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SUMMARY 

Today’s market is driven by the desire for increasingly complex products that 

perform well from manufacturing to disposal.  Designing these products for multiple 

lifecycle phases requires effective management of engineering knowledge and integration 

of this knowledge across multiple disciplines.  By managing this knowledge, products 

can be realized faster, perform better and be more complex.  However, management 

techniques are often very costly and managers can easily become bogged down with 

large quantities of information, slowing the design process and degrading knowledge 

transfer.  Thus, a need exists for effective yet inexpensive knowledge management. 

One approach for decreasing the costs associated with generating design 

knowledge is to reuse modules of existing knowledge.  In Model-Based Systems 

Engineering (MBSE), information about a design is stored formally in knowledge 

structures, or models, including requirements, stakeholders, and analyses.  To support the 

reuse of the existing knowledge in design, MBSE is used as a basis for integrating 

engineering analysis models. 

In this thesis, a framework is presented for model classification that organizes 

models by components and aspects.  This scheme is found to be useful in classifying 

engineering analysis models for reuse by storing them, as a set, in containers known as 

Multi-Aspect Component Models (MAsCoMs).  Each model in a MAsCoM is related to 

the formal structure model of a physical component and to the many aspects of the 

component that the model represents.  The Object Management Group’s Systems 

Modeling Language (OMG SysMLTM), is used to implement MAsCoMs and support 

MBSE. 
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Validation of the MAsCoM concept is performed with fluid-power design 

examples, including a log splitter, scissor lift, and hydraulic excavator.  In these 

examples, MAsCoMs improve design value by 1) Classifying modular and composable 

engineering analysis models for reuse in multiple disciplines, and 2) Providing 

knowledge modules to computer-automated algorithms for the future automated 

composition of component models into system models to perform system-level analyses. 

 



1 

CHAPTER 1 INTRODUCTION 

Current systems design practices face many challenges.  Markets must be 

analyzed and consumer demand must be quantified.  Design concepts must be explored 

and evaluated.  Decisions must be resolved, so designs can be continued and extended.  

These designs require testing; as such, performance must be analyzed.  In some cases, 

models need to be developed, integrated, and simulated.  Tradeoffs among stakeholders 

need to be evaluated, and finally detailed designs optimized for operation, and other 

lifecycle phases. 

These are just a few of the tasks and challenges faced in systems engineering.  

Each task has an immense amount of information associated with it.  Properly organizing 

this information for documentation and storage, and properly linking this information 

between tasks and among stakeholders is necessary for achieving the following: 

• Facilitating communication among design teams,  

• Producing a successful design (avoiding mistakes), 

• Avoiding unnecessary design costs due to miscommunication, or unawareness of 

design knowledge. 

Current methods for systems design utilize largely document-centric methods to 

store design information and communicate it among design team members.  Engineers 

and analysts using these current methods are in jeopardy of becoming overwhelmed 

should the amount of design information drastically increase.  This bogs down managers 

from making decisions and design teams from functioning efficiently. 

In addition to the traditional challenges of systems design, today’s consumers 

seem to have an insatiable desire for increased integration and functionality.  This creates 
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a market that causes the complexity of new products and systems to increase rapidly.  To 

manage this additional complexity effectively, systems engineers need to adapt the 

methods and tools they use in the systems development process.  The increase in 

complexity affects this process by imposing the need: 

• To integrate tightly across multiple disciplines: Electronics, mechanisms, controls, 

and software are often tightly integrated as in mechatronic systems; 

• To coordinate closely among multiple stakeholders: Experts within the different 

disciplines and across different life-cycle phases need to combine their knowledge to 

achieve a competitive end-product; 

• To weigh carefully the often conflicting objectives of all stakeholders: Trade-off 

decisions based on uncertain and incomplete information need to be made with 

respect to performance, cost, reliability, and other aspects; 

• To manage effectively the large amount of information and knowledge involved 

throughout the lifecycle of the system:  Cyber-infrastructure is needed to store, link, 

access, and maintain all this information and knowledge in an intuitive and consistent 

fashion. 

1.1 MBSE Integrates Knowledge and Design Information via Models 

To address these needs, the systems engineering community has started adopting 

a Model-Based Systems Engineering (MBSE) process [14, 18].  This process can help to 

organize design information and knowledge efficiently and effectively.  In MBSE, 

engineers formally model all aspects of a systems engineering problem, ranging from 

use-cases and requirements, to functional decompositions, physical architectures and the 

corresponding behavioral analyses.  The aspects mentioned here are orthogonal directions 
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along which a model can be characterized.  This is similar to the aspects in Aspect-

Oriented Software Development [55], or the different views in Computer Aided Multi-

Paradigm Modeling [34].  

By modeling these different system aspects formally, the different stakeholders 

can express their knowledge unambiguously and share that knowledge effectively and 

efficiently with other stakeholders.  In addition, models of the different system aspects 

(e.g., dynamic behavior, reliability, cost) can be formally linked to each other so that the 

consequences of design changes can be more easily traced throughout the system in its 

multiple lifecycle phases, and so that analyses and decisions can be more easily revisited 

and updated. 

Since MBSE serves as a basis for integrating models with a formal, effective 

organization of design information, a direct use presents itself for formally organized 

engineering analysis models (EAMs) in design projects.  EAMs provide links to many 

facets of design among many perspectives.  Analysis tasks that simulate EAMs provide a 

way to obtain behavioral performance knowledge from a concept, or to synthesize design 

knowledge from requirements.  Without these analyses and the models that support them, 

the engineering of systems at the current or future levels of complexity becomes 

extremely difficult and cost prohibitive.   

1.2 Motivation 

The costs associated with the development of design information and knowledge 

are significant.  Additional costs ensue if quantities of design information increase 

beyond the effective working capacity of current methods.  These costs accrue from 

poorly organized design information—information can be lost, miscommunicated, or 
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misrepresented such that it cannot be found or even identified when needed.  Once any of 

these scenarios occur, additional resources are spent: 

• Recovering from mistakes due to miscommunication or lost information; 

• Restoring lost information by repeating design and analysis tasks. 

Furthermore, revenue can then be decreased due to a less-than-optimal product design 

that results from poor information management. 

In such scenarios, the effective storage of design information and knowledge 

avoids adverse consequences.  However, many objectives exist for storing design 

information; simply implementing storage in a computer system is not sufficiently 

thorough, as it would not allow knowledge to be communicated easily or to be 

generalized easily (a necessary requirement for knowledge reuse).  To achieve these 

objectives, a formal approach is needed to aid communication and provide consistent 

universal semantics. 

Within a formal approach, information modeling can provide a storage 

framework.  However, on what is the framework based?  Information and knowledge 

must be organized—modularized and classified—so that it is identifiable, and easy to 

find by all relevant parties.  If based upon this premise, such an organization of modular 

information and knowledge can be reusable.  Furthermore, the EAMs that support 

analyses that use and produce the information and knowledge can also be reused, 

decreasing design costs. 

In model-based systems design, the knowledge stored in EAMs is used to perform 

analyses.  The analysis results support decisions made by the systems engineer within a 
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particular analysis context.  In this work, we focus on the formal classification and 

storage of engineering analysis models (EAMs), because: 

• They can be easily generalized:  EAMs are typically parameterized and as such can 

generally be applied to represent the behavior of artifacts of varying attribute 

quantities. 

• They can be of high value:  Often a large portion of analysis resources are spent 

obtaining or developing a model and verifying it is the ‘right’ model for an analysis. 

Since many resources are needed for the development of EAMs, significant costs can be 

avoided when reusing EAMs. 

1.3 Cost Tradeoffs of Formal Modeling and Reuse 

Although reusing EAMs can decrease costs, their formal modeling introduces 

additional costs.  Capturing knowledge formally in a model at the systems engineering 

level is nontrivial.  It typically requires a higher level of expertise, additional time, and 

often the capture of information that would otherwise have been assumed implicitly. 

It is therefore important to carefully weigh the costs of formal modeling versus its 

benefits.  Whether this cost-benefit tradeoff favors formal modeling depends on the 

context.  When designing a simple product or system in which the design team is small 

and the number and complexity of the models are small, one may not be able to justify 

the extra cost of capturing all of this knowledge formally.  However, for complex 

systems, the risk of not being formal is just too high—both the probability of something 

being overlooked and the consequences of such mistakes are large. 

In the context of this work, it is assumed that the systems under design are 

sufficiently complex to take advantage of a formal modeling approach.  EAMs 
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themselves can be complex in nature, thus a determination must be made of the 

appropriate level of formality at which EAMs are captured.  This is determined by the 

choice of which details of EAMs to formally capture, and how to represent them.  The 

more details that are captured, the greater the cost of this formal modeling to be traded 

against savings from reuse. 

Consider the different tasks associated with an engineering analysis.  As is 

illustrated in Table 1.1, the costs and effort associated with several of the modeling and 

analysis activities can be reduced through model reuse. For instance, model development 

requires deep insights into an application domain and, with testing and verification, can 

require a lot of time and effort.  When reusing a model rather than developing a new one, 

one still needs to find and retrieve the model (e.g., from a model repository) and define 

the appropriate parameter values.  However, if sufficient context is included in the formal 

model definition, then these costs can be substantially smaller than when developing a 

completely new model. 

Table 1.1.  Costs of Modeling with Reuse. 
Modeling and 
Analysis Activity 

Analysis 1 
(development) 

Analysis 2 
(reuse) 

Formulate Modeling 
Task 

X X 

Develop Model X  
Retrieve Model  X 
Define Model 
Parameters 

X partial 

Verify Model X partial 
Validate Model  X partial 
Simulate Model X X 

 
 
Even more costly is model verification and validation.  The process of 

constructing physical experiments, collecting data, and matching data to simulation 
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results is time-consuming and expensive.  Once a model has been validated in this 

fashion, it should be carefully protected and saved in a repository.  Although it is wise to 

validate a model again whenever it is used in a new context [29], current validation and 

verification guidelines also recommend that one verify and validate models for individual 

components and subsystems first before validating a system-level analyses in which these 

component models are used [3].  This fits within the approach introduced in this work, 

where analysis models are formally organized into containers of models for reusable 

components or subsystems. 

So far, we have argued that through formal modeling model reuse can be cost 

effective.  However, formality by itself is not sufficient; it is also important that there be 

sufficient opportunity for reuse.  A very specialized analysis model is unlikely to be 

reused because the chance that the same special design context presents itself again is 

small. 

Therefore, the second pillar of a foundation to support model reuse is modularity.  

In a modular modeling approach, large models are decomposed into modular pieces that 

can be quickly and easily reused and configured into a large number of different system-

level models.  This fits well with current systems engineering practice, which relies on 

composition and integration to deal with complexity [6, 45]. By decomposing systems 

and their functions into sub-systems integrated with each other through well-defined 

interfaces, the systems engineering problem can be divided into smaller, less complex 

sub-problems, each of which can be solved by a smaller, more specialized design team. 

Since many systems require similar functionality, the subsystems satisfying these 

functions tend to be reused.  For instance, many systems require mechanical energy and 
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they rely on either internal combustion engines or electrical drives to provide this energy.  

In addition, the standardization of components for modular design can produce greater 

product variety by reusing components across product variants and lines, and allows for 

easier validation and verification of the components [56].  Since the components or 

subsystems are reused, the analysis models associated with these components should be 

reusable also.   

To link reusable design models with systems engineering analyses, a formal 

framework is desirable to share similar semantics to contextually describe and link 

models, analyses, and design objectives.  For a formal information-modeling framework 

to aid design, we turn to SysML and Model-Based Systems Engineering (MBSE). 

1.4 Using SysML to Capture Formal Modeling in MBSE 

The Systems Modeling Language, OMG SysMLTM [51], was developed as a way 

to formalize models and information used in systems engineering.  SysML is a formal 

language for describing systems for design and analysis purposes.  It supports linking 

system design and analysis requirements with analysis models via meta-level constructs.  

This includes specific constructs for handling semantics such as requirements, behavior, 

structure, and parametrics.  Since SysML offers such a formal, semantically rich 

language for systems engineering, it naturally is capable of supporting MBSE efforts.  

Thus, SysML provides the additional means necessary to formally capture systems 

engineering information and knowledge for reuse.  With SysML’s many supporting 

constructs to clarify semantics, EAMs can be classified and organized for reuse.   

In the systems engineering community, where MBSE and SysML are a new 

method and language, much focus is aimed at determining a road-map for how SysML 
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can aid MBSE.  How can this language and corresponding tools be used to further aid 

systems design efforts?  One promising objective is aiding systems design through formal 

EAM capture for reuse.  In the next section, the motivation is addressed more specifically 

in the context of this work. 

1.5 Motivating Questions and Objective 

Through SysML, the capability exists for capturing design knowledge; thus, we 

must ask the questions “should we capture the knowledge”, and if so, “how should we 

formally express it?”  Some pieces of knowledge are arguably more valuable than others, 

and some are much more likely to be reused.  Since we are interested in the capture and 

reuse of knowledge about EAMs, our primary motivating question becomes: 

 

Primary Question: “Is there value in the formal capture of knowledge about engineering 

analysis models for use in multi-disciplinary, systems design problems?” 

 

The objective of this research is to answer this question by identifying ways that 

models can be formally classified, stored in a repository, and represented for reuse 

through application in systems design problems.  Specifically, what aspects of EAMs 

should be formalized to enhance reuse? 

Answering the motivating question also requires us to investigate the ways in 

which EAMs are (re-)used in systems design problems.  Thus, an underlying question to 

the motivating question is the following: 
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Supporting Question: “What aspects exhibited by systems design problems can be 

leveraged to increase the likelihood that formal modeling adds value? 

 

To answer this supporting question, we are directed to the relevant literature, and to 

representative, systems design example problems.   

1.6 Summary 

In this work, the goal is to shift the cost-benefit balance in favor of formal 

modeling by formally capturing EAMs for reuse.  By reusing the models, certain costs 

are incurred only once at the time the model is initially formulated and can then be 

amortized over multiple reuses of the model.   

It is argued that the potential benefit for reuse is large and that there are 

opportunities for promoting reuse beyond the levels applied in current practice.  It is 

interesting to note that while model reuse can enable the cost effective generation of 

formal systems engineering models, model reuse itself must rely on formal modeling:  

One can only enable reuse by formally capturing the model, its characteristics, and the 

contexts in which it can be used. 

