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SUMMAJRY 

Attempts to understand how heat is transferred through powder-gas 

Systems usually devolve to attempts to determine the Systems1 thermal 

conductivities, There are an unlimited number of powder-gas "systems" 

possible, even for a Single solid in a Single gas, and appeal is gen-

erally made to some theory which predicts thermal conductlvity in order 

to reduce the number of experimental measurements required. Reliable 

thermal conductlvity measurements on sufficiently well characterized 

powder-gas systems over a wide ränge of conditions are needed for an 

understanding of the basic phenomena governing heat transfer in these 

systems. Also, such measurements permit meaningful evaluations of 

theories proposed to predict thermal conductlvity of two phase systems 

from more easily measured properties and existing tabulated properties 

of the pure constituents. 

This study presents measured thermal conductivities for ex-

tensively characterized magnesia, alumina, and zirconia powders, 

Thermal conductivities of the powders in dry air at atmospheric pressure 

were determined at volume fractions solid varying from 0.^9 to 0,70 as 

a function of temperature from about 200*1 to about I^CHJT. Particle-

size distribution (by several techniques), chemical composition, x-ray 

diffraction pattern, weight loss on heating, pore-free density, and 

surface area of each powder were measured. Mean particle sizes of the 

powders varied from about 211 to 1023 microns. 



The thermal conductivities of the various powders were determined 

by a steady-state method employing radial heat flow in a hollow cylinder 

and by an unsteady-state method based on the model of heating a cylinder 

of a perfect conductor surrounded by an infinite amount of the material 

whose thermal conductivity is being measured. The unsteady-state method 

was used to corroborate a few of the results obtained by the steady-state 

method; it provided an independent check on the results. The uncertainty 

of the steady-state measurements was estimated to be about ±10 per cent; 

and the uncertainty of the unsteady-state method, about ±11 per cent. 

Reproducibility of the observations was about ±3 Pe*" cent. These measure­

ments are the basis for the following conclusions: (a) the conductivity 

of the powder in air at atmospheric pressure increases with temperature 

for each material; (b) the thermal conductivity increases with increas-

ing volume fraction solid for a given powder at a fixed temperature; 

(c) the thermal conductivity is critically dependent on volume fraction 

solid near the maximum volume fraction solid obtainable with a powder; 

(d) a sorbed film increases the conductivity of the powder above that of 

the powder after it has been treated to remove the film below about 

for magnesia and alumina and below about 1050 F for zirconia; (e) mechani-

cal pressure (as distinguished from gas pressure) on the powder enhanced 

the conductivity of the powder; (f) an alumina powder had a slightly 

lower conductivity than a magnesia powder at the same volume fraction 

solid with essentially the same shape factor in accord with predictions 

of the theory proposed in this work; (g) two magnesia powders having the 

same volume fraction solid and close to the same shape factor but dif-

ferent particle-size distributions, mean particle sizes, and points of 
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truncation had the same effective thermal conductivity, in accord with 

predictions of the theory proposed in this work. 

Prediction of the thermal conductivity of a powder-gas system is 

possible in principle for single-sized particles of known shape in a 

fixed spatial arrangement if the thermal conductivities of the con-

stituents are known. However, for most real powders the particles are 

not Single sized, the shape is not known, and the spatial arrangement 

is not fixed. Theoretical relations based on idealized modeis of these 

real powders generally relate the thermal conductivity of a powder-gas 

system to the volume concentrations of the constituents and their 

thermal conductivities. Implicit in the derivations are assumptions 

of particle shape and spatial arrangement. Ofttimes to force these 

relations to fit a broad spectrum of experimental data recourse has 

been made to empirical constants. Too much reliance on empirical and 

semi-empirical relations leads away from an understanding of the funda­

mental heat transfer processes taking place in powders, and often leads 

to the conclusions that heat transfer through powders is hopelessly 

complicated and not amenable to sound mathematical treatment. Too 

little use appears to have been made of the well-estabilshed small 

particle technology and firm mathematics describing small particle 

relationships. 

In view of the foregoing, a theoretical expression is presented 

to relate the effective thermal conductivity of statistically describable 

two-phase Systems to the conductivities of the pure phases, the volume 

concentrations of the phases, and a shape factor. Auxiliary equations 

to relate bulk gas conductivity and small inter-particle distance and 
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to predict a radiation heat transfer contribution to effective thermal 

conductivity are derived. The shape factor is a property of the dis-

continuous phase and is related to the two-phase body only through the 

volume "balance. In the derivation of the expression no assumptions are 

made concerning particle shape, size, or spatial arrangement. However, 

the derivation is based on a simplified model in that the isotherms in 

the model are assuraed to he planes perpendiciliar to the heat flow. In 

exact Solutions of the heat flow equation, no assumptions are made re-

garding the heat flow or temperature pattern. On the other hand, exact 

Solutions have heen effected only for simple shapes in fixed arrange­

ment s that seem to fall far short of describing actual powder-gas 

Systems. 

The shape factor required for Solution of the equation proposed 

in this study was öbtained from the particle-size distrihution of the 

powders. Results calculated by the proposed equation agree well with 

the measured effective thermal conductivlties. Predicted and experi­

mental conductivities generally agreed within *5 per cent. 

Comparison of the experimental conductivities with an exact Solu­

tion of the heat flow equation in which the particles are assumed to be 

ellipsoids far enough apart so as not to interact showed that this exact 

Solution underestimates the measured effective thermal conductivities. 

Comparison of the experimental conductivities with a simplified Solution 

in which the particles are assumed to be spheres and the heat flow lines 

are assumed to be straight parallel lines showed that the simplified 

Solution gave fair agreement depending upon the value of a constant set 

by the geometry of the model. 



The results of this investigation suggest that the effect of 

particle parameters, the effect of mechanical (not gas) pressure, the 

effect of sorbeä films, and the effect of radiation heat transfer on 

the thermal conductivity of powders are interesting areas for further 

work. Powders having known particle-size distributions, surface areas, 

shape factors, etc. should he synthesized or blended so that the in-

fluence of these parameters may be investigated systematically. Better 

control of particle parameters will permit more meaningful inter-

comparisons between different investigations of heterogeneous Systems. 
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CHA.PTER I 

INTRODUCTION 

Knowledge of the facility with which heat is transported through 

matter and through a vacuum is important in the consideration of many 

applied and theoretical problems. Perhaps the transport of heat through 

porous media is the least amenable to mathematical analysis. Certainly 

the literature of the field is large and difficult to interpret. To 

reconcile the results of different investigators and to find an accord 

in the various proposed modeis and analyses is even more difficult. 

This study presents experimental heat transfer data on a vartety of 

porous materials which have been extensively characterized, and success-

fully correlates these data as well as all the literature data that are 

adequately characterized in terms of a proposed model for heat transfer 

through porous media. 

Heat transfer is conventionally described in terms of the "co-

efficient of thermal conductivity" or more commonly, the "thermal con-

ductivity." It is that property of a material which determines the 

temperature gradient under fixed heat flow. The definition of thermal 

conductivity, k, is contalned in the generalized Statement of experience 

with heat flow called Fourier's law or equation 

where the heat flow per unit time, Q, and the temperature gradient, dt/dx, 

are perpendicular to the area A. 
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Thermal conductivity may "be measured by either static or dynamic 

methods. In static methods the sample is allowed to come to steady-state 

conditions; i.e., the temperature is a fünction of a space coordinate 

only, and the temperature at two or more positions is measured. The 

thermal conductivity is then determined from an Integration of Equation 

1. In dynamic methods the sample is in an unsteady-state; i.e., tem­

perature is a fünction of a time coordinate as well as a space coordinate, 

and the temperature change with time at one or more positions is measured. 

The thermal diffuslvity, T, is then usually determined from an appropriate 

(though approximate) Solution of the equation which relates thermal con-

duction to temperature history. For a homogeneous Isotropie material, 

containing no heat sources or sinks, if thermal conductivity is constant 

and if the small difference between C and C is negligible 
v p 

'h2t ö2t h2t\ dt 
c L Ö = T k 2 + . 2 + ^ ox oy oz 

(2) 

where 0 = time, 

T = —pr" = thermal diffuslvity, 
P P 

p = density, and 

C = heat capacity at constant pressure. 

Although most unsteady-state methods determine k indirectly from T, some 

offer the possibility of determining both k and T from a Single experi-

ment. 

Thermal conductivity depends on the chemical composition, physical 

strueture, and the state of a substance. It is not a constant for any 

one material, but may be a fünction of a number of variables. Factors 



which may influence the thermal conductivlty of nonmetallic solids have 

been very well summarized by Austin (1) as follows: 

(a) chemical composition, molecular structure in pure Compounds, 

and impurities in solid Solutions; 

(b) physical texture: (l) porosity, total void space and size 

and shape of pores vith solid phase continuous, size and shape of grains 

with gas phase continuous; (2) presence of a vitreous or liquid phase, 

total amount and distribution of phase; (3) development of ceramic bond 

and sintering, time at temperature level; and (h) anisotropy and direc-

tional effects; 

(c) temperature; 

(d) pressure, stress or strain; and 

(e) heat flow. 

The thermal conductivities of most metals, at ordinary tempera­

ture s, show a small and nearly linear decrease with increase of tem­

perature, but a few (e.g., aluminum and platinum) show the opposite 

effect, as do also many alloys. The thermal conductivlty of most non­

metallic materials varies considerably with temperature (see for example 

Kingery (2) and Figure l). The thermal conductivlty of many crystalline 

materials decreases with increasing temperature, being in general pro­

portional to the reciprocal of the absolute temperature. The thermal 

conductivlty of an amorphous body, such as fused sillca, increases with 

increasing temperature (Figure l). However, the temperature dependence 

of k cannot be predicted with certainty, and thermal conductivlty data 

cannot be reliably extrapolated to higher or lower temperatures. 

Numbers in parentheses refer to references listed in the Bibliography. 
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Among the many factors that influence thermal conductivity of 

nonmetallic solids, physical texture causes great Variation. Speaking 

broadly, there are two types of porous materials, cellular and granulär. 

A cellular material is a two-phase systera in which the solid phase is 

continuous and the gas phase is dispersed. A refractory in which voids 

(cells) are formed by the volatilization or combustion of some ingredient 

during firing is representative of this type of substance. A granulär 

material is a two-phase System in which the gas phase is continuous and 

the solid phase is dispersed. Snow, sands, wools, and dusts are repre­

sentative of this type of substance. In generale a granulär material has 

a lower conductivity than a cellular one of the same material and 

porosity. 

Factors influencing thermal conductivity are treated in more detail 

by Austin (l), Barrett (3), Kingery and McQuarrie (k), and Powers (5) as 

well as most Standard texts on heat transfer. 

A survey of the literature on thermal conductivity reveals that 

steady-state methods of measuring k are more widely used than unsteady-

state methods; however, unsteady-state methods have become more widely 

used since Instruments for accurately recording rapidly changing tem-

peratures as well as Computers for handling the more complex Solutions 

of Equation 2 have become available. Steady-state methods determine 

thermal conductivity directly while unsteady-state methods generally deter 

mine thermal diffusivlty so that a knowledge of density and heat capacity 

is requlred before thermal conductivity can be determined. The so-called 

"thermal conductivity probe" is an unsteady-state method that permits 

direct measurement of k. It is based on the heating of a cylinder of 



perfect conductor surrounded by an infinite amount of the material whose 

conductivity is being measured. Other unsteady-state methods permitting 

direct measurement of k, as well as T, are discussed by Carslaw and 

Jaeger (6). Since confidence in unsteady-state methods is usually 

based on agreement with steady- state methods, the use of steady-state 

methods appears to be desirable until a fairly comprehensive collection 

of reliable data has been acquired. 

In steady-state methods for measuring thermal conductivity the 

principal problem is achieving a heat flow pattern which corresponds to 

that assumed in solving Equation 1. Test specimens may take a shape 

for which an exact Solution of Equation 1 is possible. These shapes 

are a plane plate (slab), a sphere, a cylinder, and a prolate spheroid. 

In flat plate arrangements heat flows through a sample of constant cross 

section whose lateral surfaces are, ideal1y, covered with a nonconductor 

of heat. Since there is no perfect thermal insulator, a technique 

frequently used to reduce lateral heat flow to negligible values is to 

provide heat guards (separately heated portions of the test material) 

whose temperature profile matches as closely as is practical the tem-

perature profile of the test sample. To obtain adequate guarding for 

accurate determinations of k, quite large samples are required in this 

arrangement. Radial flow through a hollow sphere or prolate spheroid 

is an attractive arrangement since no heat losses occur except through 

the leads to the heater and thermocouples, but the forming of uniform 

heat sources and fabricating of hollow samples is frequently a difficult 

requirement. Cylindrical arrangements lose heat at their ends. A 

technique to reduce axial heat flow in a cylinder to negligible values 
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is to provide end heat guards. Another technique to reduce axial heat 

flow in a cylinder is to use a sample which is long compared with its 

diameter and to work only in the center section where the isothermal 

surfaces are essentially cylindrical. 

In unsteady-state methods the principal problem is knowing how 

nearly the boundary conditions in an experiment match those postulated 

in solving Equation 2. Boundary conditions in unsteady-state methods 

are achieved by guard methods and/or sample configuration. Advantages 

of unsteady-state methods are that some permit very rapid measurements 

and that some may be used jLn situ which is a distinct advantage for 

materials such as snow, rocks, and moist soils. Accurate temperature 

measurement, especially at very high temperatures, is a problem common 

to both methods. Standard texts such as Jakob (j), Carslaw and Jaeger 

(8), and Kingery (9) present some of the advantages, disadvantages, and 

mathematics of established steady-state and unsteady-state methods of 

measuring thermal conductlvity. Ross (10) presents an excellent survey 

on methods of measuring thermal conductlvity. 

Each method and arrangement of apparatus indlcated above has 

certain limitations and the choice of one over another is governed by 

physical structure, temperature, and conductlvity. However, thermal 

conductlvity can be measured with equivalent results by both steady-state 

and unsteady-state methods, by different arrangements of apparatus, and 

by different investigators. This fact is indlcated by the results of 

Woodside (ll) on silica aerogel using both steady-state and unsteady-

state methods and by Powell's comparison of the thermal conductlvity of 

iron measured by several investigators (12). It is further indlcated by 



the results of Adams (13) and of Klngery (lk) on the determination of k 

for aluminum oxide using steady-State radial heat flow in a hollow 

prolate spheroid, sphere, and cylinder. 

From a consideration of the advantages and limitations of the 

various satisfactory arrangements outlined above, an apparatus utilizing 

radial flow in a hollow-cylinder was chosen to measure the thermal 

conductivlty of various porous materials as a function of temperature 

and volume fraction solid under steady-state and unsteady-State con-

ditions. To reduce heat flow out the ends of the cylinder, both a 

sample long compared with its diameter and heat guards were used. 
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CHAFTER II 

REVIEW OF THE LITERATURE OW THEORETICAL EQUATIÖNS FOR THERMA.L 

CONDUCTIVITY OF MIXTÜRES 

A powder may he defined as a heterogeneous System in which solid 

partides are surrounded hy a fluid or, in the case of a vacuum, by 

empty space. In the limits the solid and surrounding fluid may be 

considered to be either in series or in parallel with each other. 

Surely in a real porous body part of the fluid is effectively in series 

and part in parallel with the solid, so the true effective conductivity 

may be assumed to be between these limits, Assuming no convection in 

the pores and no radiation between solid surfaces, the effective thermaL 

conductivities for these limiting distributions of material are 

K ' & - V k o + Vd ' (3) 

for parallel layers or laminae and 

1 (1 - Vd> . Vd 
+ ~ , w k k k, e c d 

for series layers or laminae where 

k = effective thermal conductivity of the two-phase body, 

k = thermal conductivity of the continuous phase, 

k = thermal conductivity of the discontinuous phase, and 

V = volume fraction of the discontinuous phase, 



For a given V,, if k and k, are approximately equal, Equatlons 

3 and 4 show that the dlstribution of material makes llttle difference 

in the effective thermal conductivity. However, for most powders k, 

is large compared to k > so that some account raust be taken of the 
C 

ratio of series to parallel laminae. For example, a porous material 

with a V, of O.58 and a k /k of 1000 has a k for parallel laminae of 

58O k and a k for series laminae of 2.4 k . For the same V,, with c e c d 
k
rt/

k equal 50, k for parallel laminae is 29 k and k for series 

laminae is 2.3 k • This may be contrasted with the case, again with 

V-, = O.58, whlch for k /k equal 2, k for parallel laminae is 1.6 k 

and k for series laminae is 1.4 k . e c 

Equatlon 3 naay "be viewed as a volume fraction-weighted arithmetic 

mean of the separately determlned k, and k , and Equatlon 4 may be viewed 

as a volume fraction-weighted harmonic mean of the separately determlned 

k and k . Since the effective thermal conductivity of a powder, as-

suming negligible radiation and convectlon, should be found between the 

upper llmiting value, Equatlon 3, and the lower limlting value, Equatlon 

4, several investigators have considered the intermedlate weighted geo-

metric mean to describe the effective conductivity of a powder. 

Lichtenecker (15) presented such an empirical relation as follows 

Vd (1 " V k = k, d • k d . (5) 
e d c xx/ 

Woodside and Messmer (l6) found that for packed beds of quartz sand, glass 

beads, and lead shot (V. = 0.4l to V = 0.8l) in various fluids (ranging 

from Freon-12 to water) Equatlon 5 overestlmated k when k /k exceeded 

20. 
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Numerous theoretical expressions have been derived for evaluating 

the effective thermal conductivity of a heterogeneous body. These deri-

vations seem to fall into two categories: the first of which contains 

no assumptions about the heat flow and temperature patterns and the 

second of which contains an assumption about either the heat flow or 

the temperature pattern. Expressions in the first category are some-

times referred to as accurate, rigorous, or exact Solutions. Expressions 

in the second category are referred to as "simplified" or approximate 

solutions. The words accurate, approximate, etc. refer to the mathematics 

of the Solution and not necessarily to the effective conductivity pre-

dicted by the Solution. In an excellent survey of theoretical relations 

for determining the effective conductivity of heterogeneous substances, 

Powers (17) classifies theoretical relations as equations based on flux 

laws (the first category above) and as equations based on Ohms law (the 

second category above). Babanov (l8), Gorring and Churchill (19) > 

Laubitz (20), and Woodside and Messmer (16) review some of the schemes 

used in deriving relations to predict k . 

Exact Solutions 

Although many of the exact solutions have evolved from work in 

electricity, magnetism, hydrodynamics, etc. they apply equally well to 

any case of mass or energy flow under a potential difference or driving 

force. 

Maxwell (21) derived an expression for the effective conductivity 

of a heterogeneous body composed of spheres of one conductivity embedded 

in a matrix of another conductivity. His equation is 
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k = k 
e c 

k d + 2k c - 2 v d > c -vl 
k d + 2k 

c + v d < * = - V 
(6) 

It is assumed that the spheres are so far apart that they have no in-

fluence on one another. Lord Raylelgh (22) considered the interactions 

between particles for the cases of uniform spheres and cylinders in 

"rectangular order" (spheres in a cubic array and cylinders in a Square 

array). For small values of V, the Rayleigh equation for spheres is 

identical to Equation 6 (Maxwell1s equation). 

Many expressions have been derived based on modifications and 

extensions of the Maxwell and Rayleigh equations (23, 2k, 25, 26, and 27). 

Burgers (23) and Fricke (2^) developed more general Solutions for parti­

cles embedded in a matrix by assuming the particles to be ellipsoids. 

With the assumption also that the particles are far enough apart so as 

not to interact, Fricke obtained 

k = k 
e c 

i + v d <*• j a . 1 } 
C 

1 + Vd (* - I) 
(7) 

for spheroids (f = f / f ) 

F = 1/3 
i=l 

1 + l r - H f i 
c 

-1 

(8) 

and 

i= 1 
f i = 1 (9) 

The factor F represents the ratio of the overall average tem-

perature gradients in the two phases. The factors f are the semi-



principal axes of the ellipsoid. If f = f = f , i.e., the particles 

are spheres and Equation 7 reduces to Maxwell's equation. In calculating 

the thermal conductivity of soll, de Vries (28) took f = f2 = l/8 and 

f = 3/4. Woodside and Messmer (16) found that Equation 7 with de Vries1 

values for f. gave fair agreement with their experimental conductivities 

for beds of quartz sand, glass beads, and lead shot in various fluids 

at about 86^. They concluded that Equation 7 with de Vries1 values 

of f. underestimates k when k,/k is very large (from their data, 

"very large" k /k appears to be about 100). 

Equations of the Maxwell-Rayleigh type usually yield results that 

correspond fairly well with experimental results for cellular material 

and emulsions. Gorring and Churchill (19) compared a large body (99 

Systems) of literature data with equations of this type and found good 

agreement between experimental and calculated results. However, exact 

Solutions have usually not yielded good agreement when compared with 

experimental results on powders. Perhaps the difficulty is, as pointed 

out by Laubitz (20), that although the mathematics is exact the model 

is so artificial that it radically departs from real powders. 

