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SUMMARY

Machine learning has risen in importance across science, engineering, and business in

recent years. Domain experts have begun to understand how their data analysis problems

can be solved in a principled and efficient manner using methods from machine learning,

with its simultaneous focus on statistical and computational concerns. Moreover, the data

in many of these application domains has exploded in availability and scale, further under-

scoring the need for algorithms which find patterns and trends quickly and correctly.

However, most people actually analyzing data today operate far from the expert level.

Available statistical libraries and even textbooks contain only a finite sample of the pos-

sibilities afforded by the underlying mathematical principles. Ideally, practitioners should

be able to do what machine learning experts can do—employ the fundamental principles to

experiment with the practically infinite number of possible customized statistical models as

well as alternative algorithms for solving them, including advanced techniques for handling

massive datasets. This would lead to more accurate models, the ability in some cases to

analyze data that was previously intractable, and, if the experimentation can be greatly

accelerated, huge gains in human productivity.

Fixing this state of affairs involves mechanizing and automating these statistical and

algorithmic principles. This task has received little attention because we lack a suitable

syntactic representation that is capable of specifying machine learning problems and so-

lutions, so there is no way to encode the principles in question, which are themselves a

mapping between problem and solution. This work focuses on providing the foundational

layer for enabling this vision, with the thesis that such a representation is possible. We

demonstrate the thesis by defining a syntactic representation of machine learning that is

expressive, promotes correctness, and enables the mechanization of a wide variety of useful

solution principles.
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CHAPTER I

INTRODUCTION

Machine learning has risen in importance across science, engineering, and business in recent

years. Domain experts have begun to understand how their data analysis problems can be

solved in a principled and efficient manner using methods from machine learning, with its

simultaneous focus on statistical and computational concerns. Moreover, the data in many

of these application domains has exploded in availability and scale, further underscoring

the need for algorithms which find patterns and trends quickly and correctly.

However, most people actually analyzing data today operate far from the expert level.

Available statistical libraries and even textbooks contain only a finite sample of the pos-

sibilities afforded by the underlying mathematical principles. Ideally, practitioners should

be able to do what machine learning experts can do—employ the fundamental principles to

experiment with the practically infinite number of possible customized statistical models as

well as alternative algorithms for solving them, including advanced techniques for handling

massive datasets. This would lead to more accurate models, the ability in some cases to

analyze data that was previously intractable, and, if the experimentation can be greatly

accelerated, huge gains in human productivity.

Fixing this state of affairs involves mechanizing and automating these statistical and

algorithmic principles. This task has received little attention because we lack a suitable

syntactic representation that is capable of specifying machine learning problems and so-

lutions, so there is no way to encode the principles in question, which are themselves a

mapping between problem and solution. For instance, most representations used in current

approaches omit the idea of optimization entirely, even though optimization is a cornerstone

of machine learning, used in methods such as maximum likelihood estimation and support

vector machines. This thesis focuses on providing the foundational layer for enabling this

vision and proposes that such a suitable syntactic representation is possible.
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1.1 Toward declarative machine learning

The idea of automatically deriving the implementation of a function from just a declarative

specification of its input-output behavior is a holy grail in computer science. It is a central

focus of many declarative domain-specific languages, such as SQL, as well as languages for

constraint programming.

In this vein, there is currently a great need for automating the application of machine

learning methods to new domain problems, from declarative specifications. Where does this

need come from? Well, the methods in question are either

• specific algorithms, such as the C4.5 decision tree learning algorithm or support

vector machines for performing supervised learning, or

• general techniques/principles, such as the expectation maximization algorithm for

solving maximum likelihood problems, which is in fact an algorithm template: there

is a different concrete instantiation for each different probabilistic model.

The research community has successfully translated the first category into software, as

evidenced by the numerous libraries and toolkits for performing supervised and unsupervised

learning [26, 49, 14, 53]. These packages are fairly straightforward to use in a black-box

manner, requiring relatively little machine learning expertise from the user.

However, it is the latter category that contains the advanced methods for deriving ef-

ficient and customized algorithms for specific domain problems, which becomes relevant

when off-the-shelf algorithms either (i) require the insertion of more domain knowledge to

produce better quality answers, or (ii) are not computationally efficient enough. Unfor-

tunately, these higher-level principles are currently relegated to manual pencil-and-paper

derivations and can only be done by those with the necessary expertise. These techniques

are syntactic in nature—if we could mechanize and automate them in a formal syntactic

manner, users of machine learning would reap many benefits:

• Declarative specifications, reduced expertise requirements. Most domain

experts are not experts in machine learning. Furthermore, machine learning is not a
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single monolithic field of study but is instead composed of many areas of mathematics

(such as probability, optimization, and linear algebra) as well as computer science

(such as data structure design, parallel algorithms, and high-performance computing).

Therefore, there is a high “barrier to entry” for those who wish to apply machine

learning insights to their domain problems. Automation would eliminate this steep

learning curve, allowing users to focus on the declarative formulation of their problems.

• Reduced developer burden. Automation would also eliminate wasteful redun-

dancy that occurs in many current solutions. For instance, when performing Bayesian

inference via Markov chain Monte Carlo (MCMC) methods, users often write their

model twice: once in the sampling code they use for generating synthetic data from

their model, and then again in the log-likelihood code, which is used to score candi-

date steps in MCMC’s random walk. Keeping these two incarnations of the model in

synch is tedious and error-prone. Automation would instead derive both codes from

a single declarative specification, drastically reducing the amount of code the user

needs to write, especially as the Kolmogorov complexity of the models increases. In

particular, the user is saved from writing tricky log-likelihood code.

• Verified algorithms. One question that arises when manually deriving algorithms

is: have I made a mistake somewhere? Fortunately, automation puts us on the path

to mechanical verification of algorithm derivations. This is because a prerequisite to

automating these techniques is a mechanization of the mathematics involved in ex-

pressing machine learning problems and solutions. Specifically, this requires formally

treating probability distributions and optimization problems as syntactic objects. Be-

cause we are now treating machine learning problem as programs, we can leverage the

large body of existing work on program verification from the programming language

research community.

1.2 Limitations of current practice

The current mainstream practice for users interested in using machine learning techniques

is to use existing libraries of statistical routines or collections of such libraries, such as the R

3



language and platform [53]. Users are limited to the specific models and algorithms provided

by the library, and must write new code themselves to do learning on custom models,

perhaps using library calls as subroutines where appropriate. The stochastic model and the

learning task is implicit in the code written by the user; because there is no representation

of these to pass to the library, the library cannot provide further assistance.

1.2.1 Probabilistic programming languages

The main issue with mainstream approaches is that they do not provide a representation of

probabilistic models. If such a representation existed, the user could reify their models as

data, which could then be passed to the library. This gives the libraries more information

to work with. This is the approach taken by libraries such as the Bayes Net Toolbox [43]

or Infer.NET [42], which use graphical models such as Bayesian networks or factor graphs

as the data structure for representing stochastic models [33]. Here, the user builds a graph-

based data structure encoding their model and then invokes the library to perform learning.

Graphical models are a powerful unifying framework, capable of expressing a wide variety

of models and amenable to generic inference algorithms. These approaches improve upon

ordinary libraries by giving the user more flexibility in expressing models and saving them

from the tedium of writing inference algorithms for each new custom model. However, it is

up to the user to understand graphical models and to construct them properly. Furthermore,

compared to the declarative notation of random variables, the interface is low-level, requiring

users to explicitly construct graphs.

In response, probabilistic programming languages promise to arm data scientists with

declarative languages for specifying their probabilistic models, while leaving the details of

how to translate those models to efficient sampling or inference algorithms to a compiler.

Ideally, a user would write their domain model as a short probabilistic program, such as

X ∼ N(µ, σ2)

Y = eX

and the system would be responsible for producing code for doing different things with that

model. This model, for instance, introduces a normally distributed random variable X and

4



a random variable Y that is a deterministic transformation of X. A hypothetical compiler

for such a language might produce the following R code when given this model:

# sampling code

x <- rnorm(100, mu, sigma);

y <- exp(x);

# probability density / likelihood

function(y, mu, sigma) {

dnorm(log(y), mu, sigma) / y

}

# maximum likelihood estimation

function(y) {

sum(log(y)) / length(y)

}

The first fragment samples synthetic data from our model. There is not much work for

the compiler here, because the sampling code is in nearly one-to-one correspondence with

the declarative specification. The next fragment is the parameterized probability density

function of Y , computed in terms of the density of the normal distribution. This is an

important concept in probability theory, and gives us the likelihood function, which is at

the core of many machine learning methods. One such method is maximum likelihood

estimation, and the last fragment is the closed-form solution for computing the maximum

likelihood estimate of the parameter µ, given an array y of observations of the random

variable Y . Notably, these latter two fragments require syntactic operations by the

compiler. In particular, computing a closed-form solution for maximum likelihood estimates

requires a closed-form (and therefore, syntactic) solution for the probability density function.

5



1.2.2 A missing collection of features

Unfortunately, this vision for probabilistic programming has not been fully realized in several

key ways. In particular, no current language combines all of the following features:

a© The ability to express optimization problems.

b© The ability to express probability density functions.

c© The ability to express arbitrary transformations of random variables.

d© A formal language definition.

In fact, although the community as a whole has touched on each of these features, most

existing works do not feature more than two of them simultaneously:

a© b© c© d©

Programming languages community

Kozen [34], ... X X

EDSLs: Hansei [32], λ© [48], ... X X

Infer.NET Fun [11] X X X

Machine learning community

Church [23] X X

Markov Logic [56], ... X X

BUGS [37], HBC [15], ... X

Infer.NET [42] X X

Spiritual predecessors

AutoBayes [20] X X

Tyles [1] X X

This thesis X X X X

However, this collection of features is necessary if we are to practice machine learning

as practitioners do and solve the problems that they solve. This thesis argues that this

collection features is possible. Note that this is not as simple as stitching together features
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from other languages—any time a new feature is added to a language, one must consider the

possible feature interactions between the new feature and the existing features. In general,

combining N features may require considering and resolving O(N2) feature interactions.

