MULTI-ASPECT COMPONENT MODELS: ENABLING THE

REUSE OF ENGINEERING ANALYSIS MODELS IN SYSML

A Thesis
Presented to
The Academic Faculty

by

Jonathan M. Jobe

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology
August 2008

MULTI-ASPECT COMPONENT MODELS: ENABLING THE

REUSE OF ENGINEERING ANALYSIS MODELS IN SYSML

Approved by:

Dr. Chris Paredis, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Dirk Schaefer
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Leon McGinnis
School of Industrial and Systems Engineering
Georgia Institute of Technology

Date Approved: June 30, 2008

ACKNOWLEDGEMENTS

First and foremost, | would like to thank my wif€mily, for having an
understanding mindset towards my motivation to eshia master’'s degree and for her
financial and emotional support.

| am also grateful for the insight and guidancenyfadvisor, Dr. Chris Paredis.
Without his perspective, thought-provoking questicand support, | would not have
progressed to where | am today. | also thank &metlAllen and Dr. Farrokh Mistree for
their stimulating conversations and motivationgbart in my journey back to school
full-time.

| appreciate the support of my parents, Mike andig®e and in-laws, Jim and
Silvia. | am grateful to my uncle Don and grandheotFrances for their support as well,
and my siblings Rachel, Elizabeth, and Anna.

There are some SRL lab-mates that | would like dknawledge in particular,
including Rich Malak, Tommy Johnson, and Nathan Mptor their stimulation, insight,
and friendship. 1 also thank my MaRC 266 lab-m&e=phanie, Roxanne and Alek. |
am also grateful to the entire SRL family for theitique, support, and friendship.

Finally yet importantly, 1 would like to thank mypsnsors for their generous
support, including the George W. Woodruff SchoolMdchanical Engineering. This
work has been funded by the ERC for Compact andi&fit Fluid Power, supported by
the National Science Foundation under Grant No. £640834. Additional financial
support was provided by Deere & Company, and bykheed Martin. | also thank No
Magic, Inc. for providing access to its MagicDrawMUW/SysML software tool, and

Dynasim for providing licensing for Dymola.

Finally 1 would like to thank Roger Burkhart, Sardo Friedenthal, Leon
McGinnis and Russell Peak for the discussions hedpped to crystallize ideas in this
work. Without all of the generous support, projgotls, and insight, | would not have

same perspective for this work.

TABLE OF CONTENTS

Page
ACKNOWIEAGEMENTS ... eeanns ii
IS 00] = 1o T 3PP viii
IS 0] T T | PP IX
SUIMIMATY ..ottt o2t e et et e e e et e et et e et e e e e e e e e een e aeanaanenaeeens Xi
(@4 aF=T o] (=] g M 011 0 To 1§ [ox {0 o [PPSR 1
1.1 MBSE Integrates Knowledge and Design InformatiaMbodels 2
2 |V [0 1) V7= 1 o o PP 3
1.3 Cost Tradeoffs of Formal Modeling and REUSEccoeevvviiiiiiiiniiiiiinneees 5
1.4 Using SysML to Capture Formal Modeling in MBSE......cccciiiiiiiinieeennnne. 8
1.5 Motivating Questions and ODJECtIVe..........coec i, 9
1.6 SUMMMAIY ... ittt ettt s ettt e et e et e e et e e e e e e e e e een e eneeenns 10
Chapter 2 Related LItEratureoiiiiuiiiiitm et e e e e eeas 12
2.1 Modularity and FUNCLIONuiiiiiieiiii e 12
2.2 Knowledge Classification and Organization for Sggrand Reuse................. 13
2.3 Composition as a Use Case for REUSE.......ccccuaeiiiiiiiiiiiiiiiii e 16
2.4 Graph Transformations and Automated Analysis Exenut........................ 18
2.5 Gap of Behavioral Model Classificationcccec.c.voieiiiiiniiiiiiiieiiieeeiie, 20
Chapter 3 Approach: Multi-Aspect Component Models......ccccc.ieiiiiiiiiiiiiiiiiinnees 22
3.1 The Structure 0f MASCOMSuiiiiiii s sttt 2.2
3.2 MASCOM MOEI SELSuniiiiiieeiiii et eeee e 24.
3.3 Taxonomies of Components and ASPECLSccceureeiiiiiiiiiiiiiieeeeie e 25
3.3.1 A Taxonomy Of COMPONENES......uiiiiuiieiiiii ettt eei e eees 25

3.3.2 A TaxonN0OmMYy Of ASPECESccuuuiiiiiinieeeets s e e e e et e e e et e e eetn e e e eaa e eennns 28

3.4 Fine-grained Structure-to-Behavior Relationships............c.ccoeiviiiiininennn. 31
3.5 How Can MAsCoMs Support Computer-Automated CompmsX............... 33
Chapter 4 Implementation of MASCOMS iN SYSMLcc.uiceiiiiiiiiiiccei e 37

4.1 Application of SysML Modeling Constructs and Diagh®............c....cceeuunneens 37
4.2 Modeling Taxonomies of Components and ASPECtS .cccce . vvvvieiiiiieeeennnnnn. 40
4.3 Model Context DIagramscooeeueueiieimmce et e et e et eeea e eeanns 42.
4.4 Parameter IMAPSocuuiiiuiiiiiieei e s e e eas 44
4.5 MAsCoM Library Organization—Best PractiCes.. e ceuuiieiiiiiniiiiiinenennnn. 45
Chapter 5 Using MASCoMSs in Design EXamples..........c..oveeiiiiiiiniieiiineeeeineeeeeannn 49
5.1 Example A: LOg SPIer......o i 49
5.1.1 Defining System Composition and Function from aeBaétic................... 50

5.1.2 Defining an Analysis Context to Test System Pergomoe in a Discipline .51

5.1.3 Component Model Selectionoiiiceeiiiii e 53
5.1.4 System Model COMPOSIION.oiiiiiiiiiiaeieee e 55
5.1.5 Composition of Reliability Models ... 57
5.1.6 Composition of Accounting-based Modelscccoccooiiiiiiiiiiiiiiiiis 61
5.2 An Example of MAsCoM Reuse—Hydraulic Scissor Lift..............ccc........ 65
5.3 Classifying a Model for Reuse as a MAsCoM—Powert @mponent of a
HydrauliC EXCAVALOF.........cc.uiiiiieii e 69
5.3.1 Basic Approach: Capturing the Power Unit as a M&€C....................... 72
5.3.2 Minimalist Approach: Capturing the Power Unit aBlAsCoM by reusing
MAsCoM Knowledge from Low-level Components....cccccccoevevvnieveennnnnn. 74
5.3.3 Evaluation of Approaches for Capturing the Poweit ds a MASCoM77
5.3.4 Composition of the Power Unit from Multiple Perspees..............c......... 80

Vi

Chapter 6 Concluding REMArKSooiiiiiiiiiiii e 86.

6.1 CONCIUSIONS ...ooiiiiiiiiiiiii et s ettt e ettt e e e e e ee e e eeeenes 86

6.2 LIMIEALIONS ...coeiiii et et e ettt e e e e e e 89

6.3 FULUIE WOTK... et ee e 91
APPENDIX A: GloSsary Of ASPECLSoiiuiiiecceee e eeeans 93
REIEIENCES ... ettt e e 102

vii

LIST OF TABLES

Page

Table 1.1. Costs of Modeling with Reuse...........ccoecee i ee6

viii

LIST OF FIGURES

Page

Figure 3.1. Multi-aspect component models combimayasis models (EAMS) in a
matrix organization linked to taxonomies of compaseand aspects. 23

Figure 3.2. An example portion of a component t@XONMcoeevirriiiiniiiiiineeeennnnn. 26
Figure 3.3. An example aspect taXxOnNOMY. ...ccucaiiiiiiiiiiiiiieeeii e eeea e 29
Figure 4.1. SysML diagrams and representativetcocts in MagicDraw. 38

Figure 4.2. This branch of the component taxonshows the hierarchy of structure-
models that define the component interfaces ancckayacteristics. 41

Figure 4.3. Model context BDD of tli@nPumpmodel from the Modelica HyLib

10 =Y 1S 1< | PR 43
Figure 4.4. A parameter map for a displacemempu...........cceeviiiiiiiniiiiiieeennnnnn. 44
Figure 4.5. Package organization of a MAsColaligras used in a design effort. 47
Figure 5.1. A simplified schematic of a desigmagpt for a log splitter. 50
Figure 5.2. System structure-model IBD for thg $plitter design concept. 51

Figure 5.3. Characterization of the context sfstem-level analysis for the log splitter
design problem. A log splitter hydraulic simulatil.SHS) predicts the
effiCienCY MOKE. ... et e e 53

Figure 5.4. Dynamic model for a portion of thg kplitter example (shaded boxes
represent external interface ports requiring furt@nections).................. 56

Figure 5.5. Model context diagram for the relitgpmodel of a hydraulic servo valve. 58

Figure 5.6. Reliability model for the log splitte...........cooeviiiiiiiiii e, 59
Figure 5.7. Model context diagram for the costielof a hydraulic servo valve.......... 62
Figure 5.8. Parameter map diagram for the costetaf a hydraulic servo valve......... 63

Figure 5.9. Control subsystem cost model comjwsior the log splitter hydraulic

S}V (=] 1 TP 64
Figure 5.10. A simplified schematic for a SCISBOL.............cccvvvviiiiiieiiiiiii e, 65
Figure 5.11. System structure-model for the SCiBBQ.............cccooiiiiiiiii e, 66

Figure 5.12. Dynamic behavior model for the acturaubsystem portion of the log
SPIItter @XamPI.ooeei e e 67

Figure 5.13. Dynamic behavior model for the actrasubsystem portion of the scissor

[Ift @XAMPIE. e e 67
Figure 5.14. Excavator hydraulic system model ftbenFluidpower library [38]. 71
Figure 5.15. Power unit model from the Fluidpowierdry [38].cooovviiiiiiiiiiiinennnn. 72
Figure 5.16. A model context diagram of the excavpbwer unit model..................... 73

Figure 5.17. Architecture of power unit from low## component structure-models. ... 75
Figure 5.18. Component attribute map for the pouwet.cooeviiiiiiiieiiiinneees 76.

Figure 5.19. A dynamic model composition of lowdégomponent models into the
POWET UNIt MOAEL. ... e 81

Figure 5.20. A reliability model composition of lelevel component models into the
POWET UNIt MOAEL. ... e 82

Figure 5.21. A cost model composition of low-legemponent models into the power
UNIE MOAEL e e 83

Figure 5.22. A mass model composition of low-les@mponent models into the power
UNIE MOAEL e e 84

SUMMARY

Today’s market is driven by the desire for incregsi complex products that
perform well from manufacturing to disposal. Desig these products for multiple
lifecycle phases requires effective managemenhgineering knowledge and integration
of this knowledge across multiple disciplines. Byanaging this knowledge, products
can be realized faster, perform better and be moreplex. However, management
techniques are often very costly and managers aaityebecome bogged down with
large quantities of information, slowing the desigiocess and degrading knowledge
transfer. Thus, a need exists for effective yekpensive knowledge management.

One approach for decreasing the costs associatédl ganerating design
knowledge is to reuse modules of existing knowledgln Model-Based Systems
Engineering (MBSE), information about a design isred formally in knowledge
structures, or models, including requirements,edtalders, and analyses. To support the
reuse of the existing knowledge in design, MBSHised as a basis for integrating
engineering analysis models.

In this thesis, a framework is presented for madassification that organizes
models by components and aspects. This schenwuigl fto be useful in classifying
engineering analysis models for reuse by storimgnthas a set, in containers known as
Multi-Aspect Component Models (MAsCoMs). Each moidea MAsSCoM is related to
the formal structure model of a physical componamil to the many aspects of the
component that the model represents. The Objechaljliament Group’s Systems
Modeling Language (OMG SysML), is used to implement MAsCoMs and support

MBSE.

Xi

Validation of the MAsCoM concept is performed wifluid-power design
examples, including a log splitter, scissor liftadahydraulic excavator. In these
examples, MAsCoMs improve design value by 1) Cfgggj modular and composable
engineering analysis models for reuse in multipiscidlines, and 2) Providing
knowledge modules to computer-automated algorithims the future automated

composition of component models into system motteterform system-level analyses.

Xii

CHAPTER 1 INTRODUCTION

Current systems design practices face many chafengMarkets must be
analyzed and consumer demand must be quantifiegkigh concepts must be explored
and evaluated. Decisions must be resolved, sg@ukesian be continued and extended.
These designs require testing; as such, performanuse be analyzed. In some cases,
models need to be developed, integrated, and diedulaTradeoffs among stakeholders
need to be evaluated, and finally detailed desigpismized for operation, and other
lifecycle phases.

These are just a few of the tasks and challenge=dfan systems engineering.
Each task has an immense amount of informationcaged with it. Properly organizing
this information for documentation and storage, andperly linking this information
between tasks and among stakeholders is necessagtiieving the following:

e Facilitating communication among design teams,

e Producing a successful design (avoiding mistakes),

e Avoiding unnecessary design costs due to miscontation, or unawareness of
design knowledge.

Current methods for systems design utilize largilgument-centric methods to
store design information and communicate it amoesgigh team members. Engineers
and analysts using these current methods are pajdg of becoming overwhelmed
should the amount of design information drasticallyrease. This bogs down managers
from making decisions and design teams from funatip efficiently.

In addition to the traditional challenges of systedesign, today’s consumers

seem to have an insatiable desire for increasedrnation and functionality. This creates

a market that causes the complexity of new prodametssystems to increase rapidly. To
manage this additional complexity effectively, gyst engineers need to adapt the
methods and tools they use in the systems developm®cess. The increase in
complexity affects this process by imposing thednee

e To integrate tightly acrosmultiple disciplines:Electronics, mechanisms, controls,
and software are often tightly integrated as inmagonic systems;

e To coordinate closely amongultiple stakeholdersExperts within the different
disciplines and across different life-cycle phasesd to combine their knowledge to
achieve a competitive end-product;

e To weigh carefully the ofterronflicting objectivesof all stakeholders: Trade-off
decisions based on uncertain and incomplete infoomaneed to be made with
respect to performance, cost, reliability, and oHspects;

e To manage effectively théarge amount of informatiorand knowledgenvolved
throughout the lifecycle of the system: Cyber-astructure is needed to store, link,
access, and maintain all this information and keaolgé in an intuitive and consistent

fashion.

1.1 MBSE Integrates Knowledge and Design Information \a Models

To address these needs, the systems engineeringuotiy has started adopting
a Model-Based Systems Engineering (MBSE) proce$s1a]. This process can help to
organize design information and knowledge effiderdand effectively. In MBSE,
engineers formally model all aspects of a systenggneering problem, ranging from
use-cases and requirements, to functional decotmosi physical architectures and the

corresponding behavioral analyses. The aspectianed here are orthogonal directions

along which a model can be characterized. Thisinslar to the aspects in Aspect-
Oriented Software Development [55], or the differeiews in Computer Aided Multi-
Paradigm Modeling [34].

By modeling these different system aspects formalig different stakeholders
can express their knowledge unambiguously and diateknowledge effectively and
efficiently with other stakeholders. In additiompdels of the different system aspects
(e.g., dynamic behavior, reliability, cost) canfbemally linked to each other so that the
consequences of design changes can be more easiy tthroughout the system in its
multiple lifecycle phases, and so that analysesdmaisions can be more easily revisited
and updated.

Since MBSE serves as a basis for integrating moaéls a formal, effective
organization of design information, a direct usespnts itself for formally organized
engineering analysis models (EAMS) in design pttsjecEAMs provide links to many
facets of design among many perspectives. Analgslss that simulate EAMs provide a
way to obtain behavioral performance knowledge feoooncept, or to synthesize design
knowledge from requirements. Without these analgs®l the models that support them,
the engineering of systems at the current or futlerels of complexity becomes

extremely difficult and cost prohibitive.

1.2 Motivation

The costs associated with the development of dasfignmation and knowledge
are significant. Additional costs ensue if quaesitof design information increase
beyond the effective working capacity of currenttmels. These costs accrue from

poorly organized design information—information che lost, miscommunicated, or

misrepresented such that it cannot be found or @letified when needed. Once any of
these scenarios occur, additional resources arg:spe

e Recovering from mistakes due to miscommunicatiolostrinformation;

e Restoring lost information by repeating design andlysis tasks.

Furthermore, revenue can then be decreased dudess-shan-optimal product design
that results from poor information management.

In such scenarios, the effective storage of desiprmation and knowledge
avoids adverse consequences. However, many olgscexist for storing design
information; simply implementing storage in a cortgusystem is not sufficiently
thorough, as it would not allow knowledge to be owmicated easily or to be
generalized easily (a necessary requirement fomwlauge reuse). To achieve these
objectives, a formal approach is needed to aid conration and provide consistent
universal semantics.

Within a formal approach, information modeling camovide a storage
framework. However, on what is the framework b&sebhformation and knowledge
must be organized—modularized and classified—sb ithia identifiable, and easy to
find by all relevant parties. If based upon thismise, such an organization of modular
information and knowledge can be reusable. Fumbeg, the EAMs that support
analyses that use and produce the information amalvlkedge can also be reused,
decreasing design costs.

In model-based systems design, the knowledge storfeAMs is used to perform

analyses. The analysis results support decisicadery the systems engineer within a

particular analysis context. In this work, we fecan the formal classification and

storage of engineering analysis models (EAMSs), beea

e They can be easily generalized: EAMs are typicplyameterized and as such can
generally be applied to represent the behavior rtifaets of varying attribute
guantities.

e They can be of high value: Often a large portidraomalysis resources are spent
obtaining or developing a model and verifying ithe ‘right’ model for an analysis.

Since many resources are needed for the developph&#®Ms, significant costs can be

avoided when reusing EAMs.

1.3 Cost Tradeoffs of Formal Modeling and Reuse

Although reusing EAMs can decrease costs, theim&rmodeling introduces
additional costs. Capturing knowledge formallyairmodel at the systems engineering
level is nontrivial. It typically requires a highkevel of expertise, additional time, and
often the capture of information that would othessvhave been assumed implicitly.

It is therefore important to carefully weigh thest®of formal modeling versus its
benefits. Whether this cost-benefit tradeoff favdormal modeling depends on the
context. When designing a simple product or systemhich the design team is small
and the number and complexity of the models ardlso@e may not be able to justify
the extra cost of capturing all of this knowledgenfally. However, for complex
systems, the risk of not being formal is just taghk—both the probability of something
being overlooked and the consequences of suchkesstae large.

In the context of this work, it is assumed that Hystems under design are

sufficiently complex to take advantage of a formmabdeling approach. EAMs

themselves can be complex in nature, thus a detatioh must be made of the
appropriate level of formality at which EAMs areptared. This is determined by the
choice of which details of EAMs to formally captusnd how to represent them. The
more details that are captured, the greater theafasis formal modeling to be traded
against savings from reuse.

Consider the different tasks associated with anineeging analysis. As is
illustrated in Table 1.1, the costs and effort agged with several of the modeling and
analysis activities can be reduced through modedaeFor instance, model development
requires deep insights into an application domaith, avith testing and verification, can
require a lot of time and effort. When reusing @del rather than developing a new one,
one still needs to find and retrieve the model.(drgm a model repository) and define
the appropriate parameter values. However, ifigafit context is included in the formal

model definition, then these costs can be subsignsmaller than when developing a

completely new model.

Table 1.1. Costs of Modeling with Reuse.

Modeling and Analysis 1 Analysis 2
Analysis Activity (development (reuse)
Formulate Modeling X X
Task

Develop Model X

Retrieve Model X
Define Model X partial
Parameters

Verify Model X partial
Validate Model X partial
Simulate Model X X

Even more costly is model verification and validati

The process of

constructing physical experiments, collecting daaad matching data to simulation

results is time-consuming and expensive. Once deimbas been validated in this
fashion, it should be carefully protected and sawea repository. Although it is wise to
validate a model again whenever it is used in a oemtext [29], current validation and
verification guidelines also recommend that onefy@nd validate models for individual
components and subsystems first before validatisgseem-level analyses in which these
component models are used [3]. This fits withia #pproach introduced in this work,
where analysis models are formally organized inbat&iners of models for reusable
components or subsystems.