Simplified Solutions 

Assumptions about the heat flow or temperature pattern, i.e., the 

assumption of a more restricted model, can reduce the problem of cal­

culating the effective thermal conductivity of a hetergeneous System 

from that of solving a partial differential equation to that of solving 

an ordinary differential equation (Fourier's law). Simplified Solutions 

are generally of two types: in the first the heat flow lines are as-

sumed to be straight and parallel, and in the second the isotherms are 



assumed to be planes perpendicular to the heat flow. Solutions of the 

first type are sometimes said to be based on the assumption of linear 

heat flow, the assumption of zero sidewise conductivity, or the as­

suraption that the conductivity of the components is vanishingly small 

in directions perpendicular to the heat flow. Solutions of the second 

type are said to be based on the assumption of linear isotherms, the 

assumption of infinite sidewise conductivity, or the assumption that 

the conductivity of the components is infinite in directions perpendicular 

to the heat flow. Lichtenecker (29 and 30) derived expressions for the 

electrical conductivity and the dielectric constant of aggregates for 

several modeis (Squares, triangles, circles, and ellipses in a Square) 

using both of the above assumptions. His Solutions were two dimensional, 

i.e., independent of the third dimension. 

Linear Heat Flow 

For cubes in a cubic array with the assumption of linear heat 

flow, the expression for effective thermal conductivity is 

r(l - V ^ 3 + V ) + — (V ̂ 3 - V )1 

\K± vd + V k, ̂ vd V 
k =k Jl L (10) 
e CL (i.v^3)+^v^

3 J 
^ Vd ; k- d 

d 

This expression was derived by G. S. son Frey (31) to describe the elec­

trical conductivity of binary aggregates. Lichtenecker's (29) two-

dimensional model corresponding to this case gives an equation which is 

easily converted to the above equation, showing that the model is in­

dependent of the third dimension. For most powders encountered in 

practice, Equation 10 gives results which are factors of 2 to 3 lower 



than experimental results. Tsao (32) presents a more general form of this 

equation assuming the particles to be parallelepipeds. 

Schumann and Voss (33) derived an equation based on a two-dimension-

al model in which the solid is bounded by a rectangular hyperbola. The 

expression they obtained is 

k = k (1 - V , r + e c x d' 
i - (i - V3] ( i i ) 

where 

k = 
c d 

K+v iK - k J 

p (1 + p) (k - k ) k (1 + p) 
1 + - , • r-, c , i In "k + p (k - k j pk 

c * x c d' 

(12) 

and 

(1 - Vd) = (p2 + p) in *-±-i - p (13) 

Since the calculation of k from k , k., and V, is somewhat lnvolved, 
e c d d 

Schuman and Voss presented a graph of k /k versus k /k with (l - V.) 

as a parameter to permit rapid estimation of k . 

Wilhelm et al. (3*0 observed that, on the average, experimental 

conductivities were larger than those computed by Equation 11. They 

hypothesized that this difference in calculated and experimental con­

ductivities could be explained by the neglect of solid-to-solid contact. 

They deduced an expression to correct the effective conductivity as cal­

culated by Equation 11. 

Their suggested correction is 

k, 
log (k - k ) = M + N -

B v e esv 1 -
(no 



where k = effective thermal conductivity calculated by Equation 11 and 
esv 

M and N = constants obtained empirically from experimental measurements. 

For k in Btu/hr«ft«°F, M = -1.759 and N = 0.0129. 

Preston (35), from a study of his data plus the data used by 

Wilhelm et al., suggests the following modification of the Schumann and 

Voss equation: 

k = m (k ) n , 
esv' 

(15) 

where for k in Btu/hr«ff°F, m = 1.536 and n = 0.959. 

Deissler and Eian (3,6) derived the following expression, valid 

for Vd = tr/6, for the effective thermal conductivity of spherical 

particles in a cubic array: 

k = k < 
e c N 

TT 
~2 

% - H 

k i k 

TT- - 1 " 1« TT + i - ? • (16) 

They also derived an expression for cylinders in a Square array, 

valid for V, = ir/h, with heat flow perpendicular to the longitudinal 

axis : 

k = k < e c ̂  
TT I - - 1 K - LJ 

% - 1 
/k \ 

ÄH 
375/' (17) 

Since this is a two-dimensional model, Lichtenecker's (30) equation cor-

responding to this case can be converted to Equation 17« 

Using the two Equations, 16 and 17, above plus the fact that at 

V, = 1, k = k, and at V, = 0, k = k , Deissler and Eian constructed 
d ' e d d ' e c7 
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a log-log plot of k /k versus k /k with (l - V,) as a parameter. Values 

of (l - V-,) intermedlate to the four known values are determined "by Inter­

polation. They found good agreement between conductivities estimated by 

their analysis and experimental data from both their Studie s and the 

data compiled by Wilhelm et aL. Laubitz (20) generalized Equation 16 

for V, equal to or less than w/6, Equation 17 may be easily generalized 

for V, equal to or less than ir/k in similar manner. 

Gorring and Churchill (19) developed an expression for effective 

thermal conductivity for a cubic array of particles bounded by parabo-

loids of revolution. They obtained fair to excellent agreement with 

experimental data (56 Systems) on packed beds and powders. The form 

of their equation which they used in these comparisons is 

LW 

1.92 
,k.^ 3l 

lkc/ 
(18) 

where W is a coefficient obtained through a volume balance of the phases. 

Willhite, Kunii, and Smith (37) derived an equation based on a two-

dimensional model which is a modification of the one used by Kunii and 

Smith (38) which, in turn, is similar to the model used by Yagi and 

Kunii (39) for uniform spherical particles. The relationship for ef­

fective conductivity proposed by Willhite, Kunii, and Smith is 

2 

k = k 
e c 1 + V, |1 - T-̂ I + V. Fl 11 - -^ 

kd> 

n1 
d \Ü) 

k \ 
(19) 

where 

1 
Ü) = — 

2 

. 2 c sin ß 

-lü\K- - 1 cos ß }-R] 
/ l d/ 

1 - cos ß 

(20) 
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2 Vd 
s i n ß = 13.23 V, - 5.36 > <21> 

and the quantity ü 1s proportional to the equlvalent length of the path 

for heat transfer through a given spherical particle by conduction. 

They took ti equal 2/3 for spherical particles of low conductivity. For 

nonspherical particles and spherical particles of high conductivities 

they found that using Q equal l/2 improved agreement between calculated 

and experimental conductivities. The number of points of contact in 

2 -1 
beds of spherical particles, (sin ß) , is taken from the experimental 

work of Smith, Foote, and Busang (40). Willhite, Kunii and Smith found 

good agreement between predicted and experimental results for a large 

body of data in the literature (33, 35, kl, k2, k$, and kk). Masamune 

and Smith (̂ 5) present a further Variation of this model with terms to 

predict the effect of pressure on bulk gas conductivity and to evaluate 

a solid-to-solid heat transfer contribution to effective thermal conduc­

tivity. 

Linear Isotherms 

For cubes in a cubic array with the assumption of linear isotherms, 

the expression for effective thermal conductivity is 

(! . V//S) + S v//3 
k = k e c 

k 'd c 

•fc - vd2/3 * V r (vd2/3 - V J 

c 

(22) 

This expression was first derived by G. S. son Frey (31) to describe the 

electrical conductivity of binary aggregates. Russell (k6) later obtained 



the same result for thermal conductivity and it is referred to in the 

literature — as well as in this study — as Russell's equation. 

Lichtenecker's (30) two-dimensional model corresponding to this case 

gives an equation which is easily converted to Equation 22 above. 

Russell's equation yields results that correspond fairly well with ex­

perimental results for cellular materials and emulsions, but generally 

yields results for powders that are about a factor of two low. Laubitz 

(20) found that he could explain his experimental results on powders, 

V, = 0.290 to V, = 0.^75, of magnesia, alumina, and zirconia in air 

satisfactorily by doubling k predicted by Russell's equation and adding 

a term to account for radiation. Austin (l) concludes that Russell's 

equation and Maxwell's equation give substantially identical results for 

the same system (see Appendix i). 

Topper (47) derived an expression, valid for V, = 0 to V- = w/6, 

for the effective conductivity of uniform spherical particles in a cubic 

array. Webb (48) derived an expression, valid for V\ = ir/6, using this 

model also. Woodside (49) obtained an expression, equivalent to Topper's, 

for this model which is 

k = k 
e c 

1 -
'6V. 

7T 

1/3 

1 -
v 2 - i In 'v + 1 

>V - 1 

-1 

(23) 

where 

V = 1 _l_ 
4 

7T 
rkd 
k 
l c 

\ 
1 
/ 

(6Vaf/3| 
[ t j J 

11/2 
(2k) 

Woodside found that values for the effective thermal conductivity of snow, 

calculated using Equation 23, agreed fairly well with experimental values. 



Laubitz (20) compared his results for magnesia, alumina, and zirconia 

powders with Equation 23 and concluded that the calculated results were 

larger than his experimental ones. 

Shimokawa (50) derived an equation for an orthorombic packing 

(V, = 7r/3 /T"^ ) of uniformly sized spheres. His relation for effective 

thermal conductivity is 

k = k 
e c In 

Vkcl 
+ 1 - TT 

2/T 
(25) 

He found that his measured electrical conductivities (of ion exchange 

beds) compared favorably with a modified Maxwell equation; however, he 

found the camparison even better with his equation, This expression 

may be generalized for Vd equal to or less than TT/3 /3™^ • 

Deissler and Boegli (51) suggested that it might be possible to 

obtain an expression for effective thermal conductivity and account for 

the irregulär arrangement and shape of the particles by using the heat 

conduction equation in conjunction with Statistical methods. They did 

not apply their Suggestion to a model. Tsao (32) derived an equation 

for randomly sized and distrlbuted particles using a Statistical approach, 

His expression for effective thermal conductivity is 

n -1 

k = k e c L 
dP. 

1 + r - H p
a J 

\ c ' 

(26) 

where 

P2= k dv, (27) 
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P - P 
v = - ^ — * , (28) 

s 

= length occupied by phase d 
1 unit length 

_ area occupied by phase d 
2 unit area ' 

__ volume occupied by phase d 
3~ unit volume * 

P = Standard deviation of Pn. s 1 

Warren and Messmer (52) question the validity of Tsao's mathematlcs. 

Aside from the doubt cast upon Tsao's mathematics, the fact remains 

that P is probably as difficult to obtain experimentally as is k it-
s e 

seif, Nevertheless, Tsao's approach to calculating the effective 

thermal conductlvity of heterogeneous media by applying Statistical theory 

seems valid, and a Variation of his approach is presented in Chapter IX, 

Comparison of Linear Heat Flov and Linear Isotherms Solutions 

A discussion of simplified expressions for predicting effective 

thermal conductlvity would be incomplete without a comparison of "linear 

heat flow" and "linear isotherms" Solutions for a given geometrical model 

under similar conditions, Consider, for example, cubes in a cubic array 

with linear heat flow (Equation 10) and with linear isotherms (Equation 

22) at k,/k = 1000 and V, = TT/6. The linear heat flow Solution predicts 

that kö = 3.69 k and the linear isotherms Solution predicts that k = 5«12 e c e 

k under these conditions, This may be contrasted with spheres in a cubic 

array, again with kd/k = 1000 and V, = ir/6, for which the linear heat 

flow Solution (Equation 16) gives k = 9«51 k and the linear isotherm 

Solution (Equation 23) gives k = 97.5 k • Comparisons such as these 
" c 
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lead to the concluslon that, all other condltions being equal, a simpli-

fied expression to predict k based on linear heat flow gives lower 

results than one based on linear isotherms for the same geometrical 

arrangement of particles. The magnitude of the dlfference depends on 

k,/k and V since obviously as k /k approaches unlty and V, approaches 

zero any theoretically sound expression considering heat transfer by 

conduction only predicts that k approaches k . 



CmFTER III 

EXFERIMENTA.L METHODS AND APPARA.TUS 

Experimental Methods 

Radial heat flow in a hollow-cylinder was chosen with which to 

measure thermal conductivity under steady-state and unsteady-state 

conditions. Much more work was done in this study with the steady-

state method of Operation than with the unsteady-state. The unsteady-

state method was used to corroborate a few of the results obtained by 

the steady-state method and to provide an independent check on the 

results. The principles of each method are briefly reviewed below. 

Steady-State Method 

The steady-state method is based on a model having radial heat 

flow outward through a cylinder of material whose thermal conductivity 

is the unknown. For materials that are not rigid, e.g., powders, the 

sample is held between two concentric tubes or cylinders to achieve 

and maintain the desired sample shape. Heat, usually produced by an 

axially located electrical resistance heater, is conducted radially 

outward through the sample. It is generally considered advisable to 

cover the heater with another tube of a good thermal conductor to equalize 

the temperature over the heater surface. Use of a thin wire as the 

central heater—Schleiermacherfs method (53)— has not been successful 

with powders at high temperatures because of bowing of the wire caused 

by thermal expansion (5^). In determining the thermal conductlvities of 



alumina and glass powders, Weininger and Schneider (55) used a glass tube 

wound with platinum wire inside a Monel tube as a central heater. For 

their work on uranium oxide powder, Deissler and Boegli (51) used a 

carbon rod inside a ceramic tube as a central heater. Measurement of 

heat input per unit length in both cases was accomplished by connecting 

leads for voltage measurement across a known length of heater. 

The temperature at two or more known radial distances must be 

determined in order to evaluate thermal conductivity. Weininger and 

Schneider (55) silver soldered thermocouples to the inner Monel and outer 

steel tubes which confined their powder samples. Deissler and Eian (36) 

in determining the thermal conductivity of a magnesia powder used four 

groups (90 apart) of five radially positioned thermocouples located in 

a plane across the center of their test section. Mica spacers located 

on either side of the thermocouple junctions aided in maintaining the 

distance between thermocouples. 

Cylindrical arrangements lose heat at their ends and some means 

must be provided to minimize longitudinal heat flow. One way to compen-

sate for longitudinal heat loss is to make the cylinder long and measure 

only in the central portion where the isotherms approximate those of an 

infinite cylinder. This is the approach used by Weininger and Schneider 

(55). Another way to reduce longitudinal heat flow to negligible propor-

tions is to use "heat guarding". Heat guarding may be accomplished by 

nonuniform heater winding; i.e., the windings on the ends of the heater 

are more closely spaced than those in the middle so that a region with 

negligible axial temperature drop may be achieved in the sample. Heat 

guarding may also be accomplished by placing auxiliary coils above and 
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below the main cylindrical arrangement to produce temperatures in a 

central zone vhich approximate those which would result from radial heat 

flow alone. Deissler and Eian (36) used end guard heaters on their 

central heater in order to achieve essentially radial heat flow. 

To achieve high mean temperatures without severe temperature 

gradients between thermocouples in the same plane but at different 

radial distances, the entire cylindrical assembly may be covered with 

insulation or may be placed in a furnace. Laubitz (20), in measuring the 

thermal conductivity of magnesia, alumina, and zirconia powders at tem­

peratures up to about 1800°F, used what amounted to a long cylindrical 

furnace as his outer Container. 

To summarize, use of a System having radial heat flow outward 

through a cylinder of powder is a straight-forward method of measuring 

thermal conductivity. Operated in a steady-state mode it is simple in 

principle, and it has the advantage for powders that the cylindrical 

sample shape is easy to achieve. However, it does require care to ensure 

that the heat flow approximates radial flow in an infinite cylinder. The 

mathematics of the method are treated later in Chapter VI. 

Unsteady-State Method 

The unsteady-state method is based on the assumption of a model 

which employs heating a cylinder of a perfect conductor surrounded by 

an infinite homogeneous medium whose thermal conductivity is the un-

known. From suitable Solution of the heat flow equation, the thermal 

conductivity of the medium (sample) is deduced from a record of the 

temperature change of the perfect conductor (heater) as a function of 



26 

time. This method is variously referred to as the "translent line heat 

source," "thermal conductlvity probe," or "transient needle" method, A 

heater made of a good thermal conductor is generally treated to a first 

approximation as a perfect conductor, although sometimes corrections are 

devised to correct for the fact that the heater has a finite conductlvi­

ty (56). 

When the System, comprised of heater, sample, and Container, is 

at uniform and steady temperature, a constant, known power is supplied 

to the heater, and the temperature rise of the heater is recorded. 

Thermal conductlvity is calculated from the power input and the time-

tenrperature record. 

Since only radial heat flow is assumed in this method, longitudinal 

heat flow must be reduced to a negligible value. Techniques to achieve 

radial heat flow are the same as those used in the steady-State method 

above; viz., samples with very large length-to-diameter ratios (57)> or 

heat guards are used. 

While the theory applies to an infinite medium, the method is ap­

plied to finite samples by using only that portion of the heating time 

during which the heat front does not "see", i.e., is unaffected by, the 

extent of the sample. Errors introduced by supplying varying power to 

the heater (caused by change in heater resistance with temperature) can 

be made negligible by using resistance wire with a low temperature coef-

ficient of resistance, or by using a constant-power power supply. 

This unsteady-State method has been used fairly extensively for 

powders at temperatures close to ambient (11, 16, 56, 5&> emd 59)» How-

ever, it has been used by DeNee (60) to determine the thermal conductlvity 



of quartz sand packs at liquid nitrogen temperatures, but it does not 

appear to have been used rauch at temperatures above ambient. The develop-

ment of the method is reviewed by Woodside (ll). Sources of error in the 

method are treated in detail by Blackwell (57). The theory of the method 

is presented by Blackwell (57) and by Carslaw and Jaeger (6l). An ab-

breviated mathematical treatment is presented later in Chapter VI. 

Experimental Apparatus 

The experimental apparatus consieted basically of an upright 

cylindrical sample Container with a central heater to provide a radial 

temperature gradient and a furnace to maintain temperature level. The 

central heater was either a platinum-wound resistance heater for steady-

state measurements or a stainless steel tube resistance heater for un-

,steady-state measurements. An isometric drawing of the sample container 

and steady-State central heater is given in Figure 2. A schematlc diagram 

of the sample container in place in the controlled-temperature furnace 

is given in Figure 3. The principal components of the sample container 

and associated equipment used in carrying out the conductivity measure­

ments (viz., the central heater, central heater power supply, power 

measuring equipment, and temperature measuring equipment) are shown 

schematically in Appendix II (Figure 47) for the steady-state mode of 

Operation. The equipment set-up was the same for the unsteady-state 

mode of Operation with the Substitution of the stainless steel tube 

resistance heater for the platinum-wound heater and a recording Potenti­

ometer for the manual potentiometer. 

A basic requirement of the apparatus used in both modes of Opera­

tion was that it include a centrally-located test zone having isotherms 
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which were very nearly concentric cyllnders. The isothenns were adjusted 

to this configuration and maintained by guard heaters which could be 

sensitively triramed by adjustable voltage supplies. Twelve thermocouples 

were located in the test zone in a circular pattern in two ranks concen­

tric with the central heater (Figure 4). Each rank had six thermocouples. 

The temperatures of the thermocouples in the two ranks were measured, and 

an average temperature was determined for each rank by taking an arith-

metic average of the temperatures indicated by the six thermocouples in 

that rank. 

Sample Container 

The sample Container was fabricated from Inconel pipe and was 

about k inches in inside diameter, k-l/2 inches in outside diameter, and 

about 2h inches long. The Container accommodated a 1-inch Inconel tube 

(l^BWG) that was about 22 inches long and was welded to the center of 

the top flange. The Inconel tube was centered at the bottom by an 

Inconel spacer or "spider" in which the tube was free to turn (Figure 5)» 

The spacer was prevented from turning by two small lugs projecting from 

the side wall of the Container. The top flange held six pairs of thermo­

couples which were spring-loaded to prevent them from bowing under expan-

sion. This was found to be necessary to maintain their radial positions 

in the Container (Figures 5 and 6). To prevent any motion of the portion 

of the thermocouples outside the Container being transmitted to the por­

tion of the thermocouples inside the test zone, ceramic spacers in the 

upper portion of the Container were necessary (Figures 5 and 6). The 

ceramic spacers were machined from Lava "A"—an aluminum Silicate—and 

were spring-loaded to maintain their longitudinal position. The top and 
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"bottom flanges were sealed to the sample Container using corrugated 

stainless steel gaskets. Five Containers were fabricated and used. 

Furnace 

The 5 kva controlled-temperature furnace was used to maintain a 

chosen temperature level as well as to establish vertical cylindrical 

isotherms in the test zone. The furnace was constructed of four resis-

tance heater bands clamped to a high-chromium steel tube. Each heater 

band or zone was about 6 inches high and was powered separately (Figure 3)« 

The temperatures of the top and bottom zones were controlled by off-on 

Pyrometer type temperature control Instruments with proportional and re-

set action. The middle two zones, although powered separately, were 

controlled by the same thermocouple. In two furnaces the temperatures 

of this middle zone were controlled by off-on null-balance temperature 

recorder-Controller Instruments with proportional and reset action. In 

the third furnace, temperatures of the middle zone were controlled by the 

pyrometer type Instruments mentioned above. An over-all view of the 

controls for the three furnaces is shown in Appendix II (Figure kQ) • 

The three furnaces behaved similarly. Under steady-State conditions the 

furnaces as operated gave temperatures in the test zone constant to ap-

proximately ±0.2 F at about 200 F and constant to approximately il.5 F 

at about 1500 F for periods up to 72 hours. 

Central Heater 

For steady-State measurements the platinum-wound resistance heater— 

Appendix II, Figure h^(a.)—was lightly coated with alundum cement and in-

serted into the 1-inch Inconel tube. The platinum wire was wound on a 



ceramic core made of Lava "A". For unsteady-state measurements the top 

and bottom flanges were modified to accommodate insulating glands to 

isolate electrically the l/8-inch, 3^7 stainless steel tube, resistance 

heater—Appendix II, Figure k9(b) and (c)—from the sample Container. 

Three platinum-wound and three stainless steel tübe resistance heaters 

were constructed and used. 

