaller than an established tolerance (e.g. 2%). If a pair of dependencies is 

strongly correlated (e.g. > 96.9%), then we can remove one of the dependencies from 

mining consideration. 

4.6 Assessment Phase 

First, we use the system topology to calculate each path from a failed resource to a user 

who may be impacted by the given technical event.  We then analyze the dependencies 

along each potentially impacted path.  For each dependency, we use the system usage 

patterns, time of failure, duration, and system status information to determine the 

maximum likelihood that the dependency will be active during the outage period.  For 

each path, we use the minimum likelihood of the dependencies on the path to determine 

the overall likelihood that the user will be operationally impacted by the failed resource.  
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We remove any paths where the likelihood is less than a certain threshold, and return the 

remaining paths as the operational impact assessment.  
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CHAPTER 5 

DISTRIBUTED IMPLEMENTATION TECHNIQUES 

 

 

Figure 8 - Basic Dataflow Architecture 

 
When implementing the prototype, we decided to distribute the processing associated 

with the Analysis Phase between the Discovery and Mining Phases.  Consequently, we 

focused on the four phases shown in Figure 8: Collection, Discovery, Mining and 

Assessment.  Distributing the processing on a very basic level is feasible, as 

demonstrated by Tang, Chang and So in the implementation of their Business-Aligned IT 

Service Environment (BISE) project [40].  The BISE infrastructure uses peer-to-peer 

(P2P) algorithms and overlay network techniques to support scalable and resilient 

communications. 
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5.1 Motivation and Overview 

From a granular computing perspective, we can view the impact assessment problem in a 

hierarchical fashion.  The enterprise system is the top level of the hierarchy, and the end 

systems are the lowest level granules.  We can also envision intermediate levels in this 

hierarchy: for example, we may decide to cluster end systems that share a common local 

area network.  This makes sense from a topological perspective, since network 

component faults will tend to affect the end systems in a cluster in a similar manner.  We 

could also cluster those end systems used to support specific enterprise operations: for 

example, financial management, manufacturing, or inventory control.  This would make 

sense from an operational perspective, since the end systems in these clusters will have a 

higher likelihood of similar usage patterns.  These kinds of intermediate-level clusters are 

typical in large enterprises: for example, world-wide corporations often divide their 

resources into geographically and operationally-oriented divisions.  We focus on the 

simpler, two-level hierarchy in my current investigations, though examining how the 

complexity of the hierarchy affects my results is an interesting possibility for future 

research. 

Our experience is that the administrators have control over the end system 

configurations in many environments.  These devices – desktops, laptops and even 

mobile handhelds – can normally be configured to support this kind of monitoring.  Our 

approach assumes that each end-system uses an operating system that provides a 

reasonable set of diagnostic monitoring commands.  We leverage the output from these 

commands to monitor how the end users are employing the various components in the 

enterprise system, and how these components interact.  This is consistent with the 
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approach taken by Mortier, Isaacs and Barham in the Anemone project [36].  They use 

the end systems, as opposed to SNMP-based solutions, to collect network data.  This 

allows them to minimize the loss of network visibility when monitoring in the presence 

of tunneling, encryption, dynamic port negotiation, and other modern networking 

techniques.  We also use end systems to ensure good visibility of both local and system-

wide user interactions. 

Since the monitoring data is located on the end-systems, moving the impact 

assessment processing to the end-systems as well has the potential to minimize the 

amount of data transmitted across the network.  This supports our design goal of 

supporting intermittent and low-bandwidth connectivity networks.  There is a tradeoff, 

however: by processing the monitoring data in distributed groups, we may not detect 

patterns that would be discovered if we processed the data in a single, unified group.  

This is especially true as we mine the data to detect system usage patterns.  This 

difference in detected patterns might affect the accuracy of the impact assessments.  This 

tradeoff is similar to the principle of exploiting the tolerance for imprecision to achieve 

tractable and low cost solutions as proposed in [41].  We believe that it is possible to 

distribute, either partially or fully, the impact assessment processes without significantly 

reducing the accuracy and overall quality of the assessment results. 
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Figure 9 - Centralized Assessment Processing 

 

5.2 Explanation of the Different Distribution Approaches 

Given that the monitoring data is collected from the end systems, it is natural to consider 

the possibility of minimizing the transmission of the data to a centralized location.  We 

consider the implementation of my impact assessment system using three distinct 

approaches: centralized, partially distributed, and fully distributed.  In all approaches, the 

Collection phase is conducted at the end-systems.  In the centralized approach shown in 

Figure 9, all of the collected data is sent to the impact assessment server.  We then 

perform the Discovery, Mining and Assessment phases entirely at the server. 

 

Figure 10 - Fully Distributed Assessment Processing 

 
By contrast, in the fully distributed approach shown in Figure 10, the Discovery and 

Mining phases are conducted exclusively at each end system – no dependency data is 
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forwarded to the server.  Queries issued during the Assessment phase are forwarded to, 

and processed by, each end-system.  The results from all end-systems are returned to the 

server, where they are assembled to form the overall assessment result. 

The partially distributed approach shown in Figure 11 is the most complicated of 

the three approaches, and attempts to leverage the strengths of centrally and fully 

distributed processing.  In the partially distributed approach, the Discovery phase is 

conducted at each end system.  The dependencies are divided into two groups, based on 

the resource zones: local and global. Local dependency information is maintained at each 

end-system, while all global dependency information is sent to the impact assessment 

server.  The Mining phase occurs on the end-systems and the server.   

 

Figure 11 - Partially Distributed Assessment Processing 

 
 
Finally, queries during the Assessment phase are started at the server.  If local 

components are encountered during the assessment process, then that component 

information is sent to the corresponding end-systems, and the assessment process is 
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executed on those end-systems as well.  The results from each end-system are returned to 

the server, and combined to form the overall assessment result. 
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CHAPTER 6 

SYSTEM ARCHITECTURE & IMPLEMENTATION 

 

6.1 Architecture and Technical Overview 

The main effort of our most recent research has been to develop a more complete and 

comprehensive prototype of our system.  In our initial research, we automated the 

processes within each of the four phases – Collection, Discover, Mining and Assessment 

– but data transfer between the different phases was conducted mainly by manual means.  

In developing and implementing the Impact Assessment System Architecture as shown in 

Figure 12, we first established a more common set of tools and languages for our system.  

The architecture shown is not complete – for clarity, it does not show all of the programs 

being used.  The system uses a total 41 Perl programs of varying size, and the 

architecture displays the main programs used by the administrators to collect data, and to 

execute the assessment processing.  Similarly, the database actually uses over 30 different 

tables to store data and support temporary processing.  We also use SQL scripts to allow 

the Perl programs to interact with the database.  There are 32 persistent scripts defined; 

and, three of the Perl programs also generate SQL scripts dynamically to be used for that 

specific invocation of the program.  

Since we were working actively with the Georgia Tech Research Network 

Operations Center (GT-RNOC), we decided to use the Perl as a common language [42].  

They were already using Perl for a number of projects, and the language also provided a 

number of features – for example, regular expression processing, and the straightforward  
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Figure 12 - Operational Impact Assessment System Technical Architecture 



74 
 

ability to invoke operating system commands – that were ideal for the types of data 

processing that we were performing. 

As part of our efforts to make the system portable, and to conserve system 

resources as much as possible, we decided to use the Apache Derby database [43].  The 

Derby database is based on the IBM Cloudscape database, and offers a basic level of 

SQL compliance.  More importantly, it has been designed as a small-footprint database 

written entirely in Java, and can run on the Java Virtual Machine, which increases the 

number of platforms on which it can be executed without extensive administration and 

pre-installation overhead.  This supports our efforts to implement and test our system in a 

distributed mode.  We also leverage the open-source WEKA toolkit to support our data 

mining requirements, such as generating schedule- and demand-based decision trees for 

assessing impact, and finding clusters for dependencies with similar activity 

characteristics [44].  Finally, we use the Graphviz application to render the impact and 

mitigated topology diagrams [38]. 

When we are ready to assess the operational impact for a specific event, we 

collect the technical event information: the failed resources, the duration of the failure, 

and the time range over which we wish to assess the impact.  The basic process is first to 

assess the topology, in order to determine which user-based dependencies might be 

affected by the failed resources.  Then we use the timing information for those 

dependencies, along with the failure duration information, to generate a model to predict 

the likelihood of activity for each dependency at any given time.  Finally, we evaluate the 

each of the potentially impacted dependencies over the designated range of time to 

generate a representation of the impact likelihood timeline.  In the next few chapters, we 
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will take a look at some of the key processes that we use in the latest version of our 

architecture. 

6.1.1  Continuous Data Collection  

The system is designed to process the data in a pipeline-like format.  Data is collected 

from end systems, CPR nodes, and other sources on a regular basis.  Traceroute data is 

collected using the snapshot_routes( ), upload_routes( ) and scan_routes( ) procedures; 

other raw operating system data is collected using the snapshot( ), upload( ) and scan( ) 

procedures.  The separate procedures are designed to collect traceroute data at a different 

rate, since invoking the traceroute command has an impact on the network as well as the 

local machine.  The snapshot_routes() procedure tracks how recently the traceroute was 

executed on that machine to each specific site, and then stores that information in the 

sites_touched table.  The snapshot_routes() procedure then uses a round robin technique 

to rotate through the identified sites in order of access frequency, and to ensure that there 

is as much coverage of the entire network as possible.  The basic snapshot algorithm is 

given here: 

