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SUMMARY

Manufacturing outsourcing in the U.S. has never been stronger than it is to-

day. Increased outsourcing has led to significant changes in the design of the retail

distribution network. While the traditional distribution network had the manufactur-

ing plants supplying goods to the retail stores directly, the off-shore manufacturing

has increased the network’s demand for transportation and warehousing to deliver

the goods. Thus, most companies have a complex distribution network with several

import and regional distribution centers (DC).

In this thesis, we study an integrated facility location and inventory allocation

problem for designing a distribution network with multiple national (import) distri-

bution centers (NDC) and retailers. The key decisions are where to locate the RDCs

and how much inventory to hold at the different locations such that the total network

cost is minimized under a pre-defined operational rule for the distribution of goods.

In particular, the inventory cost analysis is based on the continuous review batch

ordering policy and the base-stock policy. Both Type-I (probability of stock-outs)

and Type-II (fill-rate) service level measures are used in the analysis.

This thesis presents two different models for solving the integrated facility location-

inventory allocation problem. The first model, continuous approximation (CA), as-

sumes the distribution network to be located in a continuous region and replaces the

discrete store locations with a store density function. The second model is a discrete

representation of the problem as a mixed integer programming problem. Both the

models take a nonlinear form and solution techniques are developed using the theory

of nonlinear programming and linear reformulation of nonlinear problems.

The goal of the first part of the thesis is to model the problem using a modified

x



CA approach and an iterative solution scheme is presented to solve it. The main

contribution of this work lies in developing a refined CA modeling technique when the

discrete data cannot be modeled by a continuous function. In addition, the numerical

analysis suggests that the total network cost is significantly lower in the case of the

integrated model as compared with the non-integrated model. It is also shown that

the regular CA approach leads to a solution which is inferior to the solution obtained

by the modifed CA approach. Our analysis shows that the type of service measure

used affects the network design.

In the second part of the thesis, the problem is modeled as a nonlinear mixed

integer program and a linear reformulation solution technique is proposed to obtain a

lower bound on the original problem. Computational results are presented for small

problem instances. We conclude this part of the thesis by presenting an integrated

model when a base stock inventory policy is used. A drop-decomposition heuristic is

proposed to solve this problem.
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CHAPTER I

INTRODUCTION

Manufacturing outsourcing in the U.S. has never been stronger than it is today.

Increased outsourcing has led to significant changes in the design of the retail distri-

bution network. While the traditional distribution network had the manufacturing

plants supplying goods to the retail stores directly, the off-shore manufacturing has

increased the network’s demand for transportation and warehousing to deliver the

goods. Warehouses are located in the network to allow for shipment consolidation

and risk pooling (see Chopra et al. [10]). When the goods arrive at the seaports in

the U.S. they have to be consolidated by region1 before shipping them. This activity

takes place at the import distribution centers. From the import distribution centers

the goods are shipped to the local distribution facilities from which they are delivered

to the retail stores. The regional distribution facilities help to pool risk by consoli-

dating shipments from the import distribution centers (DCs). Most companies have

a complex distribution network with several import and regional DCs, for example,

Target, Inc. has three import warehouses, 22 regional distribition centers and 1300

retail stores. Frito-Lay, Inc. operates its distribution network with 42 plants, one

national DC and 325 regional DCs (see Erlebacher et al. [16]).

Companies in the U.S. have been spending $14 billion per year on inventory in-

terest, insurance, taxes, depreciation, obsolescence and warehousing. The logistics

activity accounts for 15-20% of the total cost of finished goods (see Menlo [25]).

With such a huge inventory investment and growing demand for warehouses, it is im-

portant to make optimal decisions for the facility locations and inventory allocation

1e.g., different regions within US are northeast, southeast, midwest, northwest and southwest
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in a supply chain.

Facility location decisions are termed as strategic decisions in a supply chain as it

is expensive to open or close a facility. The main reason for locating distribution fa-

cilities between the manufacturer(s) and retail stores is to help consolidate shipments

and pool risk arising because of uncertainty in transportation time and demand (see

Chopra et al. [10]). In order to make a decision on the optimal number of facilities to

open, several trade-offs between the facilities, the inventory and the transportation

costs should be considered. It is good to have many facilities serving the retail stores

as it reduces the transportation costs and improves the service level. But having too

many facilities could mean increased inventory and facility operating costs. There has

been an extensive literature in the area of the facility location-allocation problem (see

Daskin [14]). This stream of literature ignores the inventory decisions at the DCs.

Inventory allocation decisions are termed as tactical decisions as these decisions

are made over shorter time intervals (e.g., weeks or months). Studies in the area of

inventory allocation make decisions on what should be the optimal inventory policy

at the store and the distribution centers. Inventory is a key driver of a supply chain’s

performance which is measured in terms of fill-rate and in-stock probability. It is for

this reason that optimal inventory allocation along the different levels of the supply

chain is important and this problem is often known as the multi-echelon inventory

problem (see Roundy [32], Deuermeyer et al. [15], Ganeshan [19]) for a detailed

review). This stream of literature assumes that the distribution centers have been

located optimally between the manufacturer and the stores prior to the inventory

decisions, and hence ignores the facility location cost.

The focus of this thesis is to study integrated facility location and multi-echelon

inventory allocation problems. It is important to discuss the motivation for inte-

grating the two problems. Most companies face the strategic decision of deciding

on the number of distribution centers, their locations, and which customers to serve

2



while maintaining acceptable service levels. One of the key cost components for the

facility location problem is the transportation cost which depends on the inventory

replenishment frequency at the different facilities. The replenishment frequency can

be determined once the inventory policy is known. Similarly, the service level at the

different facilities is a function of their inventory policy. The multi-echelon inventory

problem models the inventory cost at the distribution center in terms of the demand

assigned to it. This requires information on which retailers are assigned to which

distribution center. These interrelations between the two problems suggests that an

integrated model with the facility, transportation and inventory costs is needed to

solve a network design problem.

In recent years, there has been some research in the area of joint facility location

and inventory problems. These studies consider inventory at the single echelon of

regional distribution centers to account for demand uncertainty, and linear (Nozick

et al.[30] or nonlinear (Shen et al. [34], Miranda et al. [26]) inventory cost functions

are added to the facility location model. The impact of uncertainty in transportation

in terms of distance and time is ignored in all of these research works. To the best of

our knowledge, the study by Teo et al.[36] is the only paper that solves a joint model

for the facility location and multi-echelon inventory problem. See Chapter II (page

9) for a detailed review of their work.

The network under study in this thesis is a three-level distribution system with

retail stores at level zero meeting demand of the end customers. The regional dis-

tribution centers (RDCs) are located at level one to help consolidate shipments and

pool risk. The national distribution centers (NDCs) are located at level two and they

help consolidate shipments arriving from overseas manufacturers and deliver them to

the RDCs. The goods flow from the facilities at the higher level to the facilities at the

lower level until they reach level zero (see Figure 1). We will refer to this three-level

network as a logistic network in the rest of the analysis.
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Manufacturer
NDC

Level 2

RDCs

Level 1

Retail stores

Level 0

Figure 1: A Multi-Level Distribution Network

This study presents an integrated facility location and multi-echelon inventory

allocation problem in a logistic network. The objective function in our problem

minimizes the total logistic costs expressed as a sum of the inventory, facility and

transportation costs, and meets the desired service level requirement at each inven-

tory stocking level. Service level requirements are modeled in terms of two common

measures: stock-out probability and fill-rate. The service level measures are discussed

in detail in Section 3.1. The key decisions in this problem are where to locate the

RDCs, how to assign retail stores to them and what should be the inventory policy

at the national and regional levels of DCs. It is reasonable to assume that the retail

stores carry no inventory (e.g. most retail stores such as Wal-Mart carry negligible

inventory).

Optimal inventory policy for a multi-echelon logistic network is a vast research

area in itself. In this thesis, we restrict the focus on a special class of inventory

policies, namely, the continuous review policy. With advancements in information

technology, it is now possible for companies to keep track of inventories at all times.
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Thus, continuous review policies are used in real-life inventory management. The

first part of the thesis focuses on a batch order (Q, r) policy and the second part on

a base stock (s-1, s) policy. The (Q, r) policy is often chosen by inventory stocking

locations in order to maintain a stable order quantity in each period. Deuermeyer et

al. [15], Schwarz et al.[7] and Ganeshan [19] analyze a single warehouse and multiple

retailer distribution system where each location follows a continuous review (Q, r)

policy. Having fixed the inventory policy, the decision then is what is the optimal

value of the parameters (Q, r) (batch ordering policy) or s (base stock policy) .

The main purpose of this research is to attain a three-fold goal:

• First, to highlight the importance of integrating the facility location decisions

with the inventory decisions. We show that the non-integrated problem gener-

ates results that have a significantly higher total network cost as compared to

the integrated problem.

• Second, to present two solutions namely continuous approximation for non-

homogenous data and linear reformulation approximation for solving the inte-

grated facility location and inventory allocation problem.

• Third, propose a methodology for fine tuning the continuous approximation

technique when the input variables cannot be approximated by a smooth func-

tion.

The rest of this thesis is organized as follows. Chapter 2 presents the relevant lit-

erature review. In chapter 3 we present a detailed model for the integrated facility

location and inventory allocation problem. Chapters 4 states the assumptions used in

this work and explains a detailed solution technique using the two-phase continuous

approximation approach. In chapter 5, the problem is modeled using a fill-rate ser-

vice measure. Chapter 6 discusses a numerical example and the managerial insights

derived from it. A discrete model and solution for the integrated facility location

5



and inventory allocation problem is presented in chapter 7. Chapter 8 discusses the

problem under a base stock inventory allocation policy.
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CHAPTER II

LITERATURE REVIEW

Past literature relevant to this study can be categorized into five areas - facility

location-allocation, multi-echelon inventory policies, integrated network design and

inventory policy decisions, data approximation for logistic network design, and spatial

approximation.

Facility location problem

The studies in the area of facility location decisions focus on where to locate the

distribution facilities and how to allocate stores to them. There has been an exten-

sive literature in the area of facility location and store allocation problem (see Daskin

[14]). This stream of literature terms the inventory decisions as tactical and ignores

them in the model.

Multi-echelon inventory allocation problem

Multi-echelon distribution network is defined as a network with one warehouse

and several retail stores. In these networks inventory is stored at the retail stores and

the warehouse. The focus of the multi-echelon inventory problem is to make decisions

on the optimal inventory policies at the different facilities that stock inventory. The

break-through work in this area is attributed to Roundy [32] and Muckstadt et al.

[27]. They show that the power-of-two policy is a lower bound on the cost of all poli-

cies. In the years that followed, multi-echelon inventory policies have been studied

extensively (see Ahire et al. [1] for a comprehensive review). One-for-one ordering

and batching ordering policies are the most commonly used policies in the literature
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on multi-echelon inventory problem. In the case of one-for-one policy it is possible

to model the expected inventory and penalty cost expression exactly. This is one of

the reasons why it is a commonly used model and the (Q, r) policy is an extension of

the one-for-one policy. Deuermeyer et al. [15], Schwarz et al.[7], and Ganeshan [19]

examine distribution networks where each facility follows a (Q, r) inventory policy

and the retailers face a stationary Poisson demand. The key to solving the optimal

inventory allocation problem in these studies has been to decompose the system into

smaller sub-systems with their own demand arrival process. An approximate model is

presented in Deuermeyer et al. [15] to calculate the system service levels, and Schwarz

et al. [7] develops an optimization framework to maximize the system fill-rate subject

to a safety stock budget constraint. More recently Ganeshan [19] develops an opti-

mization framework to find the optimal value of (Q, r) parameters while minimizing

the total logistics costs and meeting the desired fill-rate constraint. The problem

in our study is modeled using the decomposition framework in the aforementioned

studies. Our work differs from the work done by Ganeshan as we solve an integrated

problem with multi-echelon inventory decisions between the RDCs and NDCs, and

facility location decisions for the RDCs.

Integrated network design and inventory policy Decisions

There are several papers in the area of integrated facility location and single

location inventory control. The research in this area considers distribution networks

with a single plant serving multiple retailers. Locations for the distribution centers

(DC) is a decision variable and so is the inventory policy at the DC. It is assumed that

each retailer has a variable demand process. Since the addition of the inventory terms

make the objective function nonlinear, researchers have looked at approximations to

linearize it.
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Nozick et al. [29] approximate the safety stock cost at each DC by a linear re-

gression function of the number of DCs and use this to estimate the inventory cost

function. In their model, inventory is stocked at the DC and replenished using a

one-for-one policy. The linear inventory cost function is used in the fixed-charge fa-

cility location model defined in Daskin [14] to determine the least cost set of DC

locations. Nozick et al. [30] extend their previous model by adding service respon-

siveness and uncertainty in delivery time to the DC. Service responsiveness is defined

in terms of stock-outs and time-based delivery. The stock-outs are incorporated in the

safety stock function while the time-based delivery constraint is modeled explicitly as

coverage distance.

Shen et al. [34] study a distribution network in which some of the retailers are

allowed to act as distribution centers to achieve risk-pooling benefits in terms of

inventory cost savings. Their problem solves for which retailers should serve as DCs

and how much inventory to hold at these stocking points. The inventory model studied

in their work is the continuous review (Q, r) model with a Type-I service constraint.

The nonlinear problem in their work is reformulated as a set-covering model. They

propose a column generation algorithm that can solve the problem exactly for two

special cases in O(|n|2log|n|).

An integrated model for capacitated facility location problem (CFLP) and inven-

tory control decisions is presented by Miranda et al. [26]. Their model solves for

the location of each distribution center based on the (Q, r) inventory policy at each

DC location. The solution methodology involves a lagrangian relaxation and the

sub-gradient method. In another work, Erlebacher et al. [16] study a distribution

system design problem with customers having demands distributed uniformly along

a grid network. They propose a two-stage heuristic procedure that fixes the number

of DCs in the first stage to estimate demands at the DCs and use these demands in

the second stage to estimate the number of DCs.
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More recently, Teo et al. [36] study an integrated logistic network problem in

which they consider inventory cost for multiple echelons of inventory stocking loca-

tions. In their model, the inventory cost is modeled at each DC and retailer. They use

the convex inventory minimization function proposed by Roundy [32] along with the

transportation and facility costs to formulate a MIP problem. They propose a column

generation technique to solve their model. Their solution is solvable in O(nlog(n))

time and it is within 2% of the optimal solution when the problem instance is small

(20 warehouses and 100 retailers). This model does not include either the demand

or the supply uncertainty. In another study, Teo et al. [31] extend the previous

model by adding safety stock terms to account for demand variability. In our work

we solve the integrated logistic design (i.e., facility location and inventory allocation)

problem using two different approximation models for a problem with 284 retail stores

representing the southeastern region of a major US retail chain’s distribution network.

Data approximation for logistic network design

This line of research began to appear in the early 1970s in a seminal paper by

Newell [28] that uses data approximation techniques for warehouse location problem.

Geoffrion [20] studies continuous model for warehouse location where a warehouse

serves demand that is distributed uniformly over a plane. A General Optimal Market

Area (GOMA) model is studied by Erlenkotter [17] to determine the optimal area

served from a single production point when the demand is assumed to be distributed

uniformly. It is an extension of the previous work by Geoffrion [20] and Newell [28],

with more detailed expressions for the production cost. Further refinements to the

GOMA model are studied by Rutten et al. [33] by considering a distribution network,

and adding inventory cost terms. Burn et al. [8] study a distribution network with a

single supplier and multiple customers. They propose an analytic method that uses

the spatial density of customers to minimize the inventory and transportation cost
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for freight. Two different distribution strategies, direct shipping and peddling, are

considered in their work. Daganzo [12] presents continuum approximation techniques

for network designing problem in particular focusing on vehicle dispatching schedule.

Langevin et al. [23] present an extensive review of continuous approximation models

that have been developed for freight distribution problems. Dasci et al. [13] study a

production and distribution design problem using the continuum approximation tech-

nique. Their work explicitly models the facility cost by looking at the operational

and acquisition cost components. The model presented in their work is an extension

of a continuous approximation model for the facility design problem. They do not

include inventory costs in their study.

Spatial Approximation

To the best of our knowledge, there are only two papers that study fine refinements

of the continuous space models. These refinements are necessary when the underlying

assumptions for the continuous models fail to hold. Blumenfeld et al. [6] study the

logistics planning models that use continuous space models under general conditions,

i.e., by relaxing the assumption of uniform density for stores. They develop an an-

alytical framework for estimating transportation costs for distributing goods from a

single origin to multiple destinations. In their work they form clusters to account

for dense customer destinations. These clusters are then analyzed as sub-regions of

the main region. Wang et al. [38] study spatial modeling and propose smoothing

techniques for non-homogeneous processes by considering details at different levels of

the distribution network. Their work proposes fine refinements to the approximation

models based on the level of details captured by the data.

We present a two-phase approximation technique to solve the integrated facility

location and inventory allocation problem that captures non-homogeneity of input

parameters discussed in the papers by Blumenfeld [6] and Wang [38]. Later, another
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solution approach is presented which is based on the idea of linearization of nonlinear

terms in the discrete cost functions.

The model presented in this work considers an integrated logistic cost function

with facility location costs, transportation costs, and multi-echelon inventory costs,

and captures both the external and internal sources of variability. The following

questions are answered: 1) which RDC locations should be open 2) which retail store

should be served from which RDC location, and 3) how much inventory to hold at

the RDCs and the NDCs, such that the total facility, inventory and transportation

cost is minimized.
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CHAPTER III

CONTINUOUS APPROXIMATION MODEL FOR THE

INTEGRATED FACILITY LOCATION AND INVENTORY

ALLOCATION PROBLEM

In this chapter, a detailed model is presented for the integrated facility location

and inventory allocation problem. The underlying assumptions are an initial step

towards creating a practical model and have been used extensively in the literature

(see Ganeshan [19], Teo et al. [36], Dasci et al. [13]). Some of these assumptions

would be relaxed to build more complex models.

3.1 Assumptions

1. The distribution network under study is an arborescence network (see Figure 2)

in which each facility can serve multiple facilities in the lower level but can be

served by only one facility from the upper level.

2. The location of the NDC is known and fixed.

3. Demand per unit time for each store is an independent and identically dis-

tributed Poisson process with rate λ.

4. Each product can be analyzed independent of other products. The demand for

a single product is considered in our study.

5. The demand process at each RDC is a Poisson process as it is generated by the

demand coming from the stores in its influence area. There is no reorder cost

at the stores so that the demand at the store gets passed over to the RDC on

a per item basis.
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6. There is no lateral shipment of goods, i.e., movement of goods between facilities

in the same echelon. Moreover, each facility serves its immediate lower echelon

facilities via direct shipment.

