
EXTENSIONS OF PRINCIPAL COMPONENTS
ANALYSIS

A Thesis
Presented to

The Academic Faculty

by

S. Charles Brubaker

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2009

EXTENSIONS OF PRINCIPAL COMPONENTS
ANALYSIS

Approved by:

Professor Santosh Vempala, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Vladimir Koltchinskii
School of Mathematics
Georgia Institute of Technology

Professor Haesun Park
School of Computer Science
Georgia Institute of Technology

Professor Ravi Kannan
Algorithms Research Group
Microsoft Research Labs., India

Professor Adam Kalai
School of Computer Science
Georgia Institute of Technology

Date Approved: 17 June 2009

To my father

iii

ACKNOWLEDGEMENTS

My journey through the PhD program has been a long one, taking me from robotics,

to computer vision, to machine learning, and finally to theory. Making so many

transitions slowed my graduation, no doubt, but it also allowed me to work with

leaders across several research fields and has given me a better perspective on the

research world. Ultimately, I am the better for it, and I am grateful to everyone I

have had the opportunity to work with.

The most important man in my PhD career has been my advisor, Santosh Vem-

pala, who brought out the best in me. Santosh’s deep knowledge of theory and insight

into my character allowed him to steer me toward the problems where I would enjoy

myself and have success. Working with him closely has taught me how to think about

math more intuitively and shown me how a truly great mind thinks. I will never for-

get his many acts of kindness and sometimes heroic efforts on my behalf. If I can

emulate his advisement with my own students, I will consider myself a great success.

I also want to thank my two previous faculty advisors Frank Dellaert and Jim

Rehg for the opportunity to work with them and for all that I learned under their

guidance. Matt Mullin has also been a great resource on all matters mathematical. I

am also obliged to some of the great teachers at Georgia Tech. A few that stand out

in my memory are Vijay Vazirani, Eric Vigoda, Yan Ding, and Christopher Heil. My

committee also deserves thanks for their feedback and thoughtful questions about my

work.

Among my fellow graduate students, I am grateful to the members of the Theory

Group and Wall Lab for their comradery through our shared struggles. I especially

enjoyed my conversations with Jie Sun about our efforts at self-improvement and with

iv

Raffay Hamid about deep questions outside of computer science. These conversations

were often the highlight of my day.

Lastly, I want to thank my family. My parents more than anyone else cultivated

the intellectual curiosity which has enriched my life and been a consolation through

hard times. They and my wife Stephanie remained supportive throughout my PhD

career. Stephanie has also been an excellent proofreader for all my papers. She and

our two children, Charles and Sophie, have been remarkably patient through the late

nights I spent in the lab and my bad humors. They mean the world to me.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . ix

SUMMARY . x

I INTRODUCTION . 1

1.1 A Brief History of PCA . 1

1.2 Some Example Applications . 3

1.3 Contributions . 5

II PRELIMINARIES . 6

2.1 Standard PCA . 6

2.2 Generalization to Tensors . 7

III EXTENSIONS OF MATRIX PCA . 8

3.1 Robust PCA . 8

3.2 Isotropic PCA . 11

3.3 Future Directions . 12

IV MIXTURE MODELS . 14

4.1 Learning Logconcave Mixture Models 15

4.2 Learning Axis-Aligned Mixtures . 16

V CLUSTERING ON NOISY MIXTURES 18

5.1 Introduction . 18

5.2 A Robust Clustering Algorithm . 20

5.3 Empirical Illustrations . 21

5.4 Preliminaries . 23

5.4.1 Safe Polyhedra . 24

5.4.2 Properties of Sample Sets 26

5.4.3 Bounds on t . 27

vi

5.4.4 A Spectral Lemma . 30

5.5 Analysis . 31

5.5.1 Robust PCA . 32

5.5.2 Partitioning Components 39

5.6 Proof of the Main Theorem . 44

VI AFFINE-INVARIANT CLUSTERING 46

6.1 Introduction . 46

6.2 The Unravel Algorithm . 51

6.2.1 Parallel Pancakes . 53

6.3 Empirical Illustrations . 54

6.4 Overview of the Analysis . 54

6.5 Preliminaries . 57

6.5.1 Matrix Properties . 57

6.5.2 The Fisher Criterion and Isotropy 58

6.6 Approximation of the Reweighted Moments 61

6.6.1 Single Component . 61

6.6.2 Mixture Moments . 64

6.7 Sample Convergence . 67

6.8 Finding a Vector near the Fisher Subspace 70

6.8.1 Mean Shift . 71

6.8.2 Spectral Method . 72

6.9 Recursion . 77

VII THE SUBGRAPH PARITY TENSOR 83

7.1 Introduction . 83

7.1.1 Overview of analysis . 87

7.2 Preliminaries . 88

7.2.1 Discretization . 88

7.2.2 Sufficiency of off-diagonal blocks 90

vii

7.2.3 A concentration bound . 91

7.3 A bound on the norm of the parity tensor 93

7.3.1 Warm-up: third order tensors 93

7.3.2 Higher order tensors . 97

7.4 Finding planted cliques . 101

APPENDIX A HARDNESS OF TENSOR POLYNOMIAL MAXIMIZATION106

APPENDIX B RECOVERING A CLIQUE 112

APPENDIX C ROBUST PCA CODE . 115

REFERENCES . 119

viii

LIST OF FIGURES

1 Samples from a rectangle mixed with malicious noise. 9

2 Mapping points to the unit circle and then finding the direction of
maximum variance reveals the orientation of this isotropic distribution. 12

3 The PCA subspace does not preserve the separation of the mixtures,
because the noise term dominates. Robust PCA, however, approxi-
mates the intermean subspace, making it possible to cluster. 22

4 Previous work requires distance concentration separability which de-
pends on the maximum directional variance (a). Our results require
only hyperplane separability, which depends only on the variance in the
separating direction(b). For non-isotropic mixtures the best separating
direction may not be between the means of the components(c). 47

5 Enforcing Isotropy will squeeze components together if they are apart
(a,b) or stretch them away from each other if they are close (c,d). It
also has the effect of making the intermean direction the best choice
for separating the components (e,f). 55

6 Random Projection (b) and PCA (c) collapse the components, but
Isotropic PCA find the Fisher subspace where the components can be
separated. 56

ix

SUMMARY

Principal Components Analysis is a standard tool in data analysis, widely

used in data-rich fields such as computer vision, data mining, bioinformatics, and

econometrics. For a set of vectors in Rn and a natural number k < n, the method

returns a subspace of dimension k whose average squared distance to that set is as

small as possible. Besides saving computation by reducing the dimension, projecting

to this subspace can often reveal structure that was hidden in high dimension.

This thesis considers several novel extensions of PCA, which provably reveals

hidden structure where standard PCA fails to do so. First, we consider Robust PCA,

which prevents a few points, possibly corrupted by an adversary, from having a large

effect on the analysis. The key idea is to alternate noise removal with projection

to a constant fraction of the dimensions. When applied to noisy mixture models,

the algorithm finds a subspace that is close to the pair of means that are furthest

apart. By choosing and testing random directions in this subspace, the algorithm

finds a partitioning hyperplane that does not cut any component and then recurses

on the two resulting halfspaces. This strategy yields a learning algorithm for noisy

mixtures of log-concave distributions that is only slightly weaker than the noiseless

result (Chap. 5).

Second, we consider Isotropic PCA, which can go beyond the first two moments in

identifying “interesting” directions in data. The algorithm first makes the distribution

isotropic through an affine transformation. Then the algorithm reweights the data

and computes the resulting first and second moments. In effect, this simulates a

non-isotropic distribution, whose moments are sometimes meaningful. In the case of

a mixture of Gaussians under a Gaussian reweighting, either the first moment or the

x

direction of maximum second moment can be used to partition the components of the

mixture assuming that the components are sufficiently separated. This strategy leads

to the first affine-invariant algorithm that can provably learn mixtures of Gaussians

in high dimensions, improving significantly on known results (Chap. 6).

Thirdly, we define the “Subgraph Parity Tensor” of order r of a graph and reduce

the problem of finding planted cliques in random graphs to the problem of finding the

top principal component of this tensor (Chapter 7). This extends work by Frieze and

Kannan, which considers only third order tensors. The intuition behind the result is

that the entries in the block of the tensor corresponding to the clique will all have the

same values, while the values in other blocks will be uncorrelated. This forces the top

principal component of the tensor to “point” towards the clique. Using a previously

known algorithm, the clique can be recovered.

xi

CHAPTER I

INTRODUCTION

Intuitively, Principal Components Analysis (PCA) reveals in which directions a finite

set of points is most stretched out. This concept is most familiar in the context of

linear regression. Every high school student has plotted points in the plane and drawn

a “best fit” line through them as part of a physics lab or math class. Similarly, for a

set of points in three dimensions one can also imagine a best fit line, or by choosing

an additional orthogonal direction, a best fit plane. In the language of PCA, after

placing the origin at the mean of the points, the best fit line is the top principal

component and the best fit plan is the span of the top two principal components.

Analogously, for any point set in Rn, we can define a top k principal components,

whose span is a best fit k-dimensional subspace for the data.

These principal components are most easily characterized as eigenvectors of the

covariance matrix. Thus, they can be defined for any distribution (not merely a finite

point set) that has a bounded second moment. This type of eigenvector analysis

plays an important role in algorithms for a broad set of problems, from the analysis

of random graphs, to mixture models used in statistics, to applications such as data

mining and computer vision. Often these algorithms using PCA are the best known.

This thesis explores several extensions or modifications of PCA that produce provably

better results than standard PCA for several problems.

1.1 A Brief History of PCA

If the essential concepts behind PCA are 1) that any distribution with bounded sec-

ond moments should have a set of principal axes and 2) that these axes are revealed

by eigenvectors of the covariance matrix, then PCA can be traced back as far as the

1

middle of the 18th century. In 1730, Leonhard Euler published his Theoria motus

corporum solidorum seu rigidorum, which describes the motion of rigid bodies and

introduces the idea of principal axes of rotation. A generation later, Lagrange rec-

ognized that these axes were the eigenvectors of the tensor of inertia, a close relative

of the covariance matrix.1 Replacing the rigid body (a uniform distribution with

connected compact support) in R3 with a point set in Rn yields PCA.

Thoughout the nineteenth century, the ideas of principal axes and eigenvector

decompositions proved fertile ground, particularly in the areas of quadric surfaces

(Cauchy) and differential equations (Sturm-Louisville). It was not until the early

twentieth century, however, that the idea was applied to data analysis in the work

of Karl Pearson [42]. Pearson pointed out that in many practical applications the

division between “independent” and “dependent” variables is arbitrary. For example,

suppose that we measured the heights {hi} and leg lengths {`i} of a population

and that we seek an affine relationship between the two quantities. In a traditional

least squares approach, if we treat the heights as independent and leg lengths as

dependent, then we obtain a function ` : R → R, mapping height to leg length.

For pairs {(hi, `i)}, the least squares regression minimizes
∑

i(`i − `(hi))
2, taking

no account for error in hi. Conversely, if we switch the independent and dependent

variables, then we obtain a function h : R → R which minimizes
∑

i(hi − h(`i))
2,

taking no account for error in `i. Plotting h along the x-axis and ` along the y-axis,

the first approach considers only vertical distances between a point and the “fit”,

while the second approach considers only horizontal distances. Pearson argues that

the minimum distance between a point and the “fit” is the right quantity to consider.

That is, letting F = {(x, y) ∈ R2 : ax + by + c = 0} be a flat, we should choose the

1For a more detailed history see [27, 35].

2

flat that minimizes ∑
i

min
(x,y)∈F

(hi − x)2 + (`i − y)2.

As we will see in Chap. 2, this defines PCA.

It is worth noting that eigenvalues can be found by finding the roots of the charac-

teristic polynomial of a matrix. Thus, it was practical to find eigenvalues for a matrix

long before it was to find eigenvectors. The first numerical algorithm for finding

eigenvectors of large matrices was the “power method”, in which a random vector is

multiplied repeated by the matrix until in converges. 2 Interestingly, the introduction

of this algorithm predates the modern computer. The widely used QR algorithm was

proposed independently by Francis [19] and Kublanovskaya [36] in 1961 .

1.2 Some Example Applications

In his 1901 paper, Pearson noted that calculation becomes “cumbersome if we have

four, five, or more variables.” Today, since the development of the modern computer

and the fast algorithms for SVD, it has become practical to work with hundreds or

thousands of variables. PCA has therefore become popular in fields like data mining,

computer vision, econometrics, and psychometrics where there are a large number of

variables and the relationships among them are not always clear.

Perhaps, the most common use is in data compression or simplification, in which

a high dimensional data set is given a low dimensional representation. This is most

effective when the data lies close to some k dimensional subspace (or flat). Let m

be the number of samples and n the number of variables and let the columns of

the n-by-k matrix V be the top k principal components. Then a data set stored in

a n-by-m matrix M , can be summarized by the projection coefficients C = V T M ,

a k-by-m matrix. The data can be approximately constructed from V and C as

2Credit for the algorithm usually goes to Von Mises (1929), though the idea of using a high power
Ak appears in work by Muntz (1913) and Ostrowski and Werner Gautschi are the first to give a
careful treatment. See [25] for more detailed chronology and sources.

3

M̂ = V C = V V T M . Storing V and C, however, only requires O(nk + km) space as

opposed to O(mn) space for the full data.

In a least squares sense, projecting to a PCA subspace changes the data as little as

possible. Hence, one might expect that algorithms that run on the PCA coefficients

instead of the original data might do not too much worse. In fact, however, it has

often been observed that certain classification algorithms actually work better. Two

of the most striking examples in computer science are latent semantic indexing and

eigenfaces for face recognition.

In information retrieval and document analysis, documents are often represented

according to the number of times certain words occur in them. If there are n such

words, then each document is represented as a vector in Rn where the ith element is

some function of the number of times word i occurs in the document. Typical tasks

are retrieval (“find me documents similar to this one”) and clustering (“organize these

documents by topic”). For such methods to be effective, the notion of similarity or

distance between documents need to correspond to our human understanding. A typ-

ical measure of similarity would be the correlation between to vectors. Interestingly,

the application of PCA to a document corpus, called latent sematic indexing, goes

a long way toward this end. This process of trading a large number of word counts

for a small number of PCA coefficients has been shown to improve retrieval results

[4, 15]. A theoretical analysis of this phenomenon based on a probabilistic model of

the document corpus is given in [41].

A similar phenomenon has been observed in face recognition. Here we are given a

corpus of individuals and sample images of each individual’s face. Given a new image

of one of these individuals’ faces, we would like to identify the individual. Each image

is represented as a vector in Rn, where each coordinate reflects the intensity of a unique

pixel. For this application, n is typically on the order of 105. It is intuitive, therefore,

that the speed of retrieval would be improved if n could be replaced by a small number

4

of coefficients. In fact, however, a dramatic improvement in accuracy is also observed

[46, 26]. In this case, PCA not only creates a more efficient representation, but it also

has the effect of removing noise, while preserving the desired underlying signal. This

same intuition underlies the application of PCA to learning mixture models.

1.3 Contributions

This thesis considers several novel extensions of PCA, which provably reveal hidden

structure where standard PCA fails to do so. It presents two novel algorithms called

Robust PCA and Isotropic PCA, which are outlined in Chap. 3, and applies them

to learning mixture models. Robust PCA makes it possible learn noisy logconcave

mixtures assuming only slightly more separation than necessary in the noiseless case.

This work appeared in Proceedings of the Symposium on Discrete Algorithms, 2009

[5] and is presented in Chap. 5. Isotropic PCA yields an affine invariant method

for learning well-separated mixtures of Gaussians. This is joint work with Santosh

Vempala, appearing in Building Bridges Between Mathematics and Computer Science

[6]. An earlier version also appeared at the Symposium on Foundations of Computer

Science, 2008. The work is presented in Chap. 6.

The thesis also considers an extension of the idea of the top principal component to

tensors (the analogue of matrices with more than two indices). Building on previous

work of Frieze and Kannan [21], it shows that finding the top principal component of

a tensor of order r makes in possible to find planted cliques of size Cn1/r in random

graphs. This also is joint work with Santosh Vempala and it will appear in Proceedings

of the 13th International Workshop on Randomization and Computation, 2009 [7]. It

is presented in Chap. 7.

5

CHAPTER II

PRELIMINARIES

2.1 Standard PCA

For a collection of vectors {ai}m
i=1 in Rn such that

∑m
i=1 ai = 0, the principal compo-

nents are orthogonal vectors v1, . . . vn such that for every whole number k < n the

subspace Vk = span{v1, . . . , vk} minimizes

m∑
i=1

d(ai, Vk)
2, (1)

where d is the distance between the point ai and the subspace Vk, i.e.

d(ai, Vk) = inf
x∈Vk

‖ai − x‖.

The vectors {vi} are called the principal components, and the subset v1, . . . , vk are

called the “top” k principal components.

Note that the requirement that the mean of the vectors {ai} be zero is trivial,

since it can be achieved through a simple translation of the points. This process is

called “centering the data.” Taking V0 to be the point at the origin, (1) holds for

k = 0 as well. Thus, V0, . . . , Vn form a set of nested subspaces, each differing from

the next by the inclusion of one of the principal components.

These principal components can be found through the Singular Value Decompo-

sition (SVD) of the m-by-n matrix A whose rows are the vectors ai. Through SVD,

the matrix A be written as a sum of rank-1 matrices

A =

min{m,n}∑
i=1

σiuiv
T
i ,

where {σi} non-negative reals, {ui} are orthogonal unit vectors in Rm, and {vi} are

the principal components of the rows of A.

6

Another equivalent characterization that is often useful is to say that the principal

components are the eigenvectors of the symmetric matrix M = AT A/m, i.e. the

second moment matrix of the set {ai}. When the origin is placed at the mean of

the points, this becomes the eigenvectors of the covariance matrix. We can then

characterize the principal components as

v1 = arg maxv:‖v‖=1v
T Mv (2)

v2 = arg maxv:‖v‖=1,v2⊥v1
vT Mv

...

vn = arg maxv:‖v‖=1,vn⊥v1,...,vn⊥vn−1
vT Mv

This characterization of the top principal component can be extended to higher order

tensors.

2.2 Generalization to Tensors

If vectors have one index, matrices have two, then for the purpose of this thesis

“tensors” have more than two. We call the number of indices the order of the tensor.

Although there is no clear analog to SVD or eigenvector analysis for tensors with

order larger than two, we define the top principal component of a symmetric tensor

A to be the unit vector that maximizes

A(x) =
∑

k1...kr∈[n]r

Ak1...krxk1 . . . xkr . (3)

This is the natural analogue to (2) and the maximum possible A(x) defines the tensor

norm.

7

CHAPTER III

EXTENSIONS OF MATRIX PCA

This section gives an exposition of Robust PCA and Isotropic PCA, illustrating them

through some simple examples. Although these algorithms were originally developed

for learning mixture models, they may be of broader interest and are presented inde-

pendently here.

3.1 Robust PCA

Robust PCA addresses the problem of corrupted data. Given a set of points in Rn an

adversary need only corrupt k data points to make the top k principal components

of the corrupted data orthogonal to the top k components of the original data. This

holds regardless of the number of data points. For instance, let vn−k+1, . . . , vn be the

k smallest spectral components for a set of samples S. To this set add k noise points,

x1 = cvn, . . . , xk = cvn−k+1. For large values of c, the largest k principal components

of S ∪ {xi}k
i=1 will converge to vn−k+1 . . . vn, which are orthogonal to v1 . . . vk.

The most immediate way to address this problem is to remove outliers. This

is challenging in high dimensions because even random points sampled from small

volumes tend to be far apart. Putting a ball around the uncorrupted data is not

sufficient to preserve the relevent principal components.

We illustrate this challenge by way of example (see Fig. 1). Consider a set S of

m points sampled uniformly from the stretched cube
√

6[−1, 1]×
√

3[−1, 1]n−1, which

has variance 2 along the first coordinate and variance 1 along all others. Suppose that

the point set is rotated in some arbitrary way, and we wish to recover the direction

in which the cube is most stretched. Without corrupted data, the top principal

component will point along this direction.

8

...

...

Figure 1: Samples from a rectangle mixed with malicious noise.

To the set S, add a set εm noise points at
√

n + 1e2 and an equal sized set at

−
√

n + 1e2. Call these noise points N . Note that ES[‖x‖2] = EN [‖x‖2] = n + 1–the

points in N have exactly the same expected squared distance from the origin as points

in S from the cube. This make the points difficult to distinguish. At least, we cannot

simply put a ball around the uncorrupted data.

Despite not being outside the radius of the uncorrupted data, the noise points can

have an unwanted effect on PCA. For just the points S sampled from the stretched

cube, the top principle component should be along the long axis of the cube e1. This

can change with the addition of the noise points N . Ignoring the (1+ ε)−1 factors, we

have ES∪N [x2
1] = 2 and, ES∪N [x2

2] = 1 + ε(n + 1). For ε as small as 1/n, this means

that

ES∪N [x2
2] = 1 +

n + 1

n
> 2 = ES∪N [x2

1].

The addition of the points N has made e2 the top principal component! By adding

k more similar clusters of points along the coordinate axes e3 . . ., it is possible to

produce the same effect on more coordinates, pushing e1 to be the (k +1)th principal

component for any k < n. Notice, however, that this requires that ε ≥ k/n.

9

The intuition behind the Robust PCA algorithm is that if ε is small, then it is

“safe” to remove the bottom n/2 principal components (i.e. project to the top n/2

components). This projection has the effect of shrinking points in S toward the origin.

After two such iterations, instead of having an expected squared norm of n + 1, we

now have ES[‖x‖2] = n/4 + 1 and no point will be as far as
√

3(n/4 + 1) from the

origin. Since
√

3(n/4 + 1) <
√

n + 1, it is now possible to put a ball around the

uncorrupted data and remove the noise points.

Algorithm 1 Robust PCA

Input:
1) Collection {Zi} of dlog2 ne sets of points in Rn.
2) Integers k, r, scalar ξ.

Output: A subspace W of dimension k.

1. Let W = Rn.

2. While dim(W) > k,

(a) Let Z = projW (Zi), where Zi is the next set of samples.

(b) For every p ∈ Z find the point q(p), defined to be rth furthest away point.

(c) Find the point p0 such that the distance ‖p0 − q(p0)‖ is the rth largest
distance in the set {‖p − q(p)‖ : p ∈ Z}. Let q0 = q(p0) and let t(Z) =
‖p0 − q0‖.

(d) Let Z ′ = Z ∩B(p0, ξt(Z)).

(e) Let W be the span of the top b(dim(W)− k)/2c+ k eigenvectors of the
matrix

∑
p∈Z′(p− p0)(p− p0)

T .

The remaining challenge is to put a ball around the good data. The key assump-

tion is that there is some integer r < |S|/2 and real ξ such that in every iteration

1. r is larger than the number of corrupt points, and

2. within the uncorrupted set there are r points whose distance to the rth furthest

away point is within a 2/ξ factor of the maximum distance between points.

For a point p ∈ S ∪ N , let q(p) be the rth furthest away point and let t be the rth

10

largest element in the set {‖p − q(p)‖ : p ∈ S ∪ N}. Let p0 be a point such that

‖p0 − q(p0)‖ = t. The above conditions guarantee that

t ≤ max
p,q∈S

‖p− q‖ ≤ ξ

2
t.

Hence, for any p ∈ S, the ball B(p, ξ/2 · t) ⊇ S. Unfortunately, we do not know

that p0 ∈ S, but we do know that there is some point q0 ∈ B(p, t) ∩ S. Therefore,

B(p, ξt) ⊇ S.

Thus, the algorithm Robust PCA (Alg. 1) uses the strategy of alternately denois-

ing and projecting to the top n/2 components, until the dimension is reduced to the

desired k.

3.2 Isotropic PCA

We now turn to another extension of PCA, which goes beyond the first and second

moments to identify “important” directions. When the covariance matrix of the input

(distribution or point set in Rn) is a multiple of the identity, then PCA reveals no

information; the second moment along any direction is the same. Such inputs are

called isotropic. Our extension, which we call Isotropic PCA, can reveal interesting

information in such settings.

To illustrate the technique, consider the uniform distribution on the set X =

{(x, y) ∈ R2 : x ∈ {−1, 1}, y ∈ [−
√

3,
√

3]}, which is isotropic. Suppose this distri-

bution is rotated in an unknown way and that we would like to recover the original

x and y axes. For each point in a sample, we may project it to the unit circle and

compute the covariance matrix of the resulting point set. The x direction will corre-

spond to the top principal component, the y direction to the other. See Figure 3.2

for an illustration. Instead of projection onto the unit circle, this process may also be

thought of as importance weighting, a technique which allows for the simulation of

one distribution by using another. In this case, we are simulating a distribution over

11

the set X, where the density function is proportional to (1 + y2)−1, so that points

near (1, 0) or (−1, 0) are more probable.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a

a’

Figure 2: Mapping points to the unit circle and then finding the direction of maxi-
mum variance reveals the orientation of this isotropic distribution.