We now discuss why each of these features is needed and highlight challenges they pose for

language design, implementation, and reasoning.

Expressing optimization problems. The concept of numerical optimization1 (also

known as mathematical programming) is pervasive in machine learning. Numerous learning

frameworks in machine learning boil down to finding “best” instances according to some

loss function. For example, learning in support vector machines is framed as finding the

hyperplane that maximizes the margin between classes, measured in Euclidean distance.

This is solved as a quadratic program. In maximum likelihood estimation, we search for

parameters to a model which maximize its likelihood function. For simple models, this can

be solved in closed form by symbolically manipulating KKT conditions, and for complex

models by using the expectation maximization algorithm.

The importance of optimization is clear, but the real question is: why do we need

optimization represented in the language? It is conceivable to have a probabilistic language

with no intrinsic notion of optimization but where the compiler, external to the program,

imposes a specific notion of optimization, e.g. the compiler would automatically derive

maximum likelihood estimators for models defined in the language.

There are two major reasons to have an explicit notion of optimization in the language.

First, it gives the user explicit control over what exact optimization they wish to express.

For instance, the user may want to modify the standard maximum likelihood formulation,

perhaps by adding an extra regularization term to enforce sparsity in the parameters or

by adding constraints between parameters to reflect domain knowledge. Second, just as

probabilistic programming seeks to free users from manually reformulating probabilistic

programs, we wish to free users from manually reformulating optimization problems. There

is a vast literature of such powerful reformulations, and systems such as Tyles [1, 2] and

1Not to be confused with program optimization, a compiler activity for producing efficient code.
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ROSE [36] demonstrate the benefits of automating them.

A potential challenge is whether random variables and optimization variables can coexist

in the same language. Both paradigms have subtly different interpretations and uses of

variables. Optimization variables (those introduced by the min or max operator) have an

existentially-quantified flavor: optimization seeks to find instantiations of the optimization

variables. By contrast, random variables in probabilistic programs do not even behave as

variables normally do. They are described formally as real-valued measurable functions [67],

but then are used as real numbers—a type mismatch. They are bound to distributions

(e.g. X ∼ N(0, 1)), but we cannot substitute them with their distributions in expressions

(e.g. X + 5). Furthermore, data dependencies in a random variable’s definition can affect

answers, whereas ordinary evaluation usually only depends on a variable’s value, not its

data dependencies. Consider for example two random variables X,Y ∼ U(0, 1) that are

uniformly distributed on [0, 1]. One might think that P(X+Y = 0), the probability of their

sum being equal to zero, is 0. However, if Y is defined as Y = 1−X, this probability is in

fact 1.

Expressing probability density functions. The probability density function f of a

continuous distribution P is a convenient and compact characterization of the distribution.

For real distributions, the relationship

P(A) =

∫

A

f(x) dx

holds for every interval A of the real line; probabilities from the distribution are given by

integrating the density function. Densities are a fundamental concept in machine learn-

ing, and parameterized densities give us likelihood functions, another important concept.

Techniques which use density functions include maximum likelihood estimation, maximum

a posteriori estimation, L2 estimation, density-based Markov chain Monte Carlo sampling,

and importance sampling.

Probabilistic programs correspond to probability distributions, which are distinct from

density functions. We would like the compiler to automatically calculate density functions
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from these programs. A major implementation challenge, however, is that not every distri-

bution possesses a density function. This issue, in conjunction with the following feature,

poses such a challenge that it is the topic of Chapter 2.

Arbitrary transformations of random variables. A common pattern in probabilistic

models is the introduction of a series of of random variables bound to distributions, followed

by more random variables defined as deterministic functions of the first group:

X ∼ N(0, 1) X1 ∼ P1

Y = eX X2 ∼ P2

Y = X1 +X2

This pattern arises in many applications, particular in the natural sciences, were there are

specific functional models of how quantities interact. Furthermore, this capability auto-

matically comes with the probability monad, which is a mathematical structure commonly

used to organize probabilistic functional languages [55]. As we will see in Chapter 2, the

probability monad is a desirable foundation and informs the formal study of such languages.

This pattern is also useful for minimality and elegance of a language, because it gives us the

power to define useful derived distributions without needing to add new primitive distribu-

tions to the language. For instance, the marginal distribution of Y in our running example

X ∼ N(0, 1), Y = eX is a way to define the log-normal distribution.

Despite these attractive advantages, the expressivity of this features comes at a cost: it

greatly complicates the calculation of density functions from probabilistic programs. This

is why many existing systems, such as BUGS [37] and HBC [15], severely limit the user’s

ability to transform random variables, even prohibiting conceptually simple operations such

as the addition of random variables.

A formal language definition. In this work, we use the phrase formal language to refer

to a language defined by an abstract syntax, a type system, and a formal semantics. A

natural question is: why are these parts necessary?
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A type system gives us an understanding of the static behavior of programs. This

includes classifying the nature of the inputs and outputs of operations in the language. This

mechanism is important for us; for instance, asking for the maximum likelihood estimate

for a model that does not have a density functions is an ill-posed question. Furthermore,

the kinds of properties we wish to check are hard or impossible to check at run time. We

cannot simply “run unit tests” as one might do in a dynamically typed language because

we are working in the non-computable world of classical mathematics.

A formal semantics is desirable because it aids human and machine understanding of

programs. This is particularly relevant when combining random variables and optimization

variables. The notation of random variables is a convenient but informal shorthand for ex-

pressing machine learning problems that leans heavily on convention and a person’s ability

to resolve ambiguities—mechanization requires a much higher degree of precision. In par-

ticular, we would like that, for any legal program in our language, we can precisely identify

the mathematical meaning of that program. This would help to debug program transfor-

mations, to state semantic preservation theorems, and to mechanically verify derivations of

machine learning algorithms.

These reasons are also why we are interested in the probability monad, which informs

the design of the type system and semantics of a probabilistic language.

1.3 Thesis statement

In light of this discussion, we argue that

It is possible to construct a syntactic representation of machine learning that is

expressive, promotes correctness, and can mechanize useful solution principles.

There are three subclaims:

• Expressive. Being expressive means lowering the semantic gap between the math-

ematical statement of a learning problem and the code needed to express it. Small

conceptual changes to a learning problem should result in only small code changes to
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the corresponding program.

Validation: We validate this part of the thesis by first defining an expressive lan-

guage for probability (Chapter 2) and then combining it with Tyles [1, 2], a language

for optimization (reviewed in Chapter 3), to provide an expressive representation of

machine learning, implemented as a theory in the Coq proof assistant (Chapter 4).

Chapter 2 demonstrates expressivity by providing the first-ever syntactic theory of

probability density functions that solves the issue of supporting an operator for ex-

pressing the density functions of probabilistic programs in the context of highly ex-

pressive probabilistic programming languages. Chapter 4 demonstrates expressivity

by presenting programs that utilize optimization constructs in addition to probability

constructs for expressing important machine learning problems, such as maximum

likelihood estimation and sparse support vector machines.

• Promotes correctness. Promoting correctness includes reducing or eliminating

the possibility of the user writing ill-formed programs, supporting the ability of a

human or computer to reason about programs, and providing a pathway to mechanical

verification of program transformations.

Validation: We validate this part of the thesis by using type theory to formally define

the probability language in Chapter 2 and to inform our design of the representation

for machine learning in Chapter 4. Type theory is a modern metamathematical frame-

work with deep ties to both mathematics and programming languages. It disciplines

our language design, obligating us to precisely capture the semantics of constructs

such as probability distributions, and it promotes correctness by ruling out ill-formed

programs by definition. We demonstrate these qualities with the language definition

in Chapter 2, where the type system for density functions is a notable contribution.

Furthermore, we wish to support systems in which it is possible to mechanically prove

program transformations correct, rather than trusting their authors. Types are the

path to constructing proofs, as demonstrated by modern theorem proving systems

that are grounded in advanced dependent type theories, such as Coq [6]. We show
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in Chapter 4 how program transformations written using our formalization can be

encoded as equality theorems and then used for program rewriting via existing Coq

mechanisms. In this setup, algorithm derivation reduces to proof search. Such equality

theorems can be initially stated as axioms for the purposes of rapid prototyping, while

saving actual proof writing for a later stage, retaining the option of full mechanical

verification.

• Can mechanize useful solution principles. This is achieved by taking solution

principles for converting learning problems into algorithms and encoding them into a

mechanical form. We focus on methods of a syntactic nature, which are more resistant

to mechanization and are not easily implemented as ordinary libraries. A method is

useful if it is widely used, well-established, or a recent research result.

Validation: We validate this part of the thesis by encoding several solution princi-

ples and techniques as program transformation using the representations developed

throughout the dissertation.

– Computing probability density functions. We define a compiler for computing

the probability density function of a probabilistic program. We show that the

compiler is useful by applying it to inference problems from ecology. We use the

compiler to compute the log-likelihood function of a probabilistic model, which

is then used for Bayesian inference via Markov chain Monte Carlo sampling

(Chapter 2).

– The big-M method for disjunctive constraints. Agarwal defines a compiler that

implements the convex-hull method for transforming disjunctive constraints in

optimization problems [1]. We define another such compiler that employs the

big-M method [54]. We apply both compilers to problems from chemical process

engineering and operations research, showing that experimentation is accelerated

and that performance is competitive with human experts and state-of-the-art

optimization software (Chapter 3).