7. The stores maintain a minimal amount of inventory and it is ignored in this

analysis. We do not consider the pipeline inventory cost for units in transit

from NDC to RDC or from suppliers to the NDC.

8. Each RDC’s influence area is circular. It has been shown in the literature (Dasci

et al. [13]) that the shape of the service area has little impact on the optimal

solution. Moreover, each RDC is located in the center of the influence area.

9. The distances between the NDCs and the RDCs, and between the RDCs and

the retail stores are calculated using the Euclidean norm.

10. The contraints from capacity limitations at the NDCs and the RDCs are not

considered.

11. The inventory policy at the RDCs and the NDCs is a continuous review policy.

Each RDC r implements the (Qr, rr) ordering policy, i.e., an order of Qr units

is placed everytime the inventory position 1 equals rr. The NDC n implements

(Qn, rn) policy, i.e., it orders Qn units everytime its inventory position equals

rn.

12. Each RDC and NDC makes decentralized decisions on the inventory control

policy.

A multi-level inventory system could be centralized or decentralized. A central-

ized control policy is based on the inventory status of all the stocking facilities;

e.g., a decision to ship a batch from the DC to a retailer should incorporate

1sum of on-hand and on-order inventory
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Figure 2: Arboresence Network.

information on the inventory at the other retailers. Centralized policies are

very complicated to implement. Decentralized policies make decisions on the

inventory control decision at each stocking location without any information on

the inventory at the other locations.

In this analysis, a partly decentralized inventory policy is assumed. Even though

each stocking location controls its own inventory, a centralized cost model is used

in determining the optimal inventory for all stocking points. A centralized cost

model takes the interrelationships between the upper echelon and lower echelon

into account. For example, a higher base stock level at the upper echelon can

reduce the lead time (in terms of stock-out delays) to the lower level.

3.2 Components of the Total Network cost function

This section models the facility location, transportation and inventory costs for the

distribution network under study. Note that these cost functions can be catego-

rized as Mean-dependant and Variance-dependant. Mean-dependant cost functions

are modeled in terms of mean demand and/or mean travel time parameters while the

Variance-dependant cost functions have variance of the demand and/or travel times

parameters. The facility location cost function does not belong to either of the two
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categories. The transportation costs belong to the former category as it is influenced

by the mean demand during the planning horizon. The inventory functions belong

to both the mean-dependant and variance-dependant categories. Detailed analysis

in Sections 3.2.3 and 3.2.4 shows how the inventory cost function depends on the

variance in demand and travel time as well as on the mean demand and the mean

travel times.

All the cost functions are modeled using a continuous approximation technique.

The key idea under this technique is to express the entire distribution network in

terms of smooth continuous functions. Let the distribution network under study

be represented by a continuous service area R, and the discrete store locations be

expressed as a spatial density function δ(x), x ∈ R. If the demand at the stores is

expressed as a spatial density function λ(x), x ∈ R, then the customer demand at

each point x ∈ R can be expressed as a product of the store density and the store

demand density, and is given by λ(x)δ(x), x ∈ R. It is argued in Daganzo et al. [9]

that if the customer demand is a slow varying function of x then the influence area of

each RDC can be approximated by a circular region and it is a slow varying function

of x. Influence area in this analysis is a region such that all the stores located within

this region are served by the RDC located at the center. Let Ar(x) be the influence

area associated with RDC r. If we cover the entire area of the distribution network

with circular influence areas of size Ar(x), then the total number of RDCs (Nr(x)) is

given by
∫

R
(Ar(x))−1dx.

3.2.1 Facility cost for RDC

A fixed rent, Fr, is paid for opening and operating each RDC. The total facility cost

TF(x) is given by multiplying the facility cost of opening each RDC with the number

of RDCs; namely,

TF (x) = FrNr(x) (1)
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3.2.2 Average Transportation cost

We consider two components for the transportation cost-outbound and inbound costs.

For the RDC, the outbound cost is the cost of shipping goods to the retailers located

within its influence area. Inbound cost is the cost of sending shipments from the

NDC to the RDC. For the NDC, the outbound cost is the same as inbound cost for

the RDC. The inbound cost from the outside supplier is not modeled explicitly at the

NDC. Instead this cost is factored in the reorder cost at the NDC. Each transporta-

tion cost component consists of a fixed cost and a variable cost. The fixed component

of cost can be associated with managing the fleet, drivers, etc. The variable cost is

the cost per item.

Average Inbound Transportation cost

Let Cf be the fixed cost per inbound shipment and Cv be the variable cost per item

for each inbound shipment. Then the total inbound transportation cost, TIT(x), is

given by:

TIT (x) = (Cf + CvQr(x))

(

ξE[Dr(x)]

Qr(x)

)

Nr(x) (2)

where (Cf +CvQr(x)) is the transportation cost incured in a single inbound shipment

to a single RDC. The expected demand faced by RDC r is given by E[Dr(x)] (see

equation 5 presented later), ξ is the length of the planning horizon and E[Dr(x)]/Qr(x)

is the expected number of inbound shipments to a single RDC during the planning

horizon. Nr(x) is the number of RDCs in the distribution network.

Remark : The fixed inbound transportation cost can be interpreted as the cost

associated with driver wages and trucking equipment maintenance. The variable cost

on the other hand is the cost associated with the volume of goods ordered in each

shipment. This can be interpreted as the cost associated with picking and packaging

the goods in the warehouse, and loading the truck. There are several studies that

consider the variable inbound cost component as a linear function of the volume per
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shipment (see Rutten et al. [33], Teo et al. [36]).

Outbound delivery cost

Let Cl be the delivery cost per mile per item and fr be the constant that depends on

the distance metric and shape of the RDC service region (see Daganzo, Dasci et al.

[12, 13]). Then the total outbound local delivery cost, TOT(x), is given by

TOT (x) = Cl(fr

√

Ar(x))(ξλ(x)δ(x)R) (3)

where R is the area of the distribution network, Ar(x) is the influence area for RDC

r, while λ(x) is the demand rate at each store during the planning horizon and δ(x)

is the store density function for x ∈ Ar(x). The total customer demand during the

planning horizon (ξ) in the service area R is given by
∫

R
ξλ(x)δ(x)dx. Since λ(x)δ(x)

is a slow varying function of x ∈ R, we get
∫

R
ξλ(x)δ(x)dx = ξλ(x)δ(x)R. The average

outbound distance traveled by each item is given by fr

√

Ar(x) (see Dasci et al. [13]).

3.2.3 Average Inventory cost for RDC

The research in the area of multi-echelon inventory allocation problems extensively

uses continuous review policies (see Ahire et al. [1], Deuermeyer et al. [15], Ganeshan

[19]). In a distribution network with one warehouse, multiple retailers, where both the

warehouse and the retailers hold the inventory, assuming a continuous review policy

allows for the approximation of the actual demand process at the warehouse. This

approximation is needed as the demand process at the warehouse is a complex non-

stationary renewal process as shown in Deuermeyer et al. [15]. It is for this reason

that a continuous review policy is assumed at the RDCs and NDCs in this work as it

facilitates the approximation of the demand process at the NDC. The demand process

at the RDCs and NDCs is needed for the the analysis of the inventory cost functions.

Under a (Q, r) policy, each RDC places an order of Q units every time its inven-

tory position (sum of on-hand and on-order inventory) is at or below r. The order
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quantity Q is known as the cycle inventory as it is used to satisfy the demand over

the replenishment cycle. Reorder point r determines the inventory in stock to satisfy

the demand during the replenishment lead time, i.e., the time between placement of a

replenishment order and its arrival. It is a function of both the mean and variance of

demand during the replenishment lead time. The optimal value of the reorder point

is calculated by either considering the trade-off between holding and penalty cost or

using a service level measure defined by the management. In real life it is hard to

quantify the penalty cost associated with backorders and for this reason we focus

on service level measures to estimate the reorder levels. The different service level

measures are discussed next.

Service level

The two most common ways of defining the service level for a given inventory

policy are:

1. Type-I service level: Proportion of order periods over which demand is fully

met (i.e., when there is no stock-out);

2. Type-II service level: Proportion of demand satisfied immediately from inven-

tory in stock.

An α value for Type-I service level implies that there is a 1−α chance of stocking

out in a given replenishment cycle. Thus, for a distribution center with a (Q, r)

policy, if the demand over the lead time, (Dr,LT ), is normally distributed with mean

E[Dr,LT ] and variance V ar[Dr,LT ], the cycle service level is given by:

Pr(Dr,LT ≤ r) = α (4)

Similarly, a ρ value for Type-II service level implies that during a given replen-

ishment interval ρ proportion of demand will be filled from stock. Thus, using the

fill-rate or Type-II as a service measure allows for the estimation of fraction of de-

mand that will be converted to sales or equivalently what was the expected number
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of units backordered/lost during the replenishment interval.

Even though fill-rate is recognized as the true service measure, it is the Type-I

service that appears widely in the inventory literature (see Shen et al. [34], Miranda

et al. [26], Teo et al. [36]). The reason for this is the relatively simpler expressions

to model the Type-I service levels while determining the inventory policy. It is for

the same reason that we first model the integrated facility location and inventory

allocation problem using a Type-I service measure. Later in chapter V, a Type-II

service measure model is discussed along with the challenges in implementing it in

the problem.

Remark : There are two kinds of inventory considered in this analysis, namely,

the average cycle stock (Q/2) and the average safety stock. Average cycle stock is

the average amount of inventory in between the replenishment cycles. The more the

cycle stock in each cycle, the fewer the reorders. The amount of cycle stock at a

DC depends on the trade-off between the inventory holding cost at that DC and the

fixed reorder cost for the DC every time it places a batch order. The reorder cost is

a function of the mean demand and hence the cycle stock depends on the demand

process. Average safety stock on the other hand is the inventory in stock to handle

demand uncertainty during the replenishment cycle.

Figure 3 depicts the behavior of on-hand inventory over time when the demand

process is uncertain. Reorders are triggered at points (a, b, c, d, e) when the on-hand

inventory just falls below the reorder point. The vertical lines in the figure represent

the order quantity Q. Note that the on-hand inventory at any point lies between

(Q + (ss + x)) and (ss − x) where ss denotes the safety stock and x is a random

quantity that fluctuates around the safety stock level. Thus the average on-hand

inventory is given by (Q + (ss + x) + (ss − x))/2 = Q/2 + ss.

Demand process at the RDC

The demand process at each retail store is Poisson with rate λ(x). It is common
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Figure 3: On-hand inventory versus time in the (Q, r) model, (a, b, c, d, e) are the
reorder times

to assume a Poisson i.i.d demand process for a problem with multiple retail stores

(Ganeshan [19], Nozick et al. [30]). Then the demand process at RDC r serving

influence area Ar(x) is Poisson with a demand rate given by the sum of the demand

rates of individual stores within Ar(x) (see Result 1).

Result 3.1: Let X1, X2, ...., Xn be i.i.d Pois(λi) where i = 1, 2, ...n, then

∑n
i=1 Xi ∼ Pois(

∑n
i=1 λi)

The number of stores in the region Ar(x) is given by
∫

Ar(x)
δ(x)dx. If δ(x) is a slow

varying function of x∈Ar(x) then
∫

Ar(x)
δ(x)dx = δ(x)Ar(x) . Since identical demand

is assumed across the retail stores, the demand rate at RDC r is equal to the demand

rate at each store within Ar(x) times the number of stores, i.e., (λ)(δ(x)Ar(x)). Let

Dr(x) be the demand process at RDC r, then we have Dr(x) ∼ Pois(λ(x)δ(x)Ar(x)).

Using properties for a Poisson distribution, we define the mean and variance of Dr

as:

E[Dr(x)] = λ(x)δ(x)Ar(x) V ar[Dr(x)] = λ(x)δ(x)Ar(x) (5)
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Next, we analyze the demand process at the RDC r during its order replenishment

time LT . The order replenishment time has two main components- travel lead time

and the order processing lead time. Let µr and σr
2 be the mean and variance of the

travel lead time between the NDC and RDC r.

Service level at the RDC

Result 3.2: When the demand over lead time is normally distributed with mean

E[Dr, LT ] and variance V ar[Dr, LT ], we get

rr = E[Dr,LT ] + Zαr

√

V ar[Dr,LT ] (6)

Proof: See Appendix 3(c)

Equation 6 models the reorder point as a sum of the expected demand and the

variability of demand during the lead time. Zαr

√

V ar[Dr,LT ] is the safety stock at

the RDC.

Remark : Note that the safety stock for the RDC is not modeled as a function

of safety stock at the NDC. It is reasonable because if a stock out happens at the

RDC it loses customer demand irrespective of whatever the NDC has enough safety

stock. Thus, it is assumed that the RDC is independently accounting for the total

stock outs at the end customers and hence the interrelationship between the safety

stocks are ignored.

Remark : The waiting time at a lower level facility due to stock-outs at the upper

level facility is less than the travel lead time between the two levels of facilities (see

Ganeshan [19]). This is ensured by the management by carefully selecting the service

level α. Using this line of argument, the waiting time component can be ignored and

only the travel lead time component is used in this analysis.

Thus, the total order replenishment time has a mean and variance given by µr and

σr
2. The expected demand (E[Dr,LT ]) and variance of demand (V ar[Dr,LT ]) at the

RDC during its order replenishment period is given by the following (see Appendix

22



3(b)):

E[Dr,LT ] = µrE[Dr] (7)

V ar[Dr,LT ] = µrV ar[Dr] + σr
2E[Dr]

2 (8)

We can now define the expected inventory cost at the RDC as a function of the

holding cost hr and reorder cost Rr. While holding cost depends on the cycle and

the safety stock, the reorder cost depends only on the cycle stock.

Average Reorder cost for the RDC

Each RDC r orders in batches of Qr(x) and there is a reorder cost, Rr(x), asso-

ciated with each batch. The total reorder cost, TRr(x), for all the RDCs over the

planning horizon is given by

TRr(x) = Nr(x) (Rr(x))

(

E[Dr]

Qr(x)

)

(9)

Average inventory at the RDC is given as the sum of the cycle inventory Qr(x)/2

and safety inventory (Zαr

√

V ar[Dr,LT ]). In order to get the total average cycle plus

safety inventory, we simply multiply by the total number of RDCs, Nr(x), in the NDC

service area, R where Nr(x) is given by
∫

R
(Ar(x))−1dx. We will discuss the design of

the NDC service region under the discussion of the two-phase approximation method

(see Section 4).Let hr be the RDC inventory holding cost per item over the planning

horizon ξ. Then the total RDC inventory holding cost, TIr(x), is given by

TIr(x) = hrNr(x)

(

Qr(x)

2
+ Zαr

√

V ar[Dr,LT ]

)

+ TRr(x) (10)

where E[Dr] is given by equation 5 and all the other variables have been defined

above.

3.2.4 Average Inventory cost for NDC

Each NDC follows a continuous review policy and places an order of Qn(x) units

every time its inventory position is at or below rn(x). Qn(x) is the cycle inventory
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that is used to satisfy the demand over the replenishment cycle. Reorder point rn(x)

is a function of the safety inventory that is stocked to handle the demand uncertainty.

Safety stock is modeled using information on demand during the order replenishment

time. The order replenishment time for the NDC is simply the travel time between

the manufacturer and the NDC. The inventory cost at the NDC is a function of the

holding cost hn and reorder cost Rn(x). While holding cost depends on both the cycle

and safety stock the reorder cost depends only on the cycle stock.

Demand process at the NDC

In order to estimate the demand process Dn(x) at the NDC we need to account

for all the orders from all the RDCs served by the NDC. Different order quantities

and timing for each order creates a variable demand at the NDC. Infact the time

between the demand occurrences at the NDC is a non-stationary renewal process and

the following result is used in this analysis:

Result 3 (see Deuermeyer [15]. pp 173-174): The variance of the demand process

(in units of RDC order Qri
s) at the NDC during its lead time, Ln, is given by:

V ar[Dn,LT ] =
∑

r

(λ(x)δ(x)Ar(x))Ln

(Qr(x))2
(11)

We can interpret this result as follows. The demand rate at RDC r is λ(x)δ(x)Ar(x)

and each RDC r places an order with the NDC every time it has used Qr units. Thus,

the demand rate at the NDC in units of orders from RDC r can be approximated by

(λ(x)δ(x)Ar(x))/Qr(x) where (Qr(x), rr(x)) is the inventory policy at r. The demand

rate during the lead time Ln is obtained by simply multiplying (λ(x)δ(x)Ar(x))/Qr(x)

with Ln. The total demand is obtained by taking the sum of the demand rate due

to each individual RDC. When we take the variance over this new expression we get

the desired result. Note that since the lead time for the NDC is stochastic in our

analysis. As an initial guess we can estimate Ln with the expected lead time to the
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NDC given by µn.

Average Reorder cost for the NDC

Each NDC n orders in batches of Qn(x) and there is a reorder cost, Rn(x), asso-

ciated with each batch. The reorder cost for each NDC, TRn(x), over the planning

horizon is given by

TRn(x) = Rn(x)

(

E[Dn(x)]

Qn(x)

)

(12)

where E[Dn(x)] is the total expected demand at the NDC during the planning

horizon and is given by ξλ(x)δ(x)R

Define the cycle inventory and safety inventory for the NDC as Qn(x)/2 and

Zαn

√

V ar[Dn,LT ] where V ar[Dn,LT ] is given by equation (11) and αn is the service

level at the NDC. Let hn be the inventory holding cost per item during the planning

horizon ξ. Then the total NDC inventory holding cost is given by TIn(x) as

TIn(x) = hn

(

Qn(x)

2
+ Zαn

√

V ar[Dn,LT ]

)

+ TRn(x) (13)

where V ar[Dn,LT ] is given by
∑

r(λ(x)δ(x)Ar(x))µn)/(Qr(x))2.

The cost expression derived in this section are in terms of each point x in the

service region R. The total cost for the entire region is given by
∫

R
(TNC(x))dx,

where TNC(x) is the total network cost and is given by the sum of the facility,

transportation and inventory cost functions. Each expression for the various cost

components captures fine details of the network geometry. We can now define our

integrated facility location and inventory allocation problem as

minimize

∫

R

(TNC(x))dx =

∫

R

(TF (x) + TIT (x) + TOT (x) + TIr(x) + TIn(x))dx

(14)
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s.t.