So far, we have argued that through formal modefiragel reuse can be cost
effective. However, formality by itself is not §igfent; it is also important that there be
sufficient opportunity for reuse A very specialized analysis model is unlikely lie
reused because the chance that the same spedgh desitext presents itself again is
small.

Therefore, the second pillar of a foundation topsurp model reuse isiodularity.

In a modular modeling approach, large models acemposed into modular pieces that
can be quickly and easily reused and configurea ankarge number of different system-
level models. This fits well with current systeersgineering practice, which relies on
composition and integration to deal with compleXy 45]. By decomposing systems
and their functions into sub-systems integratech veiach other through well-defined
interfaces, the systems engineering problem cadibded into smaller, less complex
sub-problems, each of which can be solved by alematore specialized design team.

Since many systems require similar functionalibg subsystems satisfying these

functions tend to be reused. For instance, manierys require mechanical energy and

they rely on either internal combustion engineslectrical drives to provide this energy.
In addition, the standardization of componentsrfmdular design can produce greater
product variety by reusing components across piodargants and lines, and allows for
easier validation and verification of the compose[i6]. Since the components or
subsystems are reused, the analysis models asgbwidgh these components should be
reusable also.

To link reusable design models with systems engingeanalyses, a formal
framework is desirable to share similar semanta@scantextually describe and link
models, analyses, and design objectives. Formdibinformation-modeling framework

to aid design, we turn to SysML and Model-Based&wys Engineering (MBSE).

1.4 Using SysML to Capture Formal Modeling in MBSE

The Systems Modeling Language, OMG SysMI[51], was developed as a way
to formalize models and information used in systemgineering. SysML is a formal
language for describing systems for design andyaisapurposes. It supports linking
system design and analysis requirements with aisatysdels via meta-level constructs.
This includes specific constructs for handling setica such as requirements, behavior,
structure, and parametrics. Since SysML offershsacformal, semantically rich
language for systems engineering, it naturallyapable of supporting MBSE efforts.
Thus, SysML provides the additional means necessarformally capture systems
engineering information and knowledge for reuse.ithWsysML’s many supporting
constructs to clarify semantics, EAMs can be cfeskand organized for reuse.

In the systems engineering community, where MBSH 8gsML are a new

method and language, much focus is aimed at detgmgna road-map for how SysML

can aid MBSE. How can this language and correspgnmols be used to further aid
systems design efforts? One promising objectiadmg systems design through formal
EAM capture for reuse. In the next section, theivation is addressed more specifically

in the context of this work.

1.5 Motivating Questions and Objective

Through SysML, the capability exists for capturigsign knowledge; thus, we
must ask the questions “should we capture the kewyd”, and if so, “how should we
formally express it?” Some pieces of knowledgeaagiably more valuable than others,
and some are much more likely to be reused. Sumcare interested in the capture and

reuse of knowledge about EAMs, our primary motivgtjuestion becomes:

Primary Question“Is there value in the formal capture of knowledapout engineering

analysis models for use in multi-disciplinary, €yss design problems?”

The objective of this research is to answer thisstjon by identifying ways that
models can be formally classified, stored in a s#poy, and represented for reuse
through application in systems design problems.ecBipally, what aspects of EAMs
should be formalized to enhance reuse?

Answering the motivating question also requirestausnvestigate the ways in
which EAMs are (re-)used in systems design prohlefifsus, an underlying question to

the motivating question is the following:

Supporting Questian“What aspects exhibited by systems design problean be

leveraged to increase the likelihood that formatlelmg adds value?

To answer this supporting question, we are diretbethe relevant literature, and to

representative, systems design example problems.

1.6 Summary

In this work, the goal is to shift the cost-bendfdlance in favor of formal
modeling by formally capturing EAMs for reuse. B3using the models, certain costs
are incurred only once at the time the model isiaily formulated and can then be
amortized over multiple reuses of the model.

It is argued that the potential benefit for reuselarge and that there are
opportunities for promoting reuse beyond the leagplied in current practice. It is
interesting to note that while model reuse can kenétie cost effective generation of
formal systems engineering models, model reusd msest rely on formal modeling:
One can only enable reuse by formally capturingrtioglel, its characteristics, and the
contexts in which it can be used.

The initial focus is on the reuse of engineerin@lgsis models. EAMs are
ubiquitous in current systems engineering practibey are used for predicting the
behavior of components and systems from differewpoints. They are interesting from
a reuse perspective because they can be reusealpdtom one design problem to the
next, but also in multiple design iterations withirsingle design problem.

In this work, a framework is presented to suppoodel reuse by establishing

relationships between system design componentsisanodels, and the many aspects

10

of a model that pertain to analysis objectiveskedtalder perspectives, and other
elements of model-based systems engineering. mWitie framework, analysis models
are associated with components and aspects soh#iatsemantics of intended use are
captured and represented for reuse. A model deaized within this framework is
defined as a “Multi-Aspect Component Model” (MAsSChM

A detailed overview of MAsSCoMs is provided in ChapB. The framework is
implemented in SysML and described in more detaiChapter 4. Examples of the
implementation are illustrated to begin to validdte MAsCoM approach in Chapter 5.
Finally, this work is summarized with projection$ lanitations and future work in
Chapter 6. Before delving into the details, thievant literature is first reviewed in

Chapter 2.

11

CHAPTER 2 RELATED LITERATURE

Much research has been performed on the subjectoofe! organization and
reuse. In this chapter, related work is organiakxhg the topics of modularity and
function, knowledge classification and organizationstorage and reuse, composition as
a use case for reuse, graph transformations amanated analysis execution. Finally, a
specific gap of behavioral model classificationidentified before transitioning to our

approach in Chapter 3.

2.1 Modularity and Function

The reuse of modular design elements has beenssgdréy many. Baldwin and
Clark [6] consider the use of a design structuré&imyaask structure matrix, and modular
operators to capture modularity in a design. Eggiret al. [13] also consider that
systems can be decomposed into modules, but natedime systems are integrative in
nature. Integrative systems avoid the overheachadular interfaces and can therefore
achieve higher utilities [56] but are much les®ljkto have reusable elements. These
systems are therefore not considered for the dagglication of MAsSCoMs.

Gershensomt al. [19] view modularity as it applies to the entiredcycle of a
product design. They claim that all components #in@ of the same modular form (based
on function and interface) will undergo the sanfe-diycle processes. Using component
trees to decompose structure, the level of the ooept being viewed and its level of
abstraction have an effect on the view of the manlyl of a process in the life-cycle.
This also holds true for the selection of a modelguation model to predict the behavior

of a piece of structure in a component tree. Altfio MAsCoMs are also mapped to

12

component structures and processes (defined byta¥psuch models of modules must

still be stored for reuse.

2.2 Knowledge Classification and Organization for Storge and Reuse

The idea of reusing design knowledge by storingkim@wledge in a repository
has been proposed in the past. The NIST Desigodtepy [52] was one of the first
efforts in this area. Further development of thewledge representation underlying the
NIST Repository resulted in the Core Product Md@#®M) [43]. The CPM is a high-
level meta-model in which the core elements foresenting products in design (i.e.,
form, function, and behavior) are identified anthted to each other. The goal of the
CPM is to provide a common foundation for produgpresentation that can then be
further refined as needed, e.g., for engineerirayars [4, 5], for manufacturing process
planning [15], for functional decomposition [26,]5@r for assembly planning [43].
Similarly, the models developed for this work falldhe core relationships defined in the
CPM, but refine them with more specific construotssystem behaviorHere, behavior
is to be interpreted as any type of characteribiat can be predicted based on the form,
distinguishable by many behavioral aspects, inagdinction.

Both the CPM and this work fit into a broader grafpesearch efforts in which
the goal is to define an ontology for design. Axtodogy is a formal data model for the
concepts and the relationships between these ctsnirep certain domain of discourse—
the domain oflesignin this case. Most of the research in this aheaies the perspective
that at the foundation, one should distinguish leetw form, function and behavior.

Examples include the work by Umedhtal. [57], Sasajimaet al.[46], and Horvatlet al.

13

[21]. However, system behaviohas been the focus of investigation in only a few
previous publications.

The most extensive previous research on charaictgrizzhavior in engineering
analyses was performed by Grosgeal. [20]. They organize the knowledge about
engineering analyses models into an ontology, whitiudes both meta-data (e.g.,
author, documentation, etc.—similar to the Dublor€[42]) and meta-knowledge, such
as model idealizations and the corresponding jaatibns. A similar, although less
extensive, meta-model for EAMs has been developed/lbcko et al. [31]. In their
knowledge repository, Mocket al. focus on some of the more direct properties of
EAMSs, including interfaces, constants, and paramseie addition to emphasis on Meta-
information such as assumptions, file propertied, @nfiguration control data.

Another perspective of EAM reuse is presented eénttlol-based user community,
MATLAB Central [30]. This community provides use@§MATLAB and Simulink with
a place to share and retrieve models. In the vasiedimplementation, knowledge about
the language of the model and required softwamapdied. Aside from this assumption,
models are organized in a hierarchy of discipliegegories, augmented with meta-
information such as title, description, date, asdruating.

A significant difference between MATLAB Centralmplementation and other
model classification frameworks [8, 16, 17, 20, 82, 52] is the ability for model users
to submit quantitative and textual reviews of medéht were downloaded and found to
be useful. However, as with any knowledge strugtiihe knowledge itself must be

carefully managed—not ensuring valid and valuabtedeh feedback from those who

14

may be non-expert users can invalidate classifiargl even dilute or degrade the
knowledge in the repository.

Similar risks are associated with the depositingAMs or design information in
a knowledge repository. Just as a modeler needtetoly associate model attributes
with knowledge classifiers in one’s own vocabultoyidentification and reuse, the same
is necessary for the initial classification viarf@l classifiers in the repository. When
someone deposits a model, a problem can occur af pgerson either does not
comprehend the model's true semantics or does mwpiehend the semantics of the
formal classifiers in the repository. Should thiiation occur, the capture of the model
is likely to be invalid; therefore, the represeiatatof this model inhibits reuse and
further increases costs of validation when the rhsdieund to be inappropriate.

When interpreting of a model's representation, theta-information such as
categorized descriptors and keywords can genelalyeasily understood. However,
other classification means can be difficult to iptet, such as classification via
relationships between models and other construEts. example, it can be difficult to
interpret model relationships with function, flowca failure as used in the Design
Repository [8]. Essentially, a language and apgraa needed that provides the ability
for a modeler to completely describe the underst@ndf a model in an unambiguous
way, using formal constructs and relationships.is T why the approach in Chapter 3
starts with SysML to establish component relatigmsivia a taxonomy of components
modeled with this formal language.

As an aside, a benefit of the organization in tlesin Repository [8] is the ease

of traceability between design artifacts and thelet® used to design the artifacts. This

15

is possible since both artifacts and models areedtin the same repository structure.
Hence, both models and design artifacts can besifitas for documentation,
identification and awareness for reuse (just afi WIBSE). This traceability is also
possible in our approach through the formal coms$rin SysML used to link formally
modeled EAMs to formal structure models of compaséartifacts of design efforts in
MBSE).

Since components are an idealized representatiandeign artifact, traceability
is also desirable between models and the composittd components they idealize.
Traceability through composition is useful becaiissnveys the context of the system
model as the contextual intersection of its constit component models, as is presented
in Section 5.1.2. Model-to-artifact traceabilitys ialso possible across model
compositions through graph transformations [10]eaglored in Section 2.4. Without
composition and the traceability within its progesgstem models could not be easily and

efficiently generated from component models to gateedesign knowledge.

2.3 Composition as a Use Case for Reuse

To enable reuse of EAMs in the context of largeesys engineering efforts, two
additions to typical model organization are impottéirst, the EAMs need to be related
to the form (e.g., component geometry or systenhit@cture) at a fine-grained level
[39]. Second, the analysis models for componemtissabsystems must be formulated in
a fashion that allows for composition so that agéamumber of different system
topologies can be explored quickly [37]. Wallaateal. [58] also consider composable

models. They note that a modular, composable aisalgpproach allows multi-

16

disciplinary problems to be broken down into moduleat can be assigned to specialized
teams.

Relating analysis models to form has been addrepsedously in work on
Design-Analysis Integration (DAI) [39]. Peadk al. relate the parameters of analysis
models to parameters of design models in a deslaratusable fashion using Constraint
Objects (COBs) or more recently, using SysML pataimdiagrams [40]. In this work,
this same approach is used, but only at the leveldividual components (see Section
3.4). By establishing the relationships betweesigie and analysis models at the
component level, the relationships are maintaingdnewhen the components are
composed into larger systems, thus further promotmodel reuse. To enable
composition, additional knowledge is needed bothualbhe model interfaces and about
the composition process. This is further explaime@hapter 5.

Overall, composition is the activity that joins cpoments to form a system. If we
link components to component models, system modmtsl analyses of systems,
traceability is provided at any of these levelsreuse. Model compositions may differ
considering the desired system perspective, leagimegto wonder: Can we reconfigure
models or system model compositions for reuse?erAdite graph representations can
represent different perspectives of a system coitiposfrom different component
models and the connections between them. If a&esysepresentation is available to
guide system model composition for one perspectha it can be reconfigured through

graph transformations to represent the systenefage in another perspective.

17

2.4 Graph Transformations and Automated Analysis Execubn

An overarching goal for formally modeling EAMs is £nable computers to
compose the component models into system modelsmaitically. Since the
compositions will differ with different perspectsiegraph transformations are a useful
approach for creating the many system models nacess analyze a system concept.
Once such compositions of component models inteyseem model are available, graph
transformations can then be used to construct abpnt system models in the EAM’s
native tools for analysis execution via simulatidefore elaborating on these objectives,
we clarify the meaning of a graph and a transfoionat

A graph is defined here by a set of entities thiatralated through relationship
constructs—hence, a system model composition raghg More commonly, a graph is a
set of vertices or nodes connected by edges [7]n eXample use of graph
transformations in engineering analyses is prederttg Johnson [24]. Graph
transformations can be used to for many differemppses. In the context of this thesis,
the following are important:
e To define and perform mappings between languages;
e To communicate semantics conveyed through construct one graph to an

equivalent set of semantics conveyed through diffeconstructs in a different graph;
e To construct graphs representing new knowledge freristing graphs or
information.

Two popular forms of language mappings are: Trptaph Grammars (TGGS)

[47] and Query View Transformations (QVTs) [35].arlguage mappings provide the

ability to translate a system concept definitiogs{(em model composition) stored in

18

SysML into equivalent system models representathtive tools. Although SysML is a
different language than what may be used in anyaisalool, language mappings allow
the same semantics to be conveyed in either lamg(ifagot the same, semantics that are
as near to equivalent as possible). Johes@h [22] have shown an implementation that
transforms a formal analysis specification and rhaaanposition in SysML into an
automated system model execution via a graph tvemsttion tool called VIATRA [1].

Additionally, graph transformations can be useddorganize graphs within the
same language, such as SysML. For instance, adgrs&@hapter 5, a system concept can
be defined in SysML in one graph, and then canréesformed into multiple system
model graphs for different perspectives in SysMLhese system models can then be
transformed for automated analysis execution viguage mappings to native analysis
tools.

However, before models can be transformed for aatedhexecution, system
model compositions must be generated from an lirslygtem concept definition in a
schematic. Since a system model can be composeduibiple perspectives, typically
different graphs must be created for each perspectiVhen creating a system concept,
the architecture, or connection between the comusnean be optimized for each of the
particular perspectives. Through graph transfoionat this process of optimization
through composition could be automated [10].

Furthermore, through automation using graph transtions, traceability
between design artifacts and EAMs is still an inb@otr requirement for accessing the
knowledge in the design effort and representingrélaglired model context of the system

model composition. Gieset al [10] provide this traceability through the useld¥iL

19

[9]. They use the Fujaba graph transformation [@pto recognize and compose models
into compositions in a self-optimizing process tengrate model-based software
controllers for physical systems.

Once systems have been composed and transformedarinexecutable form,
parameter optimization is useful to perform trafieohgainst different modeling
perspectives. These tradeoff models can be instadtand evaluated through tools that
integrate them into large-scale trade-off analysash as ModelCenter [41]. However,
before any of these end goals of automated modmposition and execution can be
fulfilled, one must be able to formally classify & at an appropriate level of detail.
For this we reiterate the gap in the literaturet thdl be addressed by the MAsCoM

approach.

2.5 Gap of Behavioral Model Classification

As identified in previous sections, a gap existd¢ha formal classification of
modular, composable engineering analysis modet& pFimary function of such models
is to predict the behavior of components or sulesgst from multiple perspectives
(disciplines, lifecycles, etc.) and at many lew&#isbstraction. Thus far, the classification
of such models has not been considered in a foiravalework at a very detailed level for
integration with MBSE. Moreover, the consideratiohreuse to reduce the costs of
formal model classification as a motivation forsthivork is unique among other
perspectives including [8, 16, 17, 20, 30, 31, 32, which do not explicitly consider
reduced costs through model reuse for various aisafctivities listed in Section 1.3.

Most of these existing frameworks are aimed at &rmodel classification for the

20

purpose of documentation and reuse, without coreide of the cost penalty of formal
capture.

Additionally, EAMs have not traditionally been asgted with relationships to
other diverse formal models as part of the clas#ifbn framework itself. In the
MAsCoM framework, EAMs are related to componentd aspects that are part of their
own formal taxonomy of models. In this way, oupegach classifies EAMs as part of a
network of models by essentially relating an EAMatbother models in each MAsCoM
that is associated with the component or aspeontaxy.

Lastly, our approach is unique in its use of SysMi that the MAsCoMs can be
easily implemented and integrated within MBSE. é@timplementations are less formal
and thus more difficult to integrate with MBSE [30, 30] or have followed formal

approaches in languages less adaptable to systepmeering [16, 17, 31].

21

CHAPTER 3

APPROACH: MULTI-ASPECT COMPONENT MODELS

As argued in Chapter 1, to be cost-effective, mdadsled systems engineering
must rely on model reuse. In this chapter, we ldgva framework for enabling such

model reuse by relying anodularity and composition

3.1 The Structure of MAsCoMs

Since current practice in systems design reliestlgnos integration of modular
components and subsystems, the most common unitgefcse are exactly these
components or subsystems. It therefore makes sensanize EAMs by component
type also. Whenever a designer decides to uset@ydar component, he or she will
immediately be able to identify all the analysisdals that have been previously used to
analyze that component or describe its behavica larger system. As illustrated in
Figure 3.1, the components themselves are orgaimzadaxonomy so that the user can
easily browse from general classes down to vergiBpanstances of components. At
each level, the component model is linked to altdevant EAMS.

However, the number of such models could be vemgelaso that an additional
method of organization is desirable. To facilitthe task of selecting and composing
analysis models further, we propose to characteheeanalysis models based on one or
more aspects as is illustrated conceptually in Figure 3.1. eTdspects are orthogonal
directions along which a model can be characteriz€tis is similar to the aspects in
Aspect-Oriented Software Development [55], in whiolodularity is achieved by

implementing cross-cutting concerns separatelyabthey can be woven into a variety

22

FP Taxonomy of

ComF;f”e”t Components
[]

Valve Pump Multi-Aspect
Iy A Component
Corst v Model (Set)
A ons ar
Relief Check Displ. Displ.
Taxonomy of
(\% &= Aspects
| Analysis S 5
Model = =
@ (2]
2
O =
3 w
(Y [0
2 A g
g S
(0]
@ : } .
2 e
o = ||
2
Ol@y) [BHE
u m

Figure 3.1. Multi-aspect component models combinglysis models (EAMS) in a
matrix organization linked to taxonomies of compaiseand aspects.

of different software classes. In the context ofdeling, rather than the ability to weave
models together, what is important is that we amtify which models are compatible
with each other so that they can be composed igtes-level models. To be
compatible, models utilized in the composition makaracterize the components in a
system from a similar perspective, in a compatibEthematical formalism and in the
same executable language. By using a formal taxgraf aspects, the semantics of the
individual analysis models are defined in a computgerpretable and searchable
fashion.