– The big-M method for L0 regularization. Likewise, we encode a transformation
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for optimization problems that contain L0 regularization terms, which are often

added in machine learning problems to induce solution sparsity. We show how

this transformation can be used on the L0 support vector machine formulation

to recreate mixed-integer support vector machines [25] (Chapter 4).

– Expectation maximization. Finally, we encode the expectation maximization

algorithm [17] for solving maximum likelihood estimation problems. This tech-

nique makes fundamental use of both probability and optimization constructs in

its formulation; our ability to handle this is a major feature of this work. We

report on our Coq implementation (Chapter 4).

13



CHAPTER II

A SYNTACTIC THEORY OF PROBABILITY

There has been great interest in creating probabilistic programming languages to simplify

the coding of statistical tasks; however, there still does not exist a formal language that

simultaneously provides (i) continuous probability distributions, (ii) the ability to naturally

express custom probabilistic models, and (iii) probability density functions (pdfs). This

collection of features is necessary for mechanizing fundamental statistical techniques. We

formalize the first probabilistic language that exhibits these features, and it serves as a

foundational framework for extending the ideas to more general languages. Particularly

novel are our type system for absolutely continuous (ac) distributions (those which permit

pdfs) and our pdf calculation procedure, which calculates pdfs for a large class of ac

distributions. Our formalization paves the way toward the rigorous encoding of powerful

statistical reformulations.

2.1 Introduction

In the face of more complex data analysis needs, both the machine learning and program-

ming languages communities have recognized the need to express probabilistic and statistical

computations declaratively. This has led to a proliferation of probabilistic programming lan-

guages [48, 19, 23, 31, 32, 34, 41, 50, 55, 56, 57]. Program transformations on probabilistic

programs are crucial: many techniques for converting statistical problems into efficient, ex-

ecutable algorithms are syntactic in nature. A rigorous language definition aids reasoning

about the correctness of these program transformations.

However, several fundamental statistical techniques cannot currently be encoded as

program transformations because current languages have weak support for probability dis-

tributions on continuous or hybrid discrete-continuous spaces. In particular, no existing

language rigorously supports expressing the probability density function (pdf) of custom
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probability distributions. This is an impediment to mechanizing statistics; continuous dis-

tributions and their pdfs are ubiquitous in statistical theory and applications. Techniques

such as maximum likelihood estimation (MLE), L2 estimation (L2E), and nonparametric

kernel methods are all formulated in terms of the pdf [9, 59, 60]. Specifically, we want the

ability to naturally express a probabilistic model over a discrete, continuous or hybrid space

and then mechanically obtain a usable form of its pdf. Usage of the pdf may entail direct

numerical evaluation of the pdf or symbolic manipulation of the pdf and its derivatives.

Continuous spaces pose some unique obstacles, however. First, the existence of the pdf

is not guaranteed, unlike the discrete case. Second, stating the conditions for existence

involves the language of measure theory, an area of mathematics renowned for nonconstruc-

tive results, suggesting that mechanization may not be straightforward. Notably, obtaining

a pdf from its distribution is a non-computable operation in the general case [28]. In light

of these issues, we make the following new contributions:

• We present a formal probability language with classical measure-theoretic semantics

which allows naturally expressing a variety of useful probability distributions on dis-

crete, continuous and hybrid discrete-continuous spaces, as well as their pdfs when

they exist (Section 2.3). The language is a core calculus which omits functions and

mutation.

• We define a type system for absolutely continuous probability distributions, i.e. those

which permit a pdf. The type system does not require mechanizing σ-algebras, null

sets, the Lebesgue measure, or other complex constructions from measure theory.

The key insight is to analyze a distribution by how it transforms other distributions

instead of using the “obvious” induction on the monadic structure of the distribution

(Section 2.4).

• We define a procedure that calculates pdfs for a large class of distributions accepted

by our type system. The design permits modularly adding knowledge about individ-

ual distributions with known pdfs (but which cannot be calculated from scratch),
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Figure 1: The cdf and pdf of a standard normal distribution and the cdf of a distribution
that does not have a pdf.

enabling the procedure to proceed with programs that use these distributions as sub-

components (Section 2.5).

We believe this is the first general treatment of pdfs in a language. We deliberately omit

features that are not essential to the current investigation (e.g. expectation, sampling).

Finally, we discuss the relation to existing and future work (Sections 2.7 and 2.8). In

particular, we save a treatment of pdfs in the context of conditional probability for future

work.

2.2 Background and motivation

We first introduce probability in the context of countable spaces to emphasize the compli-

cations that arise when moving to continuous spaces. We focus only on issues surrounding

pdfs. We occasionally deviate from standard probability notation to circumvent impreci-

sion in the standard notation and to create a harmonious notation throughout the paper.

In this section we present a specialized account of probability for ease of exposition. We

discuss the rigorous and generalized definitions in Section 2.3.3.

We use the term discrete distribution for distributions on discrete spaces (countable

sets); continuous distribution for distributions on the continuous spaces R and Rn; and

hybrid distribution for distributions on products of discrete and continuous spaces that are

themselves neither discrete nor continuous, such as R× Z.

2.2.1 Probability on countable spaces

Consider a set of outcomes A. For now, let A be countable. It is meant to represent the

possible states of the world we are modeling, such as the set of possible outcomes of an

16



experiment or measurements of a quantity. An event is a subset of A, also understood

as a predicate on elements of A. Events denote some occurrence of interest and partition

the outcomes into those that exhibit the property and those that do not. A probability

distribution P (or simply, distribution) on A is a function from events to [0, 1] such that

P(X) ≥ 0 for all events X, P(A) = 1 and P(
⋃∞

i=0Xi) =
∑∞

i=0 P(Xi) for countable sequences

of mutually disjoint events Xi. Distributions tell us the probability that different events

will occur. It is generally more convenient to work with a distribution’s probability mass

function (pmf) instead, defined f(x) = P({x}), which tells us how likely an individual

outcome is. It satisfies

P(X) =
∑

x∈X
f(x)

for all events X on A. For example, if P is the distribution characterizing the outcome of

rolling a fair die, its pmf is given by f(x) = 1
6 , where x ∈ A and A = {1, 2, 3, 4, 5, 6}. The

probability an even number is rolled is P({2, 4, 6}) = 1
6 + 1

6 + 1
6 = 1

2 .

2.2.2 Moving to continuous spaces

A probability density function (pdf) is the continuous analog of the pmf. Unfortunately,

although every distribution on a countable set has a pmf, not every distribution on a

continuous space has a pdf. Consider distributions on the real line. We say that a function

f is a pdf of a distribution P on R if for all events X,

P(X) =

∫

X

f(x) dx, (1)

which states that the probability of X is the integral of f on X (in the simplest case, X

is an interval). This idea can be extended to more general spaces. This equation does not

determine f uniquely, but any two solutions f1 and f2 are equal “almost everywhere” (see

Section 2.3.3) and give identical results under integration. Thus, we often refer to a pdf as

the pdf.

For the spaces we consider in this paper, the property of having a pdf is equivalent

to being absolutely continuous (ac). Roughly speaking, a distribution is ac if it never

assigns positive probability to events that have “size zero” in the underlying space. For
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instance, the standard normal distribution is absolutely continuous and has the pdf φ(x) =

exp(−x2/2)/
√
2π. On the other hand, the distribution of y in the model

z ∼ CoinFlip(1/2)

x ∼ Normal(0, 1)
y =















0 if z = heads

x if z = tails.

does not have a pdf. We have used random variables to write the model; this is a commonly

used informal notation that is shorthand for a more rigorous expression that defines the

model. The model represents the following process: flip a fair coin; return 0 if it is heads,

and sample from the standard normal distribution otherwise. We can see that it is not ac:

the event {0} occurs with probability 1/2 (whenever the coin comes up heads), but has an

interval length of zero. We use the cumulative distribution function (cdf) to visualize each

distribution (Figure 1); the cdf F of a distribution P on R is F (x) = P( (−∞, x] ) and

gives the probability that a sample from the distribution takes a value less than or equal to

x. From Equation 1 we know that P has a pdf if and only if there exists a function f such

that F (x) =
∫ x

−∞ f(t) dt. Clearly, no such function exists for the cdf of y due to the jump

discontinuity.

Mixing discrete and continuous types is not the only culprit. Consider the following

process: sample a number u uniformly randomly from [0, 1] and return the vector x =

(u, u) ∈ R2. The distribution of x (a distribution on R2) is not ac: the event X = {(u, u) |

u ∈ [0, 1]} has probability 1, but X is a line segment and thus has zero area. Likewise, there

is no pdf on R2 we could integrate to give positive mass on this zero area line segment.

2.2.3 Applications of the pdf

The pdf is often used to compute expectations (and probabilities, which are a special case of

expectation). Expectation is a fundamental operation in probability and is used in defining

quantities such as mean and variance. The expectation operation E of a distribution P on

R is a higher-order function that satisfies

E(g) =

∫ ∞

−∞
g(x) · f(x) dx
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when P has a pdf, f , and the integral exists. Another application is maximum likelihood

estimation (MLE), which addresses the problem of choosing the member of a family of

distributions that “best explains” observed data. Let P( · ; · ) be a parameterized family of

distributions, where P( · ; θ) is the distribution for a given parameter θ. The MLE estimate

θ∗ of P for observed data x is given by

θ∗ = argmax
θ

f(x; θ)

where f( · ; θ) is the pdf of P( · ; θ). For example, x could be a set of points in Rn we wish

to cluster, and θ∗ could be the estimate of the locations of the cluster centroids. P would

be the family of distributions we believe generated the clusters (a family parameterized by

the positions of the cluster centroids), such as a mixture-of-Gaussians model. More details

are available in [9].

