MetaTeD — A Meta Language for Modeling
Telecommunication Networks

Kalyan S. Perumalla and Richard M. Fujimoto
(kalyan@cc.gatech.edu and fujimoto@cc.gatech.edu)
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

Andrew T. Ogielski
(ato@bellcore.com)
Bell Communications Research
MCC-1A360R, 445 South St.
Morristown, NJ 07960

GIT-CC-96-32
December 31, 1996

(Last Updated January 28, 1997)

ABSTRACT

TeD is a language designed mainly for modeling telecommunication networks. The
TeD language specification is separated into two parts — (1) a meta language (2) an
external language. The meta language specification is concerned with the high-level
description of the structural and behavioral interfaces of various network elements.
The external language specification is concerned with the detailed low-level descrip-
tion of the implementation of the structure and behavior of the network elements.
The meta language, called MetaTeD), is described in this document (An external
language specification, with Ct1 as the external language, is described in a separate
related document.).

CONTENTS 1
Contents

1 Introduction 2

2 Background 2

3 A Tutorial 3

3.1 Overview of Concepts e 3

3.2 Entity Declaration L L 5

3.3 Event and Channel Declarations 6

3.4 Architecture Declaration o 7

3.5 External Code Block 8

4 Syntax Reference 9

5 Semantics 11

5.1 Entity e e 11

5.1.1 Inheritance 11

5.1.2 Interface Enhancement 11

5.1.3 Parametrized Structureso Lo 12

5.1.4 Implicit Parameter L o 13

5.1.5 Parameter Lists e 13

5.2 Event e e e e e e 13

5.3 Channel e 14

5.3.1 Inheritance 14

5.3.2 Mapping e 14

5.4 Architecture e 15

5.4.1 Parameters e e e e 16

5.4.2 Deferred Constants 16

5.4.3 State e 17

544 LargeState L 18

5.4.5 Process e e e 18

5.4.6 Process Numbering oo 0oL 19

5.4.7 Component e 20

5.4.8 Instance Naming 21

5.4.9 Function e e e e e 21

5.4.10 Result 21

5.4.11 Temporal Dependencies 22

5.5 File Inclusion e e 22

5.6 Configuration Specification o oo oL 23

6 Interoperability 23

1 INTRODUCTION 2

1 Introduction

TeD is a language designed mainly for modeling telecommunication networks. The TeD
language specification is split into two distinct parts — MetaTeD and “external language.”
MetaTeD defines a set of concepts for modeling the dynamic interactions of entities and
their compositions, in an application-independent manner. MetaTeD is an incomplete lan-
guage — it is more appropriately called a “framework.” When MetaTeD is appropriately
combined with any regular general-purpose programming language, say £, then a complete
language is formed. Such a complete language is called an L-instance or L-flavor of TeD.
For example, see [2] for the description of a C*T-instance of TeD.

In this document, only the MetaTeD concepts are described. Thus, the descriptions
in this document apply to all instances of the TeD language irrespective of the external
language used in the instance.

2 Background

Some of the main objectives in the design of the TeD language are:

e The language should be sufficiently general for modeling current as well as future
telecommunication networks.

e The same language should provide for specification, description as well as simulation
of models (implies simulation-independent description).

e The language should support object-orientation — encapsulation, inheritance and
polymorphism — to facilitate hierarchical structure and behavior description.

e Models expressed in the language should be amenable to high-performance paral-
lel/distributed simulation (through automatic or semi-automatic translation).

e The language should provide support for user-definable and extensible libraries.

Our basic approach towards the design of such a language was as follows. The analogous
language for hardware/VLSI domain, namely, the VHSIC Hardware Description Language
(VHDL), was examined[1]. Several concepts were borrowed from VHDL and suitably mod-
ified to suit the telecommunication domain. Some VHDL concepts that are specific to the
hardware domain were ignored, and new concepts appropriate to the telecommunication
domain were added. Also, support for object orientation was added to aid development
of structural and behavioral heirarchies in the models. The result of this exercise is a
new language, which is an object-oriented, simulation-independent language for modeling
telecommunication networks. Throughout the language design, emphasis was placed on
strong modularity, and the separation of structure from behavior, while at the same time
retaining the ability to analyze the models through parallel simulation.

3 A TUTORIAL 3

Orthogonality of Concepts

In the process of designing the language, it was observed that the set of concepts supported
in this language — such as, elements of dynamic interaction among entities — is orthogonal
to the set of concepts addressed in regular general-purpose programming languages — such
as, data types and control flow. Most modeling languages (VHDL, for example) combine
these two orthogonal sets of concepts into one specification language, even though it is often
possible to mix and match them together.

Hence, it was decided to carefully separate the two sets of concepts. The concepts that
specify the relationships and dynamic interactions of the entities in the modeling domain are
termed the meta language MetaTeD. MetaTeD is datatype-unaware!. When MetaTeD
is suitably combined with any given regular programming language (called the “external”
language), a concrete instance of the TeD language is formed. For example, a C*T instance
of TeD is described in [2].