In the remainder of this chapter, the details aowvided for how analysis models
are organized into MAsCoMs. In addition to disenggaxonomies of components and
aspects, it is explained in detail how the analysiglels are tightly linked to each other

through components at a very fine-grained level.

23

3.2 MAsCoM Model Sets

This section is intended to clarify the groupingnaddels that is contained in a
MAsCoM and provide justification for this concepin our approach, when analysis
models are grouped, it is solely by component dosgstem. Each of these analysis
models might be thought of as a component modglottray particular aspects of the
component, but a MAsCoM is simply the model grogpin

MAsCoMs are intended to portray the complete peatspe of a component from
all angles. This is achieved by grouping enougiiyesis models about the component to
have essentially ‘every angle covered’ (invoking tiniversal set of aspects). This is a
difficult proposition; acquiring a set of modelsaaticompletes’ a MAsSCoM is not likely
to happen. The large and extensible list of aspscsuch that a complete MAsCoM
would require models about the component from eVliggycle phase, discipline, time
and space discretization, mathematical formalismd, grogramming language. A more
likely scenario is that most MAsCoMs will combineodels about a component from
different disciplinary perspectives and from diéet library sets, which are typically
designed for particular lifecycle phases. In thre realistic scenario, some aspects cut
across many models in a MAsCoM, while others asgsspand unique to only a handful
of models.

A guiding use case for MAsCoMs is that a modeleuldaise MAsCoMs when
creating an analysis test case or designing amystedel to primarily determine what
EAMs are available to analyze a component, and tieese models differ. Additional

details about a typical MAsCoM use case are shov8ections 3.4, 3.5, and Chapter 5.

24

3.3 Taxonomies of Components and Aspects

The fundamental principles behind MAsCoMs are tlationships between the
EAMs, components, and aspects. In this sectionpresent how these elements of
modeling with MAsCoMs are organized and viewed.tlBoomponents and Aspects are
organized in taxonomies, such that these elementsotdexist individually, but as parts

of their own knowledge structures as well.

3.3.1 A Taxonomy of Components

In design, components or subsystems are selectédd@imed in an iterative
fashion. First, a functional architecture is definafter which functions are assigned to
components in a physical architecture [44] (or, regjantly working principles and
working structures are identified [36]). The foassnitially on the selection of broad
classes of components that share the same funlktiyon&or instance, to implement the
function of converting electrical to mechanical eyye the broad class of motors could be
identified. In subsequent iterations, this bro&s€ of components is gradually refined
until a particular component XYZ from company AB&shbeen identified. At each step
along the way, analysis models at different levaisabstraction are used. As the
definition of the components still under considemnatbecomes more and more detailed,
the corresponding analysis models also need tonbecmore detailed such that the
selection can continue to be narrowed down further.

To support such successive refinement of classeowiponents down to very
specific individual components, it is meaningful twganize the components in a
taxonomy. One branch of the total taxonomy—thendinaof hydraulic components—is

illustrated in Figure 3.2.

25

Eltl Hydraulic Component

LB
El-£7 Actuatar

..... £,

----- 1 Cylinder

----- £ Makar

B Fluid Containment

..... B

----- {1 Connections
..... E' Piping

-3 Pump

L
-7 Fixed Displacement
£D s

o] Gerotor
i =7 Internal Gear
B Yariable Displacement
W

{1 Axial Piskon
Bl Malve
..... v
= Check
L] SErvo
Figure 3.2. An example portion of a component taxuay.

The component taxonomy is based on the E-classiftasion hierarchy as an initial
breakdown of components in the hydraulics doma#].[Organizing components into a
taxonomy has the additional benefit that one cd® tadvantage of the inheritance
mechanism to associate analysis models with comnmsredfficiently. In the taxonomy,
analysis models associated with parents apply talschildren. For instance, since an
axial piston pump is a type of displacement purhp, models for the general class of
displacement pumps (the parent) also apply to @sadbn pumps (the child). However,
often, more detailed models are available for tildeen because more detailed
knowledge is available about their structure, smegther design properties.

In most cases, components can have complex inteatationships, and are

essentially subsystem assemblies. Many times, what designer considers to be a

26

component, another considers to be an entire systéor example, an engine is a
component in an automobile drive-train system, &hile engine itself can be a very
complex subsystem. When considering organizing pmovants or subsystems in a
taxonomy, it is important to recognize the relatoamplexities of the elements being
related in the inheritance structure.

Simple parent components cannot typically be speed into complex child
components. Thus, in our approach, an engine waatlde organized in a taxonomy of
engine parts, but instead in a taxonomy of othgirendevices with similar functional
interfaces and complexity. The reason for thiha it is difficult to create a hierarchical
taxonomy that spans both abstraction and deconmpasiflT hrough specialization, more
details are added to an abstract component; howieen a component perspective, the
additional details of a component’s internal stmoet cannot be separated further in
children of the same taxonomy (this would change ftinctional nature of the parent
component).

Each of the nodes in the component taxonomy treeegponds to a model that
defines the key characteristics of the componermtia®ss of components, as is illustrated
later using SysML in Figure 4.2; we call thistaucture model The structure models are
parametric—they contain properties identifying kalyaracteristics of the component:
sizing properties, keyerformanceparameters, as well as thended interfaceof the
component (i.e., the locations or ports at whighadbmponent is intended to interact with
other components in a system [27]). For instaagaymp may be characterized by sizing
parameters that include displacement, mass, or mawi pressure rating; by key

performance parameters such as cost, efficiencyebability; and by an intended

27

interface consisting of two fluid ports (suctiondagiischarge) and two mechanical ports
(input shaft and housing).

The structure models are central to MAsCoMs—theyesas the central entry-
points for accessing all the engineering analysslels associated with the components.
The analysis models in turn define how the perfarceaparameters in the structure
model relate to the sizing properties. To fadéitanaintaining consistency among all
these parameters, the analysis models are tietetstructure model at a very fine-
grained level as is explained further in Sectioh 3.

In a typical MAsCoM use case, modelers access EAMs MAsCoM through
the component taxonomy. The advantage of the taxgrhere is twofold: 1) Modelers
can determine the EAMs to use by identifying withlewel of component detalil
(abstraction) represented in the component taxonanyg 2) As a design evolves,
modelers can utilize the knowledge in the taxondmyind analysis models for more
specialized components. After identifying the eotrcomponent, it is each model's
relationships with the aspects that are used ferdifitiate the models for selection. For

the aspects, we again turn to a taxonomy for orgaioin.

3.3.2 A Taxonomy of Aspects

When reusing a model, one needs to recognize wimagtel is needed from
among the many models that may be associated vpi#intewular component. To help the
designer do this, models are characterized usipgcss, the orthogonal dimensions along
which models can be characterized. Since thera &e number of potential aspects, it

is helpful to organize them also in a taxonomyisabustrated in Figure 3.3.

28

Aspect
o[
EIEI

B-53

P E
{71 Fluids

Discretization

7 Coordinate Syskem

] Carkesian
7 Cylindrical
] Polar

{71 Spherical
Dirmensionality
] Linear 10
{1 Planar 2D
{7 Spatial 30
{1 Resalution

- Time

1 Conkinuous

7 Discrete

{7 Discrete-Continuous
71 Resolution

{1 Steady-state

Engineering Discipline

e

lectrical

i
EH
1 Preumatics

ydraulics

E|1=_"| Mechanical

{1 Rotational
{1 Translational

=] Mathematical Formalism
i
A
{71 Differential Algebraic Equations
{1 Ordinary Differential Equations

lgebraic Equations

{71 Partial Differential Equations
{1 Pekri MNets

Representation Syntax

T C++
{1 Java
1 MATLAE
{1 Modelica

Figure 3.3. An example aspect taxonomy.

The taxonomy also emphasizes that the aspectssepirexdependent directions along

which a model can be characterized. As a resutipdel is typically characterized by

29

multiple aspects simultaneously. For example, drdaylic pump model could be
characterized simultaneously by the hydraulic aedmanical engineering disciplines, by
the continuous time discretization aspect, by tiA&Dnathematical formalism, and by
the Modelica representation syntax. A glossaryalbfaspects used thus far in the
MAsCoM framework is presented in Appendix A.

These aspects formally characterize an model aund $hccinctly provide the
designer or analyst with the basic information mektb select from a set of EAMs that
represent a particular component. Additional infation about the model can be defined
as meta-data that is less structured, such as nmlogeimentation, development history,
or prior usage scenarios. Based on the aspedalgsigner can efficiently search or
browse through a model repository to identify thedel that is most appropriate for a
particular design context.

In addition, when composing multiple component niedato a system-level
model, the aspects provide necessary informatiodetermine compatibility between
models. For instance, to be composed, models tedik expressed in compatible
mathematical formalisms and levels of discretizatiat is not meaningful to combine a
high resolution, discrete event simulation modehvei low resolution, partial differential
equation model. Models that are composed alsolgHhmicharacterized by compatible
engineering disciplines. One set of models mayrilgs the hydraulic behavior of a
system while another may describe its mechanicalicstre. Having formal
representations of these different aspects availabl particularly important when

considering (partially) automating the compositmocess.

30

Now that we have described how to initially clags&nd potentially select EAMs
for reuse from MAsCoMs, we focus on additional tielaships between components and

models, such that a modeler will also understand best tousethe model.

3.4 Fine-grained Structure-to-Behavior Relationships

While the characterization of EAMs using the comgr@tnand aspect taxonomies
reduces the cost of identifying appropriate mod®igeuse, it does not affect the cost of
instantiating these model in a specific design exmt One of the goals of MASCoMs is
to facilitate (and maybe automate) this instammtof analysis models into a system-
level analysis model.

In a variety of engineering disciplines, it is cooirmto describe systems as
compositions of components in a schematic diagr@me can interpret such diagrams as
compositions of structure models (as defined pneshpoin this section) connected to each
other at their ports (intended interface locationgyssume that a system schematic is
available in which specific structure models fodiindual components have been
configured into a system by connecting their pofs.it then possible to instantiate the
corresponding analysis models and configure thémansystem-level simulation? The
additional knowledge necessary to support this exdrdpecific instantiation can be
incorporated in MAsCoMs with two additional diagramparameter mapsndinterface
maps

Parameter maps bind the parameter values in asalgsdels to the related
parameters in the corresponding component’s streictwdel. In the context of systems
engineering, the values for the parameters neebetoelated to the properties of the

system alternative that is currently being analyz8thce we have associated the analysis

31

models with components in the component taxonomigecomes possible to establish
these relationships also in a reusable fashionw Hus is accomplished using SysML
parametric diagrams is explained in Section 4.4.

In addition to parameter maps, MAsCoMs also incliderface maps Interface
maps support the configuration of the interfacesanélysis models for individual
components into system-level analysis models. I&ind the composition of structure
models into a system schematic, analysis models beartonfigured into networks
through well-defined port-based interfaces [37], imamplemented in tools such as
Simulink™ [49], and in languages such as Modelica [32]. eRdy, the ability to
compose analysis models has even become feasitfiaite element models [5, 48]. In
order to configure the analysis models, one needketine how the ports of the analysis
models relate to the ports in the structure mode&lss is accomplished through interface
maps as is further explained in Section 4.3.

A final comment related to parameter and interfaegs revisits the question of
why they are necessary. One could have used ateehanisms for linking analysis
models to component-structure models. For instance could have relied on the
inheritance mechanism to associate analysis eaqatioith the properties in a
component-structure model. However, that woulduiregthat the model equations be
expressed using the same property names as usdng@ icomponent-structure model.
Since it is often the case that one analysis msda$sociated with multiple component-
structure models, and that one component-struchodel is associated with multiple

analysis models, it would become nearly impossibldevelop a reusable model library

in which all the property names remain consistembss both analysis and component-

32

structure models. The mechanism of mapping paemeind junctions in a model
context provides the needed flexibility to defineodular, reusable analysis models
independently of the components with which they ayssociated in the future.

We have highlighted how the MAsCoM approach cléssianalysis models for
identification and for reuse. Now, we focus on Km®wledge required for automated

system model composition, and justify the contidouMAsCoMs can make in this area.

3.5 How Can MAsCoMs Support Computer-Automated Composiion?

In typical design scenarios, an expert user (hunmimvolved in the following
tasks:

e Matching of model context knowledge with analysentext requirements: The
required characteristics for models needed for iBpeanalyses must be determined
and models from a repository that satisfy theseireqents must then be identified;

e Composing component models to generate system mod&odels selected to
predict component behavior must be connected tb edeer to predict the system’s
behavior;

e Administering the test case of the analysis tosysem model: The system model
parameters and boundary conditions must be s¢hdatest case, and the model must
be simulated.

Domain experts are also directly involved in theeedepment of meaningful test cases,

the interpretation of analysis results, and thedlion of redesign. For our purposes here,

we focus on the tasks of identifying models and posmg models into a functional,
declarative system model that can represent amydsign in an analysis test case. We

refer to these as the ‘composition tasks’. Theppse of this section is to outline what

33

knowledge is used—and thus must obtained from greréxuser or computer—to

perform the composition tasks. This knowledge rigkbn down into two different

classes: (1) Analysis context knowledge and (2y&é@ontext knowledge.

(1) Analysis context knowledge is an input to tteemposition tasks; it is used to

specify:

e The form or structure of a design concept — e.gghematic;

e The type and depth of analysis that is required,;

e The analysis context details, such as simulatioarpaters, boundary conditions for
the test case, or the desired interfaces at thedaoy of the system model.

This analysis context knowledge is not found farsee in the MAsCoM framework. It

will either be specified by expert users (or mamgygeor it could possibly be derived

from existing knowledge from previous design efort

(2) Model context knowledge. This type of knowgedis available in MAsCoMs,

and includes the following:

e Model semantics;

e Model interface definitions, compatibility detailand relationships with component
ports;

e Model parameter definitions and relationships wibmponent attributes.

Assuming that the analysis context knowledge is/ijem by the systems engineer, then

MAsCoMs provide all of the necessary model contexdwledge to support automated

composition. MAsCoMs provide model semantics bgctding model relationships

with components and aspects. MAsCoMs define iate$ with interface maps, and

34

express the compatibility of such interfaces byregping them as interface ports of
specific types. Lastly, MAsCoMs define the modatgmeters with parameter maps.

Let us now consider how we can use the model cohkiewledge provided by
MAsCoMs to support a composition of models. Gigedesign concept that describes a
system of interest, we first recognize the comptsérat comprise the system. For each
component, we consider its level of abstractiotgeriace ports and other attributes as
specified by itsType so that we can locate the component in the compiciaxonomy.

Next, given the context of an analysis, a modehefcomponent can be selected
from the MAsCoM to support the perspectives ofdhalysis, which can be represented
by aspects from the aspect taxonomy. This involdestifying a match between the
analysis context knowledge and the model contextwedge for each model in the
MAsCoM (i.e., ensuring that the model represengsaspects required for the analysis).
In addition, the attribute values of the designaapt component can be mapped to the
parameters of the selected behavior model usingrtbe/ledge in the parameter map.

Finally, we can compose all of the selected motteiether to form a model for
the entire system. Model interface ports are cot@tewith guidance from the interface
maps to resemble the design concept structure. ekample, in a dynamic behavior
composition, the models are connected in a waydlusely resembles the same system
architecture as defined in a structural model efdlsign concept. This will be further
illustrated in Section 5.1.4.

Although we have identified much of the knowledgeoilved in the composition
tasks and how MAsCoMs support these tasks, we adkdge that we cannot ignore the

additional specialized knowledge expert modelery mse when composing models of

35

system analyses. Removing a human—a domain exfrentr—design and analysis

activities entirely is difficult. Much of the kndedge experts contribute to systems
models is in the form of experience with a toolpaticular model's behavior, or a

fundamental understanding of a model’'s equatidhgs generally difficult to capture the

context in which this expert knowledge is applie8till, automated composition may
provide a good starting model that can then baedfiby the system expert. Only for
small classes of problems in certain restrictedliegjion domains do we expect that
model composition can be fully automated.

Some of the expert knowledge can be recognizedsabstituted by standardizing
model interface ports. Standardization is use$pleeially for the integration of analysis
models [54]. Analysis models often use standaddiméerfaces, formalisms, or syntax
for compatibility within a particular tool or analg model library. Model composition
can then become a simple case of matching intenfeces. Within the modeling
community, this is currently achieved by standandjzmodel libraries. By using
component models from the same library in a contjposicompatibility is implied.

In summary, some of the knowledge required to fdabeuan analysis model is
external analysis context knowledge. Model contexdwledge on the other hand is
captured through model organization and can beesepted with MAsCoMs. Human
modeler knowledge that is built on experience awrdedise is difficult to capture,
although some of this experience can be capturagsing standardized model interfaces
in standard model libraries. Even when MAsCoMsnib represent all the necessary
knowledge for automated composition, they can aléyrtperform the composition task so

that the expert only needs to focus on implemertieghecessary model refinements.

36

CHAPTER 4 IMPLEMENTATION OF MASCOMS IN SYSML

To make MAsCoMs useful in the context of systengiregering, all the concepts
and relationships have been defined in the Systdosleling Language (OMG
SysML™) [51]. Since SysML has been defined specifically support systems
engineering, it includes modeling constructs thaeatly support the definition of
physical architectures and engineering analyses-tia focus of MAsCoMs.

In the next section, some common SysML construgeaplained for the benefit
of those who are not familiar with the languageor Bdditional clarification, see the
current version of the SysML specification [51]f ybu are proficient in SysML, you

may skip to Section 4.2.

4.1 Application of SysML Modeling Constructs and Diagrans

A sample set of SysML constructs and diagramdustiated in Figure 4.1 and is
further explained in this section. The diagramsvah were created in MagicDraw
UML ™ [28], a SysML modeling tool.

The primary modeling construct in SysML is thieck A block can represent
anything, whether tangible or intangible, that diéss a system. For instance, a block
could model a system, process, function, or contdxt this work, the use of blocks
includes the modeling of component structure, aspengineering analysis models, and
interface junctions. Blocks are declaredBiock Definition DiagramgBDD), as can be
seen at the top left in Figure 4.1. A BDD is udeddefine block features and the
relationships between blocks or other SysML coms$srand is thus the equivalent of a

class diagram in UML [9].

37

bdd [Elock] modeling constructs [LR‘} EDD constructs]J par [Elock] modeling constructs [iﬁ:PAR constructs]J

==hlocks== = | ==hlock== | ==hlock== = | = | <=hlocks== |
Blocka 1 BlockB : BlockA =zonatraint== : ModelA

AT O " : UnitConversion |

e e N | | N o) | |

™ | Mass :_:i'lass 1[1]] JI : _i:!0p1 DpQEi | Mass : Mass [ka] | ‘

t ==hlock== ,Generalizaﬁo—ﬁ —_———— |
Composition | = |BIockA is . . \
et Pt | BlockC child of I_ T] — N
!parent BlockE EPart Propedy] EBinding Connector i

==hlock== i |
BlockD - == =
pkg [Package] MD modeling constructs example [|%] Modeling Constructs]J
1 ik
ibd [Block] modeling constructs [§5fi IBD constructs - _ -
!] = L U MD modeling constructs example ’» =2]Packagej
[==hlock== = | <==hlock== | (2] | [\
: BlockA | | UsageHame : BlockC - iCDrﬂainmerE_i
portas——Flow— F5l ponte - — b
s [| - = ' block==
==FlowPort== ==FlowPort== ¢ | PackageA | v
4 = modeling constructs
‘i' = T, |
li=h
EStereotype] ilq -
5 - Dependency J
— At
PackageB ==hlock==
SysML Specification v1.0

Figure 4.1. SysML diagrams and representativetoacts in MagicDraw.