 
Algorithm: Capture Local Operating System Data 
timeStamp := current date and time based on the system clock; 
execute “who” command (“w –h”) & store results in the whoDump file; 
execute “process” command (“ps -eo uid,user,pid,ppid,comm”) & store results in the 
processDump file; 
execute “disk free” command (“df -ah”) & store results in the deviceDump file; 
execute “lsof” command (“lsof”) & store results in the lsofDump file; 
machineName := (local) identifier for the system on which process is being executed; 
for each line in the whoDump file do 
 parse line into components: ; 
 generate output record & store in the dependencyTopology file: 
  〈timeStamp, global | user | userName, machineName | program | programName〉; 
 generate output record & store in the dependencyTopology file: 
  〈timeStamp, global | user | userName, global | origin | machineName〉; 
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 store 〈timeStamp, userName〉 in the realUser file; 
end for 
initialize/empty the processName[] and processParent[] arrays; 
for each line in the processDump file do 
 parse line into components: 
  ; 
 generate output record & store in the dependencyTopology file: 
  〈timeStamp, global | user | userName, machineName | program | programName〉; 
 processParent[processID] := parentProcessID; 
 processName[processID] := programName; 
end for 
for each processParent[processID] that is defined do 
 if (processName[processParent[processID]] is defined) then 
  parent := processName[processParent[processID]]; 
  child := processName[processID]; 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, machineName | program | parent, machineName | program | 
child〉; 
 end if 
end do 
initialize/empty the deviceZone[] array and devicePriority() list; 
for each line in the deviceDump file do 
 parse line into components: ; 
 if (deviceLocation represents an IP(v4) address) then 
  remoteAddress := extract IP address from deviceLocation; 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, global | device | deviceLocation, global | site | remoteAddress〉; 
  deviceZone[mountPoint] := “global”; 
 else 
  deviceZone[mountPoint] := machineName; 
 end if 
 append mountPoint to devicePriority() list;  
 zone := deviceZone[mountPoint]; 
 generate output record & store in the dependencyTopology file: 
  〈timeStamp, zone | directory | mountPoint, zone | device | deviceLocation〉; 
end for 
sort the elements of devicePriority() in order of descending element length; 
for each line in the lsofDump file do 
 parse line into components: ; 
 generate output record & store in the dependencyTopology file: 
  〈timeStamp, global | user | userName, machineName | program | programName〉; 
 if (descriptor represents a text or character file) then 
  scan & locate the first mountPoint (in order) that is contained within fileName; 
  shortName := extract basic file name (remove path information) from fileName; 
  zone := deviceZone[mountPoint]; 
  generate output record & store in the dependencyTopology file: 
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   〈timeStamp, global | user | userName, zone | file | shortName〉; 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, machineName | program | programName, zone | file | 
shortName〉; 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, zone | file | shortName, zone | directory | mountPoint〉; 
 end if 
 if (type represents an IP(v4) address) then 
  parse fileName into components: ; 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, global | user | userName, global | site | remoteSite〉; 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, machineName | program | programName, global | site | 
remoteSite〉; 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, global | site | remoteSite, machineName | port | remotePort〉; 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, machineName | program | programName, machineName | port | 
localPort〉; 
 end if 
end for 
 
The raw data is collected and processed in the format: 

 

 
where  is dependent on , and each resource is fully qualified by the 

triple .  The zone attribute is mainly significant when discussing 

distributed assessment techniques; consequently, we will occasionally represent a 

resource using the “shorthand” 2-tuple  when the zone attribute value 

is not significant.  The data is stored in the database, such that user-based dependencies 

of the form (user | U  resource | R) are stored in the usage_users table; and all other 

dependencies are stored in the usage_others table.  The timing information is used when 

assessing timelines, and identifying redundant (transitive) dependencies; it is not required 

when assessing topological impacts.  Consequently, we extract the dependencies from the 
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resource and timing information in the usage_users and usage_others tables, and store the 

combined information in the topology table. 

6.1.2 Collecting and Representing Traceroute Data 

The traceroute data is taken for those web and remotely accessed sites for which there is 

some measurable user demand.  For snapshot_routes(), the system tracks those sites that 

have been requested by one or more users, and then uses some metric to collect traceroute 

data for some subset of the sites.  The metric currently used is to rank the sites in terms of 

the number of times that they have been accessed over the most recent period, and then to 

collect data for the most frequently accessed sites.  We collect data for a relatively small 

subset of the sites (as opposed to the entire population) to minimize the impact on the 

network.  In contrast, the upload_routes() procedure has to determine which sites should 

selected for tracerouting, and receives bulk data from Netflow logs, which record 

information on every site that has been accessed over a certain time period.  In this case, 

we employ filtering methods like lossy counting to identify the most frequently sites, and 

then transmit that information to the upload_routes() processes that have been 

instantiated on various CPR nodes distributed across the Georgia Tech network. 

The snapshot_routes() and upload_routes() procedures translate traceroute data 

into resources represented in the dependency topology.  The main difference between the 

two procedures is their data sources: the snapshot_routes() procedure executes the 

traceroute command on the local end system, while the upload_routes() procedure 

receives data from router logs, CPR nodes, and other resources distributed across the 

system we are monitoring.  Otherwise, the two procedures perform the same fundamental 

process, as shown here: 
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Algorithm: Capture Traceroute Data 
timeStamp := current date and time based on the system clock; 
execute “traceroute” command (“traceroute -n -q 1 -m 30 ”) 
 & store results in the tracerouteDump file; 
machineName := (local) identifier for the system on which process is being executed; 
previousType := “origin”; 
previousHop := machineName; 
traceState := “regular”; 
for each line in the tracerouteDump file do 
 if (line represents an invalid IP address  and traceState  “regular”) then 
  traceState := “cloud”; 
 else if (line represents a valid IP address) 
  nextHop := extract IP address from line; 
  if (traceState = “cloud”) then 
   cloudHop := concatenate “ ” and nextHop; 
   generate output record & store in the dependencyTopology file: 
    〈timeStamp, global | router | cloudHop, global | previousType | 
previousHop〉; 
   previousType := “router”; 
   previousHop := cloudHop; 
   traceState := “regular”; 
  end if 
  generate output record & store in the dependencyTopology file: 
   〈timeStamp, global | router | nextHop, global | previousType | previousHop〉; 
  previousType := “router”; 
  previousHop := nextHop; 
 end if 
end for 
if (traceState  “cloud”) then 
 cloudHop := concatenate “ ” and remoteSite; 
 generate output record & store in the dependencyTopology file: 
  〈timeStamp, global | router | cloudHop, global | previousType | previousHop〉; 
 previousType := “router”; 
 previousHop := cloudHop; 
end if 
generate output record & store in the dependencyTopology file: 
 〈timeStamp, global | router | remoteSite, global | previousType | previousHop〉; 
 
As an example, consider Figure 13.  The user U has accessed two different sites: 

www.biz.demo, and www.fun.demo.  The user accesses the sites using the computer 

system M.  The traceroute data is displayed sequentially by hop number, beginning with 
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the first hop away from system M, including all of the intermediate hops from M to the 

destination site, and ending when the site is reached. 

 

 

Figure 13 - Sample Traceroute Paths 

 

The data is normally presented as IP addresses representing the devices at each hop, and 

we generally avoid using the name resolution features to minimize the use of computing 

resources.  We have generated and stored the DNS name mappings for certain IP 

addresses, however, to make the dependency topologies more clear and readable.  Also, 

the IP address for the devices at one or more hops might not be returned; for example, by 

a device configured not to respond to ICMP traffic for security reasons.  In these cases, a 

star (‘*’) is normally returned in lieu of an IP address. 

The snapshot_routes() and upload_routes() procedures basically reverse the route 

from M to the destination sites for clarity: our main focus in assessing operational impact 

is understanding which resources are needed by the user, and how those user-required 

resources are affected by the other system resources.  The resources that are “directly 

required” by the user are the data and services provided by the remote sites.  The other 

resources, like the computing system and browser used to access the sites, and the 

intermediate routing devices, are only there to provide the user a means to access the 

remote sites.  The “reversed traceroute” representation allows us to better emphasize and 
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display these relationships.  Also, although not shown in these diagrams, hops that have 

unrevealed IP addresses are treated as “clouds” between the closest recognizable IP 

addresses at the points of entry and exit.  This keeps the resulting topology as compact 

and readable as possible, while maintaining accurate dependency information for impact 

assessment.  Our representation of the network paths shown in Figure 13 is given in the 

following Figure 14. 

 

Figure 14 - Impact Assessment Representation of Traceroute Paths 

 

As an example, suppose that the router 13.1.1.1 has failed.  The potential impact is 

assessed by the assess_impact( ) procedure.  The potential operational impact is that the 

user U will be unable to access the sites www.biz.demo and www.fun.demo, which is 

determined by calculating the transitive closure of those sites that are dependent on the 

failed router.   

Similarly, our recent focus on the networking subset of the dependency topology 

model led us to develop a similar procedure called mitigate_impact().  This procedure 

leverages the results of the assess_impact() procedure to determine if there are alternate 

paths to any of the potentially impacted sites.  It determines this by first extracting the set 

of users from the potentially impacted (user | U  site | S) dependencies.  For each of the 
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users, the procedure then identifies all of the (user | U  origin | M) dependencies, to 

extract the set of alternate starting points for the next calculation.  Intuitively, we need to 

determine the different access points that the impacted users could use to access their 

remote sites.  The final step determines the sites that are accessible via an alternate path 

by calculating the transitive closure of those sites that are dependent on the one of the 

alternate access points/origins M.  During the transitive closure calculations, the process 

eliminates any paths that attempt to traverse the failed router (or any other failed 

resources). 

6.1.3 Filtering & Assessing the Topology 

To assess the topology, we begin by generating the most current topology information 

with update_topology( ) procedure.  This loads the comprehensive and unique topology 

information into the working_topology table.  The identify_users( ) procedure leverages 

the information in the real_users table to identify the subset of the topology that supports 

real users, as opposed to “system-based” users like background processes.  The 

identify_split_paths( ) procedure uses the timing information in the usage_others table to 

determine and remove redundant dependencies for resources that are accessed 

concurrently by users and programs.  Next, we execute the assess_impact( ) procedure, 

which uses the contents of the working_topology table to identify the subset of 

dependencies that are affected by the failed resources, and stores the results in the 

impact_topology table.  Finally, we execute the assess_topology( ) procedure to generate 

a DOT-formatted (Graphviz-viewable) image of the impact_topology.  The 

assess_topology() procedure also leverages DNS_map information to add domain names 

for some IP addresses, to make the resulting image more understandable. 
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The identify_users( )and identify_split_paths( ) procedures are used to reduce the 

size of the working topology, to improve readability and reduce the computing resources 

needed for assessing impact.  The identify_users() procedure leverages the data collected 

by the w() operating system command, and this data is used to distinguished between 

those computer accounts that represent actual human users, versus those accounts used by 

operating system services, daemons, background processes, etc.  Once the real user 

accounts are identified, we calculate the transitive closure of the resources on which the 

real user accounts depend.  Intuitively, this subset of the entire dependency topology 

includes only those resources that could generate an operational impact on at least one 

real user.  Any dependencies that do not belong to this subset are removed from the 

current instantiation of the working topology, but not from the complete set of 

dependencies within the database.  This gives us the flexibility to assess impact on 

different level: for example we could assess the overall impact on the system, including 

OS services, background processes, etc.  Then, we could run the identify_users() process, 

and re-execute the assessment to focus our analysis only on real users. 

The identify_split_paths() procedure is used to distinguish “user-level” resources 

– for example, files, sites and programs – that are used only to support the execution of 

applications and services.  The intent is to associate these user-level resources directly 

with the users, and to associate the other resources directly with the application they are 

used to support.  The difficulty occurs when extracting information from the lsof() 

operating system data – all open files are associated with both the owning user’s ID and 

the process ID.  If this data is entered directly into the discovery topology, it generates 

potentially redundant and unnecessary dependencies.  This redundancy takes the form of 
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(user | U  program | P  resource R, and user| U  resource | R), where resource R is 

directly associated with user U, and also indirectly associated with user U via program P.  