It is interesting to note that the use of an external language is similar to the concept
of “outsourcing”; in the context of the language specification, it is wise to utilize the well-
researched and well-developed constructs of other languages, and their well-tested tools,
for the purposes of datatypes and control flow, instead of inventing and standardizing yet
another general purpose language.

In the rest of the document, we shall use the terms TeD and MetaTeD interchangeably
where no ambiguity exists. Also, by default, we shall use CTT as the external language,
following the interface described in [2], in all the examples.

3 A Tutorial

In the following tutorial, the information on the constructs and semantics may be incomplete
in the interest of clarity of basic introduction to the various concepts supported in the
language.

The following are some of the fundamental concepts supported in the TeD language:

1. Entity
2. Event
3. Chanpel State . Process
4. Architecture Behavior
Result Component

In the following sections, the basic terminology and semantics are introduced.

3.1 Overview of Concepts

Figure 1 illustrates the basic framework underlying the constructs in TeD, and their
relation to each other.

'With the exception of integers; it recognizes integers since it needs to “know” how to “count”, in order
to be able to define parametrized structures (varying number of entities and channels).

3 A TUTORIAL 4

ENTITY

EVENT

. ARCHITECTURE
inta, b, c CHANNEL ity EVENT

—» O

intl, m,n

CHANNEL
O——»

CHANNEL BEHAVIOR
. ProcessP{}:

: ProcessR { }

Q

CHANNEL
O

i |Component C|:

CHANNEL :
Q O :
i |[Component D|:

Figure 1: Basic framework of an Entity

In TeD, physical and conceptual objects in the telecommunication domain are modeled
in terms of entity descriptions. Entities are connected to- and interact with each other via
channels. Channels are the only means of dynamic interaction between entities. Informa-
tion units, called events, flow through channels. An output channel of one entity can be
connected to the input channel of another entity. This allows for modeling of an arbitrary
structure of connected entities.

The dynamic behavior of each entity is described by its architecture. The architecture
of an entity is expressed using concurrent process semantics. It is essentially described
in terms of the actions of the entity upon event arrivals on its input channels, and the
production of events on its output channels. One or more processes can be defined to act
upon events arriving on the input channels of the entity. The processes may generate events
on output channels as part of their computation/action. An event generated on an output
channel arrives as input on the input channel to which the output channel is mapped. The
architecture of an entity can also be expressed as as a composition of interacting components.
Components are nothing but entities themselves (see figure 2) “logically enclosed” inside
the bigger entity. The channels of the components can be arbitrarily mapped among each
other or to the channels of the enclosing entity. Thus, the behavior of an entity can be
described in terms of its structure (components) or dynamics (processes), or a combination
of both.

Entities are highly modular. Except for the interaction through their channels, enti-
ties’ state and behavior are completely encapsulated and invisible to other entities. The
entity construct describes the entity’s external input/output view, while the architecture
construct describes the internal behavioral part of the object being modeled. More than

3 A TUTORIAL 5

Entity E
__Architectureof E__
Entity E1 Entity E2 |
b !
AN
pym—
|
ﬁ | Process X dqer=====— L e—
)
channels T—. N S Process P |
! I
! I
i Process Y d—=z=zzzz—p ::'\l
[ppa— [A
o |
N |
|
|
N i

components of E

Figure 2: Entity with sub-entities

Entity
(External View)

A Aj An
(Bound)

Architectures
(Internal Views)

Figure 3: Single Entity — Multiple Architectures

one architecture can be defined on/for an entity; however, exactly one of them must be
chosen and bound to the entity for simulation-based analysis (see figure 3).

Structural and behavior descriptions of an entity can be inherited by other similar
entities, thus allowing object-oriented hierarchy-based design and development. Inherited
properties can be specialized, redefined or overridden by the inheriting entity (sections 5.1
and 5.4 describe structure and behavior inheritance semantics).

Figure 4 is an illustration of some of the basic elements of a model and their relationship
with respect to the physical object being modeled.

3.2 Entity Declaration

The entity construct is used to define the external view of a physical or conceptual object.
It essentially defines the input and output specifications for the entity. In particular, it does
not define any internal behavior.

The entity construct for the simple ATM multiplexer shown in figure 4 is as follows:

3 A TUTORIAL 6

Model in TeD

entity ATMMux(int N) {
channels {

. in ATMChannel A[N]
ATM Mux Entity out ATMChannel B }

architecture M of ATMMux {
state{ ... }

]]] behavior{

process scan() {

1]

N.

}
process update() {

}

}

result{ ... }

}

Figure 4: Illustration of a physical entity and its model in TeD

entity ATMMux (int N)
{

channels

{
in ATMChannel A[$PARAM(N)$];

out ATMChannel B;
}

In the above entity declaration, N is a parameter that defines the number of inputs. The
multiplexer is defined to have N input channels, A[N], and one output channel, B. Each of
the channels is of type ATMChannel, as defined in the next section.