∑

r

Ar(x) = R (15)

Qn(x) ≥ 0 ∀ n (16)

Qr(x) ≥ 0 ∀ r (17)

Ar(x) ≥ 0 ∀ r (18)

Qn(x), Qr(x), Ar(x) ∈ Z+ (19)

where Qn(x), Qr(x), Ar(x) are the decision variables in this problem. Equation (15)

is the area coverage constraint. It ensures that the entire service region is covered

by the sum of the RDC influence areas. Equation (16), (17) and (18) are the non-

negativity constraints for the decision variables. Equation (19) guarantees integer

values for Qn(x), Qr(x) and Ar(x).

Note that any feasible solution, (Ari
, Q, Qn) for the optimization problem defined

above should be strictly greater than 0. However, adding the equality condition in

constraints (16), (17) and (18) does not change the solution. It follows from the

observation that when (Ari
, Q, Qn) = (0, 0, 0), the value of the objective function

explodes (tends to infinity). Any feasible solution to the optimization problem above

will be away from (0, 0, 0), so adding this point to the constraint set does not change

the nature of the problem.
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3.3 Appendix-Chapter III

Appendix 3(a)

Little’s Law [24]: If n is the average number of customers in the system and τ is

the average arrival rate of customers, then the expected waiting time t is given by

equation 20.

t =
n

τ
(20)

Appendix 3(b)

Result: If X1, X2, ... are independent and identically distributed, and if N is a

nonnegative integer valued random variable independent of the Xs, then

1.

E

[

N
∑

i=1

Xi

]

= E[N ]E[X]

2.

V ar

[

N
∑

i=1

Xi

]

= E[N ]V ar(X) + (E[X])2V ar(N)

Proof 1: We know that

E

[

N
∑

i=1

Xi

]

= E

[

E[
N
∑

i=1

Xi|N ]

]

But

E

[

E[
N
∑

i=1

Xi|N = n]

]

= E

[

n
∑

i=1

Xi

]

by the independence of Xi and N

= nE[X]

Thus,

E

[

E[

N
∑

i=1

Xi|N ]

]

= NE[X]

and so we have

E

[

N
∑

i=1

Xi

]

= E [NE[X]]

= E[N ]E[X]
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In our work, Xi is the demand processes at RDC r at a random time point i,

the value of N is LT , i.e., the travel lead time interval, and
∑LT

i=1 Xi is the demand

process at the RDC during an interval of length equal to the lead time, LT . Thus,

∑LT
i=1 Xi = E[LT ]E[Dr] where Dr is the demand process per unit time at RDC r,

and E[LT ] is the expected travel lead time. Result 1 can be re-stated as E[Dr,LT ] =

µrE[Dr] where E[LT ] = µr.

Proof 2: We have

V ar

(

N
∑

i=1

Xi

)

= E





(

N
∑

i=1

Xi

)2


−
(

E

[

N
∑

i=1

Xi

])2

(21)

If we condition on N, we get

E





(

N
∑

i=1

Xi

)2


 = E



E





(

N
∑

i=1

Xi

)2

|N









Now we have the following identity,

E[Z2] = V ar(Z) + (E[Z])2

So this gives us

E





(

N
∑

i=1

Xi

)2

|N = n



 = V ar

(

N
∑

i=1

Xi

)

+

(

E

[

N
∑

i=1

Xi

])2

= nV ar(X) + (nE[X])2

where Z is a random variable. In particular for any N, we get

E





(

N
∑

i=1

Xi

)2

|N



 = NV ar(X) + (NE[X])2

Taking expectations on both sides we get

E





(

N
∑

i=1

Xi

)2


 = E[N ]V ar(X) + E[N2](E[X])2
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Substiting this in equation 21 gives

V ar

(

N
∑

i=1

Xi

)

= E[N ]V ar(X) + E[N2](E[X])2 −
(

E

[

N
∑

i=1

Xi

])2

= E[N ]V ar(X) + E[N2](E[X])2 − (E[N ]E[X])2

= E[N ]V ar(X) + (E[X])2(E[N2] − (E[N ])2)

= E[N ]V ar(X) + (E[X])2V ar(N)

We use the same line of reasoning as discussed after result 1. V ar(X) is the

variance of the demand process per unit time at RDC r and it is given by V ar[Dr].

V ar(N) is the variability in the travel lead time and it is given by σr
2.

Appendix 3(c)

Pr(Dr
LT < rr) = αr

⇒ Pr(
Dr,LT−E[Dr,LT ]√

V ar[Dr,LT ]
< rr−E[Dr,LT ]√

V ar[Dr ,LT ]
= αr

⇒ Pr(z < rr−E[Dr,LT ]√
V ar[Dr ,LT ]

= αr where z ∼ N(0, 1)

⇒ Φ( rr−E[Dr,LT ]√
V ar[Dr,LT ]

= αr

⇒ rr−E[Dr,LT ]√
V ar[Dr,LT ]

= Φ−1(αr)

⇒ rr = E[Dr, LT ] + Φ−1(αr)
√

V ar[Dr, LT ]

⇒ rr = E[Dr, LT ] + Zαr

√

V ar[Dr, LT ] where Zαr
= Φ−1(αr)
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CHAPTER IV

SOLUTION METHODOLOGY: TWO-PHASE

APPROXIMATION

This section describes a two-phase approximation technique used to solve the facility

location and inventory allocation problem. Two-phase approximation in a extension

to the continuous approximation (CA) approach (see Daganzo [12]). This extension

is applicable when discrete data cannot be approximated with a smooth function as

seen in the distribution network under study in this work (see Figure 4). The distri-

bution network given in figure 4 shows the store locations for a leading automotive

company in US. Clearly the store density in this figure is a non-homogenous Poisson

process. This violates the slow varying property for the input function that is key for

the analysis using the CA technique. A more detailed analysis of the store density

data suggests that there are smaller areas over which these functions are smooth.

Thus the main idea for a two-phase approximation method is to divide the network

into smaller regions over which the discrete variable can be modeled using the slow

varying functions. In phase-I the network is divided into smaller regions such that the

distribution of store density over these sub-regions satisfy the slow varying property.

The problem is modeled over the sub-regions using the cost functions described in

Chapter 3 and it is solved using the CA approach in phase-II.

4.1 Phase-I approximation: NDC Service Area and Grid

Cover-Couple Approach

A Grid Cover-Couple approach is used to partition the service region into sub-regions.

Suppose there are n NDCs in the service region. It is reasonable to assume that the

total demand over the service region R is distributed equally amongst the NDCs.
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Figure 4: Example of a Supply chain.

This problem of assigning equal demands to each NDC is a special case of the classic

Transportation problem (see Appendix 4(a)). The costs in this problem are modeled

in terms of the distance from the NDC and a solution can be obtained by a greedy

heuristic.

Let (A1, A2, ....An) be the areas corresponding to the NDC partitions obtained

after solving the assignment problem. The next step is to design a grid cover for each

of these NDC sub-regions. It is this grid-cover that helps divide each NDC partition

into regions with slow varying functions. A mesh of equal sized squares is designed to

cover each NDC partition. The geometry of the square-mesh is an important decision

and needs to satisfy the following conditions: 1) the smallest level of detail is captured

at the county1 level and 2) within each grid square the demand is slow varying. A

trial and error method is used to choose a feasible size for the grid, e.g., we can look

at all the county level demands and choose a county with the most variable demand.

1The term county is used in 46 of the 50 states of the United States for the tier of state government

authority immediately below the statewide tier and above the township tier, in those states that

sub-divided counties into civil townships.
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Figure 5: Grid Cover

A square grid cover is designed for this county such that the store density within each

grid is nearly constant. Choose the size of this square grid to form a grid cover for

the entire NDC partition. This idea is illustrated in Figure 5. Note that a density

can be assigned to each square on the grid because the store density for each county

is known and county is the lowest level of detail captured by this grid-cover model.

Within each NDC partition, there are grids and each grid has a density associated

with it. The grids with similar densities can be clustered together to form areas over

which the store density function is slow varying. In order to form the clusters, a

tolerance limit for similarity needs to be specified. The tolerance limit defines the

amount of variability in the store density data that is acceptable while treating them

as similar. Let ǫ be the desired tolerance limit. This means that the grids with

density at most ǫ apart are considered similar. Choice of ǫ depends on the store

density pattern in the existing distribution network. Using the tolerance limit the

entire NDC sub-region is covered with clusters. Figure 6 and Figure 7 illustrate this

idea. Clusters (Cj1, Cj2, ....Cji
) exist within each NDC region Ai such that the store
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Figure 6: NDC sub-region.

Figure 7: Coupling.
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Retail store

RDC

Figure 8: Influence area for a RDC

density is nearly constant over each cluster.

4.2 Phase-II approximation: RDC Influence Area using

CA approach

The phase-I approximation divides the service region R into NDC partitions (sub-

regions) (A1, A2, ....An) and each partition Ai has clusters (Cj1, Cj2, ....Cji
) with slow

varying demand. The CA technique can be used to model and solve the facility

location and inventory allocation problem over each cluster within the NDC partition.

The optimization model developed in chapter 3 is used for modeling the total logistic

costs in each cluster. The solution to this optimization problem will give the size of

the circular influence area for each RDC (see Figure 8 for an illustration) and the

optimal values of (Q, r) parameters for the RDC and the NDC. Further, using the size

of the optimal influence area along with the information on the area for each cluster,

the total number of RDCs in each cluster can be calculated. The total number of

RDCs in the entire NDC partition is obtained by summing over the number of RDCs

in each cluster.
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4.3 Continuous Approximation Model

Let us focus on a given NDC partition, say An, and suppose (Cn1
, Cn2

, ....CnN
) be

the clusters within An that are obtained using the grid cover-couple approach. Let

Ari
(x) be the size of the influence area for each RDC in cluster Cni

. The integrated

facility location and inventory allocation problem is given by P(1):

P(1) Minimze

TNC(x) =

N
∑

i=1

(

Cni

Ari
(x)

)

Fr +

N
∑

i=1

(Cf + CvQri
(x))

(

ξλ(x)δi(x)Cni

Qri
(x)

)

+
N
∑

i=1

(

Clfr

√

Ari
(x)ξλ(x)δi(x)Cni

+ Rr

(

ξλ(x)δi(x)Cni

Qri
(x)

))

+
N
∑

i=1

hr

(

Cni

Ari
(x)

)(

Qri
(x)

2
+ ssri

(x)

)

+
Rn

Qn

N
∑

i=1

(ξλ(x)δi(x)Cni
) + hn (Qn(x) + ssn(x))

subject to

Qri
(x) ≥ 0 ∀ ri

Ari
(x) ≥ 0 ∀ ri

Ari
≤ Cni

∀ ri

Qn(x) ≥ 0

Qri
(x),

Cni

Ari
(x)

, Qn(x) ∈ Z+ (22)

where ssri
(x) = Zαri

√

µr (λ(x)δi(x)Ari
(x)) + (σr)2(λ(x)δi(x)Ari

(x))2

ssn(x) = Zαn

√

√

√

√

(

µn

N
∑

i=1

λ(x)δi(x)Cni
(x)

(Qri
(x))2

)

(23)

Note that the problem P(1) is nonlinear in the objective function. Also the ob-

jective function does not exhibit any convex or concave behavior. The expressions

for safety stock at the RDC and the NDC (ssr(x), ssn(x)), and the reorder cost term
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at the NDC make the objective function hard to evaluate. It is possible, however, to

define a lower bound on the TNC(x) function which makes the ssr(x) term linear. For

the special case when Qi = Q holds, the ssn(x) term becomes linear as well. Then the

only nonlinear term in the objective function is the reorder cost at the NDC. We will

show that even with the presence of the nonlinear term it is possible to decompose

the problem for each cluster and get a solution. For this analysis, we start by focusing

on the solution methodology for problem P(1) for the special case. Later, a solution

for the original case with unequal Qis is discussed.

The following monotone property is used to replace the objective function with

another function that is a lower bound on the original function.

Monotone property (see Appendix 4(b)): If a and b are positive numbers and x >

0, then
√

ax + bx2 >
√

bx − a

2
√

b

Result 4.1: A lower bound on the TNC(x) function in problem P(1) can be obtained

by using the following relation.

√

µrλ(x)δi(x)Ari
(x) + (σr)2(λ(x)δi(x)Ari

(x))2

> σr(λ(x)δi(x)Ari
(x)) − µr

2σr

Proof of Result 4.1. : Follows from the monotone property where a = µr, b =

(σr)
2, x = λ(x)δi(x)Ari

(x)

Remark: Since each cluster within a given NDC partition has slow varying de-

mand, we can ignore the dependance of all continuous function on parameter x. For

the rest of this study, the variables are represented as Ari
, Qri

, Qn, λ and δ.
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4.3.1 Multi-variate Optimization

Before we present the analyis for the integrated facility location and inventory allo-

cation problem, it is important to familiarize the reader with some definitions and

theorems from multi-variate optimization (see (Bazaraa et al. [5]). These theorms

will be used in the next two sections to understand the behavior of the objective

function. It is important to understand the convex or concave behavior of the objec-

tive function and understand whether the stationary points correspond to the local

or global optimum.

Definition 4.1: Let f be a twice differentiable function. Then the Hessian matrix

of f is given by (Bazaraa et al. [5], pg. 90):

H(~x) =



























∂2f(~x)
∂x1

2

∂2f(~x)
∂x1x2

... ∂2f(~x)
∂x1xn

∂2f(~x)
∂x2x1

∂2f(~x)
∂x2

2 ... ∂2f(~x)
∂x2xn

. . ...

. . ...

∂2f(~x)
∂xnx1

∂2f(~x)
∂xnx2

... ∂2f(~x)
∂xn

2



























Definition 4.2: Given a symmetric matrix A

A =







a b

c d







A is positive semidefinite iff ad − bc ≥ 0

Theorem 4.1 (Bazaraa et al. [5], pg. 96-97): Let

H =







h11 qt

q G







where q =0 if h11 = 0 and, otherwise, h11 > 0. Perform elementary Gauss-Jordon

operations using the first row of H to reduce it to the following matrix in either case:

H =







h11 qt

0 Gnew






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Then, Gnew is a symmetric (n-1)x(n-1) matrix, and H is positive semidefinite if and

only if Gnew is positive semidefinite. Moreover, if h11 > 0, then H is positive semidef-

inite if and only if Gnew is positive semidefinite.

Theorem 4.2 (Bazaraa et al. [5], pg. 91): Let S be a nonempty open convex set

and let f : S ⇒ E1 be twice differntiable on S. Then, f is convex if and only if the

Hessian matrix is positive semidefinite at each point in S.

Theorem 4.3 (Bazaraa et al. [5], pg 134): Suppose that f : En −→ E1 is twice

differentiable at x. If ▽f (x) = 0 and H(x) is positive definite, then x is a strict local

minimum.

4.3.2 Equal Reorder Quantity Q

It is a common practice in multi-echelon inventory studies to assume that the reorder

quantity Qri
is the same across all retailers (see Deuermeyer et al. [15], Ganeshan

[19]). For the case when Qri
= Q holds, the reorder quantity at the warehouse, Qn,

is expressed as an integer multiple of Q. For the first part of the analysis (case 1),

we assume that Qri
= Q at all the RDCs and Qn = kQ for the NDC. Later, in the

second part (case 2), the problem is solved for unequal Qri
s.

The original problem can be expressed by a modified problem P E where φ (A, Q, Qn)

is a lower bound on TNC for the case Qri
= Q . Note that A is a n-dimensional row
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vector defined by A = [Ar1
, Ar2

, ..., ArN
].

P E Minimze

φ (A, Q, Qn) =

N
∑

i=1

(

Cni

Ari

)

Fr +

N
∑

i=1

[Cf + CvQ]

(

ξλδiCni

Q

)

+
N
∑

i=1

Clfr

√

Ari
ξλδiCni

+
N
∑

i=1

Rr

(

ξλδiCni

Q

)

+
N
∑

i=1

(

Cni

Ari

)

hr
Q

2

+

N
∑

i=1

hr

(

Cni

Ari

)

Zαri

(

σrλδiAri
− µr

2σr

)

+
Rn

kQ

N
∑

i=1

(ξλδiCni
) + hn





kQ

2
+ Zαn

√

√

√

√µn

N
∑

i=1

λδiCni





subject to

Q ≥ 0 ∀ i = 1, 2, ..., N

k ≥ 2

Ari
≥ 0 ∀ i = 1, 2, ..., N

Ari
≤ Cni

∀ i = 1, 2, ..., N

Q,
Cni

Ari

, k ∈ Z+

The stationary point for the objective function φ(A, Q, Qn) is given by equations

(24), (25) and (26) (for details see appendix 4(c)):

Ari
=

(

2Fr + hrQ − hrZαi
µr

σr

Clfrξλδi

)2/3

(24)

k =
1

Q

√

√

√

√

(

2Rn(
∑N

i=1 ξλδiCni
)

hn

)

(25)

Q =

√

√

√

√

√





∑N
i=1

(

Cf + Rr + Rn

k

)

ξλδiCni

∑N
i=1

hrCni

2Ari

+ hnk
2



 (26)

Result 4.2 : φ (A,Q, k) is a convex function for values of (A, Q, k) satisfying the
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following inequalities given by (27) (see appendix 4(c) for proof).

(

∂2φ

∂Q2
−

N
∑

i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari

2

∂2φ

∂Ari
∂Q

)

> 0

(

∂2φ

∂Q2
−

N
∑

i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari

2

∂2φ

∂Ari
∂Q

)

∂2φ

∂k2
−
(

∂2φ

∂Q∂k

∂2φ

∂k∂Q

)

> 0 (27)

Result 4.3 : The stationary point of φ (A, Q, k) is a local minimum.

Proof. The stationary point obtained by solving equations (24), (25) and (26) satisfy

the inequalities given by (27). Then by theorem 4.3 the result follows.

Definition : A function f : X x Y → R is called biconvex, if f(x, y) is convex in y

for fixed x ∈ X, and f(x, y) is convex in x for fixed y ∈ Y.

Result 4.4 : φ (A, Q, k) is a biconvex function for all values of Q and k, and values

of A satisfying equation (24).