The identify_split_paths() algorithm is given here: 

 
Algorithm: Identify Split Paths 
for each combination of (resourceU, resourceP, resourceS) do 
 times U → S] := the set of times where resourceU  resourceS is active; 
 times U → P] := the set of times where resourceU  resourceP is active; 
 times P → S] := the set of times where resourceP  resourceS is active; 
 if (times U → S]  0 or times U → P]  0 or times P → S]  0) then 
  skip to the next combination of resources; 
 end if 
 times indirect] := times U → P] times P → S]; 
 times concurrent] := times U → S]  times[indirect]; 
 concurrentRatio := | times[concurrent]  |   | times[U → S]  |; 
 if (concurrentRatio > ratioThreshold) then { 
  delete/remove the resourceU  resourceS dependency; 
 else 
  delete/remove the resourceP  resourceS dependency; 
 end if 
end for 
 
As a practical example, consider the case of a user working with a popular word 

processing program.  The user is likely to use the word processor to edit a certain report 

file; our intent is to associate this report file directly with the user only, and remove the 

dependency from program on this report file.  On the other hand, there may also be a 

template file that is opened by the program to support normal functionality; our intent is 

to associate this template file directly with the program only, and remove the direct 

dependency from the user on this template file. 

We determine whether to associate the resource directly with the user or program 

by analyzing the activity frequencies between the three elements.  If there is a reasonably 

strong positive correlation between the activity levels for the resource and the program 

(i.e. correlation > 90%), then we associate the resource directly with the program; 



85 
 

otherwise, we associate the resource with the user.  Executing the assess_impact() 

procedure generates the list of (user | U  resource | R) dependencies that could 

potentially be impacted by the designated technical event.  To better assess the potential 

operational impact, we execute the assess_timeline( ) procedure to determine the 

likelihood that each of the dependencies that have been identified would be active during 

the timeframe of the technical event. 

6.1.4 Assessing the Timeline 

Once the impacted dependencies have been determined, we execute the assess_timeline() 

procedure to determine the likelihood that the user-based dependencies would actually be 

active during the resource failure period.   For each user-based dependency in the 

impact_topology table, we extract the timing information from the usage_users table. The 

assess_timeline() procedure processes and formats the data, and then calls data mining 

routines in the WEKA toolkit to generate one decision trees that will predict the impact 

likelihood for each the of the dependencies.  The WEKA routine used actually generates 

an equivalent ruleset for each decision tree, which allows the assess_timeline() procedure 

to evaluate each tree over each minute of the designated time range.  The information 

represents the impact_timeline, and is then displayed in a text-based format.  We have 

also generated some scatter graph based views of this information to better help 

administrators see the activity trends for a given technical event.  The translation of text 

data to the more visual scatter graph format is currently manual, but could reasonably be 

automated in future versions of the system. 
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6.1.5 Assessing Mitigated Impact with the Network Topology 

While working with the GT-RNOC, we focused more on the network subset of our 

dependency topology model.  We extended the functionality of the overall system to 

provide more options for the users.  One of the extensions was the capability to determine 

if the impact on (user | U  site | S) dependencies would be mitigated by having alternate 

paths to the destination site.  The mitigate_impact( ) procedure uses information from the 

working_topology and impact_topology tables to determine if there are any relevant 

alternate paths, and stores those results in the mitigated_topology table.  The 

mitigate_topology( ) procedure can then be used to generate a DOT-formatted 

representation of the dependency topology with both failed and alternate dependency 

links.  Similarly, much of the Netflow data that we collected was processed using lossy-

counting techniques, which yielded approximate occurrence frequencies for each of the 

impacted dependencies.  We store this information in the usage_frequencies table, and 

the assess_frequencies( ) procedure uses this information to produce an 

impact_distribution.  The assess_frequencies() procedure operates similarly to the 

assess_timeline() procedure; it differs by using the average frequencies to determine 

impact likelihood, whereas assess_timeline() uses simpler discrete activity measurements 

(i.e. either the dependency is active, or it’s inactive) to determine the impact likelihood. 

6.1.6 Support Operations 

Some procedures are used to support the assessment operations.  The initialize_db( ) 

procedure is used to create the Derby database structures, such as the core table, views 

and indexes needed to store data.  The monitor_db( ) procedure will display some 

common statistics about the current state of the assessment database, such as the number 
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of rows, and distribution of values for many of the tables.  As data is collected, it may 

become necessary to delete some of the older data to ensure quick and consistent 

response times.  The purge_db( ) procedure will remove all data from the core tables, and 

is especially useful for experimenting with different datasets.  The harvest_db( ) 

procedure, in contrast, archives older data into an external file, and ensures that the 

number of rows in each of the core tables is lower than a preset limit for that table.  The 

harvest_db() procedure is intended for use in production environments, where the most 

recent data is maintained in the current system, and older data can be reloaded as 

required, or off-loaded into a separate system for more extensive analysis. 

6.2 Key Algorithms 

6.2.1 Lossy-Counting Based Log Scanning 

In the Collection Phase, we are required extract key activity data from operating system 

and networking log files.  Our goal of providing near real-time assessments means that 

we need to be able scan these very large files very quickly.  There are a number of 

algorithms that have been developed to scan large files in this manner, such as the lossy 

counting algorithm for identifying frequent items within a data stream [39].  We began by 

applying a basic lossy-counting algorithm to our log files, which were ordered 

chronologically as a data stream.  We encountered problems when the log files contained 

duplicate records.  Having two or more records with the exact same dependency and time 

values does not add any provide any additional information during the Discovery or 

Mining Phases.  In fact, the presence of duplicate records for a specific element 

artificially inflated the frequency count for that element, and similarly reduced the 

approximate frequency count for other non-repeating elements.  This frequency distortion 
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adversely affected our ability to identify the elements (e.g. users and resources) that 

would most likely be impacted.  To overcome these challenges, we employed a log-

scanning algorithm that is based on the principles used in the basic lossy-counting 

algorithm, but modified to compensate for duplicate records and bursty traffic patterns. 

More specifically, we consider each log record to be an element in the data 

stream, where the records are generally in the format active(dependency d, time t).  In the 

basic lossy-counting algorithm without duplicates, each occurrence of a specific element 

in the stream would be included in the frequency count for that element.  In our case, 

however, we are interested in assessing the impact on each dependency at different times. 

Consequently, our goal is to approximate the frequency count for dependency d, as 

opposed to the pair (dependency d, time t).  Then, we will extract the specific timing (i.e. 

the unique values for time t) or frequency information for d if, and only if, the 

approximate frequency for d meets a certain established threshold.  Our modified lossy-

counting algorithm is shown here: 

 
Algorithm: Lossy-Counting Based Log Scanning 
[for error bound , minimum support ] 
bucketWidth := ; 
itemCount, bucketCount and timeBoundary := 0; 
bucketNumber := 1; 
initialize/empty the frequency[] , deltaError[] , and timeCheck[] arrays; 
for each line in the bulkData file do 
 parse line into components: (timeStamp, sourceAddress, destinationAddress); 
 if (sourceAddress is within a GT IP subnet) then 
  localAddress := sourceAddress; 
  remoteAddress := destinationAddress; 
 else 
  localAddress := destinationAddress; 
  remoteAddress := sourceAddress; 
 end if 
 if (localAddress is a known CPR node or site) then 
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  netConnection := 〈nameCPR(localAddress), remoteAddress〉; 
 else 
  netConnection := nameCPR("unknown"), remoteAddress ; 
 end if 
 if (timeCheck[netConnection] = timeStamp) then 
  skip to the next line in the bulkData file; 
 end if 
 if (frequency[netConnection] is undefined or frequency[netConnection]  0) then 
  frequency[netConnection] = 1; 
 else 
  frequency[netConnection] = frequency[netConnection] + 1; 
 end if 
 deltaError[netConnection] := bucketNumber – 1; 
 timeCheck[netConnection] := timeStamp; 
 if (timeStamp  timeBoundary) then 
  timeBoundary := timeStamp; 
  itemCount := itemCount + 1; 
  bucketCount := bucketCount + 1; 
 end if 
 if (bucketCount  bucketWidth) then 
  for each frequency[value] that is defined do 
   if (frequency[value] + deltaError[value]  bucketNumber) then 
    remove/undefine value; 
   end if 
  end for 
  bucketNumber := bucketNumber + 1; 
  bucketCount := 0; 
 end if 
end for 
threshold := itemCount (minSupport  – errorBound ); 
for each frequency[value] that is defined do 
 if (frequency[value]  threshold) then 
  store value for future reference 
 else 
  remove/undefine value; 
 end if 
end for 
 
In the basic lossy-counting algorithm, we use the attribute variables frequency(d) and 

delta_error(d) to calculate the approximate frequency for dependency d.  To avoid 

counting duplicates, we also employ the additional attribute variable time_check(d) to 

record the most recent time value for which d was active.  We process the log file records 
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in increasing chronological order.  Occasionally, we have noticed the anomaly that the 

time values within a single log file might appear out of order for a very small (normally 

less that 1%) number of records compared to the total size of the file, but this disordering 

has not caused any significantly adverse effect on our results. 

When processing a new record active(dependency d, time t), we compare the 

value t with time_check(d) to ensure that the new record is not a duplicate.  If t > 

time_check(d), then we update frequency(d), delta_error(d) and time_check(d) in 

accordance with the lossy-counting algorithm.  Otherwise, the record is a duplicate: 

consequently, we discard that record, and continue by scanning the next record in the log 

file.  Also, since we are discarding records, we must also reconsider how we determine 

the bucket boundaries.  In the basic lossy-counting algorithm, the bucket width, w, is 

determined by the desired error bound, .  Since each element in the data stream is 

included in the frequency count, then a bucket boundary is reached every  

elements. 

In one sense, this situation corresponds to the arrival of one element per time 

period.  In the case of bursty traffic, however, multiple dependency values d can occur 

during the same time t.  Even if an estimate average frequency of dependencies per time 

period (s) is determined, the number of dependency values per time period could still 

vary widely (i.e. the variance of s could still be very large).  We believe that a 

significantly large variance for s can lead us to underestimate the approximate frequency 

for some dependencies if we simply use the basic lossy-counting algorithm.  To 

compensate for this effect, we process the set of dependencies that occur during a specific 

time period as if they were as single element; consequently, we count distinct time 
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periods as elements as instead of individual records, and we reach a bucket boundary 

every w time periods as in the normal algorithm.  Unlike the normal algorithm, however, 

we maintain frequency information for each distinct dependency, as opposed to 

maintaining frequency information for the set as a whole.  The frequency adjustments at 

each bucket boundary are then performed as in the basic lossy-counting algorithm: each 

dependency d is evaluated, and removed from the list if: 

  
 
where b is the current bucket number.  From the perspective of each individual 

dependency, the approximate frequency for that dependency more accurately represents 

the frequency that the dependency occurs over time, less impacted by duplicate records 

and bursty traffic. 