3.3 Event and Channel Declarations

A channel is a port of input or output for an entity. An output channel of an entity can be
mapped to an input channel of another entity.

An event is a unit of information that flows through channels. An event that is sent on
an output channel, say, A in entity X, will appear as an arrival on the input channel, say,
B in entity Y, if channel A is mapped to channel B. Each event type definition consists of
the name of the event and the data associated with the event. Any number of event types
can be defined per application.

A channel type is defined as a set of event types. The channel type essentially defines
that only those events belonging to the defined set of event types are allowed to “flow”

3 A TUTORIAL 7

through a channel of the given type. Also, two channels can be mapped (connected) to
each other if and only if they are of the same channel type (or compatible channel types —
see section 5.3).

In the preceding ATM multiplexer example, the ATMChannel type can be defined as

follows:
event ATMCell {$ char data] 53 J; $}

channel ATMChannel { ATMCell }
The ATMCell declaration specifies an event type and its associated data. The ATMChannel

declaration defines that any channel of type ATMChannel allows only ATMCell events to flow
through it. Any number of event types can be specified in the list of event types for defining
a channel type.

The same event and channel types can be used in the definition of any number of entity
types. In fact, sharing the same event and channel definitions for several entity definitions
aids in ensuring that those entities can be interconnected.

3.4 Architecture Declaration

The architecture of an entity defines the internal behavioral model of an entity. The ar-
chitecture description mainly consists of three parts — the state, the behavior, and the
result. The state is the set of variables that are used to denote the current status of the
entity. The result consists of the set of variables that abstract the result of simulation of
that entity. The behavior describes how the entity reacts on information arrival on its input
channels, and how the entity generates information onto its output channels. Two concepts
— process and componenl — are available for the purpose of expressing the behavior. A
process is a set of statements that are executed upon event arrival on an input channel. A
component is just another entity, also called a sub-entity; thus, part of the behavior of the
(enclosing) entity is expressed in terms of this (enclosed) entity. Any number of processes
and components can be used in the architecture. Also, processes and components can both
be used together in the same architecture.

To illustrate, figure 5 shows an internal view of the multiplexer of figure 4. In this
view, the multiplexer uses a finite buffer of size B, and the output link of the multiplexer is
capable of transferring C cells in one cell arrival time on any of the input links. Since the
current occupancy of the buffer is the only state information required, a variable qlen is
used to represent the state. Additional measures, such as the cumulative number of cells
transferred and the number of cells dropped due to buffer overflow, can also be added to
the state. In such a case, this architecture may include those statistics as part of its result.
For the description of the multiplexer’s dynamic behavior, two processes are defined — one
process, scan, acts on cell arrivals on the input channels and enqueues them into the buffer,
while another process, update, models the transfer of cells from the buffer onto the output
link.

The architecture construct for this behavior of the simple ATM multiplexer is as follows:

3 A TUTORIAL 8

Figure 5: An Architecture of the Simple ATM Multiplexer

architecture M of ATMMux (int N)
{
dconst{$ int B, C; double T; $}
state{$ int gqlen, nsent, nlost; $}
behavior
{
process #1 scan(A);
process #2 update;

}

result{$ int totsent, totlost; $}

The initialization of the state and result variables, and the definition of the code for the
two processes scan and update are not defined here in the interest of brevity. Concrete
examples, with complete source code and explanations, are given in [2].

3.5 External Code Block

In MetaTeD models, external language expressions and /or declarations are used for certain
purposes. Such inserted code segments are called external code blocks. External code blocks
are any valid external language expressions (or declarations, depending on the context)
enclosed between a pair of $ signs, or between \{ and \}?. The interface provided by the
external language environment to the external code blocks in MetaTeD models depends
on the model development support provided for the particular external language.

?Linebreaks are not allowed to appear between $ signs.

4 SYNTAX REFERENCE 9

4 Syntax Reference

Keywords are set in bold. User-defined items are denoted in italics. Optional items are
enclosed in [square brackets]. Alternative items are separated by |.

use “model-unitname”

import interface | implementation “ezt-code-unitname”

[sure | event cvent-type { ext-var-decls }

channel channel-type [inherit base-channel-type] { event-types }
entity entity-type [(param-decls)] [inherit base-entity-type [(param-decls)]]

{
}

where param-decls is one or more of
int var-name
separated by commas, and, channel-decls is zero or more of:
[overload] in | out | inout channel-type channel-var-name [[ext-expr]] 3
architecture arch-type [(param-decls)] of entity-type [(param-decls)]
[inherit base-arch-type [(param-decls)]]
{

channels { channel-decls }

dconst { ext-var-decls }

state { ext-var-decls }

Istate { ext-var-decls }

channels { channel-decls }

behavior

{
process #N process-name [(channel-vars)] [overload] ;
component component-block-name ;
[abstract] function function-name [(ext-arg-decls)]