2.2.4 Challenges for language design

Categorically, probability distributions form a monad [22, 55]. This structure forms the

basis of many probabilistic languages because it is minimal, elegant, and presents many

attractive features. First, it provides the look and feel of informal random variable nota-

tion, allowing us to express models as we normally would, while remaining mathematically

rigorous. The monad structure affords formulating probability as an embedded domain

specific language [19, 48, 55, 32] or as a mathematical theory in a proof assistant [3]. Ad-

ditionally, many proofs about distributions expressed in the probability monad are greatly

simplified by the monadic structure. We feel it is desirable to structure a language around

the probability monad, and we investigate supporting pdfs specifically in such languages.

The probability monad consists of monadic return and monadic bind, as usual. Monadic

return corresponds to the point mass distribution. We also provide the Uniform(0,1) dis-

tribution as a monadic value. These three combinators can be used to express a variety of

distributions. The main issue when designing a type system for absolute continuity is that

return creates non-ac distributions (on continuous types), yet—as a core member of the

monadic calculus—it appears in the specification of nearly every distribution, even those

that are ac. The “obvious” induction along the monadic structure is difficult to use to prove
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absolute continuity in the cases of interest. Consider for instance the joint distribution of

two independent Uniform(0,1) random variables, written in our language as

var x ∼ random in var y ∼ random in return (x, y). (2)

It is ac even though the subexpressions return (x, y) and var y ∼ random in return (x, y) are

both not ac, where we treat x and y as real numbers, as dictated by the typing rule for

bind. Also, as implementors we have found it difficult to “eyeball” the rules for absolute

continuity. For example, only the first of these distributions is ac even though they are all

nearly identical to Equation 2:

var x ∼ random in var y ∼ random in return (x, x+ y)

var x ∼ random in var y ∼ random in return (x, y − y)

var x ∼ random in var y ∼ random in return (x, y, x+ y)

Clearly, what is needed is a principled analysis. We provide this in Section 2.4. A natural

urge is wanting to remove return to create a language in which only ac distributions are

expressible. We feel this is undesirable. Without return, we would not be able to express

something as simple as adding two random variables (consider (x + y) instead of (x, y) in

Equation 2). Essentially, return allows us to express random variables as transformations

of other random variables—a fundamental modeling tool we feel should be supported, al-

lowing users to write down models that most naturally capture their domain. Without

return we must extend the core calculus for each transformation we wish to use on random

variables, and we must do so carefully if we want to ensure that non-ac distributions re-

main inexpressible. This extension of the core detracts from minimality and elegance, and

it complicates developing the theory in a verification environment such as Coq, one of our

eventual goals.

Finally, in addition to checking for existence, we would like to also calculate a usable

form for the pdf. Many current probabilistic languages focus on distributions with only

finitely many alternatives, which allows for implementing distributions as weighted lists of

outcomes. The probability monad in this case is similar to the list monad, with some added
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Variables x, y, z, u, v Literals l

Base types τ ::= bool | Z | R | τ1 × τ2

Types t ::= τ | dist τ
Expressions ε ::= x | l | op ε1...εn | if ε1 then ε2 else ε3

Primops op ::= + | ∗ | neg | inv | = | < | (·, ·) | fst | snd
| exp | log | sin | cos | tan | R of Z

Distributions e ::= random | return ε | var x ∼ e1 in e2

Programs p ::= pdf e

Contexts Γ ::= ∅ | Γ, x : τ Υ ::= ∅ | Υ, x : τ ∼ e

Substitution e[x := ε] Free variables FV ( · )

Figure 2: The abstract syntax.

logic describing how bind should propagate the weights. The weighted lists correspond

directly to the pmf, but no such straightforward computational strategy exists for the pdf.

We explore this further in Section 2.5.

2.3 The language

In this section we present the abstract syntax, type system and semantics for our proba-

bilistic language, except for the parts related to pdfs, which we cover in Section 2.4.

2.3.1 Abstract syntax

Figure 2 contains the syntax definitions. In addition to the standard letters for variables,

we also use u and v when we want to emphasize that a random variable is distributed

according to the Uniform(0,1) distribution. The syntactic category for literals includes

Boolean (bool), integer (Z), and real number (R) literals. Types are stratified to ensure

that distributions (dist τ) are only over base types. Integers are a distinct type from the

reals; there is no subtyping in the language. We also stratify terms to simplify analysis.

Expressions and primitive operations (primops) take their standard mathematical meaning,

unless noted otherwise. For simplicity, we overload addition, multiplication, negation, and

integer literals on the integers and reals, but fundamentally there is a + for integers and

a separate + for reals, etc. Inversion inv denotes the reciprocal operation, and log is the
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natural logarithm. We give our semantics in terms of classical mathematics, so we do not

concern ourselves with the issue of computation on the reals. Equality is defined on all

base types in the usual way, and less-than is defined only on the numeric types. We write

(ε1, ε2, ..., εn−1, εn) as shorthand for (ε1, (ε2, ...(εn−1, εn)...)). The function R of Z injects an

integer into the reals. The distribution random corresponds to the Uniform(0,1) distribution.

The next two constructs correspond to monadic return and bind for the probability monad.

The distribution return ε is the point mass distribution, which assigns probability 1 to the

event {ε}. A random variable distributed according to return ε is in fact deterministic:

there is no variation in the value it can take. The bind construct, var x ∼ e1 in e2, is

used to build complex distributions from simpler ones. It can be read: “introduce random

variable x, distributed according to the distribution e1, with scope in the distribution e2”.

It is the only binding construct in the language. For simplicity, we have chosen to omit

let-bindings and functions from our language, but we use both in our examples. We can use

standard substitution rules to reduce such examples to the syntax of Figure 2. Examples

include 〈ε〉 := if ε then 1 else 0 (to inject Booleans into the reals), ε1 − ε2 := ε1 + neg ε2,

ε1/ε2 := ε1 ∗ inv ε2, and ε1 < ε2 < ε3 := if ε1 < ε2 then ε2 < ε3 else false. Finally, free

variables, capture-avoiding substitution, and typing contexts (Γ) are defined in the usual

way. The probability context Υ is used to additionally keep track of the distributions that

random variables are bound to. When we use Υ in places Γ is expected, the understanding

is that the extra information carried by Υ is ignored.

2.3.2 Examples of expressible distributions

With just random, return, and bind, we can already construct a wide variety of distributions

we might care to use in practice. Though we do not have a formal proof of this expressivity,

existing work on sampling suggests that this is the case. Non-uniform random variate

generation is concerned with generating samples from arbitrary distributions using only

samples from Uniform(0,1) [18]. We can see the connection with our language if we view

the constructs by a sampling analogy, which emphasizes understanding a distribution by

its generating process: the phrase var x ∼ e1 in e2 samples a value x from the sampling
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function e1, which is used to create a new sampling function e2; random samples from the

Uniform(0,1) distribution; return ε always returns ε as its sample. For instance, the standard

normal distribution can be defined in our language using the Box-Muller sampling method:

std normal :=
var u ∼ random in var v ∼ random in

return (sqrt(−2 ∗ log u) ∗ cos(2 ∗ π ∗ v))

where sqrt ε := exp ((1/2) ∗ log ε). In particular, our language is amenable to inverse

transform sampling. Likewise, we can express other common continuous distributions:

uniform ε1 ε2 :=

var u ∼ random in

return ((ε2 − ε1) ∗ u+ ε1)

std logistic :=

var u ∼ random in

return (log (1/u− 1))

normal ε1 ε2 :=

var x ∼ std normal in

return (ε2 ∗ x+ ε1)

std exponential :=

var u ∼ random in

return (−log u)

These are the Uniform(a,b), standard logistic, standard exponential, and Normal(µ, σ) dis-

tributions. We intentionally parameterize the normal distribution by its standard deviation

instead of its variance, for simplicity. We define it as a transformation of a standard normal

random variable and require ε2 > 0. We can also express discrete distributions, such as the

coin flip distribution,

flip ε := var u ∼ random in return (u < ε),

which takes the value true with probability ε. This is equivalent to the Bernoulli distribution.

In fact, we can express any distribution with finitely many outcomes:

var u ∼ random in

return (if u < 1/3 then 10 else if u < 2/3 then 20 else 30)

Admittedly, a more satisfying definition would be possible if we had lists in the language.

The reason we do not is that, although others have addressed recursion and iteration in the

context of defining probability distributions [34], we have not yet fully reconciled recursion

with pdfs. The absence of recursion also means that we do not support distributions in
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the style of rejection sampling methods, which resample values until a stopping criterion is

met. Furthermore, we do not elegantly support infinite discrete distributions in the core

language, many of which are naturally described using recursion. However, in Section 2.5

we describe how to add special support for any distribution with a known pdf.

We also define some higher-order concepts. The following functions are used to create

joint distributions and mixture models:

join e1 e2 :=

var x1 ∼ e1 in

var x2 ∼ e2 in

return (x1, x2)

mix ε e1 e2 :=

var z ∼ flip ε in

var x1 ∼ e1 in

var x2 ∼ e2 in

return (if z then x1 else x2).

The mixture model is created by flipping a coin with the specified probability to determine

which component distribution to sample from. For instance, a simple mixture-of-Gaussians

is given by mix (1/2) std normal std normal. We have defined discrete and continuous dis-

tributions, and now we can use join to define non-trivial hybrid distributions as well, such

as join (flip (1/2)) random, which has type dist (bool×R). Essentially, if-expressions enable

mixture models and tuples enable joint models. These two concepts are special cases of hi-

erarchical models, which are models that are defined in stages. Distributions defined using

nested instances of bind correspond to hierarchical models.