In the figure, a block ‘BlockA’ has two block prapies. One, named ‘block
property’ is of type ‘Valuetype’. A second propertMass’, is of type ‘Mass’ in units of
kilograms. Neither of these properties shown herguantified. Two composition
relationships exist between BlockA and its constits, BlockC and BlockD. This
means that BlockA exists as a set of blocks C andlthough the set (BlockA) can also
own additional properties itself. Finally, in tB®D in Figure 4.1, BlockA is generalized
by BlockB, meaning that it inherits its propertieem BlockB. This is shown by the
white arrow, oigeneralizatiornrelationship in SysML.

A variety of other relationships that are built apthe definition of blocks are
included ininternal Block DiagramgIBD), as shown at the bottom left in Figure 41h.
the figure, a block named ‘BlockA’ has a port ‘pSrthat is of a specific stereotype

‘flowport’. This port has an outgoing flow.direati specified, and the flow moves to an

38

incoming flow port of a block named ‘BlockB’. BI&B is used in this diagram under the
specific usage name ‘UsageName’.

To express mathematical constraints, a differepe tyf block, called aonstraint
block, is used. Constraint blocks are used to refmemetersthrough constraints
expressed in an equation-based mathematical famadir in a specific imperative
programming languageParametric DiagramgPAR), top right in Figure 4.1, allow one
to express constraints between block propertiebividing connectors For example, in
the figure, the ‘Mass’ attribute of ‘BlockA’ is r@led to the ‘Mass’ parameter of
‘ModelA.’ If this were a simple equality, a coraitnt (and associated constraint block)
would not be needed; however, in this case, a @anigunits requires these block
properties to be related via an equation. Lasthfnstraint propertiesare used in
constraint blocks to represent specific parameatetbe constraint equation, or they can
exist individually in parametric diagrams, such‘@®ext’ in Figure 4.4. In this case,
‘GPext’ is represented as a default value for a eh@arameter that is not equal to a
typical component attribute.

Package diagrams (PKG), shown at the bottom rightigure 4.1, are used to
illustrate the organizational structure of a SysMiodel by using acontainment
relationship to contain parts of the model in diéfat folders, opackages This is similar
to the organization of folders in a file systemackages contain entities such as blocks,
diagrams, and other packageBetween SysML entities, two other relationships de

modeled:

39

e Dependency:This is used to express the reliance of oneyenpibn another (see the
bottom right in Figure 4.1). This relationshiptlie most general relationship and has
a weak syntax that can be strengthened (clarifiedadditional stereotypes.

e Stereotypes: These provide a way to specialize SysML consstuctThrough
stereotypes, typical SysML constructs can have gSamnantics restricted to meet the
needs of a design model. Examples of stereotypelade blocks and constraint
blocks, which are restrictions of the UML constretass[51]. In MAsCoMs, the
dependency relationship is stereotyped r@$ire», which conveys the new meaning
that one entity is a refinement of another.

While these are not all the constructs availabl8ysML, they are a good starting set for

modeling MAsCoMs.

4.2 Modeling Taxonomies of Components and Aspects

Both the component and aspect taxonomies are ndel&SysML using the
generalization relationship, as illustrated in Fegd.2. A generalization signifies that all
the properties of the parent block—the block palnte by the white arrow—are
inherited by the child block. Defining the taxonpraf components in this fashion
simplifies the definition of additional componeriiscause most of their properties are
likely to be inherited from existing component aéfons. As is illustrated for a
commercial off-the-shelf pump/endor_OTS_Pum@BysML also allows one to further
restrict the values of inherited properties. Hynabesides certain key sizing and
performance properties, the blocks also defineittended interfacef the component,

e.g., the suction and discharge ports of the pump.

40

bdd [Block] Properties [IECc:mp:u:unent_Struu:turaI_Knu:uwledge]J

==hlock==
HyiraulicComponent

CL ==hlock==

Pump

suyction : FluidPart
dizcharge : FluidPort
input=haft . Shaft
hiowsing : Mourit

==hlock==
Fixed_Displacement_Pump

ratedPressure | Pressure [Mm"2]

dizplacement : Dizplacement [coirew]
speeditRatedPressure | Angularyelocty [radis]
cost : Currency [Dollar]

mass : Mass [ka)

1 ==hlock=:= =
Yendor_OTS_Pump

partMumber ;. string = AX01 23

ratedPressure | Pressure [MNmn"2] = 1ES

dizplacement : Dizplacement [coirew] = 100

speeditRatedPressure | Angularyelocity [radis] = 210

cost : Currency [Dallar] = 350
mass : Mass [kg] =10

Figure 4.2. This branch of the component taxonshows the hierarchy of structure-
models that define the component interfaces andckayacteristics.

An important additional benefit of using generatiiza relationships is that all the
engineering-analysis models associated with a pafso are associated with its children.
For instance, when defining an additional pump frspecific vendor, there is no need
to associate explicitly an entire set of analysisdels with this new structure model,
because the specific pump can simply be a speatimliz of an existing pump model and,
as such, inherit all the analysis models associatgdall of its parents.

To help the user browse through the set of comgomadels, the blocks are
organized in packages, as is illustrated in FiguB This has the additional advantage

that name clashes can be easily avoided becaug®nheneed to be unique within the

41

namespace of the local package. Globally, nameheta are avoided by using fully
gualified names (e.gGomponent.HydraulicComponent.Pump.FixedDisplacebanp.-
VendorOTSPumpather thavendorOTSPump
Similar to components, aspects are organized inaxkages, and the

generalization relationship is used to structueeaspects hierarchically. Typically, only
leaves of the aspect taxonomy are used to claasifpdel, since the intent of MAsCoMs
is to enable reuse by capturing knowledge abountbéel in as much detail as possible.
However, when specifying the context of analysppeu-level aspect classifiers are often
useful to specify a general class of model thatldvbe applicable. A glossary of all the

aspects used thus far in the MAsSCoMs is presentégpendix A.

4.3 Model Context Diagrams

To describe how a specific analysis model relaies component structure model,
a Model Contextis defined, as illustrated in Figure 4.3. Forheawatching pair of
specific analysis model and component structuréiffarent Model Context is needed.
The idea of mapping analysis models to structureleisoin a specific context was
developed previously by Peak al. [40]. They introduced Context Based Analysis
Models (CBAM) to bind the parameters of an analys®del to values in a structural
model in the context of a specific analysis. & thnalysis model is defined to be
sufficiently general, it can be reused in multiptantexts. For this work, it is recognized
that, for a particular component, such bindingsveen analysis models and structure
models often remain the same irrespective of hawtmponent is used within a larger
system. It therefore makes sense to establiste thieslings at the component level so

that the mapping becomes reusable.

42

bdd [Block]

Model_Context_ConPump [@ MASCoM]J

I

| T
[tz
|||

LT
gy
oy,
|||I
jlid |
e

L _

=<=hlocks=>
Fixed_Displacement_Pump

ratedPressure ;| Pressure [Nm"2]

displacement : Displacement [ccirev]
speedAtRatedPressure | AngularVelocity [radis]
cost : Currency [Dollar]

mass ;. Mass [ka]

1]

e

Component

I\

|

Aspect

==hlock== = rgﬁng
ConPump.mao i

th : MechJunction

1S : MechdJunction

p : FluidJunction

it : FluiclJunction

Dpump : Digplacement [m3irev] | __
GPRint : Conductance [m3is*Pa)] refine—

-
refine
-

Lo N I L

— refine—

GPext : Conductance [m31s*Pa)]
J: Momert_Inertia [kg*m2]

L4

/ I

Model_Library

td : friction [Mmiradis])] thhre1"u'm.=,-
~ B
\
refine
—| ,

Figure 4.3. Model context BDD of tli@onPumpmodel from the Modelica HyLib

To relate an analysis model to the elements in dbmponent and aspect
taxonomies, the SysML relationshigrefine» is used.
relationships in Figure 4.3 reflect that tl@onPump analysis model refines the
description of theFixed Displacement_ Pum@omponent and that it refines a generic
hydraulic behavior model, a mechanical rotationaldel, etc. Note that, as with most
SysML diagrams, only the relevant information i®wh. One must keep in mind that
the component is related to many other componerttsel component taxonomy and that

the aspects are also just references to theiritiefia in the aspect taxonomy.

library [33].

43

For instance, therefine»

4.4 Parameter Maps

Now that since the analysis model is linked toagpects and to a corresponding
component, the detailed parameters of the modelatsm be mapped in a reusable
fashion.

As shown in Figure 4.4, the parameters of an arsaigedel can be bound to their
corresponding properties in the component-structomelel. The binding connector has
the semantics of a noncausal equality. If necgssalditional constraint blocks can be
used to bind properties that are related but natctgx equal. For instance, the
displacemenproperty of theConPumpmodel is related to the displacement property of
the Fixed_Displacement_Pumgomponent through a constraint block that impokes t
appropriate unit conversion. In addition to uroneersions, a similar constraint block
could be used to map related properties to eadr,adbch as radius to diameter or radius

to surface area.

par [Block] Model_Cortext ConPump[@Parameter_wlap]J

==canstraint==

a
component : Fixed_Displacement_Pump volumeConv-cc-to-m3 : UnitConversion
| _ {aM0"G=h}
| ratedPressure : Pressure [N.l'm"Z]—I
| e
p— - |
| displacement : Displacement [ccrev] e i e p——

| speedAtRatedPressure : AngularVelocity [radiz] | _! Dpump : Displacement [m3rev] |

I e T
| cost : Currency [Dollar] | |mass : Mass [kqg] | | J: Moment_Inertia [kg*m2] |

GPext : Conductance [m3is*Pa)] = .002 J GPext : Conductance [m3-"(3;|:_';ii_‘
| 1

GPint : Conductance [m3X=*Pa)] = .0005 .

| GPint : Conductance [m3/X{=*Paj)] |

i td =10 I td : friction [Hm/(rad=)] |

Figure 4.4. A parameter map for a displacementpum

44

To support composition of port-based analysis nof#l], the Model Context in
Figure 4.3 also includes a detailed interface magppiBy formally linking interface
junctions in the analysis model (e.g:FluidJunctior) to the corresponding ports in the
structural model (e.gdischarge:FluidPor}, the component-level analysis models can be
composed into a system-level analysis model basethe composition of component-
structure models in a system configuration model.

Now that we have reviewed the implementation of @AM knowledge in
SysML diagrams, we step back to discuss a few frastices of the implementation of a
reusable MAsCoM library within MagicDraw UML [28], the SysML modeling tool

used for this work.

4.5 MAsCoM Library Organization—Best Practices

Large-scale, complex design efforts can likely hthedr value increased through
the use of formal modeling in MBSE and the MAsCoppmach. Consider an example
scenario where a design effort is captured formallgn information model via SysML.
Typical design information based on MBSE is capdui@ storage, maintenance, and
interfacing to other design tools. When organizihg design information, MASCoMs
can be easily referenced to link analysis modedscmponents with analysis test cases.

Much experience linking components, models, andyaea has been gained
through working with MAsCoMs in several design exdes, including those in Chapter
5. In this experience, a general approach thatbeas found viable separates design
information, a MAsCoM library, and a library of dysis models. This approach is also
supported by the modeling and execution of analylsesigh graph transformations by

Johnson [22]. One has to keep in mind that MAsCoikile information models

45

themselves, do not actually contain analysis modeistead, MAsCoMs refer to analysis
models that are stored in their native model lisar

Figure 4.5 highlights the general package orgaozaif a MAsSCoM library used
in a design effort. The MAsCoM library is initigltivided into packages containing the
component and aspect taxonomies. A third packagtams the junction definitions of
standard interfaces used by MAsCoM model contefinitiens, interface maps, and
junction maps. Finally, a fourth package contdims MAsCoMs themselves. In the
model library, analysis models are described imgeof SysML constructs, organized in
a model library package and subdivided by theiginating tools and toolboxes. The
interfaces of models are captured and stored asdio the MAsCoM library interfaces
package, so that the interface can be capturedlack property definition in the block
used to represent the model. Finally, once interfanctions for each model interface
have been established, these junctions can beinsedinterface mapping in the model

context diagram.

46

EH-F3 MasCaM (by Administrator)
El-F3 MasCalM_Library (by Administrabar)
- Aspect by Administrabar)
- Component (by Administratar)
E}-E Interfaces (by Administrator)
tl _Stereotypes (by Administrator)
E-F7 _ValueTypes (by Administrator)
-7 Fluid {by Administeatory
tl Mechanical {by Administrator)
B9 Thermal by Administrator)
@ InitCorversion (by Administrator
E-E3 MasCoMs (by Administeakor)
.3’" Relations
El-£] MAsCoM-Constant_Displacement_Pump (b Adminiskrabor)
@ ConPurmp_constrainkd (by Adminiskrator)
@ ConPurmp_constrainkB (by Adriniskrator)
EFE HylibModel-ConPump by Adminiskrator)
}' Relations

----- S Maodel_Conbest (by Administrator)

b Parameter_Map by Administrabor)
FH-F3 MAsCoM-Dauble-ActingCylinder (by Administrakar)
EI MasCoM-Filker by Administrabor)
EI MasCar-Line (b Adminiskrator)
E-F MasCoM-il (by Administrakar)
D MasCaolM-Powernit by Administrator]
B-F MasCoM-Tank (by Administrabor
E-F MasCoM-Yalve (by Adminiskteator)
B3 Model_Library (by Administrakor)

'- ¥ Relations
B} Fluidpower (by Adrministrabor)
El-F Components {by Adrinistratar)

B3 Cylinders (by Adminiskrator)

--El Lines by &dministrator)

--El Purips (b Administratar)

"EI Sensirs (by Administrator)

B[Valves {by Administrator)

- Yolumes (by Administrator
£ Hylib {by Administrakar)
tl Cylinders (b Adrminiskrator)
tl Interfaces (by Administrator)
B Lines (by Administratar)
-7 Pumps by Administrator)
E-F Restrictions (by Administratar)
E-F Valves iby Administrator)
B Misc-Mon_Library_Maodels (b 8dministrabor)

Figure 4.5. Package organization of a MAsCoM lipt@s used in a design effort.

Each MAsCoM is represented as a block in the prarhis block is used to hold

all relevant information and knowledge about the @AM. This includes diagrams

a7

such as model context diagrams with interface naawsparameter maps. Also included
are the relationships established in each diagrdm®, usages of entities from the
component taxonomy, aspect taxonomy, or interfaakage in a diagram, and any other
entities or relationships created specificallydatiagram of the MAsCoM.

In summary, by defining such diagrams for a largeber of analysis models, a
library of formal, reusable models (MAsCoMs) candedined to capture the knowledge
about analysis models in a particular domain odregt. These libraries combined with
existing SysML constructs for requirements, testesa functional allocations, system
behavior, and use-cases provide the systems emngivide a complete language and
vocabulary for efficiently and effectively definirejd evaluating system alternatives in a
formal fashion. We now illustrate the use of thAdoM approach and implementation
in three design examples in an attempt to validia¢ér contribution of value to design

problems.

48

CHAPTER 5 USING MASCOMS IN DESIGN EXAMPLES

In this chapter, three fluid-power examples areduseshow the value and details
of using MAsCoMs. The first example, the hydrawystem of a log splitter, illustrates
how MAsCoMs can be used in the design process.eddrgl example consists of a
hydraulic system of a scissor lift in which the walof component model reuse is
demonstrated. Lastly, we present the capture obraplex component model into a
MAsCoM of a component used in the hydraulic systéman excavator.

For these examples, we assume that the designempreasusly defined a
particular design problem by modeling the systenjealves, requirements and
functional decomposition in a SysML design modehe designer then needs to consider
which measures of effectiveness (MOES) can bestsbd to predict the extent to which
certain objectives are satisfied. This is wheraymis models play a role. Analyses must

be specified such that the MOEs can be predicteddan an analysis model.

5.1 Example A: Log Splitter

Although a log splitter is relatively simple, itngpresentative for a broad class of
hydraulic devices. In this example, we focus okeg aspect of component model
reuse—the reuse of modular analysis models threoghposition into a desired system
model. Through composition, system models for dagign concept can be created
quickly and cheaply from their modular parts. Rartmore, these models can easily be
reconfigured to further evaluate such designs.

As illustrated in a schematic in Figure 5.1, theldaylic circuit of a typical log

splitter contains a flow device (shaft-driven pump¥low control device (servo valve), a

49

hydraulic actuation device (double-acting cylindex)filter, tank, and hydraulic lines.
Larger hydraulic systems can be thought of as mtwiaf this circuit with additional

actuators or more complex control logic.

Y

A

] L‘L
L |
Mechanical |
Interfaces | : >< l

Mechanical
Interfaces

L1
Figure 5.1. A simplified schematic of a designaspt for a log splitter.
While the schematic of the hydraulic system reprssthe design concept, it does
not allow for a seamless integration with othengie&nowledge in the context of MBSE
and MAsCoMs. To integrate the design concept witiormal analysis, we must

formalize its schematic in SysML.

5.1.1 Defining System Composition and Function from a Satmatic

To formalize a design concept via a schematic isMky one must consider the
types of information that are contained in a typieagineering schematic. This
information includes component types and ports, identified by 1SO symbol
representations, as well as the connections bettiheecomponents’ ports.

In SysML, the log splitter hydraulic system canrbpresented as a block, which
in turn represents a system consisting of the caitipo of several component blocks.
The details of the assembly of component blocks ¢benprise the system block can be

modeled through the system block’s IBD, as showrthie log splitter in Figure 5.2. In

50

the IBD, the structural ports of the structure mioafeeach component are shown and

connected to represent the same information asdamifound in the typical engineering

schematic.

ibd [Elock] HydraulicSubsystem [@LDgSplﬂterSchemaﬂc]J

pump : FDpump pump-to-valve : Line

dizcharge : FlowPort
E' inputShatt : FlowPort
El houzing : FlowePort

*| & FlowPort

b : FloswePort
1

| valve : dportiwayServoValve

portP : FlowPaort

porT : FlowePort

cylB : FlowPort

zuction : FlowPort

tank-to-pump : Line
a: FlowPort <=

|_'_| b : FlowePort

cyld ;- FlowPort

tank : Tank
sump : FlowPort
return : FlowPort

valve-to-cyiP1 : Line

a : FlowPort

valve-to-fitter : Line

filter-to-tank : Line & FlowePort b : FlowPart E'—
-=| b : FlowePort by : FlowwPort I

|
& : FlowPart
T

valve-to-cyiP2 : Line
@ : FlowePart

filter : Filter b FlowwPort <=

in: FlowPort

I_l_l out : FlowPort

housing : FlowPort b © FlowwPort

rod : FlowPort & 1 FlowPort

Figure 5.2. System structure-model IBD for the $pijtter design concept.

5.1.2 Defining an Analysis Context to Test System Perforance in a Discipline
Once a concept is captured in the design modehntbe tested. This test is a
specific operation that the concept undergoes pardicular environment. The test is

designed to measure system behavior and performé&oce the perspective of a

51

particular stakeholder. Rather than performingtdst on a physical system, it is often
less expensive to use a virtual, simulated systémthis way, the system behavior is
predicted rather than measured, and many more itjgarthan in physical experiments
can be assessed.

The analyst may characterize the context of anyaisaby specifying which
measures of effectiveness (MOES) need to be peztiahd by defining the particular
aspects that need to be considered in the systerhr®del of the concept. A complete
analysis context will frame the test case usednieestigate the design concept and
specify the type of model used to represent theawnin such a test case. This is an
important point; while a design concept can be maly instrumented and tested from
any possible perspective, an analysis model i€élyi only usable in testing the concept
from a very specific perspective. The simulatibattexercises the model to perform the
analysis can then be used in a SysML test-casertty whether the requirement for the
given MOE is satisfied.

An analysis context for a system concept can bénedtin terms of simulation
parameters [22], aspects, and through a relatiprisha test case that stores additional
information if applicable. Test case informatiorayminclude simulation boundary
conditions, links to requirements and MOEs, and fecesses and procedures. An
example analysis context for a log splitter hydiaalystem is illustrated in Figure 5.3.
Blocks are used to capture the simulation of thelehased to support the analysis, the
system model that will be exercised in the analysisl a test case if applicable. Aspects
from the aspect taxonomy are referenced to spduifygeneral type of the set of models

used to compose the system model.

