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1. Introduction

The toroidal and poloidal rotation and related radial electric field observed in the edge (and core) of
tokamak plasmas are of interest for several reasons, not least of which is what they reveal about radial
momentum transport, but also because of their apparent role in the L-H transition and the edge pedestal. It
was recently shown' that if the heat transport coefficients and rotation velocities are taken from
experiment, then the particle, momentum and energy balance equations and the conductive heat
conduction relation are sufficient to determine the observed edge pedestal profile structure in the density
and temperature profiles in several DIII-D discharges. Thus, it would seem that understanding the edge
pedestal structure is a matter of understanding the edge rotation profiles. We present a practical
computational model for the rotation and the radial electric field profiles in the plasma edge that is based
on momentum and particle balance, includes both convective (including anomalous) and neoclassical
gyroviscous momentum transport, and incorporates atomic physics effects associated with recycling
neutrals.

2. Radial Electric Field

An expression for the radial electric field can be derived from the radial component of the momentum
balance equation for ion species ‘j’
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where M, is the & —component of the momentum input, S JES; - <S j> is the poloidally varying part

of the ionization source (due to recycling and fueling neutral influx and neutral beam injection), £/ is the

friction force andv, ;=v,, . +V,  +V, represents atomic physics processes—ionization, charge
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The radial component of Eq. (1) yields
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where the unfamiliar last term results from retention of inertial effects to leading order.

3. Poloidal rotation and density asymmetries

Equations for the poloidal rotation velocities and for the poloidal density asymmetries can be derived
from the poloidal components of the momentum balance equations and the particle balance equations for
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where the poloidal components of the inertial and viscous terms are
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and the neoclassical parallel viscosity coefﬁcient can be represented by”
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where V =v,qR/v,;, f,=B,/B,and e=r/R.

Making low-order Fourier expansions of the form 7, (r, 6’) = n;) (r) +n;sin@+n; cosd
and taking the flux surface average with weighting functions 1, sinf and cos6 results in a coupled set of
equations (three times the number of ion species) that can be solved for the VH(} and ﬁ;c = nj” / 81’[? for all

the plasma ion species. Assuming V,, <<V, <V, , the resulting equations are
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where the “e” and “0” subscripts refer to electrons and neutrals, respectively, and
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The corresponding Fourier components of the poloidal velocity are given by
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4. Toroidal viscous force

The toroidal viscous force (actually torque) can be Written in toroidal flux surface coordinates’
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where the II ¢ are the stress tensor elements. In this Braginskii decomposition® of the rate-of-strain
tensor in a flux-surface coordinate system, the neoclassical viscous stress tensors have ‘perpendicular’
components with coefficients 77, that are well known to be too small to account for the observed radial

momentum transport rate gyroviscous components
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and ‘parallel’ viscous components
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The Braginskii values® of the viscosity coefficients for a collisional plasma are
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where 7 is the self-collision frequency and 2=m/ZeB is the gyrofrequency. Since typically Q¢ ~ 10~ — 107
4 Mo freo™> 14 >> 5, Taking into account lower collisionality should not effect #,, which has no -
dependence, and has been shown™® to have very little effect on 7,. However, collisionality has a major
effect on #,, which we represent as indicated in Eq. (7) and as f,., above. It has also been shown’™ that it
may be necessary to extend the viscous torque to include heat flux terms in steep gradient regions with
small rotation velocities, such as are found in the plasma edge.

5. Toroidal Rotation
Equations for the toroidal rotation can be derived from the toroidal component of the angular momentum

173+

balance equation and the particle balance equation for species
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where the toroidal component of the inertial term is
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A. Gradient Scale Length Formulation

If we can obtain gradient scale lengths (e.g. from experiment), then the flux surface averages of
Eq. (17) for all can be written as a coupled set of algebraic equations at each radial point
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where M 4; 1s the momentum input from the neutral beams, M 4; » and possibly from other “anomalous”
mechanisms, M ™", and the radial transfer of toroidal momentum by viscous, inertial, and atomic

physics and perhaps “anomalous” processes is represented by the parameter
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where v, is the frequency for the radial transport of toroidal angular momentum due to inertial effects,

mem’ ; 1s the frequency for loss of toroidal momentum due to atomic physics processes Vv, ;is the
frequency for loss of toroidal momentum by “anomalous” processes (e.g. turbulent transport, ripple
viscosity).
The gyroviscous momentum transport frequency is defined by
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represents poloidal asymmetries and
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represent radial gradients. We have used the gyroviscosity coefficient 7, ~ nm;T/e;B.

The inertial momentum transport frequency is defined by
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B. Differential Equation Formulation

If the radial gradient scale lengths in the v, and v, (in ﬂj) in Egs. (19) are replaced by their
definitions L' = —(1/ x)(dx/ dr), then these equations become coupled first order ODEs that must be

solved for the V(;} , together with similar equations for the density and temperature'.

Alternatively, it is possible to solve explicitly for the poloidal dependence of the toroidal rotation
velocity by expanding the poloidal dependence of the toroidal rotation frequency

v,
Q, (r.0)= % = Q5 (r)+Q;, (r)sin@+Q; (r)cosd (26)

using similar density and poloidal velocity expansions, and flux surface averaging with weighting

functions of 1, sinf and cosé then leads to three equations for each ion species
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where S i = (+a _)Vion (n/cs +n,’ ) . The radial velocity V,, = V,;lass +V,;"" , where the classical term
can be calculated from particle, momentum and energy balance' and any anomalous momentum transport
is assumed to be convective.

6. Application to DIII-D

The above formalism, with the gradient scale-length formulation of section 5SA, was applied to calculate
rotation Vy and E, in a few DIII-D shots. Density and temperature profiles and gradient scale lengths

were taken from experiment, and the total momentum transfer frequency V;,- was inferred from

experiment by matching the V,; calculated from Eq. (18) to experiment, and then compared with the
calculated gyroviscous and atomic transfer frequencies, as shown in Fig. 1. The poloidal velocities are
compared with measured values in Fig. 2.
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Fig. 1 Experimentally inferred and calculated angular momentum transfer frequencies in DIII-D.
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Fig. 2 Measured and calculated poloidal rotation velocities in DIII-D.
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