Proof. For a fixed value of (Q, k)

∂2φ

∂Ari

2 = −ClfrξλδiCni

4Ari

3/2
+ 2

(

Cni
Fr + (Cni

hrQ/2) − (hrZαi
µrCni

/2σr)

Ari

3

)

> 0 ⇔ Ari
< (4)(2/3)

(

2Fr + hrQ − (hrZαi
µr/σr)

Clfrξλδi

)2/3

which holds for Ari
=

(

2Fr + hrQ − hrZαi
µr

σr

Clfrξλδi

)2/3

Similarly for a fixed value of vector A, the objective function φ(A,Q, k) is convex in

Q and k. It can be be shown that the hessian matrix corresponding to the objective

function φ(A,Q, k) at the fixed value of A is positive semidefinite.

|H| =

∣

∣

∣

∣

∣

∣

∣

∂2φ
∂Q2

∂2φ
∂k∂Q

∂2φ
∂Q∂k

∂2φ
∂k

2

∣

∣

∣

∣

∣

∣

∣

≥ 0 (see Appendix 4(c) for derivations)

40



4.3.2.1 Solution Procedure

In this section a solution methodology for problem P E is explained in detail. The

objective function of problem P E is nonlinear but it is shown to be convex over

a certain region defined by inequalities given by (27), and is biconvex. A partially

unconstrained version is solved first and this solution is modified to get a near optimal

solution for problem P E. The partially unconstrained version of the problem ignores

the integer value constraint (Q,
Cni

Ari

, k ∈ Z+).

For a fixed value of A, an optimal solution (Q, k) for the unconstrained problem

is obtained by simultaneously solving equations (25) and (26). The equations can

be solved simultaneously using an iterative prodecure and the solution generated is

substituted in equation (24) to obtain an optimal value of A and the procedure is

repeated again with the value of A. If the procedure terminates in finite time, then

a stationary point is obtained. Next the stationary point is checked for compatibility

with the inequalities given by (27). In case both the inequalities are satisfied, then

the stationary point is an optimal solution for the partially unconstrained problem.

From this solution an optimal solution to problem P E is generated by forcing the

integer value constraint (Q,
Cni

Ari

, k ∈ Z+).

If the stationary point does not lie in the convex region of φ, a Response Sur-

face technique is adopted to generate a good solution for the problem. This will be

discussed in detail in section 4.4.

The steps for the iterative procedure are explained below:

1. Fix k = 0, Qk = 1.

2. Calculate Ari
, i = 1,2,..N, using equation 24.

3. Use the value of Ari
, i = 1,2,..N, in equations 25 to get Q and calculate k using

26. Iterate between the values of Q and k till they converge.

4. If Q = Qk, Stop go to step 5. Else k = k + 1, and Qk = Q∗ repeat Step 2.

41



5. If all Ari
are integers, go to step 6, else for all non-integer Ari

get all possible

combinations of ⌈Ari
⌉ and ⌊Ari

⌋. For each set of new Ari
, get Q and k using

step (3).

6. Adjust Q and k to get the nearest integer value. Evaluate the objective function

at each set of values of Ari
, Q and k. The set corresponding to the minimum

value is the solution.

4.3.3 Unequal Qs

For analyzing the problem under this case it is assumed that the RDCs within the

same cluster Cni
order the same quanity Qri

from the NDC. However, different RDCs

in different clusters can order different quantities. A key challenge in the case of

unequal Qri
is to how to define Qn in terms of Qri

. In this case, Qn is defined as

f(Qri
). As an initial guess, f(Qri

) can be defined as
∑N

i=1 Qri
. A lower bound is

obtained for the problem using result 4.1. The objective function of the lower bound

problem P U is non-linear in Ari
(x), Qri

and Qn but it is possible to decompose the

problem over the N clusters.

Problem P U : Minimize

τ(A,Q, Qn) =

N
∑

i=1

(

Cni

Ari

)

Fr +

N
∑

i=1

(Cf + CvQri
)

(

ξλδiCni

Qri

)

+
N
∑

i=1

Clfr

√

Ari
ξλδiCni

+ Rr

N
∑

i=1

(

ξλδiCni

Qri

)

+

N
∑

i=1

(

Cni

Ari

)

hr

(

Qri

2

)

+

N
∑

i=1

(

Cni

Ari

)

hrZαri

(

σrλδiAri
− µr

2σr

)

+ hn





Qn

2
+ Zαn

√

√

√

√

N
∑

i=1

µnλδiCni



+
N
∑

i=1

(

Rn
ξλδiCni

Qn

)
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subject to

Qri
≥ 0 ∀ ri

Ari
≥ 0 ∀ ri

Qn = f(Qri
)

Qri
,
Cni

Ari

, Qn ∈ Z+ ∀ ri

where A is the same n-dimensional row vector defined before and Q is the n-

dimensional row vector defined by Q = [Qr1
, Qr2

, ..., QrN
]. Note that for any value of

(A,Q, Qn), the value of the objective function τ([A,Q, Qn) obtained by solving P U

is strictly less than the value of the objective function TNC for the original problem

P (1).

The stationary point for the objective function τ satisfies the following equations

(see appendix 4(d) for derivation of the stationary point).

Ari
=

(

2Fr + hrQri
− hrZαi

µr

2σr

Clfrξλδi

)2/3

(28)

Qn =

√

√

√

√

(

2Rn

∑N
i=1 ξλδiCni

hn

)

(29)

Qri
=

√

2Ari

(

(Cf + Rr + (Rn/Qn)) ξλδiCni

Cni
hr

)

(30)

The objective function τ(A,Q, Qn) is analyzed for possible convex or concave behav-

ior using properties of the hessian matrix (see Theorem 4.1 and 4.2).

Result 4.5: τ(A,Q, Qn) is convex on a region L(A,Q, Qn) defined by the following

inequalities.

2

Ari

3

(

Cni
+

hrCni
Qri

2
− hrZαi

µr

2σr

)

− Clfrξλ(x)δi(x)Cni

4Ari

3/2
> 0

|H| =

∣

∣

∣

∣

∣

∣

∣

qN,N − (qN aN )2

aN aN
qN,N+1

qN+1,N qN+1,N+1 −
∑N

i=1
qN+1,i

qi,i
qi,N+1

∣

∣

∣

∣

∣

∣

∣

≥ 0
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where

ai,i =
∂2τ

∂Ari

2 , qi,i = ∂2τ
∂Qri

2 , qN+1,N+1 =
∂2τ

∂Qn
2

aiqi =
∂2τ

∂Ari
∂Qri

, qiai = ∂2τ
∂Qri

∂Ari

qN+1,i =
∂2τ

∂Qn∂Qri

qi,N+1 =
∂2τ

∂Qri
∂Qn

, aiqN+1 = ∂2τ
∂Ari

∂Qn
, qN+1ai =

∂2τ

∂Qn∂Ari

i = 1, 2..., N

Result 4.6 : τ(A,Q, Qn)is a biconvex function of [A] and [Q, Qn]. For proof see

appendix 4(d)

4.3.3.1 Solution Procedure

A solution procedure for the partially unconstrained problem, one that ignores the

integer value constraint (Qri
,

Cni

Ari

, Qn ∈ Z+, i = 1,2,...,N) and the linkage constraint

between Qn and Qri
(Qn =

∑N
i=1 Qri

), is derived first. Again an iterative procedure,

similar in idea to one formulated for the equal reorder quantity case, is used. The

solution generated using the iterative procedure is checked for compatibility with

the convex region inequalities (Result 4.5). If the inequalities are satisfied then the

solution is a near optimal solution for problem P U , else a Response Surface method

is used to generate a good solution for the problem.

The steps for the iterative procedure are explained below:

1. Fix k = 0, Qk = [1,1,...,1].

2. Calculate Ari
, i = 1,2,..N, using equation (28).

3. Use the value of Ari
, i = 1,2,..N, in equation (29) to get Q = Qri

and calculate

Qn using (30). Iterate between the values of Q and Qn till it converges.

4. If Q = Qk, Stop go to step 5. Else k = k + 1, and Qk = Q repeat Step 2.
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5. If all Ari
are integers, go to step 6, else for all non-integer Ari

get all possible

combinations of ⌈Ari
⌉ and ⌊Ari

⌋. For each set of new Ari
, get Q and Qn using

step (3).

6. Adjust Q to get the nearest integer values. Adjust Qn such that Qn =
∑N

i=1 Qri
.

Evaluate the objective function at each set of values of Ari
, Q and Qn. The set

corresponding to the minimum value is the solution.

4.4 Response Surface Analysis

The optimal solution (A, Q and Qn) obtained by solving problem P E abd P U is sub-

stituted in the original objective function TNC to get a feasible solution for problem

P(1). It would be interesting to see how the value of the objective function changes in

the neighborhood of (A, Q and Qn). To carry out this analysis a statistical technique

is used, and explained in detail.

The Response Surface technique as a tool that is used to improve the feasible

solution. The basic idea in this method is to perturb the values of all the decision

variables around the optimal values obtained so far and generate a response curve for

the original TNC function.

A factorial experiment is designed with 2N +1 variables where N is the number of

zones within a given NDC partition. There are N variables corresponding to the RDC

influence area, N variables for the order quanity for the clusters and one variable for

the unknown k. Since running a 22N+1 experiment can get very time consuming and

expensive, a fractional factorial experiment (FFE) of the form 2(2N+1)−p is considered.

In a FFE, (2N + 1) − p variables are fixed and these variables are used to generate

the remaining p from them. An experiment is set up using this information for two

levels- high (1) and low (-1). The experiment data is then transformed to match

the original scale of the variables. The objective function is evaluated at each of the

design points and we try to fit a regression model (linear or nonlinear) to it. This
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regression equation is an estimate of the Response surface. The nature of the surface

is inspected by using the first and second order conditions (i.e., by taking the first

and the second order derivatives) and an optimal value for the decision variables is

calculated using this information.

4.5 Discussion

The integrated model is compared with the non-integrated model and the average

model. The non-integrated model is the one where the facility location and inventory

decisions are made in isolation of each other. The model is first solved for the optimal

influence area using information on the facility location cost and the transportation

cost. Using this value of the influence area in the inventory and transportation cost

functions, the optimal inventory decisions are made.

4.5.1 Stationary point for the non-integrated problem - Equal Q

Ari
=

(

2Fr

Clfrξλδi

)2/3

k =
1

Q

√

√

√

√

(

2Rn

hn

)

(

N
∑

i=1

ξλδiCni

)

Q =

√

√

√

√

√





∑N
i=1

(

Cf + Rr + Rn

k

)

ξλδiCni

∑N
i=1

hrCni

2Ari

+ hnk
2





The average model is where the entire distribution region is assumed to be a

smooth continuous region. It is also assumed that the store density and demand

density functions are smooth over this region. In this model, the store density function

for the entire region is defined by the average value of individual store densities, i.e,

each δi = δ =
∑N

i=1
δi

N
. Then,

∑N
i=1 Cni

is replaced by R, size of the entire distribution

network. The decision variables in this case are Ar, Q and k.
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4.5.2 Stationary point for the integrated model using averages

Ar =

(

2Fr + hrQ − hrZαr µr

σr

Clfrξλδ

)2/3

k =
1

Q

√

(

2Rn

hn

)

(

ξλδR
)

Q =

√

√

√

√

(

(

Cf + Rr + Rn

k

)

ξλδR
hrR

2Ar
+ hnk

2

)

The analysis for the integrated facility location and inventory allocation problem

sheds light on some important issues. Among the key observation, we have

Observation 1. Optimal size of the RDC influence area is a function of order

up to level Qr. Thus, it is important to incorporate the inventory decisions into

the network design problem. Since the decision variables do not have a closed form

expression a numerical iterative procedure is used to get a solution.

Observation 2 It is assumed in the above analysis that each cluster can be

analyzed separately. This can only happen when a NDC serving different clusters

reviews their inventory position periodically. In this case, the inventory policy at the

NDC is a periodic review (T, r, nQ) policy [1]. The study of the NDC periodic review

policy and its impact on the network design is left for the future work.
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4.6 Appendix

Appendix 4(a)

Finding the NDC partitions requires solving the following optimization problem.

Min
N
∑

i=1

N
∑

j=1

dijXij

Subject to
N
∑

i=1

Xij = 1 ∀j

N
∑

j=1

Xij = k ∀i

where

Xij =











1 if retailer j is assigned to NDC i

0 otherwise

Suppose N is the total number of NDCs in the distribution network and m is the

total retailers in the network. Then k = m/N follows from the assumption that each

NDC handles equal demand. Note that in this analysis each store has equal demand.

Thus, assigning equal number of stores to each NDC guarantees that each NDC has

equal demand.

Appendix 4(b)

Proof for Monotone Property.

ax + bx2 > ax + bx2 − a2

4b

=

(√
bx − a

2
√

b

)2

⇒
√

ax + bx2 >

(√
bx − a

2
√

b

)
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Appendix 4(c)

(1) First order conditions for deriving the stationary point for function φ(A,Q, k).

∂φ

∂Ari

=
ClfrξλδiCni

2Ari

1/2
− 2Cni

Fr + Cni
hrQ − (Cni

hrZαr
µr/σr)

2Ari

2 = 0

∂φ

∂Q
=

N
∑

i=1

(

hrCni

2Ari

)

+
hnk

2

− (
∑N

i=1(Cf + Rr + Rn/k)ξλδiCni
)

Q2
= 0

∂φ

∂k
=

hn

2
−
∑N

i=1 RnξλδiCni

Qk2 = 0

The Hessian matrix corresponding to the function φ is given by:

H =







































a1,1 0 ... 0 a1q 0

0 a2,2 ... 0 a2q 0

. . ... . . .

. . ... . . .

0 0 ... an,n anqn 0

qa1 qa2 ... qaN qq qqn

0 0 ... 0 qnq qnqn







































where

ai,i =
∂2φ

∂Ari

2 , qq = ∂2φ
∂Q2 , qnqn =

∂2φ

∂k2

aiq =
∂2φ

∂Ari
∂Q

, qai = ∂2φ
∂Q∂Ari

qnq =
∂2φ

∂k∂Q

qqn =
∂2φ

∂Q∂k
, aiqn = ∂2φ

∂Ari
∂k

, qnai =
∂2φ

∂k∂Ari

i = 1, 2..., N

Convex region for φ(A,Q, k)
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Using theorem 4.2, φ(A,Q, k) is convex iff the hessian matrix of φ is positive

semidefinite. And from theorem 4.1, hessian matrix of φ is positive definite for values

of (A,Q, k) satisfying

.

|G| =

∣

∣

∣

∣

∣

∣

∣

(

∂2φ
∂Q2 −

∑N
i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari
2

∂2φ
∂Ari

∂Q

)

∂2φ
∂Q∂k

∂2φ
∂k∂Q

∂2φ
∂k

2

∣

∣

∣

∣

∣

∣

∣

> 0 and

(

∂2φ

∂Q2
−

N
∑

i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari

2

∂2φ

∂Ari
∂Q

)

> 0

First and second order derivatives for the function φ(A,Q, k)

∂φ

∂Ari

=
ClfrξλδiCni

2Ari

1/2
− 2Cni

Fr + Cni
hrQ − (Cni

hrZαr
µr/σr)

2Ari

2

∂φ2

∂Ari

2 = −ClfrξλδiCni

4Ari

3/2
+

2Cni
Fr + Cni

hrQ − (Cni
hrZαr

µr/σr)

2Ari

3

∂φ2

∂Q∂Ari

= −Cni
hr

2Ari

2

∂φ2

∂Qn∂Ari

= 0

∂φ

∂Q
= −

∑N
i=1(Cf + Rr + Rn/k)ξλδiCni

Q2
+

N
∑

i=1

(

hrCni

2Ari

)

+
hnk

2

∂2φ

∂Q2 = 2

(

∑N
i=1(Cf + Rr + Rn/k)ξλδiCni

Q3

)

∂2φ

∂Ari
∂Q

= −hrCni

2A2
ri

∂2φ

∂k∂Q
=

N
∑

i=1

RnξλδiCni

Q2k2 +
hn

2
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∂φ

∂k
=

hnk

2
−
∑N

i=1 RnξλδiCni

Qk2

∂2φ

∂k2 = 2

(

∑N
i=1 RnξλδiCni

Qk3

)

∂2φ

∂Ari
∂k

= 0

∂2φ

∂Q∂k
=

∑N
i=1 RnξλδiCni

Q2k2 +
hn

2

(2) For a fixed vector A, the hessian matrix of φ(A, Q, k) is positive semidefinite.

∂2φ

∂Q2 = 2

(

∑N
i=1(Cf + Rr + Rn/Qn)ξλδiCni

Q3

)

∂2φ

∂k∂Q
=

N
∑

i=1

RnξλδiCni

Q2k2 +
hn

2

∂2φ

∂k2 = 2

(

∑N
i=1 RnξλδiCni

Qk3

)

∂2φ

∂Q∂k
=

N
∑

i=1

RnξλδiCni

Q2k2 +
hn

2

|H| =







∂2φ
∂Q2

∂2φ
∂k∂Q

∂2φ
∂Q∂k

∂2φ
∂k

2






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|H| =

(

2

∑N
i=1 RnξλδiCni

Qk3

)(

2

∑N
i=1 RnξλδiCni

kQ3

)

+

(

2

∑N
i=1 RnξλδiCni

Qk3

)(

2

∑N
i=1(Cf + Rr)ξλδiCni

Q3

)

−
(

∑N
i=1 RnξλδiCni

Q2k2 +
hn

2

)(

∑N
i=1 RnξλδiCni

Q2k2 +
hn

2

)

= 4

(

∑N
i=1 RnξλδiCni

Q2k2

)2

−
(

∑N
i=1 RnξλδiCni

Q2k2

)2

+

(

2

∑N
i=1 RnξλδiCni

Qk3

)(

2

∑N
i=1(Cf + Rr)ξλδiCni

Q3

)

−
(

h2
n

4
+

hn

∑N
i=1 RnξλδiCni

Q2k2

)

= 3

(

∑N
i=1 RnξλδiCni

Q2k2

)2

+

(

∑N
i=1 RnξλδiCni

Q2k2

)

∗
[

4

Q2k

N
∑

i=1

(Cf + Rr)ξλδiCni
− hn

]

− h2
n

4

For k =
1

Q

√

2Rn

∑N
i=1 ξλδiCni

hn

|H| =
3h2

n

4
+

k(Cf + Rr)h
2
n

Rn

− h2
n

2
− h2

n

4

=
k(Cf + Rr)h

2
n

Rn

> 0 always

Appendix 4(d)

The Hessian matrix corresponding to the function τ is given by:
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H =



































































a1,1 0 ... 0 a1q1 0 ... 0 0

0 a2,2 ... 0 0 a2q2 ... 0 0

. . ... . . . ... . 0

. . ... . . . ... . 0

0 0 ... an,n 0 0 ... anqn 0

q1a1 0 ... 0 q1,1 0 ... 0 q1,N+1

0 q2a2 ... 0 0 q2,2 ... 0 q2,N+1

. . ... . . . ... .

. . ... . . . ... .