The initial focus is on the reuse of engineering analysis models.  EAMs are 

ubiquitous in current systems engineering practice; they are used for predicting the 

behavior of components and systems from different viewpoints. They are interesting from 

a reuse perspective because they can be reused not only from one design problem to the 

next, but also in multiple design iterations within a single design problem.   

In this work, a framework is presented to support model reuse by establishing 

relationships between system design components, analysis models, and the many aspects 
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of a model that pertain to analysis objectives, stakeholder perspectives, and other 

elements of model-based systems engineering.  Within the framework, analysis models 

are associated with components and aspects so that their semantics of intended use are 

captured and represented for reuse.  A model characterized within this framework is 

defined as a “Multi-Aspect Component Model” (MAsCoM). 

A detailed overview of MAsCoMs is provided in Chapter 3.  The framework is 

implemented in SysML and described in more detail in Chapter 4.  Examples of the 

implementation are illustrated to begin to validate the MAsCoM approach in Chapter 5.  

Finally, this work is summarized with projections of limitations and future work in 

Chapter 6.  Before delving into the details, the relevant literature is first reviewed in 

Chapter 2. 
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CHAPTER 2 RELATED LITERATURE 

Much research has been performed on the subject of model organization and 

reuse.  In this chapter, related work is organized along the topics of modularity and 

function, knowledge classification and organization for storage and reuse, composition as 

a use case for reuse, graph transformations and automated analysis execution.  Finally, a 

specific gap of behavioral model classification is identified before transitioning to our 

approach in Chapter 3. 

2.1 Modularity and Function 

The reuse of modular design elements has been addressed by many.  Baldwin and 

Clark [6] consider the use of a design structure matrix, task structure matrix, and modular 

operators to capture modularity in a design.  Eppinger et al. [13] also consider that 

systems can be decomposed into modules, but note that some systems are integrative in 

nature.  Integrative systems avoid the overhead of modular interfaces and can therefore 

achieve higher utilities [56] but are much less likely to have reusable elements.  These 

systems are therefore not considered for the direct application of MAsCoMs. 

Gershenson et al. [19] view modularity as it applies to the entire life-cycle of a 

product design.  They claim that all components that are of the same modular form (based 

on function and interface) will undergo the same life-cycle processes.  Using component 

trees to decompose structure, the level of the component being viewed and its level of 

abstraction have an effect on the view of the modularity of a process in the life-cycle.  

This also holds true for the selection of a modular equation model to predict the behavior 

of a piece of structure in a component tree.  Although MAsCoMs are also mapped to 
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component structures and processes (defined by aspects), such models of modules must 

still be stored for reuse. 

2.2 Knowledge Classification and Organization for Storage and Reuse 

The idea of reusing design knowledge by storing the knowledge in a repository 

has been proposed in the past.  The NIST Design Repository [52] was one of the first 

efforts in this area.  Further development of the knowledge representation underlying the 

NIST Repository resulted in the Core Product Model (CPM) [43].  The CPM is a high-

level meta-model in which the core elements for representing products in design (i.e., 

form, function, and behavior) are identified and related to each other.  The goal of the 

CPM is to provide a common foundation for product representation that can then be 

further refined as needed, e.g., for engineering analysis [4, 5], for manufacturing process 

planning [15], for functional decomposition [26, 50], or for assembly planning [43].  

Similarly, the models developed for this work follow the core relationships defined in the 

CPM, but refine them with more specific constructs for system behavior.  Here, behavior 

is to be interpreted as any type of characteristic that can be predicted based on the form, 

distinguishable by many behavioral aspects, including function. 

Both the CPM and this work fit into a broader group of research efforts in which 

the goal is to define an ontology for design.  An ontology is a formal data model for the 

concepts and the relationships between these concepts in a certain domain of discourse—

the domain of design in this case.  Most of the research in this area shares the perspective 

that at the foundation, one should distinguish between form, function and behavior.  

Examples include the work by Umeda et al. [57], Sasajima et al. [46], and Horváth et al. 
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[21]. However, system behavior has been the focus of investigation in only a few 

previous publications. 

The most extensive previous research on characterizing behavior in engineering 

analyses was performed by Grosse et al. [20].  They organize the knowledge about 

engineering analyses models into an ontology, which includes both meta-data (e.g., 

author, documentation, etc.—similar to the Dublin Core [42]) and meta-knowledge, such 

as model idealizations and the corresponding justifications.  A similar, although less 

extensive, meta-model for EAMs has been developed by Mocko et al. [31].  In their 

knowledge repository, Mocko et al. focus on some of the more direct properties of 

EAMs, including interfaces, constants, and parameters, in addition to emphasis on Meta-

information such as assumptions, file properties, and configuration control data. 

Another perspective of EAM reuse is presented in the tool-based user community, 

MATLAB Central [30].  This community provides users of MATLAB and Simulink with 

a place to share and retrieve models.  In the web-based implementation, knowledge about 

the language of the model and required software is implied.  Aside from this assumption, 

models are organized in a hierarchy of discipline categories, augmented with meta-

information such as title, description, date, and user rating. 

A significant difference between MATLAB Central’s implementation and other 

model classification frameworks [8, 16, 17, 20, 31, 42, 52] is the ability for model users 

to submit quantitative and textual reviews of models that were downloaded and found to 

be useful.  However, as with any knowledge structure, the knowledge itself must be 

carefully managed—not ensuring valid and valuable model feedback from those who 
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may be non-expert users can invalidate classifiers, and even dilute or degrade the 

knowledge in the repository. 

Similar risks are associated with the depositing of EAMs or design information in 

a knowledge repository.  Just as a modeler needs to clearly associate model attributes 

with knowledge classifiers in one’s own vocabulary for identification and reuse, the same 

is necessary for the initial classification via formal classifiers in the repository.  When 

someone deposits a model, a problem can occur if that person either does not 

comprehend the model’s true semantics or does not comprehend the semantics of the 

formal classifiers in the repository.  Should this situation occur, the capture of the model 

is likely to be invalid; therefore, the representation of this model inhibits reuse and 

further increases costs of validation when the model is found to be inappropriate. 

When interpreting of a model’s representation, the meta-information such as 

categorized descriptors and keywords can generally be easily understood.  However, 

other classification means can be difficult to interpret, such as classification via 

relationships between models and other constructs.  For example, it can be difficult to 

interpret model relationships with function, flow and failure as used in the Design 

Repository [8].  Essentially, a language and approach is needed that provides the ability 

for a modeler to completely describe the understanding of a model in an unambiguous 

way, using formal constructs and relationships.  This is why the approach in Chapter 3 

starts with SysML to establish component relationships via a taxonomy of components 

modeled with this formal language. 

As an aside, a benefit of the organization in the Design Repository [8] is the ease 

of traceability between design artifacts and the models used to design the artifacts.  This 
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is possible since both artifacts and models are stored in the same repository structure.  

Hence, both models and design artifacts can be classified for documentation, 

identification and awareness for reuse (just as with MBSE).  This traceability is also 

possible in our approach through the formal constructs in SysML used to link formally 

modeled EAMs to formal structure models of components (artifacts of design efforts in 

MBSE). 

Since components are an idealized representation of a design artifact, traceability 

is also desirable between models and the compositions of components they idealize.  

Traceability through composition is useful because it conveys the context of the system 

model as the contextual intersection of its constituent component models, as is presented 

in Section 5.1.2.  Model-to-artifact traceability is also possible across model 

compositions through graph transformations [10], as explored in Section 2.4.  Without 

composition and the traceability within its process, system models could not be easily and 

efficiently generated from component models to generate design knowledge.   

2.3 Composition as a Use Case for Reuse 

To enable reuse of EAMs in the context of large systems engineering efforts, two 

additions to typical model organization are important: First, the EAMs need to be related 

to the form (e.g., component geometry or system architecture) at a fine-grained level 

[39].  Second, the analysis models for components and subsystems must be formulated in 

a fashion that allows for composition so that a large number of different system 

topologies can be explored quickly [37].  Wallace et al. [58] also consider composable 

models.  They note that a modular, composable analysis approach allows multi-
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disciplinary problems to be broken down into modules that can be assigned to specialized 

teams. 

Relating analysis models to form has been addressed previously in work on 

Design-Analysis Integration (DAI) [39].  Peak et al. relate the parameters of analysis 

models to parameters of design models in a declarative, reusable fashion using Constraint 

Objects (COBs) or more recently, using SysML parametric diagrams  [40].  In this work, 

this same approach is used, but only at the level of individual components (see Section 

3.4).  By establishing the relationships between design and analysis models at the 

component level, the relationships are maintained even when the components are 

composed into larger systems, thus further promoting model reuse.  To enable 

composition, additional knowledge is needed both about the model interfaces and about 

the composition process.  This is further explained in Chapter 5.   

Overall, composition is the activity that joins components to form a system.  If we 

link components to component models, system models, and analyses of systems, 

traceability is provided at any of these levels for reuse.  Model compositions may differ 

considering the desired system perspective, leading one to wonder:  Can we reconfigure 

models or system model compositions for reuse?  Alternate graph representations can 

represent different perspectives of a system composition from different component 

models and the connections between them.  If a system representation is available to 

guide system model composition for one perspective, then it can be reconfigured through 

graph transformations to represent the system for reuse in another perspective. 
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2.4 Graph Transformations and Automated Analysis Execution 

An overarching goal for formally modeling EAMs is to enable computers to 

compose the component models into system models automatically.  Since the 

compositions will differ with different perspectives, graph transformations are a useful 

approach for creating the many system models necessary to analyze a system concept.  

Once such compositions of component models into the system model are available, graph 

transformations can then be used to construct equivalent system models in the EAM’s 

native tools for analysis execution via simulation.  Before elaborating on these objectives, 

we clarify the meaning of a graph and a transformation. 

A graph is defined here by a set of entities that are related through relationship 

constructs—hence, a system model composition is a graph.  More commonly, a graph is a 

set of vertices or nodes connected by edges [7].  An example use of graph 

transformations in engineering analyses is presented by Johnson [24].  Graph 

transformations can be used to for many different purposes.  In the context of this thesis, 

the following are important: 

• To define and perform mappings between languages; 

• To communicate semantics conveyed through constructs in one graph to an 

equivalent set of semantics conveyed through different constructs in a different graph; 

• To construct graphs representing new knowledge from existing graphs or 

information. 

Two popular forms of language mappings are:  Triple Graph Grammars (TGGs) 

[47] and Query View Transformations (QVTs) [35].  Language mappings provide the 

ability to translate a system concept definition (system model composition) stored in 
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SysML into equivalent system models represented in native tools.  Although SysML is a 

different language than what may be used in an analysis tool, language mappings allow 

the same semantics to be conveyed in either language (if not the same, semantics that are 

as near to equivalent as possible).  Johnson et al. [22] have shown an implementation that 

transforms a formal analysis specification and model composition in SysML into an 

automated system model execution via a graph transformation tool called VIATRA [1]. 

Additionally, graph transformations can be used to reorganize graphs within the 

same language, such as SysML.  For instance, as seen in Chapter 5, a system concept can 

be defined in SysML in one graph, and then can be transformed into multiple system 

model graphs for different perspectives in SysML.  These system models can then be 

transformed for automated analysis execution via language mappings to native analysis 

tools. 

However, before models can be transformed for automated execution, system 

model compositions must be generated from an initial system concept definition in a 

schematic.  Since a system model can be composed for multiple perspectives, typically 

different graphs must be created for each perspective.  When creating a system concept, 

the architecture, or connection between the components, can be optimized for each of the 

particular perspectives.  Through graph transformations, this process of optimization 

through composition could be automated [10].   

Furthermore, through automation using graph transformations, traceability 

between design artifacts and EAMs is still an important requirement for accessing the 

knowledge in the design effort and representing the required model context of the system 

model composition.  Giese et al [10] provide this traceability through the use of UML 
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[9].  They use the Fujaba graph transformation tool [2] to recognize and compose models 

into compositions in a self-optimizing process to generate model-based software 

controllers for physical systems. 

Once systems have been composed and transformed into an executable form, 

parameter optimization is useful to perform tradeoffs against different modeling 

perspectives.  These tradeoff models can be instantiated and evaluated through tools that 

integrate them into large-scale trade-off analyses, such as ModelCenter [41].  However, 

before any of these end goals of automated model composition and execution can be 

fulfilled, one must be able to formally classify EAMs at an appropriate level of detail.  

For this we reiterate the gap in the literature that will be addressed by the MAsCoM 

approach. 

2.5 Gap of Behavioral Model Classification 

As identified in previous sections, a gap exists in the formal classification of 

modular, composable engineering analysis models.  The primary function of such models 

is to predict the behavior of components or subsystems from multiple perspectives 

(disciplines, lifecycles, etc.) and at many levels of abstraction.  Thus far, the classification 

of such models has not been considered in a formal framework at a very detailed level for 

integration with MBSE.  Moreover, the consideration of reuse to reduce the costs of 

formal model classification as a motivation for this work is unique among other 

perspectives including [8, 16, 17, 20, 30, 31, 42, 52], which do not explicitly consider 

reduced costs through model reuse for various analysis activities listed in Section 1.3.  

Most of these existing frameworks are aimed at formal model classification for the 
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purpose of documentation and reuse, without consideration of the cost penalty of formal 

capture. 

Additionally, EAMs have not traditionally been associated with relationships to 

other diverse formal models as part of the classification framework itself.  In the 

MAsCoM framework, EAMs are related to components and aspects that are part of their 

own formal taxonomy of models.  In this way, our approach classifies EAMs as part of a 

network of models by essentially relating an EAM to all other models in each MAsCoM 

that is associated with the component or aspect taxonomy.   

Lastly, our approach is unique in its use of SysML, so that the MAsCoMs can be 

easily implemented and integrated within MBSE.  Other implementations are less formal 

and thus more difficult to integrate with MBSE [8, 20, 30] or have followed formal 

approaches in languages less adaptable to systems engineering [16, 17, 31]. 
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CHAPTER 3                                                                          

APPROACH: MULTI-ASPECT COMPONENT MODELS 

As argued in Chapter 1, to be cost-effective, model-based systems engineering 

must rely on model reuse.  In this chapter, we develop a framework for enabling such 

model reuse by relying on modularity and composition. 