Algorithm 2 Isotropic PCA

Input:
1) A set X of points in Rn.
2) Integer k, function f : R → R

Output: Vectors u and v1, . . . , vk.

1. Find the affine transformation that makes the point set X isotropic. Call the
resulting points X̃.

2. Compute u = 1
|X|
∑

x∈X̃ xf(‖x‖).

3. Compute M = 1
|X|
∑

x∈X̃ xxT f(‖x‖) and let v1, . . . , vk be its top k principal
components.

This general approach of 1) making a point set isotropic, 2) reweighting, and 3)

finding the resulting moments is outlined in Algorithm 2, which we call Isotropic

PCA.

3.3 Future Directions

Currently, the guarantees about how Isotropic PCA and Robust PCA work apply

only to learning mixtures of Gaussians and log-concave distributions respectively (see

12

Chapters 5 and 6). The ideal would be to prove as general a theorem as possible about

the utility of these algorithms. For Isotropic PCA, this might mean characterizing

all distributions for which the Unravel algorithm works. For Robust PCA, it might

mean a claim about how close the Robust PCA subspace is to the PCA subspace

with the noise removed. Short of these goal, finding new applications for the methods

could make them interesting and useful to a wider group of researchers.

13

CHAPTER IV

MIXTURE MODELS

One of the most common modeling assumptions for data is that it is sampled from a

mixture of known distributions. For instance, consider the set of newspaper articles

appearing the in The Washington Post over the last year. A mixture model might

approximate the true writing process as follows. First, the editor chooses a topic

according to some random process, choosing topic i with probability wi. Then the

journalist writes the article according to some random process. If each article is

represented as a vector in Rn (e.g. each coordinate might be the number of times a

particular word appears), then this process induces a “mixture distribution” over Rn

F = w1F1 + . . . + wkFk,

where Fi is the distribution given that topic i was assigned. Although mixture mod-

eling is usually a poor approximation to what happens in the real world, it is often

good enough to enable automated tasks such as document search (“find articles on

the same topic as this one”) or computational simplifications such as vector quanti-

zation (used in speech recognition, for example). Note that in these applications the

point in Rn (the article) is known, but the component identifier (the topic) is not.

Despite their widespread use, little was known about when such mixture distribu-

tions are learnable until recently. Given samples from a mixture distribution, can the

parameters of the distributions be recovered? The most obvious solution to learning

these parameters is to figure out which samples came from which distribution and

then learn the distributions individually. This partition of the data points is called

clustering. The classical methods of “K-means Clustering” [39] and “Expectation-

Maximization,” [13], however, are local search methods and tend to become stuck in

14

suboptimal classifications.

4.1 Learning Logconcave Mixture Models

Learning mixture models was popularized in the learning theory community by S.

Dasgupta and Shulman [11, 12], beginning with mixtures of spherical Gaussians.

The basic intuition for this early work was that points from the same component

should be closer to each other than points from different components. If a point x

is from component i and y is from component j, then the squared distance between

them is roughly

‖x− y‖2 = n(σ2
i + σ2

j) + ‖µi − µj‖2 ± C
√

n(σi + σj),

where µi is the mean of component i and σ2
i is the variance along a single direction

for component i. To cluster, it is sufficient that the distance between the means dom-

inate the variability in the distances (i.e. C
√

n(σi + σj)). Therefore, the separation

requirement is that for every pair of components i, j,

‖µi − µj‖ ≥ n1/4(σi + σj)poly(log n).

Arora and Kannan [3] gave a more general notion of distance that handles a wider

variety of cases, including the case where one Gaussian is “inside” another because

of a large difference in their variances. For spherical Gaussians of similar radius,

however, their result is comparable.

A major breakthrough in provable clustering results came from understanding

the effect of applying PCA to the data [48, 29, 1]. If the means of the components

of the mixture are reasonably well separated compared to the directional variances,

then the principal components of the sample points will be close to the span of the

means. Thus, projecting to the top k components preserves the separation between

the components, while igoring other dimensions. If the distance between the means

15

is the signal, then projection to the PCA subspace reduces the noise by removing the

orthogonal dimensions.

This idea first appears in work by Vempala and Wang [48], which shows only that

‖µi − µj‖ ≥ k1/4(σi + σj)poly(log n)

separation for k components. This work was later extended by Kannan, Salmasian,

and Vempala [29] to mixtures of logconcave densities that are not necessarily isotropic.

Achlioptas and McSherry [1] show similar results and explore the minimum necessary

separation for clustering to be possible. In these works, the required separation is

‖µi − µj‖ ≥ (k3/2 + wmin
−1/2)(σi + σj)poly(log n).

where σ2
i,max is the maximum variance of the ith component in any direction.

A major shortcoming of this line of work is that large variances in directions

orthogonal to the span of the means can cause the method to fail. In fact, every

mixture where these algorithms work can be transformed to one where they fail by

an affine transformation. The “Unravel” algorithm presented in [6] and summarized

in Chap. 6 overcomes this shortcoming by going beyond first and second moments in

identifying good separating directions for the clusters.

Another shortcoming of traditional PCA is that it can be subject to corruption

of a few points. For instance, a single point can dramatically affect the top principal

component. The Robust PCA algorithm presented in [5] and summarized in Chap.

5 is robust to this kind of noise and yields an algorithm for learning mixtures of

log-concave distributions.

4.2 Learning Axis-Aligned Mixtures

A related area of work is on learning product distributions, where the coordinates are

independent (e.g. a Gaussian would be axis-aligned). Here the goal is not necessarily

to cluster data but to approximate the density of the mixture. Freund and Mansour

16

[20] first solved this problem for a mixture of two distributions of binary vectors ,

finding a model that approximates the true distribution in terms of Kullback-Leibler

distance. Feldman and O’Donnell [17] extended this result to mixtures of any con-

stant number of components and to discrete domains instead of binary vectors, i.e.

{0, . . . , b− 1}n instead of {0, 1}n. Joined by Servedio in [18], they applied their tech-

nique to mixtures of a constant number of axis-aligned Gaussians, showing that they

can be approximated without any separation assumption at all.

Another class of results on learning product distributions uses separation condi-

tions which assume that the component centers be separated along many directions.

Chaudhuri and Rao [9] note that results such as [29],[1] and [6] have a polynomial

dependence on the inverse of the minimum mixing weight and reduce this to a loga-

rithmic dependence by exploiting the independence of the coordinates. Beyond log-

concave distributions, A. Dasgupta et al [10] consider a class of heavy-tailed product

distributions and give separation conditions under which such distributions can be

learned using an algorithm that is exponential in the number of samples. Chaudhuri

and Rao [8] have recently given a polynomial algorithm to learn a related class of

heavy-tailed product distributions.

17

CHAPTER V

CLUSTERING ON NOISY MIXTURES

5.1 Introduction

We consider the problem of learning a mixture from samples where the data in-

cludes some small miscellaneous component in addition to a well-behaved mixture.

Equivalently, we may say that the sampling process for the well-behaved mixture has

some noise, whereby with some small probability a point is replaced by a noise point

about which can make no assumptions. The practical importance of robustness to

the presence of noise should be apparent to anyone who has tried to file his bills,

organize a closet, or set up a directory structure on his hard disk. Some things just

don’t belong to any large category. The presence of these “noisy” objects does not

usually impede our ability to cluster or classify objects, suggesting that we should

hold our algorithms to this standard as well. More concretely, in tasks such as doc-

ument or web-page clustering it is unreasonable to assume that components will be

well-separated with absolutely nothing in-between.

In our model, we assume that with probability at least 1 − ε the sample source

outputs a point from a mixture of log-concave distributions, but with the remaining

probability it outputs a point about which we can make no assumptions. We call such

a sample source ε-noisy. This is the natural analog to the malicious error models of

[32, 47] for the clustering problem. Because the noise component is arbitrary, it may

not be possible to cluster in the traditional sense. Indeed all noise points could be

identical to one of the non-noise points, making them indistinguishable. Therefore,

we set a different goal. Suppose the data set can be written as the disjoint union

S1 ∪ . . . ∪ Sk ∪ N , where Si corresponds to the set of points from component i and

18

N to the set of noise points. Then we seek a collection of disjoint sets C1 . . . Ck such

that for every Si, there is a unique Ci where

Si ⊆ Ci ⊆ Si ∪N. (4)

Although the sets {Ci} may include some noise points, they induce a correct partition

of the non-noise points {Si}.

We present a polynomial time algorithm that given a noisy mixture of well-

separated, logconcave distributions in Rn, learns to separate the components of the

mixture. That is, the algorithm finds a partition of Rn into k sets with disjoint inte-

riors each of which contains almost all of the probability mass of a unique component

of the mixture. The error of such a partition is the total mass that falls outside of the

correct set. As a corollary, this algorithm makes it possible to cluster points from a

noisy source in the sense of (4). The separation between the means necessary for the

algorithm’s success is only an O∗(log n) factor larger than the best analogous results

without noise, treating k and wmin as constants.

The input to our algorithm is a source of samples LM, a natural number k and a

scalar wmin. The quantity k is the number of non-noise components in the mixture and

wmin is a lower bound on the minimum mixing weight. For simplicity of the exposition,

we state the results in terms of learning a partition of Rn (i.e. a classifier). This can

easily be turned into a statement strictly about clustering a set of points through a

slight modification of the algorithm.1

For a component i of the mixture, we define the following quantities : µi = E[x],

R2
i = E[‖x − µi‖2], and σ2

i = maxv∈Rn E[(v · (x − µi))
2]/‖v‖2. We define the mixing

weights wi to be the probability that LM outputs a sample from component i. Thus,

if LM outputs noise with probability ξ, then
∑k

i=1 wi = 1 − ξ, effectively treating ξ

1For instance, we might divide the given points into overlapping blocks and cluster each block
using the remaining points to simulate the sample source. The overlap of the blocks can be used
to calculate to appropriate permutation of component indices for each block and thus obtain a
clustering of the whole set.

19

as a mixing weight itself. We let wmin be the minimum mixing weight.

Our main result is summarized in the following theorem.

Theorem 1. Let F be a mixture of k logconcave distributions with means {µi} and

maximum variances {σi}. Let δ, η > 0. There exist ε = Ω(wmin log−2(nk/(wminδη))

and α = O(k3/2wmin
−1 log(nk/(wminδη))) such that if LM is an ε-noisy sample source

for F and if for every pair of components i, j

‖µi − µj‖ ≥ α(σi + σj), (5)

then the following holds. There is a polynomial algorithm that given access to at least

O(nkwmin
−1 log6(nk/δ)) samples from LM with probability 1 − δ returns a partition

of Rn that correctly classifies a point from F with probability 1− η.

5.2 A Robust Clustering Algorithm

In previous work [29], the approach is to first project the data onto its top k spectral

components, then extract a single cluster, and repeat. This strategy succeeds because

the projection onto the top k components preserves much of the intermean distances,

while reducing the pairwise distance between points of the same component. The

concentration of the pairwise distances is then exploited to remove a component.

In the presence of noise, however, this approach breaks down. In fact, only k well-

chosen noise points are required to cause the intermean distances to become arbitrarily

small after projection. To cope with this problem we first remove outliers. That is,

we reduce the maximum distance between any two points to be O(Rmax + µmax).

Projection to the top k components still may not preserve the necessary intermean

distances, but projection to the top b(n−k)/2c+k components will. By repeating this

procedure through the Robust PCA algorithm (see Alg. 1), we reduce the dimension

to k.

Robust PCA will preserve enough of the distance between the components whose

20

means are furthest apart so that the direction between their means can be approxi-

mated by a pair of samples, one coming from each component. Imagine projecting the

entire mixture density onto this line. The concentration of the individual components

implies that this density will be multimodal with large peaks and long flat valleys.

By setting a threshold in the middle of a valley, we define a hyperplane that separates

the components of the mixture. To determine the appropriate bucket width for the

density estimation, we use the quantity t(X) (defined line 2c of Robust PCA), which

approximates the distance between the two furthest non-noise points.

We then recurse on the two half-spaces defined by this hyperplane. At lower levels

of the recursion tree, we are recursing on the intersection of these hyperplanes, i.e. a

polyhedron. Ideally, we would like to recurse on a submixture, i.e. a subset of the

original mixture’s components. Fortunately, each component is far enough away from

the support hyperplanes that the probability that a sample will appear on one side

of a hyperplane while its component mean is on the other is vanishingly small. This

enables us to simulate the desired submixture by rejecting samples until one from the

correct part of Rn is obtained.

5.3 Empirical Illustrations

A Matlab implementation of the algorithm verifies the usefulness of Robust PCA,

through an example shown in Fig. 3. Noise points (pictured by red ’+’ signs) were

added to a set of points sampled from a mixture of three spherical Gaussians. The

noise points make the top two principal components orthogonal to the intermean

subspace, so that the PCA subspace collapses the components(3b). However, Robust

PCA, is able to find the correct subspace by alternating denoising and projection

(3). Note that in the example used for the figure, many noise points have the same

location. A Matlab implementation of Robust PCA is printed in Appendix C.

21

−1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

Projection to Intermean Subspace

(a) Intermean Subspace

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Projection to PCA Subspace

(b) PCA Subspace

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1
Projection to Robust PCA Subspace

(c) Robust PCA Subspace

Figure 3: The PCA subspace does not preserve the separation of the mixtures, be-
cause the noise term dominates. Robust PCA, however, approximates the intermean
subspace, making it possible to cluster.

22

Algorithm 3 Cluster Noisy Logconcave Mixture

Input:
1) Sampling source LM which generates point in Rn.
2) Integer k, reals ε, wmin.
3) Polyhedron P . (Note P = Rn in the initial call.)

Output: A collection of k polyhedra.

1. For i = 1 to dlog ne let Zi a set mZ points from LM.

2. Let W be the subspace returned by Robust PCA for the collection {Zi ∩ P},
ξ = 16β and r = b2εmZc.

3. Let X = projW (X0 ∩ P), where X0 is a set of mX samples obtained from LM.

4. Let d = t(X)/10k (Note t is defined in (6) and line 2c of Robust PCA)

5. Let Y = projW (Y0), where Y0 is a set of mY samples from LM.

6. For every (a, b) ∈ Y × Y

(a) Let v = (a− b)/‖a− b‖.
(b) Let bi = |{x ∈ X : projv(x) ∈ [id, (i + 1)d)}|.
(c) If there is a triple i1 < i2 < i3 where bi1 , bi3 > wminmX/4 and bi2 ≤ 2εmX ,

then let γ = (i2+1/2)d and recurse with P = P∩Hv,γ and P = P∩H−v,−γ.
Return the collection of polyhedra produced by these calls.

7. Return P .

5.4 Preliminaries

In our analysis, we will decompose a set Z obtained from the sample source LM into

S∪N where S consists of the points drawn from F and N consists of the noise points.

Further, we decompose the set S into S1 ∪ . . . ∪ Sk, where Si consists of the points

drawn from component i. For a point p ∈ S, we use `(p) to denote the component

from which p was drawn. We also use µ̂i to indicate the average of points from

component i in a set. For a subspace W and polyhedron P , it will be convenient to

define the following quantities. Let IP = {i : µi ∈ P} and let FP be the submixture

23

consisting of the components in IP . Let

R
(W)
i = Ei

[
‖projW (x− µi)‖2

]1/2

R(W,P)
max = max

i∈IP

R
(W)
i .

µ(W,P)
max = max

i,j∈IP

‖projW (µi − µj)‖

σmax
(P) = max

i∈Ip

σi.

Note that Ei denotes an expectation with respect to the ith component of the mixture.

When the superscript W is omitted, it may be assumed that Rn is meant. The

polyhedron P is often clear from context and may be omitted as well.

Throughout the analysis we use the fact that the lower bound on the separa-

tion α is Θ(k3/2wmin
−1 log(nk/(wminδη))) and the upper bound on the noise ε is

Θ(wmin log−2(nk/(wminδη))).

5.4.1 Safe Polyhedra

The success of the algorithm depends on the fact that intersecting the sample set

from LM with the polyhedron P in steps 2 and 3, of Algorithm 3 effectively simulates

sampling from the submixture FP . That is, this intersection has the effect of including

all points from components in IP and excluding all points from other components.

This motivates the following definition.

Definition 1. A polyhedron P is η-safe for a mixture F if

1. For every i ∈ IP , we have P[x /∈ P] ≤ η, where x is a random point from

component i.

2. For every i /∈ IP , we have P[x ∈ P] ≤ η, where x is a random point from

component i.

The concentration of logconcave distributions yields a simple criterion for showing

that a halfspace is safe. We use the following theorem from [38].

24

Theorem 2. Let R2 = max‖v‖=1 E[(v · (x − µ))2] for a random variable x from a

logconcave distribution. Then

P(‖x− µ‖ > tR) < e−t+1.

Restricting this to a single dimension gives the following corollary.

Corollary 1. Let Hv,γ = {x ∈ Rn : v · x ≥ γ} be a halfspace in Rn. For every η > 0,

there is a factor βsafe = O(log 1/η) such that if for every component i in a logconcave

mixture F ,

|v · µi − γ| > βsafeσi,

then Hv,γ is η-safe for F .

Halfspaces are then easily combined into polyhedra.

Proposition 2. If P1 is η1-safe for F and P2 is η2-safe for FP1, then P1 ∩ P2 is

(η1 + η2)-safe for F .

Proof. Suppose component i ∈ IP1∩P2 and let x be distributed according to component

i. Then

P[x /∈ P1 ∩ P2] ≤ P[x /∈ P1] + P[x /∈ P2] ≤ η1 + η2.

Now, suppose component i /∈ IP1∩P2 . We distinguish two cases. If i /∈ IP1 , then

P[x ∈ P1 ∩ P2] ≤ P[x ∈ P1] ≤ η1.

On the other hand, if i ∈ IP1\P2 , then

P[x ∈ P1 ∩ P2] ≤ P[x ∈ P2] ≤ η2.

25

5.4.2 Properties of Sample Sets

As we will argue, the polyhedra obtained by the algorithm will be safe. Therefore, we

expect that the polyhedra will contain the points from the components whose means

are contained in the polyhedra. We also expect that no set chosen in steps 1 or 3

of Algorithm 3 will contain much more than its share of noise points and that the

empirical means and variances will be close to those of the component distributions

themselves. Our analysis rests on these sets obtained from LM in steps 1 and 3 having

these and other key properties that are summarized in the following definition.

Definition 2. A set S1 ∪ . . .∪Sn ∪N of m points from LM is good for subspace W ,

polyhedron P , and scalar β if the following conditions hold.

1. For every component i, if µi ∈ P , then Si ⊆ P , and if µi /∈ P , then Si ∩P = ∅.

2. |Si| ≥ wim/2 for all components i, and |N | ≤ 2εm.

3. For every component i ∈ IP and every p ∈ Si, ‖projW (p− µi)‖ ≤ βR
(W)
i

4. For every component i ∈ IP ‖projW (µi − µ̂i)‖ ≤ σi

4
.

5. For every component i ∈ IP

7

8
R

(W)
i ≤ 1

|Si|
∑
p∈Si

‖projW (p− µ̂i)‖2 ≤ 8

7
R

(W)
i .

6. For some pair i, j ∈ IP such that ‖projW (µi − µj)‖ = µ
(W,P)
max , it holds for all

p ∈ Si ∪Sj, that ‖proju(p− µ`(p))‖ ≤ βσmax
(P), where u is the unit vector along

the direction projW (µi − µj).

For convenience, we will sometimes say the set Z = projW (Z0 ∩ P) is “generated

by a good set for W ,P , and β.” This is not really a property of the set Z itself, but

rather of W ,P , β and an implicit Z0 (drawn from LM) such that Z = projW (Z0∩P).

26

It is important to note that a set is only good for a particular subspace. In our

analysis on Robust PCA, we will require that Zi from step 1 of Algorithm 3 be good

for polyhedron P and the current subspace W in step 2a of Robust PCA, where

Zi ∩P is used. Thus, Z1 must be good for Rn and Z2 must be good for the subspace

obtained after one iteration in Robust PCA, etc. Finally, the set X0 used in step

3 of Algorithm 3 must be good for Wk the subspace returned by Robust PCA. The

following lemma shows that this happens with high probability.

Lemma 3. Let Z0 be a set of m points generated by ε-noisy sample source LM for a

logconcave mixture. Let P be polyhedron that is (δ/2m)-safe. Let W be any subspace of

Rn. There exist Mgood = O(n/wmin log5 nk/δ) and βgood = O(log(mk/δ)) such that

with probability 1− δ if m ≥ Mgood, then Z0 is good for W , P , and any β ≥ βgood.

Proof. We consider the goodness properties in order. From the definition of η-safe,

item 1 holds with probability 1− δ/2. Item 2 follows from a Chernoff bound (recall

that ε is an upper bound on the noise of LM and not the noise itself). The remaining

items are standard results for logconcave distributions. See [29].

5.4.3 Bounds on t

It is important that we be able to approximate the greatest distance between two

non-noise points. This enables us to put a ball around the non-noise data in Robust

PCA so as to remove noise points that are far away from the non-noise points (step

2d of Robust PCA). It is also critical in determining d the resolution at which we

look for valleys in the partitioning phase (step 4 of the clustering algorithm).

Lemma 4. Suppose that Z = S ∪N was generated by a good set from LM for W , P ,

and β. Then t = t(Z) has the bounds

max{µ(W,P)
max − 2βσmax

(P), R(W,P)
max /2} ≤ t ≤ max

p,q∈S
‖p− q‖ ≤ µ(W,P)

max + 2βR(W,P)
max . (6)

27

Proof. By definition Z = projW (Z0 ∩ P), where Z0 is go for P , W and β. For

convenience, we partition Z into the non-noise points S and the noise points N , so

that Z = S ∪ N . To avoid cumbersome notation, we will drop the superscript W

and P for the quantities µmax and Rmax. For the purpose of this proof, it will also be

convenient to introduce the following notation. For a finite set T ⊂ R, let sT denote

the rth largest number in T . Thus,

t = s{s{‖p− q‖}q∈S∪N}p∈S∪N .

To obtain the upper bound on t, observe that for any p ∈ S ∪N ,

s{‖p− q‖}q∈S∪N ≤ max
q∈S

‖p− q‖,

since there are at most 2εm elements in N . Similarly,

t ≤ s{max
q∈S

‖p− q‖}p∈S∪N ≤ max
p,q∈S

‖p− q‖.

But for any pair of points p, q ∈ S,

‖p− q‖ ≤ ‖p− projW (µ`(p))‖+ ‖projW (µ`(p) − µ`(q))‖+ ‖projW (µ`(q))− q‖

by the triangle inequality, where `(p) is the index of the component from which p was

drawn. Using the definition of “good” (Definition 2, item 3), we have that the first

and last terms are bounded by βRmax. Combining this with the definition of µmax,

we have

t ≤ max
p,q∈S

‖p− q‖ ≤ µmax + 2βRmax.

Next we give a lower bound in terms of µmax. For a pair of components i and j

t = s{s{‖p− q‖}q∈S∪N}p∈S∪N

≥ s{s{‖p− q‖}q∈Sj
}p∈Si

.

28

Note that these quantities are well defined, since |Sj|, |Si| > wminm/2 > b2εmc by

item 2 of Definition 2 and our choice of ε. We continue

s{s{‖p− q‖}q∈Sj
}p∈Si

≥ s{min
q∈Sj

‖p− q‖}p∈Si

≥ min
p∈Si,q∈Sj

‖p− q‖.

Now suppose that i and j are the two components such that ‖projW (µi−µj)‖ = µmax

and µi, µj ∈ P . Let u be the unit vector along the direction projW (ui − uj). Then

for any p ∈ Si, q ∈ Sj that are closest we have from the triangle inequality that

‖p− q‖ ≥ |proju(p− q)|

≥ |proju(µi − µj)| − |proju(µi − p)| − |proju(µj − q)|.

Using the definition of “good” again (Definition 2, item 6), have that |proju(µi − p)|

and |proju(µj − q)| are at most βσmax. At the same time, by construction |proju(µi−

µj)| = µmax. Thus,

t ≥ min
p∈Si,q∈Sj

‖p− q‖ ≥ µmax − 2βσmax.

To give a lower bound in terms of Rmax, let i be a component such that Rmax = Si.

Then for any p ∈ Ri, by item 5 of Definition 2

7

8
Rmax ≤ 1

|Si|
∑
q∈Si

‖projW (µ̂i)− q‖2

≤ 1

|Si|
∑
q∈Si

‖p− q‖2

≤ s{‖p− q‖2}q∈Si
+

2εm

|Si|
max
q∈Si

‖p− q‖2.

Applying items 2 and 3 of Definition 2 to the last term, we have that 2εm/|Si| ≤

4εm/wmin and maxq∈Si
‖p− q‖2 ≤ 4β2R2

max. Thus,

7

8
Rmax ≤ s{‖p− q‖2}q∈Si

+
4ε

wmin

(
4β2R2

max

)
Rearranging this yields,

s{‖p− q‖2}q∈Si
≥ 7

8
Rmax −

4ε

wmin

(
4β2R2

max

)
.