Central Heater Power Supply 

Direct current power to the central heater, either platinum wound 

or stainless steel tube, was supplied by a solid State power supply of 

the transistor-magnetic type. The model used (Appendix II, Figure kS) 

had an output which was continuously adjustable over the ränge O-36 

volts and 0-20 amperes. 

Power Measuring Equipment 

Power to the central heater was determined from measured voltage 

and current, The potential drop across the portion of the heater in the 

test zone was measured using a potentiometer (Rubicon Type B) in conjun-

tion with a volt box (Appendix H , Figure V7). The current in the heater 

was measured using the potentiometer in conjunction with a Standard shunt 

in a current lead as well as with the volt box (Appendix II, Figure k-j), 

Temperature Measuring Equipment 

All temperatures were measured with chromel-alumel thermocouples 

which had been calibrated to within 0.25 per cent of the values given in 

NBS Circular 561 at the steam point and aluminum melting point or checked 

against those which had been calibrated. The thermocouples distributed 

throughout the test zone were swaged assemblies of either 28 or 30 AWG 



wire wlth magnesia insulation and with l/l6 inch outside diameter sheath­

ing tubes of either 310 stainless steel or Inconel. The Inconel sheathing 

was more satisfactory than the 310 stainless steel "because of Inconelfs 

better resistance to steam corrosion. The thermocouple welded to the 

wall of the "probe" heater was 2k AWG wire. 

The emfs of the thermocouples in the powder sample were determined 

with the potentiometer, and the em£ of the "probe" thermocouple was record-

ed on a self-balancing variable ränge potentiometer with a chart speed 

of four inches per minute. All thermocouple emfs were converted to tem-

peratures using NBS Circular 5^1. An over-all view of the cold junctions, 

potentiometer, and accessories is shown in Appendix II (Figure 50)« 
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CHA.FTER IV 

CHARA.CTERIZATION CF MA.TERIA.I5 

Selection of meaningful methods to characterize particle matter 

is a problem common to many fields of science and engineering. The 

properties of a multicomponent two phase System, such as a powder made 

of solid and gas, cannot be adequately described without taking into 

account such factors as total void fraction, particle size, particle-

size distribution, surface characteristics of the particles, shape 

factors, pore size, and pore-size distribution. The gross properties 

of powders are determined by three major sub-classes of properties. 

The first class is described by the properties of the pure bulk com­

ponents. These properties are retained by the components in the mixture. 

Examples are thermal conductivity and heat capacity of the bulk solid 

and the gas; and hardness, coefficient of linear expansion, and x-ray 

crystal pattern of the bulk solid. The second class is described by 

properties created by subdividing the solid. Examples are particle 

size, particle-size distribution, surface characteristics, shape 

factors, pore size, and pore-size distribution. The third class is 

described by properties belonging to the solid-gas System. Examples 

of this class are bulk or apparent density, effective thermal conductivity, 

permeability, and other transport properties of the system. In the 

measurement of properties in classes two and three above it is assumed 

that the powder is Isotropie (i.e., no preferred orientation of the 

particles) and that the sample examined or measured is large enough so 
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that selection of another similar sample or a larger sample will not 

materlally change the measured values. 

The hehavior of a powder (or any particulate matter) should be 

determined by the properties of the pure components, the particle Param­

eters, and the manner in which they are combined as stated above. How-

ever, it is difficult to determine -which of the pure component properties 

and particle parameters are most important, and even more difficult to 

determine how each affects the behavior of the multicomponent System. 

Much of the data in the literature on the effective thermal conductivity 

of Systems which appear similar (based on k , k , V, and particle size) 

actually vary widely. For example, Schotte (62) compares data on five 

glass heads-air Systems at temperatures not too far apart and with almost 

the same void fraction and finds that the results differ "by a factor of 

2.k. One of the principal tenets of the present work is that such dif-

ferences found in apparently similar Systems may easily be real, and are 

explicable in terms of more subtle factors such as particle-size dis-

tribution, surface conditions (roughness, cleanliness, adsorbed films, 

etc.), mechanical (not gas) pressure on the system, and other factors. 

To promote and support this belief, povders used in this study were ex-

tensively characterized. 

The solid materials used for thermal conductivity measurements 

were magnesia, alumina, and lime-stabilized zirconia powders that were 

produced from the respective electrochemically refined (fused in an 

electric furnace) oxides which had been crushed. The supplier of the 

materials, Norton Company, Worcester, Massachusetts, designates the 

alumina as Alundum, Type:38; the magnesia as Magnorite, Type: Electrica!; 



and the zirconia as Lime Stabilized (Cubic) Zirconia, Type: "H". The 

as-received magnesia and zirconia powders were individually blended in 

a Patterson-Kelly twin shell laboratory blender before any measurements 

were made. The purpose of blending was to ensure homogeneity since 

there seemed to be a floating of fines during shipment of the powders. 

With the exception of this blending, the magnesia powders designated 

MgO (E-98) and MgO (E-227) and the zirconia powders designated ZrO? 

(H30F) and ZrOp (inAF) were used as-received. The alumina powder 

designated AlpO (E-98) was prepared by mixing appropriately sized 

fractions of powder to give a powder having a particle-size distribution 

like that of the MgO (E-98) powder. The alumina powder designated AlpO~ 

(B^5F) was obtained by taking a selected cut of an as-received alumina 

powder. The designatlons in parentheses following the chemical formula 

of a powder are codes used for convenlence in this study and correspond, 

in most cases, to the supplier's code. 

Analysis by x-ray diffraction indicated that the materials were 

magnesia, alpha-alumina, and cubic zirconia. Spectrochemical analyses 

of the oxides indicated that the principal impurities in the magnesia 

were aluminum (0.01-0.1$), iron (0.01-0.1$), and Silicon (0.01-0.1$); 

that the principal impurities in the alumina were iron (0.01-0.1$), 

sodium (0.01-0.1$), and Silicon (0.01-0.1$); and that the principal 

impurity in the zirconia (exclusive of the CaO added to stabilize the 

ZrOp in the cubic form) was aluminum (0.01-0.1$). Analyses by flame 

photometry indicated that the Zr02 (H30F) contained 3.5Ö weight per 

cent CaO and that the Zr02 (IDAF) contained 2.57 weight per cent CaO. 

Thermogravimetric analyses indicated that the weight losses of the 
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powders on heating to I832 F varied from 0.02^ to 0.13^ weight per 

cent (Table l). The complete thermograms for each powder are pre-

sented in Appendix III (Figure 51)• The surface area per unit weight, 

as determined by BET nitrogen adsorption, and the "absolute, " "true, " or 

"pore-free" density, as determined by pycnometric techniques, of the 

powders are given in Table 1. The surface area and density measurements 

indicate that the particles have few or no closed internal pores as 

would be expected for fused and crushed material. The particles are 

irregulär in shape. However, they are neither plate-like nor needle-

like, which are shapes that tend to destroy homogeneity of packing 

structure (Figure 7)« 

For irregulär particles the term "particle size" is arbitrary, 

but should be unambiguous. The particle size measurements used in this 

work were selected using the excellent treatments of small particle 

measurement techniques, their ranges of applicability, and limitations 

by DallaValle (63), Orr and DallaValle (6U), or Herdan (65) as a guide. 

The particle size as determined by sieving is taken to be the 

arithmetic average of the sizes of the openings of the screen which 

passes the particle and that which retains it. The logarithmic-

probability plots of cumulative weight in per cent versus size for the 

powders used are shown in Figures 8 to 13. The tabular data from which 

these plots were raade are given in Appendix III (Tables 6 to 8). The 

median particle size, logarithmic (to base e) Standard deviation, and 

mean particle size for each powder obtained from these data are given 

in Table 2. 



Tat>le 1. Properties of Magnesia, Alumina, and Zirconia Powders. 

Minimum Maximum 
Weight Loss Volume Volume 

Pore-free Surface on Heating Fraction Fraction 
Density8, Area*3 to 1832°F Solidd 

Solide 

Powder (g/cc) (n^/g) (*) V 
vd min 

V, 
d max 

MgO (E-98) 3.59 0.076 O.058 0.494 O.65I 
MgO (E-227) 3.58 0.062 0.125 0.452 0.610 

AlgOo (E-98) 3.98 0.014-3 0.134 0.457 0.633 
Al20o (B45F) 
Zr02

5(H3QF) 
3.95 0.034 0.079 0.426 0.528 Al20o (B45F) 

Zr02
5(H3QF) 5.60 0.116 0.030 0.534 0.764 

Zr02 (Hl4F) 5.63 0.081 0.024 0.573 0.801 

Determined as follows: 

a Gas pycnometer. 

b BET nitrogen adsorption. 

Thermogravimetric analysis, 

Procedure on page 56. 

Q 
Procedure on page 56. 

•p-

H 
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Table 2 . Parameters of Magnesia, Alumina, and Z i r con ia Povders Öbtained from Screen Ana lys i s 

Logarithmic Mean 
( t o base e) P a r t i c l e 
Standard S i z e , c 

Devia t ion , * DQJ 
S., (microi 

In Powder 

Median 
P a r t i c l e 
S i z e , a 

D50# 
(microns) 

P o i n t s of Trunca t ion 
Lower, 
D. 

Upper, 

Db 
(microns) (microns) (microns) 

du 

MgO (E-98) 
MgO (E-227) 
Al20o (E-98) 
AI 0^ (B45F) 
ZrÖ2 (H30F) 
ZrOp ( K U F ) 

180 
235 
166 
211 
198 
333 

0.892 
0.9^9 
0.959 
0.055 
0.880 
1.^99 

268 
369 
263 
211 
292 
1023 

23 
19 
13 
e 
36 
20 

328 
1+32 
308 
e 
555 
1950 

0.739 
0.735 
0.737 
e 
0.853 
O.85I 

Determined as follows: 

a 
Fifty per cent value of D from logarithmic probability plot of particle size versus cumulative 
weight per cent. 

S- = I n I n 
•—-— g n t f t l u s ^ n S s t r a i g h t l i n e p o r t i o n of l oga r i t hmic p l o t of p a r t i c l e s i z e ve rsus 

cumulate weight p e r c e n t . 

1/2 ( S , J 2 
Dm = D50* € In' 

Procedure on page 52. 

Distribution has too few points for meaningful determination of points of truncation. 
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The size of particle as determined by Sedimentation is expressed 

as the diameter of a sphere that would fall with a velocity equal to the 

ohserved falling velocity of the particle. This method gives the so-

called apparent Stokes1 diameter. These results are tabulated in Ap­

pendix III (Table 9). 

The sieving and Sedimentation techniques given above yield weight 

or volume fractions of the various sizes. For purposes of comparison, 

a linear measure of size as a function of the number of particles, as 

determined by microscopic measurement of one powder, MgO (E-98), is 

presented in Appendix III (Table 10). As a general rule, if the number 

distribution of particle size obeys a specific distribution law, the 

weight distribution does not, and vice-versa. However, the logarithmic 

normal distribution is one of the distribution laws for which, if the 

weight distribution is logarithmic normal, the number distribution is 

logarithmic normal with the same logarithmic Standard deviation (66). 

The results of MgO (E-98) as determined by sieving and microscopy are 

compared in Figure 1k. It may be seen that the distributions follow a 

logarithmic normal law with logarithmic (to base e) Standard deviations 

of O.892 and O.936, as determined by sieving and microscopy, respectively. 

Although a complete population was used as a sample in the Opera­

tions which gave the information plotted in Figures 8 to 1^, the individual 

values of observations below a smallest particle size, D , and above a 
a 

largest particle size, EL , are not specified. A distribution of this 

type is called a censored distribution because the obtainable information 

has in a sense been "censored" either by nature or by the observer. 
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In other words a logarithmic normal distribution with parameters, D 

and S , describes a system with 

50^ 

/•» 

where 

J - du « 1 (29) 

u = -ri- In = £ - , (30) 
Sln D50^ 

D = particle size, 

Vc-r\<£ ~ median particle size, and 

Sn = logarithmic (to base e) Standard deviation. 

Any real powder represents only a portion of the above integral, Deter­

mination of the points of truncation of a population (the smallest and 

largest particles in this case) is mathematically very difficult. For 

instance, see the treatment of censored distributions and truncated 

populations given by Hald (6j) or Kendall and Stuart (68). 

The scheme used to obtain points of truncation for the powders of 

this study was as follows: (a) The original size analysis (Appendix III, 

Tables 6, J, and 8) of each powder was plotted on arithmetlc (Figure 15) 

or semi-logarithmic paper (Figure 16) as particle size versus cumulative 

weight (or volume) per cent. (b) The best straight line through the 

points was extrapolated to 0$ and 100$ to obtain values for D and D, , 

respectively. It was assumed that any particle sizes excluded from the 

distribution by this scheme occurred so infrequently that their excluslon 

did not significantly alter the heat flow pattern of the powder and that 

they could be considered not present at all. 
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For each powder studied the points of truncation as determined by 

the scheme given above are tabulated in Table 2. The value of the integral 

/ 

Db -u2/2 
5 - 1 - d u 

a ^2iT 

where D = lower point of truncation and D. = Upper point of truncation 

for each powder is tabulated in Table 2. 

The interrelation between volume fraction solid and particle shape 

is complicated. For Single-sized spheres the volume fraction solid in a 

powder is a function of arrangement only and can be calculated from 

geometry for the six orderly arrangements possible (69 and 70). These 

are theoretical packings, and in practice the volume fraction solid for 

single-sized spheres may be less than the most open packing (cubic) 

because groups of spheres may arch and leave gaps. However, in any 

statistically describable packing of spheres there will be a packing 

pattern, made up of combinations of the six theoretical arrangements 

and arches, which is repeated in identical form throughout the body 

of spheres, For packings of unequal spheres a wider ränge of volume 

fraction solids is possible, since the smaller spheres are able to fit 

into the openings between the larger spheres. For packings of ir-

regularly shaped and non-uniformly sized particles almost any volume 

fraction solid is possible, For a given powder, the amount which can 

be put into a given Container can be increased by compacting, for 

instance, by tapping the Container. This increase in volume fraction 

solid in the Container is caused by factors such as the breaking of 

arches, the better fitting-together of particles, (for example, a 



concave surface of one particle slips into the convex surface of another), 

and the filling up of voids between larger particles by smaller ones (71)« 

In order to determine for each powder what ränge of volume fractions 

to expect, a "minimum volume fraction," V, . > and a "maximum volume 

fraction," V, , were determined for each powder (Table l). 
d max ^ 

V, . was determined by filling a funnel, having a spout which 

extended to the bottom of a graduated cylinder, with a Charge of powder. 

The funnel was raised slowly so that the powder would fall through es-

sentially no distance in filling the cylinder—obviously the emergent 

powder is under some head because of the unsupported weight of the 

column of powder in the spout. In practice a 500 gram Charge of 

powder was placed in a 60 , 15 centimeters diameter funnel with a 35 

centimeters extension spout having a one centimeter inside diameter. 

The spout extended to the bottom of a Standard 500 milliliter graduated 

cylinder. The funnel was raised at about 0.06 centimeter per minute and 

the powder allowed to flow out. The flow was sporadic because of the 

intermittent slipping nature of the powder. At no time, however, did 

the spout pull free of the released mound of powder before additional 

powder was released from the spout. Results obtained by this method 

were very reproducible. A drawing of the apparatus is given in Appendix 

III (Figure 52). 

V, was determined by placing a 500 gram Charge of powder in a 

steel cylinder 17 centimeters long and 5«2 centimeters inside diameter. 

The cylinder was raised 0.6 centimeter and dropped to a metal plate 120 

times per minute. Dropping was continued until the volume of powder 

ceased to diminish — usually about three hours. A drawing of the ap­

paratus is given in Appendix III (Figure 53). 
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CHA.PTER V 

EXPERIMHNTAL FROCEDURE 

Procedures for sample holder callbration, sample preparation, 

and equlpment Operation were standardized in the interest of producing 

consistent results. 

Sample Holder Calibration 

The radial distances of thermocouple s from the wall of the 1-inch 

Inconel tube were determined by taping a glass microscope slide to the 

Inconel tube and a pair of thermocouples on the same radius (Figure 17). 

The slide was then sprayed with acrylic "base lacquer. After the lacquer 

dried, the slide was removed, and the distances from the edge of the 

slide to the unlacquered strips which had been shielded by the thermo­

couple were measured with a micrometer. The distance from the center 

of an unlacquered strip to the 1-inch Inconel tube plus one-half the 

diameter of the tübe gave the radial location of the thermocouple (Figure 

17). Of the numerous measurlng techniques tried, including methods using 

x-rays of the assembled and filled Container, this spraying technique 

proved most satisfactory. The volume of the assembled sample Container 

was determined by filling it with water. The nominal volume of an as­

sembled sample Container was 4.35 liters. 



r-INCONEL TUBE 

1/16 SHEATHED 
THERMOCOUPLE 

GLASS MICROSCOPE 
SLIDE 

UNLACQUERED STRIP 

Oo 

INNER RADIUS = UZ ( A + B + E ) 

OUTER RADIUS = KtZ (C + D + E ) 

THERMOCOUPLE JUNCTION IS ASSUMED TO BE AT CENTER OF SHEATHED ASSEMBLY 

F i g . 17. Scheme f o r Determining Radia l Dis tances of Thermocouples. 



Sample Preparation 

The powder to be tested was poured into the sample Container 

through the open bottom (steady-state) of the inverted Container, or 

through a hole in the top flange (unsteady-state). The mass of powder 

added to achieve a desired volume fractlon solid was chosen to satisfy 

the relation 

Ms Va = Ä (31) 

Hprp rp 

where M0 = mass of solid, 
o 

p__ = density of pore-free sol id (Table l ) , and 
irr 

VT = volume of test cylinder. 

In practice, the mass of solid (determined using a platform 

balance) was taken as the mass of powder measured in air, since the 

maximum error that can be introduced into V\ by neglecting the mass of 

air is on the order of 0.02 per cent for the Systems studied. The 

sample Container was tapped while the powder was being added. In order 

to differentiate between the several volume fractions obtainable with 

the same powder, the followlng convenient expression was used 

pd - V
Vd Z V- T > (32) 

d Vd max Vd min 

where P is defined as degree of packing, 

V, = observed volume fractlon solid, 
d 

v . = minimum stable volume fractlon obtainable (as determined by 
d min procedure in Chapter IV), and 

V, = maximum volume fraction obtainable (as determined by procedure 
d max in Chapter IV), 
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In Systems with low degrees of packing—about 0.2, tapping the Container 

with the side of the fist was sufficient to put all the powder into the 

sample Container. In Systems with an intermediate degree of packing— 

about 0.5, tapping with a rubber mallet was sufficient to put the powder 

into the sample Container. In Systems with a high degree of packing— 

approaching unity, tapping with a hard plastic or steel hammer was 

required to put the powder into the sample Container. After filling 

the Container, the end flange was fastened to the sample Container which 

was slowly rotated end-over-end in a specially designed tumbling assembly 

(Figure 18) at about 10 rpm. Powders at low degrees of packing settled 

under their weight during rotation so that the container was not com-

pletely filled. ZrOp (H30F) at V, = O.58 is the only powder used in 

this study with such a low degree of packing; it was not rotated. 

Powders at intermediate degrees of packing were rotated from 6 to 8 

hours. Powders at high degrees of packing were rotated for about 2k 

hours. The longer rotating times were necessary to eliminate density 

variations in the System. A measure of whether or not density variations 

existed in a System was the closeness of readings of thermocouples at 

the same radial distance from the heater but at different axial posi-

tions. 

Steady-State Measurements 

The filled container, after rotation, was placed in the furnace, 

The platinum-wound heater was inserted down the inner tube, and power 

supply leads were attached to it. The various heater voltage taps and 

thermocouple lead wires were attached. The dry air supply line was 
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Fig. lö. Sample Container QMmbling Assembly. 
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connected to the bottom of the sample container and air forced through 

the can at 30-^0 milliliters per minute. The temperature of the system 

was ralsed to about 850 F for magnesia and alumina and to about 1050 F 

for zirconia. The system was held at the appropriate temperature, with 

air flowing through the powder, for about 2k hours to insure complete 

removal of sorbed water, With typical power inputs to the furnace and 

heater, the system reached essentially a steady-state At between thermo-

couples in about k$ to 60 minutes. The steady-state temperature was 

essentially reached in k to 6 hours. However, at least 2k hours were 

allowed to elapse between any two successive sets of readings. Sets of 

measurements or readings were made at approximately each 200 F interval. 

After reaching steady-state, the air supply was continued until about 

30 minutes before taking readings. The following measurements were made: 

(1) The voltage drop across that section of the platinum heater 
located in the test zone. 

(2) The voltage drop across the Standard Shunt used to determine 
the current in the platinum-wound heater. 

(3) The voltages of the thermocouples in the test zone, 

Unsteady-State Measurements 

The filled Containers were rotated and placed in the furnace. 

The power leads to the stainless steel heater and the thermocouple 

lead wires were attached. As with the steady-state sample Containers, 

the air supply line was attached and air admitted to the can at 30-^0 

milliliters per minute. The system was heated to about Q30°F or 1050°F 

and held for about 2k hours at this temperature. At steady-state tem­

perature, the air flow was stopped and power was supplied to the heater. 
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The mlllivolt reading of the thermocouple welded to the heater at the 

center of the test section was recorded on the self-balancing Potenti­

ometer. The voltage drop across the portion of the heater in the test 

section and the current through the heater were measured at about 30 

second intervals. The power to the heater was usually supplied for 

about five minutes. 