3.1 The Structure of MAsCoMs 

Since current practice in systems design relies mostly on integration of modular 

components and subsystems, the most common units for reuse are exactly these 

components or subsystems.  It therefore makes sense to organize EAMs by component 

type also.  Whenever a designer decides to use a particular component, he or she will 

immediately be able to identify all the analysis models that have been previously used to 

analyze that component or describe its behavior in a larger system.  As illustrated in 

Figure 3.1, the components themselves are organized in a taxonomy so that the user can 

easily browse from general classes down to very specific instances of components.  At 

each level, the component model is linked to all the relevant EAMs. 

However, the number of such models could be very large, so that an additional 

method of organization is desirable.  To facilitate the task of selecting and composing 

analysis models further, we propose to characterize the analysis models based on one or 

more aspects, as is illustrated conceptually in Figure 3.1.  The aspects are orthogonal 

directions along which a model can be characterized.  This is similar to the aspects in 

Aspect-Oriented Software Development [55], in which modularity is achieved by 

implementing cross-cutting concerns separately so that they can be woven into a variety  
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Figure 3.1.  Multi-aspect component models combine analysis models (EAMs) in a 

matrix organization linked to taxonomies of components and aspects. 

of different software classes.  In the context of modeling, rather than the ability to weave 

models together, what is important is that we can identify which models are compatible 

with each other so that they can be composed into system-level models.  To be 

compatible, models utilized in the composition must characterize the components in a 

system from a similar perspective, in a compatible mathematical formalism and in the 

same executable language.  By using a formal taxonomy of aspects, the semantics of the 

individual analysis models are defined in a computer interpretable and searchable 

fashion. 

In the remainder of this chapter, the details are provided for how analysis models 

are organized into MAsCoMs.  In addition to discussing taxonomies of components and 

aspects, it is explained in detail how the analysis models are tightly linked to each other 

through components at a very fine-grained level. 
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3.2 MAsCoM Model Sets 

This section is intended to clarify the grouping of models that is contained in a 

MAsCoM and provide justification for this concept.  In our approach, when analysis 

models are grouped, it is solely by component or subsystem.  Each of these analysis 

models might be thought of as a component model to portray particular aspects of the 

component, but a MAsCoM is simply the model grouping.   

MAsCoMs are intended to portray the complete perspective of a component from 

all angles.  This is achieved by grouping enough analysis models about the component to 

have essentially ‘every angle covered’ (invoking the universal set of aspects).  This is a 

difficult proposition; acquiring a set of models that ‘completes’ a MAsCoM is not likely 

to happen.  The large and extensible list of aspects is such that a complete MAsCoM 

would require models about the component from every lifecycle phase, discipline, time 

and space discretization, mathematical formalism, and programming language.  A more 

likely scenario is that most MAsCoMs will combine models about a component from 

different disciplinary perspectives and from different library sets, which are typically 

designed for particular lifecycle phases.  In this more realistic scenario, some aspects cut 

across many models in a MAsCoM, while others are sparse and unique to only a handful 

of models. 

A guiding use case for MAsCoMs is that a modeler would use MAsCoMs when 

creating an analysis test case or designing a system model to primarily determine what 

EAMs are available to analyze a component, and how these models differ.  Additional 

details about a typical MAsCoM use case are shown in Sections 3.4, 3.5, and Chapter 5. 
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3.3 Taxonomies of Components and Aspects 

The fundamental principles behind MAsCoMs are the relationships between the 

EAMs, components, and aspects.  In this section we present how these elements of 

modeling with MAsCoMs are organized and viewed.  Both components and Aspects are 

organized in taxonomies, such that these elements do not exist individually, but as parts 

of their own knowledge structures as well. 

3.3.1 A Taxonomy of Components 

In design, components or subsystems are selected and defined in an iterative 

fashion.  First, a functional architecture is defined after which functions are assigned to 

components in a physical architecture [44] (or, equivalently working principles and 

working structures are identified [36]).  The focus is initially on the selection of broad 

classes of components that share the same functionality.  For instance, to implement the 

function of converting electrical to mechanical energy, the broad class of motors could be 

identified.  In subsequent iterations, this broad class of components is gradually refined 

until a particular component XYZ from company ABC has been identified.  At each step 

along the way, analysis models at different levels of abstraction are used.  As the 

definition of the components still under consideration becomes more and more detailed, 

the corresponding analysis models also need to become more detailed such that the 

selection can continue to be narrowed down further. 

To support such successive refinement of classes of components down to very 

specific individual components, it is meaningful to organize the components in a 

taxonomy.  One branch of the total taxonomy—the branch of hydraulic components—is 

illustrated in Figure 3.2. 
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Figure 3.2.  An example portion of a component taxonomy. 

The component taxonomy is based on the E-class classification hierarchy as an initial 

breakdown of components in the hydraulics domain [12]. Organizing components into a 

taxonomy has the additional benefit that one can take advantage of the inheritance 

mechanism to associate analysis models with components efficiently.  In the taxonomy, 

analysis models associated with parents apply also to children.  For instance, since an 

axial piston pump is a type of displacement pump, the models for the general class of 

displacement pumps (the parent) also apply to axial piston pumps (the child).  However, 

often, more detailed models are available for the children because more detailed 

knowledge is available about their structure, size, or other design properties. 

In most cases, components can have complex internal relationships, and are 

essentially subsystem assemblies.  Many times, what one designer considers to be a 
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component, another considers to be an entire system.  For example, an engine is a 

component in an automobile drive-train system, while the engine itself can be a very 

complex subsystem.  When considering organizing components or subsystems in a 

taxonomy, it is important to recognize the relative complexities of the elements being 

related in the inheritance structure.   

Simple parent components cannot typically be specialized into complex child 

components.  Thus, in our approach, an engine would not be organized in a taxonomy of 

engine parts, but instead in a taxonomy of other engine devices with similar functional 

interfaces and complexity.  The reason for this is that it is difficult to create a hierarchical 

taxonomy that spans both abstraction and decomposition.  Through specialization, more 

details are added to an abstract component; however, from a component perspective, the 

additional details of a component’s internal structure cannot be separated further in 

children of the same taxonomy (this would change the functional nature of the parent 

component). 

Each of the nodes in the component taxonomy tree corresponds to a model that 

defines the key characteristics of the component or class of components, as is illustrated 

later using SysML in Figure 4.2; we call this a structure model.  The structure models are 

parametric—they contain properties identifying key characteristics of the component: 

sizing properties, key performance parameters, as well as the intended interface of the 

component (i.e., the locations or ports at which the component is intended to interact with 

other components in a system [27]).  For instance, a pump may be characterized by sizing 

parameters that include displacement, mass, or maximum pressure rating; by key 

performance parameters such as cost, efficiency or reliability; and by an intended 
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interface consisting of two fluid ports (suction and discharge) and two mechanical ports 

(input shaft and housing). 

The structure models are central to MAsCoMs—they serve as the central entry-

points for accessing all the engineering analysis models associated with the components.  

The analysis models in turn define how the performance parameters in the structure 

model relate to the sizing properties.  To facilitate maintaining consistency among all 

these parameters, the analysis models are tied to the structure model at a very fine-

grained level as is explained further in Section 3.4. 

In a typical MAsCoM use case, modelers access EAMs in a MAsCoM through 

the component taxonomy.  The advantage of the taxonomy here is twofold:  1) Modelers 

can determine the EAMs to use by identifying with a level of component detail 

(abstraction) represented in the component taxonomy, and 2) As a design evolves, 

modelers can utilize the knowledge in the taxonomy to find analysis models for more 

specialized components.  After identifying the correct component, it is each model’s 

relationships with the aspects that are used to differentiate the models for selection.  For 

the aspects, we again turn to a taxonomy for organization. 

3.3.2 A Taxonomy of Aspects 

When reusing a model, one needs to recognize which model is needed from 

among the many models that may be associated with a particular component.  To help the 

designer do this, models are characterized using aspects, the orthogonal dimensions along 

which models can be characterized.  Since there are a large number of potential aspects, it 

is helpful to organize them also in a taxonomy, as is illustrated in Figure 3.3.   
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Figure 3.3.  An example aspect taxonomy. 

The taxonomy also emphasizes that the aspects represent independent directions along 

which a model can be characterized.  As a result, a model is typically characterized by 
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multiple aspects simultaneously.  For example, a hydraulic pump model could be 

characterized simultaneously by the hydraulic and mechanical engineering disciplines, by 

the continuous time discretization aspect, by the DAE mathematical formalism, and by 

the Modelica representation syntax.  A glossary of all aspects used thus far in the 

MAsCoM framework is presented in Appendix A. 

These aspects formally characterize an model and thus succinctly provide the 

designer or analyst with the basic information needed to select from a set of EAMs that 

represent a particular component.  Additional information about the model can be defined 

as meta-data that is less structured, such as model documentation, development history, 

or prior usage scenarios.  Based on the aspects, a designer can efficiently search or 

browse through a model repository to identify the model that is most appropriate for a 

particular design context.   

In addition, when composing multiple component models into a system-level 

model, the aspects provide necessary information to determine compatibility between 

models.  For instance, to be composed, models need to be expressed in compatible 

mathematical formalisms and levels of discretization—it is not meaningful to combine a 

high resolution, discrete event simulation model with a low resolution, partial differential 

equation model.  Models that are composed also should be characterized by compatible 

engineering disciplines.  One set of models may describe the hydraulic behavior of a 

system while another may describe its mechanical structure.  Having formal 

representations of these different aspects available is particularly important when 

considering (partially) automating the composition process. 
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Now that we have described how to initially classify, and potentially select EAMs 

for reuse from MAsCoMs, we focus on additional relationships between components and 

models, such that a modeler will also understand how best to use the model. 

3.4 Fine-grained Structure-to-Behavior Relationships 

While the characterization of EAMs using the component and aspect taxonomies 

reduces the cost of identifying appropriate models for reuse, it does not affect the cost of 

instantiating these model in a specific design context.  One of the goals of MAsCoMs is 

to facilitate (and maybe automate) this instantiation of analysis models into a system-

level analysis model. 

In a variety of engineering disciplines, it is common to describe systems as 

compositions of components in a schematic diagram.  One can interpret such diagrams as 

compositions of structure models (as defined previously in this section) connected to each 

other at their ports (intended interface locations).  Assume that a system schematic is 

available in which specific structure models for individual components have been 

configured into a system by connecting their ports.  Is it then possible to instantiate the 

corresponding analysis models and configure them into a system-level simulation?  The 

additional knowledge necessary to support this context-specific instantiation can be 

incorporated in MAsCoMs with two additional diagrams: parameter maps and interface 

maps. 

Parameter maps bind the parameter values in analysis models to the related 

parameters in the corresponding component’s structure model.  In the context of systems 

engineering, the values for the parameters need to be related to the properties of the 

system alternative that is currently being analyzed.  Since we have associated the analysis 
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models with components in the component taxonomy, it becomes possible to establish 

these relationships also in a reusable fashion.  How this is accomplished using SysML 

parametric diagrams is explained in Section 4.4. 

In addition to parameter maps, MAsCoMs also include interface maps.  Interface 

maps support the configuration of the interfaces of analysis models for individual 

components into system-level analysis models.  Similar to the composition of structure 

models into a system schematic, analysis models can be configured into networks 

through well-defined port-based interfaces [37], as is implemented in tools such as 

SimulinkTM [49], and in languages such as Modelica [32].  Recently, the ability to 

compose analysis models has even become feasible for finite element models [5, 48].  In 

order to configure the analysis models, one needs to define how the ports of the analysis 

models relate to the ports in the structure models.  This is accomplished through interface 

maps as is further explained in Section 4.3. 

A final comment related to parameter and interface maps revisits the question of 

why they are necessary.  One could have used other mechanisms for linking analysis 

models to component-structure models.  For instance, one could have relied on the 

inheritance mechanism to associate analysis equations with the properties in a 

component-structure model.  However, that would require that the model equations be 

expressed using the same property names as used in the component-structure model. 

Since it is often the case that one analysis model is associated with multiple component-

structure models, and that one component-structure model is associated with multiple 

analysis models, it would become nearly impossible to develop a reusable model library 

in which all the property names remain consistent across both analysis and component-
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structure models.  The mechanism of mapping parameters and junctions in a model 

context provides the needed flexibility to define modular, reusable analysis models 

independently of the components with which they may be associated in the future. 

We have highlighted how the MAsCoM approach classifies analysis models for 

identification and for reuse.  Now, we focus on the knowledge required for automated 

system model composition, and justify the contribution MAsCoMs can make in this area. 

3.5 How Can MAsCoMs Support Computer-Automated Composition? 

In typical design scenarios, an expert user (human) is involved in the following 

tasks: 

• Matching of model context knowledge with analysis context requirements:  The 

required characteristics for models needed for specific analyses must be determined 

and models from a repository that satisfy these requirements must then be identified; 

• Composing component models to generate system models:  Models selected to 

predict component behavior must be connected to each other to predict the system’s 

behavior; 

• Administering the test case of the analysis to the system model:  The system model 

parameters and boundary conditions must be set for the test case, and the model must 

be simulated. 

Domain experts are also directly involved in the development of meaningful test cases, 

the interpretation of analysis results, and the direction of redesign.  For our purposes here, 

we focus on the tasks of identifying models and composing models into a functional, 

declarative system model that can represent a system design in an analysis test case.  We 

refer to these as the ‘composition tasks’.  The purpose of this section is to outline what 
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knowledge is used—and thus must obtained from an expert user or computer—to 

perform the composition tasks.  This knowledge is broken down into two different 

classes:  (1) Analysis context knowledge and (2) Model context knowledge. 

(1)  Analysis context knowledge is an input to the composition tasks; it is used to 

specify: 

• The form or structure of a design concept — e.g., a schematic; 

• The type and depth of analysis that is required; 

• The analysis context details, such as simulation parameters, boundary conditions for 

the test case, or the desired interfaces at the boundary of the system model. 

This analysis context knowledge is not found for reuse in the MAsCoM framework.  It 

will either be specified by expert users (or managers), or it could possibly be derived 

from existing knowledge from previous design efforts. 

(2)  Model context knowledge.  This type of knowledge is available in MAsCoMs, 

and includes the following: 

• Model semantics; 

• Model interface definitions, compatibility details, and relationships with component 

ports; 

• Model parameter definitions and relationships with component attributes. 