These examples are all ac, but we can also express non-ac distributions, such as the

example from Section 2.2, written jumpy := mix (1/2) (return 0) std normal. In our lan-

guage, jumpy will successfully type check as a distribution, but the program pdf jumpy will

be rejected—as it should be—because jumpy is not absolutely continuous. The ability to

represent non-ac distributions, even though they cannot be used in programs, is in antic-

ipation of future language features such as expectation and sampling, which can be used

with non-ac distributions.
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2.3.3 Measure theory preliminaries

Measure theory is the basis of modern probability theory and unifies the concepts of discrete

and continuous probability distributions. It is a precise way of defining the notion of volume.

We develop our formalization within this framework. We give only a brief overview of the

necessary concepts; details are available in [47].

Basics Let A be a set we wish to measure. A σ-algebra M on A is a subset of the

powerset P(A) that contains A and is closed under complement and countable union. The

pair (A,M) is a measurable space. A subset X of A is M-measurable if X ∈ M. In

the context of probability, A is the set of outcomes and M is the set of events. For a

function f : A → B, the f -image of a subset X of A, written f [X], denotes the set

{f(x) | x ∈ A}, and the f -preimage of a subset Y of B, written f−1[Y ], denotes the set

{x ∈ A | f(x) ∈ Y }. When f is on measurable spaces, we say f is (MA,MB)-measurable

when the f -preimage of any MB-measurable set is MA-measurable. Measurable functions

are closed under composition. We drop the prefix and say measurable (for functions or sets)

when it is clear what the σ-algebras are. The σ-algebra machinery is needed to ensure a

consistent theory; there are spaces which contain pathological sets that violate intuition

about volume, e.g. the Banach-Tarski “doubling ball” paradox. Measure theory sidesteps

these issues by preferring measurable sets and functions as much as possible. When A is

countable, no such problems arise, and we can always take P(A) for M.

Measures A nonnegative function µ : M → R+∪{∞} is a measure if µ(∅) = 0, µ(X) ≥ 0

for all X in M, and µ(
⋃∞

i=1Xi) =
∑∞

i=1 µ(Xi) for all sequences of mutually disjoint Xi

(countable additivity). The triple (A,M, µ) is ameasure space. If additionally µ(A) = 1 then

µ is a probability measure (conventionally written P), and the triple is a probability space. We

use the terms probability measure, probability distribution and distribution interchangeably.

We use C to denote the counting measure, which uses the number of elements of a set as the

set’s measure. We use L to denote the Lebesgue measure on R, which assigns the length

|b− a| to an open interval (a, b); the sizes of other sets can be understood by complements
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and countable unions of intervals. The product measure µA⊗µB of two measures µA and µB

on measurable spaces (A,MA) and (B,MB) is the measure µ, on A× B and the product

σ-algebra MA ⊗MB, such that

µ(X × Y ) = µA(X) · µB(Y )

for X ∈ MA and Y ∈ MB. The measure is unique when µA and µB are σ-finite. The σ-

finiteness condition is a technical condition that is satisfied by all measures we will consider

in this paper and requires that the space can be covered by a countable number of pieces

of finite measure.

Null sets Ameasurable setX is µ-null if µ(X) = 0; X is said to have µ-measure zero. The

empty set is always null, the only C-null set is the empty set, and all countable subsets of R

are L-null. A propositional function holds µ-almost everywhere (µ-a.e.) if the set of elements

for which the proposition does not hold is µ-null. For instance, two functions of type R → R

are equal L-almost everywhere if they differ at only a countable number of points. A measure

space (A,M, µ) is complete if all subsets of any µ-null set are M-measurable. Completion is

an operation that takes any measure space (A,M, µ) and produces an “equivalent” complete

measure space (A,M′, µ′) such that µ′(X) = µ(X) for X ∈ M. Null sets are ubiquitous

in measure theory, so it will be handy to work in spaces that support null sets as much as

possible. Thus, completion makes measure spaces nicer to work with. The n-dimensional

Lebesgue measure L
n is the n-fold completed product of L. For measures µ and ν on a

measurable space, ν is absolutely continuous with respect to µ if each µ-null set is also

ν-null.

Integration A fundamental operation involving measures is the abstract integral, a gener-

alization of the Riemann integral that avoids some of its deficiencies. The abstract integral

of a measurable function f :A→R w.r.t. a measure µ on A is written
∫

f dµ. The integral

is always defined for nonnegative f . The integral for arbitrary f is defined in terms of the

positive and negative parts of f and may not exist; if it does we say f is µ-integrable. We

write
∫

X
f dµ as shorthand for

∫

λx � 1X(x) · f(x) dµ, which restricts the integral to the
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subset X. We write 1X for the indicator function on X. Expectation refers to abstract

integration w.r.t. a distribution. The abstract integral satisfies µ(X) =
∫

1X dµ for all

measurable X. In terms of probability, it says that the probability of X is the expectation

of 1X . Another consequence is that null sets cannot affect integration: two functions that

are equal µ-a.e. give the same results under integration w.r.t. µ. Abstract integration w.r.t.

C and L is ordinary (possibly infinite) summation and the ordinary Lebesgue integral, re-

spectively. The Lebesgue integral agrees with the Riemann integral on Riemann-integrable

functions.

Measurability Ordinarily, to conclude that a distribution such as var x ∼ e in return (f x)

is well-formed, we are obligated to verify that f is a measurable function. However, non-

measurable sets and functions are actually quite pathological and constructing them requires

the Axiom of Choice [62]. None of the constructs in our language are as powerful as the

Axiom of Choice (though we do not have a formal proof of this), thus all constructible

expressions represent measurable functions. This discharges the obligation, and we do not

make any further mention of checking for measurability.

Stocked spaces For most applications, we often have a standard idea of how spaces are

measured. We now formalize this practice. A space A is a stocked space if it comes equipped

with a complete measure space (A,MA, µA), which is the stock measure space of A. We call

MA the stock σ-algebra of A and µA the stock measure of A. The abstract integral w.r.t. µA

is the stock integral of A. We define stock measure spaces for the spaces B = {true, false},

Z, R, and product spaces between stocked spaces as follows:

(MB, µB) = (P(B),C)

(MZ, µZ) = (P(Z),C)

(MR, µR) = (the L-measurable sets,L)

(MA×B, µA×B) = completion(MA ⊗MB, µA ⊗ µB).

This definition matches what is used in practice: e.g. C becomes the measure for countable

spaces, and L
n becomes the measure for Rn. For the rest of the paper, we assume spaces
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Γ ⊢ random : dist R
t-rand

Γ ⊢ ε : τ

Γ ⊢ return ε : dist τ
t-ret

Γ ⊢ e1 : dist τ1 Γ, x : τ1 ⊢ e2 : dist τ2
Γ ⊢ var x ∼ e1 in e2 : dist τ2

t-bind

Figure 3: Standard monadic typing rules for distributions.

are stocked, unless explicitly noted otherwise. We say that a distribution on A is ac if it is

ac with respect to µA.

Densities A function f is a pdf of a distribution P on A if P(X) =
∫

X
f dµA for all

measurable X. Expectation can be written using the pdf:

∫

g dP =

∫

λx � g(x) · f(x) dµA.

A joint pdf is the pdf of a joint distribution, which is simply a distribution on a product

space. We later use the fact that the joint pdf f of a model such as x1 ∼ P1, x2 ∼ P2( · ;x1)

can be written as the product of the individual (parameterized) pdfs: f(x1, x2) = f1(x1) ·

f2(x2;x1).

2.3.4 Type system and semantics for distributions

We now discuss the type system and semantics for syntactic categories besides programs.

The type system for expressions is ordinary. We assume an external mechanism for enforcing

the preconditions necessary to ensure totality of functions, such as an automated theorem

prover or the programmer themself. For instance, log must be applied to only positive

real numbers. Distributions obey standard monadic typing rules (Figure 3). The “random

variables” introduced by bind are really just normal variables and are typed as such; calling

them random variables is a reminder about the role they play. The typing rules ensure that

random variables are never used outside a probabilistic context.

We give our language a semantics based in classical mathematics with total functions.

Base types have the usual meaning. The denotation of dist τ is the set of distributions
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possible on τ :

T [[dist τ ]] = {P | (T [[τ ]],Mτ ,P) is a probability space}.

We overload stock measure space notation for types; thus, Mτ and µτ are shorthand for

MT [[τ ]] and µT [[τ ]]. Let E [[e]]ρ be the denotation of a distribution e under the environment

ρ, also overloaded for expressions ε. Expressions have the semantics of their corresponding

forms from classical mathematics. As stated before, random is the Uniform(0,1) distribution

E [[random]]ρ = λX � L(X ∩ [0, 1]),

which says that the probability of an event X is its “interval size” on [0,1]. Return is the

point mass distribution

E [[return ε]]ρ = λX � 1X(E [[ε]]ρ),

which gives an event X probability 1 as long as it includes the outcome ε. Bind expresses

the Law of Total Probability,

E [[var x ∼ e1 in e2]]ρ = λY �

∫

λx′ � f(x′)(Y ) dP,

where f(x′) = E [[e2]](ρ{x 7→ x′}) and P = E [[e1]]ρ. The family of distributions e2 is parame-

terized by the variable x, in essence. The probability of an event Y is the “average opinion”

(the P-expectation) of what each member of the family thinks is the probability of Y . The

integral exists because it is the expectation of a bounded function.

2.4 Type system and semantics for programs

The program pdf e is well-formed if the distribution e permits a pdf. The following theorem

gives us a sufficient condition.