CHARTER VI 

CALCUIATIÖN OF THERMAL CONDUCTIVITY FRQM EXPERIMEMAL DkTk 

St eady- State 

For steady-state radial heat flow in a hollow cylinder Fourier's 

equation for heat flow gives 

Q = -k (2wRL) || . (33) 

Integrating for a cylinder of length L between the limits of radius R.. 

at temperature t.. and radius R at temperature tp gives 

k
m - 5 L (t\-t2)

 to Tx W 

where k is the mean value of k over the temperature ränge t.. to t • 

The value of k is defined by 
m 

r*2 

k = ̂  r — . (35) 
m t2 - tx 

The true conductivity cannot he evaluated without knowledge of the 

relation between k and t. If k varies linearly with temperature, the 

mean conductivity is also the true conductivity at the mean temperature. 

For materials whose temperature-conductivity curve has small curvature 

the mean conductivity calculated assuming linear Variation of k with t 

will closely approximate the true conductivity if the temperature interval 

is small. All the k!s reported in this study are averaged k 's and will 

be designated by k . The value of k calculated assuming linear Variation 



of k over the temperature increment between thermocouples—about 20 to 

l40°F—are arithmetically averaged at each temperature level to give k . 

A sample calculation to illustrate hov steady-State data are used in 

the evaluation of k 's is presented in Appendix IV. 

Un st eady-Stat e 

For a solid of infinite extent, initial 1 y at zero temperature, 

with a constant heat flux through any internally contained cylindrical 

surface, the temperature rise of the surface for large values of TÖ/R 

is given by Carslaw and Jaeger (72) as 

t = 4s ln 

where £ = constant = 1.7ÖH •••> 

hT0\ t 
— ö + £ 
SR / 

TÖ 
(36) 

and the £ term indlcates a temperature vhose order of magnitude is R /TÖ. 

A sample calculation to illustrate the magnitude of the i term is pre­

sented in Appendix IV. In the ränge of times where Equation 36 applies, 

a plot of lnö versus At should yield a straight line according to the 

equation: 

If Q and L are knovm, the thermal conductivlty may he obtained from the 

slope (linear asymptote) of the plot of lnö versus At using the expresslon 

ö, 
:e " klTL (t2 - tx)

 ±n ö^ k = ,_ ,„<* + , in 4- • (38) 

If a thermal resistance exists between the heated tube and the solid 

media, Equation 36 is modified to the following equation (6l): 



t - J a -
t hirlX 

2 k 
R h 

+ In — 5 
UR 

+ i i_ 
T0 

l i 

(39) 

where h is a heat transfer coefficient and Equation 37 may be obtained 

from Equation 39 as well as from Equation 36. A sample calculation to 

illustrate how unsteady-state data are used in the evaluation of k 's 

is presented in Appendix IV. 

Fitting of Data 

The values of k calculated using Equation 3^ for each pair of 

thermocouples were arithmetically averaged at each temperature level to 

give k • These k fs and temperatures (Appendix IV, Table 11) were fitted 

by least Squares to polynomials of degree one through four. Examination 

of the results so obtained lead to the conclusion that there was little 

to be gained by going to a polynominal of higher than second degree; 

and in fact that higher degree fits followed the data points more 

scrupulously than experimental scatter and the inherent rates of changes 

of such Systems Warrant ed. 

Accuracy and Precision 

Accuracy is taken to be the Square root of the sum of the Squares 

of the uncertainties in observed quantitles. The sign of the uncertainty 

is assumed just as likely to be positive as negative. Precision is taken 

to be the reproducibility of a given result when performed repeatedly in 

the same manner in the same equipment, or in similar equipment. 
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Steady-State Measurements 

Thermal conductivity was calculated from measured or observed 

quantities using Equation 3̂ » If Rp> R-i> ancL L are dimensions measured 

at room temperature, or any convenient temperature t, then Equation 3̂ -

can be expressed as follows to account for linear expansion of the 

components 

R2 (1 + E2tß) 
Q l G R . (1 + B.t.) 

e 2TL (1 + E^o) A t 

where E. = coefficient of linear expansion (length/unit length»degree 

of temperature) between t and t.. 

Q is calculated from measured current and voltage of the resistance 

heater. The error in measurement of current is estimated at ±0.25 per 

cent. The error in measurement of voltage is estimated at i"0.15 per 

cent, These errors arise from degree of regulation (±0.1$) and ripple 

(±0.005$) in the power supply plus the inherent accuracy limits of the 

Standard Shunt (±0.1$), the volt "box (±0.0*4-$), and the potentiameter 

(l0.01$). This leads to an overall error in Q of +0*k per cent. 

The maximum uncertainty in the location of a thermocouple junction 

is one sheathing diameter (l/l6 inch), so that the total uncertainty in 

(R - R_) is about one-eighth inch; therefore, the error in ln(Rp/R1) is 

about 9 per cent. If t, and t are not far apart, then ln(Rp/R.,) is es-

sentially equal In [R (l + E "t J/l^ (l + E ^ ) ] , 

Estimating the point of electrical contact between two vires which 

are welded together in order to set an error 11mit on L is difficult. 

However, 2 per cent is probably a reasonable estimate for the heaters 



used in this study. The magnitude of this uncertainty overshadows the 

error introduced by neglecting the (l + Et.) correction of L. At the 

highest temperature (1500°F) this correction would be about 0.3 per cent 

for the ceramic heater. 

The thermocouple emf readings were checked against each other at 

room temperature, the steam point, and the aluminum freezing point. The 

Variation of any thermocouple from the average of all the emfs at the 

highest temperature was equivalent to a temperature Variation on the 

order of 0.5 F. From a consideration of this Variation, it is concluded 

that the At's are accurate to about 3 per cent at the lowest At and 

highest temperature. The square root of the sum of the Squares of the 

above error estimates is approximately *10 per cent. Typical variations 

in k calculated from different thermocouple pairs are exemplified by 

a specific example in Appendix IV (Table 12). Values of k plotted in 

the figures in Chapter VII were obtained by averaging the individual 

k 's from the six pairs of thermocouples arranged as shown in Figure k. 

Unsteady-State Measurements 

Thermal conductivity was calculated from measured or observed 

quantities using Equation 38» If L is the distance between voltage taps 

at some temperature t then Equation 3$ w&y he expressed as follows to 

account for linear expansion 

ke " im. (l +\t 3) At ̂  -Tx ' (4l) 

The error in measurement of Q, L, and At is estimated to be ap­

proximately the same as those for steady-state measurements. The errors 
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in time measurement were undoubtedly negligible. However, the power 

supplies used in this study were constant voltage Instruments and not 

constant-power instruments, as is required in the Solution leading to 

Equation 38» This introduces an additional uncertainty of perhaps 

^10 per cent into Q, since an average power was used over the interval 

during which In© versus At was approximately linear, Again, the 

magnitude of this uncertainty more than overshadows the correctlon for 

linear expansion which for the steel heater amounts to about 0.5 per 

cent at 1500°F. The square root of the sum of the Squares of the above 

error estimates is approximately ill per cent. 

Experimental Determination of Reproducibility of Measurements 

To check the reproducibility of observations, MgO (E-98) at 

V, = O.58 was studied using the steady-state measurement method in dif-

ferent Containers, in different furnaces, and with different sets of 

thermocouples. The experimental results from the two experiments are 

compared in Figure 19. Agreement between the two sets of data is within 

about 13 per cent. 
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Fig. 19. Experimental Thermal Conductivities of Magnesia Povder Showing Experimental 
Reproducibility. 



CHAPTER VII 

RESULTS AND DISCUSSION OF RESULTS 

A total of ten individual loadings of magnesia, two of alumina, 

and four of zirconia were studied. Each loading was studied at about 

nine temperatures although considerable Variation existed among load­

ings. Of these sixteen loadings only four were studied using the un-

steady-State method. 

The experimental thermal conductivities of magnesia, alumina, 

and zirconia powders in dry air at atmospheric pressure between ap-

proximately 200°F and 15C£)T as determlned by the steady-State method 

are plotted in Figures 20, 21, and 22, respectively. The equation for 

effective thermal conductivity as a function of temperature for each 

material as determlned from steady-State data is presented in Table 3. 

The method of curve fitting is discussed in Chapter VT. The effective 

thermal conductivities determined by the unsteady-state method are 

presented in Table k. These data are the basis for the following 

discussion and analysis. 

Effect of Temperature 

The conductivity of the powder increases with temperature for 

each material. Since the thermal conductivity of both theoretically 

dense zirconia and of air increase with temperature, the effective 

thermal conductivity of a zirconia powder would be expected to increase 

with increasing temperature. However, the thermal conductivities of 
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Table 3. Equations for ke Resulting from Least-Squares 
Fitting of Steady-State Dataa 

MgO (E-98) 

V, = O.58 k = 0.1788 + 0.2844 x 10"3 t - 0.6444 x 10"7 t 2 . 
d e 

Vd = 0.61 k e = 0.2139 + 0.363^ x 10"3 t - 0.9763 x 10"7 t 2 . 

Vd = 0.6*1- k e = O.28I1O + 0.4709 x 10"3 t - 1.396 x 10"7 t 2 . 

V, = O.65 k = 0.3205 + 0.5032 x 10"3 t - 1.534 x 10"7 t2. 
d e 

MgO (E-227) 

Vd = 0.61 ke = 0.2089 + 0.3507 x 10"
3 t - 0.9097 x 10~7 t2. 

A1203 (E-98) 

Vd = O.58 ke = 0.17^0 + 0.2942 x 10"
3 t - 0.8070 x 10"7 t2. 

A1203 (B45F) 

Vd = 0.49 ke = 0.1355 + 0.2129 x 10"
3 t - O.5083 x 10"7 t2. 

Zr02 (H30F) 

Vd = O.58 kg = 0.0960 + 0.1622 x 10"
3 t - O.363O x 10"7 t2. 

V = 0.64 k = 0.1283 + 0.1728 x 10~3 t - 0.3274 x 10"7 t2. 
d e 

Zr02 (H14F) 

V, = 0.70 k = 0.1692 + 0.2102 x 10~3 t - 0.3530 x 10"7 t2. 
d e 

a All powders in dry air, k in Btu/hr»ft«°F, and t in degrees 
Fahrenheit• 
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Table 4. Values of k- Öbtained by Unsteady-State Method 

Powder Vd t k e 
(°F) (Btu/hr . f t . °F) 

MgO (E-9Ö) 0.5ö 

MgO (E-9Ö) 0.64 

Zr02 (H30F) 0.64 

215-5 0.250 
445.0 0.290 

570.5 0.319 

696.7 0.349 

843.5 0.382 

9Ö3.3 O.398 

997.3 O.385 

212.0 O.367 

339.0 0.4l4 

446.0 0.454 

767.5 0.567 
901.0 O.581 

1056.7 0.588 

158.0 O.168 

315.0 O.196 

1045.0 0.285 

1130.5 0.302 



theoretically dense magnesia and alumina "both decrease with increasing 

temperature (over the ränge of temperatures studied); a priori argument 

would not necessarily predict that the effective conductivity of these 

powders would increase with increasing tenrperature. The fact that their 

conductivities do increase with increasing temperature raeans that the 

gas conductivity has more influence on the conductivity of the composite 

body than does the solid conductivity. This is an important qualitative 

Observation, and has been recognized by such investigators as Smoluchowski 

(73)> Aberdeen and Laby (7*0> a s "well as others. 

Effect of Volume Fraction Solid, Vd 

The data for magnesia (Figure 20) are replotted in Figure 23 as 

volume fraction solid versus effective thermal conductivity. It should 

be noted that this powder has a V, . of about 0.^9 and a V, of 
* d min d max 

about O.65 (Table l). Thus, extrapolation beyond these limits should 

not be attempted. It should also be noted that with increasing V"d 

the sensitivity of k to V, increases until, at values near V\ , 
e d ' d max' 

k is critically dependent on V,. 

The thermal conductivities of powders of a given solid often are 

plotted versus porosity. This type of plot is useful because a ränge 

of porosities may be obtained with a given solid. However, in many 

instances the different porosities on a Single plot were obtained using 

solids having different particle sizes and different particle-size dis-

tributions. Thus, the plot obtained is not truly representative of the 

conductivity of a specific powder at various porosities. Further, since 

there is a limited porosity ränge that is physically attainable, it is 
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Fig. 23. Effective Thermal Conductivity of MgO (E-98) Powder as a Function of Volume Fraction 
Solid. 
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posslble to extrapolate such plots into an unreal porosity region for 

any given powder. This point is lllustrated in Figure 23 for a magnesia 

powder at Ö00 F and atmospheric pressure. Extrapolation by means of a 

smooth line to zero per cent solid (k = k of air at 800 JF) will permit 

estiraation "by Interpolation of the conductivity of this magnesia powder 

at, say O.ij-0 volume fraction solid. The error in this extrapolation 

is the failure to take into account that the minimum volume fraction 

solid that this powder can have without fluidization is about 0.49. 

At the other extreme, the maximum volume fraction solid obtainable 

with this powder is about O.65. Extrapolation to higher volume fractions 

goes into regions not physically realizable. öbviously, Systems having 

higher and lower volume fractions are possible with other magnesia 

powders. The point is that these Systems cannot be expected to have 

conductivities which are continuations of the solid line shown in 

Figure 23. Neither should the conductivity curves be expected to 

overlap exactly the curve in Figure 23. Each powder will have its own 

characteristic particle size, particle-size distribution, and points 

of truncation, and will yield its own characteristic k versus V, 

curve. 

The data in Figure 23 are replotted in Figure 2k as effective 

thermal conductivity versus P... Several more points on the curve pre-

sented in Figure 2k would permit reasonably good extrapolation into 

regions known to exist. Since V, . and V, are not exact properties 
d min d max * * 

but depend on the mode of determination, they may be somewhat poorly 

defined; however, they are fairly reproducible, and they do present the 

data in a form convenient for extrapolation for comparison with other 
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powders. Such caraparisons are more meaningful than those obtained from 

the extrapolation of customary plots, since these partially compensate 

for the variability in conductivity brought about by powder characteris-

tics. If V, . and V, , no matter how determined, are known, the 
d min d max 

apparent density of the System may be back-calculated from P . 

Any significant change in V, . and V for a powder indicates 

that the powder has changed characteristics. Thus they serve as quick, 

rough checks on Variation in the particle size and particle-size dis-

tribution of a powder. 

Effect of Dry Air Purge 

Initial experiraents with magnesia and zirconia were conducted 

without a purge of air that had been dried by passage through a CaSO. 

tower. The differences between the purged and the unpurged powders is 

shown in Figure 25 for two different packings of magnesia. It is clear 

that careful work, especially at the lower temperatures, requires inclu-

sion of a gas clean-up procedure, and exclusion of untreated gas in 

subsequent handling. From the thermograms of the powders and the as-

sumption that water is the principal sorbed species it may be calculated 

that in every case there is more than enough sorbed water to result in 

monolayer coverage. The assumption of water as the principal sorbed 

species is supported by the fact that rapid weight losses on heating 

occur at about the temperatures for Mg(OH) decomposition to MgO plus 

HO, AI(OH) decomposition to AI 0. plus Hp0, and Zr(OH), decomposition 

to ZrOp plus HO. It should be noted that once the powders had been 

purged with treated gas there was no effect of continued purging, even 

if allowed to continue while measurements were being made. 
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Effect of Temperature "Retracing" 

Initial experiments were made with increasing temperature to about 

1500 F and indicated an increase in conductivity with increasing tempera­

ture as expected (Figure 26, Curve A). From 1500°F the experiments were 

continued in order of decreasing temperature and indicated that conduc­

tivity increased with decreasing temperature (Figure 26, Curve B). Al-

though the example in Figure 26 is from results on a sample which had 

not "been air-dried, the same behavior was observed on dried and undried 

samples. Since the saraple Container had in no way been shaken or handled, 

this anomalous behavior on cooling was totally unexpected. It is explica-

ble on the basis of a change in packing of the powder, as is apparent 

from Figure 20. However, inspection of the powder through the top hole 

used for Container volume calibration showed no perceptible settling 

of the powder. Rescreenlng of the powder indicated no change in particle-

size distribution. The powder was repacked and essentially the same 

results were obtained (Figure 26) in experiments made with increasing 

and decreasing temperature, A possible explanation of this effect is 

based on the difference in expansion of the solid refractories and the 

Inconel. At high temperature the powder may settle slightly (not 

visibly perceptible), and as the System cools the powder is compressed. 

This mechanical pressure oathe particles causes a better particle-to-

particle contact so that the effective conductivity of the powder is 

enhanced. Since the linear expansion of Inconel is greater than that 

of magnesia, alumina, or zirconia, such a compression of the powder is 

possible. Also, sintering as an explanation of the effect does not seem 

reasonable by virtue of the low temperature, and of the fact that the 
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particle-size distribution of the powder did not change. The effect 

was observed in every case in which the experiments were performed 

with decreasing temperature after reaching the highest temperature. 

The effect was more pronounced the higher the degree of packing of 

the powder. 

Comparison of MgO (E-98) and MgO (E-227) 

Two magnesia powders with the particle-size distributions shown 

in Figures 8 and 9 were packed to 0.6l volume fraction solid. The ex­

perimental thermal conductivitles of the powders as a function of tem­

perature are shown in Figure 27. Within the limits of reproducibility, 

the two powders have the same thermal conductivity. It is interesting 

to note that although these powders have different V, .'s and V, 's, 
^^ * d min d max ' 

they have the same V, -V . ränge (Table l). In addition, although 

they have different particle-size distributions, they have essentially 

the same value (Table 2) for the quantity 

Db -u2/2 
/ * CJ1 **• 
Da J*T 

Comparison of MgO (E-98) and A I P (E-98) 

A magnesia powder and an alumina powder with the particle-size 

distributions shown in Figures 8 and 10 were packed to O.58 volume 

fraction solid. The experimental thermal conductivitles of the powders 

as a function of temperature are shown in Figure 28. The fact that the 

alumina powder has a slightly lower conductivity than the magnesia 

powder (Figure 28) can be explained by the slightly lower conductivity 
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of the dense, polycrystalline alumina. The conductivlty at 800TP of 

alumina is about 7 and of magnesla is about 9 Btu/hr»ft* F (Figure l). 

However, the above results are not conclusive, slnce the spread in 

data is not outside the precision of the measurements. Also, the 

surface properties of the two powders are not necessarily the same and 

this may account for the dlfferences observed. 

Comparison of Steady-State and Unsteady-State Methods 

The steady-state and unsteady-state methods used to measure 

thermal conductivity give results which agree to within about 7 per 

cent (Figures 20, 21, 22, and Table k), Contrary to the Observation 

of most investigators (working at ambient temperatures), the unsteady-

state method did not offer any time saving over the steady-state 

method. The time-limiting factor was the same for both methods—namely, 

heating of the System composed of sample, sample Container, and fumace 

to temperature level. 
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CHARTER VIII 

COMPARISON WITH PREVIOUS EXPERIMEMAL RESULTS 

In general, previously reported measurement s have been made on 

powders inadequately characterized to permit a meaningful comparison 

wlth the present results. However, in the case of one specific packing 

and particle-size distributlon of magnesia such a comparison is possible. 

The experimental results of the investlgatlon wlth MgO (E-98) at V, = O.58 

in air at atmospheric pressure can be compared (Figure 29) wlth the data 

of Deissler and Eian (36). Their magnesia powder had a similar particle-

size distributlon and was also packed to O.58 volume fraction solid and 

run in air at pressures varying from about 14 psia at 200HF to about 

2^ psia at 800 F. The screen analyses for the two powders are given 

in Figure 3°» They indicate that the two powders have, wlthin the 

limitations of a sieving technique, the same particle-size distributlon. 

Over the temperature ränge 200 F to Ö00°F in which the comparison 

can be made, the results of the present study and those of Deissler and 

Eian are essentially the same. The tendency of the present data to 

fall below that of Deissler and Eian may be explained on the basis of 

pressure effects. Deissler and Eian observed that the "breakaway" 

pressure for their powder was about 15 psia at 3̂ +0 F and increased wlth 

increasing temperature. The term breakaway pressure as used by Deissler 

and Eian refers to that pressure below which the thermal conductivity 

of a powder at a fixed temperature is reduced by reducing the gas 

pressure. The fact that the present data falls below their data at *lO0-

500 F is in accord with their observed breakaway pressures. 
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CHAPTER IX 

THEORETICAL DEVELOPMEM1 AI© ILLUSTRATIVE EXAMPLE 

An expression based on established theory that will not only ac-

count for measured effective conductivities but that will also predict 

effective conductivity from the properties of the pure components and 

the physical properties of the system is desirable in order to under-

stand heat transfer in powders. Many correlations have been reported 

in the literature to predict the effective conductivity of such Systems 

(see Chapter II). As mentioned previously, most prediction methods ex-

press the thermal conductivity of a powder as a function of the thermal 

conductivities of the two phases, the volume concentrations of the two 

phases, and the distribution of the two phases in the system. These 

expressions are either exact mathematical Solutions for an assumed 

georaetrical configuration or simple integrations of Fourier's equation 

for an assumed configuration with an assumed heat flow or temperature 

pattern. Although the particles in a powder may be of uniform shape 

and size they will not be arranged in an exact pattern. Construction 

of a model that represents reasonably well the heterogeneous material 

under consideration and calculation of the effective conductivity of 

this model has proved difficult. 

Heat Transfer in Powders 

Heat transfer is assumed to occur in a powder by the following 

mechanisms: 



(1) Convection "by the fluid phase. 

(a) Natural. 
("b) Forced. 

(2) Conduction through solid and fluid phases. 

(a) Conduction "by solid only. 
(b) Conduction by solid and fluid in series and in parallel. 

(3) Radiation between the solid surfaces. 