Assuming that the analysis context knowledge is provided by the systems engineer, then 

MAsCoMs provide all of the necessary model context knowledge to support automated 

composition.  MAsCoMs provide model semantics by describing model relationships 

with components and aspects.  MAsCoMs define interfaces with interface maps, and 
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express the compatibility of such interfaces by expressing them as interface ports of 

specific types.  Lastly, MAsCoMs define the model parameters with parameter maps. 

Let us now consider how we can use the model context knowledge provided by 

MAsCoMs to support a composition of models.  Given a design concept that describes a 

system of interest, we first recognize the components that comprise the system.  For each 

component, we consider its level of abstraction, interface ports and other attributes as 

specified by its Type, so that we can locate the component in the component taxonomy. 

Next, given the context of an analysis, a model of the component can be selected 

from the MAsCoM to support the perspectives of the analysis, which can be represented 

by aspects from the aspect taxonomy.  This involves identifying a match between the 

analysis context knowledge and the model context knowledge for each model in the 

MAsCoM (i.e., ensuring that the model represents the aspects required for the analysis).  

In addition, the attribute values of the design concept component can be mapped to the 

parameters of the selected behavior model using the knowledge in the parameter map. 

Finally, we can compose all of the selected models together to form a model for 

the entire system.  Model interface ports are connected with guidance from the interface 

maps to resemble the design concept structure.  For example, in a dynamic behavior 

composition, the models are connected in a way that closely resembles the same system 

architecture as defined in a structural model of the design concept.  This will be further 

illustrated in Section 5.1.4. 

Although we have identified much of the knowledge involved in the composition 

tasks and how MAsCoMs support these tasks, we acknowledge that we cannot ignore the 

additional specialized knowledge expert modelers may use when composing models of 
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system analyses.  Removing a human—a domain expert—from design and analysis 

activities entirely is difficult.  Much of the knowledge experts contribute to systems 

models is in the form of experience with a tool, a particular model’s behavior, or a 

fundamental understanding of a model’s equations.  It is generally difficult to capture the 

context in which this expert knowledge is applied.  Still, automated composition may 

provide a good starting model that can then be refined by the system expert.  Only for 

small classes of problems in certain restricted application domains do we expect that 

model composition can be fully automated.  

Some of the expert knowledge can be recognized and substituted by standardizing 

model interface ports.  Standardization is useful especially for the integration of analysis 

models [54].  Analysis models often use standardized interfaces, formalisms, or syntax 

for compatibility within a particular tool or analysis model library.  Model composition 

can then become a simple case of matching interface ports.  Within the modeling 

community, this is currently achieved by standardizing model libraries.  By using 

component models from the same library in a composition, compatibility is implied. 

In summary, some of the knowledge required to formulate an analysis model is 

external analysis context knowledge.  Model context knowledge on the other hand is 

captured through model organization and can be represented with MAsCoMs.  Human 

modeler knowledge that is built on experience and expertise is difficult to capture, 

although some of this experience can be captured by using standardized model interfaces 

in standard model libraries.  Even when MAsCoMs do not represent all the necessary 

knowledge for automated composition, they can partially perform the composition task so 

that the expert only needs to focus on implementing the necessary model refinements. 
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CHAPTER 4 IMPLEMENTATION OF MASCOMS IN SYSML 

To make MAsCoMs useful in the context of systems engineering, all the concepts 

and relationships have been defined in the Systems Modeling Language (OMG 

SysMLTM) [51].  Since SysML has been defined specifically to support systems 

engineering, it includes modeling constructs that directly support the definition of 

physical architectures and engineering analyses—the main focus of MAsCoMs. 

In the next section, some common SysML constructs are explained for the benefit 

of those who are not familiar with the language.  For additional clarification, see the 

current version of the SysML specification [51].  If you are proficient in SysML, you 

may skip to Section 4.2. 

4.1 Application of SysML Modeling Constructs and Diagrams 

A sample set of SysML constructs and diagrams is illustrated in Figure 4.1 and is 

further explained in this section.  The diagrams shown were created in MagicDraw 

UMLTM [28], a SysML modeling tool. 

The primary modeling construct in SysML is the block.  A block can represent 

anything, whether tangible or intangible, that describes a system.  For instance, a block 

could model a system, process, function, or context.  In this work, the use of blocks 

includes the modeling of component structure, aspects, engineering analysis models, and 

interface junctions.  Blocks are declared in Block Definition Diagrams (BDD), as can be 

seen at the top left in Figure 4.1.  A BDD is used to define block features and the 

relationships between blocks or other SysML constructs and is thus the equivalent of a 

class diagram in UML [9].   
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Figure 4.1.  SysML diagrams and representative constructs in MagicDraw. 

In the figure, a block ‘BlockA’ has two block properties.  One, named ‘block 

property’ is of type ‘Valuetype’.  A second property, ‘Mass’, is of type ‘Mass’ in units of 

kilograms.  Neither of these properties shown here is quantified.  Two composition 

relationships exist between BlockA and its constituents, BlockC and BlockD.  This 

means that BlockA exists as a set of blocks C and D, although the set (BlockA) can also 

own additional properties itself.  Finally, in the BDD in Figure 4.1, BlockA is generalized 

by BlockB, meaning that it inherits its properties from BlockB.  This is shown by the 

white arrow, or generalization relationship in SysML. 

A variety of other relationships that are built upon the definition of blocks are 

included in Internal Block Diagrams (IBD), as shown at the bottom left in Figure 4.1.  In 

the figure, a block named ‘BlockA’ has a port ‘portA’ that is of a specific stereotype 

‘flowport’.  This port has an outgoing flow.direction specified, and the flow moves to an 
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incoming flow port of a block named ‘BlockB’.  BlockB is used in this diagram under the 

specific usage name ‘UsageName’. 

To express mathematical constraints, a different type of block, called a constraint 

block, is used.  Constraint blocks are used to relate parameters through constraints 

expressed in an equation-based mathematical formalism or in a specific imperative 

programming language.  Parametric Diagrams (PAR), top right in Figure 4.1, allow one 

to express constraints between block properties via binding connectors.  For example, in 

the figure, the ‘Mass’ attribute of ‘BlockA’ is related to the ‘Mass’ parameter of 

‘ModelA.’  If this were a simple equality, a constraint (and associated constraint block) 

would not be needed; however, in this case, a change of units requires these block 

properties to be related via an equation.  Lastly, constraint properties are used in 

constraint blocks to represent specific parameters in the constraint equation, or they can 

exist individually in parametric diagrams, such as ‘GPext’ in Figure 4.4.  In this case, 

‘GPext’ is represented as a default value for a model parameter that is not equal to a 

typical component attribute. 

Package diagrams (PKG), shown at the bottom right in Figure 4.1, are used to 

illustrate the organizational structure of a SysML model by using a containment 

relationship to contain parts of the model in different folders, or packages.  This is similar 

to the organization of folders in a file system.  Packages contain entities such as blocks, 

diagrams, and other packages.  Between SysML entities, two other relationships can be 

modeled: 
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• Dependency:  This is used to express the reliance of one entity upon another (see the 

bottom right in Figure 4.1).  This relationship is the most general relationship and has 

a weak syntax that can be strengthened (clarified) via additional stereotypes. 

• Stereotypes:  These provide a way to specialize SysML constructs.  Through 

stereotypes, typical SysML constructs can have their semantics restricted to meet the 

needs of a design model.  Examples of stereotypes include blocks and constraint 

blocks, which are restrictions of the UML construct class [51].  In MAsCoMs, the 

dependency relationship is stereotyped as «refine», which conveys the new meaning 

that one entity is a refinement of another. 

While these are not all the constructs available in SysML, they are a good starting set for 

modeling MAsCoMs.   

4.2 Modeling Taxonomies of Components and Aspects 

Both the component and aspect taxonomies are modeled in SysML using the 

generalization relationship, as illustrated in Figure 4.2.  A generalization signifies that all 

the properties of the parent block—the block pointed to by the white arrow—are 

inherited by the child block.  Defining the taxonomy of components in this fashion 

simplifies the definition of additional components because most of their properties are 

likely to be inherited from existing component definitions.  As is illustrated for a 

commercial off-the-shelf pump, Vendor_OTS_Pump, SysML also allows one to further 

restrict the values of inherited properties.  Finally, besides certain key sizing and 

performance properties, the blocks also define the intended interface of the component, 

e.g., the suction and discharge ports of the pump. 
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Figure 4.2.  This branch of the component taxonomy shows the hierarchy of structure-

models that define the component interfaces and key characteristics. 

An important additional benefit of using generalization relationships is that all the 

engineering-analysis models associated with a parent also are associated with its children.  

For instance, when defining an additional pump from a specific vendor, there is no need 

to associate explicitly an entire set of analysis models with this new structure model, 

because the specific pump can simply be a specialization of an existing pump model and, 

as such, inherit all the analysis models associated with all of its parents. 

To help the user browse through the set of component models, the blocks are 

organized in packages, as is illustrated in Figure 4.3.  This has the additional advantage 

that name clashes can be easily avoided because they only need to be unique within the 
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namespace of the local package.  Globally, name clashes are avoided by using fully 

qualified names (e.g., Component.HydraulicComponent.Pump.FixedDisplacementPump.- 

VendorOTSPump rather than VendorOTSPump). 

Similar to components, aspects are organized into packages, and the 

generalization relationship is used to structure the aspects hierarchically.  Typically, only 

leaves of the aspect taxonomy are used to classify a model, since the intent of MAsCoMs 

is to enable reuse by capturing knowledge about the model in as much detail as possible.  

However, when specifying the context of analyses, upper-level aspect classifiers are often 

useful to specify a general class of model that would be applicable.  A glossary of all the 

aspects used thus far in the MAsCoMs is presented in Appendix A.  

4.3 Model Context Diagrams 

To describe how a specific analysis model relates to a component structure model, 

a Model Context is defined, as illustrated in Figure 4.3.  For each matching pair of 

specific analysis model and component structure, a different Model Context is needed.  

The idea of mapping analysis models to structure models in a specific context was 

developed previously by Peak et al. [40].  They introduced Context Based Analysis 

Models (CBAM) to bind the parameters of an analysis model to values in a structural 

model in the context of a specific analysis.  If the analysis model is defined to be 

sufficiently general, it can be reused in multiple contexts.  For this work, it is recognized 

that, for a particular component, such bindings between analysis models and structure 

models often remain the same irrespective of how the component is used within a larger 

system.  It therefore makes sense to establish these bindings at the component level so 

that the mapping becomes reusable.   
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Figure 4.3.  Model context BDD of the ConPump model from the Modelica HyLib 

library [33]. 

To relate an analysis model to the elements in the component and aspect 

taxonomies, the SysML relationship «refine» is used.  For instance, the «refine» 

relationships in Figure 4.3 reflect that the ConPump analysis model refines the 

description of the Fixed_Displacement_Pump component and that it refines a generic 

hydraulic behavior model, a mechanical rotational model, etc.  Note that, as with most 

SysML diagrams, only the relevant information is shown.  One must keep in mind that 

the component is related to many other components in the component taxonomy and that 

the aspects are also just references to their definitions in the aspect taxonomy. 



44 

4.4 Parameter Maps 

Now that since the analysis model is linked to its aspects and to a corresponding 

component, the detailed parameters of the model can also be mapped in a reusable 

fashion. 

As shown in Figure 4.4, the parameters of an analysis model can be bound to their 

corresponding properties in the component-structure model.  The binding connector has 

the semantics of a noncausal equality.  If necessary, additional constraint blocks can be 

used to bind properties that are related but not exactly equal.  For instance, the 

displacement property of the ConPump model is related to the displacement property of 

the Fixed_Displacement_Pump component through a constraint block that imposes the 

appropriate unit conversion.  In addition to unit conversions, a similar constraint block 

could be used to map related properties to each other, such as radius to diameter or radius 

to surface area. 

 
Figure 4.4.  A parameter map for a displacement pump. 
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To support composition of port-based analysis models [37], the Model Context in 

Figure 4.3 also includes a detailed interface mapping.  By formally linking interface 

junctions in the analysis model (e.g., p:FluidJunction) to the corresponding ports in the 

structural model (e.g., discharge:FluidPort), the component-level analysis models can be 

composed into a system-level analysis model based on the composition of component-

structure models in a system configuration model.   

Now that we have reviewed the implementation of MAsCoM knowledge in 

SysML diagrams, we step back to discuss a few best practices of the implementation of a 

reusable MAsCoM library within MagicDraw UMLTM [28], the SysML modeling tool 

used for this work. 

4.5 MAsCoM Library Organization—Best Practices 

Large-scale, complex design efforts can likely have their value increased through 

the use of formal modeling in MBSE and the MAsCoM approach.  Consider an example 

scenario where a design effort is captured formally in an information model via SysML.  

Typical design information based on MBSE is captured for storage, maintenance, and 

interfacing to other design tools.  When organizing the design information, MAsCoMs 

can be easily referenced to link analysis models and components with analysis test cases.   

Much experience linking components, models, and analyses has been gained 

through working with MAsCoMs in several design examples, including those in Chapter 

5.  In this experience, a general approach that has been found viable separates design 

information, a MAsCoM library, and a library of analysis models.  This approach is also 

supported by the modeling and execution of analyses through graph transformations by 

Johnson [22].  One has to keep in mind that MAsCoMs, while information models 
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themselves, do not actually contain analysis models.  Instead, MAsCoMs refer to analysis 

models that are stored in their native model libraries.   

Figure 4.5 highlights the general package organization of a MAsCoM library used 

in a design effort.  The MAsCoM library is initially divided into packages containing the 

component and aspect taxonomies.  A third package contains the junction definitions of 

standard interfaces used by MAsCoM model context definitions, interface maps, and 

junction maps.  Finally, a fourth package contains the MAsCoMs themselves.  In the 

model library, analysis models are described in terms of SysML constructs, organized in 

a model library package and subdivided by their originating tools and toolboxes.  The 

interfaces of models are captured and stored as blocks in the MAsCoM library interfaces 

package, so that the interface can be captured in a block property definition in the block 

used to represent the model.  Finally, once interface junctions for each model interface 

have been established, these junctions can be used in an interface mapping in the model 

context diagram. 
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Figure 4.5.  Package organization of a MAsCoM library as used in a design effort. 