6.2.2 Producer-Consumer Approach for Impact Windows  

In the Mining Phase, we are required to calculate the likelihood of a dependency being 

impacted at a given time.  Our general approach is to use the collected usage data to 

construct a decision tree, where the tree uses splitting nodes based on the time 

components (e.g. date, hour, minutes, day of the week) and related dependency attributes 

at the time of the technical impact, and the leaf nodes designate the likelihood of an 

operational impact at that time.  Our original model was designed to collect data at the 

end systems (e.g. workstations, laptops), where the snapshot() program would be 

configured to capture OS data at specific intervals.  When computing the usage data 

needed to generate the decision tree, the estimated impact for a specific time  is 

calculated as some activity function of the activity values for dependency d between 
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times  and , where  represents the expected duration of the technical event 

(e.g. resource failure or planned maintenance outage). 

Our later implementations also leveraged log file data from other sources, such as 

network routers.  We realized that the log file data collected from Netflow router logs, for 

example, was not necessarily collected over a uniform timeline.  The non-uniform 

timeline requires us to modify our activity function.  With a uniform timeline, we can use 

a fixed-size sliding window of activity values to perform the activity function 

calculations.  With a non-uniform timeline, we use a variable-size sliding window of 

activity values, and we compute the difference between adjacent times to ensure that we 

have a window that is at least as wide as the expected failure duration.  The algorithm we 

use is shown here: 

Algorithm: Producer-Consumer Activity 
timeIndex := 0; 
currentTimeStamp := 0; 
initialize/empty the intervalTable[] and activityGrid[][] arrays; 
intervalTable[0] := 0; 
for each line in the tracerouteDump file do 
 parse line into components: ; 
 connection := resourceA  resourceB; 
 if (nextTimeStamp  currentTimeStamp) then 
  intervalTable[timeIndex] := (currentTimeStamp – nextTimeStamp) in minutes 
  currentTimeStamp := nextTimeStamp; 
  timeIndex := timeIndex  1; 
 end if 
 activityGrid[timeIndex][connection] := 1; 
end for 
zeroize/set to zero all empty/undefined entries in the activityGrid[][] array; 
totalInterval := 0; 
producer := 0; 
consumer := 0; 
initialize/empty the windowTable[], durationTable[] and impactGrid[][] arrays; 
while (producer  timeIndex) do 
 while (producer  timeIndex and totalInterval  impactDuration) do 
  for each link in the impactDependencies list do 
   windowTable[link] := windowTable[link]  activityGrid[producer][link]; 



93 
 

  end for 
  totalInterval := totalInterval  intervalTable[producer]; 
  producer := producer  1; 
 end while 
 while (totalInterval  impactDuration) do 
  for each link in the impactDependencies list do 
   impactGrid[consumer][link] := windowTable[link]; 
   windowTable[link] := windowTable[link]  activityGrid[consumer][link]; 
  end for 
  durationTable[consumer] := totalInterval; 
  totalInterval := totalInterval  intervalTable[consumer]; 
  consumer := consumer  1; 
 end while 
end while 
 
As an example, earlier implementations of our system include a “binary” activity 

function, which produces a “1” if any of the activity values is greater than 0, and “0” 

otherwise.  Other activity functions produce the maximum and average activity values for 

that period.  The set of records: 

 

  

 

is then used to generate the decision tree which will be used during the ensuing 

Assessment Phase.  When collecting data from the end systems, we can control the 

interval at which we execute the snapshots, which allows us to easily determine the 

number of activity values needed for the activity function.  For example, if we are using a 

fairly common snapshot interval of five minutes, then an expected failure duration of 1 

hour would require that we examine 12 activity values for each time , from  minutes, 

 minutes, and so on through  minutes. 

The procedure for producing records for generating the decision tree alternates 

between two basic cycles.  As an example, suppose that we have an expected failure 
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duration of one hour, such that , since we measure failure durations in minutes.  

In the first cycle, given a starting time of , we continue to scan the successive times 

, , etc. until we find  such that  .  This also ends the first 

cycle (for now), and begins the second cycle of the procedure.  At this point, we use the 

activity value pairs from  through  to compute the 

activity function.  This produces one record for generating the decision tree as: 

 

 

Also, we remove the oldest activity value pair –  – and determine if 

.  If so, then we generate another record for decision tree as: 

 

 

We also continue to remove the oldest activity pairs (and to generate decision tree 

records) until we reach the state where the oldest activity time is , and 

.  This ends the second cycle of the procedure, and we begin the first cycle of the 

procedure again, with the new starting time of .  We continue the procedure until we 

are unable to generate an interval with size greater than , which also prevents us from 

generating any more decision tree records.  In one sense, our procedure uses a producer-

consumer technique, where the commodity being produced and consumed is the time 

interval between the oldest and most recent times in the sliding window.  The expected 

failure duration  is used as a threshold value, and as a means to synchronize actions 

between the production and consumption cycles.  The first cycle of the procedure 

continues until it produces an interval with a size greater than the threshold , at which 
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point it passes control to the second cycle; similarly, the second cycle of the procedure 

consumes that interval to produce decision tree records until the interval size falls below 

the threshold , at which point it passes control back to the first cycle of the procedure. 

 

6.2.3 Clustering Technique for Determining Correlation 

During the Mining and Assessment Phases, we leverage both schedule-based and 

demand-based relationships in our attempt to assess the operational impact.  While the 

schedule-based relationships are based on a fixed number of time-based components (i.e. 

year, month, date, hour, minute and day of the week), the demand-based relationships are 

based on the activity values of other dependencies.  Even with our initial, smaller-scale 

experiments, we encountered thousands of different dependencies that could be used with 

the demand-based relationships.  Unfortunately, naively using all of the dependencies 

would overwhelm our system, even when using fairly powerful hardware, software and 

algorithms designed to handle high-dimensional data sets.  Consequently, we looked for 

ways to reduce the number of dependencies used during demand-based relationship 

assessments, and to focus on those dependencies that would be more likely to yield 

significant results during the Mining and Assessment Phases.  The algorithm used to 

minimize the number of relationships is given here: 

Algorithm: Clustering Technique for Determining Correlation Partners 
execute database queries 
 timeStampResults() := “select distinct timestamp from usage_others 
 order by timestamp asc”; 
end execute 
timeIndex := 0; 
initialize/empty the timeRoster[], clusterCenter[][] and clusterGrid[][] arrays; 
for each element in timeStampResults() list do 
 timeRoster[timeIndex] := element; 
 timeIndex := timeIndex + 1; 
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end for 
timeIncrement := timeIndex / (dimensions  1); 
timeSpan := 2 1; 
for each integer k between 0 and (dimensions – 1) do 
 timeStart := k * timeIncrement; 
 timeStop := timeStart  timeSpan; 
 execute database queries 
  delete from cluster_temp; 
  insert into cluster_temp (select connection, count( ) as “frequency” 
   from usage_others where timeStart  timestamp and timestamp  timeStop 
   group by connection); 
  update cluster_temp set frequency = (timeSpan – frequency) 
   where frequency  (timeSpan / 2); 
  frequencyResults() := select connection, frequency from cluster_temp; 
 end execute 
 for each record[connection, frequency] in the frequencyResults list do 
  clusterGrid[k][connection] := frequency; 
 end for 
end for 
zeroize/set to zero all empty/undefined entries in the clusterGrid[][] array; 
for each link in clusterGrid[][] array do 
 generate output record & store in the clusterInput file: 
  〈link, clusterGrid[0][link], clusterGrid[1][link], …, clusterGrid[dimensions – 
1][link]〉; 
end for 
clusterOutput := apply WEKA clustering to clusterInput file; 
for each line in the clusterOutput file do 
 parse line into components: 〈connection, clusterID〉; 
 generate output record & store in the clusterNodes file: 〈connection, clusterID〉; 
end for 
centerOutput := retrieve WEKA clustering remaining results/analysis; 
for each line in the centerOutput file do 
 parse line into components: 〈clusterID, pt0, pt1, …, pt(dimensions – 1)〉; 
 for each integer k between 0 and (dimensions – 1) do 
  clusterCenter[k][clusterID] := ptk; 
 end for 
end for 
for each combination of clusterIDs (clusterP, clusterQ) where P  Q do 
 sumSquares := 0; 
 sumNumbers := 0; 
 for each integer k between 0 and (dimensions – 1) do 
  if (clusterCenter[k][clusterP]  0 or clusterCenter[k][clusterQ]  0) then 
   datapoint := 0; 
  else 
   datapoint := clusterCenter[k][clusterP]  clusterCenter[k][clusterQ]; 
  end if 
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  sumNumbers := sumNumbers  datapoint; 
  sumSquares := sumSquares  datapoint2; 
 end for 
 variance := (sumSquares – (sumNumbers2  dimensions))  dimensions; 
 if (variance  varianceThreshold) then 
  generate output record & store in the clusterNodes file: 〈clusterP, clusterQ〉; 
 end if 
end for 
 
Our goal is to determine when two dependencies – for example, dependencies X and Y – 

are likely to be correlated from an impact perspective.  Suppose that dependencies X and 

Y are strongly correlated in a positive manner.  Also, suppose that we are measuring the 

activity of X and Y over a time period from  to , where  if, and 

only if, dependency X is active at time ; otherwise, .  If 

dependencies X and Y are strongly correlated, then  should equal 

 in most cases over the period from  to .  Furthermore, the sum of the 

activity values across the period should be fairly close, such that: 

 

 

where  is an error bound/tolerance that we have selected.  If the dependencies X and Y 

are strongly correlated over a certain period, then the sums of their activity values over 

that period should be fairly close.  We leverage the logical complement of this statement 

as the basis for our technique: if the sums of the activity values are not fairly close – for 

example, if they are not within a certain proportional value of the size of the time period 

– then we propose that the dependencies are most likely not strongly correlated.  We use 

this technique to filter out unlikely candidates for dependency testing. 
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We also propose refinements of this technique to handle similar cases, such as 

detecting negatively and positively correlated results.  Suppose that, when testing over 

the time period from  through , dependency X is active exactly  times such that 

.  If dependency Z has a strong negative correlation with 

dependency X, then dependency Z should be active approximately  times.  