Generally the contribution of each mechanism has been correlated in terms 

of the properties that affect it, and the effective thermal conductivity 

of the body is made up of the added contributions from each mechanism. 

Assuming that the effective thermal conductivity, k , of a povder is made 

up of additive contributions from the mechanisms outlined above 

k = k + k. + k +k +k (k-2) 
e nc fc sc gsc r 

where k = conductivity by natural convection, 

k = conductivity by forced convection, 

k = conductivity by solid only, 

k = conductivity by gas and solid, and 
gsc 

k = conductivity by radiation. 

Convection 

For granulär materials, if the sizes of the pores are small, 

the contribution of natural convection to the over-all transfer of heat 

is probably negligibly small. Waddams (kk) concluded from his experi-

ments that natural convection is appreciable as a factor in the flow of 

heat through granulär materials only when the average diameter of the 

grains is about one-fourth inch or greater. From a theoretical considera-
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tion of the majority of published (from year 1933 to 1<?48) thermal 

conductivities on porous media, Wilhelm jet al. (3*0 concluded that 

natural convection is negligible for particle diameters of 3 to k milli-

meters, pressures up to 10 atmospheres, and temperatures up to about 

600°F. 

Kunii and Smith (75) studied beds with fluid flow in a direction 

parallel and countercurrent to heat flow. The values of effective thermal 

conductivity increased significantly with mass velocity of the fluid. 

For instance, the thermal conductivity of a glass bead bed (diameter of 

bead about 1 millimeter) increased by a factor of about 3 when the 

Reynolds number increased from 0 to about 0.6. Willhite, Kunii, and 

Smith (37) showed from experimental data for beds of glass beads 

(diameter of bead about 0.9 millimeter) that for heat transfer perpendic-

ular to the direction of fluid flow and Reynolds numbers from 0 to 6.6 

there was no effect of flow on the conductivity. 

Conduction 

Heat transfer through the particles of a powder independent of 

the gas phase or so-called "straight-through" or "residual" solid con­

ductivity has been approximated experimentally by evacuating the gas 

phase (l6, 33, kl, 73> and 76). Masamune and Smith (̂ 5) present a 

semi-empirical method for predicting solid-to-solid conductivity from 

data on effective thermal conductivities in vacuum. These investigations 

indicate that the "straight-through" conductivity for an in vacuo powder 

is on the order of several thousandths to several hundredths of the con­

ductivity of the solid. Moreover, in explaining observed conductivities, 

the success of correlations (19, 20, 33, 36, and 37) based only on point 
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contact would indicate that "straight-through" conductivity or k is 
SC 

significant only when other modes of transfer are effectively suppressed. 

From their theoretical study of 53 Systems with fluid phase continuous— 

solid phase discontinuous, Wilhelm et al. (3^) concluded that heat trans­

fer is almost purely conductive provided the particle size, gas pressure, 

and temperature are not too high. They also concluded that the effective 

conductivity of the mixture is more dependent upon the thermal conductivi­

ty of the continuous phase than upon the conductivity of the dlscontlnuous 

phase. For example, Deissler and Boegli (51) point out that the effective 

conductivity of a magnesium oxide powder measured in helium was about five 

times that of the same powder in argon. 

Radiation 

Radiation may contribute significantly at high temperatures 

in coarse powders and at sufficiently high temperatures may predominate. 

For a "bed of 3«8 millimeters diameter alumina spheres the ratio of heat 

transferred by radiation to that transferred by conduction was estimated 

by Hill and Wilhelm (77) to increase with average bed temperature from 

the order of 0.1 at about 200°F, to 1.2 at about 1000°^. Theoretical 

expressions (20, 62, fQ, and 79) derived to account for radiant heat 

transfer usually express an effective radiant conductivity in terms of 

the geometry of the pore space, the emissivity of the walls of the pore, 

and the third power of the absolute temperature. These are reviewed 

and compared by Chen and Churchill (79)« 

Simplified Model 

In order to obtain a simplified system which will permit calcula-

tion of an effective thermal conductivity by summing series and parallel 



conduction through the fluid and solid phases, following Tsao's (32) lead, 

a homogeneously heterogeneous powder (Figure 31) in which the isotherms 

are planes perpendicular to the x-axis will he considered. 

The heterogeneous material shown in Figure 31(a) is sliced into 

many thin layers which are parallel to the x-y plane. Each layer is 

of such thickness that it is essentially "füll" of solid; i.e., there 

is little or no pure series fluid associated with a particle in the z-

direction. In other words, the slices are as shown in Figure 3l(c) and 

not as shown in Figure 3l(b). 

The particles in each such slice are moved without rotation along 

the x-axis until they again touch each other. Assuming heat flow per­

pendicular to y-z plane, based on adding resistances in series, this 

does not change the effective conductivity of the slice. This move­

ment does not destroy the particle distribution in the x-direction. 

However, it does destroy the particle distribution in the y and z-

directions. The "body as modified above is sliced into many thin layers 

which are parallel to the y-z plane. Each layer is again of such thick­

ness that it is essentially "füll" of solid. Based on adding conductances 

in parallel, the particles in each slice can be pushed into a pore-free 

rectangle without destroying the effective thermal conductivity of the 

slice. After these rearrangements, the model shown in Figure 32(a) is 

obtained. 

For the modified body shown in Figure 32(a), let 

X = length of representative cell, 

S = solid area perpendicular to heat flow, and 

D = solid length parallel to heat flow. 
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Fig. 31» Representation of the Gas-Powder System, 
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(a) 
SIMPLIFIED HETEROGENEOUS 
BODY OF TWO PHASES 

HEAT FLOW Q, PERPENDICULAR 
TO y-z PLANE 

(X-Ds) 

(b) 
PORTION OF SIMPLIFIED BODY 
BETWEEN x = O AND x = Dc 

(c) 
PORTION OF SIMPLIFIED BODY 
BETWEEN x = Ds AND x = X 

Fig. 32. Representation of Simplified Gas-Powder System. 
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Consider that portion of the simplified "body shown in Figure 32(b). 

Let 

Q 
gsc * L + qa (*3) 

where q, = heat flow in fluid, and 

cu = heat flow in solid. 

If k, = conductivity of solid particles, 

k = conductivity of fluid in pores, and 

At.. = temperature drop across D , 
JL S 

then 

At. 
l 1 = -kc (X - S) ^ 1 , (H) 

and 

At 

«Ja = -*d
 (s) F 1 ' (*5) 

so 

Q gsc 

-, At. 
k c(x

c - S) + k d(S) 
D. 

(W) 

Now consider that portion of the simplified "body shown in Figure 32(c). 

For this portion of the simplified body 

2 A t 2 

(*7) 

where A t p = temperature drop across X-D . 

But 

_ At 
Q = - k (x2) _ t | t a l 
^gsc gsc N ' X ( « ) 



and 

At. , , = At- + Atn . total 1 2 

Thus, combining Equations k-6, kj, k3, and k-9 gives 

k 

(*9) 

k 
gsc D 

1-S, 
X* X 

(50) 

D 

It may be shown that if D = X, then S/x = V, and Equation 50 reduces 
s d 

to Equation 3 which is the expression for laminae parallel to the flow 

of heat. Also, if D = V I , Equation 50 reduces to Equation k which is 
S Q. 

the expression for laminae perpendicular to the heat flow. 

1/3 

If the assumption is made that D = V\ X then Equation 50 re­

duces to Equation 22 which is Russell's equation (h6). It is interest-

ing to note that if the original powder were cubical particles in a 
cubic lattice so that the true relation between D and X is D = V\ ' X, 

s s d ' 
the movement of particles used in arriving at the model given in Figure 

32(a) does not destroy this relation. 

In order to use Equation 50 a relation between D and X in the 
s 

direction of heat flow is needed. To obtain such a relation define a 

shape factor 

S 
a s 7 

s 

(5D 

Inspection of Figure 32(a) will show that a is a shape factor which 

determines how much of the solid may be considered to be in parallel with 

the surrounding fluid and how much may be considered to be in series. 
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Multiplying both sides of Equation 51 "by D gives 
s 

SD 

a = - ^ • (52) 
D° 
s 

But, it may be seen from Figure 32(a) that 

SD S = v ^ . (53) 

Therefore, combining Equations 52 and 53 gives 

D 
s 

X 

(Vjl/3 

oT • <*> 

Considering again a cubical array of cubes (Russell's model), one sees 

that OL calculated from Equation ^k equals unity as it should for this 

array, This qualitatively explains why Russell*s equation gives low re-

sults when applied to powders. In any real packing of cubes, a will he 

less than unity since the cubes will he twisted and turned in space. 

Suhstituting Equation 5^ into Equation 50 still gives an equation with 

aas an unknown quantity. The quantity a is, however, a property of 

the particles and can he related to the heterogeneous hody through a 

volume halance of the two phases. A variety of methods are available 

to ohtain a, The one used in this study is presented below. 

Consider particles having a particle-size distrihution ohtained 

by a technique that gives weight per cent as a function of some character-

istic length. For example, with a screen analysis this is equivalent 

to obtaining volume per cent as a function of screen openings, if the 

density of the particles is known. Most crushed materials, as represented 

by most of the materials in this study, follow a logarithmic normal dis-

tribution (Table 2). For such materials, considering a representative 

unit length of solid, 



El. p 
f ^ -u /2 J e [__ , _ volume of solid ,,--x 
Da /pjr-» ~ a normalizing volume of solid 

That is, it is the fraction of the total volume (contained "between the 

limits D = 0 and D = +») which is contained between the limits D and 
' a 

IX; i . e . , i t i s t he volume between D and IX when 
b a D 

J + ° e " u / 2 du = V2iP . (56) 
—«o 

Let G represent the nuraber of series gas lengths associated with the 
s 

representative unit length of solid. 

Thus, 

(•1 \3 volume of representative cell , * 
U + Gg; - a normalizing Voiume of solid * ° { ) 

Combining Equations 52 and 57 gives 

/ " e-"2/g 

a V2""" ' volume of solid 
du 

/ \3 ' volume of representative cell 

which is V,. 
d 

Now, examining Figure 32(a) again, it may be seen that also 

X - D 

Cubing Equation 59 gives 

(58) 

Gs = - 5 - ^ . (59) 
S 

(1 + G j 3 = 2- . (60) 
S D3 

s 
Comparing Equations 3k, 5Q, and 60 shows that 
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A -u2/2 
J 5 du = a (61) 

for these materials. In some materials, for instance uniformly sized 

materials such as the AI 0 (B^5F) powder (Table 2) used in this study, 

the relation between D and X may be difficult to determine. 
s 

So far in the derivation of Equation 50, the conductivity of the 

gas in the pores has been assumed to be that of the pure bulk gas at the 

temperature and pressure of the System, However the work of numerous 

investigators (16, 33t ^t ^5> 13t and J6) has shown that the thermal 

conductivity of a powder-gas System is decreased by decreasing pressure 

at a much faster rate than can be explained by the decrease in conductiv­

ity of the pure gas by reduced pressure. One theoretical approach to 

the problem is through the use of the temperature Jump distance (80). 

Schotte (62) applied the relationship based on the heat transfer between 

close parallel plates given by Kennard (öl) to relate the normal thermal 

conductivity of a gas to the apparent thermal conductivity. The deriva­

tion which follows is essentially the one presented by Schotte. Kennard 

gives the heat conducted per unit area per unit time through a gas of 

conductivity k between two parallel plates separated by a relatively 

small distance d, per degree difference in temperature between them, as 

*° - TTt^r2 m 
where j. and j are the temperature jump distances of the two surfaces. 

Assuming that j and j are equal, the apparent conductivity of the gas 

can be expressed as 
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k* - *° d = - ^ W • <63> 
g 1 + =* 

Kennard also shows that (82) 

J = *" \ . (64) 

where a = thermal accommodation coefficient for gas-solid surface, 

7 = ratio of gas heat capacity at constant pressure to heat 
capacity at constant volume, 

r) = viscosity of gas, 

C = gas heat capacity at constant volume, 

BT \ = mean free path for gas molecule = — ^ , (65) 
TT/6 Fi/zT* 

T = a b s o l u t e t empera tu re , 

P = absolute pressure, 

)6 = molecular diameter of gas as determined fram viscosity, and 

B = Boltzmann constant. 

Combining Equations 63, 64, and 65 

k o 
K = ,0 - . . , " . , S . (66) 

g 
„ / 2 - a\ 

1 + Z 
a 

f 7 1 f T | „ / 2 - a\ 
1 + Z 

a 
1 + 7 

i i 
iPd f NprJ 

TIC 
where N_ = . %% = Prandtl number, 

Pr k 
g 

C = gas heat capacity at constant pressure, and 

-24 
Z = a constant = 5»°8 x 10 for foot, pound, degree Rankine 

units. 

Solution of Equation 66 requires a knowledge of the accommodation 

coefficient as well as the average heat transfer dlstance, d, between 

particles. Experimental values of the accommodation coefficient (83, 



Qk-, and 85) reported in the literature vary widely for any given gas 

depending on temperature, pressure and strongly on the condition of the 

surface. However, all measured values are greater than zero and less 

than one, so that a reasonable estimate of accommodation coefficients 

may "be possible from a consideration of all the experimental values 

available. For the sinrpllfied model presented in Figure 32(a) the value 

of d is X - D . s 

If Equation 50 is modified by substituting k for k in the space 
g 6 

between the solid surfaces, that is, in the volume which is (X-D ) by 
s 

X by S/X of Figure 32(c), then 

_g_ 
gsc D 

£ / c \ 
JS 1 - —* * 2 
k X 

g 

' S . 1 

\x2i 

(67) 

+ P- - 5T 

where 

* 
k = k 

g g 
1 - 31+ < \h 

X X J 

(68) 

The radiation contribution depends upon the temperature level and 

gradient. The net radiation heat transfer between two bodies can be 

expressed as 

a = n a F F A (T. - O *r r e a r v 1 2 ' (69) 

where n = refractive index of media between surfaces, 
r 
a = Stefan-Boltzmann constant, 

F = emissivity factor, 



F = angle (or "view") factor, and a 

A = radiating surface area. 

Factoring the term (T - T ) to (T± - Tg) (T + T2) (T
 2 + T g ) , and 

2 2 2 
assuming that approximately, (T + T ) = 2 T and (T + Tp ) = 2 T , gives 

r̂ = In
2 ö F F A T3 AT (70) 
r e a r 

Assuming that a particle surface area is small compared to the 

"visible" surface of the enclosing particles, Equation 70 reduces to 

q^ = ^nr o € ArT
J AT (71) 

where € = emissivity. 

Defining an effective radiation thermal conductivity by analogy 

with Fourier's equation yields 

«r • "V, ̂  • ™ 
r 

Combining Equations 71 and 72 gives 

k = ^n2 o € D T3 (73) 
r r r v'~JI 

where D is an effective inter-particle distance for radiation. The 

average radiating surface for heat flow in the x-direction is S. How-

ever, the average effective inter-particle distance in the x-direction 

is not expected to he X-D hecause the model giving the distance X-D 
s s 

does not truly represent the physical System of particles for heat 

transfer "by radiation. It is desired to relate k to the average 

radiating surface in the x-direction in a manner more nearly representing 
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the original random distribution of particles. This may be accomplished 

by the following approach: 

S Dr = (1 - Vd) X
3 , (7*0 

and 

S D = V,X3 . (53) 
s d 

Combining Equations 7^ and 53 

D_ - (i- - 1) D„ . (75) 
r v d 

Combining Equations 73 and 75 

k = ^n2 o e (i- - 1) D T3 . (76) 
r r NV, s v ' 

d 
Different techniques for measuring particle sizes can give dif-

ferent numbers for the same parameter. For example, the median particle 

size as determlned by sieving, Sedimentation, or microscopy is not the 

same (varying sometimes by factors of 2 or $)• For instance the median 

particle size of MgO (E-9Ö) was 1Ö0 microns as determlned by sieving and 

60 as determlned by microscopy. Obviously the method of obtaining 

particle size will influence the result from Equations 67 and 76. In 

contrast in the equation for k (Equation 50) all lengths occur as 

ratlos. Thus, if the method used to measure the relation between X and 
D 
o 

D is valid, it should give essentially the same value for —— as any 
S A 

other method. 
Since k , k , and k may be assumed to be negligible for the 

XIC X L SC 

powders in this investigation, Substitution of Equations 67 and j6 into 



Equation 42 gives 

ke = -
k 

g 
D 

s 
X + 

1 D ' 
1 - -JS 

X u 
g 

* 
g 

1 
s 1 

" x 2 

k d + — * 
k 

g 

S \ 

x2) 

+ 
1 D ' 
1 - -JS 

X 

+ 4n2 a G (i- - 1) D 
s T" (77) 

This is the equation used to corapare with experimental results. 

Illustrative Example 

As a specific example of the calculations involved in the above 

theory, consider a magnesia powder — MgO (E-9Ö) — is air at atmos-

pheric pressure and having a volume fraction solid of O.5Ö. 

The basic equation for calculating k for such a system is 

Equation 77 above. Auxiliary equations (repeated for convenlence) 

are 

« - / 
Db -u2/2 

e ' 
D 

du (61) 

i/äF1 



which is needed to evaluate a; 

D 

a 

1/3 

(5*0 

which is needed to evaluate D /X; 
s 

k = k 
g S X / S 

/s 

? 
(68) 

which is needed to evaluate k : and 
8 

k° = 
1 + Z 

2 - a 
1 + 7 Pdj6 Npr 

(66) 

which is needed to evaluate k . 

All the properties of the bulk components in Equations 66, 68, 

and 77 are in the literature for magnesia and air as well as for most 

other common solids and gases. It should be noted that the accommoda­

tion coefficient, a, is a possible exception to this statement. How-

ever, as mentioned previously, a reasonable estlmate of accommodation 

coefficients may be possible from a consideration of experimental 

values which are available in the literature. Sources of values of 

properties used in calculation of this example are given in Chapter X. 

It will be recalled that according to Equation 42 the value of 

k is made up of k and k . which appear as the two principal terms 

in Equation 77. Further, k , k_ , and k are not included in the 
^ ' nc fc sc 

sum of terms comprising k because of their negligible contributions 

under the experimental conditions, 



At 1500°F, for magnesia k = 4.84 Btu/hr'ft«^ and e = 0.42; for 

air k = 0.0408 Btu/hr-ft«^, y = I.33, )6 = 10.8 x lO-10 foot, Np = O.718, 

n is taken as unity, and the accommodation coefficient, a, is taken as 

0.9. 

From Table 2 the value of a (Equation 6l) is O.739 for this 

magnesia powder. 

From Equation 54 

or 

D 

a 

1/3 
fo.5ö I 
0.739 

1/3 

= 0.9224 

Combining Equations 53 and 54 

U d 
a 

1/3 
(78) 

From Equation 78 above 

Sg = O.58 
X 

0-739 
oTW" 

1/3 
= 0.629 . 

From Figure 32(a) it may be seen that 

d = £ - -
s 

(79) 

d = a 
1/3 

- 1 D . s 
(80) 
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To determine d from Equation 80, a value must be assigned to D . From 

a particle-size distribution, many characteristlc particle "sizes" may 

be obtained—the median, the mean, the mode, and numerous "averages". 

Of these sizes, the mean (first moment of the distribution) is the only 

one that weights volume with distance. Therefore, D is taken to be the 

mean particle size. It should be noted that for the Systems in this 

study there is little difference in caleulated values of k if D is 
e s 

taken to be the median particle size. From Table 2 for this magnesia 

powder 

D = D = 268 microns 
s m 

and thus, from Equation 80, 

d = 22.5 microns . 

Now, substituting into Equation 66 

, o 0.01*08 
k = 

g 1960 l+5.08xlö2*[£i][i^]-
^2116(22.5)(3.28x10 )(10.8x10' ) (0.718) 

k° = O.O387 Btu/hr«ft-°F. 
S 

From Equation 68 

k * = 0.0408 (0.371)+ 0,0387 (0.629), 
6 

k = 0.0395 Btu/hr*ft«°F. 

Subst i tut ing the appropriate values above in to Equation 77, 
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k = 
e 

0.0395 
0.9224 i + 0.0776 

|0.0408wn _„_>. , 4.Ö4 , r . 
l o . 0 3 9 5 ] ( 0 ' 3 7 l ) + 0.0395 ( 0 , 6 2 9 ) 

+ 0.0776 

+ k (1.73X10 9)(0.42)(Q7^ -l)(26ö)(3.2Öxl56)(l960)3 , 

k = 0.441 + 0.014, 
e ' 

k = 0.455 Btu/hr«ft«°F. 

This predicted value of k at 1500HF compares well with the experimental 

value shown in Figure 20. If the calculation above is repeated taking 

D as the median particle size then 

k = 0.436 + 0.009, 

k = 0.445 Btu/hr*ft«°F. 

For a comparison of k , k , and k calculated—for a different powder— 

taking D to be the mean particle size and the median particle size see 

Table 5. 
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CHAPTER X 

COMPARISON OF RESULTS WITH THEORETICAL EXPRESSIONS 

Comparison of Experiments with Selected Earlier Correlations 

The correlations (Chapter II) chosen for comparison with the ex-

perimental data are those of Fricke (2k) with values for the semi-

principal axes suggested by de Vries(28) and of Willhite, Kunii, and 

Smith (37)« These are repeated "below for convenience. 