Each MAsCoM is represented as a block in the library.  This block is used to hold 

all relevant information and knowledge about the MAsCoM.  This includes diagrams 
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such as model context diagrams with interface maps and parameter maps.  Also included 

are the relationships established in each diagram, the usages of entities from the 

component taxonomy, aspect taxonomy, or interface package in a diagram, and any other 

entities or relationships created specifically for a diagram of the MAsCoM.   

In summary, by defining such diagrams for a large number of analysis models, a 

library of formal, reusable models (MAsCoMs) can be defined to capture the knowledge 

about analysis models in a particular domain of interest.  These libraries combined with 

existing SysML constructs for requirements, test-cases, functional allocations, system 

behavior, and use-cases provide the systems engineer with a complete language and 

vocabulary for efficiently and effectively defining and evaluating system alternatives in a 

formal fashion.  We now illustrate the use of the MAsCoM approach and implementation 

in three design examples in an attempt to validate their contribution of value to design 

problems. 



49 

CHAPTER 5 USING MASCOMS IN DESIGN EXAMPLES 

In this chapter, three fluid-power examples are used to show the value and details 

of using MAsCoMs.  The first example, the hydraulic system of a log splitter, illustrates 

how MAsCoMs can be used in the design process.  A second example consists of a 

hydraulic system of a scissor lift in which the value of component model reuse is 

demonstrated.  Lastly, we present the capture of a complex component model into a 

MAsCoM of a component used in the hydraulic system of an excavator.   

For these examples, we assume that the designer has previously defined a 

particular design problem by modeling the system objectives, requirements and 

functional decomposition in a SysML design model.  The designer then needs to consider 

which measures of effectiveness (MOEs) can best be used to predict the extent to which 

certain objectives are satisfied.  This is where analysis models play a role.  Analyses must 

be specified such that the MOEs can be predicted based on an analysis model. 

5.1 Example A:  Log Splitter 

Although a log splitter is relatively simple, it is representative for a broad class of 

hydraulic devices.  In this example, we focus on a key aspect of component model 

reuse—the reuse of modular analysis models through composition into a desired system 

model.  Through composition, system models for any design concept can be created 

quickly and cheaply from their modular parts.  Furthermore, these models can easily be 

reconfigured to further evaluate such designs. 

As illustrated in a schematic in Figure 5.1, the hydraulic circuit of a typical log 

splitter contains a flow device (shaft-driven pump), a flow control device (servo valve), a 
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hydraulic actuation device (double-acting cylinder), a filter, tank, and hydraulic lines.  

Larger hydraulic systems can be thought of as variants of this circuit with additional 

actuators or more complex control logic. 

 
Figure 5.1.  A simplified schematic of a design concept for a log splitter. 

While the schematic of the hydraulic system represents the design concept, it does 

not allow for a seamless integration with other design knowledge in the context of MBSE 

and MAsCoMs.  To integrate the design concept with a formal analysis, we must 

formalize its schematic in SysML. 

5.1.1 Defining System Composition and Function from a Schematic 

To formalize a design concept via a schematic in SysML, one must consider the 

types of information that are contained in a typical engineering schematic.  This 

information includes component types and ports, as identified by ISO symbol 

representations, as well as the connections between the components’ ports. 

In SysML, the log splitter hydraulic system can be represented as a block, which 

in turn represents a system consisting of the composition of several component blocks.  

The details of the assembly of component blocks that comprise the system block can be 

modeled through the system block’s IBD, as shown for the log splitter in Figure 5.2.  In 
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the IBD, the structural ports of the structure model of each component are shown and 

connected to represent the same information as would be found in the typical engineering 

schematic. 

 
Figure 5.2.  System structure-model IBD for the log splitter design concept.  

5.1.2 Defining an Analysis Context to Test System Performance in a Discipline 

Once a concept is captured in the design model, it can be tested.  This test is a 

specific operation that the concept undergoes in a particular environment.  The test is 

designed to measure system behavior and performance from the perspective of a 
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particular stakeholder.  Rather than performing the test on a physical system, it is often 

less expensive to use a virtual, simulated system.  In this way, the system behavior is 

predicted rather than measured, and many more quantities than in physical experiments 

can be assessed.  

The analyst may characterize the context of an analysis by specifying which 

measures of effectiveness (MOEs) need to be predicted and by defining the particular 

aspects that need to be considered in the system-level model of the concept.  A complete 

analysis context will frame the test case used to investigate the design concept and 

specify the type of model used to represent the concept in such a test case.  This is an 

important point; while a design concept can be physically instrumented and tested from 

any possible perspective, an analysis model is typically only usable in testing the concept 

from a very specific perspective.  The simulation that exercises the model to perform the 

analysis can then be used in a SysML test-case to verify whether the requirement for the 

given MOE is satisfied. 

An analysis context for a system concept can be outlined in terms of simulation 

parameters [22], aspects, and through a relationship to a test case that stores additional 

information if applicable.  Test case information may include simulation boundary 

conditions, links to requirements and MOEs, and test processes and procedures.  An 

example analysis context for a log splitter hydraulic system is illustrated in Figure 5.3.  

Blocks are used to capture the simulation of the model used to support the analysis, the 

system model that will be exercised in the analysis, and a test case if applicable.  Aspects 

from the aspect taxonomy are referenced to specify the general type of the set of models 

used to compose the system model. 
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Figure 5.3.  Characterization of the context of a system-level analysis for the log splitter 

design problem.  A log splitter hydraulic simulation (LSHS) predicts the efficiency MOE. 

Notice that in Figure 5.3, the block for the Hydraulic System model is still empty.  

This represents the fact that an analysis can be specified without yet having a detailed 

model to support it.  In the next section (5.1.3), the process for filling in this block is 

explained.   

5.1.3 Component Model Selection 

The creation of this system-level analysis model starts by defining the particular 

system architecture that will be analyzed, as illustrated in Figure 5.1 and formalized in 
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SysML in Figure 5.2.  The system architecture is a composition of component-structure 

models connected by their ports.  Depending on how far the design process has 

progressed, these component-structure models could still be very abstract (i.e., close to 

the root of the component taxonomy) or very specific (e.g., a specific pump from a 

specific manufacturer).  Throughout the design process, these component-structure 

models are likely to be refined into more and more specific models from the component 

taxonomy. 

If a particular component-structure is not yet available in the component 

taxonomy, then the user may need to create a new model.  Such a new model can be 

defined most easily by first determining where in the component taxonomy it would fit 

and by then extending the appropriate parent models through specialization relationships.  

In this way, all the analysis models of the parents are also automatically associated with 

the new child.  If additional analysis models are required then they can be added by 

defining additional model context diagrams.  Note that such additional models should be 

defined in a local user-model rather than added to the MAsCoMs library right away; 

since the library is likely to be (re-)used by many different users, it should be kept under 

strict version control, and models should only be added to the library after extensive 

verification and validation. 

Once the system architecture has been defined, one can use the model context 

diagrams in the MAsCoMs library to provide the necessary information for identifying 

the appropriate analysis models.  Although there are potentially a large number of 

analysis models associated with each component in the taxonomy, the aspects that 

characterize the models allow the designer to home in on the few that are applicable in 
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the given context.  To be applicable, a model needs to include the same aspects as have 

been defined for the system-level model analysis context (as in Figure 5.3).  The aspects 

also help the designer to determine whether the component models are compatible with 

each other (e.g., from the same native model library).  Once the appropriate models have 

been determined, the specific values of the component properties can be instantiated 

through the use of parameter maps.  Alternatively, the task of instantiating specific 

parameter values can be postponed if the system model will be used in a more general 

context and will therefore be stored for reuse.  At this point, the set of component models 

needs to be connected to form a system model. 

5.1.4 System Model Composition 

The final step towards a complete system-level model is to integrate the analysis 

models of the individual components with each other. As mentioned in Section 3.5, this 

composition requires additional knowledge beyond what is currently available in the 

MAsCoM library.  This knowledge is algorithmic in nature—it cannot be captured in a 

static diagram (i.e., a schematic), but instead requires the specification of how the 

diagrams need to be manipulated or transformed.  In the current implementation, this 

composition is left to the user.  However, in the future, we plan to automate this 

composition process through the use of graph transformations as has already been 

demonstrated for SysML diagrams by Johnson et al. [22].  

The composition process is illustrated for a portion of the log splitter hydraulic 

system model, the power subsystem, shown in Figure 5.4.  Although the topology of the 

analysis model is very similar to the topology of the system-structure model in Figure 

5.2, it is not a one-to-one mapping.  As is explained in more detail in [23], the connection 
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of energy-based ports, such as a FluidJunction, requires the inclusion of a model 

representing the equivalent of Kirchhoff’s voltage and current laws. 

 
Figure 5.4.  Dynamic model for a portion of the log splitter example (shaded boxes 

represent external interface ports requiring further connections). 

To connect the interfaces of the models in this log splitter power subsystem, 

‘FluidNodes’ are used to connect the models’ ‘FluidJunctions’.  The ‘fluidnode’ 

constraints are used to apply the equivalent of Kirchhoff’s laws by constraining the 

interface parameters of the junctions.  Each fluidnode in this example joins two fluid 
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junctions based on SI units, except for the node joining the filter to a line connecting to 

the tank.  The orifice model used as a filter in this example uses English units (denoted by 

FluidJunction.E).  The fluidnodes are also used to convert the interfaces of the orifice 

model to SI units. 

5.1.5 Composition of Reliability Models 

In systems engineering, conflicting objectives often require tradeoffs between 

measures of effectiveness in multiple disciplines.  For instance, the discipline of 

reliability engineering may be tightly coupled to system dynamics or cost considerations.  

In this section, we demonstrate the capability to represent and reuse analysis models from 

the reliability discipline through MAsCoMs.   

Reliability models do not match the topology of a system structure model since they 

represent a coupling of functions mapped together to perform a system level function.  

Essentially, reliability models are not connected in the same way that the physical 

components are connected as shown in an engineering schematic.  To compose reliability 

models, the relationships between component functions and critical system functions 

must be determined so that a meaningful reliability composition will be achieved.  One 

way to achieve this mapping cost effectively is to use graph transformation algorithms to 

transform the system structure into a form that can be used by reliability modeling 

methods. 

Although the implementation of such transformations is beyond the scope of this 

current thesis, we explore how to perform such compositions manually for the case of 

probabilistic risk assessment, or PRA [25].  Within PRA, fault trees are a common 

method for predicting the probability of failure.  Just as for other perspectives, fault trees 
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can be composed with reusable component models and interfaces.  Since reliability 

models are not based on energy exchange through ports, their topology does not match 

the topology of the system-structure model.  Instead, the composition of reliability 

models in a PRA analysis involves tying all component analysis models together via 

logical nodes, as is shown in Figure 5.5.  Note that the model in Figure 5.5 has 

parameters for quantifying the numbers of several component ports, shown in an 

interface mapping.  We can combine this model into a fault tree to represent the control 

subsystem of a hydraulic circuit, shown in Figure 5.6. 

 
Figure 5.5.  Model context diagram for the reliability model of a hydraulic servo valve. 
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When reliability models are composed, they are typically linked together into 

chains to represent the dependency of one component’s operation on other components.  

Essentially, this means that one component’s probability of failure is dependent upon 

both its own reliability in addition to the reliability of other components it depends upon.  

Although reliability itself is defined as the probability of success (i.e., 1 – probability of 

failure), the fault trees shown in this work capture the probability of failure and trace the 

propagation of this probability from the component level to the system level. 

 
Figure 5.6.  Reliability model for the log splitter. 

To consider a reliability perspective using models from MAsCoMs, we formally 

capture the fault tree model of a pressure-compensated, load-sensing hydraulic system.  

In Figure 5.6, a composition is illustrated for a single level of a fault tree.  There are a 

few important distinctions to note in this fault tree reliability composition.  First, the 

models shown in the figure are represented as constraint blocks, an alternate 

representation of a model in SysML.  Generally, this is useful for simple models whose 
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equations can be made visible via constraints, and properties shown as constraint 

properties.  Complex models (with many more equations) can still be represented as 

blocks with parameters as part properties. 

A second distinction is the choice of what to show in a diagram.  Since reliability 

model compositions can become quite large, it makes sense to break up the models into a 

series of diagrams.  Due to the hierarchical nature of fault tree diagrams, parametric 

diagrams are a logical choice for implementation.  Parametric diagrams can be 

hierarchically structured, similar to portions of a fault tree.  SysML parametrics allows 

for a convenient nesting of parametric relationships to enable the hierarchical structuring 

and reuse of the relationships.  A possible disadvantages of the nested structuring of PRA 

diagrams is that the nesting can leave many component model parameters hidden deep 

within the system model; this makes it difficult for a modeler to assign values to these 

parameters.  Also, the logical failure path of a system reliability model is more difficult to 

visualize when captured in nested diagrams; although, the diagrams are traceable and the 

path can be deduced.  Since system structure diagrams (schematics) do not reflect the 

reliability structure either, an alternate form for the system composition is necessary 

(without nesting) to improve the comprehension and communication.  Just as nodes are 

used for combining junctions in model compositions of dynamic behavior, nodes of 

reliability models are used to represent the logical constructs of fault trees and to join 

component models together.  Like dynamic model nodes, reliability modeling constructs 

such as logical nodes for fault trees can be captured formally and stored within a 

MAsCoM library’s interfaces package.   
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5.1.6 Composition of Accounting-based Models 

An additional common perspective of modeling is that of a simple accounting-

based model composition.  The purpose of such compositions is to evaluate a shared 

parametric property or attribute among multiple components and determine how this 

property at the component level is related to the property at the system level.  The 

purpose of this section is to address this modeling perspective as it relates to system 

compositions of cost models. 

Consider the MAsCoM of a valve component that contains the valve reliability 

model seen in Section 5.1.5.  Assume that this MAsCoM also contains a cost model of 

the same valve.  The model context for the cost model is shown in Figure 5.7.  This cost 

model is characterized by similar aspects as the reliability model in Figure 5.5, yet is 

distinguished by an ‘Economics.Cost’ discipline aspect and is built as a Microsoft Excel 

file. 

The parameter map for this cost model is shown in Figure 5.8.  Note that the 

model inputs of ports, ways, and positions are tied to constraint properties in the 

parameter map.  Thus, the reuse of this valve model in the valve MAsCoM is specific to 

this model’s context that is related to a 4 port, 3 way, 2 position servo valve.   
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Figure 5.7.  Model context diagram for the cost model of a hydraulic servo valve. 