0 0 ... qnan 0 0 ... qn,n qn,N+1

0 0 ... 0 qN+1,1 qN+1,2 ... qN+1,n qN+1,N+1



































































where

ai,i =
∂2τ

∂Ari

2 , qi,i = ∂2τ
∂Qri

2 , qN+1,N+1 =
∂2τ

∂Qn
2

aiqi =
∂2τ

∂Ari
∂Qri

, qiai = ∂2τ
∂Qri

∂Ari

qN+1,i =
∂2τ

∂Qn∂Qri

qi,N+1 =
∂2τ

∂Qri
∂Qn

, aiqN+1 = ∂2τ
∂Ari

∂Qn
, qN+1ai =

∂2τ

∂Qn∂Ari

i = 1, 2..., N

First order conditions for finding the stationary point:

∂τ

∂Ari

= − 1

(Ari
)2

[

Cni
Fr +

(

Cni
hrQri

2

)

−
(

hrZαi
µr

2σr

)]

+
ClfrξλδiCni

2
√

Ari

= 0

∂τ

∂Qri

= − [Cf + Rr + (Rn/Qn)]

(

ξλδiAri

Q2
ri

)

+

(

hrCni

2Ari

)

= 0

∂τ

∂Qn

=
hn

2
− 1

Q2
n

∑N
i=1 RnξλδiCni

Qi

= 0
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First and second order derivatives for the objective function τ([Ari
], [Qri

], Qn)

∂τ

∂Ari

= − 1

(Ari
)2

[

Cni
Fr +

(

Cni
hrQri

2

)

−
(

hrZαi
µr

2σr

)]

+
ClfrξλδiCni

2
√

Ari

∂2τ

∂Ari

2 =
2

(Ari
)3

[

Cni
Fr +

(

Cni
hrQri

2

)

−
(

hrZαi
µr

2σr

)]

− ClfrξλδiCni

4Ari

3/2

∂2τ

∂Qri
∂Ari

=
−hrCni

2Ari

2

∂2τ

∂Qn∂Ari

= 0

∂τ

∂Qri

= − [Cf + Rr + (Rn/Qn)]

(

ξλδiAri

Q2
ri

)

+

(

hrCni

2Ari

)

∂2τ

∂Qri

2 = 2 [Cf + Rr + (Rn/Qn)]

(

ξλδiAri

Q3
ri

)

∂2τ

∂Ari
∂Qri

=
−hrCni

2Ari

2

∂2τ

∂Qn∂Qri

=
RnξλδiCni

Q2
nQ2

i

∂τ

∂Qn
=

hn

2
− 1

Q2
n

∑N
i=1 RnξλδiCni

Qi

∂2τ

∂Qn
2 =

2

Q3
n

∑N
i=1 RnξλδiCni

Qi

∂2τ

∂Ari
∂Qn

= 0

∂2τ

∂Qri
∂Qn

=
RnξλδiCni

Q2
nQ2

i

Proof: τ(A, Q, Qn) is a biconvex function.

(1) For a given value of Qri
, i = 1,2,..N, and Qn, τ(A) is a convex function.
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∂2τ

∂Ari

2 > 0 ⇔ 2

(Ari
)3

[

Cni
Fr +

(

Cni
hrQri

2

)

−
(

hrZαi
µr

2σr

)]

>

ClfrξλδiCni

4Ari

3/2

⇔ Ari
< 42/3

[

Fr + hrQri
− (hrZαi

µr/σr)

Clfrξλδi

]2/3

which holds for all values of Ari
satisfying the stationary condition

Ari
=

[

Fr + hrQri
− (hrZαi

µr/σr)

Clfrξλδi

]2/3

(1) For a given value of Ari
, i = 1,2,..N, τ(Q, Qn) is a convex function.

H =

































q1,1 0 ... 0 q1,N+1

. q2,2 ... 0 q2,N+1

. . ... . .

. . ... . .

. . ... qn,n qn,N+1

qN+1,1 qN+1,2 ... qN+1,n qN+1,N+1

































where H is the hessian matrix for τ(Q, Qn). Using theorem 4.1 and 4.2, τ(Q, Qn) is

convex iff H is positive definite.

H is positive definite iff

∣

∣

∣

∣

∣

∣

∣

qN,N qN,N+1

qN+1,N qN+1,N+1 −
∑N

i=1
qN+1,i

qi,i
qi,N+1

∣

∣

∣

∣

∣

∣

∣

> 0

|H| = qN,N

(

qN+1,N+1 −
N
∑

i=1

qN+1,i

qi,i
qi,N+1

)

− qN,N+1qN+1,N

= 2γ

(

ξλδNArN

Q3
rN

)

[

2

Q3
n

∑N
i=1 RnξλδiCni

Qi

(

1 − Rn/Qn

γ

)

]

where γ = (Cf + Rr + Rn/Qn)

|H| > 0 because (Rn/Qn)/γ < 1
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CHAPTER V

TYPE-II SERVICE LEVEL: FILL-RATE

Consider a specific replenishment order of Q units for a distribution center (DC) with

a continuous review (Q, r) policy . During the replenishment lead time, there are

r units of inventory in stock. Fill-rate at the DC is then defined as the fraction of

demand during the replenishment lead time that is filled from stock (see Ganeshan

[19], Deuermeyer et al. [15]).

Fill rate is considered a more relevant measure of service as it enables the DC to

estimate what fraction of demand was converted to sales or equivalently what was the

expected number of units backordered or lost during the replenishment interval. Even

though fill-rate is recognized as the true service measure, it is the cycle service level or

Type-I service that appears widely in the inventory literature. The reason for this is

relatively simpler expressions to model the type-1 service levels while determining the

inventory policy. There are a selected few papers in the area of multi-echelon inventory

that model service levels in terms of fill-rate (Deuermeyer et al. [15], Schwarz et al.

[7], and Ganeshan [19]).

There are two kinds of inventory considered in this analysis, namely, the average

cycle stock (Q/2) and the average safety stock. Average cycle stock is the amount

of inventory in between the replenishment cycles. The more the cycle stock in each

cycle, the fewer the reorders. The amount of cycle stock at a DC depends on the

trade-off between the inventory holding cost at that DC and the fixed reorder cost

for the DC every time it places a batch order. The reorder cost is a function of the

mean demand and hence the cycle stock depends on the mean of the demand process.

Average safety stock on the other hand is the inventory in stock to handle demand
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uncertainty during the replenishment cycle. The amount of safety stock depends on

the service level and and the demand process during the lead time.

In this chapter, a continuous approximation approach is presented to model the

integrated facility location and inventory allocation problem using a fill-rate service

(Type-II service) approach. The key difference beteen this problem and the problem

presented in chapter IV lies in the representation of the safety stock term. A detailed

discussion on the problem formulation is presented next. Later a hierarchical approach

(see Houtum [37]) is discussed to solve the problem. The need for such an approach

arises mainly due to the presence of the reorder point terms in the objective function

and the inability to express them as a closed form expression. The key feature of

the hierarchical approach is to make decisions for the two types of inventories in two

levels. Cycle stock decisions are made at the first level, along with the facility location

decisions, to determine the optimal reorder batch size, while the second level decisions

focus on the safety stock levels (and hence the reorder points).

5.1 Fill-rate model for inventory

The objective function is modeled in terms of the fixed facility location cost, inbound

and outbound transportation cost, and inventory holding cost. The goal is to mini-

mize the objective function and ensure that the fill-rate service level constraint is met

at each RDC and NDC.

The expressions for the total facility cost and the total expected inbound, and

outbound transportation cost do not depend on the service measure. Thus, these

expressions take the same form as in chapter IV. The expected inventory cost terms

for the RDCs and the NDCs differ from those used in the previous chapter. This is

because the expected inventory is a function of the cycle stock and the safety stock,

and the safety stock term now depends on the Type-II service level measure.

The average inventory cost function in the objective function is expressed in terms
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of the average holding cost and the average reorder cost. While the average holding

cost is a function of the cycle stock (reorder quantities Q and Qn) and the safety

stock, the average reorder cost depends only on the cycle stock.

For the Type-I service analysis with stock-out probability αr and αn, the safety

stock at each RDC and the NDC is given by Zαr

√

V ar[Dri,LT ] and Zαn

√

V ar[Dn,LT ].

These expressions had a closed form that could be modeled into the objective function

of the problem. Unlike the Type-I service analysis, it is hard to express the safety

stock term as a closed form expression in the case of fill-rate (Type-II service) analysis.

Thus, the safety stock terms are written as ri − E[Dri,LT ] and rrn
− E[Dn,LT ]. In

addition, there are two new constraints which link the expected number of backorders

to the reorder point using the fill-rate. The derivation of these constraints is discussed

next.

5.1.1 Fill-rate contraints

The order replenishment lead time for each RDC is a function of the travel lead

time and the wait time in the event of a stock-out at the NDC. The travel lead time

has a normal distribution with mean µr and variance σr
2. The distribution for the

additional wait time is hard to estimate and the random variable for the wait time is

often replaced by its expected value W (see Deuermeyer et al. [15], Ganeshan [19]).

In this analysis, we model the wait time by it expected value and use it along with

the distribution for the travel lead time to get the distribution for the total order

replenishment lead time.

Result 5.1 : The wait time to process an order in the event of a stock-out at the

NDC is given by W (using Little’s law [24], see Appendix 3(a)).

W =
(1 − ρn)Qn

Q

1

(λδR/Q)
(31)

where (1−ρn)Qn/Q is the expected number of backorders at the RDC for a given

fill-rate (Type-II service level) ρn at the NDC. (λδR/Q) is the expected demand rate
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at the NDC.

The order replenishment lead time T has a normal distribution with parameters:

E[T ] = (µr + W )

V ar[T ] = σr
2

The demand distribution at each RDC in cluster Cni
is denoted by Dri

and is a

Poisson process with rate λδiAri
.

E[Dri
] = λδiAri

V ar[Dri
] = λδiAri

Let (E[Dri,LT ]) and (V ar[Dri,LT ]) be the expected demand and variance of demand

at the RDC in region Cni
during its order replenishment lead time. Then, the following

holds (see Appendix 3(b))

E[Dri,LT ] = (µr + W )E[Dri
]

V ar[Dri,LT ] = (µr + W )V ar[Dri
] + σr

2E[Dri
]2

The demand process at the NDC during its replenishment lead time can be ap-

proximated by a normal distribution (see Deuermeyer et al. [15]). The expected

demand (E[Dn,LT ]) and variance of demand (V ar[Dn,LT ]) at the NDC during its

order replenishment period is given by1:

E[Dn,LT ] =

∑N
i=1 µnλδiCni

Q
(32)

V ar[Dn,LT ] =

∑N
i=1 µnλδiCni

Q2
(33)

Result 5.2 (Hopp et al. [22]): Let X be the demand process during lead time at a

location with mean θ and variance σ2. Further, f (x) and F (x) denote the probability

1Note that these are in units of RDC reorder quantity Q
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density function and cumulative density function. If R is the reorder point for a (Q,

r) policy, then the expected number of backorders at the location is given by

E[B(R)] =

∫

∞

R

(x − R)f(x)dx (34)

= (θ − R)[1 − Φ(z)] + σφ(z) (35)

where z = (R − θ)/σ and is a standard normal variable.

The demand process at the NDC during order replenishment lead time has a nor-

mal distribution and Result 5.1 can be used to derive an expression for the expected

number of backorders. Further we assume that the demand process at each RDC

during order replenishment lead time has a normal distribution and use Result 5.1 to

get a closed form expression for the expected number of backorders. The expected

number of backorders at the RDC (E[Bi]) and the NDC (E[Bn])are given by:

E[Bri
] = (E[Dri,LT ] − ri)[1 − Φ(zi)] + σφ(zi) ∀i

E[Bn] = (E[Dn,LT ] − rn)[1 − Φ(zn)] + σφ(zn) (36)

where zi = (ri−E[Dri,LT ])/
√

V ar[Dri,LT ] and zn = (rn−E[Dn,LT ])/
√

V ar[Dn,LT ]

In this work, it is assumed that there is a fixed value for the minimum fill-rate

that is determined by the management. Let ρri
(ρn) be the minimum fill rate for each

RDC i (NDC). Then, for the special case when Qi = Q ∀i the expected number of

backorders can be estimated as (see Ganeshan [19]):

E[Bri
] = (1 − ρri

)Q ∀i

E[Bn] =
(1 − ρn)Qn

Q
(37)

Using equations (36) and (37), the reorder point at each RDC i (NDC) can be

estimated in terms of fill-rate at the RDC (NDC).

(E[Dri,LT ] − ri)[1 − Φ(zi)] + σφ(zi) = (1 − ρri
)Q ∀i

(E[Dn,LT ] − rn)[1 − Φ(zn)] + σφ(zn) =
(1 − ρn)Qn

Q
(38)
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We can now define the optimizaton model for the integrated facility location and

inventory allocation problem when a Type-II service measure is used.

P f minimze

γ(A, Q, Qn) =

N
∑

i=1

(

Cni

Ari

)

Fr +

N
∑

i=1

(Cf + CvQ)

(

ξλδiCni

Q

)

+

N
∑

i=1

Clfr

√

Ari
ξλδiCni

+ Rr

N
∑

i=1

(

ξλδiCni

Q

)

+
N
∑

i=1

(

Cni

Ari

)

hr

(

Q

2
+ (ri − E[Dri,LT ])

)

+ hn

(

kQ

2
+ (rn − E[Dn,LT ])

)

+ Rn

N
∑

i=1

(

ξλδiCni

kQ

)

subject to

Qri
≥ 0 ∀ ri (39)

Ari
≥ 0 ∀ ri

k ≥ 2

(E[Dri,LT ] − ri)[1 − Φ(zi)] + σφ(zi) = (1 − ρri
)Q ∀i

(E[Dn,LT ] − rn)[1 − Φ(zn)] + σφ(zn) = (1 − ρn)k

Qri
,
Cni

Ari

, k ∈ Z+ ∀ ri

where constraints (1), (2) and (3) are the non-negativity constraints. The fill-rate

constraints are given by (4) and (5) and they give the optimal value of the reorder

points. Constraint (6) is the integrality constraint.
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5.1.2 Properties of the objective function

Result 5.3 : γ(A, Q, k) is a convex function for values of (A, Q, k) satisfying the

following inequalities given by (40) (see appendix 5 for proof).
(

∂2φ

∂Q2
−

N
∑

i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari

2

∂2φ

∂Ari
∂Q

)

> 0

(

∂2φ

∂Q2
−

N
∑

i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari

2

∂2φ

∂Ari
∂Q

)

∂2φ

∂k2 −
(

∂2φ

∂Q∂k

∂2φ

∂k∂Q

)

> 0 (40)

The stationary point of the objective function γ(A, Q, k) are given by:

Ari
=

(

2Fr + hr(Q + 2ri)

Clfrξλδi

)2/3

(41)

k =
1

Q

√

√

√

√(2Rn)

(

∑N
i=1 ξλδiCni

(hn − 2hr(1 − ρn))

)

(42)

Q =

√

√

√

√

√2





(

Cf + Rr + Rn

k

)
∑N

i=1 ξλδiCni

∑N
i=1

hrCni

Ari

+ hnk
2

− hr(1 − ρn)k



 (43)

Result 5.4 : The stationary point of γ(A, Q, k) is a local minimum.

Proof. The stationary point obtained by solving equations (15), (16) and (17) satisfy

the inequalities given by (40). Then by theorem 4.3 the result follows.

Result 5.5 : γ(A, Q, k) is a biconvex function for all values of Q and k, and values

of A satisfying equation (15).

5.2 Solution Approach

Note that the stationary point for the objective function γ(A, Q, k) depends on the

reorder point (ri) at each RDC. Further in order to calculate the values of ris and rn,

the values of (A, Q, k) is needed (see constraints (4)and (5) of the fill-rate problem P f).

In order to tackle this circular behavior between the decision variables a hierarchical

approach is used.
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In the first phase, a value is fixed for ris and the stationary point for the objective

function γ(A, Q, k) is calculated. The solution so obtained is adjusted to satisfy

the integrality constraint for (Cni
/Ari

, Q, k). This gives a near optimal solution for

problem P f for a fixed value of ris.

In the second phase of the problem, the optimal values of ris and rn are calculated,

using equations (4) and (5) from the equation set (39), for the values of (A, Q, k)

derived in the first phase. Using these new values of ris, the first phase is solved

again and the procedure is repeated till it converges.

The solution procedure for solving the problem in the first phase is similar to the

one used in the analysis of the Type-I service model-equal Q (chapter IV). An iterative

procedure is used to solve the partially relaxed version of the problem (ignoring

the integrality constraint). Once a solution is obtained adjustments are made to

incorporate integrality. The values of the optimal reorder points are calculated using

the Goolseek tool in excel.

5.3 Discussion

In this chapter, a fill-rate (Type-II service) model is presented for the integrated

facility location and allocation problem. This model differs from the Type-I service

model in the way the safety stock term is modeled into the objective function. The

solution approach used for solving the Type-II service model is a hierarchical approach

with an iterative solution procedure in the first phase and reorder point updates in

the second phase. The numerical study comparing the results for the two service

models is presented in chapter (VI).
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5.4 Appendix

(1) First order conditions for deriving the stationary point for function γ(A,Q, k).

∂γ

∂Ari

=
ClfrξλδiCni

2Ari

1/2
− 2Cni

Fr + Cni
hr(Q + 2ri)

2Ari

2 = 0

∂γ

∂Q
= −(

∑N
i=1(Cf + Rr + Rn/k)ξλδiCni

)

Q2

+

N
∑

i=1

(

hrCni

2Ari

+
hnk

2

)

= 0

∂γ

∂k
=

hnQ

2
− (hr(1 − ρn)Q) −

∑N
i=1 RnξλδiCni

Qk2 = 0

The Hessian matrix corresponding to the function γ is given by:

H =







































a1,1 0 ... 0 a1q 0

0 a2,2 ... 0 a2q 0

. . ... . . .

. . ... . . .