Consequently, when trying to determine likely correlation candidates, we should also 

consider those dependency pairs X and Z where: 

 

 

For a given set of data, we could check these dependencies in a pair-wise fashion, but this 

could be computationally expensive depending on the number of dependencies.  We 

employ an alternate approach: instead of using pair-wise comparisons, we use clustering 

algorithms to identify groups of dependencies that have similar activity characteristics.  

More specifically, suppose we have activity data over a large time period from  through 

.  First, we divide that period up into  smaller time periods of approximate length 

.  Though we have used equal length time periods for clarity and simplicity, 

there is not a requirement to use periods of equal length. Next, for each dependency, we 

compute the activity sum for each of the time periods, which results in a vector of the 

activity characteristics for that dependency.  For example, the activity vector for 

dependency X would be: 
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Using this vector in our clustering algorithm would detect potential candidates for 

positive correlation, but would not account for potential negative correlation.  To handle 

these cases, we modify the activity by “folding” the activity values over the midpoint of 

the smaller time periods of length   Specifically, suppose that 

, and that  such that 

dependencies X and Z have the potential to be negatively correlated.  Then, for each 

activity vector component that is greater than the midpoint of the range (i.e. ), we 

replace that value with the result of  .  We perform this 

replacement on each activity vector component of each dependency being evaluated.  

This transformation has the property that potentially positively correlated candidates are 

preserved: if the activity sum values for dependencies X and Y are very close before the 

transformation, then it is very likely that they are either both above, or both below, the 

midpoint of the range.  Consequently, both activity sums will either be left unchanged, or 

both deducted from ; and, in either case, will remain close in proximity.  The 

transformation is much like envisioning the number line of possible activity values from 

 to  as drawn on a strip of paper, and then folding that paper over at the midpoint such 

that the ends  and  are touching.  The potentially positively correlated points are still in 

close proximity, and are now also in close proximity with the potentially negatively 

correlated points.  We can now exploit these proximities by using a clustering algorithm 

to group dependencies according to their activity vectors, and viewing the activity vector 

for each dependency as a single point in an  -dimensional space.  
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We refer to these clustering results as families, and record the dependency-to-

family mapping results for later use.  Also, each family contains a centroid, which is a 

point that best represents the “center” of the family cluster.  We use the centroids as 

representatives for each of the families, which greatly reduces the number of comparisons 

needed for the later analysis, since .  In the next step, 

we expand on the definition of correlation from an impact assessment standpoint.  

Suppose that program Q is used to process the data produced by program X, and Q is 

normally executed immediately after X has been completed.  Because of the processing 

time required, user U executes program Q for 3 hours for each single hour that user U 

runs program X.  This creates a 3-to-1 ratio in the activity sum for these dependencies (U 

 Q and U  X), and would generally prevent these dependencies from being detected 

with our current clustering process.  From an impact assessment standpoint, however, 

there is still a relationship between X and Q:  if program X is running at the time the 

technical event occurs, then this could affect the likelihood that program Q would be 

active, and potentially impacted, during the outage duration.  Our intent, therefore, is to 

modify our clustering process to detect these relationships as well. 

Our goal is to determine when two dependencies (or centroids) have a consistent 

ratio between their activity sums over the time periods we are measuring.  One challenge 

is that we do not know the exact ratio: it can vary between dependencies.  Consequently, 

if we simply measure the activity values over the entire time period, then any two 

dependencies will appear to have a ratio with some arbitrary value.  Therefore, we divide 

the overall time period up into a number of smaller periods of equal length.  Similar to 

our earlier analysis, time periods of equal length are not absolutely required, but they 
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make some of the calculations easier.  Also, this allows us to leverage the activity sums 

that we computed during the initial version of the clustering process.  In particular, for 

two dependencies X and Q, we compute the activity ratio for each corresponding 

component of their activity vectors as: 

 

 

Our basic premise is that the activity ratio vector captures the activity sum ratios over a 

small number of fixed periods as desired.  However, since we do not know a priori what 

value (if any) the single, “unified” ratio should have, we need a way to determine if such 

a single ratio really exists.  If such a ratio exists, then the individual ratio values should 

be relatively close to the single ratio value.  In fact, in an ideal case, all of the individual 

ratios would be equal; however, even if they are not all equivalent, they will be very close 

to the average of the individual values.  Therefore, we view the vector components as 

data point in a sample, and we calculate the variance of these data points to measure how 

consistent and close they are to the average. 

This clustering process makes our overall impact assessment processing more 

efficient by reducing the number of dependencies that need to be considered when 

assessing demand-based relationships.  For a given dependency X, we can include any 

other specific dependencies for which we have scheduling information.  In the absence of 

specific dependencies, we can include the dependencies that are in the same family as X. 

This will include dependencies that are positively and negatively correlated with X with a 

1-to-1 activity ratio, such as dependencies Y and Z from our examples.  Also, if we want 
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to consider those dependencies that are related via a different ratio, we first calculate the 

activity ratio vectors for the dependency X and each of the centroids for the other 

families.  Then, for each activity vector which has a variance within our desired 

tolerance, we include those dependencies, like dependency Q from our example. 
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CHAPTER 7 

EXPERIMENTAL RESULTS 

 

7.1 Testing Small-Scale Data 

We tested our approach on a computer lab with six Linux–based end-user workstations, 

all of which are connected to a significantly larger campus infrastructure.  The collector 

program was implemented as a Linux batch file on each workstation, and configured to 

collect data at roughly 5-minute intervals, which was then consolidated to one-hour 

groupings.  We collected data from these systems over 35 days, and then aggregated the 

data on a central server to support the Discovery, Mining and Assessment Phases.  We 

gathered more than 5000 distinct groups of data from the six end-systems, distributed 

over approximately 700 distinct collection times.  The steps taken during the Discovery, 

Mining and Assessment Phases allowed us to significantly reduce this potentially 

overwhelming amount of data, making it much more manageable and operationally 

relevant.  There are two significant motivations in reducing the size of the system and 

impact topologies: to reduce the amount of information processing needed to produce an 

impact assessment; and, to improve the clarity of the results for the system administrators 

and executive users, as shown in Table 1. 

The system topology data values were distributed fairly evenly around the mean. 

The impact topology values, however, were skewed significantly towards positive values. 

 

 



104 
 

Table 1 - Average Dependency Topology Sizes (Measured in Number of Dependencies/Edges) 

 system-wide per technical event 
all real-users all freq < 0.1 0.1 ≤ freq ≤ 0.9 freq > 0.9 

Mean 3461 844 81 64 14 3 
St. Dev. 1269 334 233 189 70 10 
Skew 1.3 0.7 4.2 5.3 7.2 3.9 

 
 
This was caused when certain technical events impacted an unusually large number of 

resources.  As an example, most port or device failures only affected 4 to 12 resources.  

In contrast, technical events involving the http port on dionysos (port | dionysos | http), 

and a local device on hera (device | hera | 8-1), impacted 405 and 1,554 resources, 

respectively. 

The initial topology, using all of the data gathered from one collection period, has 

an average of 3,461 dependencies.  We reduce size of the system topology by 75% by 

identifying the subset of this topology that has a potential impact on one or more real 

users.  Similarly, the initial impact topology for a given technical event has an average of 

81 dependencies.  We reduce the number of dependencies to be evaluated for the impact 

assessment by 79% by eliminating those dependencies with a frequency lower than our 

established threshold of 10%.  Finally, an average of 14 dependencies needed to be 

evaluated with the system usage patterns for a given technical event.  We determined that 

1,893 of the dependencies collected during our testing had a frequency between 10% and 

90%, inclusively.  Further testing showed that 1,775 of these dependencies were strongly 

correlated (97% or more), such that we needed to perform usage pattern mining on only 

118 distinct dependencies.  Our practice results so far confirm these percentages: we’ve 

had to perform usage mining on an average of 2 of the 14 dependencies, and the usage 

patterns for the remaining 12 dependencies were strongly correlated to these results. 
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We will now demonstrate these principles with a practical example.  Consider the 

technical event caused when the mysql port on the six end-systems used in our test 

environment are closed unintentionally by a faulty host firewall configuration.  The 

comprehensive system topology for the entire testing period included over 92,000 distinct 

dependencies.  Manually analyzing a topology of this size would be cumbersome and 

error-prone.  We can use automated techniques to calculate more specifically which users 

are likely to be affected for this event, as shown in Figure 15. 

 

Figure 15 - Impact Topology for port | mysql Closing 

 
Using the impact topology results alone allows us to infer that the closed mysql port 

could potentially affect 4 of the 17 total users.  We can leverage the system usage 

patterns to more specifically determine the impact.  Figure 16 gives an improved impact 

topology for this technical event, where each edge label represents the activity frequency 

for that dependency.  We don’t have enough information on the dependencies with a 

frequency < 10% to determine if they will be active during the outage period with any 

significant likelihood.  Consequently, we remove the paths using these dependencies 

from consideration.  The only path remaining for consideration is from user | global | 

linqf through program | hera | mysqld to port | hera | mysql. 
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Figure 16 - Impact Topology for port | mysql Closing with Activity Frequencies 

 
 

The next step is to use the timing and system status information from the technical event, 

along with the system usage patterns, to determine if there will be an impact on user | 

global | linqf.  The two dependencies are strongly correlated, so we can use the same 

system usage pattern results for both dependencies. 

 

Figure 17 - Schedule- and Demand-Based Decision Trees for Usage Mining 
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Figure 17 shows the relevant decision tree results for these relationships.  The scheduled-

based decision tree has a correctly classified instances value of 96.57%, and we can use 

this as our measure of the likelihood of an impact.  If the outage occurs between the 23rd 

and 28th of the month, then we would assess that user linqf has a 96.57% likelihood of 

being impacted during the outage period.  Similarly, if the event occurs on the 22nd at 

9pm, with an expected duration of 6 hours, then we would adjust our assessment such 

that user linqf has a 96.57% likelihood of being impacted between the hours of midnight 

and 3am on the 23rd. 

Now, suppose the event occurs on the 15th at 4pm, and lasts 6 hours.  The 

schedule-based patterns do not indicate activity during this period, but the demand-based 

patterns might still indicate activity based on the status of other resources.  Our approach 

will assess an impact if either set of patterns – schedule-based or demand-based – 

indicates that the dependency is likely to be active during the outage period.  The 

demand-based decision tree has a correctly classified instances value of 95.57%, and was 

generated based on the designated outage period of 6 hours.  As an example, if the sshd 

program on the computer named hera has an active connection to the 

helsinki.cc.gatech.edu site at the time of failure, then we can infer that the dependencies 

user | global | linqf → program | hera | mysqld and program | hera | mysqld → port | hera 

| mysql will also be active at some time during the 6-hour outage period.  Consequently, 

we would assess that user linqf has a 95.57% likelihood of being impacted during the 

outage period. 