[returns ext-type] [overload] ;

}

result { ext-var-decls }

1

dconst enfity-type : arch-type : init

{
I

state entity-type : arch-type : Init

{

ert-statement

exrt-statement

Istate entity-type : arch-type : iInit

{
I

ert-statement

4 SYNTAX REFERENCE

component entity-type : arch-type : component-block-name
{
entities { entity-instantiations }
map { mapping-statement }
wrapup { result-computation }
}
where, entity-instantiations is zero or more of
entity-name => entity-type [param-vals] : arch-type [param-vals] [[ext-expr]] ;
mapping-statement and result-computation are ext-statements, and
param-vals is %n(ext-args)

process #N entity-name : arch-name : process-name [(channel-vars)]

{
}

where, channel-vars is one or more of
channel-type channel-var [[ext-ezpr to ext-expr |]

wait-statements and/or compute-statements

separated by commas; compute-statement is an ext-statement; wait-statement is:
wait on channel-vars until condition | surely | for ezpression ;
and, condition and expression are ext-exprs

function entity-type : arch-type : function-name [(ext-arg-decls)]
[returns ext-type]
{

ext-statement

result entily-type : arch-type : init

{
I

ert-statement

result entity-type : arch-type : wrapup

{

exrt-statement

ext-code-block: Any external language source code enclosed between two $ signs, or
between \{ and \}; newlines are not allowed between $ signs.

ext-var-decls: ext-code-block containing variable declarations

ext-expr: ext-code-block containing a valid expression

ext-type: ext-code-block specifying a single data-type

ext-arg-decls: ext-code-block specifying “formal argument list”

ext-args: ext-code-block containing “actual argument list”

ext-statement: ext-code-block containing executable statement(s)

10

5 SEMANTICS 11

5 Semantics

The following sections describe the detailed semantics of each of the concepts in the TeD
language.

5.1 Entity

The entity declaration is used to define a black-box view of an entity. The entity could be
a direct model of a real-life object, such as a multiplexer, or of an abstract object, such as
a protocol. The entity declaration only presents an external structural view of the object.
It does not define any behavior of the object. The syntax of the entity specification is as

follows:
entity entity-type [(param-decls)] [inherit base-entity-type [(param-decls)]]
{
channels { channel-decls }
}

where param-decls is one or more of

int var-name
separated by commas, and, channel-decls is zero or more of:

[overload] in | out | inout channel-type channel-var-name [[ext-expr]] 3
Entities can have zero or more channels (called the interface channels), each of in, out

or inout modes. Channels are typed (see Section 5.3 for a description of channel type
declarations). The behavior of an entity is defined solely in terms of the entity’s dynamic
reactions to events on its input-mode channels, and the production of events on its output-
mode channels.

5.1.1 Inheritance

An entity, E2, can inherit the structure of another entity, E1, by using the inherit clause

as follows:
entity E2 inherit E1

{

E2 will contain all the interface channels of E1, in addition to any interface channels
defined in E2.
5.1.2 Interface Enhancement

Entity E2 may “enhance” its interface by expanding the channel types of some or all of the
inherited interface channels. For example, consider the following declarations.

5 SEMANTICS

event TI { -}
event T2 { ---}
channel C1 { T1, T2 }
entity E1

channels { in C1 A; }

event T3 { -}
channel C2 inherit C1 { T3 }
entity E2 inherit E1

{
channels { overload in C2 A; }

12

E2 enhanced its interface by including acceptance of event type T3 on its inherited input
channel A. Note that any behavior defined for E1 will still be valid for E2. The behavior can

only be extended additionally to act on events of type T3 arriving on A.

Another type of enhancement is the promotion of the mode of an interface channel from
either in or out to inout. Both the mode and the type of an inherited channel can be

enhanced by the inheriting entity.

Note: If it is desired to enhance a single interface channel to an array of channels, it is
necessary to define the original channel to be an array of length 1. Thus, the following is

invalid:
entity ET
{
channels {in C A; }
}
entity E2 inherit E1
{
channels { overload in C A[100]; }
}
Instead, E1 must be defined as follows to achieve the desired effect.
entity E1
{
channels {in C A[1] ; }
}

5.1.3 Parametrized Structures

The parameter values can be used in the specification of sizes of channel arrays, thus
effectively defining parametrized structures of entities. For example, a multiplexer entity

parametrized by an integral value N can be defined as follows.

entity E(int N)

channels { in C A[$ PARAM(N) $; }

5 SEMANTICS 13

5.1.4 Implicit Parameter

An implicit parameter, I, is predefined for every entity. It denotes the index of the entity

instance if the entity happens to be an element in an array of entities at the time of model

execution. If the entity instance is not an element of an array, then the value of I is -1.
No declared parameter of any entity must be named 1.