0 0 ... an,n anqn 0

qa1 qa2 ... qaN qq qqn

0 0 ... 0 qnq qnqn







































where

ai,i =
∂2φ

∂Ari

2 , qq = ∂2φ
∂Q2 , qnqn =

∂2φ

∂k2

aiq =
∂2φ

∂Ari
∂Q

, qai = ∂2φ
∂Q∂Ari

qnq =
∂2φ

∂k∂Qri

qqn =
∂2φ

∂Q∂k
, aiqn = ∂2φ

∂Ari
∂k

, qnai =
∂2φ

∂k∂Ari

i = 1, 2..., N

Convex region for γ(A,Q, k)
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Using theorem 4.2, γ(A,Q, k) is convex iff the hessian matrix of γ is positive

semidefinite. And from theorem 4.1, hessian matrix of γ is positive definite for values

of (A,Q, k) satisfying

.

|G| =

∣

∣

∣

∣

∣

∣

∣

(

∂2γ
∂Q2 −

∑N
i=1

∂2φ/∂Q∂Ari

∂2γ/∂Ari
2

∂2γ
∂Ari

∂Q

)

∂2γ
∂Q∂k

∂2γ
∂k∂Q

∂2γ
∂k∂k

∣

∣

∣

∣

∣

∣

∣

> 0 and

(

∂2γ

∂Q2
−

N
∑

i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari

2

∂2γ

∂Ari
∂Q

)

> 0

First and second order derivatives for the function γ(A,Q, k)

∂γ

∂Ari

=
ClfrξλδiCni

2Ari

1/2
− 2Cni

Fr + Cni
hr(Q + 2ri)

2Ari

2

∂γ2

∂Ari

2 = −ClfrξλδiCni

4Ari

3/2
+

2Cni
Fr + Cni

hr(Q + 2ri)

2Ari

3

∂γ2

∂Q∂Ari

= −Cni
hr

2Ari

2

∂γ2

∂k∂Ari

= 0
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∂γ

∂Q
= −(

∑N
i=1(Cf + Rr + Rn/k)ξλδiCni

)

Q2

+

N
∑

i=1

(

hrCni

2Ari

)

+
hnk

2
− hr(1 − ρn)k

∂2γ

∂Q2 = 2

(

(
∑N

i=1(Cf + Rr + Rn/k)ξλδiCni
)

Q3

)

∂2γ

∂Ari
∂Q

= −hrCni

2A2
ri

∂2γ

∂k∂Q
=

N
∑

i=1

RnξλδiCni

Q2k2 +
hn

2
− hr(1 − ρn)

∂γ

∂k
=

hnQ

2
− (hr(1 − ρn)Q) −

∑N
i=1 RnξλδiCni

Qk2

∂2γ

∂k2 = 2

(

∑N
i=1 RnξλδiCni

Qk3

)

∂2γ

∂Ari
∂k

= 0

∂2γ

∂Q∂k
=

hn

2
− hr(1 − ρn) +

∑N
i=1 RnξλδiCni

Q2k2

(2) For a fixed vector A, the hessian matrix of γ(A, Q, k) is positive semidefinite.

∂2γ

∂Q2 = 2

(

(
∑N

i=1(Cf + Rr + Rn/Qn)ξλδiCni
)

Q3

)

∂2γ

∂k∂Q
=

N
∑

i=1

RnξλδiCni

Q2k2 +
hn

2
− hr(1 − ρn)

∂2γ

∂k2 = 2

(

∑N
i=1 RnξλδiCni

Qk3

)

∂2γ

∂Q∂k
=

∑N
i=1 RnξλδiCni

Q2k2 +
hn

2
− hr(1 − ρn)

|H| =







∂2γ
∂Q2

∂2φ
∂k∂Q

∂2γ
∂Q∂k

∂2φ
∂k

2






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|H| =

(

2

∑N
i=1 RnξλδiCni

Qk3

)(

2

∑N
i=1 RnξλδiCni

Qk3

)

+

(

2

∑N
i=1 RnξλδiCni

Qk3

)(

2

∑N
i=1(Cf + Rr)ξλδiCni

Q3

)

−
(

∑N
i=1 RnξλδiCni

Q2k2 +
hn

2

)(

∑N
i=1 RnξλδiCni

Q2k2 +
hn

2

)

= 3

(

∑N
i=1 RnξλδiCni

Q2k2

)2

+

(

∑N
i=1 RnξλδiCni

Q2k2

)

∗
[

4

Q2k

N
∑

i=1

(Cf + Rr)ξλδiCni
− hn

]

− h2
n

4

|H| ≥ 0

⇔ 4

Q2k

N
∑

i=1

(Cf + Rr)ξλδiCni
≥ hn and

3

(

∑N
i=1 RnξλδiCni

Q2k2

)2

≥ h2
n

4
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CHAPTER VI

NUMERICAL ILLUSTRATION

For the numerical study in this chapter, the distribution network for a leading US

retailer is considered. The entire US mainland has five sub-regions, namely, south-

eastern, south-western, north-eastern, north western and mid-west. The distribution

network has a total of five NDCs each serving one of the sub-regions. In the study in

this chapter all the analysis is carried out using data for the southeastern (SE) region

with the NDC located at Savannah, GA.

The two-phase approximation approach discussed in chapter 3 is used in the anal-

ysis. In Phase-I, the SE region is partitioned into clusters over which the demand

function is slow varying. The SE region is made up of eight states. Information

on the counties within each state and location of stores within each county is given.

Using this the store density function for each county is calculated. Interestingly, the

county level store density does not vary significantly for any given state. The average

demand is the same for each store. Thus, each state is a homogeneous cluster on

which the demand data is slow varying.

Next, as part of Phase-II, the problem is using the CA approach and a solution

is obtained. Cost data used in this analysis in given in Appendix 6.4.

6.1 Effect of store density and cost parameters on the net-
work design

Table 1 gives the store density for the eight states served by the Savannah DC. Clearly

there is a significant amount of variation in the store density data across states.

For a fixed value of the inventory parameters Q and Qn, the number of RDCs

increase (decrease) with an increase (decrease) in the store density. Similarly, for a
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Table 1: Store density and Average distance data
GA FL TN AL KY VA NC SC

Store
Density 0.0059 0.0039 0.0038 0.002 0.0052 0.0471 0.0041 0.0019

Figure 9: Store density Analysis

fixed number of RDCs, increase or decrease of the store density changes the value of

the inventory parameters Q and Qn. Thus, the density function affects the facility,

transportation and inventory cost.

From Figure 9, it is observed that the number of RDCs increase with an increase

in the store density. This happens because an increase in the store density by a given

factor increases the total network demand by the same factor. This can be easily seen

from the expression for total demand given by λδiCni
where λ is the demand at each

store, δi is the store density for cluster with area Cni
. An increase in the number

of RDCs would mean a lot of money in terms of operational, transportation and

inventory cost. Thus, it is important to be careful in estimating the store density to

avoid any over or under estimation of the demand. A similar analysis is carried out to
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Figure 10: Local Delivery cost Analysis

study how the local delivery cost parameter effects the problem. Figure 10 shows that

for a small change in the local delivery cost parameter cl, the network design is not

affected but large chnages in the cost can lead to a significant change in the network

design in terms of number of RDCs (for fixed values of inventory parameters).

6.2 Comparison between Integrated, Non-integrated and Av-
erage case

The results for the integrated, non-integrated and average version of the facility lo-

cation and inventory allocation problem under equal Qri
s are presented in table 2

and figure 11. The integrated case is the one with the minimum value of total net-

work cost. For this example observe that the TNC is 6.6% higher in the case of

non-integrated problem and 44% higher for the average case (see Table 2). These

results justify the need for a two-phase approxiation approach. A focus on the total

costs (i.e. the total network cost minus the total inventory cost at the NDC) for the

RDCs in each zone show an interesting trend. Although total network cost for the
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Table 2: Comparison between the three cases for equal Q
Case 1 Case 2 Case 3

Integrated Non-Integrated Average
RDC 9 22 7
TIr 3545330 4015240 4966090
TIn 1058490 1058470 1319280
TF 90000 220000 70000
TIT 2682650 2994400 3916000
TOT 858030 494390 1608130
TNC 8234370 8782490 11879500
Qr 2564 1640 3623
Qn 27 42 24

Figure 11: Total Network Cost
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Figure 12: Total cost for each zone.

integrated case is less than that for the non-integrated case, there could be zones for

which the later case yields a lower total cost. In particular, for this example zones 3,

4, 5 and 8 have a lower total cost in the non-integrated case (see figure 12). If this

problem was modeled with a decentralized decision maker, then these zones have no

incentive to participate in an integrated activity. This opens a new direction for our

research where game theory can be used. This interesting research proposal is left for

future work.

Observe that the safety stock at each store in the integrated case is greater than

that for the non-integrated case (see figure 13). This may look counter intuitive

initially. However, a careful inspection shows that each zone has fewer RDCs in the

integrated case. As the number of RDCs increases, the safety stock at each RDC

decreases. This result is quite unlike the Square Root law which says that the total

inventory in a system is proportional to the square root of the number of locations

at which a product is stocked (see Chopra et al. [10]). The reason for this is while
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Figure 13: Safety stock for each store zone-integrated vs non-integrated

applying the square root law we observe that reducing the number of RDCs reduces

the risk by pooling demand variability. But in our model, both the demand and

supply variability are taken into account at the RDCs. Reduction in the number of

RDCs means more inbound shipments to each RDC and thus more supply variability.

Hence when both types of variabilities are taken into account it is possible to see this

reverse relation between the number of RDCs and safety stock. Thus, each zone in

the integrated problem has a higher value for total safety stock and reorder point as

compared to each zone under the non-integrated case. A zonewise comparison of the

safety stock in each zone in presented in figure 14.

Table 3 presents the results for the problem when a Type-II service level measure

is used. In this analysis, a 99% service level is assumed at each RDC and a 75% service

level at the NDC. Clearly, using different service measures affect the network design

and inventory parameters. For the Type-I measure, the optimal network has 9 RDCs

and for the Type-II the optimal network has 8 RDCs. The inventory parameters for
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Figure 14: Safety stock for each zone-integrated vs non-integrated

each RDC and the NDC are given in tables 4 and 5.

The results (see figure 15) show that the TNC has a lower value for the Type-II

service model. This happens because the average safety stock is significantly lower in

this case. Figures 16 and 17 compare the safety stock and the total cost for each zone

for the two types of service measures. Note that the order quantity Qn and reorder

point rn for the NDC are in units of Q

Table 3: Cost comparison for the different service measures-equal Q
Type-I service model Type-II service model

RDC 9 8
TIr 3545200 2669890
TIn 1042660 1095040
TF 90000 80000
TIT 2682650 2682650
TOT 858030 991731
TNC 8218541 7442170
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Table 4: Inventory Parameters for Type-I service model
Qn 27
rn 455

zone 1 2 3 4 5 6 7 8
Q 2563 2563 2563 2563 2563 2563 2563 2563
rr 10003 11068 3889 3110 2296 33809 5804 3083

Table 5: Inventory Parameters for Type-II service model
Qn 16
rn 388

zone 1 2 3 4 5 6 7 8
Q 2978 2978 2978 2978 2978 2978 2978 2978
rr 10327 24370 3659 2853 2030 38387 5694 2826

Figure 15: Total Network Cost
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Figure 16: Safety Stock Analysis

Figure 17: Total Cost per Zone Analysis
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6.3 Conclusions

We propose a novel two-phase approximation method for solving the multi-echelon

inventory allocation and network design problem. The method integrates facility

costs, inventory costs, transportation costs, service levels and interrelated sources of

variability. Using this method, problems with huge amounts of non-homogeneous

demand data can be solved. Our model provides a powerful analysis tool in terms of

studying potential changes in supply chain system due to the changes in the param-

eters. An example is discussed that shows that the network configuration and hence

the key decision variables are affected by the level of details used in the analysis. In

particular it is shown that good estimators of store density and local delivery cost are

key to this analysis as they have a significant impact on the network costs.

Our results highlight the importance of integrating the facility location decision

with the inventory policy decision. It is shown that the non-integrated problem

generates results that have a significantly higher total network cost as compared

to the integrated problem. We solve the integrated problem for two types of service

measures- Type-I or stock-out probability and Type-II or fill-rate. The analysis shows

that each problem produces a very different result.

It would be interesting to incorporate delivery lead time contraints in the model.

In real life operations, most orders have a delivery time window, i.e., a lower and upper

bound on the time it can take the order to arrive at a facility. It is an important

service measure and can impact the network design.

This work is based on some simplified assumptions to make the problem tractable

and enable us to derive insights. It would be interesting to relax some of them to

match real-world scenarios, such as capacity limitations on DCs, multiple products

and other inventory policies. In this analysis it is assumed that the NDC serves each

cluster in isolation without considering other clusters in the sub-region. This can

happen in real world when the NDC decides to review each cluster periodically. It
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would like interesting to see how using a combination of periodic review policy at

each NDC and continous review policy at each RDC would affect the network design

and costs.

6.4 Appendix

Table 6: Parameter Data
Fr($/day) 10000 λ(units/day) 20

δ 0.006 Cl 0.009
ξ 360 Cf 400
fr 0.3 Cv 0.6
Rr 100 Rn 10000
hr 60 hn 15

(µr, σr) (4, 2) (µn, σn) (120, 10)
(αr, Zr) (0.99, 2.326) (αn, Zn) (0.95, 1.645)

Table 7: Zonewise Cost Comparision for integrated problem with equal Q
Zone TIr TIT TOT TF TNC
1 414659 320654 112749 10000 858062
2 901572 709549 322781 20000 1953900
3 207089 124618 34037.8 10000 375745
4 180632 99631 33539.7 10000 323803
5 153003 73537.6 13190 10000 249731
6 1222830 1083920 248008 10000 2564750
7 272083 186001 59753.2 10000 527837
8 179733 98781.6 33971.8 10000 322486
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Table 8: Zonewise Cost Comparision for non-integrated problem with equal Q
Zone TIr TIT TOT TF TNC
1 496220 355492 65095.5 30000 946808
2 1165210 786639 161390 80000 2193240
3 184665 138157 34037.8 10000 366860
4 157529 110456 33539.7 10000 311524
5 129192 81527.2 13190 10000 233909
6 1423780 1201680 110913 50000 2786370
7 300656 206209 42251.9 20000 569117
8 156607 109514 33971.8 10000 310092
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CHAPTER VII

DISCRETE MODEL FOR THE INTEGRATED FACILITY

LOCATION AND INVENTORY ALLOCATION

PROBLEM

7.1 Introduction

It is only recently that researchers have started developing models that integrate the

two classic supply chain problems of facility location and inventory allocation. Most

of these works focus on the single echelon inventory allocation and facility location

problem (see Miranda [26], Nozick et al. [30] and Erlebacher et al. [16]). A single

echelon inventory allocation problem involves inventory decisions for the distribution

centers in a network with manufacturing plants, distribution centers and retail stores.

Teo et al. ([36], [31]) are the only studies that model a multi-echelon (two level)

inventory allocation and facility location problem.

All the studies in the area of integrated network design and inventory decisions

develop a discrete optimization model and propose a solution. While Erlebacher et

al. [16], Nozick et al. [30] reduce the problem to a special form of facility location

problem for which heurstics are known, Miranda et al. [26], Teo et al. ([36], [31]) use a

column generation technique to solve the problem. Teo et al. [36] study an integrated

logistic network problem in which they consider inventory cost for multiple echelons

of inventory stocking locations. In their model, the inventory cost is modeled at

each DC and retailer. They use the convex inventory minimization function proposed

by Roundy [32] along with the transportation and facility costs to formulate a MIP

problem. A column generation technique is used to solve their model in O(nlog(n))

time and the solution is within 2% of the optimal solution when the problem instance
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is small (20 warehouses and 100 retailers). This model does not include either the

demand or the supply uncertainty. In another study, Teo et al. [31] extend the

previous model by adding safety stock terms to account for demand variability.

In this section we look at a discrete optimization model of the integrated facility

location and inventory allocation problem. It is a nonlinear problem and a lineariza-

tion technique is proposed to solve it. Under the linearization technique the nonlinear

terms are replaced with the linear terms, hence reducing the problem to a new form.

In addition it is discussed that under certain properties of the the objective function

and decision variables it is possible to have an exact reformulation. Exact reformula-

tion means that the optimal solution for the linearized version of the problem is the

same as the optimal solution for the original problem. The quality of the solution

is analyzed by defining the optimality ratio. The chapter concludes with possible

directions for future work.

7.2 Nonlinear Mixed Integer Model

The assumptions needed for modeling the discrete problem are similar to those listed

in chapter III for the continuous model.

• The distribution network under study is an arborescence network. Further,

the entire distribution network is partitioned into subregions such that each

subregion is served by a single NDC.

• The location of the NDC is known and fixed.

• Demand per unit time for each store i is an independent and identically dis-

tributed Poisson process with rate λi.

• Each product can be analyzed independent of other products. The demand for

a single product is considered in our study.
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• The demand process at each RDC is a Poisson process as it is generated by the

demand coming from the stores in its influence area. There is no reorder cost

at the stores so that the demand at the store gets passed over to the RDC on

a per item basis.

• There is no lateral shipment of goods, i.e., movement of goods between facilities

in the same echelon. Moreover, each facility serves its immediate lower echelon

facilities via direct shipment.

• The stores maintain minimal amount of inventory and it is ignored in this

analysis. We do not consider the pipeline inventory cost for units in transit

from NDC to RDC or from suppliers to the NDC.

• The distances between the NDCs and the RDCs, and between the RDCs and

the retail stores are calculated using the Euclidean norm.

• The contraints from capacity limitations at the NDCs and the RDCs are not

considered.

• The inventory policy at the RDCs and the NDCs is a continuous review (Q, r)

policy.

• Each RDC and NDC makes decentralized decision on the inventory control

policy.
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Parameters

N = Total number of store locations in the NDC subregion

Fi = Facility location cost at location i

Cf = Fixed cost component of the transportation cost between the NDCs and RDCs

Cv = Variable cost component of the transportation cost between the NDCs and RDCs

($/item)

Cl = Delivery cost from the RDC to the store($/item/mile)

hi = Inventory holding cost per item over the planning horizon at RDC i

Ri = Reorder cost for RDC i

hn = Holding cost per item over the planning horizon at the NDC

Rn = Reorder cost for the NDC

di = Distance between the NDC and the RDC located at i

Zαi
= Critical value when in-stock probability for RDC i is αi

calculated using the standard normal table

Zn = Critical value when in-stock probability for NDC is αn

calculated using the standard normal table

µi = Mean travel time between the NDC and RDC i

σi
2 = Variance of the travel time between the NDC and RDC i

µn = Mean travel time between the manufacturer and the NDC

ξ = Length of the planning horizon (365 days)

λi = Demand rate for the retail store at location i

i, j ∈ 1, 2...., N
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Decision Variables

Xi =











1 if a RDC is opened at location i

0 otherwise

Yij =























1 if the store at location j is served

by the RDC at location i

0 otherwise

Q = Reorder quantity at each RDC

k = Reorder quantity multiplicative factor for the NDC1

Original Optimization Problem - Equal Reorder quantity

P(1): Minimize

TNC =
N
∑

i=1

FiXi +
N
∑

i=1

(Cf + CvQ)
ξ
∑N

j=1 Yijλj

Q
+ Clξ

N
∑

i=1

N
∑

j=1

Yijλjdij

+
N
∑

i=1

hiXi





Q

2
+

N
∑

i=1

Zαi

√

√

√

√µi

(

N
∑

j=1

Yijλj

)

+ σi
2

(

N
∑

j=1

Yijλj

)2




+
N
∑

i=1

(

Ri

ξ
∑N

j=1 Yijλj

Q

)

+ hn





kQ

2
+ Zαn

√

√

√

√

N
∑

i=1

N
∑

j=1

YijλjLn





+ Rn

(

∑N
i=1 ξ

∑N
j=1 Yijλj

kQ

)

subject to

Yij ≤ Xi ∀i, j (1)

∑N
i=1 Yij = 1 ∀i (2)

1 ≤ Q ≤ Q (3)

1 ≤ k ≤ k (4)

Xi, Yij ∈ {0, 1} (5)

k, Q ∈ Z+ (6)
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k, Q, Fi, hi, hn, Cf , Cv, Cl, di, dij,

Zαi
, Zαn

, Ri, Rn, ξ, Ln, µi, σi are known

The first three terms in the objective function are the total facility location cost,

the total inbound transportation cost from the NDC to the RDCs and the total

delivery cost from the RDCs to the retail stores for all the items. The fourth and

the fifth terms are the total average inventory cost and the average reorder cost for

the RDCs. Similarly, the last two terms give the total average inventory cost for the

NDC and the total average reorder cost for the NDC.