When composing an accounting-based system model of component models, it is 

important to ensure all models share the following: 

• The property to be composed (i.e., property type with units); 

• Quantification of the property (with our without uncertainty);  

• Quantity of matching items containing this property (multiplicity for identical 

components).  
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Figure 5.8.  Parameter map diagram for the cost model of a hydraulic servo valve. 

In accounting-based compositions, the diagram view of the composition can often 

be much simpler than the system structural view itself.  This is because duplicate 

components only need to be represented once, unless they are not strictly identical.  In 

this way, accounting-based compositions can closely resemble engineering bills of 

materials (EBOMs), allowing for an easy transformation between such compositions and 

EBOMs. 

An example of a cost composition for the control subsystem of the log splitter is 

presented in Figure 5.9, where a valve model characterized in Figure 5.7 and Figure 5.8 is 

composed with a hydraulic line model.  In this composition, a single valve and four 

hydraulic lines are composed into a control subsystem.  A constraint block containing an 

addition constraint is used to tie together a weighted sum equation with each model’s cost 
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and quantity to generate the total subsystem cost.  The total subsystem cost is the output 

at the top of the parametric diagram, allowing it to be reused as a nested model 

(constraint) in other parametric cost model compositions. 

 
Figure 5.9.  Control subsystem cost model composition for the log splitter hydraulic 

system. 

The composition of simple accounting-based models requires little knowledge 

about system architecture—solely which components are involved, their models, and 

their attribute data.  Thus, this is a good starting point for automated compositions, where 

graph transformations can be applied to a composition that lacks form, and only the rules 

of property matching and adding are necessary. 

While it is beneficial to use MAsCoMs once to create a system design model, the 

focus of this work is to provide an effective representation of analysis models that have 

good opportunity for reuse.  In the lifecycle of a MAsCoM, which incurs costs of formal 

modeling and savings from reuse, value can only be added to design projects through 

multiple reuses.  Thus, we now focus on an example of analysis model reuse in the fluid-

power domain by analyzing the hydraulic system of a scissor lift. 
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5.2 An Example of MAsCoM Reuse—Hydraulic Scissor Lift 

The main reason for modeling the relationships between component models in 

MAsCoMs is to promote reuse.  One opportunity for reuse exists within the context of a 

design problem whenever two system alternatives are considered that share similar 

components or subsystems—a very common occurrence.  Additionally, reuse is often 

possible when solving different design problems but still within the same application 

domain. 

For instance, consider the design of the hydraulic system of a scissor lift.  

Although a scissor lift is quite different from a log splitter in principle, it does share the 

need for compact, large-force actuation for which hydraulic components are well-suited.  

The schematic for a possible hydraulic system alternative for a scissor lift is illustrated in 

Figure 5.10; the corresponding system structure-model is shown in Figure 5.11.   

 
Figure 5.10.  A simplified schematic for a scissor lift. 

This design shares the same power-subsystem as the log splitter shown in Figure 5.4, yet 

uses a simpler 3-port control valve and a single-acting hydraulic cylinder.  In fact, 

between the two concepts, only two analysis models are not reusable—models for a 

control valve and an actuator.   
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Figure 5.11.  System structure-model for the scissor lift.  

To see the differences between the actuation portion of the hydraulic circuit, one can 

visually compare both versions of the model compositions for this part of the circuit in 

Figure 5.12 and Figure 5.13. 
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Figure 5.12.  Dynamic behavior model for the actuation subsystem portion of the log 

splitter example. 

 
Figure 5.13.  Dynamic behavior model for the actuation subsystem portion of the scissor 

lift example. 

The comparison between the required analysis models for the log splitter and 

scissor lift demonstrates the value of MAsCoMs for identifying and reusing components 
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and analysis models within the same application domain.  In this case, the domain of 

reuse is hydraulic fluid power. 

However, the reuse of analysis models between these two systems is also subject 

to some practical considerations.  First, the analysis models used to investigate the 

behavior for either system exist at a particular level of abstraction.  Thus, for these two 

design concepts to share the same analysis models, the contexts of the analyses must 

specify a similar level of abstraction.  A second consideration for component model reuse 

is that of the sizes of the components must be sufficiently similar so that the same models 

can be used.  For example, consider the case in which the size of the pump component 

used in the log splitter is much smaller than the pump used in the scissor lift.  The size is 

captured in the sizing parameters of the pump structural model and instantiated in the 

parameters of the pump analysis model.  To share analysis models, the size of the sizing 

parameters for both pumps must be within a range of values within which the analysis 

model’s behavior has been validated.  To avoid such problems, acceptable parameter 

ranges can be specified for model parameters in model context BDDs. 

Since a MAsCoM structural model is related to an entire set of analysis models 

that refine the structure model, once such a set of models is identified, all corresponding 

analysis models for the structure model (i.e., the pump) are identified for reuse.  Ideally, 

as long as each analysis model in a particular MAsCoM is specified in enough detail with 

constructs from the MAsCoM framework, one should theoretically be able to determine 

the most appropriate model to fulfill a case for reuse from the MAsCoM. 
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In the next example, we view MAsCoMs from the perspective of a model library 

administrator.  In the example, a component model for a complex hydraulic component in 

an excavator hydraulic system is classified for reuse as a MAsCoM. 

5.3 Classifying a Model for Reuse as a MAsCoM—Power Unit Component of a 

Hydraulic Excavator 

At this point, we have demonstrated how MAsCoMs are used to provide value in 

design examples.  An important perspective of MAsCoMs is the consideration of the 

costs of formality for the classification of models that exist in a vendor library or that are 

developed separately.  In this example, we compare the costs and benefits of two methods 

that can be used to capture a complex component model.  We consider a complex 

component model to be a model that contains an internal structure of low-level 

components, such as a subsystem.  Such models contain knowledge about how the low-

level components are connected structurally, as well as how the low-level component 

attributes are related to the complex component attributes.   

In this example, to capture a complex component, the following methods are 

compared: 

• Basic Approach:  Capture the component model and express it as a traditional 

MAsCoM.  This involves constructing a model context diagram, interface map, and 

parameter map. 

• Minimalist Approach:  If the low-level components of the complex component model 

are already captured as MAsCoMs, then use additional diagrams to represent the 

missing knowledge (i.e., component connections and attribute mappings).  Just as 

model libraries often build upon their own low-level models, one can build upon low-
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level component MAsCoMs to capture the knowledge of a complex component 

MAsCoM.  The term ‘minimalist’ is used to reflect the minimal amount of effort 

applied and costs incurred in representing the model for reuse—we take advantage of 

as much existing formal knowledge as possible. 

The context of this task is centered on a complex component that is part of a 

system model of the hydraulic system of an excavator.  The component and system 

models were developed as part of a custom library of hydraulic models coded in 

Modelica [38]. 

A graphical illustration of the excavator hydraulic system model in Dymola [11] 

is shown in Figure 5.14.  In this model, we would like to capture a complex component 

called a Power Unit (lower center in figure) for reuse as a MAsCoM.  This is desirable 

because it was found that this model has a high likelihood of reuse. 
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Figure 5.14.  Excavator hydraulic system model from the FluidPower library [38]. 

Since the power unit is a subsystem model built upon other existing library models, care 

must be taken in its representation for reuse.  A graphical illustration of the power unit is 

shown in Figure 5.15.  Note the use of 5 component models and two manifolds that 

comprise the power unit model. 
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Figure 5.15.  Power unit model from the FluidPower library [38]. 

5.3.1 Basic Approach:  Capturing the Power Unit as a MAsCoM 

This approach follows the basic use case of a model repository administrator who 

is characterizing the power unit model according to the MAsCoM framework.  This use 

case includes investigating the power unit’s native library documentation, the model 

parameters, the component interface ports, and any other model semantics.  After 

developing an understanding of the model, the corresponding constructs in the MAsCoM 

framework are selected to represent the power unit model.   

The power unit is captured in a MAsCoM model context diagram shown in Figure 

5.16.   
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Figure 5.16.  A model context diagram of the excavator power unit model. 

The interface map is also shown in the figure, relating the interface of the power unit to 

the component structure model ports.  Generally, a parameter map would also be 

included to complete the classification of the power unit as a MAsCoM.  However, in this 

case, the power unit model does not have many parameters that map to component 

attributes, so the parameter map diagram is not shown.  The advantages and 

disadvantages of this approach are discussed in Section 5.3.3. 
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5.3.2 Minimalist Approach:  Capturing the Power Unit as a MAsCoM by reusing 

MAsCoM Knowledge from Low-level Components 

In commercial model libraries, often more complex models are built upon low-

level models from the library to increase complexity and functionality.  In such libraries, 

modelers can typically use a low-level model in composition, or they can use a more 

complex model, regardless of the low-level models it is built upon.  This is the case for 

the power unit model.  We desire to capture a complex model, yet MAsCoM diagrams 

that capture low-level models of the power unit are already available. 

Since the power unit is a composition of the models described by existing 

MAsCoMs, we can already understand the definitions of the parameters of the power unit 

through the parameters maps of the low-level component models.  We can also interpret 

the semantics of the power unit through the aspects used to describe its low-level models. 

In addition to the details in the low-level component MAsCoMs, in this approach 

we can add the following details about the power unit to represent it to a modeler: 

• The architecture of connections between the low-level components; 

• The mapping that exists between the attributes of the low-level structure models and 

the power unit structure model. 

The architecture between low-level components can be captured in SysML in an 

IBD of the structure models, illustrated in Figure 5.17.  Since the existing MAsCoMs 

describe the interfaces of the low-level components in interface maps, the only details 

that are necessary are the connections between component ports.  The structural ports of 

the power unit component are represented as part properties in the left side of the 
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diagram.  These ports are connected to the ports of the low-level component structures to 

represent the power unit architecture. 

 
Figure 5.17.  Architecture of power unit from low-level component structure-models. 

While the architecture of the power unit defines how it is composed from low-

level components, we also must represent how the attributes of the power unit component 

map to the low-level component attributes.  For this, a component attribute map is 

defined; it describes how the low-level component attributes relate to those of the 

complex component.  A component attribute map diagram for the power unit is illustrated 

in a PAR in Figure 5.18. 
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Figure 5.18.  Component attribute map for the power unit. 

The attributes of the power unit component are shown as SysML part properties 

in the power unit block on the left in the attribute map.  These properties are related to the 

attributes of the low-level component structure-models via parametric relationships.  Two 

design constraints are also illustrated in the figure.  The first constraint, ‘designconst1’, 

represents the fact that the total system pressure cannot exceed the maximum allowable 
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pressure of the components or the relief valve pressure (this ensures the correct 

specification of maximum system pressure).  ‘Designconst2’ represents the fact that the 

volume of the accumulator cannot be greater than the volume of the tank (this prevents 

the tank from fully emptying of fluid). 

The MAsCoM of the power unit only needs to contain the diagrams in Figure 

5.17 and Figure 5.18 to be complete, since it also references the diagrams of the 

MAsCoMs of the low-level components in the MAsCoM library.  To retrieve the power 

unit model for reuse in a composition, it could be potentially composed from the low-

level component models with a graph transformation algorithm.  This could be very 

efficient and provide the flexibility of reconfiguring the power unit model in its 

component structure IBD or component relationship map if a variation is required for 

reuse.  Alternatively, the complete (already composed) power unit model could be stored 

for reuse and still be represented with this approach as opposed to the representation with 

the basic approach in Section 5.3.1.   

5.3.3 Evaluation of Approaches for Capturing the Power Unit as a MAsCoM 

There are advantages and disadvantages for using the basic and minimalist 

approaches in capturing the power unit.  Specifically, the benefits and costs of using the 

two approaches need to be considered. 

In the basic approach, all of the knowledge required to use the power unit can be 

found in the diagrams of the power unit contained in its MAsCoM.  In some cases, a 

model is desired to capture a complex component abstractly, without every detail.  The 

basic approach provides the simple representation of a power unit model that is abstract 

and can be used to predict general behavior about the power unit component.   
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In the minimalist approach, the power unit model is represented for reuse, albeit 

in a fashion that uses more diagrams in total and that is more difficult to interpret than 

with the basic MAsCoM diagrams.  The advantage of the additional diagrams—from 

low-level component MAsCoMs—is that many additional details of the low-level models 

themselves are available to a user to inspect upon searching for a desired power unit 

model.  Hence, even though it is called a minimalist approach, it actually provides more 

detail about the model to the user.   

This approach also provides the ability to specify through additional diagrams 

(i.e., the structural IBD and component attribute map) and create (potentially through 

graph transformations) any configuration of the low-level component models into a 

variation of the power unit model.  This is similar to the specification of a system model 

with an analysis context, except that in the minimalist case the component models are 

preselected; the specific MAsCoMs are specified by name through the component 

attribute map and structure IBD.   

Finally, with the ability to recompose the power unit model from a formal 

characterization in MAsCoM diagrams, a potential extension of the minimalist approach 

is to specify any model formally as a component or a system from existing MAsCoMs.  

The model could be quickly composed through a transformation upon its need for 

retrieval from the MAsCoM library.  If the costs of a graph transformation algorithm are 

ignored for the time being, the minimalist approach should be less costly than the basic 

approach, since less new knowledge needs to be formally modeled in SysML. 

Although the power unit can be captured in the basic approach as a typical 

component model in a MAsCoM, such as shown in Figure 5.16, this approach does not 
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take advantage of the knowledge available in the MAsCoM diagrams of the low-level 

components.  In a sense, this basic approach can be synonymous with “reinventing the 

wheel”, a practice that incurs unnecessary costs and that should therefore be avoided.   

The basic MAsCoM model of the power unit could be easily reused, but many of 

the details of the internal structure of the power unit would be abstracted away.  Such 

details would be desirable for modelers who wish to know the architecture or 

assumptions that lie within the power unit model.  If some of these details are already 

captured in the MAsCoM diagrams representing the low-level component models in the 

FluidPower library, why not represent these details to modelers selecting the power unit 

for reuse?  Unless the amount of detail is overwhelming, it would be best to have the 

information available when making a decision to use the power unit model. 

Also, a detriment to the basic approach is that it characterizes a complex model in 

a static structural configuration.  Although such a model is still reusable by instantiating 

different parameter values for component attributes, complex models are typically less 

likely to be reusable than simple low-level component models.  Thus, the basic approach 

risks the expense of creating a redundant model characterization if the model does not 

have a large opportunity for reuse. 