Fricke's equation is 

k = k 
e c 

_1 + vd (F r 
c 

- 1) 

1 + Vd (F - 1 ) . 
(7) 

for spheroids (f = f ^ f ) 

p - i 
3 
i=l 

'^•Vi 

- 1 

(8) 

and 

t 
i=l 

f i - 1 - (9) 

Fricke's equation is chosen as an example of an exact, i»e., 

mathematically rigorous, Solution to the equation for disturbance of 

steady linear flow of heat in a uniform medium "by an object of dif-

ferent conductivity buried in it. Woodside and Messmer found that 

de Vries'form of Fricke's equation, namely, f = f = l/8 and f = 3/k, 

showed fair agreement with their experimental values for quartz sand, 
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glass bead, and lead shot packs (l6). Thus, this equation represents 

an exact Solution which has been compared with experimental data for 

several granulär materials. 

Willhite, Kunii, and Smith!s equation is 

k = k 
e c 

1 + v [i =1 + v [-lfl-T-2 d \ kdJ d U l kd 
k v21 

where 

Ü) = 

f k \ 
F-r 

4 2
 0 

sin ß 

*£-
/k 1 

- 1 
^ c \ c 

cos ß) - 1 -äh cos ß 
and 

(19) 

(20) 

sin ß = 
13.23 vd - 5.36 ' 

(21) 

They took the quantity fi equal to l/2 or 2/3. In the present comparison 

ß is taken as 2/3 since this value gave better agreement between the 

calculated and the experimental conductivities of this investigation 

than a value of l/2. 

The correlation of Willhite, Kunii, and Smith represents an ap-

proximate Solution to the problem of calculating heat transfer through 

granulär material. It is based on an extension of the work of Kunii and 

Smith (38) who had extended the earlier work of Yagi and Kunii (39) on 

a model which assuraed cübic and tetrahedral packings of uniform spheres 

and linear heat flow. This correlation is chosen for comparison with 

the experimental results of the present investigation since it has been 

compared with good results to a large body of existing data on packed 



beds, and since it relates the number of points of contact in the 

packed beds to the void fraction. This last fact is important because 

the Controlling factor in the flow of heat is probably the fluid in 

the immediate vicinity of these points of contact. 

The experimental results obtained in this study with magnesia, 

alumina, and zirconia powders in air are compared with the above cor-

relations in Figures 33 to k-2. The thermal conductivities of dense 

solid magnesia, alumina, and zirconia used in these calculations were 

taken from Kingery et al. (86) and the thermal conductivities of air 

were taken from Glassman and Bonilla (87). 

It may be seen that Fricke's equation with values for the semi-

principal axes suggested by de Vries gives values for k that are lower 

than experimental values for the magnesia and alumina powders (kVk 

varying from about 1200 to 100). Although the calculated k 's do not 

correspond to the experimental ones in absolute value, they do cor-

respond fairly well in their temperature Variation (Figures 33 to 39). 

This suggest that the k 's calculated by Fricke's equation for the 

magnesia and alumina powders can be brought into better agreement with 

the experimental k 's in absolute value if the particles are assumed 

to be spheroids with a ratio of major to minor axis somewhat greater 

than six (de Vries'value). For the zirconia powders (k,/k varying 

from about 60 to 30)> the predicted k 's and experimental k 's are in 

excellent agreement (Figures kO to ^2). These results are in agreement 

with the Observation of Hamilton and Crosser (88), namely, that the 

factor F (Equation 8) will not depend strongly on particle shape un-

less the ratio of k. to k is about 100 or more. 
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It may be seen that Willhite, Kunii, and Smith's equation with 

ß taken as 2/3 gives values for k that tend to agree with the ex-

perimental values for the magnesia and alumina powders (Figures 33 to 

39)» The agreement is poorest for the two most densely packed magnesia 

powders (Figures 35 and 36) and the uniformly sized alumina powder 

(Figure 39) at the higher temperatures. It may also be seen that the 

equation does not, and cannot, predict the correct Variation of k with 

temperature for the magnesia and alumina powders in this study. For 

the zirconia powders, the predicted and experimental k 's are in excel-

lent to good agreement (Figures k-0 to ̂ +2). 

The experimental results of this study were also compared with 

the correlation (Chapter II) of Deissler and Eian (36). Their cor-

relation gives calculated k 's for the magnesia and alumina powders 

that agree fairly well with the experimental ke's at the lower tem­

peratures (about 200 to 600°F). However, the agreement is poorer 

than that obtained with the Willhite, Kunii, and Smith equation at the 

higher temperatures. Typical results are shown in Figures 33 and 35. 

For the zirconia powders, the Deissler and Eian correlation gives 

results inferior to those obtained with Fricke's equation or Willhite, 

Kunii, and Smith's equation. Typical results are shown in Figure kO. 

Comparison of Proposed Theory with Experiment 

Using the method of calculation illustrated in the preceding 

chapter, the values of k shown in Figures 33 to 38 and kO to k2 were 

obtained. The value obtained in the Illustration appears as the cal­

culated k value (open circle) at 1500 F in Figure 33. 



The values of a (Equation 6l) used in the calculations are listed 

in Table 2. No calculations were made for the A120 (B^5F) povder since 

a value of a was not available for this powder. The thermal conductivi-

ties of dense solid magnesia, alumina, and zirconia were taken from 

Kingery et al. (86) as mentioned prevlously. The emissivities of 

magnesia and alumina were taken from Sully, Brandes, and Waterhouse (89) 

and the emissivity of zirconia was taken from Olson and Morris {90), 

The thermal conductivities and Prandtl numbers of air were taken from 

Glassman and Bonilla (87). The values of 7 for air are taken from 

Hilsenrath et al. (91)« The molecular diameter of air as determined 

from viscosity is taken from Hirschfelder, Curtiss, and Bird (92). The 

refractive index of air is taken as unity and the thermal accommodation 

coefficient, from a consideration of measured values (83, Qk, and 85), 

is estimated to be 0.9. 

It may be seen that the calculated and experimental k 's are 

in excellent agreement in all cases. 

To illustrate the calculated contribution of 1^ to k , values 

of k and k as a function of temperature are listed in Table 5 for 
gsc r * 

one powder—ZrCL (Hl^-F). It may be seen that at most (1500°F) the 

calculated radiative contribution to k is about 7 per cent if D is 
e s 

taken to be the mean particle size and about 3 per cent if D is taken 
s 

to be the median particle size. This powder represents the greatest 

difference in k 's (and k 's) calculated taking D to be the mean particle 

size and to be the median particle size since it has the greatest dif­

ference in D and D,.^ (Table 2). With either value for D the cal-

m 50$ ' s 
culated k 's are within the accuracy limits set on the experimental k 's. 



Table 5. Calculated Values of k , k , and ka for a Zirconia Powder
a 

' esc' T' e 

k k k = k + k 
L/l#St.°F) (Btu/hÄt.0F) (Btu/h^ft-M 

Mean Median Mean Median Mean Median 

250 0.228 0.226 0.003 0.001 0.231 0.227 

400 0.255 0.253 0.005 0.002 0*260 0.255 

600 0.289 0.285 0.008 0.003 0.297 0.288 

800 0.317 0.313 0.012 0.004 0.329 0.317 

1000 0.3^1 0.337 0.017 0.005 0.358 0.342 

1200 O.363 0.358 0.022 0.007 0.385 0.365 

1400 0.384 0.378 0.028 0.009 0.412 O.387 

1500 0.395 O.388 0.031 0.010 0.426 0.398 

Calculated for Zr02 (Hl4F) powder in air at atmospheric pressure 
having a volume fraction solid of 0.70 using Equation 77« Mean 
particle size = 1023 microns and median particle size = 333 
microns (Table 2). 



These results for k and similar results for the other powders lead to 
r 

the conclusion that radiation is not important to this work "because of 

relatively low temperatures and small inter-particle distance. However, 

it should be emphasized that heat transfer by radiation was not covered 

experimentally in this work, and only in a conventional way theoretically. 

In passing it should be mentioned that Equation 77 was also 

derived based on the assumption of linear heat flow. The agreement 

between calculated and experimental thermal conductivities, using shape 

factors as determined in Chapter IV, is not as good with the linear 

heat flow assumption as with the linear isotherms assumption. 

Comparison of Selected Previous Experiments with Correlations 

The three theoretical expressions above are compared in Figures 

h-3 to k6 with the results of Deissler and Elan (36) on a magnesia 

powder at O.58 volume fraction solid in air and in argon and with the 

results of Elan and Deissler (93) on a different magnesia powder at 

0.6k volume fraction solid in air and in argon. The properties of the 

dense solid and of air used in these calculations are taken from the 

references mentioned previously. The thermal conductivities, Prandtl 

numbers, and values of y for argon are taken from Hilsenrath et al. (91) 

The molecular diameter of argon, as determined from viscosity, is taken 

from Hirschfelder, Curtiss, and Bird (92). The refractive index of 

argon is taken as unity and the thermal accommodation coefficient, from 

a consideration of measured values (83, 8^, and 85), is estimated to be 

unity. The gas pressure at each temperature (for use in Equation 66) 

is double that calculated from Deissler and Eian's expression for 

breakaway pressure. Their expression is 
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p = 1.77 x 10"21 -2— , (81) 
n m 

where T = temperature in degrees Rankine, 

jö = molecular diaraeter (determined from viscosity) in feet, 

D = mean particle size (determined by sieving)in feet, and 
m 

P = breakaway pressure, in pounds per Square foot. 

The reason for doubling the calculated pressure is that Deissler and 

Eian as well as Eian and Deissler indicated their pressures were, in all 

cases, above those given by Equation 8l. However, they did not indicate 

how much above. Thus, the factor of two is to insure that pressures 

used in the calculations are equal to or greater than the pressures in 

the previous experiments. Their experiments showed that at pressures 

above the breakaway pressure the effective thermal conductivities of 

the powders did not vary with pressure. From the reported screen 

analyses, the shape factor a is taken to be 0.739 for the powder 

used by Deissler and Eian and to be 0.728 for the powder used by Eian 

and Deissler. 

The expression of Fricke gives k 's that are below the 1952 

results of Deissler and Eian and considerably below the 1953 results 

of Eian and Deissler. The expression of Willhite, Kunii, and Smith 

gives k 's that tend to agree with the 1952 results of Deissler and 

Eian. However, the expression gives k 's that tend to fall away from 

the 1953 results of Eian and Deissler at the higher temperatures. The 

theory proposed in this work gives k 's that are in excellent agreement 

with the results of both the 1952 and 1953 Studies. It should be 

mentioned that Deissler and Eian as well as Eian and Deissler also 
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carried out experiments in helium atmosphere. The results of these ex­

periments are not included in the present comparison because of the 

unavailability of measured values for the accommodation coefficient. 

Extrapolation or interpretation of available information leads to a 

value between about 0,3 and 0.7 for the accommodation coefficient. 

For good agreement between results calculated by Equation 77 and ex-

perimental results a value of about 0.15 must be assumed. 
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CHARTER XI 

CONCLUSIONS 

From this investigation of the effective thermal conductivities 

of magnesia, alumina, and zirconia powders in air at atmospheric pres­

sure from 200 JT to 1500^ the following conclusions have been reached: 

(1) The steady-state and unsteady-State methods used give 

results which agree to within about J per cent. 

(2) For the size of sample and the arrangement of apparatus 

used, the unsteady-State method offered no time saving over the steady-

state method since the time-limiting factor was the heating of the 

System—sample, sample Container, and furnace—to temperature level. 

(3) The effective thermal conductivity of a specific powder 

increases with increasing volume fraction solid until, at values close 

to the maximum obtainable with the powder, effective thermal conduc­

tivity is critically dependent on volume fraction. 

(k) The influence of gas conductivity is greater than that of 

the solid on the effective thermal conductivity of powders, in agree-

ment with most previous investigators. 

(5) The effective thermal conductivity for each powder measured 

increased at a decreasing rate with increasing temperature, following 

an approximately quadratic temperature dependence. 

(6) The effective thermal conductivities of two magnesia powders 

having different particle-size distributions and points of truncation 
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"but almost the same shape factor, OL, were essentially the same at the 

same volume fraction solid in accord with the theory developed in this 

work. 

(7) The effective thermal conductivity of a magnesia powder 

was slightly higher than that of an alumina powder with almost the 

same shape factor, a, and at the same volume fraction solid, in accord 

with the theory developed in this work. 

(8) The presence of a sorbed water film increased the effective 

thermal conductivity of each powder up to temperatures correspondlng to 

the decomposition temperature of the respective hydroxides. 

(9) Mechanical pressure on the particles caused by shrinkage of 

the sample Container upon cooling from high temperatures increased the 

effective thermal conductivity by factors up to about two. 

(10) All the data on effective thermal conductivity for the 

powders studied can be correlated well by means of a derived equation 

(Equation 77) which relates effective thermal conductivity to the con-

ductivities and concentratlons of the constituent phases as well as to 

a shape factor. 

(11) The extension of Maxwell's equation to ellispoids by 

Fricke (Equation 7) underestimates the effective thermal conductivity 

of the magnesia and alumina powders when de Vries'values for semi-

principal axes are used but the agreement is excellent for the zirconia 

powders. 

(12) The equation of Willhite, Kunii, and Smith (Equation 19) 

tends to underestimate the data when used with a constant required by 

the geometry of the model of l/2 but agrees fairly well when the 

constant is taken as 2/3. 
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(13) By theoretical analysis radiation was determlned not to "be 

an important heat transfer mechanism in these powders because of low 

temperature and small inter-particle distances. 
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CHARTER XII 

RECOMMENDATIÖNS 

The results of thls investlgation suggest some interesting areas 

for further work. These areas include: effect of particle parameters, 

effect of mechanical pressure, effect of sorbed films, and effect of 

radiation. 

Effect of Particle Parameters 

Obviously, for any powder studied, the wider the ränge of particle 

Parameters; e.g., particle size, particle-size distribution, surface area, 

the more light will be shed on the influence of each parameter on the 

effective thermal conductivity of powders. Also, the wider the ränge 

of parameters studied, the wider the ränge of applicability of proposed 

theoretical expressions which correctly predict k . 

Powders having known particle sizes, particle-size distributions, 

etc. should be synthesized or blended so that the influence of these 

parameters may be investlgated systematlcally. Better control of particle 

parameters will permlt more meaningful intercomparlsons between different 

investigations of heterogeneous Systems. Specifically, a powder similar 

to that used by Elan and Deissler (93)> with a small mean particle size, 

say 40 microns of less, should be investlgated at modest pressure (at-

mospheric or several atmospheres) in gases such as helium or hydrogen. 

Such studies would demonstrate the interrelation of pressure, temperature, 

and particle size. A maximum in k versus temperature should result, 



as observed "by Eian and Deissler. It should "be emphasized that the ex-

periments of Eian and Deissler were under gas pressures up to about 18 

atmospheres so that in theory they should not have observed the maximum 

which they did observe in fact. Assuming that the accommodation coef-

ficient is fairly constant for a given powder-gas system over the tem-

perature ränge studied, Equation 77 predicts that for such a system 

at a pressure of several atmospheres a maximum in a temperature versus 

effective thermal conductivity plot could exist. Although the bulk 

conductivity of gases at constant pressure increases with increasing 

temperature, small inter-particle clistances combined with increasing 

mean free path as temperature increases can lower the apparent conduc­

tivity of the gas in the pores (see, for instance, Equation 66), This 

lowering can be large enough to more than override the increased gas 

bulk conductivity. By operating under increasing pressure with increas­

ing temperature, Eian and Deissler essentially had a Situation wherein 

the decrease of mean free path with increasing pressure corapensated for 

the increase of mean free path with increasing temperature—assuming that 

the accommodation coefficient is affected little by temperature and pres­

sure over the ränge studied. 

Powders having, in so far as possible, the same particle size, 

particle-size distribution, and points of truncation (which implies 

the same shape factor, a) should be blended from solids with widely 

different thermal conductivities. For example, an alumina powder having 

the same particle parameters as the ZrOp (H30F) used in this study could 

be blended. The effective thermal conductivity of these powders 

measured in the gas at modest pressures and temperatures will permit 



better evaluation of the role played by solid conductivity in the con-

ductivity of powders. 

Powders of a given material having widely different a's but 

close to the same mean particle size should be blended. In addition 

these powders should have V, - V, ränges that overlap so that 
d max d min * 

Systems having the same volume fraction solid may be packed with each. 

For example, the AI 0 (E-98) with a mean particle size of 263 microns 

used in this study had an a of O.7I4-. If an alumina powder were blended 

with particle parameters like the ZrOp (EQOF), with a mean particle 

size of 292 microns, it should have an a of O.85. If these two alumina 

powders in air at atmospheric pressure were packed to V, = O.58, 

Equation 77 predlcts that at 800°^, k for the one with a = O.Jk would 

be O.36 Btu/hr'ft«^, while for the alumina powder with a = O.85, 

ke would be 0.2*4- Btu/hr«ft.°F. As has been mentioned previously, one 

of the principal belief s propounded by this work is that such a dif-

ference in the effective thermal conductivity of apparently similar 

Systems is real, and can be explained by factors such as a. 

Effect of Mechanical Pressure 

Studies in regions where crushing, coalescence, deformation, etc. 

of the particles are negligibly small seem desirable to elucidate the 

effect of mechanical pressure on the effective thermal conductivity of 

powders. The results of this study suggest that compression of the 

powder might be used to improve heat transfer rates through the powder. 

On the other hand, if the powder is being used as an insulator, compres­

sion should be avoided. It is worth noting that the effective thermal 

conductivity of a magnesia powder at 400°F (Figure 26) was increased 
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almost 90 per cent after heating to about 1500 F and cooling back to the 

lower temperature. This effect is here attributed to compression of 

the powder by the shrinking metal sample Container upon cooling. 

Effect of Sorbed Films 

Not only water at atmospheric pressure, as observed in this work, 

but also films of other sorbed fluids such as carbon dioxide, can prob-

ably enhance the conductivity of powders. In this connection, the 

work of Weininger and Schneider (55) on beds of alumina and glass 

powders should be noted. They attributed the marked increase in ef-

fective thermal conductivity with increasing carbon dioxide pressure 

(about 1 atmosphere to 65 atmospheres) to an increase in gas adsorption. 

Results such as these suggest that films might be used to "dope" powders 

and improve their effective thermal conductivities. For example, a 

powder similar to any of those used in this study, which had been 

appropriately treated to remove sorbed films of such fluids as water 

and carbon dioxide, could be used as the solid phase for a series of 

experiments. Air from which water vapor and carbon dioxide had been 

removed could be used as the continuous phase. Carbon dioxide (or 

steam) could be added in controlled amounts to the continuous phase. 

The effective thermal conductivty, at fixed temperature and pressure, 

could be determined as a function of the amount of carbon dioxide added. 

Carbon dioxide present as a film could enhance the effective thermal 

conductivity of the System. However, carbon dioxide present in the gas 

phase should only lower the effective thermal conductivity of the 

System, since the thermal conductivity of carbon dioxide (up to about 

1̂ +50 F) is less than the thermal conductivity of dry air. 
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Effect of Radiation 

Powders used in this study were of fairly small particle size so 

that inter-particle distances were small. Also temperatures were not 

very high in these studies. Thus, the contri'bution of radiation to heat 

transfer through the powders was probably small. Studies with larger 

particle sizes at higher temperatures with continuous phases of both 

non-absorbing and absorbing gases, such as water vapor, carbon dioxide, 

and the Freons will aid in interpreting the radiative contribution to 

effective thermal conductivity. Radiation is a function of shape but 

not of length of path. Therefore, when heat transfer by radiation is 

expressed in terms of an equivalent effective conductivity, and length 

of pore is introduced as a variable, particle size with all lts subtle 

meanings and implications becomes important. As mentioned several 

times previously, the effective conductivity ascribed to radiation may 

vary by factors of 2 or 3 siraply because of the technique used to 

measure "particle size". In addition, from the results of a size 

measurement, numerous "particle sizes" are possible«—the median, the 

mean, the mode, as well as countless "average" particle sizes. Thus, 

experimentation is probably the only guide as to how to measure and use 

particle size in the correct relation to pore length. Effective thermal 

conductivities of powders with mean particle sizes of several thousand 

microns should be determined at low pressures (several atmospheres to 

subatmospheric) and at temperatures of several thousands of degrees 

Fahrenheit. The radiation contribution to heat transfer for such 

powders should be large enough so that parametric studies of the radia­

tion term in Equation 77 should lead to a better understanding of the 

role played by radiation in the overall heat transfer through powders. 
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APPENDIX I 

COMPARISON OF EXACT AND SIMPLIFIED SOLUTIONS TO THE HEAT FLOW EQUATION 

Comparison under Certaln LimitIng Condltions 

Austin (l) has given an interesting treatment to the relationship 

between an exact and a simplified Solution to the heat flow equation. 

From a consideration of his data on alumina and silica tricks, as well 

as most of the data available to him (year 1939) on refractory solids, 

he concluded that Russell's simplified Solution and Maxwell's exact 

Solution of the heat flow equation yield essentially the same results 

for any specific System. 

He also pointed out that if k /k is small Maxwell's equation 

reduces to 

(82) 

and Russell's equation (a special case of Equation 77) reduces to 

/ v 2 / 3 \ ke • kc hm— • (83) 

» d d ' 

2/3 r 12/3 

Expressing V, ' as 1 - (l - V,)J , expanding the binominal, and 

assuming that the first two terms of the expansion are a reasonably 

good approximation of the series, Austin showed that Equation 02 is 

equivalent to Equation 83. 

It may easily be shown that for large k /k , Russell's equation 

reduces to 
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1 - V 2/3 

d ke = k c — m — i - «*> 1 1 - v. 'D + V,, 
d d' 

2/3 r 12/3 

Expressing V, as 1 - (l - V,) , expanding the binominal, and, fol-

lowing Austin's lead, assuraing that the first two terms of the expansion 

are a reasonably good approximation of the series, one sees that Equation 

Qk is equivalent to 

k = k ' - ' . 
e c ll + 0.5 V /' (85) 

Equation 85 follows from Maxwell's exact Solution under the as-

sumption of large k /k , as Austin has shown. 