Theorem 2.4.1 (Radon-Nikodym). For any two σ-finite measures µ and ν on the same

measurable space such that ν is absolutely continuous w.r.t. µ, there is a function f such

that ν(X) =
∫

X
f dµ.

We call f a Radon-Nikodym derivative of ν with respect to µ, denoted dν/dµ; pdf

corresponds to the Radon-Nikodym operator. The condition is also necessary: given a
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satisfying f , ν is (trivially) ac. All stock measures we define and all distributions are σ-

finite, so for our purposes absolute continuity is equivalent to possessing a pdf. Though

not necessarily unique, Radon-Nikodym derivatives are equal µ-almost everywhere. When

µ is the counting measure, the Radon-Nikodym derivative is a pmf. For hybrid spaces, it

is a function which must be summed along one dimension and integrated along the other

to obtain quantities interpretable as probabilities. Radon-Nikodym derivatives unify pmfs,

pdfs and hybrids of the two. For this reason, we refer to all of these as pdfs. We use “pmf”

when we want to emphasize its discrete nature.

Defining a type system for absolute continuity in terms of the straightforward induction

on distribution terms proves unwieldy. Suppose we want to check if the distribution in

Equation 2 is ac; we must verify that the probability of any L
2-null set Z is zero. A

straightforward induction leads us to trying to show

P({x |







var y ∼ random in

return (x, y)






(Z) 6= 0}) = 0

where P is the Uniform(0,1) distribution, and we have abused notation slightly by mingling

object language syntax with ordinary mathematics. This states that the body of the out-

ermost bind assigns Z probability zero, P-almost always. It is unclear how to proceed from

here or how to remove concepts like null sets from the mechanization. We take an alternate

approach based on the insight that we can reason about a distribution by examining how

it transforms other distributions. Our approach, and outline of the following subsections,

is as follows:

• We introduce the new notion of a non-nullifying function and prove a transformation

theorem stating that when a random variable is transformed, the output distribution

is ac if the input distribution is ac and the transformation is non-nullifying. We also

prove some results about non-nullifying functions.

• We define the random variables transform of any distribution written in our language

and show that for a large class of distributions the transformation theorem is appli-

cable.
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• We present a type system which defines absolute continuity of a distribution in terms

of whether its RV transform is non-nullifying. As implementors, we have found it

easier to come up with the rules for non-nullifying functions.

Measure-theoretic concepts like σ-algebras, null sets, and the Lebesgue measure, while

present in the metatheory, do not need to be operationalized for implementing the type

checker. Also, due to the measure-theoretic foundation, we correctly handle cases that are

not typically explained, such as pdfs on hybrid spaces. We conclude the section with the

semantics of programs.

2.4.1 Absolute continuity and non-nullifying functions

A function h : A → B is non-nullifying if the h-preimage of each µB-null set is µA-null;

preimages of null sets are always null, and forward images of non-null sets are always non-

null. A function that fails to be non-nullifying is called nullifying. The next theorem

establishes the link between absolute continuity and non-nullity.

Theorem 2.4.2 (Transformation). For a function h : A → B and an ac distribution P on

A, the distribution

Q(Y ) = P(h−1[Y ]) (3)

on B is ac if h is non-nullifying.

Proof. Let Y be a µB-null set. By the non-nullity of h, the set h−1[Y ] is µA-null. By the

absolute continuity of P, we have P(h−1[Y ]) = 0, implying that Y is also Q-null.

This style of defining Q may seem odd, but it actually underlies the use of random

variables as a modeling language. For instance, the model x ∼ P, y = h(x) exhibits the

relationship Q(Y ) = P(h−1[Y ]), where Q is the distribution of y. In general, the reverse

direction does not hold; h can be nullifying even if Q is ac. This happens when h has

nullifying behavior only in regions of the space where P is assigning zero probability. This

will be a source of incompleteness in the type system.
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Lemma 2.4.3 (Discrete domain). A function h : A → R is nullifying if A is non-empty

and countable.

Proof. Let x be an element of A. The set {x} has positive counting measure while its

h-image, which is a singleton set, is L-null.

This implies R of Z is nullifying, meaning that when we view an integer random variable

as a real random variable, it loses its ability to have a pdf. This is desirable behavior;

different spaces have different ideas of what it means to be a pdf. We would not want to

mark an integer random variable as ac and later attempt to integrate its pmf in a context

expecting a real random variable.

Lemma 2.4.4 (Discrete codomain). A function h : A → B is non-nullifying if B is count-

able.

Proof. The h-preimage of the empty set (the only C-null set) is the empty set, which is

always null.

This reasoning corroborates the fact that distributions on countable spaces always have

a pmf.

Lemma 2.4.5 (Interval). A function h : R → R is nullifying if it is constant on any

interval.

Proof. Let h be constant on (a, b); (a, b) is not L-null, but its h-image (a singleton set) is

L-null.

One way to visualize how this leads to a non-ac distribution is to observe that the

transformation h takes all the probability mass along (a, b) and non-smoothly concentrates

it onto a single point in the target space.

Lemma 2.4.6 (Inverse). An invertible function h : R → R is non-nullifying if its inverse

h−1 is an absolutely continuous function.
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Proof. We have discussed absolute continuity of measures; the absolute continuity of func-

tions is a related idea. It is a stronger notion than continuity and uniform continuity.

Absolutely continuous functions are well behaved in many ways; in particular, the images

of null sets are also null sets. Coupled with the fact that an h-preimage is an h−1-image, this

proves the claim. More details on absolutely continuous functions can be found in [47].

This result shows that log, exp, and non-constant linear functions are non-nullifying.

We believe the idea can be extended without much difficulty to show that functions with a

countable number of invertible pieces, such as the trigonometric functions and non-constant

polynomials, are also non-nullifying.

Lemma 2.4.7 (Piecewise). For functions c : A → B and f, g, h : A → B, where h(x) =

if c(x) then f(x) else g(x), h is non-nullifying if f and g are non-nullifying.

Proof. Let Y be a µB-null set. The set h−1[Y ] is a subset of f−1[Y ] ∪ g−1[Y ] and is thus

µA-null, by non-nullity of f and g, and the countable additivity and completeness of µA.

Lemma 2.4.8 (Composition). The set of non-nullifying functions is closed under function

composition.

Proof. Let f : A → B and g : B → C be non-nullifying functions and let h = g ◦ f . The

h-preimage of a µC-null set Z is given by h−1[Z] = f−1[g−1[Z]], and is thus µA-null, by the

non-nullity of f and g.

Lemma 2.4.9 (Projection). The function h(x, y) = x of type A×B → A is non-nullifying.

Proof. Let X be a µA-null set. Its h-preimage is X × B. By the properties of product

measure, we have that

µA×B(X ×B) = µA(X) · µB(B) = 0 · µB(B) = 0.

Even if µB(B) = ∞, the measure-theoretic definition of multiplication on extended non-

negative reals defines 0 · ∞ = 0.
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Along these lines, we can show that returning a permutation of a subset of tuple compo-

nents is also a non-nullifying function. The last two results permit us to ignore uninvolved

arguments when reasoning about the non-nullity of the body of a function.

2.4.2 Distributions and RV transforms

A large class of distributions in our language can be understood by Equation 3. From the

syntax we know that a distribution e must take the form of zero or more nested binds

terminating in a body that is either random or return ε. We focus on the latter, non-trivial

case. The expression ε represents a transformation of the random variables xi introduced by

the binds. The function λ(x1, ..., xn) � ε is the random variables transform (RV transform)

of the distribution e, where we use tuple pattern matching shorthand to name the com-

ponents of a tuple argument. The correspondence between distributions in our language

and Theorem 2.4.2 is as follows: let Q be the denotation of e, let h be the RV transform

of e, and let P be the joint distribution of the random variables introduced on the spine

of e. The class of distributions for which the theorem is applicable is given by the set of

distributions for which each ei is parametrically ac w.r.t. the random variables preceding

it, where ei is the distribution corresponding to xi. In other words, the distribution for ei

must be ac while treating free occurrences of x1, ..., xi−1 as fixed, unknown constants. This

ensures that the joint distribution is also ac; the joint pdf can be written as the product

of the individual parameterized pdfs. This is a commonly used (implicit) assumption in

practice. For example, the distribution

var u ∼ random in var z ∼ flip u in return (u+ 〈z〉)

has the RV transform λ(u, z) � u+ 〈z〉, which has type R× B → R and is transforming the

joint distribution of random and e2 := flip u. The variable u appears free in e2, making e2

parametric in u; the restriction requires that e2 is ac for all possible values of u, which is

the case here. Two extensionally equivalent distributions may have different RV transforms

and spines because of intensionally different representations. To show that this choice of

P, Q, and h satisfies Equation 3, we appeal to the semantics of distributions (defined in

Section 2.3.4). Consider the general case e := var xi ∼ ei in return ε, where we have used
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Υ;Λ ⊢ random ac
ac-rand

Υ;Λ ⊢ ε nn

Υ;Λ ⊢ return ε ac
ac-ret

Υ; ∅ ⊢ e1 ac Υ ⊢ e1 : dist τ
Υ, x : τ ∼ e1; Λ, x ⊢ e2 ac

Υ;Λ ⊢ var x ∼ e1 in e2 ac
ac-bind

Figure 4: The absolute continuity judgment, Υ;Λ ⊢ e ac.

the bar as shorthand for nested binds. The denotation Q of e under an environment ρ is

given by

Q(Y ) =

∫

dPi λx′i� 1Y (E [[ε]]ρ{xi 7→ x′i})

where Pi is the denotation of ei (extending ρ as necessary) and we have again used the bar

notation, to denote iterated expectation and the repeated extension of the environment ρ

with variable mappings. We can now rewrite the expectations to use their corresponding

pdfs fi and then replace the iterated integrals with a single product integral using their

joint pdf f:

Q(Y ) =

∫

dµτi
λx′i �fi(x

′
i;x

′
1, ..., x

′
i−1) · 1Y (E [[ε]]ρ{xi 7→ x′i})

=

∫

dµτ λx � f(x) · 1Y (h(x))

=

∫

dP λx � 1Y (h(x))

= P({x | h(x) ∈ Y }) = P(h−1[Y ])

where x = (x′1, ..., x
′
n), h(x) = E [[ε]]ρ{xi 7→ xi}, τi is the type of each xi, and τ is their

product. We have also used the fact that the expectation of the indicator function on a set

is the probability of that set (the set here is {x | h(x) ∈ Y }, not Y ). Replacing an iterated

integral with a product integral is not always legal but is possible here because the integral

is of a nonnegative function w.r.t. independent measures (see Tonelli’s theorem, [47]).