29

For an appropriate choice of ε = Cεwminβ
−2, we have the lower bound

s{‖p− q‖2}q∈Si
≥ R2

max/4,

which holds for every p ∈ Si. Thus,

t2 = s{s{‖p− q‖2}q∈S∪N}p∈S∪N ≥ s{s{‖p− q‖2}q∈Si
}p∈Si

≥ R2
max/4.

5.4.4 A Spectral Lemma

For a matrix A, let λj(A) be the jth largest eigenvalue of the matrix. When the

matrix is clear from context, we may simply write λj. The following lemma will be

useful in our analysis of Robust PCA.

Lemma 5. Let A = M + C where M and C are symmetric positive semi-definite

n× n matrices and rank(M) = k. Then for j > k,

λj(A) ≤ 1

j − k

j∑
i=1

λi(C).

Proof of Lemma 5. We use the following well-known theorem (see Theorem 4.8 of

[45] for example).

Theorem 3. Let A = M + C where M and C are symmetric n-by-n matrices. Then

j∑
i=1

λi(M) + λn−j+i(E) ≤
j∑

i=1

λi(M + E)

≤
j∑

i=1

λi(M) + λi(E).

Thus,
k∑

i=1

λi(M) ≤
k∑

i=1

λi(A)

and
j∑

i=1

λi(A) ≤
j∑

i=1

λi(M) + λi(C).

30

Using the first of these inequalities shows that

(j − k)λj(A) ≤
j∑

i=k+1

λi(A)

≤
j∑

i=k+1

λi(A) +
k∑

i=1

λi(A)−
k∑

i=1

λi(M)

=

j∑
i=1

λi(A)−
k∑

i=1

λi(M).

The second then shows
j∑

i=1

λi(A)−
k∑

i=1

λi(M) ≤
j∑

i=1

λi(C),

since λi(M) = 0 for i > k.

5.5 Analysis

We now turn to the major portion of our analysis. In Section 5.5.1, we analyze the

effect of Robust PCA, showing that it preserves much of the distance between at least

two means. In Section 5.6, we show the correctness of the partitioning step. Finally,

we synthesize the whole argument in Section 5.5.2 to give the main theorem.

The essential parameters of the algorithm and analysis are mZ , mX , mY , β, ε, and

α. In terms of the quantities n,wmin,δ, η, and k, these are

mZ = CZnwmin
−1 log5(nk/δ)

mX = CXnwmin
−1 log5(nk/δ)

mY = CY wmin
−1 log(k/δ)

β = Cβ log((mX + mY + mZ)k log(n)/(δη))

= O(log(nk/(wminδη)))

ε = Cεwmin/β
2

= Ω(wmin log−2(nk/(wminδη))

α = Cαk3/2wmin
−1β log n

= O(k3/2wmin
−1 log(nk/(wminδη)))

31

where the leading factor is an appropriate constant. We will exercise the choice of

these constants in the course of the analysis. The reader will find it useful to refer

to these equations in following the proof. Without loss of generality, we may assume

that η is a polynomial factor smaller than δ.

5.5.1 Robust PCA

Here we show that Robust PCA preserves most of the distance between the two

components that are furthest part (Lemma 6). We accomplish this by showing that

only a small fraction of this distance is lost as the dimension of the data is halved in

each iteration (Lemma 7).

This result rests on two key claims. Claim 8 shows that the diameter of the

non-noise data can be approximated in the presence of noise and that this permits

the algorithm to place a relatively tight ball around the non-noise data, excluding

noise points that are far away. The estimated diameter (roughly the parameter t) can

neither be too small (or non-noise points will be excluded), nor too large (or noise

points at the edge of the ball may have too large of an effect on the eigenvectors).

The other key claim is Claim 9 which bounds the maximum variance of the data

in the subspace that is thrown out in an iteration. Recall that Robust PCA projects

to b(dim(W) − k)/2c + k dimensions, removes outliers outside the ball B(p0, 16βt),

and repeats until a k dimensional subspace is found.

To illustrate why simply removing outliers and using standard PCA to project to

a k dimensional subspace is inadequate, we define the following matrices. Let N ′ be

the set of noise points after outliers are removed and assume that no non-noise points

are removed. The remaining points are therefore S ∪ N ′. Assume p0 be the origin,

that W = Rn and consider the matrix computed in step 2e of Robust PCA

A =
1

m′

∑
p∈S∪N ′

ppT ,

where N ′ consists of the noise points that were not removed and m′ = |S∪N ′|. Using

32

the sample means ûi and covariance Σ̂i, we can decompose this matrix as the sum of

M =
1

m′

k∑
i=1

|Si|µ̂iµ̂
T
i

C =
1

m′

k∑
i=1

|Si|Σ̂i

E =
1

m′

∑
p∈N ′

ppT .

The matrix M is the mixture of the outer product of the means, C is the mixture of

the covariances, and E is the noise contribution.

Without noise, the second moment matrix A is just M + C. The rank of M is

k and its eigenvectors are the subspace that we would ideally like to find, i.e. the

span of the means. The matrix C can be viewed as a perturbation, which may cause

the eigenvectors of M + C to differ from those of M . The 2-norm of C is bounded

from above by σmax
2, while the 2-norm of M is bounded from below in terms of µ2

max.

For an adequate separation of the component means the matrix M dominates so that

applying PCA to M +C gives a k dimension subspace that is close to the span of the

means.

In the presence of noise, however, we must account not only for the perturbation

caused by C but that caused by E (the noise component) as well. At first, it may

seem that the noise component cannot have a large effect. As we will show in the

proof of Claim 9, the sum of the eigenvalues of E is comparable to that of C. Recall

that the 2-norm is the largest eigenvalue. While the sum of the eigenvalues of C may

be on the order of nσmax
2, this is spread out over all n eigenvectors, so that no one

eigenvalue is larger that σmax
2. We have no such guarantee for E; the sum may be

concentrated in a single eigenvalue and therefore a single eigenvector. Even worse, it

could be spread out over a constant fraction of the eigenvectors, each challenging the

dominance of the eigenvectors of M . Hence, some constant fraction of the dimension

must be preserved in order to avoid removing the eigenvectors of M , i.e. the span of

33

the means. Claim 9 shows that half of the dimension is adequate to preserve most of

the distance between the means.

In our analysis, we often will identify a subspace by giving its dimension as a

subscript. For instance, we will use Wk to denote the subspace returned by Robust

PCA and W` for intermediate subspaces within Robust PCA. The main result of this

section is the following lemma.

Lemma 6. Suppose that every set Z obtained in step 2a of Robust PCA was generated

by a good set for the current subspace W , P , and β. Then, letting Wk be the final

subspace,

µ(Wk,P)
max

2 ≥ 1

2
µ(P)

max

2
.

Proof. This lemma is proved by applying the following lemma to each successive

projection, until n = k.

Lemma 7. Let P be a polyhedron in Rn and let W be a subspace in Rn with dimension

greater than k, where µ
(W,P)
max ≥ µ

(P)
max/2. Suppose that the set Z in step 2a of Robust

PCA is generated by a good set for W ,P and β. Let W` be the subspace of dimension

b(dim(W)− k)/2c+ k obtained in step 2e. Then for all pairs of components i, j ∈ IP

‖projW`
(µi − µj)‖2 ≥ ‖projW (µi − µj)‖2

− (b(dim(W)− k)/2c+ 1)−1 1

4
µ(P)

max

2 − 32k

wmin

σmax
(P)2.

Continuing with the proof of Lemma 6, let µi and µj be the means of two com-

ponents such that ‖µi − µj‖ = µ
(P)
max. We observe that the quantity µ

(W,P)
max can only

decrease as the dimension of W is reduced. Therefore, when we unravel the recurrence

relation implied by Lemma 7, we may simplify the bound to

‖projWk
(µi − µj)‖2 ≥ ‖µi − µj‖2 − µ

(P)
max

2

8

dlog2(n−k)e∑
j=0

1

2j
−

dlog2(n−k)e∑
j=0

32

wmin

kσmax
(P)2,

By our choice of the pair µi, µj, we have ‖µi − µj‖2 = µ
(P)
max

2
. Clearly, the first sum

is bounded by µ
(P)
max

2
/4. The second sum becomes 32kwmin

−1σmax
2dlog2(n − k)e. By

34

the choice of α in Theorem 1, however, we may assume that this is no larger than

µ
(P)
max

2
/4 either. Thus,

µ(W,P)
max

2 ≥ ‖projWk
(µi − µj)‖2 ≥ 1

2
µ(P)

max

2
.

Proof of Lemma 7. Let Z = S ∪ N be a set generated by a good set of mZ samples

from LM. Let p0, q0 be a pair of points in S ∪N satisfying ‖p0− q0‖ = t. Because the

denoising step removes all points outside of the ball B(p0, 16βt), we define the sets of

remaining points S ′ = S ∩ B(p0, 16βt) and N ′ = N ∩ B(p0, 16βt). For convenience,

we define m′ = |S ′ ∪N ′|.

We first claim that no non-noise points are eliminated (i.e. S = S ′) and give a

bound on the radius of the ball B(p0, 16βt).

Claim 8. Suppose p0, q0 ∈ S ∪N satisfy ‖p0 − q0‖ = t. Then

S ⊆ B(p0, 16βt) ⊆ B(p0, 32β2(µmax + Rmax)).

Thus, the second moment matrix used for the spectral analysis becomes

A =
1

m′

∑
p∈S∪N ′

(p− p0)(p− p0)
T .

This matrix has the following critical property.

Claim 9. Suppose that p0, q0 ∈ S∪N satisfy ‖p0−q0‖ = t. Then for ` = b(dim(W)−

k)/2c+ k,

λ`+1(A) ≤ wmin

64
(b(dim(W)− k)/2c+ 1)−1µ(W,P)

max

2
+ 4kσmax

(P)2.

By definition W` is the span of the top ` components of the matrix A. Let W̄` be

the complementary subspace in W . Consider a pair of means µi, µj. We will establish

an upper bound on ‖projW̄`
(µi − µj)‖2 and thus a lower bound on

‖projW`
(µi − µj)‖2 = ‖projW (µi − µj)‖2 − ‖projW̄`

(µi − µj)‖2 (7)

35

to prove the lemma.

Let v denote unit vector in the direction of projW̄`
(µi − µj). Let e = µi − µj −

(µ̂i − µ̂i). Then

‖projW̄`
(µi − µj)‖2 = (vT (µi − µj))

2

≤ 2(vT (µ̂i − µ̂j))
2 + 2‖e‖2.

By item 4 of Definition 2, the term ‖e‖2 is bounded from above by σmax
(P)2/4. To

bound the remaining term we use the fact that

1 ≤ 2

wmin

|Si|
m

≤ 2

wmin

|Si|
m′

from item 2 of Definition 2 to argue

(vT (µ̂i − µ̂j))
2 ≤ 2((vT (µ̂i − p0))

2 + (vT (µ̂j − p0))
2)

≤ 2
k∑

i=1

(vT (µ̂i − p0))
2

≤ 4

wmin

· 1

m′

k∑
i=1

|Si|(vT (µ̂i − p0))
2.

For each i,

|Si|(vT (µ̂i − p0))
2 ≤

∑
p∈Si

(vT (p− p0))
2.

Including the points from N ′, we then have

1

m′

k∑
i=1

|Si|(vT (µ̂i − p0))
2 ≤ vT

(
1

m′

∑
p∈S∪N ′

(p− p0)(p− p0)
T

)
v ≤ λ`+1(A).

since v is the in the subspace W̄`.

From Claim 9, we have

‖projW̄`
(µi − µj)‖2 ≤ 4

wmin

λ`+1(A) +
σmax

(P)2

4

≤ b(dim(W)− k)/2c−1 1

8
µ(W,P)

max

2
+

32

wmin

kσmax
(P)2.

Combined with (7), this proves the lemma.

36

Proof of Claim 8. Since Lemma 7 assumes that µ
(W,P)
max ≥ µ

(P)
max/2, we have

2βσmax
(P) ≤ ασmax

(P)/4 ≤ µ(P)
max/4 ≤ µ(W,P)

max /2,

using a suitable α and the separation assumption of (5).

By Lemma 4 then

t ≥ µ(W,P)
max − 2βσmax

(P) ≥ µ(W,P)
max /2.

Also, by the same lemma t ≥ R
(W,P)
max /2. Without loss of generality assume β ≥ 1.

Then

max
p,q∈S

‖p− q‖ ≤ µ(W,P)
max + 2βR(W,P)

max ≤ 2t + 4βt < 8βt.

Thus, no two points in S can be further than 8βt apart.

Now let p be an arbitrary point in S and let q ∈ S ∩ B(p0, t). Note that such a

point q exists because by definition of t, B(p0, t) contains (1 − 2εm) > |N | points.

We have by the triangle inequality and Lemma 4 that

‖p0 − p‖ ≤ ‖p0 − q‖+ ‖q − p‖ ≤ t + 8βt < 16βt ≤ 32β2(µ(W,P)
max + R(W,P)

max)).

Thus, S ⊆ B(p0, 16βt) ⊆ B(p0, 32β2(µmax + Rmax)).

Proof of Claim 9. Without loss of generality, let us assume that p0 is the origin.

Thus, the matrix from line 6 of the algorithm becomes A = 1
m′

∑
p∈S∪N ′ ppT . Using

the sample means µ̂i, we can decompose this matrix as the sum of

M =
1

m′

k∑
i=1

|Si|projW (µ̂i)projW (µ̂i)
T

C =
1

m′

k∑
i=1

∑
p∈Si

projW (p− µ̂i)projW (p− µ̂i)
T

E =
1

m′

∑
p∈N ′

ppT .

37

Our strategy will be to bound
∑`+1

i=1 λi(C + E) and apply Lemma 5 to bound

λ`+1(A).

n∑
i=1

λi(C) ≤ 1

m′

k∑
i=1

∑
p∈Si

‖projW (p− µ̂i)‖2

=
k∑

i=1

|Si|
m′

1

|Si|
∑
p∈Si

‖projW (p− µ̂i)‖2

≤ max
i

1

|Si|
∑
p∈Si

‖projW (p− µ̂i)‖2

≤ 8

7
R(W,P)

max

2
.

By Claim 8, N ′ ⊆ B(0, 16βt) ⊆ B(32β2(µ
(W,P)
max + R

(W,P)
max)), so

n∑
i=1

λi(E) ≤ 2ε max
p∈N ′

‖p‖2 ≤ ε64β2(µ(W,P)
max

2
+ R(W,P)

max

2
) ≤ wmin

64
(µ(W,P)

max

2
+ R(W,P)

max

2
),

for an appropriate choice of ε = Cεwminβ
−2 from Theorem 1. Combining these bounds

n∑
i=1

λi(C) + λi(E) ≤ wmin

64
µ(W,P)

max

2
+

(
wmin

64
+

8

7

)
R(W,P)

max

2

≤ wmin

64
µ(W,P)

max

2
+ 2 dim(W)σmax

2.

Lemma 5 then gives the bound

λ`+1(A) ≤ 1

` + 1− k

`+1∑
i=1

λi(C + E)

≤ 1

` + 1− k

n∑
i=1

λi(C) + λi(E)

≤ (b(dim(W)− k)/2c+ 1)−1(wmin

64
µ(W,P)

max

2
+ 2 dim(W)σmax

2
)

. (8)

We note that 2 dim(W)/(b(dim(W)−k)/2c+1) ≤ 4k. If dim(W) < 2k, then this

is trivial. On the other hand, if dim(W) ≥ 2k, then

2 dim(W)

b(dim(W)− k)/2c+ 1
≤ 4 dim(W)

dim(W)− k
≤ 8 ≤ 4k.

38

The bound of (8) then becomes

λ`+1(A) ≤ (b(dim(W)− k)/2c+ 1)−1wmin

64
µ(W,P)

max

2
+ 4kσmax

2.

5.5.2 Partitioning Components

We show that Algorithm 3 successfully partitions the components. The algorithm tries

many directions in the subspace W until it finds a one with a “valley” corresponding

to the intuition given in Section 5.2. We capture this notion formally in the following

definition.

Definition 3. Let X be a set of mX points in R. For i ∈ Z let bi = |{x ∈ X : x ∈

(id, (i + 1)d]}|. We say that X has a valley if there is a triple i1 < i2 < i3 such that

bi1 , bi3 > wminmX/8 and bi2 ≤ 2εmX . We define the point d(i2 +1/2) to be the middle

of the valley.

Assuming that d is well-chosen, the existence of a valley is ensured by the fact that

the means are well-separated compared to the width of the widest component. If d is

too small, then we are likely to find valleys within the point set of a single component.

If d is too large, then the whole mixture might fit into a single unit of resolution or

“bucket.” When d is chosen correctly, non-noise points from two components fill the

outer buckets, while only noise points fill the middle one.

The following two Lemmas show that with high probability the algorithm succeeds

in a given node in the recursion tree. The first applies for internal nodes in the tree

where components need to be separated, the second applies to the leaves where the

division of space terminates.

Lemma 10. Let δ > 0. Suppose that P is η-safe for F and that |IP | > 1. Then with

probability 1− δ, the halfspaces Hv,γ and H−v,−γ are (η/k)-safe and each contains at

least one component mean of IP .

39

Lemma 11. Let δ > 0. Suppose that P is η-safe for F and that |IP | = 1. Then with

probability 1− δ, no valley will be found by Algorithm 3 in step 6c.

Proof of Lemma 10. We first consider the set Y0 obtained in line 6. Let Y0 = S1 ∪

. . . Sk∪N disjointly, where N is the set of noise points and Si is the set of points from

component i. We show that with probability 1− δ/2 the set Y0 has the following two

properties.

1. Y0 contains at least one point from every component.

2. For every component i and every p ∈ Si, ‖projW (p− µi)‖ ≤ βR
(W)
i .

The probability that no point from component i is in a set of mY points is at

most (1 − wmin)
m ≤ exp(−wminmY) ≤ δ

4k
,, where we have used the fact that mY ≥

wmin
−1 log(4k/δ) in the last step. Taking a union bound over all k components shows

that the probability that no samples are taken from some component is at most δ/4.

To show the second property, we consider projection of the mixture distribution

onto the subspace W . Component i of this distribution has mean projW (µi) and the

component is logconcave, being the projection of a logconcave distribution. Applying

theorem 2 gives the result, since β is larger than the requirement of β ≥ O(log(mY /δ).

Without loss of generality, we assume that η ≤ δ(4(dlog ne + 1)(mZ + mX))−1.

Thus, by Lemma 3 we may argue that with probability 1 − δ/2 every set used by

Robust PCA is generated by a good set (Definition 2) as required by Lemma 6 and

the set X0 is good as well. Overall, the collection of sample sets has the desired

properties with probability 1− δ.

Assuming that all sets given to Robust PCA are good, Lemma 6 guarantees that

after projection to W

µ(W,P)
max ≥ µ

(P)
max

2
.

With an appropriate choice of α, this implies that in the subspace W

µ(W,P)
max ≥ µ(P)

max/2 ≥
α

2
σmax

(P) ≥ 41k3/2βσmax
(P) ≥ 41kβR(P)

max.

40

This fact enables us to use the following claim.

Claim 12. If |IP | > 1 and

µ(W,P)
max ≥ 41kβR(W,P)

max ,

then the quantity d = t/10k satisfies the bounds

4βR(W,P)
max ≤ d ≤ µ

(W,P)
max

5k
.

Proof of Claim 12. We first derive a lower bound. Since t ≥ µ
(W,P)
max − 2βR

(W,P)
max by

Lemma 4 and µ
(W,P)
max > 41kβR

(W,P)
max , we have

d =
t

10k
≥ µ

(W,P)
max − 2βR

(W,P)
max

10k
≥ 41kβR

(W,P)
max − 2βR

(W,P)
max

10k
≥ 4βR(W,P)

max .

To show the upper bound, we observe that since µ
(W,P)
max ≥ 41kβRmax, we have that

2µ
(W,P)
max ≥ µ

(W,P)
max + 2βR

(W,P)
max . Thus, by Lemma 4

d =
t

10k
≤ µ

(W,P)
max + 2βR

(W,P)
max

10k
≤ 2µ

(W,P)
max

10k
=

µ
(W,P)
max

5k
.

The remainder of the proof rests on the following two claims. The first shows that

any valley that is found produces a (η/k)-safe halfspace. The second claim shows

that a valley will indeed be found.

Claim 13. For any direction v ∈ Wk, if projv(X) has a valley with midpoint γ, then

Hv,γ and H−v,−γ are (η/k)-safe for FP .

Proof. Because the set X is generated by a good set, the points from a single compo-

nent j must be contained in an interval that is centered about the component mean

of size 2βR
(W,P)
max . By Claim 12 this is at most d/2, half of the width of a bucket.

Suppose that a point d(i + 1/2) falls into one of these intervals for some i ∈ Z.

Then the entire interval must be contained in the bucket i, i.e.

[µj − βR(W,P)
max , µj + βR(W,P)

max] ⊆ [di, (d + 1)).

41

But then, bi ≥ wminmZ/2. For an appropriate choice of ε, however, wminmZ/2 >

2εmZ , and hence i cannot be the middle part of the valley. We conclude that if

projv(W) has valley with middle γ, then for all i ∈ IP

|v · µi − γ| > βR(W,P)
max ≥ βσi.

Hence by Proposition 1, the halfspaces Hv,γ and H−v,−γ are (η/k)-safe for FP , since

we may choose β ≥ β1 = O(log(k/η)).

Claim 14. There is a pair (a, b) ∈ Y × Y such that the unit vector v in the direction

a− b has a valley.

Proof. Let µi and µj be two components such that ‖projW (µi − µj)‖ = µ
(W,P)
max . Let

a ∈ Si and let b ∈ Sj, where Y = S1 ∪ . . . ∪ Sk ∪ N . Define v to be the unit vector

along a− b.We will show that µi and µj are far apart v.

Because we have assumed Y is generated by a good set, ‖(a−b)−projW (µi−µj)‖ ≤

2βR
(W,P)
max . Thus,

|projv(µi − µj)| =
|(a− b) · projW (µi − µj)|

‖(a− b)‖

≥ ‖projW (µi − µj)‖
(

1− ‖(a− b)− projW (µi − µj)‖2

‖projW (µi − µj)‖2

)1/2

≥ µ(W,P)
max

(
1− 4β2R

(W,P)
max

2

µ
(W,P)
max

2

)1/2

Because W has only k dimensions R
(W,P)
max

2
≤ kσmax

(P)2. As argued above by Lemma

6, µ
(W,P)
max ≥ µ

(P)
max/2 ≥ ασmax

(P)/2. Therefore,

|projv(µi − µj)| ≥ µ(W,P)
max

(
1− β2kσmax

(P)2

α2σmax
(P)2

)1/2

≥ µ
(W,P)
max

2
,

for α ≥ β
√

2k.

42

By Claim 12, d ≤ µ
(W,P)
max /(5k), so we have projv(µi − µj) ≥ 5kd/2.

We now turn our attention to the set X = S1 ∪ . . . ∪ Sk ∪ N (the set Y will not

be referred to again). Because X is good, every set projv(Si) must be contained in

an interval centered around projv(µi) of length 2βRmax. By the lower bound on d

from Claim 12, the width of this interval is at most d/2. Since there are k of these,

this leaves 5kd/2 − kd/2 = 2kd of “empty” space between projv(µi) and projv(µj),

in which only noise point can fall. This space can be cut into at most k − 1 pieces,

meaning that at least one piece must have length 2d. An interval [d`, d(` + 1)) must

be contained in one of these pieces, and this will form the middle of a valley, with

buckets containing projv(Si) and projv(Sj) serving as the other buckets.

Proof of Lemma 11. Without loss of generality, we may assume that η ≤ δ/(4mX).

By Lemma 3, with probability 1− δ/2 the set X0 is good for P , Wk, β.

Assuming that X0 is good we can derive a lower bound on d. Since t ≥ R
(W,P)
max /2

by Lemma 4, we have that

d ≥ R
(W,P)
max

20k
.

Also assuming that X0 is good, we have that X = projWk
(X0 ∩ P) consists only

of points from a single component Sj and a set of noise points N . The set N consists

of no more than 2εmX points. Thus, for any direction u generated by Y ×Y , we have

bi = |{x ∈ Sj ∪N : proju(x) ∈ [di, d(i + 1))}|.

For purposes of analysis, We define

b′i = |{x ∈ Sj : proju(x) ∈ [di, d(i + 1))}|.

Suppose that i1 < i2 < i3 form a valley. This implies that bi1 ≥ wminmX/4 and

that

b′i1 ≥ bi1 − |N | ≥ wminmX/4− 2εmX ≥ wminmZ/8.

43

choosing ε appropriately. The same bound holds for bi3 . On the other hand,

b′i2 ≤ bi2 ≤ 2εmX ≤ wminmX/32,

for an appropriate choice of ε. Since mX = CXnwmin
−1 log5(nk/δ), we argue that this

event has probability less than δ/2, using the following claim.