Constraint (1) ensures that a store would be served from RDC i only if there is a

RDC located at i. Constraint (2) guarantees that each retailer is assigned to exactly

one RDC. Constraint (3) and (4) give the upper and lower bounds for the NDC order

quantity multiplier k and for the order quantity Q. Constraint (5) sets the decision

variables Yij and Xi to be binary integers whereas constraint (6) sets all other decision

variables k and Q to be positive integers.

Remark:The objective function is nonlinear with the following bilinear terms,

QXi, kQ, Yij/Q and Yij/(kQ), and because of the presence of the square root terms

in the numerator.

7.3 Linearization of the nonlinear objective function

The nonlinear terms in the objective function can be classified under two categories-

1) Square root, and 2) Bilinear terms. Unfortunately there is no single method that

can handle these two forms of nonlinearity. So a stepwise approach is adopted where

the square root nonlinearity is handled first followed by an approach to handle the

bilinear nonlinearity. A detailed analysis for this stepwise approach is discussed in

the following sections.

85



7.3.1 Square root nonlinearity

Result 7.1: If a and b are positive numbers and x > 0, then

√
ax + bx2 ≥

√
bx − a

2
√

b
(44)

Proof: See Appendix 7(a)

Safety stock at RDC i

√

√

√

√µi

(

N
∑

i=1

Yijλj

)

+ σi
2

(

N
∑

i=1

Yijλj

)2

> σi

(

N
∑

i=1

Yijλj

)

− µi

2σi
using result 7.1

where a = µi, b = σi
2 and x =

∑N
i=1 Yijλj

A lower bound Pl(2) can be defined on the objective function P (2) by replacing

the square root terms with their lower bounds. The square root term corresponding

to the safety stock at each RDC i is replaced by a new term using Result 7.1. The

square root term for the NDC is a constant. This follows from the fact that each

retailer j has to be assigned to exactly one RDC j. Thus, this term is replaced by a

constant
√

∑N
i=1 λjLN .

Safety stock at the NDC

√

√

√

√

(

N
∑

i=1

N
∑

j=1

YijλjLN

)

=

√

√

√

√

(

N
∑

j=1

N
∑

i=1

YijλjLN

)

because λj , LN > 0, sum by rows = sum by columns
√

√

√

√

(

N
∑

i=1

N
∑

j=1

YijλjLN

)

=

√

√

√

√

(

N
∑

j=1

λjLN

)

because for each j Yij = 1 for some i

Thus, a lower bound to the original objective function (TNC) is obtained and is
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denoted by T̂NC.

T̂NC =

N
∑

i=1

FiXi +

N
∑

i=1

(Cf + CvQ)
ξ
∑N

j=1 Yijλj

Q
+ Clξ

N
∑

i=1

N
∑

j=1

Yijλjdij

+

N
∑

i=1

hi

(

XiQ

2
+ Zαi

(

σi

N
∑

j=1

Yijλj −
µi

2σi

))

+

N
∑

i=1

(

Ri

ξ
∑N

j=1 Yijλj

Q

)

+ hn





kQ

2
+ Zαn

√

√

√

√

N
∑

j=1

λjLn



 +
Rn

(

∑N
i=1 ξ

∑N
j=1 Yijλj

)

kQ

7.3.2 Bilinear Nonlinearity

The original problem P (1) has bilinear terms of the form QXi, kQ, Yij/Q and

Yij/(kQ). In order to linearize these terms a reformulation technique, proposed by

Al-Khayyal [2] and Al-Khayyal et al. [3], for solving bilinear programming problems

is used. The reformulation technique uses convex and concave envelope for a bilinear

function over a rectangular region. Each bilinear term is replaced by a new term

along with four constraints.

Result 7.3 (Linear Reformulation): Given a nonlinear problem with terms of the

form XY where X and Y are such that

a < X < b where a > 0 and b > 0

c < Y < d where c > 0 and d > 0

It is possible to replace any term of the form XY by a new variable Z where Z

satisfies the following constraints (see equations 45), and the new problem is called

the linearized approximation to the original nonlinear problem.

Z ≤ aY + dX − ad

Z ≤ bY + cX − bc

Z ≥ aY + cX − ac

Z ≥ bY + dX − bd (45)
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Remark: Let (X∗, Y ∗, Z∗) be the values obtained by solving the linearized

approximation of the nonlinear problem. If X∗ ∈ {a, b} or Y ∗ ∈ {c, d}, then Z∗ =

X∗Y ∗ and the linearized problem would be an exact reformulation otherwise Z∗ is

treated as an approximation for X∗Y ∗.

The nonlinear terms in product form, XiQ and kQ, are considered first. The

bounds on the optimal order quantity Q for each RDC can be estimated by considering

the total possible demand that it can serve. It is known that N is the maximum

number of possible RDC locations, λj is the demand per unit time at each store j and

ξ is the length of the planning horizon (in days). RDC i would face maximum demand

when all the stores are assigned to it. In this case the upper bound (Q) on the order

quantity for a RDC located at location i is given by
∑N

i=1 λjξ. The minimum possible

value of Q is given by 1. Similarly the lower bound of k is set to 1. For the upper

bound, N the number of RDC locations can be a good starting guess.

Each of the nonlinear terms in product form is replaced by a new variable in the

objective function, namely, gi = XiQ and u = kQ. In doing so we add new constraints

derived using the Linear Reformulation result.

XiQ = gi gives

gi ≤ QXi

gi ≤ Q + Xi − 1

gi ≥ Xi

gi ≥ Q + QXi − Q

kQ = u gives

u ≤ k + kQ − k

u ≤ Q + Qk − Q

u ≥ Q + k − 1

u ≥ kQ + kQ − Qk
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Note that in this case g∗

i = X∗

iQ
∗ but u∗ will be treated as an approximation of

k∗Q∗.

7.3.3 Denominator based nonlinearity

After taking care of the square root and product based nonlinearity, the next step is

to look at the nonlinear terms Yij/Q and Yij/u in the denominator form. Two new

variables βij and δij are defined, and linear reformulation result is used to get the

new set of constraints given below:

Yij

Q
= βij gives

D1 βij ≤ Yij

D2 βij ≤ 1
Q

+
Yij

Q
− 1

Q

D3 βij ≥ Yij

Q

D4 βij ≥ 1
Q

+ Yij − 1

βij

k
= δij gives

D5 δij ≤ βij

2

D6 δij ≤ βij

k
+ 1

k
− 1

k

D7 δij ≥ βij

k

D8 δij ≥ βij

2
+ 1

k
− 1

2

7.4 Final Optimization Model (FOM)

FOM: Minimize

TNCF =

N
∑

i=1

FiXi +

N
∑

i=1

Cfξ

N
∑

j=1

βijλj +

N
∑

i=1

Cvξ

N
∑

j=1

Yijλj + Clξ

N
∑

i=1

N
∑

j=1

Yijλjdij

+

N
∑

i=1

hi

(

gi

2
+ Zαi

(

σi

N
∑

j=1

Yijλj −
µi

2σi

))

+ hn





u

2
+

√

√

√

√

N
∑

i=1

λjLn





+
N
∑

i=1

(

Riξ
N
∑

j=1

βijλj

)

+ Rn

(

N
∑

i=1

ξ
N
∑

j=1

δijλj

)
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subject to

Yij ≤ Xi ∀ i, j
N
∑

i=1

Yij = 1 ∀ j

gi ≤ QXi

gi ≤ Q + Xi − 1

gi ≥ Xi

gi ≥ Q + QXi − Q

u ≤ k + kQ − k

u ≤ 2Q + Qk − 2Q

u ≥ 2Q + k − 2

u ≥ kQ + kQ − Qk

βij ≤ Yij

βij ≤ w +
Yij

Q
− 1

Q

βij ≥ Yij

Q

βij ≥ w + Yij − 1

δij ≤ βij

2

δij ≤ βij

k
+

1

k
− 1

k

δij ≥ βij

k

δij ≥ βij

2
+

1

k
− 1

2

1 ≤ k ≤ k

1 ≤ Q ≤ Q ∀i

Xi, Yij ∈ {0, 1}
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gi, u, v and w ∈ ℵ+ where ℵ+ is the set of positive integers

βij, δij ∈ ℜ+ where ℜ+ is the set of positive real numbers

Let (X∗

i, Y ∗

ij , g∗

i,u
∗, β∗

ij, δ∗ij , k∗, Q∗, v∗, w∗) be an optimal solution for the

final optimization model.

Remark: For any set X = (Xi, Yij, k, Qi) and the corresponding linearized set

XL = (Xi, Yij, gi, ui, βij , δij) the following relation holds.

TNCF (XL) < T̂NC(X) < TNC(X)

Remark: Note that the linear version of problem obtained after applying the

linearization approach would be exact if k was a binary decision variable. Since the

range of values of k is continuous, the solution of the FOM gives a lower bound for

the original problem. A branching method is used to get a good estimate of k and

improve the lower bound. The lower and upper bound values of k are known. The

branching method bisects the interval defined by the upper and lower bounds of k

and optimizes the FOM over these intervals. The branching is repeated on the new

intervals until the values of u∗ and δ∗ij are very close to the the values of k∗Q∗,

Y ∗

ij/(u∗).

7.5 Numerical Illustration

For the numerical example we consider a region with 18 retail stores and a national

distribution center (NDC). The locations of these stores and the NDC are fixed and

known. The distances between the NDC and the stores is calculated using the eu-

clidean norm (see appendix 7(b)). Further each retail store location is a candidate

site for the regional distribution center (RDC). Thus, the maximum number of RDCs

in this example can be 18. We used CPLEX to solve the final optimization model

(FOM) and an optimal solution was obtained in 40 CPU seconds on a PC with a 2.66

GHz Pentium IV processor and 1-GB memory. Table 9 gives the optimal solution of
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Table 9: Solution of the Linear Approximation Model
RDC location Stores Allocation

4 1,3,5,6,8,10,15,17
11 2,4,7,9,11,12,13,14,16,18

Q∗ 1000
k∗ 14

Table 10: Objective function value
Optimal solution for FOM Feasable solution for P(1) Optimality Ratio

442493 506546 1.079

the FOM. In this problem lower and upper bounds for k are 2 and 20. For results on

the bisection method for estimating k see table 11.

The objective function of the FOM is evaluated at the optimal solution. The

optimal solution generated by the FOM is a feasible solution for the original problem

P(1). The objective function of problem P(1) evaluated at this solution gives an upper

bound. The ratio of the objective function values for the original nonlinear problem

and the FOM is defined as the optimality ratio. In this example, the optimality ratio

was found to be 1.079.

Table 11: Bisection Analysis for k
k Q TNC TNCF Optimality Ratio
4 1000 666189 412493 1.615031668
8 1000 666189 412493 1.202567662
10 1000 514089 427493 1.146208545
12 1000 507189 442493 1.146208545
14 1000 506546 457493 1.078987959
16 1000 509814 472493 1.078987959
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7.6 Conclusions

In this section, a linear reformulation solution technique is proposed for solving the

integrated facility location and inventory allocation problem. The original problem

has a nonlinear objective function with square root and bilinear terms. Since there is

no single approximation technique that can handle the different forms of nonlinearity,

a step by step method is proposed for approximating the objective function with a

linear form. The square root terms are eliminated by defining a lower bound on the

objective function. A linear reformulation method is defined that handles the remain-

ing nonlinear terms by approximating them with linear terms and by imposing new

constraints. The final optimization model (FOM) is linear in the objective function

and the constraints, and can be solved using CPLEX. The optimal solution to the

(FOM) defines a feasible solution for the original problem. The objective functions

for the FOM and the original problem are evaluated at the optimal value and an

optimality ratio is obtained.

When compared with the continuous approximation technique, the solution ob-

tained using the linear reformulation gives exact cost expressions for the different

components (facility, transportation and inventory). However, good estimates of up-

per and lower bounds are needed for Q and k in order to use the linear reformulation

technique. Thus, it is not possible to compare one technique against another and say

which is better. All we can say is that the continuous approximation technique aids

in a quick sensitivity analysis of the problem while the linear reformulation technique

gives a good solution with near accurate estimates of cost expressions.

As a future work, it would be interesting to compare the solution obtained by the

linear reformulation technique with the exact solution. In order to get an exact solu-

tion we need to solve the original optimization problem for 218 (= 262144) instances.

This is because the network can be designed in 218 ways and we need to find the

optimal inventory parameters (Q, k) for each of these instances.
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Other possible directions for future work include formulating the integrated facility

location and inventory allocation problem with multiple products. In this analysis

the focus is only on one products but in the real world companies have to deal with

multiple products.
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7.7 Appendix

Appendix 7(a) Proof for Result 7.1

ax + bx2 > ax + bx2 − a2

4b

=

(√
bx − a

2
√

b

)2

⇒
√

ax + bx2 >

(√
bx − a

2
√

b

)

(46)

Appendix 7(b) Distance calculations

The data for the store locations specified the zip code associated with each loca-

tion. This information was used to get the values of the longitudes and latitudes for

each location. Using these values along with equation 47 we calculated the euclidean

distances between all the store locations and the NDC location, and between every

pair of store locations.

D(x1, x2) = 3963.0cos−1[sin(a1)sin(a2) + cos(a1)cos(a2)cos(b2 − b1)] (47)

where (a1, b1) and (a2, b2) are the latitudinal and the longitudinal coordinates

associated with points x1 and x2 respectively.
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CHAPTER VIII

BASE STOCK POLICY

A base stock policy is represented as a (s-1, s) policy in which a replenishment order

is placed whenever the inventory position (inventory on-hand + inventory on-order +

amount backlogged) is below s. This inventory control policy is studied extensively

in the one warehouse multiple retailers distribution networks when dealing with low

demand items, high holding costs and low ordering costs.

There are several studies in the area of multi-echelon base stock policy. Axsater

[4] use a METRIC approach proposed by Sherbrooke [35] to characterize the demand

process during lead time at each retailer. Under this approach, the successive lead

times for each retailer are assumed to be independent, and Palm’s theorem [11] is used

to describe the outstanding orders at each retailer by a Poisson process. In another

study, Axsater [4] present an exact formulation for the inventory holding cost and the

backorder cost associated with each unit on order. A recursive procedure is used to

evaluate the exact cost expressions. Graves [21] fit a negative binomial distribution

and determine both the mean and variance of the number of outstanding orders.

Before we present a model for the integrated facility location-inventory problem

for the base stock inventory control policy, the original distribution network needs to

be modified. So far the distribution network under study consists of a single NDC and

multiple retailers where the NDC acts like an import DC consolidating goods that

are manufactured off-shore. Since there is uncertainty in the supply chain in terms

of travel time, RDCs are located between the NDC and the retailers to provide risk

pooling benefits in terms of inventory costs savings. In this network there are high

reorder costs as manufacturing is done overseas. In order to facilitate the analysis
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using the base stock policy, a distribution network with operations involving low

fixed cost costs and low demand has to be considered. Thus, a modified distribution

network in with the NDC functions like a plant with infinite inventory and inventory

is stored at the retailers and RDCs is considered. By solving the integrated facility

location-inventory problem over the modified network, optimal parameters for the

base stock inventory policy at the RDCs and retailers is determined along with the

locations for the RDCs.

8.1 Model

Consider a distribution network with a single NDC and N retailers where each retailer

location is a candidate location for the RDC. Inventory is stocked at the RDCs and

retailers. The holding cost at the retailer j, j = 1, 2, ..., N is hj , and the holding cost

at each RDC is hr. When a demand arrives at the retailer it is either satisfied from

the stock on-hand or backordered. Each location follows a base stock policy except

for the NDC which is assumed to be a source of infinite inventory.

Some of the key assumptions in this analysis are listed below.

1. The demand at each retailer j is an independent Poisson process with rate λj .

2. The inventory holding cost at the retailer is more expensive than at the RDC,

i.e., hr < hj ∀j.

3. A service level is defined only for the retailers.

4. Inventory is managed at each location using a local control strategy under which

a stocking location does not take into account the inventory positions at the

other locations while deciding on its own policy.

Decision Variables

Xi =











1 if a RDC is opened at location i

0 otherwise
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Yij =























1 if the store at location j is served

by the RDC at location i

0 otherwise

si = base stock inventory level at the RDC located at i

sj = base stock inventory level at the retailer located at j

Let Bi be the backorders and Ii be the on-hand inventory at RDC location i =

1,...,N . Similarly, Bj be the backorders and Ij be the on-hand inventory at retailer

location j = 1,...,N . Then, we have

Bi = [Di − si]
+ ∀i = 1,2,...,N

Ii = [si − Di]
+ ∀i = 1,2,...,N

Bj = [Bij + Dj − sj ]
+ ∀j = 1,2,...,N

Ij = [sj − (Bij + Dj)]
+ ∀j = 1,2,...,N

where Di and Dj are the demand during lead-time at RDC i and retailer j. Bij

is the number of backorder for retailer j at RDC i. Note that the function [x]+ is

defined as max (0, x). In general, the distribution for Bij is given by

Pr(Bij(si) = k) =

∞
∑

L=k







L

k






(pj)

k(1 − pj)
L−kPr(Bi = L)

Consider a retailer j that is assigned to RDC i. Let si be the base stock level at

the RDC. Then the optimal base stock level sj at retailer j for a desired fill-rate βj

is given by

s∗j (si) ≡ min{sj : Pr(Bij + Dj < sj) ≥ βj}

Similarly for a given set of retailers 1,2,...,ni assigned to RDC i, the optimal base

stock level at RDC i is given by

s∗i (s1, s2, ..., sni
) ≡ min{si : Pr(Bij + Dj < sj) ≥ βj ∀j ∈ 1,2,...,ni}
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It is possible to define bounds on the base stock levels si and sj for each RDC i

and retailer j. The lower and upper bound for sj is given by sl
j and su

j . Similarly, su
i

is the upper bound for the base stock level at RDC i and 0 is the lower bound. The

derivation of these bounds follow next.