2.4.3 Type system for programs

All judgments are defined modulo α-conversion. A program pdf e is well-formed if e is an

ac distribution (∅ ⊢ e : dist τ holds for some τ and ∅; ∅ ⊢ e ac holds). If the judgment

35



x ∈ Λ

Υ;Λ ⊢ x nn
nn-var

Υ ⊢ ε : τ τ countable

Υ;Λ ⊢ ε nn
nn-count

Υ;Λ ⊢ ε nn op ∈ {neg, inv, log, exp, sin, cos, tan}
Υ;Λ ⊢ op ε nn

nn-op

Υ;Λ ⊢ ε1 nn Υ;Λ ⊢ ε2 nn

Υ;Λ ⊢ if ε then ε1 else ε2 nn
nn-if

Υ;Λ ⊢ ε nn op ∈ {fst, snd}
Υ;Λ ⊢ op ε nn

nn-proj

Υ;Λ ⊢ ε1 ⊥ ε2 Υ;Λ ⊢ ε1 nn Υ;Λ ⊢ ε2 nn

Υ;Λ ⊢ (ε1, ε2) nn
nn-pair

xi ∈ Λ x1, ..., xn are distinct

Υ;Λ ⊢ (x1, ..., xn) nn
nn-vars

Υ;Λ ⊢ (ε1, ε2) nn

Υ;Λ ⊢ ε1 + ε2 nn
nn-plus

FV (ε2) ∩ Λ = ∅ Υ;Λ ⊢ ε1 nn

Υ;Λ ⊢ ε1 + ε2 nn
nn-linear

Υ;Λ ⊢ (ε1, ε2) nn

Υ;Λ ⊢ ε1 ∗ ε2 nn
nn-mult

l 6= 0 Υ;Λ ⊢ ε nn

Υ;Λ ⊢ l ∗ ε nn
nn-scale

Figure 5: The non-nullity judgment, Υ;Λ ⊢ ε nn.

Υ; Λ ⊢ e ac (Figure 4) holds then e is an ac distribution under the probability context

Υ and the active variable context Λ, where Λ is given by the grammar Λ ::= ∅ | Λ, x.

Variables in Λ are currently active and should be understood in a probabilistic sense, while

those not in Λ are inactive and should be treated as fixed parameters. The contexts obey

the following invariant: Λ is always the “prefix” of Υ, i.e. the variables in Λ correspond

directly to the n most recent entries added to Υ, where n is the length of Λ. Rule ac-

rand asserts that the Uniform(0,1) distribution is ac. The main action of rules ac-bind

and ac-return is to prepare a call to the non-nullity judgment. For Theorem 2.4.2 to

be applicable, a distribution along the spine must be parametrically ac w.r.t. the random

variables preceding it; thus, in ac-bind we check that e1 is ac without marking any current

random variables as active. We reach the body of the RV transform in ac-return. Roughly

speaking, Λ (pointing into Υ) and ε correspond to P and h in Theorem 2.4.2.

Next is the non-nullity judgment (Figure 5). If Υ; Λ ⊢ ε nn holds, then ε represents the

body of a non-nullifying function under Υ and Λ. The variables in Λ are the arguments to the
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RV transform. Throughout this discussion, we implicitly use the composition and projection

lemmas (Lemmas 2.4.8 and 2.4.9) to ignore uninvolved arguments during analysis. For

example, in rule nn-var, we could be analyzing a function with multiple inputs, but we

can drop all of them but x, leaving us to analyze the function λx � x, which is trivially

non-nullifying. Under the hood, what we are actually doing is representing the original

transform as the composition of a function that selects a single components of a tuple with

the identity function λx � x. The composition lemma is also the justification for being able

to recurse into subexpressions. Rule nn-count is merely an application of Lemma 2.4.4;

the types bool, Z and products thereof define the countable types. Note that this covers

the cases of =, <, integer neg, + and ∗, and Boolean and integer literals. Rules nn-op,

nn-if and nn-proj are direct translations of Lemmas 2.4.6, 2.4.7 and 2.4.9. The injection

from integers into the reals is nullifying (Lemma 2.4.3), so there is no rule for R of Z. Rule

nn-pair expresses the idea that the joint distribution of independent ac distributions is

ac. If Υ; Λ ⊢ ε1 ⊥ ε2 holds then ε1 and ε2 represent independent distributions under Υ and

Λ. Its definition is

Λ ∩ Anc(Υ, FV (ε1)) ∩ Anc(Υ, FV (ε2)) = ∅
Υ;Λ ⊢ ε1 ⊥ ε2

indep

where Anc(Υ, X) =
⋃

x∈X anc(Υ, x). It states that ε1 and ε2 must not have any ancestors

in common. The function anc(Υ, x) computes the ancestors of a random variable x. A

random variable y is the parent of a random variable x if y appears free in the distribution

that x is bound to. Rule nn-vars corresponds to the corollary of Lemma 2.4.9 that states

that you can drop and permute tuple components. The requirement that the variables

are distinct is important; the distribution var u ∼ random in return (u, u) is not ac, as

we saw in Section 2.2. We have multiple rules for addition because they each capture a

different usage of plus. Rule nn-plus states that if the formation of the pair (ε1, ε2) is non-

nullifying, then ε1+ε2 is also non-nullifying because it is the composition of tuple formation

with (+) : R× R → R, where the latter is non-nullifying by corollary to Lemma 2.4.6. Rule

nn-linear represents the idea of composing with the non-nullifying function λx � x + c,

where c is a constant w.r.t. the arguments of the RV transform. There is an analogous
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rule for when the constant appears as the left operand. Rules nn-mult and nn-scale are

analogous. Note that nn-scale is slightly weaker than its counterpart nn-linear, only

because it needs to prove that the scaling coefficient is nonzero.

Discussion We believe our type system is sound; the only remaining case to rigorously

prove is nn-pair. The soundness of the reduction to non-nullity is given by Theorem 2.4.2,

and the soundness of the other cases in the non-nullity judgment are covered by the lemmas

in Section 2.4.1. Stating the needed lemma for nn-pair essentially requires formalizing

the idea that the conditional distribution of the second component conditioned on the first

component should be ac. In non-nullity terms, the second component should still have a

degree of freedom even after fixing the first. Rigorously stating this involves conditional

probability, putting it outside the scope of the current work.

There are few sources of incompleteness in our type system. For instance, nn-pair

conservatively requires ε1 and ε2 to be independent. The distribution

var x ∼ random in var y ∼ random in return (exp x, x+ y)

is ac despite the fact that the tuple components are not independent: even if we know the

value of exp x, the “residual” stochasticity in the quantity x+ y is still ac. The joint pdf

is given by multiplying the marginal pdf of the first component by the conditional pdf of

the second component conditioned on the first. This is a similar issue as the parametric ac

requirement on spine distributions. Formulating this generalization of nn-pair is interesting

future work. Likewise, nn-if conservatively requires both branches of an if-expression to

be non-nullifying. The distribution

var x ∼ std normal in return(if x<0 then min x 0 else max x 0)

is not accepted as ac because both branches (λx �min x 0 and λx �max x 0) are nullifying,

even though the distribution is extensionally equivalent to var x ∼ std normal in return x,

which is ac. We define min and max in the usual way, using if. Finally, non-nullity is

sufficient but not necessary for absolute continuity to hold. For instance, the RV transform
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of

var x ∼ random in return (if x < 100 then x else 100)

is λx � if x < 100 then x else 100, which is nullifying due to the constant portion, thus our

type system does not accept this distribution as ac. However, x only takes values on (0, 1),

so the second branch is never entered, and thus the distribution is extensionally equivalent

to the ac distribution var x ∼ random in return x.

2.4.4 Semantics of programs

The denotation of a program pdf e is that it is a member of the set of Radon-Nikodym

derivatives of the distribution e:

[[pdf e]] ∈ {f | ∀X, P(X) =

∫

X

f dµτ}

where P = E [[e]]{} is the denotation of e under the empty environment and e has type dist τ .

The procedure discussed in the next section calculates a member of this set.