Claim 15. Let ξ, δ > 0. Consider a logconcave distribution F in one dimension

with variance σ2 and let d ≥ Cσ. Let S be a sample set of m points drawn from

F and let bi = |{p ∈ S : p ∈ [di, d(i + 1))}|. There is a constant C ′ such that if

m ≥ C ′ξ−1 log(log(m)/Cδ), then with probability 1 − δ the following holds for every

i ∈ Z and ξ′ ≥ ξ.

1. If bi > 2ξ′m, then P[x ∈ [di, d(i + 1)]) > ξ′.

2. If bi < ξ′m/2, then P[x ∈ [di, d(i + 1)]) < ξ′.

Proof. We first observe that with probability 1 − δ/2 no point will be further than

σ log(6m/δ) away from the mean, using a trivial application (1 dimension only) of

Theorem 2. Therefore, all but 2C−1 log 6m/δ buckets will be empty. For a single

bucket, a Chernoff bound shows m > 12ξ−1 log(1/δ′) ensures that the desired property

holds with probability 1 − δ′. With δ′ = δC/(4 log(6m/δ)), we may apply a union

bound to prove the lemma.

5.6 Proof of the Main Theorem

Proof of Theorem 1. Consider one node in the recursion tree of Algorithm 3, and

suppose that P has j < k support hyperplanes and that P is (ηj/k)-safe for F . Note

that in the root of the tree this is true because Rn is 0-safe. In the case where the

polyhedron contains more than one component mean (i.e. |IP | > 1), Lemma 10 shows

that with probability 1−δ′ the half-space Hv,γ obtained in line 9 excludes at least one

44

component mean and is (η/k)-safe for FP . Proposition 2 then shows that P ∩Hv,γ is

(η(j + 1)/k)-safe for F .

On the other hand, if the polyhedron P contains only one mean (i.e. |IP | = 1),

then with probability 1 − δ′ the algorithm does not find a valley and returns the

polyhedron by Lemma 11. Thus, with probability 1 − 2kδ′ the algorithm returns a

set of k polyhedra, each containing exactly one component mean and each η-safe for

F . Thus, we have by definition of η-safe that the collection of polyhedra induce a

classifier that is correct with probability 1− η, as the theorem claims.

45

CHAPTER VI

AFFINE-INVARIANT CLUSTERING

6.1 Introduction

Prior to the introduction of Isotropic PCA, the representative hard case for learn-

ing mixtures of Gaussians was two parallel “pancakes”, i.e., two Gaussians that are

spherical in n − 1 directions and narrow in the last direction, so that a hyperplane

orthogonal to the last direction separates the two. The spectral approach of [29, 1]

requires a separation that grows with their largest standard deviation which is unre-

lated to the distance between the pancakes (their means). Because there is a subspace

where the Gaussians are separable, the separation requirement should depend only

on the dimension of this subspace and the components’ variances in it. The Unravel

algorithm gives such a result.

We assume we are given a lower bound wmin on the minimum mixing weight

and k, the number of components. With high probability, our algorithm Unravel

returns a partition of space by hyperplanes so that each part (a polyhedron) encloses

almost all of the probability mass of a single component and almost none of the other

components. The error of such a set of polyhedra is the total probability mass that

falls outside the correct polyhedron.

We first state our result for two Gaussians in a way that makes clear the relation-

ship to previous work that relies on separation.

Theorem 4. Let w1, µ1, Σ1 and w2, µ2, Σ2 define a mixture of two Gaussians. There

is an absolute constant C such that, if there exists a direction v such that

|projv(µ1 − µ2)| ≥ C
(√

vT Σ1v +
√

vT Σ2v
)

wmin
−2 log1/2

(
1

wminδ
+

1

η

)
,

46

(a) Distance Concentration
Separability

(b) Hyperplane Separability

(c) Intermean Hyperplane
and Fisher Hyperplane.

Figure 4: Previous work requires distance concentration separability which depends
on the maximum directional variance (a). Our results require only hyperplane sep-
arability, which depends only on the variance in the separating direction(b). For
non-isotropic mixtures the best separating direction may not be between the means
of the components(c).

47

Then with probability 1−δ algorithm Unravel returns two complementary halfspaces

that have error at most η using time and a number of samples that is polynomial in

n, wmin
−1, log(1/δ).

The requirement is that in some direction the separation between the means

must be comparable to the standard deviation. This separation condition of The-

orem 4 is affine-invariant and much weaker than conditions of the form ‖µ1 − µ2‖ &

max{σ1,max, σ2,max} used in previous work. See Figure 4(a). The dotted line shows

how previous work effectively treats every component as spherical. We require only

hyperplane separability (Figure 4(b)), which is a weaker condition. We also note that

the separating direction does not need to be the intermean direction as illustrated

in Figure 4(c). The dotted line illustrates the hyperplane induced by the intermean

direction, which may be far from the optimal separating hyperplane shown by the

solid line.

It will be insightful to state this result in terms of the Fisher discriminant, a

standard notion from Pattern Recognition [14, 22] that is used with labeled data. In

words, the Fisher discriminant along direction p is

J(p) =
the intra-component variance in direction p

the total variance in direction p

Mathematically, this is expressed as

J(p) =
E
[
‖projp(x− µ`(x))‖2

]
E
[
‖projp(x)‖2

] =
pT (w1Σ1 + w2Σ2)p

pT (w1(Σ1 + µ1µT
1) + w2(Σ2 + µ2µT

2))p

for x distributed according to a mixture distribution with means µi and covariance

matrices Σi. We use `(x) to indicate the component from which x was drawn.

Theorem 5. There is an absolute constant C for which the following holds. Suppose

that F is a mixture of two Gaussians such that there exists a direction p for which

J(p) ≤ Cwmin
3 log−1

(
1

δwmin

+
1

η

)
.

48

With probability 1− δ, algorithm Unravel returns a halfspace with error at most η

using time and sample complexity polynomial in n,wmin
−1, log(1/δ).

There are several ways of generalizing the Fisher discriminant for k = 2 com-

ponents to greater k [22]. In all cases, however, instead of a single line, we seek a

(k − 1)-dimensional subspace in which to separate the components. Intuitively, we

would like this subspace to minimize the distance between points and their component

means relative to the distance between the means. For simplicity, we adapt the defini-

tion of the Fisher subspace to the isotropic case. Recall that an isotropic distribution

has the identity matrix as its covariance and the origin as its mean. Therefore,

k∑
i=1

wiµi = 0 and
k∑

i=1

wi(Σi + µiµ
T
i) = I.

It is well known that any distribution with bounded covariance matrix (and therefore

any mixture) can be made isotropic by an affine transformation.

Under isotropy, the denominator of the Fisher discriminant is always 1. Thus,

the discriminant is just the expected squared distance between the projection of a

point and the projection of its mean, where projection is onto some direction p. The

generalization to k > 2 is natural, as we may simply replace projection onto direction

p with projection onto a (k − 1)-dimensional subspace S. For convenience, let

Σ =
k∑

i=1

wiΣi.

Let the vector p1, . . . , pk−1 be an orthonormal basis of S and let `(x) be the component

from which x was drawn. We then have under isotropy

J(S) = E[‖projS(x− µ`(x))‖2] =
k−1∑
j=1

pT
j Σpj

for x distributed according to a mixture distribution with means µi and covariance

matrices Σi. As Σ is symmetric positive definite, it follows that the smallest k − 1

eigenvectors of the matrix are optimal choices of pj. The Fisher subspace is the span

of these vectors.

49

Definition 4. Let {(wi, µi, Σi)} be the weights, means, and covariance matrices for

an isotropic mixture distribution where dim(span{µ1, . . . , µk}) = k − 1. Let `(x) be

the component from which x was drawn. The Fisher subspace F is defined as the

(k − 1)-dimensional subspace that minimizes

J(S) = E[‖projS(x− µ`(x))‖2].

over subspaces S of dimension k − 1.

Note that dim(span{µ1, . . . , µk}) is only k−1 because isotropy implies
∑k

i=1 wiµi =

0.

The next lemma provides a simple alternative characterization of the Fisher sub-

space as the span of the means of the components (after transforming to isotropic

position).

Lemma 16. Suppose {wi, µi, Σi}k
i=1 defines an isotropic mixture in Rn. Let λ1 ≥

. . . ≥ λn be the eigenvalues of the matrix Σ =
∑k

i=1 wiΣi and let v1, . . . , vn be the cor-

responding eigenvectors. If the dimension of the span of the means of the components

is k − 1, then the Fisher subspace

F = span{vn−k+2, . . . , vn} = span{µ1, . . . , µk}.

Our algorithm attempts to find the Fisher subspace (or one close to it) and suc-

ceeds in doing so, provided that the components do not “overlap” much in the fol-

lowing sense.

Definition 5. The overlap of a mixture given as in Definition 4 is

φ = min
S:dim(S)=k−1

max
p∈S

pT Σp. (9)

It is a direct consequence of the Courant-Fisher min-max theorem that φ is the

(k − 1)th smallest eigenvalue of the matrix Σ and the subspace achieving φ is the

Fisher subspace, i.e.,

φ =
∥∥E[projF (x− µ`(x))projF (x− µ`(x))

T]
∥∥

2
.

50

We can now state our main theorem for k > 2.

Theorem 6. There is an absolute constant C for which that following holds. Suppose

that F is a mixture of k Gaussian components where the overlap satisfies

φ ≤ Cwmin
3k−3 log−1

(
nk

δwmin

+
1

η

)
With probability 1−δ, algorithm Unravel returns a set of k polyhedra that have error

at most η using time and a number of samples that is polynomial in n, wmin
−1, log(1/δ).

In words, the algorithm successfully unravels arbitrary Gaussians provided there

exists a (k − 1)-dimensional subspace in which along every direction, the expected

squared distance of a point to its component mean is smaller than the expected

squared distance to the overall mean by roughly a poly(k, 1/wmin) factor. There

is no dependence on the largest variances of the individual components, and the

dependence on the ambient dimension is logarithmic. This means that the addition

of extra dimensions (even where the distribution has large variance) has little impact

on the success of our algorithm.

6.2 The Unravel Algorithm

The algorithm has three major components: an initial affine transformation, a reweight-

ing step, and identification of a direction close to the Fisher subspace and a hyperplane

orthogonal to this direction which leaves each component’s probability mass almost

entirely in one of the halfspaces induced by the hyperplane. The key insight is that

the reweighting technique will either cause the mean of the mixture to shift in the in-

termean subspace, or cause the top k−1 principal components of the second moment

matrix to approximate the intermean subspace. In either case, we obtain a direction

along which we can partition the components.

We first find an affine transformation W which when applied to F results in

an isotropic distribution. That is, we move the mean to the origin and apply a

51

linear transformation to make the covariance matrix the identity. We apply this

transformation to a new set of m1 points {xi} from F and then reweight according

to a spherically symmetric Gaussian exp(−‖x‖2/(2α)) for α = Θ(n/wmin). We then

compute the mean û and second moment matrix M̂ of the resulting set.

After the reweighting, the algorithm chooses either the new mean or the direction

of maximum second moment and projects the data onto this direction h. By bisecting

the largest gap between points, we obtain a threshold t, which along with h defines

a hyperplane that separates the components. Using the notation Hh,t = {x ∈ Rn :

hT x ≥ t}, to indicate a halfspace, we then recurse on each half of the mixture.

Thus, every node in the recursion tree represents an intersection of half-spaces. To

make our analysis easier, we assume that we use different samples for each step of

the algorithm. The reader might find it useful to read Section 6.2.1, which gives

an intuitive explaination for how the algorithm works on parallel pancakes, before

reviewing the details of the algorithm.

Algorithm 4 Unravel

Input: Integer k, scalar wmin. Initialization: P = Rn.

1. (Isotropy) Use samples lying in P to compute an affine transformation W that
makes the distribution nearly isotropic (mean zero, identity covariance matrix).

2. (Reweighting) Use m1 samples in P and for each compute a weight e−‖x‖
2/(α)

(where α > n/wmin).

3. (Separating Direction) Find the mean of the reweighted data µ̂. If ‖µ̂‖ >√
wmin/(32α), let h = µ̂. Otherwise, find the second moment matrix M̂ of the

reweighted points and let h be its top principal component.

4. (Recursion) Project m2 sample points to h and find the largest gap between
points in the interval [−1/2, 1/2]. If this gap is less than 1/4(k−1), then return
P . Otherwise, set t to be the midpoint of the largest gap, recurse on P∩Hh,t and
P ∩H−h,−t, and return the union of the polyhedra produces by these recursive
calls.

52

6.2.1 Parallel Pancakes

The following special case, which represents an open problem in previous work, will

illuminate the intuition behind the new algorithm. Suppose F is a mixture of two

Gaussians that are spherical with variance 1 in the n − 1 dimensions orthogonal to

the intermean direction. Along the intermean direction the variance is some small

quantity ε � 1, and the distance between the means is much larger than
√

ε. This

mixture may be visualized as parallel pancakes.

We consider two cases, one where the mixing weights are equal and another where

they are imbalanced. When the mixing weights are equal, the means of the compo-

nents will be equally spaced at a distance of 1 − φ on opposite sides of the origin.

For imbalanced weights, the origin will still lie on the intermean direction but will

be much closer to the heavier component, while the lighter component will be much

further away. In both cases, this transformation makes the variance of the mixture 1

in every direction, so the principal components give us no insight into the inter-mean

direction.

Consider next the effect of the reweighting on the mean of the mixture. For the

case of equal mixing weights, symmetry assures that the mean does not shift at all.

For imbalanced weights, however, the heavier component, which lies closer to the

origin will become heavier still. Thus, the reweighted mean shifts toward the mean

of the heavier component, allowing us to detect the intermean direction.

Finally, consider the effect of reweighting on the second moments of the mixture

with equal mixing weights. Because points closer to the origin are weighted more, the

second moment in every direction is reduced. However, in the intermean direction,

where part of the moment is due to the displacement of the component means from

the origin, it shrinks less. Thus, the direction of maximum second moment is the

intermean direction.

53

6.3 Empirical Illustrations

A Matlab implementation has been used to verify the effectiveness of our algorithm.

Figure 5 illustrates the effect of enforcing isotropy. Notice how the intermean direction

is not always a good separating direction for the non-isotropic case, but it is for the

isotropic case.

Figure 6 illustrates the effectiveness of the algorithm as a whole. In the exam-

ple, three Gaussians in forty dimensions are given smaller variances in the intermean

subspace and larger variances in the orthogonal subspace. One can think of each

Gaussian being shaped like an egg with the narrow dimensions in the intermean

subspace. Random projection does not work since a random vector will be almost

orthogonal to the intermean subspace. PCA does not work because the larger vari-

ances (corresponding to the length of the egg) counter the effect of the separation of

the means. Isotropic PCA, however, reveals the intermean direction.

6.4 Overview of the Analysis

To analyze the algorithm in the general case we will proceed as follows. Section 6.5

shows that under isotropy the Fisher subspace coincides with the intermean subspace

(Lemma 16) and relates overlap to a more conventional notion of separation (Prop.

20). Section 6.6 then gives some convenient approximations to the first and second

moments of the reweighted mixture. Section 6.7 gives the necessary sampling con-

vergence lemmas to ensure that these moments can be efficiently learned from data.

Section 6.8 then combines the approximations of Sec. 6.6 with a perturbation lemma

due to Stewart to show that the vector h (either the mean shift or the largest princi-

pal component) lies close to the intermean subspace. Finally, Section 6.9 shows the

correctness of the recursive aspects of the algorithm.

54

−12 −10 −8 −6 −4 −2 0 2 4
−6

−4

−2

0

2

4

6

(a) Eg 1: Before Isotropy

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

(b) Eg 1: After Isotropy

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

(c) Eg 2: Before Isotropy

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(d) Eg 2: After Isotropy

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

(e) Eg 3: Before Isotropy

−3 −2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(f) Eg 3: After Isotropy

Figure 5: Enforcing Isotropy will squeeze components together if they are apart
(a,b) or stretch them away from each other if they are close (c,d). It also has the
effect of making the intermean direction the best choice for separating the components
(e,f).

55

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

(a) Fisher Subspace

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

(b) Random Subspace

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

(c) PCA Subspace

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

(d) Isotropic PCA Subspace

Figure 6: Random Projection (b) and PCA (c) collapse the components, but
Isotropic PCA find the Fisher subspace where the components can be separated.

56

6.5 Preliminaries

6.5.1 Matrix Properties

For a matrix Z, we will denote the ith largest eigenvalue of Z by λi(Z) or just λi if

the matrix is clear from context. Unless specified otherwise, all norms are the 2-norm.

For symmetric matrices, this is ‖Z‖2 = λ1(Z) = maxx∈Rn ‖Zx‖2/‖x‖2.

The following two facts from linear algebra will be useful in our analysis.

Fact 17. Let λ1 ≥ . . . ≥ λn be the eigenvalues for an n-by-n symmetric positive

definite matrix Z and let v1, . . . vn be the corresponding eigenvectors. Then

λn + . . . + λn−k+1 = min
S:dim(S)=k

k∑
j=1

pT
j Zpj,

where {pj} is any orthonormal basis for S. If λn−k > λn−k+1, then span{vn, . . . , vn−k+1}

is the unique minimizing subspace.

Recall that a matrix Z is positive semi-definite if xT Zx ≥ 0 for all non-zero x.

Fact 18. Suppose that the matrix

Z =

 A BT

B D


is symmetric positive semi-definite and that A and D are square submatrices. Then

‖B‖ ≤
√
‖A‖‖D‖.

Proof. Let y and x be the top left and right singular vectors of B, so that yT Bx = ‖B‖.

Because Z is positive semi-definite, we have that for any real γ,

0 ≤ [γxT yT]Z[γxT yT]T = γ2xT Ax + 2γyT Bx + yT Dy.

This is a quadratic polynomial in γ that can have only one real root. Therefore the

discriminant must be non-positive:

0 ≥ 4(yT Bx)2 − 4(xT Ax)(yT Dy).

57

We conclude that

‖B‖ = yT Bx ≤
√

(xT Ax)(yT Dy) ≤
√
‖A‖‖D‖.

6.5.2 The Fisher Criterion and Isotropy

We begin with the proof of the lemma that for an isotropic mixture the Fisher sub-

space is the same as the intermean subspace.

Proof of Lemma 16. By Definition 4 for an isotropic distribution, the Fisher subspace

minimizes

J(S) = E[‖projS(x− µ`(x))‖2] =
k−1∑
j=1

pT
j Σpj,

where {pj} is an orthonormal basis for S.

By Fact 17, one minimizing subspace is the span of the smallest k−1 eigenvectors

of the matrix Σ, i.e. vn−k+2, . . . , vn. Because the distribution is isotropic,

Σ = I −
k∑

i=1

wiµiµ
T
i .

and these vectors become the largest eigenvectors of
∑k

i=1 wiµiµ
T
i . Clearly, we have

span{vn−k+2, . . . , vn} ⊆ span{µ1, . . . , µk}, but both spans have dimension k− 1 mak-

ing them equal. This also implies that

1− λn−k+2(Σ) = vT
n−k+2

k∑
i=1

wiµiµ
T
i vn−k+2 > 0.

Thus, λn−k+2(Σ) < 1. On the other hand vn−k+1, must be orthogonal every µi, so

λn−k+1(Σ) = 1. Therefore, λn−k+1(Σ) > λn−k+2(Σ) and by Fact 17 span{vn−k+2, . . . , vn} =

span{µ1, . . . , µk} is the unique minimizing subspace.

It follows directly that under the conditions of Lemma 16, the overlap may be

characterized as

φ = λn−k+2 (Σ) = 1− λk−1

(
k∑

i=1

wiµiµ
T
i

)
.

58

For clarity of the analysis, we will assume that Step 1 of the algorithm produces

a perfectly isotropic mixture. Theorem 7 gives a bound on the required number of

samples to make the distribution nearly isotropic, and as our analysis shows, our

algorithm is robust to small estimation errors.

We will also assume for convenience of notation that the the unit vectors along the

first k−1 coordinate axes e1, . . . ek−1 span the intermean (i.e. Fisher) subspace. That

is, F = span{e1, . . . , ek−1}. When considering this subspace it will be convenient to

be able to refer to projection of the mean vectors to this subspace. Thus, we define

µ̃i ∈ Rk−1 to be the first k − 1 coordinates of µi; the remaining coordinates are all

zero. In other terms,

µ̃i = [Ik−1 0] µi .

In this coordinate system the covariance matrix of each component has a particular

structure, which will be useful for our analysis. For the rest of this paper we fix the

following notation: an isotropic mixture is defined by {wi, µi, Σi}. We assume that

span{e1, . . . , ek−1} is the intermean subspace and Ai,Bi, and Di are defined such that

wiΣi =

 Ai BT
i

Bi Di

 (10)

where Ai is a (k − 1) × (k − 1) submatrix and Di is a (n − k + 1) × (n − k + 1)

submatrix.

Lemma 19 (Covariance Structure). Using the above notation,

‖Ai‖ ≤ φ , ‖Di‖ ≤ 1 , ‖Bi‖ ≤
√

φ

for all components i.

Proof of Lemma 19. Because span{e1, . . . , ek−1} is the Fisher subspace

φ = max
v∈Rk−1

1

‖v‖2

k∑
i=1

vT Aiv =

∥∥∥∥∥
k∑

i=1

Ai

∥∥∥∥∥
2

.

59

Also
∑k

i=1 Di = I, so ‖
∑k

i=1 Di‖ = 1. Each matrix wiΣi is positive definite, so

the principal minors Ai,Di must be positive definite as well. Therefore, ‖Ai‖ ≤ φ,

‖Di‖ ≤ 1, and ‖Bi‖ ≤
√
‖Ai‖‖Di‖ =

√
φ using Fact 18.

For small φ, the covariance between intermean and non-intermean directions, i.e.

Bi, is small. For k = 2, this means that all densities will have a “nearly parallel

pancake” shape. In general, it means that k−1 of the principal axes of the Gaussians

will lie close to the intermean subspace.

We conclude this section with a proposition connecting, for k = 2, the overlap to a

standard notion of separation between two distributions, so that Theorem 4 becomes

an immediate corollary of Theorem 5.

Proposition 20. If there exists a unit vector p such that

|pT (µ1 − µ2)| > t(
√

pT w1Σ1p +
√

pT w2Σ2p),

then the overlap φ ≤ J(p) ≤ (1 + w1w2t
2)−1.

Proof of Proposition 20. Since the mean of the distribution is at the origin, we have

w1p
T µ1 = −w2p

T µ2. Thus,

|pT µ1 − pT µ2|2 = (pT µ1)
2 + (pT µ2)

2 + 2|pT µ1||pT µ2|

= (w1p
T µ1)

2

(
1

w2
1

+
1

w2
2

+
2

w1w2

)
,

using w1 + w2 = 1. We rewrite the last factor as

1

w2
1

+
1

w2
2

+
2

w1w2

=
w2

1 + w2
2 + 2w1w2

w2
1w

2
2

=
1

w2
1w

2
2

=
1

w1w2

(
1

w1

+
1

w2

)
.

Again, using the fact that w1p
T µ1 = −w2p

T µ2, we have that

|pT µ1 − pT µ2|2 =
(w1p

T µ1)
2

w1w2

(
1

w1

+
1

w2

)
=

w1(p
T µ1)

2 + w2(p
T µ2)

2

w1w2

.

60

Thus, by the separation condition

w1(p
T µ1)

2 + w2(p
T µ2)

2 = w1w2|pT µ1 − pT µ2|2 ≥ w1w2t
2(pT w1Σ1p + pT w2Σ2p).

To bound J(p), we then argue

J(p) =
pT w1Σ1p + pT w2Σ2p

w1(pT Σ1p + (pT µ1)2) + w2(pT Σ2p + (pT µ2)2)

= 1− w1(p
T µ1)

2 + w2(p
T µ2)

2

w1(pT Σ1p + (pT µ1)2) + w2(pT Σ2p + (pT µ2)2)

≤ 1− w1w2t
2(w1p

T Σ1p + w2p
T Σ2p)

w1(pT Σ1p + (pT µ1)2) + w2(pT Σ2p + (pT µ2)2)

≤ 1− w1w2t
2J(p),

and J(p) ≤ 1/(1 + w1w2t
2).

6.6 Approximation of the Reweighted Moments

Our algorithm works by computing the first and second reweighted moments of a point

set from F . In this section, we examine how the reweighting affects the moments of a

single component and then give some approximations for the first and second moments

of the entire mixture.

6.6.1 Single Component

The first step is to characterize how the reweighting affects the moments of a single

component. Specifically, we will show for any function f (and therefore x and xxT in

particular) that for α > 0,

E

[
f(x) exp

(
−‖x‖

2

2α

)]
=
∑

i

wiρiEi [f(yi)] ,

Here, Ei[·] denotes expectation taken with respect to the component i, the quan-

tity ρi = Ei

[
exp

(
−‖x‖2

2α

)]
, and yi is a Gaussian variable with parameters slightly

perturbed from the original ith component.