52

bdd [Block] Analysis_DyvnamicBehavior [@.&nalysis_Cnntex‘t]J

==hlocks==
LSHS_Simulation

startTime : Time =0

stopTime : Time = 20

zeTimeOutput | Time

titne ; Time

LogFarceProfile | ForceiLencth [Mim]
Powwerlnput © Povver
==thoe==CycleEfficiency : irt
==thoes==Cycleviork | Energy

==hlock== : ==hlock==
LS _HydraulicSystem_Model | '®1N% = Hydraulics
W Trefine__
o™ i = ==hlock==
o refing | Discrete-Continuous
'\\.\
%, _ Pl
w, refine ==hlock==
By Dimensionless_00
refine ™
oy
,
==hlock==
,
DAE
|
==hlock==
Modelica

Figure 5.3. Characterization of the context oystam-level analysis for the log splitter
ic simulatil.SHS) predicts the efficiency MOE.

design problem. A log splitter hydraul

Notice that in Figure 5.3, the bl

This represents the fact that an analysis can beifsggl without yet having a detailed

model to support it.

explained.

5.1.3 Component Model Selection

The creation of this system-level analysis modaitstby defining the particular

system architecture that will be analyzed, astithted in Figure 5.1 and formalized in

ock for the Hydiawystem model is still empty.

In the next section (5.11Bg process for filling in this block is

53

SysML in Figure 5.2. The system architecture omposition of component-structure
models connected by their ports. Depending on Hawthe design process has
progressed, these component-structure models «billldbe very abstract (i.e., close to
the root of the component taxonomy) or very sped#@.g., a specific pump from a
specific manufacturer). Throughout the design essc these component-structure
models are likely to be refined into more and mgwecific models from the component
taxonomy.

If a particular component-structure is not yet ke in the component
taxonomy, then the user may need to create a neselmaSuch a new model can be
defined most easily by first determining where hie tomponent taxonomy it would fit
and by then extending the appropriate parent matseisigh specialization relationships.
In this way, all the analysis models of the paremts also automatically associated with
the new child. If additional analysis models aeguired then they can be added by
defining additional model context diagrams. Ndtattsuch additional models should be
defined in a local user-model rather than addeth&o MAsCoMs library right away;
since the library is likely to be (re-)used by mahiferent users, it should be kept under
strict version control, and models should only bleleal to the library after extensive
verification and validation.

Once the system architecture has been definedcamaise the model context
diagrams in the MAsCoMs library to provide the resagy information for identifying
the appropriate analysis models. Although there potentially a large number of
analysis models associated with each componenhentaxonomy, the aspects that

characterize the models allow the designer to homen the few that are applicable in

54

the given context. To be applicable, a model neéedsclude the same aspects as have
been defined for the system-level model analysigeod (as in Figure 5.3). The aspects
also help the designer to determine whether thepooent models are compatible with
each other (e.g., from the same native model fpra©nce the appropriate models have
been determined, the specific values of the commopeoperties can be instantiated
through the use of parameter maps. Alternatividlg task of instantiating specific
parameter values can be postponed if the systenelmatl be used in a more general
context and will therefore be stored for reuse.thdg point, the set of component models

needs to be connected to form a system model.

5.1.4 System Model Composition

The final step towards a complete system-level rhisd® integrate the analysis
models of the individual components with each otAsrmentioned in Section 3.5, this
composition requires additional knowledge beyondatwis currently available in the
MAsCoM library. This knowledge is algorithmic irature—it cannot be captured in a
static diagram (i.e., a schematic), but insteaduireg the specification of how the
diagrams need to be manipulated or transformedthéncurrent implementation, this
composition is left to the user. However, in thaufe, we plan to automate this
composition process through the use of graph toamsftions as has already been
demonstrated for SysML diagrams by Johnsbal. [22].

The composition process is illustrated for a ported the log splitter hydraulic
system model, the power subsystem, shown in Figute Although the topology of the
analysis model is very similar to the topology bé tsystem-structure model in Figure

5.2, it is not a one-to-one mapping. As is ex@dim more detail in [23], the connection

55

of energy-based ports, such as a FluidJunctionyinex) the inclusion of a model

representing the equivalent of Kirchhoff’s voltagel current laws.

par [Block] LogSplitterPowersubsystem [Subsysteml‘-.ﬂndel]J

supply : FluidJunction

pump : ConPump.mo

h : MechJunction p : FluidJunction

5 : MechJunction t : FluidJunction

tank-to-pump : LongLine.mo

==constraint==
—|_ nodeD : FluidHode_S1-to-51
junction junction2 [|

mainReservior : Tank.mo

a : Fluid Junction

b : FluidJunction

<<constraint==
nodeC : FluidHode_SI-to-SI J'_

_:| junction2 junctiont |:

a : FluidJunction

b : FluidJunction

fiter-to-tank : LongLine.mo ' =zconstraint==
a : FluidJunction nodeB : Fluidlode_S1-to-5I1

| junction
b : Fluid Junction _:| junctionz

filter : Orifice.mo
==gonstraints> = =
: FluidJunction.E
nodeA : Fluidlode_SI-to-ENG [R o A o
junction junction2 E_ b : Fluid Junction.E

return : FluidJunction.E

Figure 5.4. Dynamic model for a portion of the &gitter example (shaded boxes
represent external interface ports requiring furtt@nections).

To connect the interfaces of the models in this $pditter power subsystem,
‘FluidNodes’ are used to connect the models’ ‘Rluidctions’. The ‘fluidnode’
constraints are used to apply the equivalent othioff's laws by constraining the

interface parameters of the junctions. Each flod#in this example joins two fluid

56

junctions based on Sl units, except for the nodang the filter to a line connecting to
the tank. The orifice model used as a filter is #/xample uses English units (denoted by
FluidJunction.E). The fluidnodes are also useadovert the interfaces of the orifice

model to Sl units.

5.1.5 Composition of Reliability Models

In systems engineering, conflicting objectives oftequire tradeoffs between
measures of effectiveness in multiple disciplinesor instance, the discipline of
reliability engineering may be tightly coupled ystem dynamics or cost considerations.
In this section, we demonstrate the capabilityefaresent and reuse analysis models from
the reliability discipline through MAsSCoMs.
Reliability models do not match the topology of ystem structure model since they
represent a coupling of functions mapped togetbegperform a system level function.
Essentially, reliability models are not connectedtihe same way that the physical
components are connected as shown in an enginesatrggnatic. To compose reliability
models, the relationships between component fumst@nd critical system functions
must be determined so that a meaningful reliabddynposition will be achieved. One
way to achieve this mapping cost effectively isige graph transformation algorithms to
transform the system structure into a form that banused by reliability modeling
methods.

Although the implementation of such transformatienbeyond the scope of this
current thesis, we explore how to perform such amsitipns manually for the case of
probabilistic risk assessment, or PRA [25]. WitlHRA, fault trees are a common

method for predicting the probability of failurdust as for other perspectives, fault trees

57

can be composed with reusable component modelsirdadaces. Since reliability

models are not based on energy exchange througdb, ploeir topology does not match
the topology of the system-structure model. Irdtehe composition of reliability

models in a PRA analysis involves tying all compananalysis models together via
logical nodes, as is shown in Figure 5.5. Notet tte model in Figure 5.5 has
parameters for quantifying the numbers of seve@hmonent ports, shown in an
interface mapping. We can combine this model affault tree to represent the control

subsystem of a hydraulic circuit, shown in Figur@. 5

bdd [Block] Relishiltytadel- alve | @Model_(:nmext]J

==hlock== =
==hlocks= = Causality
Servo (WASCoM MASCoM_Library Aspect)

ReliefPressure | Pressure
Cost; Currency [Dollar]

Result : String = Acausal

Mazs : Kilogram{dimension = Maszs} =

RatedPressure : Pressure 7 ==hlocks= =
1 : FluidPort # Hydraulics

MO0 Mot (MAsCoM MAsCoM, Library Aspect Discinline. Physics-hased Fluids)
Height : Lenath [m] A

Wickth : Length [m] ; ' ==hlock== o
Length : Length [m] e

Design
MASCab MAsCoM_ LibraryAspect Life-cyele_Domain

= refine 4
housing : Mount | /s pa -~
S — /

MateriziDensity : Density [kadn"3]

—_— ri ~
| hf i - T
|_ = ei!pnrt.ﬂundpurt ‘ 5 » Rellah/llr(it
ret
. _>|rud:5haft £ 1-
| | | ; £ “ PRA
| | P -
i 7 S refing ==hlock== |
I ; s FaultTree
reflnel, u ;
I =zhlocks== = e ﬂr_eflﬁe —l
rEte Fohehrabimtonel -7 Math_Formalism
expozure_time -
|l ;e!:abirrtyat ;:blc:]:k:_:
gilure_rate : - Algebraic
I operating_pressure — — refine
|| pressure_rating - c=block==
operating_temperature refine. Ly
|| temperature _rating Prob&5tat
7 ports =
ays -~ —|
L —positions [Rr&ﬁne =
__ | Representation_Syntax
3<<blnck>>
MATLAB

Figure 5.5. Model context diagram for the religpimodel of a hydraulic servo valve.

58

When reliability models are composed, they arecbiby linked together into
chains to represent the dependency of one compsrag@ration on other components.
Essentially, this means that one component’s pribtyabf failure is dependent upon
both its own reliability in addition to the relidiby of other components it depends upon.
Although reliability itself is defined as the prdiity of success (i.e., 1 — probability of
failure), the fault trees shown in this work capttine probability of failure and trace the

propagation of this probability from the componkevel to the system level.

par [Constraint Block] UE_HydraulicSystemFailure [FaurtTreeMndeI]J Prob_Failure

result |_|

==canstraint==
OR
fresult = opl+op2+opd - (opl *op2+opd *op3+op2top3+opl *op2top3))

Prok_Failure |_| Prokb_Failure |_| |_| Prob_Failure
==constraint== ==constraint== ==constraint==
: PowerReliab.Model : ControlsReliab.Model : ActuationReliab.Model
{Prob_Failure=expl-Frate*ExpTimel} || {Prob_Failure=expl-Frate*ExpTimel} || {Prob_Failure=expl-Frate*ExpTime)}
Ex;|:1|me FlriT Exrlﬂlme F|E|e E>|<p_T|ime F|E|e

Figure 5.6. Reliability model for the log splitter

To consider a reliability perspective using modetsn MAsCoMs, we formally
capture the fault tree model of a pressure-compeds#ad-sensing hydraulic system.
In Figure 5.6, a composition is illustrated foriagée level of a fault tree. There are a
few important distinctions to note in this fauleér reliability composition. First, the
models shown in the figure are represented as rmomstblocks, an alternate

representation of a model in SysML. Generallys tkiuseful for simple models whose

59

equations can be made visible via constraints, praperties shown as constraint
properties. Complex models (with many more equadiccan still be represented as
blocks with parameters as part properties.

A second distinction is the choice of what to shova diagram. Since reliability
model compositions can become quite large, it makese to break up the models into a
series of diagrams. Due to the hierarchical natfréault tree diagrams, parametric
diagrams are a logical choice for implementatiorRParametric diagrams can be
hierarchically structured, similar to portions ofalt tree. SysML parametrics allows
for a convenient nesting of parametric relationshg enable the hierarchical structuring
and reuse of the relationships. A possible disathges of the nested structuring of PRA
diagrams is that the nesting can leave many conmpanedel parameters hidden deep
within the system model; this makes it difficultr fa modeler to assign values to these
parameters. Also, the logical failure path of ategn reliability model is more difficult to
visualize when captured in nested diagrams; althptige diagrams are traceable and the
path can be deduced. Since system structure diggfschematics) do not reflect the
reliability structure either, an alternate form fibe system composition is necessary
(without nesting) to improve the comprehension eaathmunication. Just as nodes are
used for combining junctions in model compositiasfsdynamic behavior, nodes of
reliability models are used to represent the ldgomastructs of fault trees and to join
component models together. Like dynamic model spdsiability modeling constructs
such as logical nodes for fault trees can be cagtdormally and stored within a

MAsCoM library’s interfaces package.

60

5.1.6 Composition of Accounting-based Models

An additional common perspective of modeling isttbhha simple accounting-
based model composition. The purpose of such ceitipios is to evaluate a shared
parametric property or attribute among multiple poments and determine how this
property at the component level is related to theperty at the system level. The
purpose of this section is to address this modeghegspective as it relates to system
compositions of cost models.

Consider the MAsCoM of a valve component that costéhe valve reliability
model seen in Section 5.1.5. Assume that this MA8@lso contains a cost model of
the same valve. The model context for the costahisdshown in Figure 5.7. This cost
model is characterized by similar aspects as thabilty model in Figure 5.5, yet is
distinguished by an ‘Economics.Cost’ discipline edpand is built as a Microsoft Excel
file.

The parameter map for this cost model is shownigurgé 5.8. Note that the
model inputs of ports, ways, and positions are tiedconstraint properties in the
parameter map. Thus, the reuse of this valve mad#le valve MASCoM is specific to

this model’s context that is related to a 4 pomya, 2 position servo valve.

61

bdd [Block] Costhodel-valve [@ Model_Cortext]J

==hlock== g
=blockes =] Causality
Servo (MAsCoM MAsCoM_Library Aspect)

ReliefPressure : Pressure
Cost: Currency [Dallar]

Result? : string = Causal

Mazs : Kilogram{dimension = Mass} il

RatedPressure : Pressure b

1 : FluidPort f

housing : Mount . ECD.nlJI‘HIES R
rod : Shatt {MAsCoM.MAsCoM_Library.Aspect.Discipline)
Height : Lenogth [m]

Wikt Length [m] =<hlocks== = |

Length : Length [m] Cost

MaterialDensity : Density [kgin®3] F =

housing : Mount s - <<b|DCk_>> =
i Hydraulics

—_ Z
_ | =/ port : FluidPort MAsCoM MASCoM_Library Aspect.Discipline Physics-based Fluids)
|

ST refing # .
I i PN S ==hlock== =
| ;s ; Design
ref'ﬂﬁeﬂn TEINE | (s CoM MAsCoM_Library Aspect Life-cycle_Damain)
I | ==hlocks= - T
[aheCostiodel g =
| refing”
| —positions © Integer .. = "
I ways " Integer Math_Formalism
— —ports : Integer »
pressure_rating | Pressure [Pa) — — —refine “leCk=_=
temperature_rating : Temperature [deg C) Algebraic
architecture_complexity : Integer
Mazs | Mass [ka) —l
ozt Currency [Dollar] et =
refing | Fepresentation_Syntax
=
==hlock==
MS_Excel

Figure 5.7. Model context diagram for the cost eladt a hydraulic servo valve.

When composing an accounting-based system modsdrmaponent models, it is

important to ensure all models share the following:

e The property to be composed (i.e., property tygé wnits);

e Quantification of the property (with our withoutaeertainty);

e Quantity of matching items containing this propefmultiplicity for identical

components).

62

par [Block] Costhodel-alve [Parameter_Map]J T =

Model : ValveCostModel

==hlock==
Component.Hydraulic. Valve : Servo

‘ RatedPressure : Pressure I I pressure_rating : Pressure [Pa] ‘

‘ temperature_rating : Temperature [deg C] ‘

‘ ReliefPressure : Pressure ‘

‘ Cost : Currency [Dollar] l i cost : Currency [Dollar] |

Mass : Mass [kg] Mass : Mass [kg]

==constraint== positions : Integer
—— | Positions =2
==constraint== | -
Ports = 4 | ports : Integer
==constraint=» | ways : Integer
Ways =3 |

Figure 5.8. Parameter map diagram for the costeafch hydraulic servo valve.

In accounting-based compositions, the diagram wéthe composition can often
be much simpler than the system structural viewlfits This is because duplicate
components only need to be represented once, utlegsare not strictly identical. In
this way, accounting-based compositions can closegemble engineering bills of
materials (EBOMS), allowing for an easy transfonoratetween such compositions and
EBOMSs.

An example of a cost composition for the contrddsistem of the log splitter is
presented in Figure 5.9, where a valve model chamaed in Figure 5.7 and Figure 5.8 is
composed with a hydraulic line model. In this cosigon, a single valve and four
hydraulic lines are composed into a control sulesyst A constraint block containing an

addition constraint is used to tie together a wedlsum equation with each model's cost

63

and quantity to generate the total subsystem cbise total subsystem cost is the output
at the top of the parametric diagram, allowing at ie reused as a nested model

(constraint) in other parametric cost model contmss.

1
par [Elock] ControlSubsystem_Model [Suhsystemwladel]J L SnhsystemCost
==hlock== = ==hlock==
Valve1 : ValveCostModel HighPressurelLines : LineCostModel
cost : Currency [Dollar] ‘ ‘ cost : Currency [Dollar]
|_|TOTAL
==canstrairt==
1 ADD
ITOTAL=0pT *op1 QTY +op2*op20TY }
:||:up1 0p2|:
ComponentQuantity# : Integer =1 _:‘ opl @Y op2aTy [4| ComponentQuantity® : Integer = 4 |

Figure 5.9. Control subsystem cost model commosior the log splitter hydraulic
system.

The composition of simple accounting-based modetgiires little knowledge
about system architecture—solely which componengsiavolved, their models, and
their attribute data. Thus, this is a good stgrpinint for automated compositions, where
graph transformations can be applied to a composihat lacks form, and only the rules
of property matching and adding are necessary.

While it is beneficial to use MAsCoMs once to ceeatsystem design model, the
focus of this work is to provide an effective reggetation of analysis models that have
good opportunity for reuse. In the lifecycle of&sCoM, which incurs costs of formal
modeling and savings from reuse, value can onhaded to design projects through
multiple reuses. Thus, we now focus on an exampénalysis model reuse in the fluid-

power domain by analyzing the hydraulic system stiasor lift.

64

5.2 An Example of MAsCoM Reuse—Hydraulic Scissor Lift

The main reason for modeling the relationships betwcomponent models in
MAsCoMs is to promote reuse. One opportunity feuge exists within the context of a
design problem whenever two system alternatives camesidered that share similar
components or subsystems—a very common occurredalitionally, reuse is often
possible when solving different design problems &uit within the same application
domain.

For instance, consider the design of the hydrasjyistem of a scissor lift.
Although a scissor lift is quite different from @gl splitter in principle, it does share the
need for compact, large-force actuation for whighrulic components are well-suited.
The schematic for a possible hydraulic system mditere for a scissor lift is illustrated in

Figure 5.10; the corresponding system structureehnisdhown in Figure 5.11.

I

N

Mechanical [— .
Interface

L1
Figure 5.10. A simplified schematic for a sciskibr

Mechanical
Interfaces

This design shares the same power-subsystem &sgtisplitter shown in Figure 5.4, yet
uses a simpler 3-port control valve and a singtexgchydraulic cylinder. In fact,
between the two concepts, only two analysis modetsnot reusable—models for a

control valve and an actuator.

65

ibd [Block] HydraulicSubsystem [s::iss-:.rufts::hematic:]J

pump : FDpump

== inputShatt : FlowPart
dizcharge : FlowPort

pump-to-valve : Line

valve : JportiwayServoValve
portP : FlowePort
portT : FlowPort

oyl FlowPart

a: FlowPort

b : FlowePort

zuction : FlowPart
E‘hnusing . FlowePort

tank-to-pump : Line
b FlawPort

a : FlowePort

tank : Tank
“ sump : FlawPort valve-to-filter : Line valve-to-cyl : Line

return : FlowPort % R e

|
= b : FlowPort b : FlowwPort
| filter-to-tank : Line I

a : FlowPort

b - FlowPaort

actuator : Single-ActingCylinder

a: FlowPort

filter : Filter
c=| rod : FlowwPort

<= out : FlowPort :

=]
. m <= houzing : FlowPort
in: F|DWPDr‘t HUENG - Fowro

Figure 5.11. System structure-model for the scibto

To see the differences between the actuation podiothe hydraulic circuit, one can
visually compare both versions of the model contpwss for this part of the circuit in

Figure 5.12 and Figure 5.13.