An objection to Austin!s comparison of Equations 82 and 83 and the 

present comparison of Equations 8^ and 85 is that the approximation made 

by taking the first two terms in the expansion is good only in the ränge 

where V, equals about 0.5 or greater. For example, taking V, = 0.2 it 

2/3 
is found that V, = 0.3^ and the value of the first two terms in the 

d 

binominal expansion is O.Vf. Whereas, taking V, = 0.5, it is found 

2/3 
that V ' =0.63 and the first two terms in the expansion equal O.67. 

On the other hand, in the ränge where V, equal about 0.5, the System 

is no longer composed of non-interacting particles so that Maxwell's 

assumptions are violated, and his equation may not be applicable. 

Another objection to these comparisons is that Maxwell's equation is 

based on dispersed spheres, while Russell's equation is based on dis-

persed cübes. Therefore, unless the shape factor can conclusively be 

shown to be of no consequence, either in fact, or in the derivation of 

the equations, the comparisons are suspect. There is considerable 



evidence suggesting the importance of the shape factor, so the derlvations 

nrust he examined for implied shape restrictions which are not actually 

required for the Solutions of the equations. In fact, as has been stated 

earlier Russell*s equation can be obtained from Equation 77 (Chapter IX) 

without assuming the particles are cubes. The only requirement is that 

the shape factor a be equal to unity—a requirement that is not neces-

sarily true for random cubes. 

Notwithstanding these criticisms, it is significant that under 

certain conditions an equation based on an exact Solution and an equation 

based on a simplified Solution can be shown to be equivalent. 

Comparison Using Empirical Shape Factor in Terms of Sphericity 

Hamilton and Crosser (88) found that their measured effective 

thermal conductivities could be correlated using Maxwell's equation 

in the form 

k = k 
e c 

(86) 

Sphericity \|r is defined as the ratio of the surface area of a sphere 

having a volume equal to that of the particle, to the surface area of 

the particle itself. They studied Systems of aluminum spheres, cylinders, 

or parallelepipeds and balsa wood disks or cubes dispersed in rubber. 

Values of V ranged from 0.1^ to 0.275. 

p 
Equation 77 with a expressed (quite arbitrarily) as 3 t cor-

relates the data of Hamilton and Crosser as well as their modification 

of Maxwell's equation above. The purpose of this comparison is not to 

encourage empiricism but to emphasize the importance of shape factor. 



ik-T 

An additional purpose is to show that even for eraulsions or dispersions 

Equation 77 can be made to give essentially the same results as Maxwell's 

equation in its various forms. 
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APPENDIX II 

ADDITIONAL DIAGRAMS AND PHOTOGRAPHS OF EXPERIMENTÄL APPARATUS 
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Fig. 1+7. Schematic Diagram of Principal Components Used to Measure 
Thermal Conductivity. 
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PHOTO 58609R 
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vn 
O 

Fig. kB. Power Supplies, Furnace Controllers, and Recording Potentiometers 
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UNCLASSIFIED 
PHOTO 60567R 

1. Ice bath selector switch. 

2. Thermocouple selector Switches. 

3. Central heater voltage tap 
selector switch. 

4. Central heater current-vol tage 
selector switch. 

Fig. 50. Temperature and Power Measuring Equipment. 



APPENDIX III 

SUPPLEMENTARY INFORMATION FOR CHARACTERIZATION OF MATERIAL 
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Table 6. Screen Analyses of Magnesia Powders 

Mesh Size 
Screen 
Opening 
(microns) 

Weight Per 
on 

Cent Retained 
Screen 

(U.S. Standard) 

Screen 
Opening 
(microns) MgO (E-98) MgO (E-227) 

25 707 0 

30 595 0 0.13 

35 500 0.09 0.15 

40 420 0.20 4.64 

45 354 4.23 20.70 

50 297 12.04 12.92 

60 250 13.25 11.05 

70 210 14.9^ 7.95 

80 177 9.30 7.09 

100 1̂ 9 7.77 7.38 

120 125 7.23 4.67 

140 105 6.91 5.27 

170 88 5.38 4.03 

200 7^ 3.93 3.V? 

230 63 3.79 2.85 

270 53 2.66 1.92 

325 44 4.07 2.23 

400 37 1.71 1.48 

Pan — 2.50 2.09 

Q 

Analyses made using 250 gram samples, 8-inch dlameter Standard füll 
height sieves, and Fisher-Wheeler Sieve Shaker at 900 revolutions 
per minute for 20 minutes. 

Average of four separate determinations—normalized. 
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a 
Table 7» Screen Analyses of Alumina Powders 

Mesh Size 
Screen 
Opening 
(mlcrons) 

Welght Per Cent Retained 
on Screen" 

(U.S. Standard) 

Screen 
Opening 
(mlcrons) A1203 (E-9Ö) A1203 (B45F) 

35 500 0 

4o 420 0.12 0 

^ 354 2.99 0.51 

50 297 9.20 0.44 

60 250 13.26 4.38 

70 210 12.98 88.50 

80 177 11.40 5.65 

100 149 8.77 

120 125 5.42 

i4o 105 6.51 

170 88 5.90 

200 74 5.3^ 

230 63 h.97 
270 53 3.19 

325 44 5.26 

4oo 37 1.70 

Pan — 2.99 O.52 

Analyses made using 250 gram samples of AlgOo (E-98) and 100 gram 
samples of Al20o (B45F), 8-incii diameter Standard füll height 
sieves, and Fisher-Wheeler Sieve Shaker at 900 revolutlons per 
minute for 20 minutes. 

y. 

Average of three separate determinations for Al20o (E-98) and of 
two separate determinations for Alp0 (B45F)—normalized. 
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n a-

Table o. Screen Analyses of Zirconia Powders 

Screen Weight Per Cent Retained 
Mesh Size Opening 

(microns) 
on Screen13 

(U.S. Standard) 
Opening 
(microns) Zr02 (H30F) ZrO (HUF) 

7 2830 0 

8 238O 0.43 

10 2000 2.42 

12 1680 3.59 

l4 l4l0 4.40 

16 1190 5.19 

18 1000 4.66 

20 841 4.18 

25 707 5.01 

30 595 0 4.64 

35 500 6.52 5.27 

4o 420 11.24 5.73 

45 354 9.88 5.29 

50 297 7.73 4.20 

60 250 7.56 4.22 

70 210 7.98 4.24 

80 177 8.07 4.30 

100 lk-9 9.28 5.83 

120 125 6.33 3.43 

140 105 5.07 3.63 

170 88 5.69 1.94 

200 74 4.44 2.50 

230 63 2.92 2.04 

270 53 I.89 1.49 

325 44 4.09 5.29 

400 37 1.26 ^.66 

Pan ---- 0.12 0.42 

Analyses made using 250 gram samples, 8-inch diameter Standard füll 
height sieves, and Fisher-Wheeler Sieve Shaker at 900 revolutions 
per minute for 20 minutes. 

Average of four separate determinations—normalized. 



Tat>le 9» Sedimentation Analyses of Magnesia, Alumina, and 
Zirconia Powders 

Powder 

MgO (E-9ö) 

MgO (E-227) 

A1203 (E-96) 

A1203 (B^5F) 

Zr02 (H30F) 

Zr02 (Hl4F) 

Apparent 
Stokes' 
Diameter 
(microns) 

~91 
137 
168 
206 
237 
375 

68, 
96. 
136 
190 
329 
465 

80 

139 
196 
253 
310 

179 
196 
219 
253 
310 

178 
244 
343 
397 
492 

114 
198 
343 
532 
914 
1075 
1391 
1870 

Weight 
Per Cent 
Less Than 
Indicated 
Size 

TFZ 
20.9 
28.6 
47.4 
61.5 
85.9 

4.3 
10.0 
19.2 
45.0 
77.0 
98.5 

21.7 
47.8 
62.0 
78.4 
91.4 

14.0 
33.0 
56.I 
78.3 
91.3 

15.8 
31.7 
52 
62 

5 
2 

82.9 

4 
16 
22 
37 
52 
67.7 
77.8 
89.6 



Table 10. Particle-Size Distribution of MgO (E-98) Povder 
by Microscopy 

Number of 
Particles Less 
Than Indicated 

Size (microns) Size 

21 60 

k2 167 

63 232 

Qk 293 

105 332 
126 359 
1̂ 7 380 
168 397 
189 409 
210 klß 

231 2̂3 
252 teö 
273 k$2 

29h 3̂5 

315 k3Q 

336 khl 

lj-20 kkS 

525 5̂3 
63O 5̂7 
92^ 6̂0 
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APPENDIX IV 

EVALUATION OF k FROM EXPERIMENTAL DATA e 

Sample Calculatlon Using Steady-State Data 

As a specific example of the calculations to evaluate k from 

steady-state data, consider a magnesia powder—MgO (E-9Ö)—in air at 

atmospheric pressure and having a volume fraction solid of O.58. The 

data for this System are given in Appendix IV (Table 12). The ex-

pression to "be used to calculate k is derived from averages of values 

for k . m 

k is given by 
m 

* • 3TL (tl - tg) ln 57 ' ^ 

In particular, consider the data indicated on page 172. For the first 

pair of thermocouples listed, R = 2.144 centimeters, t = 848.0 F, 

R = 4.142 centimeters, and t = 815.5^. The current in the heater 

was 2.7304 amperes. The voltage drop across the portion of the heater 

in the test zone (L = 0.25 foot) was 3.1035 volts. 

Substituting the above values into the expression for k (Equa-

tion 34) 

gives 

k = (2.7304) (3.1035) (3.^122) , ^.lte 
m (2)(3.1416)(0.25)(848.0-815.5) 2'lkk ' 

where 3*^122 is the conversion factor from absolute watts to Btu per 

hours. thus 
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k = 0.3731 Btu/hr«ft .°F , 

a t 

. 8W.0 + 8 1 ^ = 8 8 o F 
avg 2 

Similar calculations give values of k and t for the other five 
m avg 

pairs of thermocouples in the test zone. The effective thermal con-

ductivity, k , at temperature, t, is obtained "by averaging the six k 's 

evaluated as illustrated above. That is, 

, 0.3731 + 0.4068 + O.3510 + 0.3960 + 0.38*0. + O.3626 
e ~ 5 

k = 0.379 Btu/hr-ft.°F, 

at 

831.8 + 835.3 + 833.7 + 831.2 + 836.9 + 836.4 
6 

t = 834.5°F . 

The values of k at t obtained in this manner are tabulated for 
e 

this System, and all the other Systems studied, in Table 11. It is 

these values of k and t which were fitted by least Squares to poly-

nomials (Chapt er VT). 

Sample Calculation Using Unsteady-State Data 

As a specific example of the calculations to evaluate k from 

unsteady-State data, consider a magnesia povder—MgO (E-98)—in air at 

atmospheric pressure having a volume fraction solid of O.58 and being 

at a temperature t = 8^3-5 F. The expression to be used to calculate 

k is 
e 



ke - WL (tl - V ln \ • (38) 

At some time, taken as zero time, power is supplied to the central 

heater (stainless steel tube) and the temperature of the heater is re-

corded as a function of time. If temperature rise of the heater, At = 

t-t , is plotted versus time the curve shown in Figure $k is ohtained. 

From the early linear portion of the curve, at 6 = 10 seconds, (At) 

= 6k.2°F and at 6Q = 100 seconds, (At) = 153.2°F. The average current 

in the heater during the first minute was 21.007 amperes and the average 

voltage drop "between potential taps (L = 2 inches) was O.V315I volt. 

Substituting the aoove values into the expression for k under 

these conditions (Equation 38) 

gives 

k = (21*007) (0.^3151) (3^122) 100 
e ~ if (3.1^16) (|̂ ) (153.2-6^.2) 1 0 

or 

k = O.382 Btu/hr-ft-^. 

This is the manner in which all the unsteady-State values of 

k reported in Table k were calculated. 

As a specific example of the magnitude of the £ term in Equation 

36 (or Equation 39)> consider again the data presented in Figure 5^ 

for the MgO (E-98) powder in air at atmospheric pressure having a volume 

fraction solid of O.58 at a temperature t = 8^3.5°F. Applying Equa­

tion 36 
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Fig. $k. Log (Time)-Temperature Plot Used to Determine k by Unsteady-State Method. 



t = skln kje 
+ i 

R_ 
\T0 

(36) 

at temperatures 0n and 02
 and- subtracting the results at 0 from the 

results at 0 gives 

0. 
At = T£I£ ln 0f + 6 

R ^ h 
T e. (87) 

'2 vl 

The radius of the "probe" heater is l/l6 inch and, as before, 

the average current in the heater during the first minute was 21.007 

anrperes and the average voltage drop between potential taps (L = 2 inches) 

was OA315I volt. Taking k£ of the powder as O.382 Btu/hr-ft-°F and T 

as 0.0l8 ft /hr at 8^3.5 F and substituting these values plus the above 

values into Equation 87 at 20 and k-0 seconds gives 

e xi,)' 
A t (21.007)(0.^315) (3 Al22) UO K1E 12 

M3.l4l6)(|i)(0.382) "«> ~ ^ T 

3600 3600 
~Tö~ ' 20 

At = 26.78°F - 0.1^OF. 

The approximations which must be raade in applying the unsteady-state 

method more than overshadow the error introduced by neglect of the £ 

term above. Therefore, the neglect of this term in the calculations 

is completely justified. 



Table 11. Values of t, k , and Corresponding Least-Squares Equations 
w 

Povder 
t ke 

Vd (°F) (Btu/hr-ft-^) 

MgO (E-98) O.58 229.6 0.242 
291.0 0.248 
459.4 0.305 
630.3 O.328 
811.8 O.363 
834.5 0.379 
835.3 0.373 
835.9 O.38I 
994.6 0.400 
1016.8 0.402 
1017.7 0.390 
1190.6 0.427 
1193.1 0.420 
1370.5 0.446 
1371.2 0.446 
1514.7 0.467 
1517.1 0.464 

k = O.1788 + 0.2844 x 10"3 t - 0.6444 x 10~7 t2. 
e 

t ke 
Powder Vd (°F) (Btu/hr«ft* F) 

MgO (E-98) 0.61 209.7 0.286 
300.2 0.311 
449.8 0.364 
624.5 0.396 
795.0 0.443 
976.3 0.481 
1152.6 0.505 
1334.6 0.511 
1515.6 0.547 

ke = 0.2139 + 0.3634 x 10"
3 t - O.9763 x 10"7 t 2 
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Table 11. Values of t, k , and Corresponding Least-Squares Equations 
e (Continued) 

t ke 
Powder Vd (°P) (Btu/hr-ft-F) 

MgO (E-98) 0.64 205.4 O.387 
322.6 0.408 
562.2 0.498 
660.6 0.53^ 
823.4 0.578 
828.8 O.587 
IOO5.3 0.615 
II85.7 0.642 
1361.7 0.674 
1543.3 0.673 

k = 0.2840 + 0.4709 x 10~3 t - I.396 x 10"7 t2. 

t ke 0 
Powder Vd (°F) (Btu/hr«ff F) 

MgO (E-98) O.65 209.3 0.4l6 
441.2 0.514 
616.6 0.576 
789.7 0.628 
977.6 O.669 
1151.0 0.681 
1508.5 0.736 

k = 0.3205 + 0.5032 x 10"3 t - 1.534 x 10"7 t2. 
e 

t ke 
Powder Vd (°F) (Btu/hr«ff F) 

MgO (E-227) 0.6l 210.2 0.278 
319.4 0.309 
488.4 O.36O 
667.7 0.404 
794.0 0.433 
839.6 O.438 
977.0 0.475 
977.5 O.456 



Table 11. Values of t, k , and Corresponding Least-Squares Equations 
(Contlnued) 

Powder (°F) (Btu/hr.ft.°F) 

MgO (E-227) 
Contlnued 

0.61 1150 
1150 
1148 
1331 
1333.7 
1425.9 
1435-5 
1510.9 
1511.0 

0.493 
O.500 
0.483 
0.502 
0.521 
O.526 
0.512 
0.545 
0.530 

k = 0.2089 + 0.3507 x 10"3 t - 0.9097 x 10"7 t2. 

Powder (°P) (Btu/hr«ff°F) 

A1203 (E-98) O.58 220.9 0.238 
300.2 0.250 
471.4 0.298 
616.6 0.327 
802.3 0.356 
982.8 0.383 

1154.8 0.409 
1344.8 0.422 
1526.0 0.436 

k = 0.1740 + 0.2942 x 10"3 t - 0.8070 x 10~7 t2. 

Powder 
t k 

C*) (Btu/hT*tt'°F) 

237.2 0.181 
306.3 0.195 
449.1 0.226 
573.4 0.238 
711.6 O.263 
805.5 0.276 
978.6 0.300 

A1203 (B45F) 0.49 
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Table 11. Values of t, k f and Corresponding Least-Squares Equations 
(Continued) 

Powder (°F) 
e , o 

(Btu/hr-ft* F) 
A1203 (B45F) 

Continued 

0.49 1160.5 
1325-4 
1553.8 

0.311 
0.319 
0.350 

= 0.1355 + 0.2129 x 10"3 t - O.5083 x 10"7 t 2 . 

Powder 
t ke 
(°F) (Bbu/hr-ff F) 

190.4 0.124 
472.1 0.168 
663.8 O.189 
840.1 0.205 
1061.7 0.224 
1139.4 0.233 
1200.2 0.239 
1378.5 0.253 
1533.5 0.259 

Zr02 (H30F) O.58 

k = O.O96O + 0.1622 x 10"3 t - O.363O x 10*"^ t 2. 

Powder 
t ke 
(°F) (Btu/hr«ft»°F) 

227.6 0.166 
312.8 0.178 
672.0 0.231 
846.9 0.252 
1022.6 0.272 
1197.7 0.286 
1382.8 0.302 
1567.0 0.321 

Zr02 (H30F) 0.64 

k = 0.1283 + 0.1728 x 10"3 t - 0.3274 x 10"7 t 2 . 



Table 11. Values of t, k , and Corresponding Least-Squares Equations 
(Continued) 

t k e 
Powder Vd (°P) ( B t u / h r - r t « 0 ? ) 

Zr0 2 (HlkF) 0.70 226.6 0.218 Zr0 2 (HlkF) 
300 .1 0.225 
65k.6 0.293 
037.^ 0.322 

1009.1 0.3^3 
118^.3 0.370 
137LO 0.390 
1552.2 0.1+11 

k = 0.1692 + 0.2102 x 10"3 t - 0.3530 x 10"7 t2 
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Table 12. Values of k^ Calculated from Different Thermocouple Palrs for 

Powder at V = O.58. MgO (E-98) 

m 
B t u \ 

h r - f t . ° F J 

t avg 

( ° F ) 
* 1 

( ° F ) 

t 

( °F ) 

A t 

( ° F ) 

R 2 
(cm. ) 

R l 
(cm.) 

y 
( i n . ) 

L 

( f t . ) 
AMPS VOLTS 

0 . 3 9 7 2 1 0 1 5 . C 1 0 3 2 . 7 9 9 7 . 2 3 5 . 5 4 . 142 2 . 144 1 4 . 0 0 . 2 5 0 0 2 . 8 3 5 8 3 . 4 7 8 5 
0 . 4 3 36 1 0 1 8 . 4 1 G 3 5 . 6 1001 . 1 3 4 . 5 (4 .248 2 . 1 1 4 1 3 . 2 0 . 2 5 0 0 2 . 8 3 5 8 3 . 4 7 8 5 
0 . 3 7 6 4 I G I 8 . C 1 0 3 7 . 5 9 9 8 . 4 3 9 . 1 U . 2 8 8 2 . 149 1 2 . 5 0 . 2 5 0 0 2 . 8 3 5 8 3 . 4 7 8 5 
0 . 4 1 08 1 0 1 2 . 3 1 0 2 9 . 9 9 9 4 . 7 3 5 . 1 4 . I A2 2 . 122 1 2 . 5 0 . 2 500 2 . 8 3 5 8 3 . 4 7 8 5 
0 . 4 100 10 1 8 . 9 1 0 3 6 . 9 1 0 0 0 . 9 3 6 . 0 U . 2 6 5 2 . 142 1 1 .7 0 . 2 5 0 0 2 . 8 3 5 8 3 . 4 7 8 5 
0 . 3 8 4 7 1 0 1 7 . 9 IG36 . . 4 9 9 9 . 5 3 6 . 9 U .2Ü0 2 . 166 1 1 . 0 0 . 2 5 0 0 2 . 8 3 5 0 3 . 4 7 8 5 

0 . 3 6 6 8 8 3 5 . j 8 5 2 . 3 8 1 7 . 7 3 4 . 6 4 . 1 42 2 . 144 1 4 . 0 0 . 2 5 0 0 2 . 8 6 3 2 3 . 1043 
0 . 3 9 5 3 8 3 6 . 8 8 5 3 . 9 B I 9 . 8 3 4 . 1 4 . 2 4 8 2 . 1 1 4 1 3 . 2 0 . 2 5 0 0 2 . 8 6 3 2 3 . 1043 
0 . 3 4 8 6 8 3 5 . 9 8 5 5 . 0 8 1 6 . 7 3 8 . 2 4 . 2 8 8 2 . 149 1 2 . 5 0 . 2 5 0 0 2 . 8 6 3 2 3 . I D 4 3 
0 . 3 9 5 3 831 . 9 8 4 8 . 4 8 1 5 . 5 3 2 . 9 h. 162 2 . 122 1 2 . 5 0 . 2 5 0 0 2 . 8 6 3 2 3 . 1043 
0 . 3 7 2 1 8 3 6 . 7 8 5 4 . 6 8 1 8 . 9 3 5 . 7 4 . 2 6 5 2 . 142 1 1 . 7 ü . 2 5 0 0 2 . 8 6 3 2 3 . 1043 
0 . 3 6 1 9 B 3 5 . 6 8 5 3 . 3 8 1 8 . 0 3 5 . 3 »4.2DÜ 2 . 166 1 1 .0 0 . 2 5 0 0 2 . 8 6 3 2 3 . 104 3 