5.1.5 Parameter Lists

The parameter lists are concatenated when refering to inherited entities. The following

declarations illustrate the concatenation order.
entity EI(int pl, Int p2)

{
}

entity E2(int p3, int p4) inherit E1(int pl, int p2)

{

}

entity E3(int p5) inherit E2(int p3, int p4, int pl, int p2)

{
i

5.2 Event

Events are units of information exchanged between two different entities or between pro-
cesses and components within an architecture of an entity. Events are “sent” through the
interface channels between entities, or through the internal channels within the architecture
of an entity. The following is the syntax for declaring an event type:

‘ [sure] event event-type { ext-var-decls } ‘

The external language shall provide a way to instantiate an event and to initialize the
member variables of the event. No system-dependent information is provided to distinguish
between any two instances of the same event type. If such a distinction is required, then
distinguishing information must be included as event variables in an application-dependent
fashion.

The event may be sent and received in entities which are in two different address spaces;
thus no assumptions may be made about shared address space. Thus, use of pointer values
in events may not be supported by the external language.

Upon receipt of events on the channels of an entity, one or more actions can be per-
formed by the processes of that entity’s architecture(s) (see Section 5.4.5). These actions,
in general, could potentially be executed more than once for the same event during the
simulation of the model (for example, if optimistic parallel simulators are used). In certain
cases (such as, if input/output operations, or any other non-idempotent operations, are to
be performed as part of the event processing), it is desirable for some events to be tagged

5 SEMANTICS 14

so that the actions associated with their arrival are executed exactly once per event arrival.
Thus, if an event type is tagged with the sure keyword, then it is guaranteed that the
actions upon arrival of any instance of the given event type are executed exactly once per
instance during the simulation.

5.3 Channel

Channels form the medium for inter-entity or intra-architecture communication. Events
flow through channels. The syntax for declaring a channel type is as follows:
‘ channel channel-type [inherit base-channel-type] { event-types }

The channel type declaration specifies the types of events that are permitted to “flow”
through any channel of that channel type. Thus, a channel type is the definition of a subset
of the set of all event types. Only instances of event types belonging to that subset are
allowed to be sent and received on channels of the given channel type.

All channels are of inout-mode by default. It is an error to send events on an in-mode
channel, or listen on an out-mode channel.

No more than one event can exist at any given moment in simulated time on a channel.
If an event “arrives” on an end of a channel while another event is “active,” then the new
event destroys the old event.

5.3.1 Inheritance

When a channel type, €2, is declared to inherit another channel type, C1 (called the base-
channel-type of C2), it implies that C2 includes all the event types of C1 in addition to those
defined for C2.

A channel type, C2, is said to be a superset of another channel type, C1, if and only if
C2 is declared to inherit C1, either directly or by an inheritance-chain.

5.3.2 Mapping

A channel can be mapped to another channel®. By default, external (interface) channels
remain unmapped to any channels, while internal channels map to themselves. It is valid
to send events on unmapped external channels; such events go into oblivion. The default
mapping (to themselves) of internal channels can be changed by mapping them to channels
of component entities. However, the internal channels cannot be reverted to unmapped
condition.

Two channels can be mapped to each other only if they are compatible with each other.

Mapping compatibility of channels is defined as follows.
model C1 chi;
mode2 C2 ch2;
Given the preceding declarations, channels chl and ch2 are mapping-compatible if all

the following conditions are satisfied:

®Current specification allows for at most one channel to be mapped to any given channel.

5 SEMANTICS 15

e Either C'1 and C2 must be the same type, or one must be a superset of the other.

o If ('1 is the same as (2 then:
model and mode2 cannot be the same, unless both are inout.

o If C'2 is a superset of C'1, then
mode2 must be in, and mode! must be out or inout.

Similarly, if C'7 is a superset of C2, then
model must be in, and mode2 must be out or inout.

5.4 Architecture

The behavior of an entity is defined in terms of its architecture. While the entity declaration
is analogous to an “interface” specification, the architecture declaration is analogous to an
“implementation” specification. More than one architecture can be defined for the same
entity type. For example, one architecture may be used to model the entity at at very
fine level of granularity of behavior using several processes and components, while another
architecture for the same entity may be defined for a coarser specification of behavior,
perhaps using just one process.

The following is the syntax for declaring an architecture of an entity:

architecture arch-type [(param-decls)] of entity-type [(param-decls)]
[inherit base-arch-type [(param-decls)]]

{

dconst { ext-var-decls }

state { ext-var-decls }

Istate { ext-var-decls }

channels { channel-decls }

behavior

{
process #N process-name [(channel-vars)] [overload] ;
component component-block-name ;
[abstract] function function-name [(ext-arg-decls)]

[returns ext-type] [overload] ;

}

result { ext-var-decls }

The architecture of an entity is divided into the following sections:

e Parameters (param-decls): A set of integer variables that are used in defining
parametrized strucutures/templates of entities and architectures.

e Deferred Constants (dconst): A set of items whose values could be different for dif-
ferent instances of entity, even if the instances are of the same entity and architecture

types.

e State (state): A set of variables that together form a part of the abstract state of
the modeled entity.

