
Analysis of the execution time of a program and the leakage of sensitive
information

A Thesis
Presented to

The Academic Faculty

In Partial Fulfillment
of the Requirements for the Degree

B.S. in Computer Science with Research Option in the
College of Computing

Georgia Institute of Technology

Copyright 2016

	 	 Ami Patel
 10/7/16

	

CHAPTER 1

INTRODUCTION

 In the information security field of computer science, the questions of whether a program is

safe or unsafe depends heavily on the inputs in which the program may leak sensitive

information to an attacker who can observe the execution time of the program. Existing

information- flow analyses achieve precision or scalability, but not both. Moreover, many of the

current techniques to determine the safety of a program are slow and inefficient or require to

much man power. Because of this, the inputs of programs and possible automatic research

methods are being researched to fill the gap in determining whether a program is safe or unsafe.

When determining the level of security a program carries, many computer scientists have

looked into how information flow control addresses privacy. However, because this method is

not widely used and lacks many core functionalities, this research looked into aliasing, callbacks,

arrays and lists along with possible automatic checkers using logic. The benchmarks detail

information on safe inputs and outputs and separate each step into classified loops, methods, and

recursion.

Information flow control and Classical static analysis enable logical and denotational

techniques to determine the safeness of a program (Myers, Andrew & Liskov). However, the

restrictive nature of both models strictly limits the scope for complete security (Myers, Andrew

& Liskov). Therefore, the inputs of programs are being studied to help in determining whether a

program is safe or unsafe. The manner in which information flow control addresses privacy has

	 	 Ami Patel
 10/7/16

	
been delved into using many different methods. However, as discussed briefly above, many of

these methods are not widely used, lack many core functionalities, and are restrictive (Myers,

Andrew & Liskov).

	 	 Ami Patel
 10/7/16

	

CHAPTER 2

METHODS AND MATERIALS

In present information flow control policies, this research looked into aliasing, callbacks,

arrays and lists. These benchmarks detailed information on safe inputs and outputs and separated

each step into classified loops, methods, and recursion. By looking at the Java code in which

each simple benchmark had been written, changing the parameters and inputting different

strings, the possibility of a leak was determined by obtaining an output.

 Using this input/output technique to compile and run basic loops and methods accurately

helped to determine if a program was completely safe or unsafe. Each program was broken down

into parts of the code that used an if/else statement, a for/ while loop or a using a try/catch

statement. The ability to break Java code down into these simple functions allowed the generator

to input a set of strings and in return output them as well. Running through the outputs using

various algorithms enabled the detection of security leaks.

I further researched the details aliasing, arrays, lists, and callbacks by using DroidBench, a

benchmark on GitHub to further research each classification. With these classifications, I studied

the recursion, loops, and other basic object oriented java functions within these benchmarks. I

discussed the intermediate steps to understand the process and then dove into them to form a

framework; Then, I helped in creating and testing an automatic verifier to look into the inputs of

each program, ultimately determining the level of security each program contains by comparing

the paths of each input. The automatic verifier was implemented using the Java Virtual Machine

language.

	 	 Ami Patel
 10/7/16

	

CHAPTER 3

RESULTS

Running through the outputs using various algorithms and benchmarks enabled the

detection of security leaks. This is because each and every output was traced over to make sure

that complete security was being used. This was quite impressive as programs were easily and

quickly run without much concern or work from the programmer’s side.

To showcase this, an automatic verifier for commodity languages was presented named

Symone. It selects pairs of paths and runs the pair trying to combine a proof of the flow security.

Once this is done, if it finds a path of pairs that were picked before, it is able to find a general

proof that all the chosen paths satisfy. Symone was implemented in the Java Virtual Machine

language and was tested on a set of information flow benchmarks along with case studied from

the Google Play app marketplace. It was found that Symone either verifies or invalidates each

policy satisfaction for the pairs properly.

	 	 Ami Patel
 10/7/16

	

CHAPTER 4

DISCUSSION

Although Information flow control and Classical static analysis have focused on the design,

implementation, and testing of program safety, they had not focused solely on the execution time

of the program and the manner in which it leaks sensitive information on an operated program.

(Mcmillan). This is important because all the intricate details of a computer leakage are revealed

through the inputs and outputs. The execution time and input/output characteristics of programs

can give an exact number of leaks if any exist ultimately determining the safety of programs.

Information flow control and Classical static analysis use optimizing transformations to enable

logical and denotation techniques (Myers, Andrew & Liskov). Elimination transformation is

justified with logic with these methods as well (Myers, Andrew & Liskov). Such functions

allow most security checks to be monitored. Because of this, the details of certain algorithms and

benchmarks were studied to determine the security by the input and output of various programs.

Doing so checked for the security and the automatic verifier; Symone was able to either verify or

invalidate each policy fulfillment for each pair.