On the other hand, the minimalist approach provides the opportunity for a more 

reusable model since it is easily reconfigurable.  Yet the approach carries with it the 

additional complexity of knowledge being represented among more diagrams.  Also, the 

minimalist approach carries the ambiguity of costs and risks associated with the necessity 

of a graph transformation algorithm that is not currently available to compose the power 

unit model.  Additional costs occur when using the power unit model in a new 



80 

configuration.  Each new configuration must be specified in formal diagrams, which 

incurs costs of formal modeling to create the diagrams.  However, the additional costs 

may still be smaller than what are necessary to develop and capture new structurally 

static configurations of a power unit model. 

5.3.4 Composition of the Power Unit from Multiple Perspectives 

For each stakeholder perspective that is required to analyze the power unit, a 

unique model composition results.  In this section, we present compositions of the power 

unit’s lower-level components to represent the perspectives of dynamic behavior, 

reliability, cost and mass.  The ability to represent these perspectives varies based on the 

approach used to capture the power unit. 

The power unit model described in the each approach in Section 5.3 is a dynamic 

behavior model.  A different model is necessary to represent the power unit component 

from a different perspective.  In the basic approach, this requires different model context 

and parameter map diagrams for the different models, though they are contained in the 

same MAsCoM.  In the minimalist approach, the perspective of the power unit model is 

limited by the perspective presented by the low-level component models and the structure 

of the model defined in the structural IBD.   

An initial example of the power unit model is illustrated in a dynamic behavior 

model composition in Figure 5.19.  This composition resembles the structure model in 

Figure 5.17 of the architecture of the power unit’s low-level components.  In the figure, 

the specific EAMs are composed together—these models were selected from models in 

the MAsCoMs of the low-level components that represent the dynamic behavior aspect.   
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Figure 5.19.  A dynamic model composition of low-level component models into the 

power unit model. 

The power unit can also be composed with its corresponding reliability models, as 

illustrated in Figure 5.20.  In this simple case, an additional structural IBD is not required 

since there is no redundancy among the components, and we simply model the upper 

event as a system-level failure. 
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Figure 5.20.  A reliability model composition of low-level component models into the 

power unit model. 

Lastly, accounting-based compositions of the power unit’s low-level components 

are created to represent cost and mass in Figure 5.21 and Figure 5.22, respectively.  By 

nature, these compositions do not require the creation of any structural IBD diagrams 

aside from the structure represented in the general concept schematic. 
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Figure 5.21.  A cost model composition of low-level component models into the power 

unit model. 
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Figure 5.22.  A mass model composition of low-level component models into the power 

unit model. 

An important distinction to be made when representing a complex component 

architecture for automated composition is that the type of model represented by the 

architecture should be explicitly outlined via aspects (similar to an analysis context).  

Without this information, there is no way to associate the architecture with the correct 

‘type’ of model from each MAsCoM.  This could be detrimental if models from one 

aspect were composed to represent the system architecture from another aspect (although 

in many cases the models simply could not be connected together as specified). 
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Finally, we consider the question of value in modeling the power unit component 

with existing, low-level component MAsCoMs.  Clearly, if not taking advantage of low-

level component MAsCoM knowledge to help represent the power unit for reuse, 

formally capturing the power unit could be much more costly.  Although this expense can 

be justified through a strong opportunity for reuse and large savings by avoiding 

redevelopment of a large model, certainly greater savings are possible if some formal 

knowledge has been captured previously and is reusable itself. 

In using a minimalist approach to capture the additional details about the power 

unit, we have incurred only minimal costs to weigh against the value of the model’s 

reuse.  Hence, we argue that yes, there is value in reusing any MAsCoM information 

itself (such as low-level component MAsCoMs) in the formal classification of another 

model for reuse, including the power unit.  This argument theoretically allows for the 

possibility of greater savings during model classification if the MAsCoM library has a 

large amount of reusable information to provide when classifying a new model (as 

opposed to a small, relatively young library).  The same also holds for systems design 

models in MBSE design efforts:  The more information from a formally modeled, 

existing design that can be reused, the cheaper the cost of formally modeling the new 

design—hence, the greater the value in formally modeling the original design. 
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CHAPTER 6 CONCLUDING REMARKS 

In this thesis, we present a framework for characterizing and reusing analysis 

models in model-based systems engineering.  Analysis models are organized into Multi-

Aspect Component Models—collections of analysis models formally linked to a 

particular component-structure model and formally characterized by multiple aspects in 

an aspect taxonomy.  By formally organizing the analysis models into MAsCoMs, much 

of the knowledge necessary to instantiate and compose system-level analysis models is 

captured and available for reuse. 

The MAsCoMs have been defined in SysML so that they can be easily used to 

support decision making in systems engineering.  Through reuse, the additional costs 

associated with formal modeling in MBSE can be amortized so that the benefits of formal 

modeling can be made available cost-effectively to even small systems engineering 

efforts.   

6.1 Conclusions 

This work was motivated by the question of value.  Is there value in the formal 

capture of knowledge about engineering analysis models for use in multi-disciplinary, 

systems design problems?  Value is defined by an equivalence in outcome at a reduced 

cost, or an improved outcome for the same cost, or a combination of these options.  We 

have considered many costs of using analysis models, and savings in analyses from 

model reuse.  Also shown in Chapter 5 were the costs associated with the formal 

characterization of analysis models (and in the formal modeling of design efforts in 

general).  Although we are driven by the hypothesis that there is value in the formal 
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capture of analysis models for reuse, we cannot attempt to validate this hypothesis 

without extensive evidence collection in real-world situations.   

A hypothesis can be refuted with only a single false case—which at the present, 

we could likely conceptualize in the context of MAsCoMs.  Thus, part of the need to 

collect real-world evidence from the use of MAsCoMs is to define a set of parameters 

and bounds for complex systems engineering efforts for which our hypothesis remains 

valid.  After such an exercise, we could confirm with greater confidence the value of 

formal modeling and MAsCoMs in systems engineering. 

The possibility of adding value through formal modeling in MBSE and through 

the formal classification of EAMs is different in each case.  Formally capturing systems 

engineering information and knowledge varies in net benefits considering the complexity 

of the design, the need for detailed documentation, the number of stakeholders involved, 

and the geographic distribution of design team members, among other factors.   

A few benefits are very likely through the formal capture of EAMs:   

• If formal model descriptions of EAMs in an existing MAsCoM library are available 

for reuse, a formal systems engineering effort based upon the principles of MBSE 

will benefit from the MAsCoMs’ existence and use.  This is synonymous with 

simulation tools with model libraries.  Large costs are involved developing model 

libraries, but they can be invaluable once made available in the tool.  In the case of 

MAsCoMs, being able to interpret model semantics, and to formally manipulate them 

is generally advantageous.  If the costs of formal modeling have been overcome, then 

the benefits will begin to pay dividends.   
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• The more often a formally captured model (i.e. MAsCoM) is reused, the greater the 

total savings accrued (see Section 1.3).  These savings weigh against the initial costs 

of formally capturing the model; therefore the savings of reuse should eventually 

payoff the costs of formal capture for any model.  This statement assumes that the 

opportunity for reuse will persist for a sufficiently long period of time.  As 

technology progresses, the opportunity for reuse diminishes in some domains, such as 

with software.  However, the technology behind EAMs written in formal models does 

not change quickly.  Therefore, if the opportunity for EAM reuse remains relatively 

stable, then as models accrue more uses, the savings of reuse can eventually pay back 

the costs of formal modeling. 

• The formal classification of EAMs will enable computers to interpret the semantics of 

the EAMs, allowing for automated algorithms to generate system model compositions 

and perform automated analyses.  The use of automation to compose models will 

allow for further savings in other downstream modeling and analysis tasks to weigh 

against the costs of formal modeling. 

In this work we presented several examples and arguments for the proposed 

benefits of formally capturing EAMs for reuse.  Thus, it can be concluded that it is very 

likely that value does exist in the formal knowledge capture of EAMs in the context of 

systems engineering.  Some benefits of formal modeling with MAsCoMs were shown 

that do not rely on automated composition or the automation of other analysis processes.  

However, the advantage of the MAsCoM approach truly is dependent upon the ability to 

automate analysis processes through the manipulation of the formal models themselves.   
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In the current state of MBSE, large organizations capable of absorbing the costs 

of formal modeling have been the primary experimenters and adopters.  This is due in 

part to the requirement of government and aerospace agencies to document their work in 

detail.  However, in the cost-driven future, the value argument will weigh much more 

heavily upon the choice to implement formal modeling. 

6.2 Limitations 

In this work, many limitations are simply qualified by the limited scope in which 

MAsCoMs were implemented and tested.  For instance, SysML was chosen for its rich 

variety of constructs in describing systems engineering.  However, if another language 

were chosen to implement MAsCoMs, the meaning behind a MAsCoM structure would 

be conveyed differently, becoming non-interpretable for modelers and engineering efforts 

that are not based upon the same formal language.  This “language limitation” is simply a 

requirement that a modeler (and other end users of MAsCoMs) must be fluent in SysML 

to understand the relationships that define each MAsCoM of EAMs in SysML diagrams.   

Furthermore, the MAsCoM approach is limited pragmatically to companies that 

engage in systems engineering efforts that take advantage of formal modeling in MBSE.  

Without a complex project and other motivations for formal capture and organization, the 

MAsCoM approach does not show as much promise of increasing design value.  

However, that does not mean that the approach limits and incurs expenses for simpler 

design efforts if a MAsCoM library is readily available for an experienced modeler to use 

in constructing analyses.   

Ideally, MAsCoMs can be used to capture component models of any level of 

complexity or detail; however, as argued in Section 5.3, it is always best to weigh the 
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opportunity for a model’s reuse, and to use any existing formal knowledge to aid in 

decreasing the costs of formal capture.  In the excavator model of the power unit, it was 

possible to inspect the constituent components and models of the subsystem.  

Conveniently, each low-level component within the power unit is identified as a 

hydraulic component in the component taxonomy—this allows for the component 

relationships to be made in the model context diagrams.  However, the placement of the 

power unit itself—a model with internal structure—is less trivial within the component 

taxonomy.   

The power unit would not be a parent of its low-level component models since it 

shares the specific properties of all of the low-level components.  It can technically be a 

child component of one of the low-level components, yet this is not very meaningful—

which component would we choose as the parent?  A taxonomy of subsystem 

components, such as hydraulic pumping subsystems, could be defined and easily relate 

models of power units with various levels of abstraction and breadth.  However, this 

solution suggests a break between a base-level component taxonomy and a taxonomy of 

more complex components.  Addressing this problem is the subject of future work. 

A tradeoff exists when retrieving the power unit model from the library with an 

approach that relies on composition upon retrieval.  In such a case, multiple 

configurations of the power unit’s low-level components could exist for a graph 

transformation algorithm to compose based on the information presented about the power 

unit in the minimalist approach in Section 5.3.2.  This is because many possible system 

model parameter maps could be created to relate low-level component parameters to the 

power unit, based on the same architecture of component ports specified in the IBD.  In a 
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simple case, all low-level component model parameters can be connected to parameters 

at the surface of the power unit; however, the mapping could occur in many varieties.  In 

one case unmapped parameters could be internally embedded with default values as 

assumptions within the power unit model.  To avoid this problem, a specific parameter 

map between the power unit model and its low-level component submodels could be 

specified, but this would incur additional costs and limit the reusability of the power unit 

model by making its configuration more rigid. 

Final limitations of this work include the extent to which MAsCoMs have been 

tested thus far through examples and the extent to which graph transformations have been 

researched for the purpose of enabling the automated composition of MAsCoMs.  

Although arguments have been presented for the use of graph transformations to enable 

automated composition, the implementation of such is left for future work. 

6.3 Future Work 

Finally, having presented the current state of this work, the following represents a 

motivation for completion or extension of this work into future efforts. 

One major consideration for future work involves further investigation into the 

definition of the component taxonomy.  An ideal taxonomy of a domain would support an 

integrated structure of both simple components and subassembly components.  Such an 

integration might possibly involve defining the component taxonomy further detail by 

using references between components and the basic functions and flows that define the 

components’ internal complexity.  Essentially, functions and flows could be used to 

classify components just as aspects classify models.  This would require an organization 

of these functions and flows, perhaps following work by Bohm et al. [8] and Szykman et 
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al. [53].  An alternate proposal is to restructure the component taxonomy based on a 

network type structure, rather than a tree-like hierarchy. 

A more significant opportunity for future work is the implementation of graph 

transformations to support automated model compositions.  While it is questionable as to 

whether the MAsCoM approach alone adds value to the formal modeling of complex 

systems engineering problems, this becomes a much stronger argument with the 

additional resource savings through automated model composition.  Future work here 

involves the definition of model compositions in terms of graph transformation rules and 

algorithms.  As mentioned in Section 3.5 and Chapter 4, if a system form can be 

characterized formally in SysML with a library of available MAsCoMs, a graph 

transformation engine could then interpret this information and represent a new graph 

equivalent of a system model composition.  Additional work in this area would begin 

with simple reliability or accounting-based models that do not rely directly on the form of 

the system structure. 

Lastly, it is important to mention the usefulness of the MAsCoM approach if 

implemented as a web-based repository.  An important example to test the MAsCoM 

approach is to make available an implementation of a MAsCoM library that can be used 

in design efforts.  Much could be learned about the value of the MAsCoM approach when 

applied in the context of a repository that is used to store knowledge about EAMs along 

with the EAMs themselves for future modelers to reuse.  Also, if kept as an open-source 

repository, a large variety of uses in design problems could allow the generation of 

experimental data to classify situations when MAsCoMs can truly provide design savings 

and add value. 
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APPENDIX A:  GLOSSARY OF ASPECTS 

In this Appendix, the entire aspect taxonomy is explained.  This includes views of 

aspects from all base classes, including life-cycle phase, discipline, time and space 

discretization, mathematical formalism and representation syntax.  Many of these aspects 

can be very valuable and are used to represent meta-knowledge contained in analysis 

models, while other aspects represent meta-information used to describe the model in a 

repository. 