5 SEMANTICS 16

e Large State (Istate): A set of variables that are similar to the state variables, with
the difference that the memory size of these variables could be significant.

e Internal Channels (channels): A set of channels that are used for communication
among the internal processes and components of an architecture.

e Behavior Processes (behavior-process): A set of threads of computation that act
on the events arriving on the interface and internal channels.

e Behavior Components (behavior-component): A set of entities that logically
form subentities of an entity’s behavior.

e Result (result): A set of values that are an abstraction of the “result” of “execution”
of the model.

Each of these concepts is described in the following sections.

Inheritance

An architecture of an entity can inherit from another architecture of the same entity type
or from an architecture of an entity type that is inherited by the given entity type.

An inheriting architecture inherits all the items of the inherited architecture. Thus, Pa-
rameters, Deferred constants, State, Large State and Result variables, processes and com-
ponent blocks are all inherited. All inherited items are visible in all inheriting architectures.
There is no concept of limiting the scope of visibility in the inheritance of architectures.

5.4.1 Parameters

Parameters are variables of type int. They are mainly designed to be used in the definition
of parametrized structures. The parameters of entities can be used in the definition of
external interface structure (external channels), while the parameters of architectures can
be used in the definition of internal communication interface (internal channels).

The external language shall provide some way of accessing the values of the entity
parameters in the declaration of external channels. Similarly, architecture parameters shall
be available in the declaration of internal channels. Both types of parameters shall be
accessible inside the processes and functions of the architecture.

When specifying parameters for an entity-architecture pair, the parameter lists of the
architecture and the entity are concatenated, with architecture parameters first. If an
architecture inherits another architecture, then their parameter lists are concatenated, with
the inheriting architecture’s parameters first.

5.4.2 Deferred Constants

Deferred Constants are those that can be set to different values for different instances of
entities. The external language interface shall provide ways to initialize the constants to

5 SEMANTICS 17

user-specified values, either at compile-time or “later than compile time”. Facilities shall be
provided to set different values to the deferred constants of different entity instances even
if the instances are of the same entity and architecture types.

The names and types of the deferred constants are declared in the dconst section of
the architecture declaration. The syntax for the declaration of deferred constants inside
an architecture is given in section 5.4. The setting of instance-dependent values to these
constants is performed in the dconst-init construct outside of the architecture declaration,

with the following syntax.
dconst entity-type : arch-type : 1nit

{

exrt-statement

Once the values of the dconst variables are set, they remain constant throughout the
execution of the model; the external language may enforce this by providing readonly access
to the dconst variables, thus preventing their modification.

In the initialization of dconst variables, the values of entity and architecture parameters
of the object are available for use (parameter values are set before deferred constants are
initialized).

If the architecture inherits another architecture, the deferred constants of the inherited
architecture are initialized before those of the inheriting architecture are initialized.

The external language shall provide some way of accessing the values of the deferred
constants in the declaration of internal channels, and inside the processes and functions
of the architecture.

5.4.3 State

State variables are those that together constitute the internal data representation of the
object’s behavior. Given any instant in time, the values of the state variables together
uniquely and sufficiently define the object. However, these values vary with time — this
variation constitutes a part of the dynamic behavior of the object.

The syntax for the declaration of state variables is included in the architecture syntax.

The syntax for the definition of initialization of the state variables is as follows.
state entity-type : arch-type : Init

{

exrt-statement

In the state initialization, the values of entity and architecture parameters of the object,
and the values of its deferred constants are available for use (deferred constants are initialized
before state variables are initialized). If the architecture inherits another architecture, the
state variables of the inherited architecture are initialized before the state variables of the
inheriting architecture are initialized.

The external language shall provide some way of accessing the state variables inside the
processes and functions of the object.

5 SEMANTICS 18

5.4.4 Large State

Istate entity-type : arch-type : Init

{

ert-statement

The external language interface is free to implement this set of variables in an application-
dependent fashion. On one extreme, these variables could be merged with the state vari-
ables. On the other extreme, severe restrictions on the datatypes, operations and access of
these variables may be placed. The lstate construct is considered a “non-standard” part of
the language, and not all external languages and all TeD modeling tools may support it.

Similar to state variables, in the large state initialization, the values of entity and archi-
tecture parameters of the object, and the values of its deferred constants are available for
use (deferred constants are initialized before state variables are initialized). If the architec-
ture inherits another architecture, the large state variables of the inherited architecture are
initialized before the large state variables of the inheriting architecture are initialized.