66

par [Block] LogSplitterActuationSubsystem [E_Fj SubsystemModel]J

a : FluidJunction

valve-to-cylP1 : LongLine.mo [=<constraint==
T = nodeA : Fluidlode_SI1-to-5I
_I a : FluidJunction |

: — | junctiont : FiuidJunction
| b : FluidJunction y—‘ junction2 : Fuiddunction [

| b : FluidJunction |
z=constraint=:=
L valve-to-cylP? : LongLine.mo nodeB : Fluidlode_S1-to-51

:| junctiont : Fluidunction

_I a : FluidJunction |
junction2 : FluidJunction L_

| b : FluidJunction

actuator : DoubleActingCylinder.mo
‘ rod : MechJunction |

‘ housing : MechJunction |

| a : FluidJunction I

| b : FluidJunction |

Figure 5.12. Dynamic behavior model for the asturasubsystem portion of the log
splitter example.

par [Block] ScissorLiftActuationSubsystem [Subsystemhﬂodel]J

a : FluidJunction

valve-to-cyl : LongLine.mo ==constraint==
z 5 nodeA : Fluiddode_SI-to-51
_I a : FluidJunction ‘

. . | junction1 : FluidJunction
| B kILId K REHEn yJ junction2 : FluidJunction

actuator : Single-ActingCylinder

|rud:MechJunctiun | |a:FIuidJunctiun I

| housing : MechJunction |

Figure 5.13. Dynamic behavior model for the adgtuasubsystem portion of the scissor
lift example.

The comparison between the required analysis maddelshe log splitter and

scissor lift demonstrates the value of MAsCoMsiftemtifying and reusing components

67

and analysis models within the same applicationalom In this case, the domain of
reuse is hydraulic fluid power.

However, the reuse of analysis models between tlhaseystems is also subject
to some practical considerations. First, the aislynodels used to investigate the
behavior for either system exist at a particulaeleof abstraction. Thus, for these two
design concepts to share the same analysis mdtiels;ontexts of the analyses must
specify a similar level of abstraction. A secowomsideration for component model reuse
is that of the sizes of the components must becserftly similar so that the same models
can be used. For example, consider the case ichvthe size of the pump component
used in the log splitter is much smaller than thep used in the scissor lift. The size is
captured in the sizing parameters of the pump stracmodel and instantiated in the
parameters of the pump analysis model. To shaalysia models, the size of the sizing
parameters for both pumps must be within a rangeatfes within which the analysis
model's behavior has been validated. To avoid gudblems, acceptable parameter
ranges can be specified for model parameters irehumhtext BDDs.

Since a MAsCoM structural model is related to atirerset of analysis models
that refine the structure model, once such a setanfels is identified, all corresponding
analysis models for the structure model (i.e.,ghep) are identified for reuse. Ideally,
as long as each analysis model in a particular MA8@ specified in enough detail with
constructs from the MAsCoM framework, one shouldatietically be able to determine

the most appropriate model to fulfill a case farse from the MAsCoM.

68

In the next example, we view MAsCoMs from the perspve of a model library
administrator. In the example, a component moalehfcomplex hydraulic component in

an excavator hydraulic system is classified fosecas a MASCoM.

5.3 Classifying a Model for Reuse as a MAsCoM—Power UnlComponent of a
Hydraulic Excavator

At this point, we have demonstrated how MAsCoMsused to provide value in
design examples. An important perspective of MAgEds the consideration of the
costs of formality for the classification of modétgt exist in a vendor library or that are
developed separately. In this example, we comipereosts and benefits of two methods
that can be used to capture a complex componentlmoWe consider a complex
component model to be a model that contains arrnatestructure of low-level
components, such as a subsystem. Such modeldrc&ntavledge about how the low-
level components are connected structurally, as asehow the low-level component
attributes are related to the complex componenbates.

In this example, to capture a complex componerd, ftllowing methods are
compared:

e Basic Approach Capture the component model and express it asditional

MAsCoM. This involves constructing a model contdgram, interface map, and
parameter map.

e Minimalist Approach If the low-level components of the complex comgot model

are already captured as MAsCoMs, then use additidiagrams to represent the
missing knowledge (i.e., component connections amdbute mappings). Just as

model libraries often build upon their own low-léweodels, one can build upon low-

69

level component MAsCoMs to capture the knowledgeaotomplex component
MAsSCoM. The term ‘minimalist’ is used to refledtet minimal amount of effort
applied and costs incurred in representing the iMfodeeuse—we take advantage of
as much existing formal knowledge as possible.

The context of this task is centered on a compExpmonent that is part of a
system model of the hydraulic system of an excavatbhe component and system
models were developed as part of a custom librdryhyairaulic models coded in
Modelica [38].

A graphical illustration of the excavator hydraudigstem model in Dymola [11]
is shown in Figure 5.14. In this model, we woulke lto capture a complex component
called a Power Unit (lower center in figure) fouse as a MAsCoM. This is desirable

because it was found that this model has a higtitiéod of reuse.

70

SwingF... BoomC.. BoomC ArmCyl... ArmCyl... Bucket.. Bucket. .

mafar
L]
biomCyIRig armyl DcketCyl
— —
L= = L=
b = I kT £
S @E po N O N
[i%] — [V] = i
= [iE] [iE]] il [= =
= IS IS = o T = w5
= — — | 5 = i T
c a2 E E E = = B=
E = 2] = E g]
B z E=: 2 " o e =
Comrmand
A E A B A B A E
< swin. biooim.. A .. buck...
LS Yal... LS val... LS “al... LS Val...
P Unt F F Unt F F o Unt P Fo| Unit Py
T T T T T T T T4

constant... Fower Lnit

pOvvEr .

Virontme
q_ b =101525
—gmb = 288015

Figure 5.14. Excavator hydraulic system model ftbemFluidPower library [38].

Since the power unit is a subsystem model builnugtber existing library models, care
must be taken in its representation for reuse.raplgical illustration of the power unit is

shown in Figure 5.15. Note the use of 5 compomeotlels and two manifolds that

comprise the power unit model.

71

partl s poartP part T portLSinit

coumulstar

o——i
NI N ‘

% I=Rurmp
pressurafensars

flange_a

1

CircutT...

Figure 5.15. Power unit model from the FluidPoVimary [38].

5.3.1 Basic Approach: Capturing the Power Unit as a MAs©M

This approach follows the basic use case of a megelsitory administrator who
is characterizing the power unit model accordinghe® MAsCoM framework. This use
case includes investigating the power unit’s nalibeary documentation, the model
parameters, the component interface ports, and cahgr model semantics. After
developing an understanding of the model, the sparding constructs in the MAsCoM
framework are selected to represent the powemumdtel.

The power unit is captured in a MAsCoM model cohtiagram shown in Figure

5.16.

72

bdd [Elock] FluidPowertodel-Powwerlnit [@Model_(:ontext]J
==hlock== |
=<block== O Causality
Power Unit MAsCob MASCoM_Library Aspect)
oSt Result : String = Acausal
mass
maxPressure =
displacement Vi =<hlock== =
maxSpeed y, Rotational
Eicc;‘iroanﬁﬂ’ﬁ:ﬁfgld g (MASCoM MASCoM, Library Aspect Discipline Physics-based Mechanical Dynamic. Rotational)
/. L =chiock== =]
- i ~ Hydraulics
= > PSenseAbsoluteRef : FluidPort | {MAS C oM MAs CoM Library Aspect Distipline. Physics-based Fluids)
A
e e 9|PSem;eGauge:FIuidPort | re/flne - - i
~ -
P 4 =
[— _Jlhouslng-lh'!mlnt ” Di’scretlz/arfon
| —;‘
l l_ e _,|inpm5harﬂ:5haft / e 7
(N S / ~ ~Space
| 11| — |=discharge : FluidPort i ¢
refingy | | le ; i ’mﬂne Dimensionali
refine I l— Ia;ul:tmn:FIuldPl:lrt | / iz reﬁne/ ty
lref|nl¢| '74\ r g =zhlock==
| -rFT'Tel refine / i Dimensionless_0D
| ~ =r
| ,r?:g?-ne : / - < -
iy [| F'<<l:|||:|c:ka=i‘t =] 4 P Ay ~ refing :
! il e i Time
1 l | [Medium " % s ==hlock==
|~k FluidJunction L [) - .
|1y | — 1t Fluiedunction o retine— | Discrete-Continuous
— —{h: MechJunction G i
| It — —=: Mechdunction [P
| — — —IS: FluidJunction [=
R R —IS|2rt1: FluiclJunction L Life-cycle_Domain
clamp = 200 ~ B ouE (MAsCoM.MAsCoM_Library.Aspect)
Dimae: = 0.0004 ~ © —refine
kp = 0.0005 ™ % - . ==hlocks=
p_margin = 3e5 ~ i Operation
b -
N ~
~ refing
~ -Math_Formalism
.
N <<block>>g
~x DAE
refine
kT
Representation_Syntax
)
==hlock==
Modelica

Figure 5.16. A model context diagram of the extavpower unit model.

The interface map is also shown in the figure,tigdathe interface of the power unit to
the component structure model ports. Generalljpasameter map would also be
included to complete the classification of the powsit as a MAsCoM. However, in this
case, the power unit model does not have many Edeasnthat map to component
attributes, so the parameter map diagram is notwisho The advantages and

disadvantages of this approach are discussed tio8é&c3.3.

73

5.3.2 Minimalist Approach: Capturing the Power Unit as aMAsCoM by reusing

MAsCoM Knowledge from Low-level Components

In commercial model libraries, often more compleadels are built upon low-
level models from the library to increase comphexind functionality. In such libraries,
modelers can typically use a low-level model in position, or they can use a more
complex model, regardless of the low-level models built upon. This is the case for
the power unit model. We desire to capture a cerptodel, yet MAsCoM diagrams
that capture low-level models of the power unit@ready available.

Since the power unit is a composition of the modidscribed by existing
MAsCoMs, we can already understand the definitoithe parameters of the power unit
through the parameters maps of the low-level compbmodels. We can also interpret
the semantics of the power unit through the aspesdd to describe its low-level models.

In addition to the details in the low-level compon#AsCoMs, in this approach
we can add the following details about the powetr tarvrepresent it to a modeler:

e The architecture of connections between the lowtleemponents;
e The mapping that exists between the attributesi@fldw-level structure models and
the power unit structure model.

The architecture between low-level components @odptured in SysML in an
IBD of the structure models, illustrated in Figsel7. Since the existing MAsCoMs
describe the interfaces of the low-level componemtsiterface maps, the only details
that are necessary are the connections betweenocemipports. The structural ports of

the power unit component are represented as pagepres in the left side of the

74

diagram. These ports are connected to the pottseedbw-level component structures to

represent the power unit architecture.

ibd [Block] Povwver_Unit [Power_Un'rt_Structura]J
j‘\- housing; Mount_ pCLSPump : Vari:l:::tl:_cli:(i::lacemen‘t_Pump = j1<:=:0||::;:;d = accumula::brlo:c:::umulator =
| discharge : luidPort | port Flidrort | housing : Mount
IL ing : Mount | mﬁﬁ;,?;
{inpulshaft : Shaft | I—__s,_ﬁﬁ_“ _
—| l=control [. ?ﬁﬂ_|
discharge : FluidPort
I <<b\u.ck== =] ==hlock== = ==hblock== =
| preseur 2: pressur circuitTank : Tank reliefValve : Pressure_Relief
“| sensed Im’— L [inlet : Fluid Junction |
F : FluidPort | }N’dep_mri rmﬂﬁij _JE}E{;*LEM.;|
'W __| housing : Mount | T housi g : Mount !
==block==
junction? : Manifold
’m
’m
suction : FluidPort | —Im‘
‘ PSenseAbsoluteRef : FluidPort }__@

Figure 5.17. Architecture of power unit from loex&l component structure-models.

While the architecture of the power unit definesvhib is composed from low-
level components, we also must represent how thbuwges of the power unit component
map to the low-level component attributes. Fos,tlda component attribute maps
defined; it describes how the low-level componetitibaites relate to those of the
complex component. A component attribute map diagfor the power unit is illustrated

in a PAR in Figure 5.18.

75

par [Block] FluidPoveeriodel-PoseerUnit [Componerrt_AttribLﬂe_Map]J

==hlock==
Component : FPower_Unit

==hlocks=
pCLSPump : Variable_Displacement_Pump

displacement
|

dizplacement |

maxSpeed
e

==constraint==

maxSpeed

4| maxPressure

==hlock==
reliefvalve : Pressure_Relief

designconst1 : pmax
{opy=min(relief minfopt op2 op3 opd ops10}

ratedReliefFlow
:l apy ap I:
reliet [—.__| reliefPressure |

op2 I:

opS opdopd [—

maxPressure |

=<hlock==
pressureSensors @ pressuresensor

maxPressure

accuracy

i

accuracyPresSet |

==hlock==

This PAR is to relste accumulator : Accumulator
component attributes of a
Powyer Unit to the component
attributes of the powwer unit
lovweer-level components

maxPressure

volume

l

==constraint== g 1
designconst? : ymax
{opl=op2}

qu:

==hlock==
circuitTank : Tank

maxPressure

volume

'l

==hlock==
Jjunction : Manifold

[maxPressure
portidy :int = 4

Figure 5.18. Component attribute map for the pouvet.

The attributes of the power unit component are shaw SysML part properties
in the power unit block on the left in the attribuhap. These properties are related to the
attributes of the low-level component structure-giledvia parametric relationships. Two
design constraints are also illustrated in therguThe first constraint, ‘designconstl’,

represents the fact that the total system pressamaot exceed the maximum allowable

76

pressure of the components or the relief valve sores (this ensures the correct
specification of maximum system pressure). ‘Desigist2’ represents the fact that the
volume of the accumulator cannot be greater tharvttume of the tank (this prevents
the tank from fully emptying of fluid).

The MAsCoM of the power unit only needs to contdia diagrams in Figure
5.17 and Figure 5.18 to be complete, since it atferences the diagrams of the
MAsCoMs of the low-level components in the MAsCoilrdry. To retrieve the power
unit model for reuse in a composition, it could fientially composed from the low-
level component models with a graph transformatdgorithm. This could be very
efficient and provide the flexibility of reconfigmg the power unit model in its
component structure IBD or component relationshggpnf a variation is required for
reuse. Alternatively, the complete (already comgpdpower unit model could be stored
for reuse and still be represented with this apgiaes opposed to the representation with

the basic approach in Section 5.3.1.

5.3.3 Evaluation of Approaches for Capturing the Power Uit as a MAsCoM

There are advantages and disadvantages for usegodkic and minimalist
approaches in capturing the power unit. Speclficthe benefits and costs of using the
two approaches need to be considered.

In the basic approach, all of the knowledge reguiceuse the power unit can be
found in the diagrams of the power unit containedts MAsCoM. In some cases, a
model is desired to capture a complex componeritably, without every detail. The
basic approach provides the simple representafienpower unit model that is abstract

and can be used to predict general behavior aheyidwer unit component.

77

In the minimalist approach, the power unit modeleigresented for reuse, albeit
in a fashion that uses more diagrams in total &adl s more difficult to interpret than
with the basic MAsCoM diagrams. The advantagehef additional diagrams—from
low-level component MAsCoMs—is that many additiodatails of the low-level models
themselves are available to a user to inspect geanching for a desired power unit
model. Hence, even though it is called a mininhagproach, it actually provides more
detail about the model to the user.

This approach also provides the ability to spetifsough additional diagrams
(i.e., the structural IBD and component attributapinand create (potentially through
graph transformations) any configuration of the -lewel component models into a
variation of the power unit model. This is simitarthe specification of a system model
with an analysis context, except that in the midishacase the component models are
preselected; the specific MAsCoMs are specified nayne through the component
attribute map and structure 1BD.

Finally, with the ability to recompose the poweritumodel from a formal
characterization in MAsCoM diagrams, a potentidkagion of the minimalist approach
is to specify any model formally as a componena @ystem from existing MAsCoMs.
The model could be quickly composed through a foainsation upon its need for
retrieval from the MAsCoM library. If the costs afgraph transformation algorithm are
ignored for the time being, the minimalist approatiould be less costly than the basic
approach, since less new knowledge needs to ballgrmodeled in SysML.

Although the power unit can be captured in the dagproach as a typical

component model in a MAsCoM, such as shown in Edud6, this approach does not

78

take advantage of the knowledge available in thes@@M diagrams of the low-level
components. In a sense, this basic approach cayr@mymous with “reinventing the
wheel”, a practice that incurs unnecessary costslaat should therefore be avoided.

The basic MAsCoM model of the power unit could bsily reused, but many of
the details of the internal structure of the powsit would be abstracted away. Such
details would be desirable for modelers who wish kimow the architecture or
assumptions that lie within the power unit modé#l.some of these details are already
captured in the MAsCoM diagrams representing thellevel component models in the
FluidPower library, why not represent these detailsnodelers selecting the power unit
for reuse? Unless the amount of detail is overmired, it would be best to have the
information available when making a decision to tiepower unit model.

Also, a detriment to the basic approach is theharacterizes a complex model in
a static structural configuration. Although suchladel is still reusable by instantiating
different parameter values for component attriqutesnplex models are typically less
likely to be reusable than simple low-level compan@odels. Thus, the basic approach
risks the expense of creating a redundant modehctexization if the model does not
have a large opportunity for reuse.

On the other hand, the minimalist approach provittesopportunity for a more
reusable model since it is easily reconfigurabMet the approach carries with it the
additional complexity of knowledge being represdraenong more diagrams. Also, the
minimalist approach carries the ambiguity of c@sid risks associated with the necessity
of a graph transformation algorithm that is notrently available to compose the power

unit model. Additional costs occur when using thewer unit model in a new

79

configuration. Each new configuration must be €t in formal diagrams, which
incurs costs of formal modeling to create the diagg. However, the additional costs
may still be smaller than what are necessary teeldpvand capture new structurally

static configurations of a power unit model.

5.3.4 Composition of the Power Unit from Multiple Perspetives

For each stakeholder perspective that is requicedntlyze the power unit, a
unique model composition results. In this sectwea,present compositions of the power
unit's lower-level components to represent the mpersves of dynamic behavior,
reliability, cost and mass. The ability to reprasthese perspectives varies based on the
approach used to capture the power unit.

The power unit model described in the each appraa8ection 5.3 is a dynamic
behavior model. A different model is necessaryejoresent the power unit component
from a different perspective. In the basic apphodlis requires different model context
and parameter map diagrams for the different modietsigh they are contained in the
same MAsCoM. In the minimalist approach, the pecspe of the power unit model is
limited by the perspective presented by the lovel@omponent models and the structure
of the model defined in the structural IBD.

An initial example of the power unit model is iltested in a dynamic behavior
model composition in Figure 5.19. This compositi@sembles the structure model in
Figure 5.17 of the architecture of the power uni\w-level components. In the figure,
the specific EAMs are composed together—these mmodete selected from models in

the MAsCoMs of the low-level components that repntshe dynamic behavior aspect.

80

par [Block] FluidPowerModel-PovwerUnit [SubmaodelSchematic],J

==hlock== ==hlack==
submodel-a : pCLSPump topModel : Power_Unit

[h : MechJunction | |I5in'rt:FIuidJum:1inn I
—[—:- contral [
% : MechJunction 15 : Fluid Junction
p : FluidJunction I Ih : MechJunction
t : FluidJunction & : MechJunction
p : FluidJunction
|
==hlack==

= t : Fluid Juncti
submodel-b : pressureSensor2 uid-unction
< =en=2d [4. Fuid Junction

==hlack==
submodel-f : HJunction
==hlack==

E o i i
submodel-c : reliefValve A pERdinncion
a : FluidJunction a1 : FluidJunction

b : Fluid Junction _l— a2 : FluidJunction

a3 : FluidJunction

il

==hlock== ==hlack==
submodel-e : circuitTank

zchlockss = submodel-f2 : HJunction
a : FluidJunction submodel-d : accumulator a : FluidJunction
b : FluidJunction | 9t Ruldnction a1 : FluidJunction

| a2 : FluidJunction
| h : ThermalJunction |
a3 : FluidJunction

Figure 5.19. A dynamic model composition of lowdecomponent models into the
power unit model.