0 . 3 7 4 7 8 3 4 . 2 8 5 0 . 8 8 1 7 . 7 3 3 . 2 14.142 2 . 14*4 1 4 . 0 0 . 2 5 0 0 2 . 8 0 4 2 3 . 0 9 9 2 
0 . 4 0 9 0 8 3 7 . 3 8 5 3 . 4 821 . 2 3 2 . 2 4 . 2 4 8 2 . 1 1 4 1 3 . 2 0 . 2 5 0 0 2 . 8 0 4 2 3 . 0 9 9 2 
0 . 3 5 39 8 3 6 . 7 8 5 5 . 1 8 1 8 . 3 3 6 . 8 14.288 2 . 149 1 2 . 5 0 . 2 5 0 Ü 2 . 8 0 4 2 3 . 0 9 9 2 
0 . 3 9 7 1 8 3 2 . 4 8 4 8 . 4 8 1 6 . 4 3 2 . 0 4 . 162 2 . 122 1 2 . 5 0 . 2 500 2 . 8 0 4 2 3 . 0 9 9 2 
0 . 3 8 8 3 8 3 7 . 6 8 5 4 . 4 8 2 0 . 9 3 3 . 5 4 . 2 6 5 2 . 142 1 1 . 7 0 . 2 5 0 0 2 . 8 0 4 2 3 . 0 9 9 2 
0 . 3 6 4 3 8 3 7 . 0 8 5 4 . 1 8 1 9 . 8 3 4 . 3 4 . 2 0 0 2 . 166 1 1 .0 0 . 2 5 0 0 2 . 8 0 4 2 3 * 0 9 9 2 

DATA USED IN ILLUSTRATIVE EXAMPLE — 
0 . 3 7 3 1 831 . 8 8 4 8 . 0 8 1 5 . 5 3 2 . 5 4 . 1 42 2 . 144 ( 4 . 0 0 . 2 5 0 0 2 . 7 3 0 4 3 . 1 0 35 
0 . 4 0 6 8 8 3 5 . 3 8 5 1 . 0 8 1 9 . 5 31 . 6 4 . 2 4 8 2 . 1 1 4 1 3 . 2 0 . 2 5 C 0 2 . 7 3 0 4 3 . 1 0 3 5 
0 . 3 5 1 0 8 3 5 . 7 8 5 3 . 8 8 1 7 . 6 3 6 . 2 4 . 2 8 8 2 . 149 1 2 . 5 0 . 2 500 2 . 7 3 0 4 3 . 1035 
C . 3 9 6 D 831 . 2 8 4 6 . 8 B I 5 . 5 3 1 . 3 4 . 1 62 2 . 1 2 2 1 2 . 5 0 . 2 5 0 0 2 . 7 3 0 4 3 . 1 0 35 
0 . 3 8 4 1 8 3 6 . 9 8 5 3 . 4 8 2 0 . 4 3 3 . 0 U . 2 6 5 2 . »42 1 1.7 0 . 2 5 0 0 2 . 7 3 0 4 3 . » 0 3 5 
C . 3 6 2 6 8 3 6 . 4 8 5 3 . 2 8 F 9 . 6 3 3 . 6 4 . ZOO 2 . 166 1 1 . 0 0 . 2 5 0 0 2 . 7 3 0 4 3 . 1035 

C . 2 5 8 6 2 2 8 . 6 2 4 2 . 6 2 1 4 . 5 2 8 . 2 4 . 198 2 . 1 3 4 1 4 . 0 0 . 2 5 Ü O 2 . 5 4 8 8 1 . 9 4 5 2 
0 . 2 3 6 9 2 2 9 . 3 2 4 4 . 8 2 1 3 . 8 3 1 . 1 (4 .222 2 . 130 1 3 . 2 0 . 2 5 0 0 2 . 5 4 8 8 1 . 9 4 5 2 
0 . 2 3 5 8 231 . 5 2 4 7 . 2 2 1 5 . 8 3 1 . 3 4 . 2 4 8 2 . 139 1 2 . 5 0 . 2 5 0 0 2 . 5 4 8 B 1 . 9 4 5 2 
0 . 2 4 6 2 2 2 8 . 8 2 4 2 . 8 2 1 4 . 9 2 7 . 9 4 . 2 3 8 2 . 2 3 8 1 2 . 5 0 . 2 5 0 0 2 . 5 4 8 8 1 . 9 4 5 2 
0 . 2 1 2 7 2 3 2 . 0 2 4 9 . 3 2 1 4 . 7 3 4 . 6 4 . 3 0 5 2 . 175 1 1 .7 0 . 2 5 0 0 2 . 5 4 8 8 1 . 9 4 5 2 
0 . 2 5 9 1 2 2 7 . 2 2 4 1 . 2 2 1 3 . 2 2 8 . G 4 . 3 1 0 2 . 196 1 1 . 0 0 . 2 5 0 0 2 . 5 4 8 8 1.9.4 52 

0 . 3 8 2 7 1 0 1 6 . 9 1 0 3 5 . 3 9 9 8 . 6 3 6 . 7 4 . 142 2 . 144 1 4 . 0 0 . 2 5 0 0 2 . 8 2 8 6 3 . 4 7 3 1 
0 . 4 2 2 3 10 1 9 . 5 10 3 7 . 1 1001 . 9 3 5 . 2 4 . 2 4 8 2 . 1 1 4 1 3 . 2 0 . 2 5 0 0 2 . 8 2 8 6 3 . 4 7 3 1 
0 . 3 6 6 3 1 0 1 8 . 8 1 0 3 8 . 9 9 9 8 . 7 4 0 . 2 4 . 2 8 8 2 . 149 1 2 . 5 0 . 2 5 0 0 2 . 8 2 8 6 3 . 4 7 31 
0 . 3 9 8 6 101 3 . 2 10 3 1 .3 9 9 5 . 2 3 6 . 0 4 . 1 62 2 . 122 1 2 . 5 0 . 2 5 C G 2 . 8 2 8 6 3 . 4 7 3 1 
C . 3 9 5 8 1 0 1 9 . 4 10 3 8 . 0 1 0 0 0 . 8 3 7 . 1 4 . 2 6 5 2 . 142 1 1 . 7 0 . 2 5 0 0 2 . 8 2 8 6 3 . 4 7 3 1 
0 . 3 7 3 3 1 0 1 8 . 5 1 G 3 7 . 4 9 9 9 . 6 3 7 . 8 4 . 2 0 Ü 2 . 166 1 1 .0 0 . 2 5 0 0 2 . 8 2 8 6 3 . 4 7 3 1 
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Table 12. Values of 1^ Calculated from Different Thermocouple Pairs for 
Powder at V = O.ßö. MgO (E-98) 

(Continued) 

k m t t t n At R o R L 

( f t . ) 
Btu ^ 

h r - f t - V 
avg 

(°F) (°F) 
2 

( F) (°F) 
2 

(cm. ) 
1 

(cm. ) 
y 

( i n . ) 

L 

( f t . ) AMPS VOLTS 

0 . 4 5 4 5 1 5 1 6 . 2 1 5 3 1 . 5 501 . 0 3 0 . 5 4 . 142 2 . 44 1 4 . 0 0 . 2 5 0 0 2 . 4 9 4 2 3 * 8 8 6 1 
G. 6 1 3 1 1521 . 1 15 3 5 . 4 5 0 6 . 8 2 8 . 6 4 . 2 4 8 2 . 1 4 1 3 . 2 0 . 2 5 0 0 2 . 4 9 4 2 3 . 8 8 6 1 
0 . 4 7 3 3 1 5 2 G . 9 1 5 3 6 . 2 5 0 5 . 5 3 0 . 7 4 . 2 8 8 2 . 49 1 2 . 5 0 . 2 5 0 0 2 . 4 9 4 2 3 . 8 8 6 1 
0 . 4 1 3 4 1 5 0 9 . 3 1 5 2 6 . 4 4 9 2 . 2 3 4 . 1 4 . 162 2 . 22 1 2 . 5 0 . 2 5 0 0 2 . 4 9 4 2 3 . 8 8 6 1 
0 . 4 8 9 1 1 5 1 9 . 5 15 3 4 . 3 5 0 4 . 6 2 9 . 6 4 . 2 6 5 2 . 42 1 1 . 7 0 . 2 5 0 0 2 . 4 9 4 2 3 - 8 8 6 1 
0 . 4 3 7 8 1 5 1 5 . 6 1 5 3 1 . 5 4 9 9 . 7 3 1 . 8 4 . 2 0 0 2 . 66 1 1 . 0 0 . 2 5 0 0 2 . 4 9 4 2 3 . 8 8 6 1 

G . 4 6 1 1 1 5 1 3 . 8 1 5 2 9 . 0 4 9 8 . 7 3 0 . 3 4 . 142 2 . 44 1 4 . C G.?5CC 2 . 5 1 0 4 3 . 8 9 0 1 
C . 5 2 4 1 1 5 1 8 . 7 1 5 3 2 . 8 5 0 4 . 6 2 8 . 2 4 . 2 4 8 2 . 14 1 3 . 2 0 . 2 5 0 0 2 . 5 1 0 4 3 . 8 9 0 1 
C . 4 7 R 2 1 5 1 8 . 4 15 3 3 . 7 5 0 3 . 1 3 0 . 6 4 . 2 8 8 2 . 49 1 2 . 5 0 . 2 5 0 0 2 . 5 1 0 4 3 . 8 9 0 1 
0 . 4 1 3 "5 1 5 0 6 . 9 1 5 2 4 . 2 4 8 9 . 6 3 4 . 6 4 . 1 62 2 . 22 1 2 . 5 0 . 2 5 C C 2 . 5 1 0 4 3 . 8 9 C I 
C . 4 9 0 I 1 5 1 6 . 9 153 1 . 8 5 0 2 . 0 2 9 . 0 4 . 2 6 5 2 . 42 1 1 . 7 0 . 2 5 0 0 2 . 5 1 0 4 3 . 8 9 0 1 
0 . 4 3 5 2 1 5 1 3 . 5 1 5 2 9 . 6 4 9 7 . 4 3 2 . 3 4 . 2 0 C 2 . 66 1 1 .0 0 . 2 5 0 0 2 . 5 1 0 4 3 . 8 9 0 1 

£ . 4 1 * 2 8 1 3 7 2 . 7 1 3 8 9 . 7 3 5 5 . 7 3 4 . 1 U . 1 42 2 . 44 1 4 . 0 Ü . 2 5 0 Ü 2 . 7 0 6 8 3 . 8 9 8 7 
0 . 4 9 0 8 1 3 7 5 . 5 1 3 9 1 . 8 3 5 9 . 2 3 2 . 6 4 . 2 4 8 2 . 1 4 1 3 . 2 0 . 2 5 0 0 2 . 7 0 6 8 3 . 8 9 8 7 
0 . 4 4 5 5 1 3 7 4 . 4 1 3 9 2 . 2 3 5 6 . 7 3 5 . 5 4 . 2 8 8 2 . 49 1 2 . 5 0 . 2 5 0 0 2 . 7 0 6 8 3 . 8 9 8 7 
C . 4 I 73 1 364.1+ 1 3 8 2 . 9 3 4 5 . 9 3 7 . 0 4 . 1 62 2 . 22 1 2 . 5 0 . 2 5 0 0 2 . 7 0 6 8 3 . 8 9 8 7 
0 . 4 6 3 8 1 3 7 2 . 3 1 3 8 9 . 3 3 5 5 . 3 3 4 . C 4 . 2 6 5 2 . 4 2 1 1 . 7 0 . 2 5 0 0 2 . 7 0 6 8 3 . 8 9 8 7 
0 . 4 1 3 7 3 6 8 . 0 1 3 8 6 . 3 3 4 9 . 6 3 6 . 7 4 . 2 0 0 2 . 6 6 1 1 . 0 0 . 2 5 0 0 2 . 7 0 6 8 3 . 8 9 8 7 

0 . 4 4 3 1 3 7 3 . 3 1 3 9 0 . 4 3 5 6 . 2 3 4 . 2 4 . 142 2 . 44 1 4 . 0 C . 2 5 0 Q 2 . 7 1 0 8 3 - 9 0 7 0 
0 . 4 9 0 7 3 7 5 . 5 1 3 9 1 . 9 3 5 9 . 2 3 2 . 7 4 . 2 4 8 2 . 14 1 3 . 2 0 . 2 5 0 0 2 . 7 1 0 8 3 . 9 0 70 
C . 4 4 7 3 3 7 3 . 9 1 39 1 . 6 356 . 1 3 5 . 5 4 . 2 8 8 2 . 49 1 2 . 5 ü . 2 5 0 0 2 . 7 1 Q 8 3 . 9 D 7 G 
0 . 4 1 8 3 3 6 3 . 6 1 3 8 2 . 1 3 4 5 . 1 3 7 . 0 4 . 162 2 . 22 1 2 . 5 0 . 2 5 0 0 2 . 7 1 0 8 3 . 9 0 7 0 
0 . 4 5 9 9 3 7 0 . 9 1 3 8 8 . 1 3 5 3 . 6 3 4 . 4 4 . 2 6 5 2 . 42 1 1 . 7 0 . 2 5 0 0 2 . 7 1 0 8 3 . 9 0 70 
0 . 4 162 3 6 5 . 7 1 3 8 4 . 0 3 4 7 . 4 3 6 . 6 4 . 2 0 G 2 . 66 1 1 . 0 0 . 2 5 0 0 2 . 7 1 0 8 3 . 9 0 7 0 

C . 4 I 2 9 1 9 0 . 7 1 2 0 6 . 8 1 7 4 . 7 3 2 . 1 4 . 142 2 . 44 1 4 . 0 0 . 2 5 0 0 2 . 6 8 1 4 3 . 4 5 7 0 
0 . 4 5 74 1 9 4 . 7 1 2 1 0 . 1 1 7 9 . 4 3 0 . 7 4 . 2 4 8 2 . 1 4 1 3 . 2 0 . 2 5 0 0 2 . 6 8 1 4 3 . 4 5 70 
0 . 4 1 2 4 1 9 5 . 0 121 1 . 9 1 7 8 . 1 3 3 . 7 4 . 2 8 8 2 . 49 1 2 . 5 0 . 2 5 0 0 2 . 6 8 1 4 3 . 4 5 70 
D . 4 G 4 9 1 8 7 . 6 1 2 0 4 . 3 1 7 0 . 8 3 3 . b 4 . 162 2 . 22 1 2 . 5 0 . 2 5 G U 2 . 6 8 1 4 3 . 4 5 7 0 
G . 4 3 8 4 1 9 5 . 4 121 1 . 2 1 7 9 . 6 31 . 6 4 . 2 6 5 2 . 4 2 1 1 . 7 0 . 2 5 0 0 2 . 6 8 1 4 3 . 4 5 7 0 
0 . 3 9 2 5 1 9 5 . 1 1 2 1 2 . 1 1 7 8 . 1 3 4 . 0 4 . 2 0 0 2 . 66 1 1 . 0 0 . 2 5 0 0 2 . 6 8 1 4 3 . 4 5 70 

0 . 4 2 15 1 9 0 . 5 120 6 . 8 1 7 4 . 2 3 2 . 6 4 . 142 2 . 44 1 4 . 0 0 . 2 5 0 0 2 . 7 7 4 6 3 . 4 6 6 4 
ü . 4 7 3 2 19 3 . 3 I 2 C 8 . 7 1 7 7 . 9 3 0 . 8 4 . 2 4 8 2 . 14 1 3 . 2 0 . 2 5 0 0 2 . 7 7 4 6 3 . 4 6 6 4 
0 . 4 1 6 9 1 9 2 . 9 I 2 I Ü . 2 1 7 5 . 5 3 4 . 6 4 . 2 8 8 2 . 49 1 2 . 5 0 . 2 5 0 0 2 . 7 7 4 6 3 . 4 6 6 4 
C . 4 D 9 7 1 8 5 . 1 120 2 . 2 1 6 7 . 9 3 4 . 3 4 . 162 2 . 22 1 2 . 5 G . 2 5 0 0 2 . 7 7 4 6 3 . 4 6 6 4 
0 . 4 4 15 1 9 2 . 1 1 2 0 8 . 4 1 7 5 . 8 3 2 . 6 4 . 2 6 5 2 . 42 1 1 . 7 0 . 2 5 0 0 2 . 7 7 4 6 3 . 4 6 6 4 

C . 3 9 6 3 1 9 0 . u 120 7 . 4 1 7 2 . 5 3 4 . 9 4 . 2 0 0 2 . 66 1 1 .0 0 . 2 5 0 0 2 . 7 7 4 6 3 . 4 6 6 4 
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Table 12. Values of k Calculated from Different Thermocouple Pairs for 

Powder at Vd = O.58. MgO (E-9Ö) 
(Continued) 

k 
m 
Btu ^ 

tavg *1 *2 
At R2 Rl y L 

hr-ft.°F (°F) (°F) (°F) (°F) (cm.) (cm.) (in.) (ft.) AMPS VOLTS 

0.26 17 290.7 308.6 272.9 35.7 1». 198 2. 134 14.0 D.25G0 2.7762 2.2907 
0.241? 291 .3 310.8 271 .8 39. 1 4.222 2. 130 13.2 0.2500 2.7762 2.2907 
0.2437 293.6 3 13.0 274. 1 38.9 4.248 2. 139 12.5 0.2 500 2.7762 2.2907 
0.2499 290.1 307.8 272.5 35.3 4.238 2.238 12.5 0.2500 2.7762 2.2907 
0.2246 293. 1 3 14.2 272.1 42.2 4.30 5 2. 175 1 1 .7 0.2500 2.7762 2.2907 
0.2689 287.ü 304.3 269.6 34.6 4.310 2. 196 1 1 .0 0.2500 2.7762 2.2907 

0.30 84 458.9 477.5 44D.2 37. 3 4. 198 2. 1 34 14.0 0.2500 2.9692 2.6344 
0.2967 460. 0 479.6 440.4 39.2 Lt.222 2. 130 13.2 D.2500 2.9692 2.6344 
0.3042 462. 1 481.2 442.9 38.3 4.248 2. 139 12.5 0.2 500 2.9692 2.6344 
0.2974 458.3 477.0 440.6 36.5 4.238 2.238 12.5 0.25O0 2.9692 2.6344 
0.2833 461 .4 481 .9 440.9 40.9 4.305 2. 175 11.7 D.250G 2.9692 2.6344 
0.34 10 455.3 472. 1 438.5 33.6 4 . 3 1 G 2. 196 1 1 .0 Ü.2500 2.9692 2.6344 

0.3175 630.3 650.4 610.3 40. 0 4.198 2. 134 14.D 0.2500 2.8512 3.0329 
0.31/2 631 .9 652. 1 611.6 40.5 4.222 2. 130 13.2 0.2 500 2.8512 3.0329 
0.3290 633.2 652.8 6 13.6 39.2 4.248 2. 139 12.5 0.2500 2.8512 3.0329 
0.3121 629.7 648.9 610.5 38.4 4.238 2.238 12.5 0.2500 2.8512 3.0329 
0.3108 631 .6 652.3 61 1 .0 4 1.2 4. 3C 5 2. 175 11.7 ü.2500 2.8512 3.0329 
0.3790 625.3 642.0 608.6 3 3.4 4.310 2. 196 1 1 .G 0.2500 2.8512 3.0329 

0.3522 093.3 1012.9 973.8 39. 1 4.198 2. 134 14.0 0.2500 2.7424 3.4189 
0.3795 996.5 1014.9 97R.2 36.7 4.222 2. 130 13.2 0.2500 2.7424 3.4189 
0.4197 998. 1 1014.7 981 .4 33.3 4.248 2. 139 12.5 0.2500 2.7424 3.4189 
0.3647 994.0 ICI 1 .8 9 76.1 35.6 4.2 38 2.238 12.5 0.2500 2.7424 3.4189 
0.3957 995.8 1013.3 976.2 35. 1 4.305 2. 175 1 1 .7 0.2500 2.7424 3.4189 
0.4856 989.6 1003.8 9 75.5 28.3 4.3IG 2. 196 1 1.0 0.2500 2.7424 3.4189 

0.3345 809.4 827.9 790.8 37. 1 4.1 98 2. 134 1 4.0 0.2500 2.7524 3.0679 
0.3518 812.8 830.7 795.0 35. 7 4.222 2. 130 13.2 0.2500 2.7524 3.0679 
0.3735 814.6 83 1.5 797.8 3 3.7 4.248 2. 139 12.5 0.2500 2.7524 3.0679 
G.3366 811.4 828.8 794.0 34.8 4.238 2.238 12.5 D.2500 2.7524 3,06 79 
C.3498 814.0 83t .8 796.1 35.8 4 . 305 2. 175 1 1 .7 0.2500 2.752 4 3,0679 
0.4323 808.6 822.9 794.3 28.6 4.310 2. 196 1 1 .0 0.2500 2.7524 3.0679 
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