5.4.5 Process

Processes are the leaf elements in the behavior tree defined by a hierarchy of entities. These
are threads of computation acting on behalf of the entities that own them. The owner
entity’s channels (internal and external) and state variables are accessible by the entity’s
processes. The basic functionality of processes consists of combinations of two types of
actions: computation (using the state variables), and synchronization (using channels or
Time). Computation is some sequence of operations performed on the state variables.
Synchronization is some sequence of actions on the channels or Time. Processes can be
categorized into two types based on their channel-synchronization method.

e Arrival-driven processes are those that wait for activity on a set of channels, and
perform a single set of computation actions upon arrival of events on those channels.
Such processes are said to occupy zero Time.

e Self-driven processes are those that contain combinations of one or more computation
and synchronization actions. Such processes are said to occupy positive Time.

The syntax of process definition is as follows:
process #N entity-name : arch-name : process-name [(channel-vars)]

{
}

where, channel-vars is one or more of
channel-type channel-var [[ext-ezpr to ext-expr |]

separated by commas; compute-statement is an ext-statement; wait-statement is:
wait on channel-vars until condition | surely | for expression ;

and, condition and expression are ext-exprs

wait-statements and/or compute-statements

5 SEMANTICS 19

Computation actions are specified using action statements in the external language. The
external language interface shall provide means to access the parameter, deferred constant,
state and large state variables in such computation statements.

Synchronization actions are specified using the wait statement. The wait on channel-
vars causes the process to wait until at least one event arrives on at least one channel in
the list of channels given by channel-vars. The wait for expression statement causes the
process to wait for the amount of time given by the expression. The wait until condition
statement specifies that the process shall remain waiting until such time that the condition
evaluates to “true”. The for clause can be used along with the on clause to achieve a
timeout period on channel activity. The until clause can be used in conjunction with the
on clause to achieve a wait for a parametrized instant in time for synchronization.

The surely tag for the for clause can be used for achieving timing semantics in a manner
analogous to the sure tag for events (see Section 5.2).

When a process is active due to activity on the channels, then all the events at that
instant of Time are available at the same time on all the channels that have arrivals on
them at that moment of Time. In other words, all simultaneous events are presented on
the channels simultaneously; hence, the process must act on all its active channels instead
of just one of them.

In a given instance of an entity+architecture, the state variables of the architecture
are “shared” by all the architecture’s processes. Read/write conflicts are resolved using
the implicit Time instant of access. Simultaneous accesses are serialized using the order
of declaration of the processes in the architecture declaration. The rank of a process in
this ordering is based on initial point of declaration of the process, and the rank remains
unchanged even if the process is overloaded in an inheritance chain. Note that orderings
other than the default can be achieved using appropriately designed synchronization via
internal channels.

5.4.6 Process Numbering

Any number of processes can be defined for a given architecture. The process number
is the key in distinguishing it from other processes within the same entity. Hence, the
process name can be treated merely as a mnemonic. Two different processes in the same
architecture cannot have the same number; however, process numbers of two processes in
two different architectures of the same entity can be the same. Moreover, if one of the
architectures inherits from the other, and a process of the inheriting architecture has the
same number as the number of a process of the inherited architecture, then the process in
the inheriting architecture must be explicity declared to overload the corresponding process
of the inherited architecture using the overload flag in the process declaration. Such an
overloading process in the inheriting architecture completely replaces the overloaded process
in the inherited architecture.

If two processes are logically distinct, then they must have distinct process numbers,
even across inherited architectures. Thus, process numbers in an inheriting architecture

5 SEMANTICS 20

must not overlap with the process numbers in the inherited architecture, unless the overlap
is intended (for overloading the process, as previously explained).

5.4.7 Component

An entity that is used as a means of defining the behavior of another entity is called a
component. An entity’s architecture can use one or more components. The components
in an architecture may be grouped into one or more non-overlapping blocks according to
the logical relationships among them. Each such group is called a component block. The
components in a component block can be interconnected to each other. The components
may also be connected to the processes of the enclosing architecture via internal channels.

In other words, the basic behavior of an entity’s architecture can be defined in terms of
processes and component blocks, where the channels of the entites within each component
block are connected to the channels of other entities in the same component block, or to
the internal channels of the architecture, while the processes act on the entity’s interface
channels as well as internal channels.

Any number of component blocks can be defined for a given architecture. The syntax
for the declaration of a component block is included in the syntax for architecture. The

syntax for the definition of a component block is as follows:
component entity-type : arch-type : component-block-name

{
entities { entity-instantiations }
map { mapping-statement }
wrapup { result-computation }
}

where, entity-instantiations is zero or more of

entity-name => entity-type [param-vals] : arch-type [param-vals] [[ext-expr]] ;
mapping-statement and result-computation are ext-statements, and

param-vals is %n(ext-args)

The entities section declares the entity and architecture types of one or more component
entities comprising a component block of the architecture. The map section defines the
mapping pattern among the channels of the enclosing entity and the component entities.
The wrapup section is used to extract the results of the component entities at the end of
the model-exection.