These examples demonstrate how the using the combination of system topology 

and system usage pattern information has allowed us to improve the clarity and 
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operational relevance of our impact assessments.  In the given scenario, the impact 

topology indicates that the closed mysql port might impact four different users.  

Incorporating the usage patterns allowed us to further determine which specific users had 

a significant likelihood of being affected during the outage period for the failed resource. 

7.2 Comparing Centralized & Distributed Processing Techniques 

Given our description of these three approaches, we examine certain metrics to evaluate 

the tradeoffs between the different approaches.  We examine the amount of data 

transmitted after the Collection and Discovery phases, and during the Assessment phase.  

We compare these results to the quality of the resulting assessments, in terms of the 

impacts detected and predictive strength of the resulting topologies and usage patterns.  

The data was collected from end-systems at the systems laboratory on Georgia Tech’s 

campus.  These machines were used over a 30-day span by various researchers 

employing local and system-wide applications.  The data was collected at 5-minute 

intervals, and grouped into one-hour collection periods.  We will examine each of these 

metrics in more detail in the following sections. 

7.2.1 Data Transmission Comparisons 

With the centralized approach, the raw monitoring data is sent from all end systems to the 

impact assessment server after the Collection phase.  With the partially distributed 

approach, the Discovery phase is conducted at each end-system, and the global 

dependencies are sent to the impact assessment server, while the local dependencies are 

maintained at the end systems.  We also considered a slight variation on the centralized 

approach, where the Discovery phase is conducted on the end-systems, and then all 
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discovered dependencies (as opposed to the raw monitoring data) are sent to the impact 

assessment server.  The results are shown in Table 2 (file sizes given in KB). 

 
 

Table 2 - Data Transmission during Collection and Discovery 

 Centralized Partially Distributed 
Raw Data/Size Dependencies/Size Dependencies (global)/Size 

Mean 7030.3/458.3 230.6/19.4 120.9/10.3 
St. Dev. 3033.7/298.1 118.2/9.2 68.5/5.0 

 
 
The results show that the raw data files are many orders of magnitude larger than the 

comparable discovered dependency files.  Even when applying the Discovery phase early 

in the variation on the centralization approach, the complete dependency files are still 

approximately twice as large as the files containing only global dependencies.  From 

these results, it is clear that the partially distributed approach offers a significant 

reduction in data transmission over the centralized approach for this measurement.  Also, 

the fully distributed approach is ideal in this case, since there is no data transmitted to the 

impact assessment server.  Please note that the file sizes shown are for one end-system 

during one collection period.  The total data transmitted using the centralized approach 

for 10,000 end systems would be approximately 4.5GB data per hour.  This is not 

necessarily a problem for well-connected enterprises, but can cause difficulties in systems 

that have limited bandwidth and connectivity characteristics.  Thus, the amount of data 

transmitted can affect the scalability of my system in certain environments. 

During the Assessment phases, the data transmission rankings are reversed.  The 

centralized approach does not require any data transmission, since all data is already 

located at the impact assessment server.  The partially distributed approach transmits 

inter-zone dependencies during the Assessment phase querying process, and then 
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transmits the remaining affected local dependencies at the end of the process.  Inter-zone 

dependencies involve one global component affecting (or being affected by) a local 

component.  For the fully distributed approach, a relatively small amount of data 

representing the technical event information (e.g. affected component and outage 

duration) is sent to each end system.  Then, all assessments are performed completely on 

each end system, and the affected dependencies are returned to the impact assessment 

server to assemble the final result.  The results are shown in Table 3 (file sizes given in 

KB). 

These results are partitioned according to the different types of lower-level 

component faults in our model.  When assessing port configuration problems, the data 

transmission differences between the partially and fully distributed approaches are very 

small.  The differences per assessment are more significant in the event of failed routers 

or devices; however, these file sizes are significantly less than those encountered during 

the Collection and Discovery phases. 

 
 

Table 3 - Data Transmission during Assessment 

 Partially Distributed Fully Distributed 
Dependencies (inter-zone)/Size Dependencies/Size 

Routers 
Mean 2.6/0.2 5.9/0.5 
St. Dev. 0.5/< 0.1 1.6/0.1 
Ports 
Mean 3.8/0.3 3.9/0.3 
St.Dev. 1.9/0.2 2.1/0.2 
Devices 
Mean 60.4/5.2 76.9/6.6 
St. Dev. 40.7/3.5 70.8/6.1 
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Another key distinction is that data transmission for the Collection and Discovery phases 

occurs on a regular and far more frequent basis than the Assessment phase.  This 

combination of factors indicates that we can significantly reduce the amount of data 

transferred with a centralized approach by using a partially or fully distributed approach 

instead.  Of course, we must be sure that we do not significantly compromise the quality 

of the resulting impact assessments, which we examine the following sections. 

7.2.2  Assessment Quality Comparisons 

To compare the quality of the impact assessments for the different approaches, we first 

compared the users and top-level components affected for each infrastructure fault in my 

test environment.  We then identified assessments with different user and top-level 

component results in approximately 5% and 25% of my assessments, respectively.  

Closer analysis of the specific instances confirmed that the differences were caused when 

a user accessed a specific top-level component from two or more local zones.  In these 

cases, the user’s usage frequency for that component was too small to be assessed as an 

impact from a local-zone perspective.  The sum of the usage frequencies over all of the 

local zones, however, was high enough to be assessed as an impact, resulting in the 

assessment difference. 

We also examined the system usage patterns that were derived from the data in 

each approach.  We used the WEKA PART and J48 implementations of the C4.5 

decision tree algorithm [44] to generate the usage pattern rules and statistics.  Usage 

pattern rules are mined and extracted for each dependency.  The candidate attributes for 

schedule-based rules include time-based values (e.g. day, month, and date).  The 

candidate attributes for demand-based rules include the activity values for the system 
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dependencies.  The activity status for a dependency is 1 if the dependency is detected, 

and 0 otherwise.  The nominal attribute is the cumulative activity status for the specific 

dependency, which is 1 if the dependency is active at any time during the outage period. 

The centralized approach mines all of the dependencies as a single group.  The 

fully distributed approach mines each set of local zone dependencies separately.  The 

partially distributed approach can take advantage of the global dependencies collected at 

the impact assessment server, as well as the local zone dependencies at each end-system.  

The partially distributed approach will always perform at least as well as the fully 

distributed approach, and possibly better since it can leverage the results at the central 

server.  The results of these tests are shown in Table 4.   We compare the correctly 

classified case percentages, as well as the kappa statistics as a measure of the predictive 

power, for each set of usage pattern rules using the different approaches. 

 
 

Table 4 - Mining Quality Measurements 

 Centralized Partially and Fully Distributed 
Correctly 
Identified Cases 

Kappa 
Statistic 

Correctly 
Identified Cases 

Kappa 
Statistic 

Mean 94.5 0.843 93.9 0.822 
St. Dev. 2.2 0.053 2.1 0.055 

 
 
The centralized correctly identified case percentage and kappa statistic values are 

approximately 1% and 2.5% larger than their distributed counterparts, respectively.  As 

expected, the centralized approach has better statistics, but the difference between the 

approaches is not as large as we expected.  We interpret this data, in combination with the 

assessment comparison results above, as a positive sign that we can employ distributed 
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impact assessment techniques to minimize data transmission without compromising the 

assessment results. 

7.3 Testing Large–Scale Data 

In our initial testing, we were able to demonstrate how are techniques assisted 

administrators in reducing the amount of data that they need to examine in order to assess 

operational impacts.  Now, we demonstrate that are techniques are similarly effective on 

a much larger data set.  The Georgia Tech network spans the campus, and includes 

thousands of computers, systems, services and internetworks, a significantly larger 

number than the six computers in our initial experiments.  To collect data from the 

network, we leveraged the Research Network Operations Center (RNOC) CPR system.  

The CPR system consists of 77 computer systems co-located with routers at specific 

locations across the Georgia Tech network.  These CPR nodes can be used to collect 

various types of data, and to issue commands (.e.g. ping, traceroute) as directed.  We 

used the CPR nodes to perform distributed traceroutes, and combined that information 

with Netflow data from key routers to assess potential operational impacts. 

 

7.3.1 Raw Data Collection 

For our large-scale testing, we collected approximately four months of Netflow data (and 

associated traceroutes) from the Georgia Tech network.  The data was collected between 

August 29th, 2008 and December 21st, 2008.  As with the smaller-scale data, our primary 

goal is to show that the impact assessment system can assist administrators by improving 

their ability to make operational impact assessments.  It does this by reducing the overall 

size of the topology to be considered based on dependency relationships, and then further 
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reducing the number of connections to be considered due to schedule- and demand-based 

timing information. 

The four months of Netflow data, once processed using our lossy-counting 

techniques, resulted in approximately 4.1 million usage records, and over 690,000 

distinct connections from a Georgia Tech system to another IP address.  Our focus is on 

the connections originating from the CPR nodes, in order to match those connections 

with the routing information collected via traceroute data.  Consequently, we filtered out 

connections originating from non-CPR nodes, such as the 

deploy.akamaitechnologies.com sites.  This left approximately 450,000 distinct CPR-

based connections. 

We also collected approximately 16,000 distinct traceroutes from various CPR 

nodes to other sites.  Since merging the Netflow usage data with the traceroute topology 

data is key to our impact assessment processes, we examined the intersection of the two 

data sets to find the connections common to both.  This resulted in approximately 

880,000 usage records, and 11,000 associated traceroute paths.  We extracted the 

resulting working topology consisting of over 37,000 edges.  We then decided to extract a 

subset of this data for further testing.  We extracted the 100 most active connections, 

along with the associated Netflow usage and traceroute information.  This subset 

consisted of over 54,000 usage records, and yielded a working topology with 430 distinct 

nodes and 550 edges.  A portion of the topology is shown in Figure 18.  The node 

contents are not intended to be easily readable; rather, the figure is intended to 

demonstrate the visual density of the topology as an example of the difficulty facing an 

administrator required to analyze this diagram manually. 
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Figure 18 - Subset of the Complete Working Topology 

 
We analyzed this data to compare the size of the resulting impact topologies compared to 

the working topology.  We identified 261 distinct routers in the working topology, and 

tested each one to determine the impact for that router.  From a timing perspective, we 

proposed failure durations of 20, 40 and 60 minutes, and that the outage would occur 

between Thursday, October 15th, 2009 (0001 hours) and Saturday, October 17th, 2009 

(2359 hours).  The time range was chosen to coincide with the Netflow data we collected; 

other ranges could have been used, but the accuracy of the resulting impacts might be 

lessened even more by the lack of relevant usage patterns for training data.  The data 

results are given in Table 5.  The data in this table represents the amount of raw 

connections, users and sites that were identified during one or more contiguous collection 

periods.  The values are all measured in numbers of processed Netflow records.   
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Table 5 - Large-Scale Raw Data Analysis 

 number of contiguous collection periods 
 1 3 6 12 24 
connections 
Mean  5801.89 17405.67 34811.33 69622.67 139245.3 
St. Dev.  4181.66 8734.26 13795.39 22441 41161.7 
users/CPR groups 
Mean  63.61 74.58 75.42 75.83 76 
St. Dev.  23.80 1.38 0.79 0.41 0 
sites 
Mean  4892.49 11382.67 19562.17 33746.83 57857 
St. Dev.  3567.65 5589.32 6876.77 8597.64 13993.52 

 
 
Since we were working at the CPR-node level, and not identifying individual users, this 

limited the possible number of users/CPR nodes to 76, which is consistent with the CPR 

architecture at that time.  In the smaller-scale testing, a complete system-wide topology 

had an average on 3461 edges.  In our large-scale testing, a complete system-wide 

topology collected over one time period has an average minimum of 5801 edges (one per 

user | U  site | S dependency), not including the associated router- and origin-based 

dependencies that would be extracted from the traceroute data. 