Claim 21. If α = n/wmin, the quantity ρi = Ei

[
exp

(
−‖x‖2

2α

)]
is at least 1/2.

61

Proof. Because the distribution is isotropic, for any component i, wiEi[‖x‖2] ≤ n.

Therefore,

ρi = Ei

[
exp

(
−‖x‖

2

2α

)]
≥ Ei

[
1− ‖x‖2

2α

]
≥ 1− 1

2α

n

wi

≥ 1

2
.

Lemma 22 (Reweighted Moments of a Single Component). For any α > 0,

with respect to a single component i of the mixture

Ei

[
x exp

(
−‖x‖

2

2α

)]
= ρi(µi −

1

α
Σiµi + f)

and

Ei

[
xxT exp

(
−‖x‖

2

2α

)]
= ρ(Σi + µiµ

T
i −

1

α
(ΣiΣi + µiµ

T
i Σi + Σiµiµ

T
i) + F)

where ‖f‖, ‖F‖ = O(α−2).

We first establish the following claim.

Claim 23. Let x be a random variable distributed according to the normal distribution

N(µ, Σ) and let Σ = QΛQT be the singular value decomposition of Σ with λ1, . . . , λn

being the diagonal elements of Λ. Let W = diag(α/(α+λ1), . . . , α/(α+λn)). Finally,

let y be a random variable distributed according to N(QWQT µ, QWΛQT). Then for

any function f(x),

E

[
f(x) exp

(
−‖x‖

2

2α

)]
= det(W)1/2 exp

(
−µT QWQT µ

2α

)
E [f(y)] .

Proof of Claim 23. We assume that Q = I for the initial part of the proof. From the

definition of a Gaussian distribution, we have

E

[
f(x) exp

(
−‖x‖

2

2α

)]
= det(Λ)−1/2(2π)−n/2

∫
Rn

f(x) exp

(
−xT x

2α
− (x− µ)T Λ−1(x− µ)

2

)
. (11)

62

Because Λ is diagonal, we may write the exponents on the right hand side as

n∑
i=1

x2
i α

−1 + (xi − µi)
2λ−1

i =
n∑

i=1

x2
i (λ

−1 + α−1)− 2xiµiλ
−1
i + µ2

i λ
−1
i .

Completing the square gives the expression

n∑
i=1

(
xi − µi

α

α + λi

)2(
λiα

α + λi

)−1

+ µ2
i λ

−1
i − µ2

i λ
−1
i

α

α + λi

.

The last two terms can be simplified to µ2
i /(α + λi). In matrix form the exponent

becomes

(x−Wµ)T (WΛ)−1 (x−Wµ) + µT Wµα−1.

For general Q, this becomes

(
x−QWQT µ

)T
Q(WΛ)−1QT

(
x−QWQT µ

)
+ µT QWQT µα−1.

Now recalling the definition of the random variable y, we see

E

[
f(x) exp

(
−‖x‖

2

2α

)]
= det(Λ)−1/2(2π)−n/2 exp

(
−µT QWQT µ

2α

)
∫

Rn

f(x) exp

(
−1

2

(
x−QWQT µ

)T
Q(WΛ)−1QT

(
x−QWQT µ

))
= det(W)1/2 exp

(
−µT QWQT µ

2α

)
E [f(y)] .

The proof of Lemma 22 is now straightforward.

Proof of Lemma 22. For simplicity of notation, we drop the subscript i from ρi, µi,

Σi with the understanding that all statements of expectation apply to a single com-

ponent. Using the notation of Claim 23, we have

ρ = E

[
exp

(
−‖x‖

2

2α

)]
= det(W)1/2 exp

(
−µT QWQT µ

2α

)
.

A diagonal entry of the matrix W can expanded as

α

α + λi

= 1− λi

α + λi

= 1− λi

α
+

λ2
i

α(α + λi)
,

63

so that

W = I − 1

α
Λ +

1

α2
WΛ2.

Thus,

E

[
x exp

(
−‖x‖

2

2α

)]
= ρ(QWQT µ)

= ρ(QIQT µ− 1

α
QΛQT µ +

1

α2
QWΛ2QT µ)

= ρ(µ− 1

α
Σµ + f),

where ‖f‖ = O(α−2).

We analyze the perturbed covariance in a similar fashion.

E

[
xxT exp

(
−‖x‖

2

2α

)]
= ρ

(
Q(WΛ)QT + QWQT µµT QWQT

)
= ρ

(
QΛQT − 1

α
QΛ2QT +

1

α2
QWΛ3QT

+(µ− 1

α
Σµ + f)(µ− 1

α
Σµ + f)T

)
= ρ

(
Σ + µµT − 1

α
(ΣΣ + µµT Σ + ΣµµT) + F

)
,

where ‖F‖ = O(α−2).

6.6.2 Mixture Moments

The second step is to approximate the first and second moments of the entire mixture

distribution. Let ρ be the vector where ρi = Ei

[
exp

(
−‖x‖2

2α

)]
and let ρ̄ be the average

of the ρi. We also define

u ≡ E

[
x exp

(
−‖x‖

2

2α

)]
=

k∑
i=1

wiρiµi −
1

α

k∑
i=1

wiρiΣiµi + f (12)

M ≡ E

[
xxT exp

(
−‖x‖

2

2α

)]
=

k∑
i=1

wiρi(Σi + µiµ
T
i −

1

α
(ΣiΣi + µiµ

T
i Σi + Σiµiµ

T
i)) + F (13)

with ‖f‖ = O(α−2) and ‖F‖ = O(α−2). We denote the estimates of these quantities

computed from samples by û and M̂ respectively.

64

Lemma 24. Let v =
∑k

i=1 ρiwiµi. Then

‖u− v‖2 ≤ 4k2

α2wmin

φ.

Proof of Lemma 24. We argue from (10) and (12) that

‖u− v‖ =
1

α

∥∥∥∥∥
k∑

i=1

wiρiΣiµi

∥∥∥∥∥+ O(α−2)

≤ 1

α
√

wmin

k∑
i=1

ρi‖(wiΣi)(
√

wiµi)‖+ O(α−2)

≤ 1

α
√

wmin

k∑
i=1

ρi‖[Ai, B
T
i]T‖‖(

√
wiµi)‖+ O(α−2).

From isotropy, it follows that ‖√wiµi‖ ≤ 1. To bound the other factor, we argue

‖[Ai, B
T
i]T‖ ≤

√
2 max{‖Ai‖, ‖Bi‖} ≤

√
2φ.

Therefore,

‖u− v‖2 ≤ 2k2

α2wmin

φ + O(α−3) ≤ 4k2

α2wmin

φ,

for sufficiently large n, as α ≥ n/wmin.

Lemma 25. Let

Γ =

 ∑k
i=1 ρi(wiµ̃iµ̃i

T + Ai) 0

0
∑k

i=1 ρiDi − ρi

wiα
D2

i

 .

If ‖ρ− 1ρ̄‖∞ < 1/(2α), then

‖M − Γ‖2
2 ≤

162k2

wmin
2α2

φ.

Before giving the proof, we summarize some of the necessary calculation in the

following claim.

Claim 26. The matrix of second moments

M = E

[
xxT exp

(
−‖x‖

2

2α

)]
=

 Γ11 0

0 Γ22

+

 ∆11 ∆T
21

∆21 ∆22

+ F,

65

where

Γ11 =
k∑

i=1

ρi(wiµ̃iµ̃i
T + Ai)

Γ22 =
k∑

i=1

ρiDi −
ρi

wiα
D2

i

∆11 = −
k∑

i=1

ρi

wiα
BT

i Bi +
ρi

wiα

(
wiµ̃iµ̃i

T Ai + wiAiµ̃iµ̃i
T + A2

i

)
∆21 =

k∑
i=1

ρiBi −
ρi

wiα

(
Bi(wiµ̃iµ̃i

T) + BiAi + DiBi

)
∆22 = −

k∑
i=1

ρi

wiα
BiB

T
i ,

and ‖F‖ = O(α−2).

Proof. The calculation is straightforward.

Proof of Lemma 25. We begin by bounding the 2-norm of each of the blocks. Since

‖wiµ̃iµ̃i
T‖ < 1 and ‖Ai‖ ≤ φ and ‖Bi‖ ≤

√
φ, we can bound

‖∆11‖ = max
‖y‖=1

k∑
i=1

ρi

wiα
yT BT

i Biy
T − ρi

wiα
yT
(
wiµ̃iµ̃i

T Ai + wiAiµ̃iµ̃i
T + A2

i

)
y + O(α−2)

≤
k∑

i=1

ρi

wiα
‖Bi‖2 +

ρi

wiα
(2‖A‖+ ‖A‖2) + O(α−2)

≤ 4k

wminα
φ + O(α−2).

By a similar argument, ‖∆22‖ ≤ kφ/(wminα) + O(α−2). For ∆21, we observe that

66

∑k
i=1 Bi = 0. Therefore,

‖∆21‖ ≤

∥∥∥∥∥
k∑

i=1

(ρi − ρ̄)Bi

∥∥∥∥∥+

∥∥∥∥∥
k∑

i=1

ρi

wiα

(
Bi(wiµ̃iµ̃

T
i) + BiAi + DiBi

)∥∥∥∥∥+ O(α−2)

≤
k∑

i=1

|ρi − ρ̄|‖Bi‖+
k∑

i=1

ρi

wiα

(
‖Bi(wiµ̃iµ̃

T
i)‖+ ‖BiAi‖+ ‖DiBi‖

)
+ O(α−2)

≤ k‖ρ− 1ρ̄‖∞
√

φ +
k∑

i=1

ρi

wiα
(
√

φ + φ
√

φ +
√

φ) + O(α−2)

≤ k‖ρ− 1ρ̄‖∞
√

φ +
3kρ̄

wminα

√
φ

≤ 7k

2wminα

√
φ + O(α−2).

Thus, we have max{‖∆11‖, ‖∆22‖, ‖∆21‖} ≤ 4k
√

φ/(wminα) + O(α−2), so that

‖M − Γ‖ ≤ ‖∆‖+ O(α−2)

≤ 2 max{‖∆11‖, ‖∆22‖, ‖∆21‖} ≤
8k

wminα

√
φ + O(α−2) ≤ 16k

wminα

√
φ.

for sufficiently large n, as α ≥ n/wmin.

6.7 Sample Convergence

We now give some bounds on the convergence of the transformation to isotropy (µ̂ → 0

and Σ̂ → I) and on the convergence of the reweighted sample mean û and sample

matrix of second moments M̂ to their expectations u and M . For the convergence

of second moment matrices, we use the following lemma due to Rudelson [43], which

was presented in this form in [44].

Lemma 27. Let y be a random vector from a distribution D in Rn, with supD ‖y‖ =

M and ‖E(yyT)‖ ≤ 1. Let y1, . . . , ym be independent samples from D. Let

η = CM

√
log m

m

where C is an absolute constant. Then,

67

(i) If η < 1, then

E

(
‖ 1

m

m∑
i=1

yiy
T
i − E(yyT)‖

)
≤ η.

(ii) For every t ∈ (0, 1),

P

(
‖ 1

m

m∑
i=1

yiy
T
i − E(yyT)‖ > t

)
≤ 2e−ct2/η2

.

This lemma is used to show that a distribution can be made nearly isotropic using

only O∗(kn) samples [43, 38]. The isotropic transformation is computed simply by

estimating the mean and covariance matrix of a sample, and computing the affine

transformation that puts the sample in isotropic position.

Theorem 7. There is an absolute constant C such that for an isotropic mixture of

k logconcave distributions, with probability at least 1− δ, a sample of size

m > C
kn log2(n/δ)

ε2

gives a sample mean µ̂ and sample covariance Σ̂ so that

‖µ̂‖ ≤ ε and ‖Σ̂− I‖ ≤ ε.

We now consider the reweighted moments.

Lemma 28. Let ε, δ > 0 and let µ̂ be the reweighted sample mean of a set of m points

drawn from an isotropic mixture of k Gaussians in n dimensions, where

m ≥ 2nα

ε2
log

2n

δ
.

Then

P [‖û− u‖ > ε] ≤ δ

Proof. We first consider only a single coordinate of the vector û.

y = x1 exp
(
−‖x‖2/(2α)

)
− u1

68

and observe that∣∣∣∣x1 exp

(
−‖x‖

2

2α

)∣∣∣∣ ≤ |x1| exp

(
− x2

1

2α

)
≤
√

α

e
<
√

α.

Thus, each term in the sum mû1 =
∑m

j=1 yj falls the range [−
√

α− u1,
√

α− u1]. We

may therefore apply Hoeffding’s inequality to show that

P
[
|û1 − u1| ≥ ε/

√
n
]
≤ 2 exp

(
−2m2(ε/

√
n)2

m · (2
√

α)2

)
≤ 2 exp

(
−mε2

2αn

)
≤ δ

n
.

Taking the union bound over the n coordinates, we have that with probability 1− δ

the error in each coordinate is at most ε/
√

n, which implies that ‖û− u‖ ≤ ε.

Lemma 29. Let ε, δ > 0 and let M̂ be the reweighted sample matrix of second mo-

ments for a set of m points drawn from an isotropic mixture of k Gaussians in n

dimensions, where

m ≥ C1
nα

ε2
log

nα

δ
.

and C1 is an absolute constant. Then

P
[∥∥∥M̂ −M

∥∥∥ > ε
]

< δ.

Proof. We will apply Lemma 27. Define y = x exp (−‖x‖2/(2α)). Then,

y2
i ≤ x2

i exp

(
−‖x‖

2

α

)
≤ x2

i exp

(
−x2

i

α

)
≤ α

e
< α.

Therefore ‖y‖ ≤
√

αn.

Next, since M is in isotropic position (we can assume this w.l.o.g.), we have for

any unit vector v,

E((vT y)2)) ≤ E((vT x)2) ≤ 1

and so ‖E(yyT)‖ ≤ 1.

Now we apply the second part of Lemma 27 with η = ε
√

c/ ln(2/δ) and t =

η
√

ln(2/δ)/c. This requires that

η =
cε

ln(2/δ)
≤ C

√
αn

√
log m

m

which is satisfied for our choice of m.

69

Lemma 30. Let X be a collection of m points drawn from a Gaussian with mean µ

and variance σ2. With probability 1− δ,

|x− µ| ≤ σ
√

2 log m/δ.

for every x ∈ X.

6.8 Finding a Vector near the Fisher Subspace

In this section, we use the approximations of Section 6.6 to show that the direction

h chosen by step 3 of the algorithm is close to the intermean subspace. Finding such

a direction is the most challenging part of the classification task and represents the

main contribution of this work.

We first assume zero overlap and that the sample reweighted moments behave

exactly according to expectation. In this case, the mean shift û becomes

v ≡
k∑

i=1

wiρiµi.

We can intuitively think of the components that have greater ρi as gaining mixing

weight and those with smaller ρi as losing mixing weight. As long as the ρi are not all

equal, we will observe some shift of the mean in the intermean subspace, i.e. Fisher

subspace. Therefore, we may use this direction to partition the components. On the

other hand, if all of the ρi are equal, then M̂ becomes

Γ ≡

 ∑k
i=1 ρi(wiµ̃iµ̃i

T + Ai) 0

0
∑k

i=1 ρiDi − ρi

wiα
D2

i

 = ρ̄

 I 0

0 I − 1
α

∑k
i=1

1
wi

D2
i

 .

Notice that the second moments in the subspace span{e1, . . . , ek−1} are maintained

while those in the complementary subspace are reduced by poly(1/α). Therefore, the

top eigenvector will be in the intermean subspace, which is the Fisher subspace.

We now argue that this same strategy can be adapted to work in general, i.e.,

with nonzero overlap and sampling errors, with high probability. A critical aspect of

70

this argument is that the norm of the error term M̂ − Γ depends only on φ and k

and not the dimension of the data. See Lemma 25 and the supporting Lemma 19 and

Fact 18.

Since we cannot know directly how imbalanced the ρi are, we choose the method

of finding a separating direction according the norm of the vector ‖û‖. Recall that

when ‖û‖ >
√

wmin/(32α) the algorithm uses û to determine the separating direction

h. Lemma 31 guarantees that this vector is close to the Fisher subspace. When

‖û‖ ≤ √
wmin/(32α), the algorithm uses the top eigenvector of the covariance matrix

M̂ . Lemma 32 guarantees that this vector is close to the Fisher subspace.

Lemma 31 (Mean Shift Method). Let ε > 0. There exists a constant C such that

if m1 ≥ Cn4poly(k, wmin
−1, log n/δ), then the following holds with probability 1 − δ.

If ‖û‖ >
√

wmin/(32α) and

φ ≤ wmin
2ε

214k2
,

then

‖ûT v‖
‖û‖‖v‖

≥ 1− ε.

Lemma 32 (Spectral Method). Let ε > 0. There exists a constant C such that if

m1 ≥ Cn4poly(k, wmin
−1, log n/δ), then the following holds with probability 1− δ. Let

v1, . . . , vk−1 be the top k − 1 eigenvectors of M̂ . If ‖û‖ ≤ √
wmin/(32α) and

φ ≤ wmin
2ε

6402k2

then

min
v∈span{v1,...,vk−1},‖v‖=1

‖projF (v)‖ ≥ 1− ε.

6.8.1 Mean Shift

Proof of Lemma 31. We will make use of the following claim.

71

Claim 33. For any vectors a, b 6= 0,

|aT b|
‖a‖‖b‖

≥
(

1− ‖a− b‖2

max{‖a‖2, ‖b‖2}

)1/2

.

By the triangle inequality, ‖û− v‖ ≤ ‖û− u‖+ ‖u− v‖. By Lemma 24,

‖u− v‖ ≤

√
4k2

α2wmin

φ =

√
4k2

α2wmin

· wmin
2ε

214k2
≤
√

wminε

212α2
.

By Lemma 28, for large m1 we obtain the same bound on ‖û − u‖ with probability

1− δ . Thus,

‖û− v‖ ≤
√

wminε

210α2
.

Applying the claim gives

‖ûT v‖
‖û‖‖v‖

≥ 1− ‖û− v‖2

‖û‖2

≥ 1− wminε

210α2
· 322α2

wmin

= 1− ε.

Proof of Claim 33. Without loss of generality, assume ‖u‖ ≥ ‖v‖ and fix the distance

‖u − v‖. In order to maximize the angle between u and v, the vector v should be

chosen so that it is tangent to the sphere centered at u with radius ‖u− v‖. Hence,

the vectors u,v,(u− v) form a right triangle where ‖u‖2 = ‖v‖2 + ‖u− v‖2. For this

choice of v, let θ be the angle between u and v so that

uT v

‖u‖‖v‖
= cos θ = (1− sin2 θ)1/2 =

(
1− ‖u− v‖2

‖u‖2

)1/2

.

6.8.2 Spectral Method

We first show that the smallness of the mean shift û implies that the coefficients ρi

are sufficiently uniform to allow us to apply the spectral method.

72

Claim 34 (Small Mean Shift Implies Balanced Second Moments). If ‖û| ≤
√

wmin/(32α) and √
φ ≤ wmin

64k
,

then

‖ρ− 1ρ̄‖2 ≤
1

8α
.

Proof. Let q1, . . . , qk be the right singular vectors of the matrix U = [w1µ1, . . . , wkµk]

and let σi(U) be the ith largest singular value. Because
∑k

i=1 wiµi = 0, we have that

σk(U) = 0 and qk = 1/
√

k. Recall that ρ is the k vector of scalars ρ1, . . . , ρk and that

v = Uρ. Then

‖v‖2 = ‖Uρ‖2

=
k−1∑
i=1

σi(U)2(qT
i ρ)2

≥ σk−1(U)2‖ρ− qk(q
T
k ρ)‖2

2

= σk−1(U)2‖ρ− 1ρ̄‖2
2.

Because qk−1 ∈ span{µ1, . . . , µk}, we have that
∑k

i=1 wiq
T
k−1µiµ

T
i qk−1 ≥ 1−φ. There-

fore,

σk−1(U)2 = ‖Uqk−1‖2

= qT
k−1

(
k∑

i=1

w2
i µiµ

T
i

)
qk−1

≥ wminq
T
k−1

(
k∑

i=1

wiµiµ
T
i

)
qk−1

≥ wmin(1− φ).

Thus, we have the bound

‖ρ− 1ρ̄‖∞ ≤ 1√
(1− φ)wmin

‖v‖ ≤ 2
√

wmin

‖v‖.

By the triangle inequality ‖v‖ ≤ ‖û‖+ ‖û− v‖. As argued in Lemma 24,

‖û− v‖ ≤

√
4k2

α2wmin

φ =

√
4k2

α2wmin

· wmin
2

642k2
=≤

√
wmin

32α
.

73

Thus,

‖ρ− 1ρ̄‖∞ ≤ 2ρ̄
√

wmin

‖v‖

≤ 2ρ̄
√

wmin

(√
wmin

32α
+

√
wmin

32α

)
≤ 1

8α
.

We next show that the top k − 1 principal components of Γ span the intermean

subspace and put a lower bound on the spectral gap between the intermean and

non-intermean components.

Lemma 35 (Ideal Case). If ‖ρ− 1ρ̄‖∞ ≤ 1/(8α), then

λk−1(Γ)− λk(Γ) ≥ 1

4α
,

and the top k − 1 eigenvectors of Γ span the means of the components.

Proof of Lemma 35. We first bound λk−1(Γ11). Recall that

Γ11 =
k∑

i=1

ρi(wiµ̃iµ̃i
T + Ai).

Thus,

λk−1(Γ11) = min
‖y‖=1

k∑
i=1

ρiy
T (wiµ̃iµ̃i

T + Ai)y

≥ ρ̄− max
‖y‖=1

k∑
i=1

(ρ̄− ρi)y
T (wiµ̃iµ̃i

T + Ai)y.

We observe that
∑k

i=1 yT (wiµ̃iµ̃i
T + Ai)y = 1 and each term is non-negative. Hence

the sum is bounded by

k∑
i=1

(ρ̄− ρi)y
T (wiµ̃iµ̃i

T + Ai)y ≤ ‖ρ− 1ρ̄‖∞,

so,

λk−1(Γ11) ≥ ρ̄− ‖ρ− 1ρ̄‖∞.

74

Next, we bound λ1(Γ22). Recall that

Γ22 =
k∑

i=1

ρiDi −
ρi

wiα
D2

i

and that for any n− k vector y such that ‖y‖ = 1, we have
∑k

i=1 yT Diy = 1. Using

the same arguments as above,

λ1(Γ22) = max
‖y‖=1

ρ̄ +
k∑

i=1

(ρi − ρ̄)yT Diy −
ρi

wiα
yT D2

i y

≤ ρ̄ + ‖ρ− 1ρ̄‖∞ − min
‖y‖=1

k∑
i=1

ρi

wiα
yT D2

i y.

To bound the last sum, we observe that ρi − ρ̄ = O(α−1). Therefore

k∑
i=1

ρi

wiα
yT D2

i y ≥
ρ̄

α

k∑
i=1

1

wi

yT D2
i y + O(α−2).

Without loss of generality, we may assume that y = e1 by an appropriate rotation

of the Di. Let Di(`, j) be element in the `th row and jth column of the matrix Di.

Then the sum becomes

k∑
i=1

1

wi

yT D2
i y =

k∑
i=1

1

wi

n∑
j=1

Dj(1, j)
2

≥
k∑

i=1

1

wi

Dj(1, 1)2.

Because
∑k

i=1 Di = I, we have
∑k

i=1 Di(1, 1) = 1. From the Cauchy-Schwartz in-

equality, it follows(
k∑

i=1

wi

)1/2(k∑
i=1

1

wi

Di(1, 1)2

)1/2

≥
k∑

i=1

√
wi

Di(1, 1)
√

wi

= 1.

Since
∑k

i=1 wi = 1, we conclude that
∑k

i=1
1
wi

Di(1, 1)2 ≥ 1. Thus, using the fact that

ρ̄ ≥ 1/2, we have
k∑

i=1

ρi

wiα
yT D2

i y ≥
1

2α

Putting the bounds together

λk−1(Γ11)− λ1(Γ22) ≥
1

2α
− 2‖ρ− 1ρ̄‖∞ ≥ 1

4α
.

75

We now combine the facts that M̂ is close to Γ and that Γ has a large eigenvalue

gap between k − 1 and k to prove Lemma 32. We require the following theorem due

to Stewart [45].

Lemma 36 (Stewart’s Theorem). Suppose A and A + E are n-by-n symmetric

matrices and that

A =

 D1 0

0 D2

 r

n− r

r n− r

E =

 E11 ET
21

E21 E22

 r

n− r

r n− r

.

Let the columns of V be the top r eigenvectors of the matrix A + E and let P2 be the

matrix with columns er+1, . . . , en. If d = λr(D1)− λ1(D2) > 0 and

‖E‖ ≤ d

5
,

then

‖V T P2‖ ≤
4

d
‖E21‖2.

The proof of Lemma 32 follows.