The component block definition may specify a given entity4architecture type for its
component entity instances, thus, effectively binding the instance to that entity type and
architecture at compile time. Alternatively, the binding can be postponed for later-than-
compile-time by specifying a ? in the place of the entity-type or arch-type. If 7 is used to
postpone the specification of the entity type, then no architecture type must be specified.
However, if an entity type is specified, then the binding of architecture type can be post-
poned by using ? for arch-type. The runtime component of the external language interface
shall provide means of binding the entity and/or architecture types in a later-than-compile-
time fashion (for example, using a Configuration Language).

If an entity type or architecture type is specified, then the integer parameter values

5 SEMANTICS 21

required for instantiating such an entity must also be specified. If the entity requires
no arguments, then the parameters can be omitted. Otherwise, the arguments must be
specified within parentheses, and the count of arguments in the parameter lists must be
specified following a % preceding the parentheses.

5.4.8 Instance Naming

All entity instances in a given model execution are assigned unique string names. These
names are independent of the entity and architecture types of the instances, and the naming
scheme is uniform and independent of the instance types. It is assumed that there is exactly
one entity that is initially instantiated per model-execution. This entity, called the root
entity, may be of any entity type and architecture type, and it may specify one or more
entities as its components in its architecture, as is the normal capability available in any
entity’s architecture.
The naming scheme is as follows:

e The name of the root entity is always root.

e If a given entity is not the root entity, then it must be a component entity of another
(parent) entity. Let the parent entity’s instance name be denoted as PARENT. Sup-
pose the component block of the architecture of the parent entity names the given
component entity instance as comp (as specified using the entity-name clause in the
component block definition — see Section 5.4.7). Then, the name of a component of
an entity is given by PARENT.comp. If the component is an element in an array of
entities (again, as given by the component block definition), then, the component’s
instance name is given by PARENT.comp[n], where n is the index of the element in
the array.

5.4.9 Function

Functions are units of external language code, defined for convenience in model development.
The external language shall provide means for invoking functions from the statements of
processes. Functions are scoped similar to processes and state variables.

The syntax for the declaration of functions is included in the syntax for the architecture

declaration. The syntax for the definition of functions is as follows:

function entity-type : arch-type : function-name [(ext-arg-decls)]
[returns ext-type]

{

1

exrt-statement

5.4.10 Result

The syntax for the initialization of result variables is as follows:

5 SEMANTICS 22

result entity-type : arch-type : Init

{

ert-statement

The syntax for using the result variables at the end of model-execution is as follows:
result entity-type : arch-type : wrapup

{
I

ert-statement

5.4.11 Temporal Dependencies

The following is the set sequence of actions performed for each entity upon creation, in the
specified order of precedence:

1. Parameter values are set.

2. Deferred constants are initialized.
State variables are initialized.
Large State variables are initialized.
Result variables are initialized.

Component entities are created.

N e s ®

Component channel mappings are performed.

During the model execution, in any given entity, processes are executed according to the
timeline of activity. If more than one process is active at the same point on the timeline, then
processes are executed in the order in which the processes are declared in their architecture
declarations.

At the end of “model execution,” the following sequence of actions is performed for each
entity, bottom-most entities first to the root entity last.

1. component-wrapup is performed for each component block.

2. result-wrapup is performed.

The preceding sequence is performed for all component entities before the same is performed
for the entity that encloses those component entities.

5.5 File Inclusion

To aid in modular development and reuse of models, compiler directives are provided that
permit inclusion of references of other models in the definition of a given model. The units of
model development may vary with the target system — such as files in a file-based system,
or table names in a database-based system.

Two forms of directives are supported:

6 INTEROPERABILITY 23

o Model Inclusion Directives: These are used to reference TeD model units in the
definition of other TeD model units. The syntax for the model inclusion directive is
as follows:

3

‘ use “model-unitname” ‘

e External Code Inclusion Directives: These are used in TeD model units to refer-
ence units containing external language code. The external code may be distinguished
into two types: interface and implementation. The semantics associated with each
type is dependent on the target system. The syntax for the external code inclusion
directive is as follows:

‘ import interface | implementation “ext-code-unitname”

5.6 Configuration Specification

MetaTeD is only concerned with the description of the models. The way models are
assembled, customized, instantiated or used is dependent on the external language interface.
The external language interface may provide means for configuration specification in a later-
than-compile-time fashion.

6 Interoperability

In the spirit of the TeD language, all models must be developed with interoperability in
view. Whenever possible, event and channel types must be declared separately from the
entity and architecture declarations. Moreover, efforts must be made to reuse a standard set
of event and channel types for a given application domain. Use of such standard types will
aid in the development of a large library of models, that automatically become interoperable
due to the fact that any meaningful interconnection of the instances of different event and
architecture types is possible by way of compatible channel types.

References

[1] “A VHDL Primer,” J. Bhasker, Prentice Hall, 1995

[2] “A C*T Instance of TeD,” K. S. Perumalla, R. M. Fujimoto, Technical Report GIT-
C(C-96-33, College of Computing, Georgia Institute of Technology, 1996.