Given the increase in the amount of raw data being produced per collection 

period, our next step is to demonstrate how our impact assessment system assists in 

identifying a significantly smaller impact topology from the larger working topology.  

Figure 19 shows the distribution of impact topology sizes in terms of nodes and edges.  

The majority of the impact topologies had less than 30 nodes and edges.  A smaller but 

significant number of cases range between 40 to 115 nodes, and 50 to 105 edges.  Of the 

261 impact test cases, 258 are shown in this figure.  Three cases are not shown, and 

represent the most severe or “catastrophic” impact situations where a minimum of 70% 

of the working topology is impacted by the designated technical event.  In these three 
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cases, the impact topologies had an average of approximately 320 distinct nodes and 390 

edges.  The horizontal (number of items) axis was truncated to allow better granularity 

for the majority of the distribution. 

 

 

Figure 19 - Distribution of Impact Topology Sizes 

 

Figure 20 shows the average number of users and sites impacted relative to the topology 

size, as measured in the number of edges.  As an example, for an impact topology with 70 

edges, then approximately 45 users and 55 sites would be potentially impacted by a given 

technical event.  Note that while the average number of users and sites impacted was 

basically (directly) proportional to the size of the topology, it is not monotonically 

increasing: specifically, there are more users and sites impacted in some smaller 

topologies than in significantly larger topologies.  For example, more users and sites are 

impacted on average in the topologies with 70 edges than in the topologies with 140 

edges. 
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Figure 20 - Number of impacted Users and Sites (relative to Topology Size) 

 
 

 

Figure 21 - Distribution of Impacted Users and Sites 
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Figure 21 represents the distribution of users and sites that are potentially impacted over 

our population of 261 impact topologies.  The majority of impact topologies 

(approximately 200 of the 261) affected between 1 to 5 users and sites, while the 

remaining topologies affected between 10 to 52 users, and 6 to 92 sites. 

Next, we present a summary of the size reduction analysis when considering the 

topology and usage/timing data in Table 6 and Table 7. 

 
Table 6 - Topology-Based Size Reduction 

 nodes edges users sites routers 
mean 17.71 19.93 5.37 8.4 26.09 
st dev 37.84 46.2 11.86 17.0 71.88 

 
 
 

Table 7 - Usage/Timing-Based Size Reduction 

 total 
impacted 

none 
  

minimal 
 

moderate 
 

significant 
 

severe 
 

mean 5.37 4.02 5.52% 0 15.18% 0.09% 
st dev 11.86 11.37 0.29 0 0.37 0.03 
 
 
As mentioned earlier, the working topology we extracted for testing purposes has 430 

distinct nodes and 550 edges.  We used each of the 261 distinct routers/routing points as 

potential failures, and then we assessed the operational impact for each failure to generate 

this test data.  We can see that identifying the impacted connections results in an impact 

topology with an average size of approximately 18 distinct nodes and 20 edges, which is 

a significant reduction from the size of the working topology. 

Furthermore, only 5.37 connections on average are potentially impacted.  Of those 

connections, 4.02 of them will not be operationally impacted at all per the generated 

usage prediction model.  Approximately 5– 6 of every 100 connections will be impacted 

minimally (with a maximum likelihood between 1% and 5%); and, 15–16 of every 100 
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connections will be impacted significantly (between 10% and 16%).  Finally, 

approximately 9 of every 1000 connections will represent a potentially severe operational 

impact, with an impact likelihood of 17% or more.  This data shows us that the size of the 

resulting impact assessments are generally very small compared to the overall size of the 

working topology, and so our system helps the administrators identify and focus on the 

most likely impact candidates.  By the same token, the data shows that potential impacts 

occur enough to make monitoring this issue significant and worthwhile for many 

operations. 

 

Figure 22 - Impact Likelihood Distribution across Failure Nodes 

 

This data is represented graphically in Figure 22.  This surface chart shows the 

distribution of operational impacts across the technical event space and range of impact 

likelihood values.  The IP addresses along the horizontal axis represent the routers 

selected for simulated individual failure for the 261 technical events.  Note that the 

impact likelihood scale (along the depth axis) is arranged in reverse order: the lower 
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impact values are to the rear of the chart, with the likelihood value of zero along the 

chart’s back wall.  Also, some of the  frequency values (along the vertical axis) for 

the routers between the 130.117.1.117 to 154.54.24.9 range were actually between 38 and 

43, but were truncated to “7+” to improve the overall chart visibility.  Note that the “ridge 

of peaks/mountains” running east to west along the middle of the chart floor is indicative 

of the 15.18% significant impact likelihood, as shown in the summary. 

7.3.2 Operational Impact Assessment Examples 

Next, we demonstrate a sample technical fault, and use the data we have collected to 

assess the operational impact on various users.  The technical fault that we proposed was 

that the router at 143.215.194.5 would fail for 3 hours, between February 19th, 2009 and 

February 25th, 2009.  In this instance, two connections would be affected: 

• user | cpr-weber  site | 74.125.45.83; and, 

• user | cpr-neely  site | 74.125.45.83 

The impact topology is shown in the basic impact portion of Figure 23.  The mitigated 

impact topology demonstrates that there are no alternate paths from the origin | cpr-

weber and origin | cpr-neely nodes; which indicates that the impact is more likely to 

cause the site to be inaccessible for the user.  An alternate path might lead to (at worst) an 

increased access time to reach the site.  We also analyzed the usage patterns, and 

generated an impact timeline for each of these connections as shown in Figure 24.  The 

timeline covers the period from February 19th, 2009 through February 26th, 2009.  While 

the usage patterns for both connections are fairly consistent, there is a clear increase in 

activity for both connections on February 24th. 
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Figure 23 - Basic and Mitigated Impact for Router Failure 

 

 

Figure 24 - cpr-weber and cpr-neely Activity During 19-26 Feb 2009 Period 
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This could be used by an administrator as an indicator that the router failure might have 

had a much more significant operational impact on the weber and neely users during that 

period than if it had failed on one of the other days.  Also, the increase in impact could be 

used as guidance to avoid actions that could adversely affect the router’s performance 

(e.g. maintenance requiring downtime) during that period, if our system is being used as a 

forecasting tool. 

Similarly, we adjusted the timeline to determine those periods of increased and 

decreased operational impact for cpr-neely and cpr-weber over the March 15, 2009 

through March 31, 2009 period, as shown in Figure 25.   

 

Figure 25 - cpr-weber and cpr-neely Activity During 15-31 Mar 2009 Period 

 
The graph indicates that March 15th and March 17th are periods when the potential 

operational impact, especially for cpr-neely, would be significantly lower than normal 

levels.  In contrast, the periods of March 19th and March 24th indicate a significantly 

higher operational impact likelihood, especially for cpr-weber.  The intent of our tool is 
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to provide administrators with these kinds of visual graphs, so that they can not only 

determine specific periods of increased and decreased operational impact, but so they can 

also see the patterns of usage over time. 

We also used our impact assessment system to forecast and compare the 

operational impact for a different problem.  Figure 26 shows a subset of the working 

topology for the connections that would be affected by the failure of the North 

Interconnect router.  We extracted six of the most active connections in terms of the 

number of usage records contained in the Netflow dataset. 

 

Figure 26 - Working Topology for North Interconnect related Connections 

 
We then generated the operational impact timelines for these connections over the March 

5, 2009 to March 8, 2009 time period.  We then constructed a “combined” impact 

timeline by displaying the maximum, average and minimum values for the set of 

connections, as shown in Figure 27.  We also identified a subset of the working topology 

that included connections with a IP address related to either of the international Georgia 

Tech campuses in France or Shanghai, as shown in Figure 28.   
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Figure 27 - Impact Timeline for Local Connections 

 

We focused on connections that had a reasonably significant number of usage records 

from our Netflow data set, in order to increase the probability that we would have enough 

data to generate a timeline.  Note that most of the ten connections are from the cpr-

servernet node, though there are also two connections from the cpr-me and cpr-nt nodes 

as well (more clearly visible in the lower half of the topology).  Upon further analysis, the 

individual usage timelines for three of the connections indicated no impact for the entire 

time period; therefore, we eliminated the connections from further consideration.  We 

then generated the combined timeline for these remaining seven connections, as shown in 

Figure 29. 
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Figure 28 - French and Shanghai-related GT connections 

 
Finally, we combined the local and global timelines to produce a combined, 

worldwide timeline in Figure 30.  Observe that the combined timeline format offers some 

flexibility in determining the optimal times for minimizing operational impact.  Our 

initial instinct was to identify the most likely periods for minimizing impact by looking 
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for the lowest points in the maximum curve in the timeline, giving secondary emphasis to 

the average and minimum curves as required.  Since the maximum curve represents the 

highest impact value over the set of connections, we know that at least one connection 

holds that level of activity at that point in time.  However, all of the other connections 

might hold very low values during that same period, such that the true system-wide 

impact might still be fairly low.  By the same reasoning, the minimum curve assures us 

that all of the connections hold at least that level of activity at that point in time. 

Consequently, when there is a significantly increase in the minimum curve level 

(for example, in the global impact timeline between March 5th and March 6th), then we 

are more assured of an increased system-wide operational impact, as opposed to the 

potential increase for only one connection.  Furthermore, the average curve can be used 

to better predict the distribution of the entire set of connections being assessed.  

 

Figure 29 - Impact Timeline for Global Connections 
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Figure 30 - Impact Topology for Worldwide Connections 

 
 

As stated earlier, it is our intent to provide administrators with tools to help them assess 

and minimize the operational impact on their systems.  We believe that the impact 

topologies and combined timeline(s) produced by our operational impact assessment 

systems offer ways to better visualize, quantify and assess these kinds of impacts. 