Proof of Lemma 32. Define d = λk−1(Γ) − λk(Γ) and E = M̂ − Γ. We assume that

the mean shift satisfies ‖û‖ ≤ √
wmin/(32α) and that φ is small. By Lemma 35, this

implies that

d = λk−1(Γ)− λk(Γ) ≥ 1

4α
. (14)

To bound ‖E‖, we use the triangle inequality ‖E‖ ≤ ‖Γ−M‖+‖M−M̂‖. Lemma

25 bounds the first term by

‖M − Γ‖ ≤

√
162k2

wmin
2α2

φ =

√
162k2

wmin
2α2

· wmin
2ε

6402k2
≤ 1

40α

√
ε.

By Lemma 29, we obtain the same bound on ‖M − M̂‖ with probability 1 − δ for

large enough m1. Thus,

‖E‖ ≤ 1

20α

√
ε.

76

Combining the bounds of (14) and (6.8.2), we have√
1− (1− ε)2d− 5‖E‖ ≥

√
1− (1− ε)2

1

4α
− 5

1

20α

√
ε ≥ 0,

as
√

1− (1− ε)2 ≥
√

ε. This implies both that ‖E‖ ≤ d/5 and that 4‖E21|/d <√
1− (1− ε)2, enabling us to apply Stewart’s Lemma to the matrix pair Γ and M̂ .

By Lemma 35, the top k − 1 eigenvectors of Γ, i.e. e1, . . . , ek−1, span the means

of the components. Let the columns of P1 be these eigenvectors. Let the columns

of P2 be defined such that [P1, P2] is an orthonormal matrix and let v1, . . . , vk be

the top k − 1 eigenvectors of M̂ . By Stewart’s Lemma, letting the columns of V be

v1, . . . , vk−1, we have

‖V T P2‖2 ≤
√

1− (1− ε)2,

or equivalently,

min
v∈span{v1,...,vk−1},‖v‖=1

‖projF v‖ = σk−1(V
T P1) ≥ 1− ε.

6.9 Recursion

In this section, we show that for every direction h that is close to the intermean

subspace, the “largest gap clustering” step produces a pair of complementary halfs-

paces that partitions Rn while leaving only a small part of the probability mass on

the wrong side of the partition, small enough that with high probability, it does not

affect the samples used by the algorithm.

Lemma 37. Let δ, δ′ > 0, where δ′ ≤ δ/(2m2), and let m2 satisfy m2 ≥ n/k log(2k/δ).

Suppose that h is a unit vector such that

‖projF (h)‖ ≥ 1− wmin

210(k − 1)2 log 1
δ′

.

Let F be a mixture of k > 1 Gaussians with overlap

φ ≤ wmin

29(k − 1)2
log−1 1

δ′
.

77

Let X be a collection of m2 points from F and let t be the midpoint of the largest gap

in set {hT x : x ∈ X}. With probability 1 − δ, the halfspace Hh,t has the following

property. For a random sample y from F either

y, µ`(y) ∈ Hh,t or y, µ`(y) /∈ Hh,t

with probability 1− δ′.

Proof of Lemma 37. The idea behind the proof is simple. We first show that two

of the means are at least a constant distance apart. We then bound the width of

a component along the direction h, i.e. the maximum distance between two points

belonging to the same component. If the width of each component is small, then

clearly the largest gap must fall between components. Setting t to be the midpoint

of the gap, we avoid cutting any components.

We first show that at least one mean must be far from the origin in the direction

h. Let the columns of P1 be the vectors e1, . . . , ek−1. The span of these vectors is also

the span of the means, so we have

max
i

(hT µi)
2 = max

i
(hT P1P

T
1 µi)

2

= ‖P T
1 h‖2 max

i

(
(P T

1 h)T

‖P1h‖
µ̃i

)2

≥ ‖P T
1 h‖2

k∑
i=1

wi

(
(P T

1 h)T

‖P1h‖
µ̃i

)2

≥ ‖P T
1 h‖2(1− φ)

>
1

2
.

Since the origin is the mean of the means, we conclude that the maximum distance

between two means in the direction h is at least 1/2. Without loss of generality, we

assume that the interval [0, 1/2] is contained between two means projected to h.

We now show that every point x drawn from component i falls in a narrow interval

when projected to h. That is, x satisfies hT x ∈ bi, where bi = [hT µi − (8(k −

78

1))−1, hT µi+(8(k−1))−1]. We begin by examining the variance along h. Let ek, . . . , en

be the columns of the matrix n-by-(n − k + 1) matrix P2. Recall from (10) that

P T
1 wiΣiP1 = Ai, that P T

2 wiΣiP1 = Bi, and that P T
2 wiΣiP2 = Di. The norms of these

matrices are bounded according to Lemma 19. Also, the vector h = P1P
T
1 h+P2P

T
2 h.

For convenience of notation we define ε such that ‖P T
1 h‖ = 1 − ε. Then ‖P T

2 h‖2 =

1− (1− ε)2 ≤ 2ε. We now argue

hT wiΣih ≤
(
hT P1AiP

T
1 h + 2hT P2BiP1h + hT P T

2 DiP2h
)

≤ 2
(
hT P1AiP

T
1 h + hT P2DiP

T
2 h
)

≤ 2(‖P T
1 h‖2‖Ai‖+ ‖P T

2 h‖2‖‖Di‖)

≤ 2(φ + 2ε).

Using the assumptions about φ and ε, we conclude that the maximum variance along

h is at most

max
i

hT Σih ≤
2

wmin

(
wmin

29(k − 1)2
log

1

δ′
+ 2

wmin

210(k − 1)2
log

1

δ′

)
≤
(
27(k − 1)2 log 1/δ′

)−1
.

We now translate these bounds on the variance to a bound on the difference

between the minimum and maximum points along the direction h. By Lemma 30,

with probability 1− δ/2

|hT (x− µ`(x))| ≤
√

2hT Σih log(2m2/δ) ≤
1

8(k − 1)
· log(2m2/δ)

log(1/δ′)
≤ 1

8(k − 1)
.

Thus, with probability 1 − δ/2, every point from X falls into the union of intervals

b1∪. . .∪bk where bi = [hT µi−(8(k−1))−1, hT µi+(8(k−1))−1]. Because these intervals

are centered about the means, at least the equivalent of one interval must fall outside

the range [0, 1/2], which we assumed was contained between two projected means.

Thus, the measure of subset of [0, 1/2] that does not fall into one of the intervals is

1

2
− (k − 1)

1

4(k − 1)
=

1

4
.

79

This set can be cut into at most k− 1 intervals, so the smallest possible gap between

these intervals is (4(k − 1))−1, which is exactly the width of an interval.

Because m2 = k/wmin log(2k/δ) the set X contains at least one sample from every

component with probability 1− δ/2. Overall, with probability 1− δ every component

has at least one sample and all samples from component i fall in bi. Thus, the

largest gap between the sampled points will not contain one of the intervals b1, . . . , bk.

Moreover, the midpoint t of this gap must also fall outside of b1 ∪ . . . ∪ bk, ensuring

that no bi is cut by t.

By the same argument given above, any single point y from F is contained in

b1 ∪ . . . ∪ bk with probability 1− δ′ proving the Lemma.

In the proof of the main theorem for large k, we will need to have every point

sampled from F in the recursion subtree classified correctly by the halfspace, so we

will assume δ′ considerably smaller than m2/δ.

The second lemma shows that all submixtures have smaller overlap to ensure that

all the relevant lemmas apply in the recursive steps.

Lemma 38. The removal of any subset of components cannot induce a mixture with

greater overlap than the original.

Proof of Lemma 38. Suppose that the components j + 1, . . . k are removed from the

mixture. Let ω =
∑j

i=1 wi be a normalizing factor for the weights. Then if c =∑j
i=1 wiµi = −

∑k
i=j+1 wiµi, the induced mean is ω−1c. Let T be the subspace that

minimizes the maximum overlap for the full k component mixture. We then argue

that the overlap φ̃2 of the induced mixture is bounded by

φ̃ = min
dim(S)=j−1

max
v∈S

ω−1vT Σv

ω−1
∑j

i=1 wivT (µiµT
i − ccT + Σi)v

≤ max
v∈span{e1,...,ek−1}\span{µj+1,...,µk}

∑j
i=1 wiv

T Σiv∑j
i=1 wivT (µiµT

i − ccT + Σi)v
.

80

Every v ∈ span{e1, . . . , ek−1} \ span{µj+1, . . . , µk} must be orthogonal to every µ` for

j + 1 ≤ ` ≤ k. Therefore, v must be orthogonal to c as well. This also enables us to

add the terms for j + 1, . . . , k in both the numerator and denominator, because they

are all zero.

φ̃ ≤ max
v∈span{e1,...,ek−1}\span{µj+1,...,µk}

vT Σv∑k
i=1 wivT (µiµT

i + Σi)v

≤ max
v∈span{e1,...,ek−1}

vT Σv∑k
i=1 wivT (µiµT

i + Σi)v

= φ.

The proofs of the main theorems are now apparent. Consider the case of k = 2

Gaussians first. As argued in Section 6.7, using m1 = ω(kn4wmin
−3 log(n/δwmin))

samples to estimate û and M̂ is sufficient to guarantee that the estimates are accurate.

For a well-chosen constant C, the condition

φ ≤ J(p) ≤ Cwmin
3 log−1

(
1

δwmin

+
1

η

)
of Theorem 5 implies that √

φ ≤ wmin

√
ε

640 · 2
,

where

ε =
wmin

29
log−1

(
2m2

δ
+

1

η

)
.

The arguments of Section 6.8 then show that the direction h selected in step 3 satisfies

‖P T
1 h‖ ≥ 1− ε = 1− wmin

29
log−1

(
m2

δ
+

1

η

)
.

Already, for the overlap we have

√
φ ≤ wmin

√
ε

640 · 2
≤
√

wmin

29(k − 1)2
log−1/2 1

δ′
.

so we may apply Lemma 37 with δ′ = (m2/δ + 1/η)−1. Thus, with probability 1− δ

the classifier Hh,t is correct with probability 1− δ′ ≥ 1− η.

81

We follow the same outline for k > 2, with the quantity 1/δ′ = m2/δ + 1/η being

replaced with 1/δ′ = m/δ+1/η, where m is the total number of samples used. This is

necessary because the half-space Hh,t must classify every sample point taken below it

in the recursion subtree correctly. This adds the n and k factors so that the required

overlap becomes

φ ≤ Cwmin
3k−3 log−1

(
nk

δwmin

+
1

η

)
for an appropriate constant C. The correctness in the recursive steps is guaranteed by

Lemma 38. Assuming that all previous steps are correct, the termination condition

of step 4 is clearly correct when a single component is isolated.

82

CHAPTER VII

THE SUBGRAPH PARITY TENSOR

We now turn away from learning mixture models and consider applying principal

components analysis in a different way to a different problem. Recall from Sec. 2.2

that the idea of the top principal component extends naturally from matrices to

arbitrary order tensors. In this chapter, we define the subgraph parity tensor for

graph and show that the top principal component reveals of this tensor reveals large

planted cliques in random graphs.

7.1 Introduction

It is well-known that a random graph G(n, 1/2) almost surely has a clique of size

(2 + o(1)) log2 n and a simple greedy algorithm finds a clique of size (1 + o(1)) log2 n.

Finding a clique of size even (1+ ε) log2 n for some ε > 0 in a random graph is a long-

standing open problem posed by Karp in 1976 [31] in his classic paper on probabilistic

analysis of algorithms.

In the early nineties, a very interesting variant of this question was formulated

by Jerrum [28] and by Kucera [37]. Suppose that a clique of size p is planted in a

random graph, i.e., a random graph is chosen and all the edges within a subset of p

vertices are added to it. Then for what value of p can the planted clique be found

efficiently? It is not hard to see that p > c
√

n log n suffices since then the vertices of

the clique will have larger degrees than the rest of the graph, with high probability

[37]. This was improved by Alon et al [2] to p = Ω(
√

n) using a spectral approach.

This was refined by McSherry [40] and considered by Feige and Krauthgamer in the

more general semi-random model [16]. For p ≥ 10
√

n, the following simple algorithm

works: form a matrix with 1’s for edges and −1’s for nonedges; find the largest

83

eigenvector of this matrix and read off the top p entries in magnitude; return the set

of vertices that have degree at least 3p/4 within this subset.

The reason this works is the following: the top eigenvector of a symmetric matrix

A can be written as

max
x:‖x‖=1

xT Ax = max
x:‖x‖=1

∑
ij

Aijxixj,

maximizing a quadratic polynomial over the unit sphere. The maximum value is the

spectral norm or 2-norm of the matrix. For a random matrix with 1,−1 entries, the

spectral norm (largest eigenvalue) is O(
√

n). In fact, as shown by Füredi and Komlós

[23, 49], a random matrix with i.i.d. entries of variance at most 1 has the same bound

on the spectral norm. On the other hand, after planting a clique of size
√

n times a

sufficient constant factor, the indicator vector of the clique (normalized) achieves a

higher norm. Thus the top eigenvector points in the direction of the clique (or very

close to it).

Given the numerous applications of eigenvectors (principal components), a well-

motivated and natural generalization of this optimization problem to an r-dimensional

tensor is the following: given a symmetric tensor A with entries Ak1k2...kr , find

‖A‖2 = max
x:‖x‖=1

A(x, . . . , x),

where

A(x(1), . . . , x(r)) =
∑

i1i2...ir

Ai1i2...irx
(1)
i1

x
(2)
i2

. . . x
(r)
ir

.

The maximum value is the spectral norm or 2-norm of the tensor. The complexity

of this problem is open for any r > 2, assuming the entries with repeated indices are

zeros.

A beautiful application of this problem was given recently by Frieze and Kannan

[21]. They defined the following tensor associated with an undirected graph G =

(V, E):

Aijk = EijEjkEki

84

where Eij is 1 is ij ∈ E and −1 otherwise, i.e., Aijk is the parity of the number of

edges between i, j, k present in G. They proved that for the random graph Gn,1/2, the

2-norm of the random tensor A is Õ(
√

n), i.e.,

sup
x:‖x‖=1

∑
i,j,k

Aijkxixjxk ≤ C
√

n logc n

where c, C are absolute constants. This implied that if such a maximizing vector x

could be found (or approximated), then we could find planted cliques of size as small

as n1/3 times polylogarithmic factors in polynomial time, improving substantially on

the long-standing threshold of Ω(
√

n).

Frieze and Kannan ask the natural question of whether this connection can be

further strengthened by going to r-dimensional tensors for r > 3. The tensor itself

has a nice generalization. For a given graph G = (V, E) the r-parity tensor is defined

as follows. Entries with repeated indices are set to zero; any other entry is the parity

of the number of edges in the subgraph induced by the subset of vertices corresponding

to the entry, i.e.,

Ak1,...,kr =
∏

1≤i<j≤r

Ekikj
.

Frieze and Kannan’s proof for r = 3 is combinatorial (as is the proof by Füredi and

Komlós for r = 2), based on counting the number of subgraphs of a certain type. It

is not clear how to extend this proof.

Here we prove a nearly optimal bound on the spectral norm of this random tensor

for any r. This substantially strengthens the connection between the planted clique

problem and the tensor norm problem. Our proof is based on a concentration of

measure approach. In fact, we first reprove the result for r = 3 using this approach

and then generalize it to tensors of arbitrary dimension. We show that the norm

of the subgraph parity tensor of a random graph is at most f(r)Õ(
√

n) whp. More

precisely, our main theorem is the following.

85

Theorem 8. There is a constant C1 such that with probability at least 1 − n−1 the

norm of the r-dimensional subgraph parity tensor A : [n]r → {−1, 1} for the random

graph Gn,1/2 is bounded by

‖A‖2 ≤ Cr
1r

(5r−1)/2
√

n log(3r−1)/2 n.

The main challenge to the proof is the fact that the entries of the tensor A are not

independent. Bounding the norm of the tensor where every entry is independently

1 or −1 with probability 1/2 is substantially easier via a combination of an ε-net

and a Hoeffding bound. In more detail, we approximate the unit ball with a finite

(exponential) set of vectors. For each vector x in the discretization, the Hoeffding

inequality gives an exponential tail bound on A(x, . . . , x). A union bound over all

points in the discretization then completes the proof. For the parity tensor, however,

the Hoeffding bound does not apply as the entries are not independent. Moreover, all

the
(

n
r

)
entries of the tensor are fixed by just the

(
n
2

)
edges of the graph. In spite of

this heavy interdependence, it turns out that A(x, . . . , x) does concentrate. Our proof

is inductive and bounds the norms of vectors encountered in a certain decomposition

of the tensor polynomial. It is not clear whether the bound of Theorem 8 is optimal,

though a lower bound of ‖A‖2 = Ω(max{
√

n, (2 log n)r/2}) is trivial.

Using Theorem 8, we can show that if the norm problem can be solved for tensors

of dimension r, one can find planted cliques of size as low as Cn1/rpoly(r, log n).

While the norm of the parity tensor for a random graph remains bounded, the norm

becomes at least pr/2 when a clique of size p is planted (using the indicator vector of

the clique). Therefore, p only needs to be a little larger than n1/r in order for the

the clique to become the dominant term in the maximization of A(x, . . . , x). More

precisely, we have the following theorem.

Theorem 9. Let G be random graph Gn,1/2 with a planted clique of size p, and let A

be the r-parity tensor for G. For α ≤ 1, let T (n, r) be the time to compute a vector

86

x such that A(x, . . . , x) ≥ αr‖A‖2 whp. Then, for p such that

n ≥ p > C0α
−2r5n1/r log3 n,

the planted clique can be recovered with high probability in time T (n, r) + poly(n),

where C0 is a fixed constant.

On one hand, this highlights the benefits of finding an efficient (approximation)

algorithm for the tensor problem. On the other, given the lack of progress on the

clique problem, this is perhaps evidence of the hardness of the tensor maximization

problem even for a natural class of random tensors. For example, if finding a clique

of size Õ(n1/2−ε) is hard, then by setting α = n1/2r+ε/2−1/4 we see that even a certain

polynomial approximation to the norm of the parity tensor is hard to achieve.

Corollary 39. Let G be random graph Gn,1/2 with a planted clique of size p, and let

A be the r-parity tensor for G. Let ε > 0 be a small constant and let T (n, r) be the

time to compute a vector x such that A(x, . . . , x) ≥ n1/2+rε/2−r/4‖A‖2. Then, for

p ≥ C0r
5n

1
2
−ε log3 n,

the planted clique can be recovered with high probability in time T (n, r) + poly(n),

where C0 is a fixed constant.

7.1.1 Overview of analysis

The majority of the chapter is concerned with proving Theorem 8. In Section 7.2.1,

we first reduce the problem of bounding A(·) over the unit ball to bounding it over

a discrete set of vectors that have the same value in every non-zero coordinate. In

Section 7.2.2, we further reduce the problem to bounding the norm of an off-diagonal

block of A, using a method of Frieze and Kannan. This enables us to assume that if

(k1, . . . , kr) is a valid index, then the random variables Eki,kj
used to compute Ai1,...,ir

are independent. In Section 7.2.3, we prove a large deviation inequality (Lemma 42)

87

that allows us to bound norms of vectors encountered in a certain decomposition of

the tensor polynomial. This inequality gives us a considerably sharper bound than

the Hoeffding or McDiarmid inequalities in our context. We then apply this lemma

to bound ‖A‖2 for r = 3 as a warm-up and then give the proof for general r in Section

7.3.

In Section 7.4 we prove Theorem 9. The key idea is that any vector x that

comes close to maximizing A(·) must have an indicator decomposition (see Definition

6) where the support of one of the vectors has a large intersection with the clique

(Lemma 50). This intersection is large enough that the clique can be recovered.

7.2 Preliminaries

7.2.1 Discretization

The analysis of A(x, . . . , x) is greatly simplified when x is proportional to some indi-

cator vector. Fortunately, analyzing these vectors is sufficient, as any vector can be

approximated as a linear combination of relatively few indicator vectors.

For any vector x, we define x(+) to be vector such that x
(+)
i = xi if xi > 0 and

x
(+)
i = 0 otherwise. Similarly, let x

(−)
i = xi if xi < 0 and x

(−)
i = 0 otherwise. For a

set S ⊆ [n], let χS be the indicator vector for S, where the ith entry is 1 if i ∈ S and

0 otherwise.

Definition 6 (Indicator Decomposition). For a unit vector x, define the sets

S1, . . . and T1, . . . through the recurrences

Sj =

{
i ∈ [n] : (x(+) −

j−1∑
k=1

2−kχSk)i > 2−j

}
.

and

Tj =

{
i ∈ [n] : (x(−) −

j−1∑
k=1

2−kχSk)i < −2−j

}
.

Let y0(x) = 0. For j ≥ 1, let y(j)(x) = 2−jχSj and let y(−j)(x) = −2−jχTj . We call

the set {y(j)(x)}∞−∞ the indicator decomposition of x.

88

Clearly,

‖y(i)(x)‖ ≤ max{‖x(+)‖, ‖x(−)‖} ≤ 1.

and ∥∥∥∥∥x−
N∑

j=−N

y(j)(x)

∥∥∥∥∥ ≤ √
n2−N . (15)

We use this decomposition to prove the following theorem.

Lemma 40. Let

U = {k|S|−1/2χS : S ⊆ [n], k ∈ {−1, 1}}.

For any tensor A over [n]r where ‖A‖∞ ≤ 1

max
x(1),...,x(r)∈B(0,1)

A(x(1), . . . x(r)) ≤ (2dr log ne)r max
x(1),...,x(r)∈U

A(x(1), . . . , x(r))

Proof. Consider a fixed set of vectors x(1), . . . , x(r) and let N = dr log2 ne. For each

i, let

x̂(i) =
N∑

j=−N

y(j)(x(i)).

We first show that replacing x(i) with x̂(i) gives a good approximation to the

value A(x(1), . . . , x(r)). Letting ε be the maximum difference between an x(i) and its

approximation, we have from (15) that

max
i∈[r]

‖x(i) − x̂(i)‖ = ε ≤ nr/2

2r

Because of the multilinear form of A(·) we have

|A(x(1), . . . , x(r))− A(ˆx(1), . . . , ˆx(r))| ≤
r∑

i=1

εiri‖A‖ ≤ εr

1− εr
‖A‖ ≤ 1.

Next, we bound A(ˆx(1), . . . , ˆx(r)). For convenience, let Y (i) = ∪N
j=−Ny(j)(x(i)).

Then using the multlinear form of A(·) and bounding the sum by its maximum term,

we have

A(x̂(1), . . . , x̂(r)) ≤ (2N)r max
v(1)∈Y (1),...,v(r)∈Y (r)

A(v(1), . . . , v(r))

≤ (2N)r max
v(1),...,v(r)∈U

A(v(1), . . . , v(r)).

89

7.2.2 Sufficiency of off-diagonal blocks

Analysis of A(x(1), . . . , x(r)) is complicated by the fact that all terms with repeated

indices are zero. Off-diagonal blocks of A are easier to analyze because no such terms

exist. Thankfully, as Frieze and Kannan [21] have shown, analyzing these off-diagonal

blocks suffices. Here we generalize their proof to r > 3.

For a collection {V1, V2, . . . , Vr} of subsets of [n], we define

A|V1×...×Vr(x
(1), . . . , x(r)) =

∑
k1∈V1,...,kr∈Vr

Ak1...krx
(1)
i1

x
(2)
i2

. . . x
(r)
ir

Lemma 41. Let P be the class of partitions of [n] into r equally sized sets V1, . . . , Vr

(assume wlog that r divides n). Let V = V1× . . .×Vr. Let A be a random tensor over

[n]r where each entry is in [−1, 1] and let R ⊆ B(0, 1). If for every fixed (V1, . . . Vr) ∈

P , it holds that

P[max
x(1),...,x(r)∈R

A|V (x(1), . . . , x(r)) ≥ f(n)] ≤ δ,

then

P[max
x(1),...,x(r)∈R

A(x(1), . . . , x(r)) ≥ 2rrf(n)] ≤ δnr/2

f(n)
,

Proof of Lemma 41. Each r-tuple appears in an equal number of partitions and this

number is slightly more than a r−r fraction of the total. Therefore,

∣∣A(x(1), . . . A(x(r))
∣∣ ≤ rr

|P |

∣∣∣∣∣∣
∑

{V1,...,Vr}∈P

A|V (x(1), . . . A(x(r))

∣∣∣∣∣∣
≤ rr

|P |
∑

{V1,...,Vr}∈P

∣∣A|V (x(1), . . . A(x(r))
∣∣

We say that a partition {V1, . . . , Vr} is good if

max
x(1),...,x(r)∈R

A|V (x(1), . . . , x(r)) < f(n).

Let the good partitions be denoted by G and let Ḡ = P \ G. Although the f upper

bound does not hold for partitions in Ḡ, the trivial upper bound of nr/2 does (recall

90

that every entry in the tensor is in the range [−1, 1] and R ⊆ B(0, 1)). Therefore

∣∣A(x(1), . . . A(x(r))
∣∣ ≤ rr(

|G|
|P |

f +
|Ḡ|
|P |

nr/2).