Regardless of the choice of which aspects are appropriate for characterizing a 

model, aspects are the secondary classifiers used to represent analysis models for reuse 

beyond initial component relationships.  They can be used to ensure direct model 

compatibility, such as between models of the same library, or other forms of 

compatibility by matching aspects from the initial orthogonal set.  Some aspects can be 

informative, such as creating a detailed representation of a model in a web repository for 

reuse.  Finally, aspects can be used to describe model compatibility less formally, such as 

via rules of thumb (e.g., composing models together that provide the same general level 

of accuracy). 

In the taxonomy, any aspect category is extensible and likely never to be 

complete.  In this appendix, we represent a large sample set as a good start.  Typically, 

only child aspects are used to describe a model for reuse.  However, in some cases, using 

an “unclassified” child aspect in the taxonomy to refer to a parent category is acceptable. 

The following aspects are organized numerically in outline form to identify their 

location in the aspect taxonomy structure, and are defined here for future use: 
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Meta-Knowledge Aspects:  These aspects are used to convey the true meaning, or 

semantics of the knowledge contained in an analysis model, rather than simply 

describing the model entity itself with information about the computer file, etc. 

 

The following are meta-knowledge aspects:  (1–5.x) 

1 Life-cycle domain:  Refers to the particular domain, or phase, of the component 

 lifecycle which the model abstracts to predict component behavior within this 

 phase. 

1.1  Design:  Refers to the design phase of a component life-cycle. 

1.2  Disassembly:  Refers to the disassembly phase of a component life-cycle. 

1.3  Disposal:  Refers to the disposal phase of a component life-cycle. 

1.4  Maintenance:  Refers to the intermittent and often unplanned maintenance phase 

 of a component life-cycle. 

1.5  Operation:  Refers to the operation phase of a component life-cycle, the main 

phase for which the component was designed. 

1.6  Recycling:  Refers to the recycling phase of a component life-cycle, and in many 

 cases occurs with disassembly and disposal. 

2  Discipline:  Refers to the specific field of study in which a specialist is trained and 

 will apply knowledge towards a design.  Models are typically developed by such 

 specialists to represent one or more related disciplines of either significant 

 importance to the design of the component or of importance to a stakeholder in 

 the design. 

2.1  Biological:  Refers to the subdiscipline of the biology of living objects. 

2.1.1  Animal Kingdom:  Refers to a biological subdiscipline of animals, and as such 

 can be subdivided by the animal kingdom taxonomy. 

2.1.2  Plant Kingdom:  Refers to the biological subdiscipline of plants, and as such 

 can be divided by the plant kingdom taxonomy. 

2.1.3 Microbiology:  Refers to the biology of small-scale, single-celled organisms, 

 viruses, proteins, and genetic material. 

2.2  Chemical:  Refers to the subdiscipline of chemistry, which is highly related to 

 biology. 
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2.2.1  Water-based:  Refers to water-based chemistry. 

2.2.2  Alcohol-based:  Refers to alcohol-based chemistry. 

2.2.3  Lipids:  Refers to the chemistry of fats, fatty-acids, and other energy-storage 

molecules.  This is closely related to  microbiology, 2.1.3. 

2.3  Economics:  Refers to the field of study of economics and value principles. 

2.3.1 Cost:  Refers to the economic principle of cost. 

2.3.1.1 Labor:  Refers to a specific cost of labor, and can include other associated 

 labor force costs. 

2.3.1.2 Material:  Refers to the specific cost of material resources. 

2.3.1.3 Direct Currency:  Refers to a nonspecific cost of a given monetary value. 

2.3.2  Market Demand:  Refers to the economic principle of demand. 

2.3.3  Market Supply:  Refers to the economic principle of supply. 

2.4  Human Factors:  Refers to the subdiscipline of humans and their involvement with 

designed components during any of their life-cycle phases. 

2.4.1  F.H.A.:  Refers to functional breakdown of components and related hazards to 

 humans in the proximity of the component or interacting with the component. 

2.4.2  Psychological:  Refers to the mental behavior of humans. 

2.4.3  Physiological:  Refers to the physical behavior of humans. 

2.4.4  Safety:  Refers to hazards and hazard mitigation features of components. 

2.5  Manufacturing:  Refers to the subdiscipline of manufacturing of designed 

 components. 

2.5.1  Process:  Refers to the process or flow of manufacturing activities. 

2.5.2  Quality Control:  Refers to the act of observing manufacturing process 

 performance and manufactured good performance measures. 

2.6  Physics-based:  Refers to the subdiscipline of scientific, physics-based 

 fundamentals of the operation of components. 

2.6.1  Electrical:  Refers to the electrical field of study. 

2.6.1.1 Analog:  Refers to the analog electrical domain and is closely related to analog 

  signal processing, 2.9.2. 

2.6.1.2 Digital:  Refers to the digital electrical domain and is closely related to digital 

 signal processing, 2.9.3. 
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2.6.2  Fluids:  Refers to the field of study of fluid mechanics, statics and dynamics. 

2.6.2.1 Hydraulics:  Refers to liquid-phased fluids, typically used to perform work. 

2.6.2.2 Pneumatics:  Refers to gaseous-phased fluids, typically used to perform work. 

2.6.3  Gravitation:  Refers to the field of study of large-body gravitation. 

2.6.4  Magnetism:  Refers to the field of study of magnetic energy fields. 

2.6.4.1 EM Energy:  Refers to electro-magnetic energy, including wave theory. 

2.6.4.2 Magnetic Flux:  Refers to pure magnetic field energy (static magnetic fields). 

2.6.5  Mechanical:  Refers to the field of study of mechanical interactions between rigid 

and flexible bodies due to forces. 

2.6.5.1 Dynamic:  Refers to the mechanical interactions between bodies in terms of forces 

and torques and the resulting changes in position. 

2.6.5.1.1 Rotational:  Refers to the rotation of the frame of a body relative to a   

 reference frame. 

2.6.5.1.2 Translational:  Refers to the translation of the frame of a body relative to a  

 reference frame. 

2.6.5.2 Kinematic:  Refers to the description of the motion of mechanisms in terms of 

positions, velocities and accelerations. 

2.6.5.3 Structural-Static:  Refers to the interaction of static structural elements and 

 the stresses experienced from forces shared between elements. 

2.6.6  Thermal:  Refers to the field of study of thermal interactions between bodies 

 and their environments. 

2.6.1  Conduction:  Refers to the standard definition of thermal conduction between 

 contacting, solid-phased bodies. 

2.6.2  Convection:  Refers to the standard definition of thermal convection between 

 solid bodies, liquids, or gases. 

2.6.3  Radiation:  Refers to the standard definition of thermal radiation between solids, 

liquids, gases or plasmas. 

2.7  Reliability:  Refers to the subdiscipline of the state of components in an 

 operational or faulted state and the probability of the component being in a 

 particular state. 
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2.7.1  F.M.E.C.A.:  Refers to Failure Mode Effects & Criticality Analysis, a common 

 failure analysis technique used to design components and prevent highly 

 undesirable, catastrophic failures. 

2.7.2  PRA:  Refers to Probabilistic Risk Assessment, and includes tools or methods 

 commonly used to predict the states of components or systems by induction or 

 deduction. 

2.7.2.1 Event Tree:  Refers to a PRA method of modeling the propagation of failure 

 events from an initial, critical event. 

2.7.2.2 Fault Tree:  Refers to a PRA method of modeling how the failure of a 

 component or subsystem function contributes towards the failure of a system 

 function. 

2.7.2.3 Markov:  Refers to a PRA method of creating state-machine diagrams to  model 

the probability of a component or subsystem to change between  operational 

and/or faulted states. 

2.8  Signal-Processing:  Refers to the subdiscipline of signal-based communications, 

 and can include signals based upon other fields of study such as electrical, 

 electro-magnetism, hydraulics, pneumatics, and dynamics. 

2.8.1  Controls:  Refers to the field of study of controls as a means of signal 

 interpretation and processing and communication with components or systems. 

2.8.1.1 Proportional:  Refers to proportional control. 

2.8.1.2 Integral:  Refers to integral control. 

2.8.1.3 Derivative:  Refers to derivative control. 

2.8.1.4 Input Shaping:  Refers to a vibrations control technique whereby predicted 

 system vibratory modes are convolved with control input signals to cancel these 

 vibratory modes during operation. 

2.8.1.5 Model Reference:  Refers to a control technique whereby the a plant model is 

 created and used to predict the behavior of the system.  The predicted behavior is 

 combined with the desired behavior to generate the control input signal. 

2.8.1.6 Recursive-Least-Squares:  Refers to a control technique whereby a recursive 

 least squares algorithm is used to predict system frequency and thus adjust the 

 control input signal. 
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2.8.1.7 State Space:  Refers to an adaptable control technique whereby the control 

 processing or parameters are varied based upon the state of the component or 

 system. 

2.8.2 Analog:  Refers to continuous-time control signals (e.g., a hydraulic pilot line). 

2.8.3 Digital:  Refers to digital or discrete-time control signals (e.g., a digital electric 

 sensor). 

2.8.4 Continuous:  Refers to continuous control technique where an actuator or drive 

 is given a continuously modulating input. 

2.8.5 Discrete:  Refers to “bang-bang” control, a technique where a noncontinuous 

 controller can only be used to proportionately adjust input magnitude by 

 adjusting an on-off duty cycle.  This should not be confused with discrete time 

 discretization of a model, 3.2.3.  Discrete controllers can use either analog or 

 digital internal control signals. 

2.9 Topology:  Refers to the subdiscipline of creating concepts of compositions of 

 components.  The topology of the system refers to the components involved and 

 their orientation. 

2.9.1 CAD Geometry:  Refers to the particular geometry of a body, including the 

 composition and orientation of its features. 

2.9.2 System Architecture:  Refers to the knowledge of the connections between 

 different component ports. 

3 Discretization:  Refers to the discontinuous nature by which we decompose 

 components and behavior to analyze particular points in space or time. 

3.1  Space:  Refers to the geometric decomposition of space by units, coordinate 

 systems, and dimensions. 

3.1.1 Unit System:  Refers to the standard units of length measurement used to 

 discretize space. 

3.1.2  Coordinate System:  These coordinate systems refer to the convention of length 

 measurements to traverse space in 2 or 3 dimensions. 

3.1.2.1 Cartesian 

3.1.2.2 Cylindrical 

3.1.2.3 Geographic 
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3.1.2.4 Polar 

3.1.2.5 Spherical 

3.1.3 Dimensionality:  These dimensions refer to orthogonal dimensions by which a 

 geometric parameter is measured. 

3.1.3.1 Dimensionless 0D 

3.1.3.2 Linear 1D 

3.1.3.3 Planar 2D 

3.1.3.4 Spatial 3D 

3.1.3.5 4D 

3.2 Time:  Refers to temporal discretization for the evaluation of a behavioral 

 property at a given point in time. 

3.2.1 Averaged:  Refers to a filter by which a property is averaged through time over 

 a particular sample size. 

3.2.2 Continuous:  Refers to continuous time, and is typically only idealized in 

 computer models with state-based, continuous-time equations. 

3.2.3 Discrete:  Refers to discontinuous time broken into segments. 

3.2.4 Discrete-Continuous:  Refers continuous time that is sometimes discontinuous 

 when the state of an equation changes. 

3.2.5  Instantaneous:  Refers to an exact instant in time. 

3.2.6 Pseudo-Real-time:  Refers to a real-time scale, such as during a model 

 execution, except with a shift in scale or phase of time synchronization. 

3.2.7 Real-time:  Refers to time scale and synchronization based on the standard 

 world clock, or GMT, and can be shifted based on location. 

3.2.8 Steady-state:  Refers to a time condition that can be combined with other types 

 of time discretization to represent the fact that a component or system state is 

 steady and non-changing over time. 

4 Mathematical Formalism:  Refers to the type of equations used to express the 

mathematical  relationships in the model (e.g., see 4.1-4.6) 

4.1  Algebraic 

4.2  Differential Algebraic Equations (DAE) 

4.3  Ordinary Differential Equations (ODE) 
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4.4  Partial Differential Equations (PDE) 

4.5  Petri Net 

4.6  Probability and Statistics 

5 Representation Syntax:  Refers to the type of formal programming syntax or 

source code that is used to convey the knowledge of the model, its interfaces, and 

anything else that allows it to be used within its native tool (e.g., see 5.1-5.9). 

5.1  Assembly (ASM) 

5.2 C 

5.3 C++ 

5.4 C# 

5.5 Fortran 77 

5.6 Fortran 90 

5.7  Java 

5.8  MATLAB 

5.9  Modelica 

5.10  MS_Excel 

 

Meta-Information Aspects:  These aspects are used to convey additional descriptive 

information about a model as a file stored in a computer or in a repository.  These 

aspects can aid in identifying between similar models for reuse, help with version 

control, etc. 

 

The following are meta-information aspects (6–6.x): 

6.1  Causality:  Refers to the direction of information flow in a model.  Models can be 

 either causal or noncausal. 

6.2 Accuracy:  Refers to a qualitative or quantitative measurement of model 

accuracy, which is typically only true for a specific case for a specific parameter.  

In some cases, accuracy can be applied to a model’s spatial discretization. 
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6.3 Resolution:  Refers to a qualitative or quantitative measurement of model 

resolution, which is typically only true for a specific case for a specific 

parameter.  In some cases, resolution can be applied to a model’s spatial or 

temporal discretization. 

6.4 COTS:  Refers to the source of a model’s knowledge.  COTS  refers to 

“Commercial  Off-the-shelf”, meaning the model is commercially available as 

part of existing, available software library.   

*This is contrary to a model that is built upon trends of existing product attributes 

in the marketplace.  Such a designation would be denoted by a COTS property of 

the referenced component. 

6.5 Fundamental governing equations:  Refers to the source of a model’s knowledge.  

This aspect means the model is built upon ideal, governing equations in the 

specific disciplines specified by other aspects. 

6.6  Empirical Data:  Refers to the source of a model’s knowledge.  This aspect means 

the model is built upon experimental data, and is thus statistical in nature. 

6.7 Date:  Refers to the date a model was committed if version controlled. 

6.8 Time:  Refers to the time a model was committed if version controlled. 

6.9 Title:  Refers to the title of the model from the native library. 

6.10 Description:  Refers to a short textual description of the model. 

6.11 Documentation:  Refers to a detailed hypertext description of the model, its 

parameters, assumptions, etc. 
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