 

7.3.3 Clustering Effectiveness 

The clustering techniques that we described earlier are intended to reduce the number of 

comparisons required when assessing demand-based dependencies.  The basic principle 

is to identify dependency groupings that have a reasonable likelihood of being correlated; 

similarly, eliminating those pairs that are unlikely to be correlated.  We do not have to 

explicitly test for correlation – in fact, once the groupings are identified, we include the 
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dependencies from a given group as input for the assess_timeline() and 

assess_frequencies() procedures.  

We used our working topology with the top 100 most active connections.  We 

compare three different clustering functions: activity-based version with positive and 

negative correlation testing, as described earlier; an activity-based version with only 

positive correlation grouping; and, a frequency-based version with positive correlation 

grouping.  The frequency-based version is similar in concept to the activity-based 

version, but it calculates the average of the frequency values during each time interval, as 

opposed to calculating the sum of the binary activity values.  Also, because of the 

functional differences, we do not attempt to apply the same “folding” technique to detect 

negative correlations with the frequency-based version.  Finally, we vary the number of 

dimensions used in the testing, which corresponds to the number of time intervals that are 

used to sample the activity values (or frequencies) for each connection.  The results of the 

clustering testing are shown in Table 8. 

 
Table 8 - Activity- and Frequency-Based Clustering Analysis 

 dimensions 
Version 2 3 4 5 10 15 20 25 
activity-
based 
positive + 
negative 

4/32.16 4/41.3 2/82.85 3/58.64 2/64.58 3/64.74 3/62.06 4/43.58 

activity-
based 
positive only 

4/32.16 4/41.3 2/82.85 3/58.64 2/64.58 3/64.74 3/81.68 4/43.58 

frequency-
based 3/57.74 4/39.14 4/35.78 6/21.5 4/49.18 4/48.86 4/52.46 4/49.44 

 
 
The results in the table use the format: 
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The weighted average cluster size represents the average cluster size that is expected if 

we perform demand-based assessments using the clustering results.  For example, 

suppose we have partitioned the total number of N connections over k distinct clusters.  

Then, if connection c is selected for assessment, and c belongs to clusterm, then we would 

also include the rest of the connections in clusterm for assessment as well.  Consequently, 

we compute the weighted average cluster size as: 

 

The weighted average group size makes the assumption that each of the N connections 

has an equal probability for being selected for an assessment.  We could possibly remove 

this assumption of equality, and calculate a probability distribution for the different 

connections based on the working and impact topologies along with other factors; 

however, I feel that the equality assumption is reasonable at this stage of our 

investigation. 

The actual results were somewhat surprising.  We did not expect such similar 

results between the activity-based versions – we felt that including the folding technique 

for detecting negative correlations would make more of a difference.  The results show 

that the two versions produced identical results except for the 20-dimensions case.  

Similarly, we did not expect the difference between the frequency-based and activity-

based versions to be so dramatic in favor of the former.  The frequency-based version 

yields smaller and more evenly distributed clusters for all of the cases except the 

extremes of 3 and 25 dimensions. 
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7.3.4 System Performance Testing 

An important goal is to ensure that our impact assessment system can actually 

produce assessments in a reasonable amount of time.  This means that our system needs 

to process the incoming data at a rate equal to, or faster than, the data is being received.  

When a technical event occurs, our system needs to produce an assessment in minutes.  If 

it takes hours (or longer) to produce an assessment, then the results might not be available 

in time for the administrators and/or executives to make a timely decision.  We were 

conscious of this requirement throughout the development of our system. 

The RNOC CPR data gave us the most realistic, large-scale tests, so we analyzed 

that data for our performance tests.  The RNOC CPR files were initially processed 

remotely on IBM Blade Servers with Quad Xeon processors and 1 GB RAM.  The CPR 

files are generated in the Cisco Netflow format.  The first step of our processing requires 

that we use the Cisco flow-export tool to translate the raw data files from the Netflow 

format into a more manageable format.  The CPR files contained an average of 3,100,000 

lines per file, where each line represents a connection from a source to a destination at 

one specific point in time.  It takes an average of 37 seconds to extract the relevant 

source, destination and timing fields from each line in the raw data file, and to convert the 

source and destination fields from a binary to an IP address format.  The resulting 

“intermediate format” CPR files were then sent to the local system for further processing. 

We performed the remaining testing on a local Apple MacBook Pro running Mac 

OS X version 10.5.6, with a 2.4 GHz Intel Core 2 Duo processor and 4 GB of RAM.  

Each intermediate CPR file represents 5-minutes of real-time data.  Our system processes 

one of the intermediate files by filtering the most frequent connections using our variant 
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of the lossy-counting algorithm.  Our system can process one of these files in an average 

time of 1 minute and 35 seconds.  This is more than sufficient for our requirements: upon 

receiving a single CPR file, our system can process the raw data using the flow-export 

tool, filter the most frequent connections, and then append the new information to the 

core database tables in approximately 2 minutes and 12 seconds, leaving a margin of 2 

minutes and 48 seconds before the next CPR file is generated. 

 

 

Figure 31 - Time Required for Impact Assessments 

 
 

We also tested a number of scenarios in which we generated sample operational 

impact assessments based on a randomly generated technical event.  These assessment 

tests were also generated on the local MacBook Pro system described above.  We 

sampled 61 technical events we generated for our earlier testing were timed.  The earlier 

testing gives the sizes of the working and impact topologies.  Based on these topology 
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sizes, our system is able to generate an impact topology in an average period of 37 

minutes, with a standard deviation of 25 minutes – the distribution is shown above in 

Figure 31.  The time needed to generate an impact assessment varies directly with the 

number of user-resource connections that are affected by the technical event, since each 

connection must then be mined against the event timeline to determine the impact 

likelihood.  Even in the worst of our sampled cases, our system was able to generate an 

assessment in 69 minutes, which should provide enough time for administrators and 

executives to direct operational changes based on the outcome of the assessment. 
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CHAPTER 8 

CONCLUSION & FUTURE RESEARCH 

 
We have described the framework and dataflow architecture for an operational impact 

assessment model and system that integrates events from all system and application 

components. By clustering events through simple data mining and statistical techniques, 

our system translates a low level event (e.g., failure of a device or router) into an 

operational impact assessment meaningful to system administrators and managers.  We 

implemented our system as a working prototype, and used it to conduct tests on smaller-

scale and large-scale data.  We also demonstrated distributed assessment techniques 

designed to minimize the resources of the systems (e.g. network bandwidth) on which our 

operational impact system is being implemented.  Our results confirmed that the 

distributed versions can produce impact assessment results comparable in quality to the 

centralized version, while significantly reducing the amount of data transferred across the 

network.  We tested our approach on a smaller scale by collecting and analyzing 

operational data at the Georgia Tech Center for Experimental Research in Computer 

Systems (CERCS) Laboratory over a 35 day period.  We have also conducted similar 

tests on large-scale data collected from Georgia Tech’s campus network over a four 

month period.  Our experimental results have shown that our operational impact system, 

procedures and techniques can assist administrators by assisting them in identifying the 

actual impact topologies, and by leveraging the usage data to predict if the resources that 

are being assessed would actually be in use during the technical event period (e.g. 

unexpected failure, planned maintenance outage). 
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Considering all that has been done so far, there are still many possibilities for future 

research.  From the system management point of view, we consider the work described 

here as a solid step towards similar efforts.  We should consider ways to test the 

effectiveness of the system on real-world impacts: for example, actually using the system 

to plan an event that could have an operational impact on the users, and then measuring 

and evaluating the results (including user feedback) as accurately as possible to determine 

the systems effectiveness.  Our goal has been to show the potential of the system to assist 

by reducing the managing the size and complexity of assessing operational impact in a 

complex environment, and providing tools which administrators, and executives without 

an intensive IT background, can use to better understand and visualize the potential 

impact that technical events like component failures can have on their actual operations – 

business, military, or otherwise.  The potential has been demonstrated, but there is still 

more testing required if we are to quantify how accurate our assessments actually are in 

practice. 

Another possibility is to continue to develop and refine the user interface.  The 

system we have developed is much more complete and comprehensive than our original 

system, which still required a significant level of manual interaction, including 

transferring large amounts of data between different files and databases.  The current 

system provides a more unified structure for storing, transforming and analyzing data as 

required.  Still, the current user interface is command-line driven.  While this has some 

advantages (e.g. scripting certain tasks), ideally we would like to see a web-

based/graphical interface developed to allow administrators to use the tools more easily.  

As one example, the user should be able to view, select, zoom in/out, and filter out 
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different sections of a large topology easily.  Also, we should continue to develop ways 

to visualize the impact timeline as well, and to perhaps integrate the impact topology and 

timeline into a unified view.  There may even be some promise in viewing the topology 

like a weather map, where periods of significant or severe impact would be displayed 

much like a storm moving across a geographical area; for example, using reds and 

oranges to denote periods of adverse operational impact, and blues and greens to denote 

minimal or no impact predicted. 

 Also, the system structure itself should be developed further.  Two examples of 

future improvements include strengthening the database for centralized operations, and 

designing ways to make the key procedures more efficient and scalable for large data 

sets.  We are constantly using the Derby Java-based database for our system.  This choice 

was based primarily on our efforts to make the system portable in order to better support 

distributed operations as needed.  The Derby database has worked well, especially during 

this prototyping and developmental phase of the research.  As the system matures, 

however, we should investigate other database systems that can perform well with larger 

data sets.  This is especially important considering our latest research efforts: in working 

with Georgia Tech’s RNOC Group, we have been processing significantly larger data 

sets in a centralized fashion.  Our system has been designed and implemented to allow a 

different database to be substituted if required – the queries we used to interact with the 

database has been written using basic SQL, and we have avoid proprietary features and 

extensions as much as possible.  Some possibilities include MySQL to retain the 

portability option, or possibly an Oracle, Sybase or SQL Server enterprise-level database 

for more dedicated centralized analysis. 
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On improving the key algorithms, we should investigate ways to streamline the 

processes now that we have better defined the dataflow between components, along with 

the data structures for storage.  One example is that we are using the WEKA data mining 

suite to perform a number of different tasks, such as generating decision trees and the 

equivalent rule sets for assessing the impact timelines.  The WEKA suite has been 

wonderfully powerful and flexible, especially in investigating different methodologies 

during our initial design phases.  Now, however, we believe that we should also invest 

time investigating ways to increase the efficiency of the processes to support quick and 

efficient analysis in real-world environments.  There are alternative data structures that 

could be used, such as Concept-adapting Very Fast Decision Trees (CVFDTs), which 

might prove ideal for our intentions [39].   
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