For a given RDC i and retailer j, each retailer will hold minimum stock when the

RDC holds the maximum stock. Similarly, each retailer will hold maximum stock

when the RDC holds the minimum stock. The minimum base stock level at the RDC

can be 0 and the maximum can be ∞. Thus,

sl
j(∞) ≡ min{sj : Pr(Bij + Dj < sj) ≥ βj}

su
j (0) ≡ min{sj : Pr(Bij + Dj < sj) ≥ βj}

Similarly, the maximum stock at RDC i occurs when each retailer j assigned to

it holds minimum possible stock. The minimum possible value of stock at any RDC

is 0.

su
i (s

l
1, s

l
2, ..., s

l
ni

) ≡ min{si : Pr(Bij + Dj < sl
j) ≥ βj∀j ∈ 1,2,...,ni}

The expected inventory holding cost at RDC i and the retailers assigned to it are

given by:

H j = hjE[sj − (Bij(si) + Dj)]

H i = hiE[si − Di)]

In formulating the problem, the key cost components that need to be considered

are the facility location cost, the inbound and outbound transportation cost, and the

average inventory cost at the each RDC and the retailer. The expressions for the

facility cost and the outbound transportation cost are the same as in the case of the

batch ordering policy. For the inbound transportation cost between the NDC and

each RDC, the fixed cost component is ignored (i.e., Cf = 0) under the base stock
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policy. The inbound transportation cost is modeled in terms of the distance between

the NDC and each RDC. The optimization model for the integrated facility location

and inventory allocation problem under the base stock policy is given by:

P b: Minimize

η =
N
∑

i=1

FiXi +
N
∑

i=1

N
∑

j=1

ξ(Cvdi + Cfdij)Yijλj +
N
∑

i=1

H iXi +
N
∑

j=1

H jYij

subject to

Yij ≤ Xi ∀i, j (1)
N
∑

i=1

Yij = 1 ∀i (2)

sl
j ≤ sj ≤ su

j ∀j (3)

0 ≤ si ≤ su
i ∀j (4)

Pr((Bij(si) + Dj) < sj) ≥ βj ∀j (5)

Xi, Yij ∈ {0, 1}

si, sj ∈ Z+

where constraint (1) forces the assignment of each retailer to only an open RDC

location. Each retailer has to be assigned to exactly one RDC location and this is

achieved using constraint (2). Constraint (3) and (4) define the bounds on the base

stock levels and constraint (5) is the fill-rate constraint for each retailer.

8.2 Solution methodology

A solution to the optimization problem P b locates RDCs at one or more of the

potential locations i = 1,2,...,N. Also each retailer is assigned to exactly one RDC

location. In addition, the base stock policy at each RDC i and each retailer is

determined by the solution. In this section, we propose a solution procedure for

solving the problem. Note that the distribution for Bij as well as the expression
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for the expected inventory cost at the RDC and the retailer is hard to determine in

general. However if a normal distribution is assumed for the lead time demand at

each location, it is possible to simplify the objective function.

The solution approach for modeling the inventory cost is similar to the one pro-

posed by Gallego et al. [18]. Under this approach, closed form expression for the

average inventory and backorder level are derived using a normal demand distribu-

tion along all locations. Also the fill-rate constraint is modeled into the objective

function in terms of the penalty cost function. For a single echelon model, for each

service constraint there exists am equivalent representation in terms of backorder cost

by setting the penalty cost (see Zipkin [39]) defined by b = β
1−β

h where h is the in-

ventory holding cost. It has been shown that the same relationship may not hold for

a multi-ecehlon model. Thus, we estimate b = kh, where k is a constant set by the

management.

Applying these changes, the objective function in the original problem takes the

following form:

P̃ b: Minimize

η =
N
∑

i=1

FiXi +
N
∑

i=1

N
∑

j=1

ξ(Cvdi + Cfdij)Yijλj

+
N
∑

i=1

(minsi
{hiE[Ii]Xi +

N
∑

j=1

(bj + hj)φ(z∗j )σ̃jYij}) (48)

The new constraint set is the same as before without the fill-rate constraint in-

equality. Note that it is still hard to optimize the problem in its current form. Thus,

a heuristic approach is used to solve the problem. A Drop-Decomposition heuristic

is used in this analysis. The key idea is to use the Drop heursitic (see Daskin [14])

along with the Restriction-Decomposition heuristic proposed by Gallego et al. [18].

While the Drop heursitic is used extensively in the facility location literature, the

Restriction-Decomposition heuristic aids in finding a near-optimal base-stock policy

for each RDC location-store assignment combination.
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The Decomposition heursitic is a triple search heuristic. The base stock level for

each RDC i is set at three levels: si = 0, E[Di] and su
i , where E[Di] is the demand

at the RDC during its order lead time and su
i is the maximum possible value of the

base stock level at the RDC. For each level an optimal value of the base stock level

for each retailer is calculated using the following relationships.

s∗j(si) = µ̃j + z∗j σ̃j where

µ̃j = E[Bij ] + µjλj see Appendix 8.5 for derivation

σ̃2
j = V ar[Bij] + µjλj see Appendix 8.5 for derivation

z∗j solves Φ(z) =
hj

hj + bj

The Drop heuristic begins by placing a RDC facility at each possible location. As

the RDC facilities are consolidated, the total cost drops. Thus, at each iteration the

Drop heuristic greedily removes facilities from the solution until it can no longer find

one. Greedily selecting the node to be removed means that each node that is removed

from the solution causes maximum reduction of the total cost.

At each iteration of the Drop-Decomposition heuristic, the total facility, trans-

portation, inventory holding and backorder penalty cost is calculated. For calculating

the inventory cost, the Decomposition heuristic is used. For each retailer, the optimal

value of base stock level is calculated for three fixed levels of the RDC base stock level

(0, E[Di], su
i ). Here E[Di] is the expected demand during lead time at RDC i and su

i

is the maximum possible base stock level for RDC i. The average inventory holding

and penalty cost is calculated for each combination of RDC-retailer base stock level

and the minimum value is chosen as the cost associated with holding inventory and

backorders. Thus at each iteration of the Drop-Decomposition heuristic, the decom-

position heuristic aids in calculating the inventory and penalty cost while the drop

heuristic is used to greedily remove RDCs to reduce the total cost.
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Table 12: Drop-Decomposition heuristic result
Iteration Total Cost Drop action store assignment
1 243233
2 229390 Remove DC at node 16 Add store 16 to RDC 8
3 215620 Remove DC at node 14 Add store 14 to RDC 8
4 201857 Remove DC at node 18 Add store 18 to RDC 8
5 188102 Remove DC at node 9 Add store 9 to RDC 8
6 174411 Remove DC at node 17 Add store 17 to RDC 8
7 160739 Remove DC at node 11 Add store 11 to RDC 8
8 147095 Remove DC at node 12 Add store 12 to RDC 8
9 133470 Remove DC at node 7 Add store 7 to RDC 8
10 120037 Remove DC at node 13 Add store 13 to RDC 8
11 106738 Remove DC at node 15 Add store 15 to RDC 8
12 93712 Remove DC at node 10 Add store 10 to RDC 8
13 81284 Remove DC at node 1 Add store 1 to RDC 8
14 68887 Remove DC at node 2 Add store 2 to RDC 8
15 57326 Remove DC at node 3 Add store 3 to RDC 8
16 45810 Remove DC at node 5 Add store 5 to RDC 8
17 34328 Remove DC at node 4 Add store 4 to RDC 8
18 22975 Remove DC at node 6 Add store 6 to RDC 8

8.3 Numerical Illustration

The Drop-Decomposition heuristics (DDH) proposed in the previous section is used to

solve an example with 18 stores. The result obtained in each iteration of the heuristic

is presented in table 12. The distance between each candidate RDC location and the

NDC is given in table 14 (see appendix 8.5) and the distance matrix between any two

locations is given in table 15 (see appendix 8.5). The final solution obtained using

the DDH opened a RDC at candidate location 8 and assigned all stores to it.

Remark: It would be interesting to analyze the quality of this solution. An exact

evaluation of the optimal solution for this problem requires complete enumeration.

Enumeration itself is hard because of the exponential number of possibilities and the

complex expressions for the inventory and penalty cost functions in the problem (see

problem P b). However the nature of this example makes exact enumeration easy with

identical cost and demand attributes along the retailers. For any given RDC location
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Table 13: Average Inventory cost at each RDC as a function of number of stores
assigned to it
No. of stores Total cost RDC i Total cost at other RDCs Average Inventory cost
1 111 1887 1998
2 210 1776 1986
3 307 1665 1972
4 403 1554 1957
5 498 1443 1941
6 593 1332 1925
7 688 1221 1909
8 782 1110 1892
9 876 999 1875
10 971 888 1859
11 1064 777 1841
12 1158 666 1824
13 1252 555 1807
14 1346 444 1790
15 1439 333 1772
16 1532 222 1754
17 1626 111 1737
18 1719 0 1719

i, it was observed that the average inventory holding and penalty cost increases as

more stores are added to it (see table 13). However, as the RDCs are consolidated,

the average inventory cost decreases. This decrease in the average inventory cost is

more significant than the increase in the average inventory cost at RDC i. In this

analysis the upper bound on the base stock level at each RDC is in the range of 14-52

units. It was estimated by calculating the least possible value of base stock level at

each store. RDC i will have maximum base stock level when each store assigned to

it maintains its base stock at minimum possible level.

Remark: The optimal solution of the facility location and store assignment prob-

lem for this example can be solved using CPLEX. The optimal solution opened a RDC

at location 8 and assigned all stores to it. Also we know that the average inventory

and penalty cost is minimized when all stores are assigned to a single RDC. Then

it is plausible to say that the solution obtained by the DDH is indeed the optimal
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Figure 18: Linear Pattern for the average inventory cost

solution. Note that DDH is not gauranteed to produce an optimal solution in all

instances and it would be interesting to explore this area as a future study.

Remark: For large problem instances it can get cumbersome to apply the DDH.

One possible variation to the solution could be to analyze the shape of the average

inventory cost function. It may be possible to express the inventory cost as a linear

function of the number of RDCs. Infact in the previous example, the average inventory

cost is indeed a linear function of the number of RDCs (see figure 18). The parameters

of this linear regression model can be obtained using any statistical package such as

MINITAB or Excel. Once the inventory cost is expressed as a function of the RDCs,

the problem takes the form of an uncapacitated facility location problem and it can

be solved using the available heuristics (see Daskin [14]). We leave this analysis for

future work.
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8.4 Conclusion

In this section, an integrated model for the facility location-inventory allocation prob-

lem is presented under a base stock control policy at the RDCs and the retailers. A

Drop-Decompostion solution approach is presented to solve the problem. This ap-

proach uses two popular heuristics from the facility location (Drop heuristic) and the

multi-echelon inventory allocation (Decompostion heuristic) literature.

When analyzing a multi-echelon inventory allocation problem, the main challenge

lies in the estimation of the demand process at the upper echelon. A continuous

review base stock policy makes this analysis simpler and is preferred in such analysis

as the demand process at the DC can be easily estimated as the sum of the demand

processes at the retailers. However this inventory policy can be applied only to a

special class of distribution networks with negligible reorder costs and low demand.
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Table 14: Distance between RDC location i and the NDC
RDC Location i di RDC Location i di RDC Location i di

1 138 7 194 13 185
2 137 8 26 14 201
3 98 9 200 15 178
4 94 10 166 16 204
5 95 11 196 17 197
6 88 12 195 18 201

8.5 Appendix

E[Bi] = (φ(zi) − zi(1 − Φ(zi)))

√

√

√

√

N
∑

i=1

µiλjYij

V ar[Bi] = [(z2
i + 1)(1 − Φ(zi)) − ziφ(zi)]

N
∑

i=1

µiλjYij + E[Bi] − (E[Bi])
2

E[Ii] = (φ(−zi) + zi(1 − Φ(−zi)))

√

√

√

√

N
∑

i=1

µiλjYij

zi =
si −

∑N
i=1 µiλjYij

√

∑N
i=1 µiλjYij

pj =
λjYij

∑N
i=1 λjYij

E[Bij ] = pjE[Bi] ∀j

V ar[Bij ] = pj(1 − pj)E[Bi] + (pj)
2V ar[Bi] ∀j

µ̃j = E[Bij ] + µjλj

σ̃2
j = V ar[Bij ] + µjλj

E[Bj ] = (φ(zj) − zj(1 − Φ(zj)))σ̃j

E[Ij ] = (φ(−zj) + zj(1 − Φ(−zj)))σ̃j

zj =
sj − µ̃j

σ̃j
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Table 15: Distance between RDC location i and store j
dij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0 20 62 78 91 92 58 127 90 109 99 101 107 99 114 106 127 126
2 20 0 49 91 104 104 57 130 76 128 83 83 88 83 133 90 147 107
3 62 49 0 91 103 100 104 99 102 151 99 98 91 103 160 107 176 109
4 78 91 91 0 14 14 135 72 166 73 172 173 174 174 85 180 104 192
5 91 104 103 14 0 8 147 71 180 70 186 186 187 187 83 193 101 206
6 92 104 100 14 8 0 149 64 179 78 185 185 185 186 90 192 108 204
7 58 57 104 135 147 149 0 185 56 145 75 77 94 70 146 78 154 109
8 127 130 99 72 71 64 185 0 199 141 197 197 190 201 154 206 172 206
9 90 76 102 166 180 179 56 199 0 194 20 23 44 14 197 22 206 55
10 109 128 151 73 70 78 145 141 194 0 206 208 216 205 13 213 31 234
11 99 83 99 172 186 185 75 197 20 206 0 4 25 7 210 8 221 35
12 101 83 98 173 186 185 77 197 23 208 4 0 21 11 212 10 223 32
13 107 88 91 174 187 185 94 190 44 216 25 21 0 32 220 29 233 19
14 99 83 103 174 187 186 70 201 14 205 7 11 32 0 208 8 219 41
15 114 133 160 85 83 90 146 154 197 13 210 212 220 208 0 216 18 239
16 106 90 107 180 193 192 78 206 22 213 8 10 29 8 216 0 226 34
17 127 147 176 104 101 108 154 172 206 31 221 223 233 219 18 226 0 251
18 126 107 109 192 206 204 109 206 55 234 35 32 19 41 239 34 251 0
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CHAPTER IX

FUTURE WORK

This work is based on some simplified assumptions in order to make the problem

tractable and to enable us to derive meaningful insights. It would be interesting to

relax some of the assumptions to match the real-world scenarios, such as capacity

limitations on DCs, multiple products and other inventory policies. In this analysis

it is assumed that the NDC serves each cluster in isolation without considering the

impact on the other clusters in the sub-region. This can happen in the real world

when the NDC decides to review each cluster periodically. It would like interesting

to see how using a combination of periodic review policy at each NDC and continous

review policy at each RDC would affect the network design and costs.

It would be interesting to incorporate delivery lead time contraints in the model.

In the real world distribution operations, most orders have a delivery time window,

i.e., a lower and upper bound on the time it can take the order to arrive at a facility.

It is an important service measure and can impact the network design.

Throughout this study, the integrated network design and inventory allocation

problem is solved assuming a pull system. In a pull system, each facility analyzes its

local inventory and decides on the order quantity. It would be interesting to model the

problem under a push system where a central decision maker analyzes the inventory

at all the facilities and makes the inventory allocation decisions.
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[4] Axsäter, S., Handbooks in Operations Research and Management Science, Vol.
4. Logistics of Production and Inventory., ch. Continuous review policies for
multi-level inventory systems with stochastic demand. North-Holland, Amster-
dam, The Netherlands, 1993.

[5] Bazaraa, M., Sherali, H., and Shetty, C., Nonlinear Programming: The-
ory and Algorithms. John Wiley & Sons, Inc., 1993.

[6] Blumenfeld, D. E. and Beckmann, M. J., “Use of continuous space model-
ing to estimate freight distribution costs,” Transportation Research A, vol. 19A,
no. 2, pp. 173–187, 1985.

[7] B.Schwarz, L., L.Deuermeyer, B., and Badinelli, R. D., “Fill-rate opti-
mization in a one-warehouse n-identical retailer distribution system,” Manage-
ment Science, vol. 31, no. 4, pp. 488–498, 1985.

[8] Burn, L., Hall, R., Blumenfeld, D. E., and Daganzo, C. E., “Distri-
bution strategies that minimize transportation and inventory cost,” Operations
Research, vol. 33, no. 3, pp. 469–490, 1985.

[9] C.F.Daganzo and G.F.Newell, “Configuration of physical distribution net-
works,” Networks, vol. 16, pp. 113–132, 1986.

[10] Chopra, S. and Meindl, P., Supply Chain Management. Prentice Hall; 2
edition, 2003.

[11] C.Palm, “Analysis of the erlang traffic formula for busy signal assignment,”
Ericsson Technics, vol. 5, pp. 39–58, 1938.

[12] Daganzo, C. F., Logistics Systems Analysis. Springer, Berlin, 1996.

110



[13] Dasci, A. and Verter, V., “A continuous model for production-distribution
system design,” European Journal of Operational Research, vol. 129, pp. 287–298,
2001.

[14] Daskin, M., Network and Discrete Location: Models, Algorithms and Applica-
tions. John Wiley and Sons, New York, 1995.

[15] Deuermeyer, B. and Schwarz, L. B., In Studies in the Management Sci-
ences, Multilevel Production/Inventory Control Systems, vol. 16, ch. A Model for
the analysis of System Service level in Warehouse/Retailer Distribution Systems:
The Identical Retailer Case., pp. 163–193. North-Holland, Amsterdam, 1981.

[16] Erlebacher, S. and Meller, R., “The interaction of location and inventory
in designing distribution systems,” IIE Transactions, vol. 32, pp. 155–166, 2000.

[17] Erlenkotter, D., “The general optimal market area model,” Annals of Op-
erations Research, vol. 18, pp. 45–70, 1989.
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