Since E[|G|/|P |] = δ by hypothesis, Markov’s inequality gives

P[
|G|
|P |

nr/2 > f] ≤ δnr/2

f

and thus proves the result.

7.2.3 A concentration bound

The following concentration bound is a key tool in our proof of Theorem 8. We apply

it for t = Õ(N).

Lemma 42. Let {u(i)}N
i=1 and {v(i)}N

i=1 be collections of vectors of dimension N ′

where each entry of u(i) is 1 or −1 with probability 1/2 and ‖v(i)‖2 ≤ 1. Then for any

t ≥ 1,

P[
N∑

i=1

(u(i) · v(i))2 ≥ t] ≤ e−t/18(4
√

eπ)N .

Before giving the proof, we note that this lemma is stronger than what a naive

application of standard theorems would yield for t = Õ(N). For instance, one might

treat each (u(i) · v(i))2 as an independent random variable and apply a Hoeffding

bound. The quantity (u(i) · v(i))2 can vary by as much as N ′, however, so the bound

would be roughly exp(−ct2/NN ′2) for some constant c. Similarly, treating each u
(i)
j as

an independent random variable and applying McDiarmid’s inequality, we find that

every u
(i)
j can affect the sum by as much as 1 (simultaneously). For instance suppose

that every v
(i)
j = 1/

√
N ′ and every u

(i)
j = 1. Then flipping u

(i)
j would have an effect

of |N ′ − ((N ′ − 2)/
√

N ′)2| ≈ 4, so the bound would be roughly exp(−ct2/NN ′) for

some constant c.

Proof of Lemma 42. Observe that
√∑N

i=1(u
(i) · v(i))2 is the length of the vector whose

ith coordinate is u(i)·v(i). Therefore, this is also equivalent to the maximum projection

91

of this vector onto a unit vector:√√√√ N∑
i=1

(u(i) · v(i))2 = max
y∈B(0,1)

N∑
i=1

N ′∑
j=1

yiu
(i)
j v

(i)
j .

We will use an ε-net to approximate the unit ball and give an upper bound for

this quantity. Let L be the lattice
(

1
2
√

N
Z
)N

.

Claim 43. For any vector x,

‖x‖2 ≤ 2 max
y∈L∩B(0,3/2)

y · x.

Thus, √√√√ N∑
i=1

(u(i) · v(i))2 ≤ 2 max
y∈L∩B(0,3/2)

N∑
i=1

yi

N ′∑
j=1

u
(i)
j v

(i)
j .

Consider a fixed y ∈ L ∩ B(0, 3/2). Each u
(j)
i is 1 or −1 with equal probability,

so the expectation for each term is zero. The difference between the upper and lower

bounds for a term is

2|2yju
(i)
j v(i)j| = 4|yjv(i)j|

Therefore,

16
N∑

i=1

N ′∑
j=1

(yiu
(i)
j v(i)j)

2 ≤ 16
N∑

i=1

y2

N ′∑
j=1

(v(i)j)
2 = 36.

Applying the Hoeffding bound gives that

P[
N∑

i=1

(u(i) · v(i))2 ≥ t] ≤ P[2
N∑

i=1

yi

N ′∑
j=1

u
(i)
j v(i)j ≥

√
t] ≤ e−t/18.

The result follows by taking a union bound over L ∩ B(0, 3/2), whose cardinality is

bounded according to Claim 44.

Claim 44. The number of lattice points in L ∩B(0, 3/2) is at most (4
√

eπ)N

Proof of Claim 44. Consider the set of hypercubes where each cube is centered on a

distinct point in L∩B(0, 3/2) and each has side length of (2
√

n)−1. These cubes are

92

disjoint and their union contains the ball B(0, 3/2). Their union is also contained in

the ball B(0, 2). Thus,

|L ∩B(0, 3/2)| ≤ Vol(B(0, 2))

(2
√

N)−N

≤ πN/22N

Γ(N/2 + 1)
2NNN/2

≤ (4
√

eπ)N .

Proof of Claim 43. Without loss of generality, we assume that x is a unit vector. Let

y be the closest point to x in the lattice. In each coordinate i, we have |xi − yi| ≤

(4
√

n)−1, so overall ‖x− y‖ ≤ 1/4.

Letting θ be the angle between x and y, we have

x · y
‖x‖‖y‖

= cos θ =
√

1− sin2 θ ≥
(

1− ‖x− y‖2

max{‖x2‖, ‖y‖2}

)1/2

≥
√

15

16
.

Therefore,

x · y ≥ ‖y‖
√

15

16
≥ 3

4

√
15

16
≥ 1

2
.

7.3 A bound on the norm of the parity tensor

In this section, we prove Theorem 8. First, however, we consider the somewhat more

transparent case of r = 3 using the same proof technique.

7.3.1 Warm-up: third order tensors

For r = 3 the tensor A is defined as follows:

Ak1k2k3 = Ek1k2Ek2k3Ek1k3 .

Theorem 10. There is a constant C1 such that with probability 1− n−1

‖A‖ ≤ C1

√
n log4 n.

93

Proof. Let V1, V2, V3 be a partition of the n vertices and let V = V1 × V2 × V3. The

bulk of the proof consists of the following lemma.

Lemma 45. There is some constant C3 such that

max
x(1),x(2),x(3)∈U

A|V (x(1), x(2), x(3)) ≤ C3

√
n log n

with probability 1− n−7.

If this bound holds, then Lemma 40 then implies that there is some C2 such that

max
x(1),x(2),x(3)∈B(0,1)

A|V (x(1), x(2), x(3)) ≤ C2

√
n log4 n.

And finally, Lemma 41 implies that for some constant C1

max
x(1),x(2),x(3)∈B(0,1)

A(x(1), x(2), x(3)) ≤ C1

√
n log4 n

with probability 1− n−1.

Proof of Lemma 45. Define

Uk = {x ∈ U : |sup(x)| = k} (16)

and consider a fixed n ≥ n1 ≥ n2 ≥ n3 ≥ 1. We will show that for some constant C3,

max
(x(1),x(2),x(3))∈Un1×Un2×Un3

A|V (x(1), x(2), x(3)) ≤ C3

√
n log n

with probability n−10. Taking a union bound over the n3 choices of n1, n2, n3 then

proves the lemma.

We bound the cubic form as

max
(x(1),x(2),x(3))∈Un1×Un2×Un3

A|V (x(1), x(2), x(3))

= max
(x(1),x(2),x(3))∈Un1×Un2×Un3

∑
k1∈V1,k2∈V2,k3∈V3

Ak1k2k3x
(1)
k1

x
(2)
k2

x
(3)
k3

≤ max
(x(2),x(3))∈Un2×Un3

√√√√∑
k1∈V1

(∑
k2∈V2,k3∈V3

Ak1k2k3x
(2)
k2

x
(3)
k3

)2

= max
(x(2),x(3))∈Un2×Un3

√√√√∑
k1∈V1

(∑
k2∈V2

Ek1k2x
(2)
k2

∑
k3∈V3

Ek2k3x
(3)
k3

Ek1k3

)2

.

94

Note that each of the inner sums (over k2 and k3) are the dot product of a random

−1, 1 vector (the Ek1k2 and Ek2k3 terms) and another vector. Our strategy will be to

bound the norm of this other vector and apply Lemma 42.

To this end, we define the −1, 1 vectors u
(k2)
k3

= Ek2k3 and u
(k1)
k2

= Ek1k2 , and the

general vectors

v(k1k2)(x(3))k3 = x
(3)
k3

Ek1k3

and

v(k1)(x(2), x(3))k2 = x
(2)
k2

(u(k2) · v(k1k2)(x(3))).

Thus, for each k1,

∑
k2∈V2

Ek1k2x
(2)
k2

∑
k3∈V3

Ek2k3x
(3)
k3

Ek1k3

=
∑

k2∈V2

Ek1k2x
(2)
k2

(u(k2) · v(k1k2)(x(3)))

= u(k1) · v(k1)(x(2), x(3)). (17)

Clearly, the u’s play the role of the random vectors and we will bound the norms of

the v’s in the application of Lemma 42.

To apply Lemma 42 with k1 being the index i, uk1
k2

= Ek1k2 above, we need a bound

for every k1 ∈ V1 on the norm of v(k1)(x(2), x(3)). We argue

∑
k2

(
x

(2)
k2

∑
k3∈V3

Ek2k3x
(3)
k3

Ek1k3

)2

≤ max
k1∈V1

max
x(2)∈Un2

max
x(3)∈Un3

1

n2

∑
k2∈sup(x(x2)

(∑
k3

Ek2k3x
(3)
k3

Ek1k3

)2

= F 2
1

Here we used the fact that ‖x(2)‖∞ ≤ n
−1/2
2 . Note that F1 is a function of the random

variables {Eij} only.

To bound F1, we observe that we can apply Lemma 42 to the expression being

95

maximized above, i.e., ∑
k2

(∑
k3

Ek2k3

(
x

(3)
k3

Ek1k3

))2

over the index k2, with uk2
k3

= Ek2k3 . Now we need a bound, for every k2 and k1 on

the norm of the vector v(k1k2)(x(3)). We argue

∑
k3

(
x

(3)
k3

Ek1k3

)2

≤ ||x(3)||2∞
∑
k3

E2
k1k3

≤ 1.

Applying Lemma 42 for a fixed k1, x
(2) and x(3) implies

1

n2

∑
k2∈sup(x(2))

(∑
k3

Ek2k3x
(3)
k3

Ek1k3

)2

> C3 log n

with probability at most

exp(−C3n2 log n

18
)(4
√

eπ)n2 .

Taking a union bound over the |V1| ≤ n choices of k1, and the at most nn2nn3 choices

for x(2) and x(3), we show that

P[F 2
1 > C3 log n] ≤ exp(−C3n2 log n

18
)(4
√

eπ)n2nnn2nn3 .

This probability is at most n−10/2 for a large enough constant C3.

Thus, for a fixed x(2) and x(3), we can apply Lemma 42 to (17) with F 2
1 = C3 log n

to get: ∑
k1∈V1

(∑
k2∈V2

Ek1k2

(
x

(2)
k2

∑
k3∈V3

Ek2k3x
(3)
k3

Ek1k3

))2

> F 2
1 C3n log n

with probability at most exp(−C3n log n/18)(4
√

eπ)n. Taking a union bound over

the at most nn2nn3 choices for x(2) and x(3), the bound holds with probability

exp(−C3n log n/18)(4
√

eπ)nnn2nn3 ≤ n−10/2

for large enough constant C3.

96

Thus, we can bound the squared norm:

max
(x(1),x(2),x(3))∈Un1×Un2×Un3

A|V (x(1), x(2), x(3))2

≤
∑

k1∈V1

(∑
k2∈V2

Ek1k2

(
x

(2)
k2

∑
k3∈V3

Ek2k3x
(3)
k3

Ek1k3

))2

≤ C2
3n1 log2 n

with probability 1− n−10.

7.3.2 Higher order tensors

Let the random tensor A be defined as follows.

Ak1,...,kr =
∏

1≤i<j≤r

Ekikj

where E is an n×n matrix where each off-diagonal entry is −1 or 1 with probability

1/2 and every diagonal entry is 1.

For most of this section, we will consider only a single off-diagonal cube of A.

That is, we index over V1× . . .×Vr where Vi are an equal partition of [n]. We denote

this block by A|V . When ki is used as an index, it is implied that ki ∈ Vi.

The bulk of the proof consists of the following lemma.

Lemma 46. There is some constant C3 such that

max
x(1),...x(r)∈U

A|V (x(1), . . . , x(r))2 ≤ n(C3r log n)r−1

with probability 1− n−9r.

The key idea is that Lemma 42 can be applied repeatedly to collections of u’s

and v’s in a way analogous to (17). Each sum over kr, . . . , k2 contributes a C3r log n

factor and the final sum over k1 contributes the factor of n.

If the bound holds, then Lemma 40 implies that there is some C2 such that

max
x(1),x(2),x(3)∈B(0,1)

A|V (x(1), x(2), x(3))2 ≤ Cr
2r

2r+r−1n log2r+(r−1) n.

97

And finally, Lemma 41 implies that for some constant C1

max
x(1),x(2),x(3)∈B(0,1)

A(x(1), x(2), x(3)) ≤ Cr
1r

2r+2r+(r−1)n log2r+r−1 n

= Cr
1r

5r−1n log3r−1 n.

with probability 1− n−1.

Proof of Lemma 46. We define the set Uk as in (16). It suffices to show that the

bound

max
(x(1),...x(r))∈Un1×...×Unr

A|V (x(1), . . . , x(r))2 ≤ n(C3r log n)r−1

holds with probability 1−n−10r for some constant C3, since we may then take a union

bound over the nr choices of n ≥ n1 ≥ . . . ≥ nr ≥ 1.

For convenience of notation, we define a family of tensors as follows

B
(k1,...,k`)
k`+1,...,kr

=
∏

i,j:i,`<j

Ekikj
(18)

where the superscript indexes the family of tensors and the subscript indexes the

entries. Note that for every k1, . . . , kr ∈ V1 × . . . × Vr, we have B(k1,...,kr) = 1, since

the product is empty.

Note that the tensor B(k1,...,k`) depends only a subset of E. In particular, any such

tensor of order r − ` will depend only on the blocks of E

F` = {E|Vi×Vj
: i, ` < j}.

Clearly, Fr = ∅, F1 contains all blocks, and F` \ F`+1 = {E|Vi×V`+1
: i ≤ `}.

We bound the rth degree form as

max
x(1),...,x(r)∈Un1×...×Unr

A|V (x(1), . . . , x(r))

= max
x(1),...,x(r)∈Un1×...×Unr

∑
k1∈V1

x
(1)
k1

B(k1)(x(2), . . . x(r))

≤ max
x(2),...x(r)∈Un2×...×Unr

√∑
k1∈V1

B(k1)(x(2), . . . x(r))2. (19)

98

Observe that for a general `,

B(k1,...,k`)(x(`+1), . . . , x(r)) =
∑

k`+1∈V`+1

Ek`k`+1
v(k1,...,k`)(x(`+1), . . . , x(r))k`+1

, (20)

where

v(k1,...,k`)(x(`+1), . . . , x(r))k`+1
= x

(`+1)
k`+1

B(k1,...,k`+1)(x(`+2), . . . , x(r))
∏
i<`

Ekik`+1
. (21)

It will be convenient to think of B(k1,...,k`)(x(`+1), . . . , x(r)) as the dot product of a

random vector u(k`), where u
(k`)
k`+1

= Ek`k`+1
and v(k1,...,k`)(x(`+1), . . . , x(r))k`+1

, so that

B(k1,...,k`)(x(`+1), . . . , x(r)) = u(k`) · v(k1,...,k`)(x(`+1), . . . , x(r)). (22)

The sum over k1 ∈ V1 from (19) can therefore be expanded as

∑
k1∈V1

B(k1)(x(2), . . . x(r))2 =
∑

k1∈V1

(
u(k1) · v(k1)(x(2), . . . , x(r))

)2
.

Our goal is to bound ‖v(k1)(x(2), . . . , x(r))‖ and apply Lemma 42. Notice that for

general `

∥∥v(k1,...,k`)(x(`+1), . . . , x(r))
∥∥2

2

=
1

n`+1

∑
k`+1∈sup(x(`+1))

B(k1,...,k`+1)(x(`+2), . . . , x(r))2

≤ max
k1,...,k`

max
x(`+1)∈Un`+1

...x(r)∈Unr

1

n`+1

∑
k`+1∈sup(x(`+1)

)B(k1,...,k`+1)(x(`+2), . . . , x(r))2 = f 2
` . (23)

Note that the quantity f` (define above) depends only on the blocks F`+1.

The following claims will establish a probabilistic bound on f1.

Claim 47. The quantity

fr−1 = 1.

99

Proof. Trivially, every B(k1,...,kr)()2 = 1. Therefore, for every subset Sr ⊆ Vr such

that |Sr| = nr

1

nr

∑
kr∈Sr

B(k1,...,kr)()2 = 1.

Claim 48. There is a constant C3 such that for any ` ∈ 1 . . . r − 2

P[f 2
` > C3rf

2
`+1 log n] ≤ n−12r.

We postpone the proof of Claim 48 and argue that by induction we have that

f 2
1 ≤ (C3r log n)r−2

with probability 1− n−12rr ≥ 1− n−11r.

Assuming that this bound holds,

v(k1)(x(2), . . . , x(r)) ≤ (C3r log n)r−2

for all k1 ∈ V1 and x(2) . . . , x(r). By Lemma 42 then∑
k1∈V1

B(k1)(x(2), . . . x(r))2 =
∑

k1∈V1

(
u(k`) · v(k1)(x(3), . . . , x(r))

)2
> n(C3r log n)r−1

with probability at most

exp

(
−C3rn log n

18

)
(4
√

eπ)n

which is at most n−11r for a suitably large C3.

Altogether the bound of the lemma holds with probability 1 − 2n−11r ≥ 1 −

n−10r.

Proof of Claim 48. Consider a fixed choice of the following: 1) k1, . . . k` and 2) x(`+1) ∈

Un`+1
, . . . x(r) ∈ Unr . From (23), we have from definition that for every k`+1 ∈ V`+1

‖v(k1...k`+1)(x(`+2), . . . , x(r))‖2
2 ≤ f 2

`+1.

100

Therefore, by Lemma 42

∑
k`+1∈sup(x(`+1))

B(k1,...,k`+1)(x(`+2), . . . , x(r))2

=
∑

k`+1∈sup(x(`+1))

(
u(`+1) · v(k1...k`+1)(x(`+2), . . . , x(r))

)2
> C3rf

2
`+1n`+1 log n

with probability at most

exp

(
−C3rn`+1 log n

18

)
(4
√

eπ)n`+1 .

Taking a union bound over the choice of k1, . . . k` (at most nr), and the choice of

x(`+1) ∈ Un`+1
, . . . x(r) ∈ Unr (at most n(r−1)n`+1), the probability that

f 2
` > C3rf

2
`+1 log n

becomes at most

exp

(
−C3rn`+1 log n

18

)
(4
√

eπ)n`+1nrn`+1 .

For large enough C3 this is at most n−12r.

7.4 Finding planted cliques

We now turn to Theorem 9 and to the problem of finding a planted clique in a random

graph. A random graph with a planted clique is constructed by taking a random graph

and then adding every edge between vertices in some subset P to form the planted

clique. We denote this graph as Gn,1/2 ∪ Kp. Letting A be the rth order subgraph

parity tensor, we show that a vector x ∈ B(0, 1) that approximates the maximum of

A(·) over the unit ball can be used to reveal the clique, using a modification of the

algorithm proposed by Frieze and Kannan [21].

This implies an interesting connection between the tensor problem and the planted

clique problem. For symmetric second order tensors (i.e. matrices), maximizing A(·)

is equivalent to finding the top eigenvector and can be done in polynomial time. For

101

higher order tensors, maximizing A(·) is hard in general (see Appendix A); however,

the complexity of maximizing this function is open if elements with repeated indices

are zero. For random tensors, the hardness is also open. Given the reduction presented

in this section, a hardness result for the planted clique problem would imply a similar

hardness result for the tensor problem.

Given an x that approximates the maximum of A(·) over the unit ball, the al-

gorithm for finding the planted clique is given in Alg. 7.4. The key ideas of using

the top eigenvector of subgraph and of randomly choosing a set of vertices to “seed”

the clique (steps 2a-2d) come from Frieze-Kannan [21]. The major difference in the

algorithms is the use of the indicator decomposition. Frieze and Kannan sort the

indices so that x1 ≥ . . . xn and select one set S of the form S = [j] where ‖A|S×S‖

exceeds some threshold. They run steps (2a-2d) only on this set. By contrast Alg.

7.4 runs these steps on every S = sup(y(j)(x)) where j = −dr log ne, . . . dr log ne.

The algorithm succeeds with high probability when a subset S is found such that

|S ∩ P | ≥ C
√
|S| log n, where C is an appropriate constant.

Lemma 49 (Frieze-Kannan). There is a constant C5 such that if S ⊆ [n] satisfies

|S ∩P | ≥ C5

√
|S| log n, then with high probability steps 2a)-2d) of Alg. 7.4 find a set

P ′ equal to P .

To find such an subset S from a vector x, Frieze and Kannan require that
∑

i∈P xi ≥

C log n. Using the indicator decomposition, as in the Alg 7.4, however, reduces this

to
∑

i∈P xi ≥ C
√

log n. Even more importantly, using the indicator decomposition

means that only one element of the decomposition needs to point in the direction of

the clique. The vector x could point in a very different direction and the algorithm

would still succeed. We exploit this fact in our proof of Theorem 9. The relevant

claim is the following.

102

Algorithm 5 An Algorithm for Recovering the Clique

Input:
1) Graph G.
2) Integer p = |P |.
3) Unit vector x.

Output: A clique of size p or FAILURE.

1. Calculate y−dr log ne(x), . . . , ydr log ne(x) as defined in the indicator decomposition.

2. For each such y(j)(x), let S = sup(y(j)(x)) and try the following:

(a) Find v, the top eigenvector of the 1,−1 adjacency matrix A|S×S.

(b) Order the vertices (coordinates) such that v1 ≥ . . . ≥ v|S|. (Assuming

dot-prod is
√

1/2 below)

(c) For ` = 1 to |S|, repeat up to n30 log n times:

i. Select 10 log n vertices Q1 at random from [`].

ii. Find Q2, the set of common neighbors of Q1 in G.

iii. If the set of vertices with degree at least 7p/8, say P ′ has cardinality
p and forms a clique in G, then return P ′.

(d) Return FAILURE.

Lemma 50. Let B′ be a set of vectors x ∈ B(0, 1) such that

|sup(y(j)(x)) ∩ P | < C5

√
|sup(y(j)(x))| log n

for every j ∈ {−dr log ne, . . . , dr log ne}. Then, there is a constant C ′
1 such that with

high probability

sup
x∈B′

A(x, . . . , x) ≤ C ′
1
r
r5r/2

√
n log3r/2 n.

Proof. By the same argument used in the discretization, we have that for any x ∈ B′

A(x, . . . , x) ≤ (2dr log ne)r max
x(1)∈Y (1)(x),...x(r)∈Y (r)(x)

A(x(1), . . . , x(r))

≤ (2dr log ne)r max
x(1),...x(r)∈U ′

A(x(1), . . . , x(r)), (24)

where

U ′ = {|S|−1/2χS : S ⊆ [n], |S ∩ P | < C5

√
|S| log n}.

103

Consider an off-diagonal block V1 × . . .× Vr. For each i ∈ 1 . . . r, let Pi = Vi ∩ P

and let Ri = Vi \ P . Then, breaking the polynomial A|V (·) up as a sum of 2r terms,

each corresponding to a choice of S1 ∈ {P1, R1}, . . . , Sr ∈ {Pr, Rr} gives

max
x(1),...,x(r)∈U ′

A|V (x(1), . . . , x(r))

≤ 2r max
x(1),...,x(r)∈U ′

∑
S1∈{P1,R1},...,Sr∈{Pr,Rr}

A|S1×...×Sr(x
(1), . . . , x(r)). (25)

By symmetry, without loss of generality we may consider the case where Si = Ri for

i = 1 . . . r− ` and Si = Pi for i = r− `+1 . . . r for some `. Let Ṽ = R1× . . .×Rr−`×

Pr−`+1 × . . .× Pr. Then,

max
x(1),...,x(r)∈U ′

A|Ṽ (x(1), . . . , x(r)) =
∑

k1∈R1

. . .
∑

kr−`∈Rr−`

∏
i=1...r−`

x
(i)
ki

∏
i,j:i,j≤r−`

Ekikj
B(k1,...,kr−`),

where (as defined (18))

B(k1,...,kr−`)(x(r−`+1), . . . , xr)
∑

kr−`+1∈Pr−`+1

. . .
∑

kr∈Pr

∏
i=r−`+1...r

x
(i)
ki

∏
i,j:i,r−`+1<j

Ekikj
.

By the assumption that every x(i) ∈ U ′, this value is at most (C5 log n)`/2. Thus,

max
x(1),...,x(r)∈U ′

A|Ṽ (x(1), . . . , x(r)) ≤
∑

k1∈R1

. . .
∑

kr−`∈Rr−`

∏
i=1...r−`

x
(i)
ki

∏
i,j:i,j≤r−`

Ekikj
(C5 log n)`/2.

Note that every edge Ekikj
above is random, so the polynomial may be bounded

according to Lemma 46. Altogether,

max
x(1),...,x(r)∈U ′

A|Ṽ (x(1), . . . , x(r)) ≤ (max{C5, C3} log n)r/2.

Combining (24),(25), and applying Lemma 41 completes the proof with C ′
1 chosen

large enough.

Proof of Theorem 9. The clique is found by finding a vector x such that A(x, . . . , x) ≥

αr|P |r/2 and then running Algorithm 7.4 on this vector. Algorithm 7.4 clearly runs in

polynomial time, so the theorem holds if the algorithm succeeds with high probability.