The power unit can also be composed with its cpoeding reliability models, as
illustrated in Figure 5.20. In this simple caseaaditional structural IBD is not required

since there is no redundancy among the componantswe simply model the upper

event as a system-level failure.

81

1
par [Block] FluidPowerhodel-PowerUnit [Reliabil'rtySubmu:udel]J Prab_Failure

result |_|

==constraint==
: OR_Hinput

RSubmodel-a : pCLSPump_Rel

==canstraint==
Prob_Failure |:

RSubmodel-b : pressuresensor?_Rel
Prob_Failure |:

‘ ==constraint==

RSubmodel-c : reliefvalve_Rel

‘ ==constraint== ‘

Prok_Failure E

RSubmodel-d : accumulator_Rel

‘ ==constraint==

Prob_Failure |:

RSubmodel-e : circuitTank_Rel

‘ ==constraint==

Prok_Failure |:

RSubmodel-f : HJunction_Rel

‘ ==constraint==

Prok_Failure |:

RSubmodel-f2 : HJunction_Rel
Prab_Failure |:

‘ ==constraint==

Figure 5.20. A reliability model composition ofAelevel component models into the
power unit model.
Lastly, accounting-based compositions of the pouvet’'s low-level components
are created to represent cost and mass in FigRfeahd Figure 5.22, respectively. By

nature, these compositions do not require the ioreatf any structural IBD diagrams

aside from the structure represented in the generalept schematic.

82

par [Block] FluidPowerModel-PoyverUnit [[B% CostSubmodel]J

==hlock==
: Power_Unit_Co=st (opT e evainton

cost : add

{op7=op1+op2+opS+opd+opS+op6}

==hlock==
CSubmodel-a : pCLSPump_Cost

cost

==hlock== =
CSubmodel-b : pressuresensor?_Cost

cost

==hlack==
CSubmodel-c : relief¥alve_Cost

cost

==hlack=>
CSubmodel-d : accumulator_Cost

cost

==hlock== =
CSubmodel-e : circuitTank_Cost

cost

==canstrairt==
junctions : Multiplicity
Throduct=propery*guantity
procuct

==hlock=:= s |
CSubmodel-f : HJunction_Cost

E

property ==constraint==

Hum_Junctions = 2

guartiy

Figure 5.21. A cost model composition of low-legemponent models into the power
unit model.

83

par [Block] FluidPoveerMocdel-PoswerUnit [MaSSSuhmndel]J

==hlock== ==constraint==
: Power _Unit_Mass op? mass : add
lm'_ {opT=0p1+op2+op3+opdropsS+opE
il
==hlock==
MSubmodel-a : pCLSPump_Mass
nass
|2 |
==hlock==
MSubmodel-b : pressureSensor?2_Mass
mass |
==hlock==
MSubmodel-c : reliefValve_Mass
mass
il
==hlack==
MSubmodel-d : accumulator_Mass
nass I
==hlock==
MSubmodel-e : circuitTank_Mass
mass | i
A—— ==constraint=>
Hum_Junctions? : Multiplicity
==hlock=> = iproduct=property*quantity }
MSubmodel-f : Hlunction_Mass produd[
mass || property quarrtrtyl:;i “u::':f::::;ﬂ_::z 2

Figure 5.22. A mass model composition of low-les@mnponent models into the power
unit model.

An important distinction to be made when represgnta complex component
architecture for automated composition is that tyge of model represented by the
architecture should be explicitly outlined via asge(similar to an analysis context).
Without this information, there is no way to asateithe architecture with the correct
‘type’ of model from each MAsSCoM. This could betdimental if models from one
aspect were composed to represent the systemeantcing from another aspect (although

in many cases the models simply could not be cdaddogether as specified).

84

Finally, we consider the question of value in madethe power unit component
with existing, low-level component MAsCoMs. Clearif not taking advantage of low-
level component MAsCoM knowledge to help represdm power unit for reuse,
formally capturing the power unit could be much enoostly. Although this expense can
be justified through a strong opportunity for reusmed large savings by avoiding
redevelopment of a large model, certainly greasesting)s are possible if some formal
knowledge has been captured previously and is béigself.

In using a minimalist approach to capture the aoltdtl details about the power
unit, we have incurred only minimal costs to wemgminst the value of the model’s
reuse. Hence, we argue that yes, there is valueusing any MAsSCoM information
itself (such as low-level component MAsCoMs) in foemal classification of another
model for reuse, including the power unit. Thigwanent theoretically allows for the
possibility of greater savings during model clasation if the MAsCoM library has a
large amount of reusable information to provide wladassifying a new model (as
opposed to a small, relatively young library). Tdame also holds for systems design
models in MBSE design efforts: The more informatifsom a formally modeled,
existing design that can be reused, the cheapecdsieof formally modeling the new

design—hence, the greater the value in formally efing the original design.

85

CHAPTER 6 CONCLUDING REMARKS

In this thesis, we present a framework for charatey and reusing analysis
models in model-based systems engineering. Amalysidels are organized into Multi-
Aspect Component Models—collections of analysis ew®dformally linked to a
particular component-structure model and formahligracterized by multiple aspects in
an aspect taxonomy. By formally organizing thelysia models into MAsCoMs, much
of the knowledge necessary to instantiate and cempggstem-level analysis models is
captured and available for reuse.

The MAsCoMs have been defined in SysML so that ttey be easily used to
support decision making in systems engineering.roddgh reuse, the additional costs
associated with formal modeling in MBSE can be dimed so that the benefits of formal
modeling can be made available cost-effectivelyet@n small systems engineering

efforts.

6.1 Conclusions

This work was motivated by the question of valus.there value in the formal
capture of knowledge about engineering analysis etsotbr use in multi-disciplinary,
systems design problems®?alue is defined by an equivalence in outcome eg¢daiced
cost, or an improved outcome for the same cosh, @mbination of these options. We
have considered many costs of using analysis modeld savings in analyses from
model reuse. Also shown in Chapter 5 were thescassociated with the formal
characterization of analysis models (and in thenédr modeling of design efforts in

general). Although we are driven by the hypothélk# there is value in the formal

86

capture of analysis models for reuse, we canna&mgit to validate this hypothesis
without extensive evidence collection in real-wasitiations.

A hypothesis can be refuted with only a singledatase—which at the present,
we could likely conceptualize in the context of M¥EMs. Thus, part of the need to
collect real-world evidence from the use of MAsColddo define a set of parameters
and bounds for complex systems engineering effortavhich our hypothesis remains
valid. After such an exercise, we could confirmthmgreater confidence the value of
formal modeling and MAsCoMs in systems engineering.

The possibility of adding value through formal miag in MBSE and through
the formal classification of EAMSs is different im&h case. Formally capturing systems
engineering information and knowledge varies inbvetefits considering the complexity
of the design, the need for detailed documentatimennumber of stakeholders involved,
and the geographic distribution of design team me¥s)lamong other factors.

A few benefits are very likely through the formalpture of EAMs:
¢ If formal model descriptions of EAMs in an existiMAsSCoM library are available

for reuse, a formal systems engineering effort dbagmon the principles of MBSE
will benefit from the MAsCoMs’ existence and uselhis is synonymous with
simulation tools with model libraries. Large cosi® involved developing model
libraries, but they can be invaluable once madeélabla in the tool. In the case of
MAsCoMs, being able to interpret model semanticsl, @ formally manipulate them
is generally advantageous. If the costs of formatleling have been overcome, then

the benefits will begin to pay dividends.

87

e The more often a formally captured model (i.e. MABD is reused, the greater the
total savings accrued (see Section 1.3). Thesagsmweigh against the initial costs
of formally capturing the model; therefore the sg& of reuse should eventually
payoff the costs of formal capture for any moddhis statement assumes that the
opportunity for reuse will persist for a sufficintlong period of time. As
technology progresses, the opportunity for reusgrdshes in some domains, such as
with software. However, the technology behind EAMg#ten in formal models does
not change quickly. Therefore, if the opporturidy EAM reuse remains relatively
stable, then as models accrue more uses, the savimguse can eventually pay back
the costs of formal modeling.

e The formal classification of EAMs will enable contpts to interpret the semantics of
the EAMSs, allowing for automated algorithms to gae system model compositions
and perform automated analyses. The use of autmmti compose models will
allow for further savings in other downstream madghlnd analysis tasks to weigh
against the costs of formal modeling.

In this work we presented several examples andnagts for the proposed
benefits of formally capturing EAMs for reuse. FBhit can be concluded that it is very
likely that valuedoes exisin the formal knowledge capture of EAMSs in the teow of
systems engineering. Some benefits of formal nmoglelith MAsCoMs were shown
that do not rely on automated composition or themation of other analysis processes.
However, the advantage of the MAsCoM approach tiulyependent upon the ability to

automate analysis processes through the manipulafithe formal models themselves.

88

In the current state of MBSE, large organizatioapable of absorbing the costs
of formal modeling have been the primary experiraenand adopters. This is due in
part to the requirement of government and aerospgeacies to document their work in
detail. However, in the cost-driven future, thdueaargument will weigh much more

heavily upon the choice to implement formal modglin

6.2 Limitations

In this work, many limitations are simply qualifié&y the limited scope in which
MAsCoMs were implemented and tested. For instaBgeML was chosen for its rich
variety of constructs in describing systems enginge However, if another language
were chosen to implement MAsCoMs, the meaning lakhitMAsCoM structure would
be conveyed differently, becoming non-interpretdblemodelers and engineering efforts
that are not based upon the same formal langu@lgis. “language limitation” is simply a
requirement that a modeler (and other end use4AsiCoMs) must be fluent in SysML
to understand the relationships that define eacls@M\ of EAMs in SysML diagrams.

Furthermore, the MAsCoM approach is limited pragoadly to companies that
engage in systems engineering efforts that takaradge of formal modeling in MBSE.
Without a complex project and other motivationsftamal capture and organization, the
MAsCoM approach does not show as much promise ofeasing design value.
However, that does not mean that the approachsliamd incurs expenses for simpler
design efforts if a MAsCoM library is readily avalile for an experienced modeler to use
in constructing analyses.

Ideally, MAsCoMs can be used to capture componentlais of any level of

complexity or detail; however, as argued in Sectad, it is always best to weigh the

89

opportunity for a model's reuse, and to use angtyg formal knowledge to aid in

decreasing the costs of formal capture. In theeator model of the power unit, it was
possible to inspect the constituent components amablels of the subsystem.

Conveniently, each low-level component within thewer unit is identified as a

hydraulic component in the component taxonomy—thilews for the component

relationships to be made in the model context diagt However, the placement of the
power unit itself—a model with internal structuresHess trivial within the component

taxonomy.

The power unit would not be a parent of its lowelesomponent models since it
shares the specific properties of all of the lowelecomponents. It can technically be a
child component of one of the low-level components, this is not very meaningful—
which component would we choose as the parent? a¥onbmy of subsystem
components, such as hydraulic pumping subsystenudgd de defined and easily relate
models of power units with various levels of absticam and breadth. However, this
solution suggests a break between a base-levelammnp taxonomy and a taxonomy of
more complex components. Addressing this probgethe subject of future work.

A tradeoff exists when retrieving the power unitdabfrom the library with an
approach that relies on composition upon retrievaln such a case, multiple
configurations of the power unit’s low-level comegmits could exist for a graph
transformation algorithm to compose based on tfegnmation presented about the power
unit in the minimalist approach in Section 5.3Phis is because many possible system
model parameter maps could be created to relatdele@l component parameters to the

power unit, based on the same architecture of cosqoorts specified in the IBD. In a

90

simple case, all low-level component model paramsetan be connected to parameters
at the surface of the power unit; however, the nmappould occur in many varieties. In
one case unmapped parameters could be internalbecdded with default values as
assumptions within the power unit model. To avihis problem, a specific parameter
map between the power unit model and its low-les@hponent submodels could be
specified, but this would incur additional costsl &imit the reusability of the power unit
model by making its configuration more rigid.

Final limitations of this work include the extemt which MAsCoMs have been
tested thus far through examples and the extemhich graph transformations have been
researched for the purpose of enabling the autamatemposition of MAsCoMs.
Although arguments have been presented for thelgeaph transformations to enable

automated composition, the implementation of ssdift for future work.

6.3 Future Work

Finally, having presented the current state ofwuosk, the following represents a
motivation for completion or extension of this wanko future efforts.

One major consideration for future work involvestlier investigation into the
definition of the component taxonomy. An idealda@my of a domain would support an
integrated structure of both simple components arthssembly components. Such an
integration might possibly involve defining the gooment taxonomy further detail by
using references between components and the hasitidns and flows that define the
components’ internal complexity. Essentially, filons and flows could be used to
classify components just as aspects classify modEtss would require an organization

of these functions and flows, perhaps following kvby Bohmet al. [8] and Szykmaret

91

al. [53]. An alternate proposal is to restructure tdoenponent taxonomy based on a
network type structure, rather than a tree-likedrehy.

A more significant opportunity for future work ise implementation of graph
transformations to support automated model comipasit While it is questionable as to
whether the MAsCoM approach alone adds value tofdhmal modeling of complex
systems engineering problems, this becomes a muadmgsr argument with the
additional resource savings through automated modeiposition. Future work here
involves the definition of model compositions imrtes of graph transformation rules and
algorithms. As mentioned in Section 3.5 and Chagteif a system form can be
characterized formally in SysML with a library ofvalable MAsCoMs, a graph
transformation engine could then interpret thioinfation and represent a new graph
equivalent of a system model composition. Addaiowork in this area would begin
with simple reliability or accounting-based modtiat do not rely directly on the form of
the system structure.

Lastly, it is important to mention the usefulnedsttte MAsCoM approach if
implemented as a web-based repository. An impbraample to test the MAsCoM
approach is to make available an implementatioa MAsCoM library that can be used
in design efforts. Much could be learned aboutvddae of the MAsCoM approach when
applied in the context of a repository that is usedtore knowledge about EAMs along
with the EAMs themselves for future modelers toseeuAlso, if kept as an open-source
repository, a large variety of uses in design pFoid could allow the generation of
experimental data to classify situations when MAgISa@an truly provide design savings

and add value.

92

APPENDIX A: GLOSSARY OF ASPECTS

In this Appendix, the entire aspect taxonomy isl@red. This includes views of
aspects from all base classes, including life-cym@se, discipline, time and space
discretization, mathematical formalism and repregt@n syntax. Many of these aspects
can be very valuable and are used to represent-knetaledge contained in analysis
models, while other aspects represent meta-infoomatsed to describe the model in a
repository.

Regardless of the choice of which aspects are gppte for characterizing a
model, aspects are the secondary classifiers usegptesent analysis models for reuse
beyond initial component relationships. They can used to ensure direct model
compatibility, such as between models of the satbearly, or other forms of
compatibility by matching aspects from the inittathogonal set. Some aspects can be
informative, such as creating a detailed representaf a model in a web repository for
reuse. Finally, aspects can be used to descrilbelsompatibility less formally, such as
via rules of thumb (e.g., composing models togethat provide the same general level
of accuracy).

In the taxonomy, any aspect category is extens#yd likely never to be
complete. In this appendix, we represent a laegepde set as a good start. Typically,
only child aspects are used to describe a modekfmse. However, in some cases, using
an “unclassified” child aspect in the taxonomyedfer to a parent category is acceptable.

The following aspects are organized numericallpunline form to identify their

location in the aspect taxonomy structure, andlafmed here for future use:

93

Meta-Knowledge Aspects These aspects are used to convey the true meaming,

semantics of the knowledge contained in an anatgsidel, rather than simply

describing the model entity itself with informatiamout the computer file, etc.

The following are meta-knowledge aspects: (1-5.x)

1

1.1
1.2
1.3
1.4

1.5

1.6

2.1
211

2.1.2

2.1.3

2.2

Life-cycle domain:Refers to the particular domain, or phase, of tamponent
lifecycle which the model abstracts to predict poment behavior within this
phase.

Design:Refers to the design phase of a component lifeecycl
DisassemblyRefers to the disassembly phase of a componeiyiie.
Disposal:Refers to the disposal phase of a component lifeecy
MaintenanceRefers to the intermittent and often unplanned tea@nce phase
of a component life-cycle.

Operation:Refers to the operation phase of a component itde¢ the main
phase for which the component was designed.

Recycling:Refers to the recycling phase of a component jitde¢c and in many
cases occurs with disassembly and disposal.

Discipline: Refers to the specific field of study in whictpacialist is trained and
will apply knowledge towards a design. Modelstgpcally developed by such
specialists to represent one or more related gigoes of either significant
importance to the design of the component or pbimance to a stakeholder in
the design.

Biological: Refers to the subdiscipline of the biology of kvobjects.

Animal Kingdom:Refers to a biological subdiscipline of animalsgas such
can be subdivided by the animal kingdom taxonomy.

Plant KingdomRefers to the biological subdiscipline of plantsgdas such

can be divided by the plant kingdom taxonomy.

Microbiology: Refers to the biology of small-scale, single-cetlieghnisms,
viruses, proteins, and genetic material.

Chemical:Refers to the subdiscipline of chemistry, whidhighly related to
biology.

94

2.2.1 Water-basedRefers to water-based chemistry.

2.2.2 Alcohol-basedRefers to alcohol-based chemistry.

2.2.3 Lipids: Refers to the chemistry of fats, fatty-acids, atioenergy-storage
molecules. This is closely related to microbigio®.1.3.

2.3 Economics:Refers to the field of study of economics and vpatineiples.

2.3.1 Cost:Refers to the economic principle of cost.

2.3.1.1 Labor:Refers to a specific cost of labor, and can inclatteer associated
labor force costs.

2.3.1.2 Material:Refers to the specific cost of material resources.

2.3.1.3 Direct CurrencyRefers to a nonspecific cost of a given monetalyeva

2.3.2 Market DemandRefers to the economic principle of demand.

2.3.3 Market SupplyRefers to the economic principle of supply.

24 Human FactorsRefers to the subdiscipline of humans and thewlrement with
designed components during any of their life-cptiases.

2.4.1 F.H.A.:Refers to functional breakdown of components alade@ hazards to
humans in the proximity of the component or intergy with the component.

2.4.2 PsychologicalRefers to the mental behavior of humans.

2.4.3 PhysiologicalRefers to the physical behavior of humans.

2.4.4 Safety:Refers to hazards and hazard mitigation featuresoofiponents.

2.5 Manufacturing:Refers to the subdiscipline of manufacturing ofglesd
components.

2.5.1 ProcessRefers to the process or flow of manufacturingvatogis.

2.5.2 Quality Control:Refers to the act of observing manufacturing preces
performance and manufactured good performance aness

2.6 Physics-basedRefers to the subdiscipline of scientific, phy&iased
fundamentals of the operation of components.

2.6.1 Electrical:Refers to the electrical field of study.

2.6.1.1 Analog:Refers to the analog electrical domain and is dipselated to analog
signal processing, 2.9.2.

2.6.1.2 Digital: Refers to the digital electrical domain and is elysrelated to digital
signal processing, 2.9.3.

95

2.6.2 Fluids:Refers to the field of study of fluid mechanictict and dynamics.

2.6.2.1 Hydraulics:Refers to liquid-phased fluids, typically used ¢éofprm work.

2.6.2.2 PneumaticsRefers to gaseous-phased fluids, typically usgubtiorm work.

2.6.3 Gravitation:Refers to the field of study of large-body gravitat

2.6.4 MagnetismRefers to the field of study of magnetic enerdgdie

2.6.4.1 EM EnergyRefers to electro-magnetic energy, including winesty.

2.6.4.2 Magnetic FluxRefers to pure magnetic field energy (static magriedids).

2.6.5 MechanicalRefers to the field of study of mechanical intecacst between rigid
and flexible bodies due to forces.

2.6.5.1 Dynamic:Refers to the mechanical interactions between Isadiéerms of forces
and torques and the resulting changes in position.

2.6.5.1.1 RotationalRefers to the rotation of the frame of a body retato a

reference frame.
2.6.5.1.2 TranslationalRefers to the translation of the frame of a bodatiee to a
reference frame.

2.6.5.2 Kinematic:Refers to the description of the motion of mecimasim terms of
positions, velocities and accelerations.

2.6.5.3 Structural-StaticRefers to the interaction of static structural eéts and
the stresses experienced from forces shared betglements.

2.6.6 Thermal:Refers to the field of study of thermal interacsida@tween bodies
and their environments.

2.6.1 ConductionRefers to the standard definition of thermal corgucbetween
contacting, solid-phased bodies.

2.6.2 ConvectionRefers to the standard definition of thermal coteecbetween
solid bodies, liquids, or gases.

2.6.3 Radiation:Refers to the standard definition of thermal radiatbetween solids,
liquids, gases or plasmas.

2.7 Reliability: Refers to the subdiscipline of the state of compisria an
operational or faulted state and the probabilifytile component being in a
particular state.

96

2.7.1 F.M.E.C.A.:Refers to Failure Mode Effects & Criticality Analkysa common
failure analysis technique used to design compisnamd prevent highly
undesirable, catastrophic failures.

2.7.2 PRA:Refers to Probabilistic Risk Assessment, and irdudols or methods
commonly used to predict the states of compomersgstems by induction or
deduction.

2.7.2.1 Event TreeRefers to a PRA method of modeling the propagatidailure
events from an initial, critical event.

2.7.2.2 Fault TreeRefers to a PRA method of modeling how the fadfiee
component or subsystem function contributes tosvird failure of a system
function.

2.7.2.3 Markov:Refers to a PRA method of creating state-machiagrdms to model
the probability of a component or subsystem to gharetween operational
and/or faulted states.

2.8 Signal-ProcessingRefers to the subdiscipline of signal-based comaatioins,
and can include signals based upon other fieldswdy such as electrical,
electro-magnetism, hydraulics, pneumatics, andadyos.

2.8.1 Controls:Refers to the field of study of controls as a medirssgnal
interpretation and processing and communicatioth womponents or systems.

2.8.1.1 ProportionalRefers to proportional control.

2.8.1.2 Integral:Refers to integral control.

2.8.1.3 Derivative:Refers to derivative control.

2.8.1.4 Input ShapingRefers to a vibrations control technique wherebsdgted
system vibratory modes are convolved with coninolit signals to cancel these
vibratory modes during operation.

2.8.1.5 Model ReferenceRefers to a control technique whereby the a plavdehis
created and used to predict the behavior of tlstesy. The predicted behavior is
combined with the desired behavior to generatectirérol input signal.

2.8.1.6 Recursive-Least-Squard®efers to a control technique whereby a recursive
least squares algorithm is used to predict sydteguency and thus adjust the

control input signal.

97

2.8.1.7 State Spacd&efers to an adaptable control technique wherebyctintrol
processing or parameters are varied based uporstéie of the component or
system.

2.8.2 Analog:Refers to continuous-time control signals (e.dydraulic pilot line).

2.8.3 Digital: Refers to digital or discrete-time control signédsg., a digital electric
sensor).

2.8.4 ContinuousRefers to continuous control technique where anator or drive
IS given a continuously modulating input.

2.8.5 Discrete:Refers to “bang-bang” control, a technique whera@continuous
controller can only be used to proportionatelywsdjinput magnitude by
adjusting an on-off duty cycle. This should rotbnfused with discrete time
discretization of a model, 3.2.3. Discrete coléns can use either analog or
digital internal control signals.

2.9 Topology: Refers to the subdiscipline of creating conceptsoafipositions of
components. The topology of the system refdletoomponents involved and
their orientation.

2.9.1 CAD GeometryRefers to the particular geometry of a body, inctgdhe
composition and orientation of its features.

2.9.2 System ArchitectureRefers to the knowledge of the connections between
different component ports.

3 Discretization:Refers to the discontinuous nature by which we mgocse
components and behavior to analyze particular {soin space or time.

3.1 SpaceRefers to the geometric decomposition of spacenlty, icoordinate
systems, and dimensions.

3.1.1 Unit SystemRefers to the standard units of length measurenmzd to
discretize space.

3.1.2 Coordinate SystenT.hese coordinate systems refer to the conventitength
measurements to traverse space in 2 or 3 dimesision

3.1.2.1 Cartesian

3.1.2.2 Cylindrical

3.1.2.3 Geographic

98

3.1.2.4 Polar

3.1.2.5 Spherical

3.1.3 Dimensionality:These dimensions refer to orthogonal dimensionstigh a
geometric parameter is measured.

3.1.3.1 Dimensionless 0D

3.1.3.2 Linear 1D

3.1.3.3 Planar 2D

3.1.3.4 Spatial 3D

3.1.3.54D

3.2 Time: Refers to temporal discretization for the evaluatad a behavioral
property at a given point in time.

3.2.1 AveragedRefers to afilter by which a property is averagieaugh time over
a particular sample size.

3.2.2 ContinuousRefers to continuous time, and is typically onlailized in
computer models with state-based, continuous-¢iquations.

3.2.3 Discrete:Refers to discontinuous time broken into segments.

3.2.4 Discrete-ContinuousRefers continuous time that is sometimes discontisiu
when the state of an equation changes.

3.2.5 Instantaneouskefers to an exact instant in time.

3.2.6 Pseudo-Real-timéRefers to a real-time scale, such as during a model
execution, except with a shift in scale or phdsnge synchronization.

3.2.7 Real-time:Refers to time scale and synchronization basedestandard
world clock, or GMT, and can be shifted basedamation.

3.2.8 Steady-statdRefers to a time condition that can be combinet wther types
of time discretization to represent the fact thaomponent or system state is
steady and non-changing over time.

4 Mathematical FormalismRefers to the type of equations used to express the
mathematical relationships in the model (e.g.,4de4.6)

4.1 Algebraic

4.2 Differential Algebraic Equations (DAE)

4.3 Ordinary Differential Equations (ODE)

99

4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Partial Differential Equations (PDE)

Petri Net

Probability and Statistics

Representation SyntaRefers to the type of formal programming syntax or
source code that is used to convey the knowledtieeahodel, its interfaces, and
anything else that allows it to be used withimigdive tool (e.g., see 5.1-5.9).
Assembly (ASM)

C

C++

C#

Fortran 77

Fortran 90

Java

MATLAB

Modelica

MS_Excel

Meta-Information Aspects: These aspects are used to convey additional déiserip

information about a model as a file stored in a paber or in a repository. These

aspects can aid in identifying between similar niefi@ reuse, help with version

control, etc.

The following are meta-information aspects (6—6.x):

6.1

6.2

Causality:Refers to the direction of information flow in acet Models can be
either causal or noncausal.

Accuracy:Refers to a qualitative or quantitative measurenoémhodel
accuracy, which is typically only true for a spexcifase for a specific parameter.

In some cases, accuracy can be applied to a mosledisal discretization.

100

6.3

6.4

6.5

6.6

6.7
6.8
6.9
6.10
6.11

Resolution:Refers to a qualitative or quantitative measurenwémhodel
resolution, which is typically only true for a sjféccase for a specific
parameter. In some cases, resolution can be apphie model’s spatial or
temporal discretization.

COTS: Refers to the source of a model’'s knowledge. C@f¥&'s to
“Commercial Off-the-shelf’, meaning the model @amercially available as
part of existing, available software library.

*This is contrary to a model that is built uponrds of existing product attributes
in the marketplace. Such a designation would etiel by a COTS property of
the referenced component.

Fundamental governing equatiom&efers to the source of a model’'s knowledge.
This aspect means the model is built upon idealegong equations in the
specific disciplines specified by other aspects.

Empirical Data:Refers to the source of a model’'s knowledge. d3$pect means
the model is built upon experimental data, andhisststatistical in nature.

Date: Refers to the date a model was committed if versooitrolled.

Time: Refers to the time a model was committed if versoortrolled.

Title: Refers to the title of the model from the natitealiy.

Description:Refers to a short textual description of the model.
Documentation: Refers to a detailed hypertext description of thedeh its

parameters, assumptions, etc.

101

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

2006, The VIATRA 2 Model Transformation Framewo User's Guide,
http://dev.eclipse.org/viewcvs/indextech.cgi/gmtledsabprojects/VIATRA2/doc
/viatratut_October2006.pdf. September 21, 2007.

2008, Fujaba Tool Suite Fujabawiki, http://wves.eecs.uni-
kassel.de/~fujabawiki/index.php/Main_Page. Jurz088.

ASME, P. T. C., 2006Guide for Verification and Validation in Computatia
Solid MechanicsASME, New York, NY.

Bajaj, M., Peak, R. S., and Paredis, C. J20Q7, "Knowledge Composition for
Efficient Analysis Problem Formulation Part 1: Meation and Requirements,”
in 2007 ASME International Design Engineering Techhi€Conferences &
Computers and Information in Engineering ConfereneSME, Las Vegas,
Nevada, USA.

Bajaj, M., Peak, R. S., and Paredis, C. J20Q7, "Knowledge Composition for
Efficient Analysis Problem Formulation Part 2: Appch and Analysis Meta-
Model," in2007 ASME International Design Engineering Techinf@anferences
& Computers and Information in Engineering ConfaenASME, Las Vegas,
Nevada, USA.

Baldwin, C. Y., and Clark, K. B., 199®esign Rules: Volume 1. The Power of
Modularity, The MIT Press.

Black, P. E., and Tanenbaum, P. J., 2008, "Grap).S. National Institute of
Standards and Technology, http://www.nist.gov/ddd@#AL/graph.html. May 25,
2008.

Bohm, M., Stone, R., and Szykman, S., 2005, hdfcing Virtual Product
Representations for Advanced Design RepositoryeByst'Journal of Computer
and Information Science in Engineerjrig4), pp. 360-372.

Booch, G., Jacobson, I|., and Rumbaugh, J., 200% Unified Modeling
Language User Guideédddison-Wesley Professional.

Burmester, S., Giese, H., Miunch, E., Oberggh@l, Klein, F., and Scheideler, P.,
2007, "Tool Support for the Design of Self-OptimgiMechatronic Multi-Agent
Systems "International Journal on Software Tools for Teclogy Transfer
(STTT) 8(4), pp. 1-16.

Dynasim (Dassault Systemes), 2008, Dymolay:Htww.dynasim.se. February
1, 2008.

102

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

eClass (eCl@ss e.V.), 2008, Eclass, http://wealass.de. April 20, 2007.

Eppinger, S. D., Sosa, M. E., and Rowles, C. 2000, "Designing Modular and
Integrative Systems,2000 ASME International Design Engineering Techhica
Conferences and Computers and Information in Ereging Conference
Baltimore, Maryland, USA.

Estefan, J. A., 2007, "Survey of Model-Basegst&ms Engineering (MBSE)
Methodologies," California Institute of Technolo@asadena, California, U.S.A.,
http://www.omgsysml.org/MBSE_Methodology Survey Redf. August 10,

2007.

Feng, S. C., and Song, E. Y., 2000, "InformatModeling of Conceptual Design

Integrated with Process Planningfroceedings of Symposia for Design for
Manufacturability in the 2000 International Mecheaal Engineering Congress

and ExpositionOrlando, Florida, USA.

Fenves, S., Foufou, S., Bock, C., and SrirRmD., 2008, "CPM2: A Core Model
for Product Data,Journal of Computing and Information Science in iBegring
8(1).

Fenves, S. J., 2001, "A Core Product Model tfee Representation of Design
Information,"” NISTIR, National Institute of Standarand Technology.

Fisher, J., 1998, "Model-Based Systems Enginge A New Paradigm," in
INCOSE Insightvol. 1.

Gershenson, J. K., Prasad, G. J., and Allamren 1999, "Modular Product
Design: A Life-Cycle View,"Journal of Integrated Design & Process Science
3(4), pp. 13-26.

Grosse, I. R., Milton-Benoit, J. M., and Wikd J. C., 2005, "Ontologies for
Supporting Engineering Analysis Modelgftificial Intelligence for Engineering
Design, Analysis and Manufacturint®(1), pp. 1-18.

Horvéath, I., Vergeest, J. S. M., and Kuczo@i, 1998, "Development and
Application of Design Concept Ontologies for Contet Conceptualization,”
1998 ASME Design Engineering Technical Conferenstanta, Georgia, USA.

Johnson, T. A., Paredis, C. J. J., and ButtkiRy, 2008, "Integrating Models and
Simulations of Continuous Dynamics into SysML," Modelica Conference
2008 Bielefeld, Germany.

Johnson, T. A., Paredis, C. J. J., Burkhartafd Jobe, J. M., 2007, "Modeling

Continuous System Dynamics in SysML,” 2007 ASME International
Mechanical Engineering Congress and Exposit8ME, Seattle, WA, USA.

103

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Johnson, T. J., 2008)tegrating Models and Simulations of Continuousi@yic
System Behavior into SysMIMaster's Thesis, G. W. Woodruff School of
Mechanical Engineering, Georgia Institute of Tedbgy, Atlanta, Georgia,
USA.

Keller, W., and Modarres, M., 2005, "A Histoal Overview of Probabilistic Risk
Assessment Development and Its Use in the NucleaePIndustry: A Tribute to

the Late Professor Norman Carl RasmussRBe/iability Engineering and System
Safety89(3), pp. 271-285.

Kopena, J. B., and Regli, W. C., 2003, "Fuoctl Modeling of Engineering
Designs for the Semantic Wellyata Engineering26(4), pp. 55-61.

Liang, V.-C., and Paredis, C. J. J., 2004 P&t Ontology for Conceptual Design
of Systems,'Journal of Computing and Information Science in iBegring 4(3),
pp. 206-217.

MagicDraw UML (No Magic Inc.), 2008, MagicDraw UML,
http://www.magicdraw.com. September 10, 2007.

Malak, R. J., and Paredis, C. J. J., 2007,liddéing Behavioral Models for
Reuse,'Research in Engineering Desidi8(3), pp. 111-128.

MATLAB Central (The Mathworks), 1994, An Opé&xchange for the MATLAB
and Simulink User Community, http://www.mathworksm@matlabcentral.
February 1, 2008.

Mocko, G., Malak Jr., R. J., Paredis, C. Jadd Peak, R., 2004, "A Knowledge
Repository for Behavioral Models in Engineering Qes' 2004 ASME
Computers and Information in Engineering ConferenSealt Lake City, Utah,
USA.

Modelica Association, 2005, "Modelica Langua@gecification,” Linkoping,
Sweden.

Modelon (Modelon AB), 2007, Hylib 2.3.27,
http://www.modelon.se/index.php?did=32&level=2. @1, 2007.

Mosterman, P. J., and Vangheluwe, H., 2004pom@uter Automated Multi-
Paradigm Modeling: An IntroductionSimulation: Transactions of the Society
for Modeling and Simulation Internationa&((9), pp. 433-450.

Object Management Group, 2007, "Meta Objectcilftg (MOF) 2.0

Query/View/Transformation Specification,” http://wmomg.org/docs/ptc/07-07-
07.pdf. March 28, 2008.

104

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Pahl, G., Beitz, W., Feldhunen, J., and Grété{., 2007,Engineering Design: A
Systematic Approacispringer, London, UK.

Paredis, C. J. J., Diaz-Calderon, A., Sinha, &d Khosla, P. K., 2001,
"Composable Models for Simulation-Based DesigrEngineering with
Computers17(2), pp. 112-128.

Paredis, C. J. J., 2008, "An Open-Source Modelibrary of Fluid Power
Models," inBath/ASME Symposium on Fluid Power & Motion ContiePMC
2008) Bath, United Kingdom.

Peak, R. S., Fulton, R. E., Nishigaki, ., a@#amoto, N., 1998, "Integrating
Engineering Design and Analysis Using a Multi-Reprgation Approach,"
Engineering with Computerd4(2), pp. 93-114.

Peak, R. S., Burkhart, R. M., Friedenthal AS. Wilson, M. W., Bajaj, M., and
Kim, 1., 2007, "Simulation-Based Design Using Syd®alrtl: A Parametrics
Primer," inINCOSE Intl. Symposiunsan Diego, California, USA.

Phoenix Integration, 2008, PHX ModelCenter, tpltwww.phoenix-
int.com/products/modelcenter.php. February 1, 2008.

Powell, A., Nilsson, M., Naeve, A., and Jolowst P., 2007, DCMI Abstract
Model, http://dublincore.org/documents/2007/06/04teact-model. January 21,
2008.

Rachuri, S., Baysal, M. M., Roy, U., FouFou, ®ock, C., Fenves, S.,
Subrahmanian, E., Lyons, K., and Sriram, R. D.,520hformation Models for
Product Representation: Core and Assembly Modétggrnational Journal of
Product Developmen®(3), pp. 207-235.

Sage, A. P., and Armstrong Jr., J. E., 2088pduction to Systems Engineerjng
John Wiley & Sons, New York, NY.

Sanchez, R. O. N., and Mahoney, J. T., 200@pdularity, Flexibility and
Knowledge Management in Product and Organizatiosiddg" in Managing in
the Modular Age: Architectures, Networks, and Oigations Blackwell
Publishing, Boston, MA.

Sasajima, M., Kitamura, Y., lkeda, M., and Mguchi, R., 1995, "FBRL: A
Function and Behavior Representation LanguaBeyt. of 1IJCA] 95, pp. 1830-
1836.

Schurr, A., 1995, "Specification of Graph Ts&tors with Triple Graph

Grammars,'Graph-Theoretic Concepts in Computer Science: 20tdrnational
Workshop, WG'94, Herrsching, Germany, June 16-2841Proceedings

105

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Simmetrix Inc., 2006, Simulation Application uite,
http://simmetrix.com/products/SimulationApplicat®uite/main.html. June 20,
2006.

Simulink (The Mathworks), 2008, Simulink,
http://www.mathworks.com/products/simulink/. Felbmua, 2008.

Stone, R. B., and Wood, K. L., 2000, "Develggnof a Functional Basis for
Design,"Journal of Mechanical Desigri22 pp. 359-370.

SysML, 2006, OMG Systems Modeling Language @®MysML™), V1.0,
http://www.omgsysml.org/. September 10, 2007.

Szykman, S., Sriram, R., Bochenek, C., andzRdg 1998, "The NIST Design
Repository Project,"Advances in Soft Computing - Engineering Design and
Manufacturing Springer-Verlag, London.

Szykman, S., Racz, J. W., and Sriram, R. @99 "The Representation of
Function in Computer-Based Desigth999 ASME Design Engineering Technical
ConferencesLas Vegas, Nevada, USA.

Szykman, S., Fenves, S. J., Keirouz, W., amoo&er, S. B., 2001, "A Foundation
for Interoperability in Next-Generation Product B&pment Systems,”
Computer-Aided DesigR33, pp. 545-559.

Tzilla, E., Robert, E. F., and Atef, B., 200Aspect-Oriented Programming:
Introduction,"Communications of The AGMI4(10), pp. 29-32.

Ulrich, K., and Tung, K., 1991, "Fundamentas§ Product Modularity,"1991
ASME Design Technical Conferences - Conference esigD / Manufacture
Integration Miami, Florida, USA.

Umeda, Y., Takeda, H., Tomiyama, T., and Ykahia, H., 1990, "Function,
Behavior, and StructureApplications of Artificial Intelligence in Engindag V,
Springer-Verlag, Berlin, German¥, pp. 177-193.

Wallace, D., Pahng, G. D. F., and Bae, S.,819%Web-Based Collaborative
Design Modeling and Decision Supportl!998 ASME Design Engineering
Technical Conferences and Engineering in Informatibanagement Conference
Atlanta, Georgia, USA.

106