104

By Lemma 49 the algorithm does succeed with high probability when x /∈ B′,

i.e. when some S ∈ {sup(y−dr log ne(x), . . . , sup(y−dr log ne(x)} satisfies |S ∩ P | ≥

C5

√
|S| log n.

We claim x /∈ B′ with high probability. Otherwise, for some x ∈ B′,

A(x, . . . , x) ≥ αrpr/2 > Cr
0r

5r/2
√

n log3r/2 n.

This is a low probability event by Lemma 50 if C0 ≥ C ′
1.

105

APPENDIX A

HARDNESS OF TENSOR POLYNOMIAL

MAXIMIZATION

A.1 Introduction

In general, it is hard to find the maximum of non-concave functions, even over convex

sets. An interesting exception to this rule is maximizing the quadratic forms of

symmetric matrices over the unit ball, i.e. finding x ∈ B(0, 1) such that

xT Ax ≥ max
x∈B(0,1)

xT Ax− ε

where A is a symmetric matrix and ε is some small value (potentially exponentially

small in the size of the problem). The top eigenvector A is such a maximizing vector,

and it can be approximated in polynomial time and quite efficiently in practice. The

simplest algorithm is to multiply a random vector x with a high power of A, say Ap,

and return Apx/‖Apx‖.

A natural extension of this problem is to maximize the polynomial of some higher

order symmetric tensor instead of the polynomial of a symmetric matrix. That is, for a

symmetric tensor A of order r, find x∗ ∈ B(0, 1) such that A(x∗) = maxx∈B(0,1) A(x)−

ε, where

A(x) =
∑

i1,...,ir

Ai1...irxi1 . . . xir .

Here we show that there is no polynomial time algorithm to solve this problem for

tensors of order at least 4, unless P = NP . To prove this, we provide a reduction

from max-cut.

Max-cut was one of the original twenty-one NP-complete problems identified by

Karp [30]. For a graph G = ([n], E), the maximum-cut is a partition of [n] into two

106

complementary sets, P, P̄ such that |P × P̄ ∩ E| is maximized over all partitions.

Hȧstad has shown that it is NP-hard to approximate the maximum cut to within a

factor of 16/17. Goemans and Williamson have given an approximation algorithm

achieves a 0.878 factor approximation [24]. Assuming the unique games conjecture

[33] and BPP 6= NP this is the best possible polynomial time approximation [34]

Theorem 11. Let α ∈ (1/2, 1] be a fixed constant and let α′ > α. For any graph

G with n vertices, a cut of size α times the maximum cut can be found in time

O(n)+T (n, r, α′), where T (n, r, α′) is the time necessary to find x ∈ B(0, 1) such that

A(x) ≥ α′br/4c max
x∈B(0,1)

A(x),

where A is an rth order tensor polynomial for r ≥ 4.

Corollary 51. For any α′ > 16/17, it is NP-hard to find x ∈ B(0, 1) such that

A(x) ≥ α′br/4c max
x∈B(0,1)

A(x),

where A is an rth order tensor polynomial for r ≥ 4.

A.2 Reduction

The max-cut problem can naturally be thought of as maximizing the function

∑
(i,j)∈E

|xi − xj|,

where x is constrained to the −1, 1 lattice. Turning this into a 4th order tensor

polynomial is easy, as we can simply replace |xi − xj| with (xi − xj)
4 and preserve

the maxima. More challenging, however, is ensuring that these are the maxima, not

just over the lattice, but also over the ball. Let P, P̄ be a maximum cut, which cuts

M edges and let x be the vector where xi = 1/
√

n if i ∈ P and xi = −1/
√

n if i ∈ P̄ .

Then ∑
(i,j)∈E

(xi − xj)
4 =

16M

n2
.

107

On the other hand, if x = ei, then

∑
(i,j)∈E

(xi − xj)
4 = degree(i),

which could be much larger.

To cope with this difficulty, we add a penalty function to our objective, choosing

to maximize

A(x) =
∑

(i,j)∈E

(xi − xj)
4 − C

∑
i,j∈[n]

(x2
i − x2

j)
2. (26)

For large enough, C this forces the maxima of A(x) to be close to the −1/
√

n, 1/
√

n

lattice as desired. Rounding to the nearest lattice point gives the solution as described

in Alg 6.

To give the objective function a higher order, we raise the original A to the

br/4cth power and add a dummy variable xn+1 to account for the remainder. The

tensor polynomial becomes

A(r)(x) = x
(r mod 4)
n+1

 ∑
(i,j)∈E

(xi − xj)
4 − C

∑
i,j∈[n]

(x2
i − x2

j)
2

br/4c

.

Algorithm 6 Max-cut

Input: Graph G.
Output: A partition of the vertices P, P̄ .

1. Find x such that A(r)(x) ≥ α′br/4c maxx∈B(0,1) A(r)(x), where

A(r)(x) = x
(r mod 4)
n+1

 ∑
(i,j)∈E

(xi − xj)
4 − C

∑
i,j∈[n]

(x2
i − x2

j)
2

br/4c

.

2. Set P = {i ∈ [n] : xi > 0}, P̄ = [n] \ P .

A.3 Analysis

We begin by giving the reduction for r = 4.

108

Lemma 52. Let α and α′ be fixed constants such that 1 ≥ α′ > α ≥ 1/2 and let A

be defined according to (26). For large enough C, if x ∈ B(0, 1) satisfies

A(x) ≥ max

{
α′ max

x∈B(0,1)
A(x), 16/n2

}
,

then partitioning the vertices according to sign(xi) yields a cut of size α times the

maximum cut.

Proof. Suppose not. Let P, P̄ be a maximum cut and let z be the unit vector where

zi = 1/
√

n if i ∈ P and zi = −1/
√

n otherwise. Similarly, let y be the unit vector

where yi = sign(xi)/
√

n. If x does not yield an α approximation to the max-cut, then

A(z) > A(y)/α.

Therefore, we argue

A(x) ≥ α′ max
x∈B(0,1)

A(x)

≥ α′A(z)

>
α′

α
A(y)

=
α′

α
A(x)− α′

α
(A(x)− A(y))

≥ A(x) + (
α′

α
− 1)A(x)− α′

α
(A(x)− A(y)). (27)

Letting ε = x− y,

A(x)− A(y) ≤
∑
i,j∈E

(yi + εi − yj − εj)
4 − (yi − yj)

4

≤
∑
i,j∈E

4(εi − εj)(yi − yj)
3 + 6(εi − εj)

2(yi − yj)
2

+4(εi − εj)
3(yi − yj) + (εi − εj)

4

≤ 30n2 max
i
|εi|.

By the following claim, εi is controlled by the parameter C.

Claim 53. If x is a unit vector such that A(x) > 0, then

max
i
|εi| ≤

√
n3

C
.

109

For large enough C, therefore

max
i
|εi| ≤

(
1− α

α′

) 1

2n4
.

Thus,

A(x)− A(y) <
(
1− α

α′

) 16

n2

≤
(
1− α

α′

)
A(x). (28)

Combining (27) and (28) shows A(x) > A(x), yielding a contradiction and proving

the lemma.

Proof of Claim 53. Recall that y is the vector such that yi = sign(xi)/
√

n) and that

ε = x − y. Note that for every i such that xi > 0, εi > −1/
√

n and for every i such

that xi < 0, εi < 1/
√

n. Thus, |2y + ε| > 1/
√

n. It follows that

max
i

ε2
i

n
≤ max

i
ε2
i (2yi + εi)

2 = max
i

((yi + εi)
2 − 1/n)2 ≤

∑
i,j

(xi
2 − xj

2)2.

Now, because A(x) > 0,

C
∑
i,j

(xi
2 − xj

2)2 <
∑

(i,j)∈E

(xi − xj)
4 < n2.

Combining the above inequalities shows that

C max
i

ε2

n
< n2,

proving the lemma.

A.3.1 Higher Order Tensors

Clearly, when r is a multiple of 4, then A(r)(x) = (A(4)(x))r/4 Hence, an α′br/4c

approximation to A(r) yields an α′ approximation to A(4).

110

Now consider the case where r = 4t+ k for k ∈ {1, 2, 3}. Let x be a unit vector in

Rn+1 that achieves the α′t factor approximation, and let x̃ be the restriction of this

vector to the first n vertices, normalized to unit sphere. Then,(
k

n

)k/2(
1− k

n

)(n−k)/2

max
x∈B(0,1)

A(4t)(x) = max
x∈B(0,1)

A(4t+k)(x)

≤ α′4tA(x)

≤ α′4t

(
k

n

)k/2(
1− k

n

)(n−k)/2

A(4t)((̃x))

Thus, a α′t factor approximation for A(4t+k) also yields a α′t factor approximation for

A(4t), via a restriction to the first n coordinates. Therefore, x̃ reveals an α approxi-

mation to the max-cut.

111

APPENDIX B

RECOVERING A CLIQUE

Here, we give a Frieze and Kannan’s proof of Lemma 49 for the reader’s convenience.

First, we show that the top eigenvector of A|S×S is close to the indicator vector for

S ∩ P .

Claim 54. There is a constant C such that for every S ⊆ [n] where |S ∩ P | ≥

C
√
|S| log n, the top eigenvector v of the matrix A|S×S satisfies∑

i∈S∩P

vi >
√
|S ∩ P |/2

Proof. The adjacency matrix A can be written as the sum of χP χP T
and a matrix R

representing the randomly chosen edges. Let u = χS∩P /
√
|S ∩ P | Suppose that v is

the top eigenvector of A|S×S and let c = u · v. Then

|S ∩ P |1/2 = A(u, u)

≤ A|S×S(v, v)

= c2A|S×S(u, u)

+2c
√

1− c2A|S×S(u, v − cu) + (1− c2)A|S×S(v − cu, v − cu)

≤ c2|S ∩ P |1/2 + 3‖R|S×S‖.

Hence

c2 ≥ 1− 3
‖R|S×S‖

C
√
|S| log n

.

By taking a union bound over the subsets S of a fixed size, it follows from well-

known results on the norms of symmetric matrices ([23, 49], also Lemma 42) that

with high probability

‖R|S×S‖ = O(
√
|S| log n)

112

for every S ⊆ [n]. Therefore, the theorem holds for a large enough constant C.

Next, we show that the clique is dense in the first 8|S ∩ P | coordinates (ordered

according to the top eigenvector v).

Claim 55. Suppose v1 ≥ . . . ≥ vn and
∑

i∈S∩P vi >
√
|S ∩ P |/2. Then for ` =

8|S ∩ P |

|[`] ∩ P | ≥ |S ∩ P |
8

.

Proof of Claim 55. For any integer `,

√
` ≥

∑
i≤`

vi

≥ `

|S ∩ P |
∑

i>`,i∈P

vi

=
`

|S ∩ P |

(∑
i∈P

vi −
∑

i≤`,i∈P

vi

)

≥ `

|S ∩ P |

(√
|S ∩ P |/2−

√
|[`] ∩ P |

)
.

Thus, √
|[`] ∩ P | ≥

√
|S ∩ P |/2− |S ∩ P |√

`
.

Taking ` = 8|S ∩ P | (optimal), we have

√
|[`] ∩ P | ≥ 1

2
√

2

√
|S ∩ P |.

Given this density, it is possible to pick 10 log n vertices from the clique and use

this as a seed to find the rest of the clique. When ` = 8|S∩P |, in each iteration there

is at least a

8−10 log n = n−30

113

chance that Q1 ⊆ P . With high probability, no set of 10 log n vertices in P has more

than 2 log n common neighbors outside of P in G. The contrary probability is(
|P |

10 log n

)(
n

2 log n

)
2−20 log2 n = o(1).

Letting Q2 be the common neighbors of Q1 in G, it follows that Q2 ⊇ P and |Q2\P | ≤

2 log n. Now, with high probability no common neighbor has degree more than 3|P |/4

in P , because

n

(
|P |

10 log n

)(
n

2 log n

)
exp(−|P |/24) = o(1).

for |P | > 312 log2 n.

Thus, with high probability no vertex outside of P will have degree greater than

7|P |/8 in the subgraph induced by Q2.

114

APPENDIX C

ROBUST PCA CODE

%---
%File: main.m
%---
function main()

%Multiplier for radius
beta = 3.0;
%Upper bound on fraction of bad examples
epsilon = 1/6;
%Number of dimensions
n = 100;

[A,id] = get_adverse_data(n, beta);

%display mask
dm = rand(1, size(A,2)) < 0.1;

figure(1);
plot(A(1, dm & ~(id == 4)),A(2, dm & ~(id == 4)),’b*’);
hold on;
plot(A(1, dm & (id == 4)),A(2, dm & (id == 4)),’r+’);
axis equal;
title(’Projection to Intermean Subspace’);
hold off;

figure(2);
[B,P] = my_pca(A,2);
plot(B(1, dm & ~(id == 4)), B(2, dm & ~(id == 4)),’b*’);
hold on;
plot(B(1, dm & (id == 4)), B(2, dm &(id == 4)),’r+’);
axis equal;
title(’Projection to PCA Subspace’);
hold off;

figure(3);
[B,P] = rpca(A,2,epsilon,beta);
plot(B(1, dm & ~(id == 4)), B(2, dm & ~(id == 4)),’b*’)
hold on
plot(B(1, dm & (id == 4)), B(2, dm & (id == 4)),’r+’);
axis equal;
title(’Projection to Robust PCA Subspace’);
hold off;

%---
%File: get_adverse_data.m
%---
function [A,id] = get_adverse_data(n,beta)
%Input:
% n: the number of dimensions
% beta: factor to be used by denoising
%Output:

115

% A: a matrix whose cols are the data points
% id: a integer vector indicating which points belong to
% which component.

k = 3;
mgood = 1000;
%mgood = 100;
mbad = mgood/2;
%Component Means and Variances
U = [0,-sqrt(3)/2, sqrt(3)/2; 1, -0.5, -0.5; zeros(n-2,k)];
s = [.1,.1,.1];
s_max = max(s);

%Good data
[G,id] = sample_sphere_mix([mgood,mgood, mgood], U, s);

%Approximate radius of the good data.
r = sqrt(max(sum((G - repmat(G(:,1),1,3*mgood)).^2,1)));

%Bad data
s = 2;
t = floor(mbad/2/s);
B = [zeros(2,2*s*t); repmat([eye(s),-eye(s)],1,t) * beta/2 * r];
B = [B; zeros(n-2-s,size(B,2))];

%All data
A = [G,B];
id = [id ,int32((k+1)*ones(1,size(B,2)))];

end

function [A,id] = sample_sphere_mix(m, U, s)
% m: a vector of length k indicating the number of samples
% from each component.
% U: a matrix whose columns are the means of the components.
% s: a vector of length k indicating the variance of each
% component.

n = size(U,1);
k = size(U,2);

A = [];
id = int32([]);

for i=1:k
A = [A, s(i) * randn(n,m(i)) + repmat(U(:,i),1,m(i))];
id = [id, repmat(i,1,m(i))];

end
end

%---
%File: rpca.m
%---
function [B,P] = rpca(A,k,epsilon,beta)
%Input:
% A: a matrix whose cols are the data points.
% k: the number of components to be returned
% epsilon: an upper bound on the fraction of bad data
% beta: multipier for denoising
%Output:

116

% B: Projection of cols of A onto top k components
% P: a matrix whose rows are the top k components

n = size(A,1);

A_c = A;
P_c = eye(n);
while n > 2

mask = reject_outliers(A_c,epsilon, beta);
n = ceil(n/2);
[A_c,P] = my_pca(A_c(:,mask),n);
P_c = P * P_c;

end
B = P_c * A;
P = P_c;

%---
%File: my_pca.m
%---
function [B,P] = my_pca(A,k)
%Input:
% A: a matrix whose cols are the data points.
% k: the number of principal components to be returned
%Output:
% B: Projection of cols of A onto top k principal components
% P: a matrix whose rows are the top k principal components

m = size(A,2);
c = sum(A,2);

[U,S,V] = svd(A*A’ - c * c’/m);

P = U(:,1:k)’;

B = P * A;

%---
%File: reject_outliers.m
%---
function mask = reject_outliers(A,delta, beta)
%Input:
% A: a matrix whose cols are the data points.
% delta: an upper bound on the fraction of noise points.
% beta: a multiplier to determine the acceptance radius.
%Output:
% mask: a boolean vector indicating 1 for non-noise and 0
% for noise

%Downsampling to speed things up
mask = rand(1,size(A,2)) < 10/(delta * size(A,2));
B = A(:,mask);

%Number of samples
m = size(B,2);

%How many distances should we distrust?
r = floor(m * delta);

%Computing rth furthest points
d = zeros(m,1);

117

idx = zeros(m,1);
for i=1:m

z = sum((B - repmat(B(:,i),1,m)).^2,1);
[x,y] = sort(z,’descend’);
d(i) = x(r+1);
idx(i) = y(r+1);

end
[x,y] = sort(d,’descend’);

t = x(r+1);
p = B(:,idx(y(r+1)));

mask = sum((A - repmat(p,1,size(A,2))).^2) < beta * t;

118

REFERENCES

[1] Achlioptas, D. and McSherry, F., “On spectral learning of mixtures of
distributions,” in Proc. of COLT, 2005.

[2] Alon, N., Krivelevich, M., and Sudakov, B., “Finding a large hidden
clique in a random graph,” Random Structures and Algorithms, vol. 13, pp. 457–
466, 1998.

[3] Arora, S. and Kannan, R., “Learning mixtures of arbitrary gaussians,” An-
nals of Applied Probability, vol. 15, no. 1A, pp. 69–92, 2005.

[4] Berry, M., Dumais, S., and O’Brien, G., “Using linear algebra for intelligent
information retrieval,” SIAM Review, vol. 37, no. 4, pp. 573–595, 1995.

[5] Brubaker, S. C., “Robust pca and clustering on noisy mixtures,” in Proc. of
SODA, 2009.

[6] Brubaker, S. C. and Vempala, S., “Isotropic pca and affine-invariant
clustering,” in Building Bridges Between Mathematics and Computer Science
(Grötschel, M. and Katona, G., eds.), vol. 19 of Bolyai Society Mathemat-
ical Studies, 2008.

[7] Brubaker, S. C. and Vempala, S., “Random tensors and planted cliques,”
in Proc. of RANDOM, 2009.

[8] Chaudhuri, K. and Rao, S., “Beyond gaussians: Spectral methods for learn-
ing mixtures of heavy-tailed distributions,” in Proc. of COLT, 2008.

[9] Chaudhuri, K. and Rao, S., “Learning mixtures of product distributions using
correlations and independence,” in Proc. of COLT, 2008.

[10] Dasgupta, A., Hopcroft, J., Kleinberg, J., and Sandler, M., “On learn-
ing mixtures of heavy-tailed distributions,” in Proc. of FOCS, 2005.

[11] DasGupta, S., “Learning mixtures of gaussians,” in Proc. of FOCS, 1999.

[12] DasGupta, S. and Schulman, L., “A two-round variant of em for gaussian
mixtures,” in Proc. of UAI, 2000.

[13] Dempster, A., Laird, N., and Rubin, D., “Maximum likelihood from incom-
plete data via the em algorithm,” JRSS B, vol. 39, pp. 1–38, 1977.

[14] Duda, R. O., Hart, P., and Stork, D., Pattern Classification. John Wiley
& Sons, 2001.

119

[15] Dumais, S., Furnas, G., Landauer, T., and Deerwester, S., “Using latent
semantic analysis to improve information retrieval,” in Proc. of CHI, pp. 281–
285, 1988.

[16] Feige, U. and Krauthgamer, R., “Finding and certifying a large hidden
clique in a semirandom graph,” Random Structures and Algorithms, vol. 16,
no. 2, pp. 195–208, 2000.

[17] Feldman, J. and O’Donnell, R., “Learning mixtures of product distributions
over discrete domains,” SIAM Journal on Computing, vol. 37, no. 5, pp. 1536–
1564, 2008.

[18] Feldman, J., Servedio, R. A., and O’Donnell, R., “Pac learning axis-
aligned mixtures of gaussians with no separation assumption,” in Proc. of COLT,
pp. 20–34, 2006.

[19] Francis, J., “The qr transformation: a unitary analogue to the lr transforma-
tion,” Computer Journal, vol. 4, no. 1-2, pp. 265–272,332–345, 1961.

[20] Freund, Y. and Mansour, Y., “Estimating a mixture of two product distri-
butions,” in Proc. of COLT, pp. 53–62, 1999.

[21] Frieze, A. and Kannan, R., “A new approach to the planted clique problem,”
in Proc. of FST & TCS, 2008.

[22] Fukunaga, K., Introduction to Statistical Pattern Recognition. Academic Press,
1990.

[23] Füredi, Z. and Komlós, J., “The eigenvalues of random symmetric matrices,”
Combinatorica, vol. 1, no. 3, pp. 233–241, 1981.

[24] Goemans, M. and Willamson, D., “Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming,” Jour-
nal of the ACM, vol. 42, no. 6, pp. 1115–1145, 1995.

[25] Golub, G. and van der Vorst, H., “Eigenvalue computation in the 20th
century,” Journal of Computational and Applied Mathematics, vol. 123, pp. 35–
65, 2000.

[26] H. Moon, P. P., “Computational and performance aspects of pca-based face
recognition algorithms,” Perception, vol. 30, pp. 303–321, 2001.

[27] Hawkins, T., “Cauchy and the spectral theory of matrices,” Historia Mathe-
matica, vol. 2, pp. 1–20, 1975.

[28] Jerrum, M., “Large cliques elude the metropolis process,” Random Structures
and Algorithms, vol. 3, no. 4, pp. 347–360, 1992.

120

[29] Kannan, R., Salmasian, H., and Vempala, S., “The spectral method for
general mixture models,” SIAM Journal on Computing, vol. 38, no. 3, pp. 1141–
1156, 2008.

[30] Karp, R., “Reducibility among combinatorial problems,” in Complexity of
Computer Computation, pp. 85–103, Plenum Press, 1972.

[31] Karp, R., “The probabilistic analysis of some combinatorial search algorithms,”
in Algorithms and Complexity: New Directions and Recent Results, pp. 1–19,
Academic Press, 1976.

[32] Kearns, M. and Li, M., “Learning in the presence of malicious errors,” SIAM
Journal on Computing, vol. 22, no. 4, pp. 807–837, 1993.

[33] Khot, S., “On the power of unique 2-prover 1-round games,” in Proc. of IEEE
Conference on Computational Complexity, 2002.

[34] Khot, S., Kindler, G., Mossel, E., and O’Donnell, R., “Optimal inap-
proximability results for max-cut and other 2-variable csps?,” SIAM Journal on
Computing, vol. 37, no. 1, pp. 319–357, 2007.

[35] Kline, M., Mathematical thought from ancient to modern times. Oxford Uni-
versity Press, 1971.

[36] Kublanovskaya, V., “On some algorithms for the solution of the com-
plete eigenvalue problem,” USSR Computational Mathematics and Mathematical
Physics, vol. 3, pp. 637–657, 1961.

[37] Kucera, L., “Expected complexity of graph partitioning problems,” Discrete
Applied Mathematics, vol. 57, pp. 193–212, 1995.

[38] Lovász, L. and Vempala, S., “The geometry of logconcave functions and sam-
pling algorithms,” Random Structures and Algorithms, vol. 30, no. 3, pp. 307–
358, 2007.

[39] MacQueen, J. B., “Some methods for classification and analysis of multivari-
ate observations,” in Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281–297, 1967.

[40] McSherry, F., “Spectral partitioning of random graphs,” in FOCS, pp. 529–
537, 2001.

[41] Papadimitriou, C., Raghavan, P., Tamaki, H., and Vempala, S., “Latent
semantic indexing: A probabilistic analysis,” in Proc. of PODS, 1998.

[42] Pearson, K., “On lines and planes of closest fit to systems of points in space,”
Philosophical Magazine, vol. 2, no. 6, pp. 559–572, 1901.

[43] Rudelson, M., “Random vectors in the isotropic position,” Journal of Func-
tional Analysis, vol. 164, pp. 60–72, 1999.

121

[44] Rudelson, M. and Vershynin, R., “Sampling from large matrices: An ap-
proach through geometric functional analysis,” Journal of the ACM, vol. 54,
no. 4, 2007.

[45] Stewart, G. and guang Sun, J., Matrix Perturbation Theory. Academic
Press, Inc., 1990.

[46] Turk, M. and Pentland, A., “Faces recognition using eigenfaces,” in Proc.
of CVPR, pp. 586–591, 1991.

[47] Valiant, L. G., “Learning disjunction of conjunctions,” in Proc. of IJCAI,
pp. 560–566, 1985.

[48] Vempala, S. and Wang, G., “A spectral algorithm for learning mixtures of
distributions,” Journal of Computer and System Sciences, vol. 68, no. 4, pp. 841–
860, 2004.

[49] Vu, V. H., “Spectral norm of random matrices,” in Proc. of STOC, pp. 423–430,
2005.

122