2.5 Calculating density functions

The previous sections have defined a language in which it is possible to express pdfs. Our

goal now is to mechanically obtain a usable form of the pdf for a given distribution. But

what constitutes a usable form? We are motivated by applications of the pdf and the need

to interface with existing software. For instance, we may want to use numerical optimization

software to perform MLE, where the pdf appears in the objective function; we may also

want to symbolically derive gradient information to improve the search. Or, we may want to

use the pdf to calculate an expectation using a numerical integrator. Roughly speaking, we

call a term “usable” if we can map it onto the capabilities of existing software in accordance

with common practice. For example, the term λx� x+5 is usable; in practice, real addition is

mapped to floating point addition. Likewise,
∫ 5
0 x2 dx is usable; the integral is Riemannian

and in a form accepted by computer algebra systems (cas) and numerical integrators. On

the other hand, terms like
∫

g dP and dP/dL make use of measure-theoretic operations such

as abstract integration and the Radon-Nikodym derivative. Current software do not handle
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Target types σ ::= τ | σ1 → σ2

Target terms δ ::= ε | λx : τ � δ | δ1 δ2 |
∫

δ

Typing
Γ ⊢ δ : τ → R

Γ ⊢
∫

δ : R
t-int

Semantics E [[
∫

δ ]]ρ =

∫

E [[δ]]ρ dµτ

Figure 6: The target language.

these operations (though, progress on mechanizing measure theory has been made [40]).

Thus, the basic plan is to eliminate measure-theoretic concepts during pdf calculation.

This means the constructs random, return, bind, and pdf should not appear in a pdf term

because they involve measure theory, metatheoretically.

It will take some ingenuity to remove the Radon-Nikodym derivative (pdf). It has

been shown that the Radon-Nikodym derivative is a non-computable operator: given a

distribution, there is no general computable procedure for computing its pdf [28]. The

discrete case at least enjoys the fact that the pmf has a straightforward definition in terms of

its distribution; if P is an executable implementation of a discrete distribution, an executable

implementation of its pmf dP/dC is given by λx � P({x}). In general, however, we will

need to tackle the calculation of pdfs with a collection of techniques. Our basic approach

is as follows. First, we define a target language that defines what constitutes a usable

form. Second, we provide a procedure that converts many distributions accepted as ac

by our type system into pdfs expressed in the target language. Some RV transforms are

mathematically inconvenient, so we will not be able to calculate certain pdfs from scratch; in

particular, dependence between random variables makes the general case difficult. However,

the design permits modularly adding knowledge about individual distributions with known

pdfs, enabling the procedure to calculate pdfs for programs that use these distributions as

subcomponents. This allows us to handle many useful cases.
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random $ δ 7→
∫

λx : R � 〈0 < x < 1〉 ∗ δ x

return ε $ δ 7→ δ ε

e2 $ δ 7→ δ′ e1 $ λx � δ′ 7→ δ′′

var x ∼ e1 in e2 $ δ 7→ δ′′

Figure 7: The probability compiler, e $ δ 7→ δ′.

2.5.1 The target language

The target language extends expressions with λ-abstraction, application, and the stock in-

tegral (Figure 6). We treat functions in a standard way. Notationally, we skip specifying τ

in abstractions when the choice of τ is clear. Computing closed-form solutions for integrals

is not always feasible or possible, so integrals cannot be completely eliminated from the

target language. The integral is well-formed if its integrand is real-valued and summable (a

function f is µ-summable if
∫

f dµ is finite). We require users of the target language (com-

piler writers) to manually ensure summability; this is reasonable for a back-end language.

We have verified summability for each use of stock integration in the compilers presented in

this section. Although a measure-theoretic concept, stock integration is close enough to the

notion of integration used by numerical and symbolic solvers to be useful as a compilation

target. Recall, stock integration over C and L is ordinary summation and Lebesgue integra-

tion, respectively. For most applications, Lebesgue integration will coincide with Riemann

integration.

2.5.2 The probability compiler

We need to calculate probabilities as a subroutine of pdf calculation. We achieve this by

translating distributions into Kozen-style terms [34]. The probability compiler e $ δ 7→ δ′

performs this translation (Figure 7). It takes a distribution e of type dist τ and a function δ

from τ to [0, 1] and returns the expectation of δ w.r.t. e. When δ is the indicator function on

a set X, δ′ is the e-probability of X. For instance, suppose we want to know the probability

that a sample from flip (3/4) is true. We invoke the probability compiler with e := flip (3/4)
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Υ;Λ ⊢ random y λx : R � 〈0 < x < 1〉 p-rand

Υ ⊢ e1 : dist τ Υ, x : τ ∼ e1; Λ, x ⊢ e2 y δ

Υ;Λ ⊢ var x ∼ e1 in e2 y δ
p-bind

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ return ε y δ
p-ret

Figure 8: The distribution-to-pdf converter, Υ; Λ ⊢ e y δ.

and δ := λz : bool � 〈z〉, producing
∫

λx : R � 〈0 < x < 1〉 ∗ (λu � (λz � 〈z〉) (u < 3/4)) x

for δ′, which is equivalent to
∫ 1
0 〈x < 3/4〉 dx = 3/4, as expected. Likewise, to derive the

probability that a standard normal random variable stays within a standard deviation of its

mean, we would invoke the probability compiler with e := std normal and δ := λx � 〈−1 <

x < 1〉. Details on how this computes probabilities are given by Kozen and can also be

understood by the expectation monad [55]. We also need the judgment Υ ⊢ ε $ δ 7→ δ′, which

invokes the probability compiler on the distribution corresponding to the RV transform body

ε in the context Υ.

2.5.3 The pdf calculation procedure

We structure the pdf calculation procedure as we did the type system: the judgment on

distributions prepares a call to the judgment on RV transforms. The pdf of a well-formed

program pdf e is given by the δ satisfying ∅; ∅ ⊢ e y δ. The judgment Υ;Λ ⊢ e y δ

calculates the pdf δ of the distribution e under Υ and Λ (Figure 8). Rule p-rand gives the

pdf of Uniform(0,1): the indicator function on (0, 1). Rules p-ret and p-bind build the

contexts and invoke the next compiler. The real work begins in the judgment Υ;Λ ⊢ ε δ,

which computes the pdf δ corresponding to the RV transform body ε under Υ and Λ. We

present this judgment in two parts, one each for univariate and multivariate transforms.

The multivariate transforms must deal with the issue of dependence between inputs or

between outputs of the transform.
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Υ;Λ ⊢ ε δ

Υ;Λ ⊢ log ε λx : R � δ (exp x) ∗ exp x
p-log

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ exp ε λx : R � δ (log x) ∗ (1/x) p-exp

FV (ε2) ∩ Λ = ∅ Υ;Λ ⊢ ε1  δ

Υ;Λ ⊢ ε1 + ε2  λx : R � δ (x− ε2)
p-linear

Υ;Λ ⊢ ε δ l > 0

Υ;Λ ⊢ l ∗ ε λx : R � δ (x/l) ∗ (1/l) p-scale

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ neg ε λx : R � δ (−x)
p-neg

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ inv ε λx : R � δ (1/x) ∗ (1/(x ∗ x)) p-inv

Figure 9: The transform-to-pdf converter, Υ; Λ ⊢ ε δ, univariate cases.

Univariate transforms We use univariate for RV transforms between spaces that are

not product spaces. The correctness of rules p-log, p-exp, p-linear, and p-scale is given

by the following lemma.

Lemma 2.5.1. For absolutely continuous distributions P and Q on R and a function h :

R → R such that Q(Y ) = P(h−1[Y ]), if h is strictly increasing, differentiable and invertible,

then the function

g(y) = f(h−1(y)) · d

dy
h−1(y).

is a pdf of Q, where f is the derivative of the cdf F of P.

Proof. The derivative of a cdf is a pdf. The cdf G of Q is

G(y) = Q( (−∞, y] ) = P(h−1[ (−∞, y] ])

= P( (−∞, h−1(y)] ) = F (h−1(y)),

where we have used the fact that the h-preimage of (−∞, y] is (−∞, h−1(y)] because h is

strictly increasing and invertible. The claim follows from the fact that g is the derivative of

G.

The lemma is easily modified for p-neg and also p-inv; an “extra” minus sign appears

because they consist of strictly decreasing components. It is possible to define a version
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of p-scale for negative literals, as well as integer versions of p-neg, p-linear, and p-

scale. With these rules (and p-var, discussed below) we can already compute some

continuous pdfs. Consider the standard exponential from Section 2.3.2; we derive its pdf

with ∅; ∅ ⊢ std exponential y δ, which builds the contexts Λ := u and Υ := u : R ∼ random

and invokes the chain

Υ;Λ ⊢ −log u δ δ′′ := λx′′ � 〈0 < x′′ < 1〉

Υ;Λ ⊢ log u δ′ δ′ := λx′ � 〈0 < exp x′ < 1〉 ∗ exp x′

Υ;Λ ⊢ u δ′′ δ := λx � 〈0<exp (−x)<1〉 ∗ exp (−x).

We β-reduce for clarity. The chain ends with p-var, which gives the pdf of Uniform(0,1)

for δ′′; then, p-log and p-neg produce δ′ and δ. The latter is equivalent to λx � 〈0 <

x〉 ∗ exp (−x), which is easily seen to be the pdf of the standard exponential. Likewise, the

pdf of uniform ε1 ε2 is correctly calculated to be

δ := λx � 〈0 < (x− ε1)/(ε2 − ε1) < 1〉 ∗ (1/(ε2 − ε1)),

which is equivalent to λx � 〈ε1 < x < ε2〉 ∗ (1/(ε2− ε1)). We do not provide rules for sin, cos,

and tan because we are unaware of any simple closed-form expression for the corresponding

pdfs.

Multivariate transforms We use multivariate for RV transforms to or from a product

space. The presence of multiple dimensions introduces the issue of dependence between

the inputs or between the outputs of the transform, making it difficult to provide rules

that work in the general case. As a result, some of the following rules introduce specific

independence requirements.

Rule p-lit states that the pmf of a point mass distribution on l is simply the indicator

function on {l}. The transforms corresponding to the rules in this section tend to be less

obvious; the transform in question for p-lit is the constant function on l, whose argument

may be a tuple. Rule p-bool calculates the pmf of a Boolean random variable, which is a

simple expression of the probability that the random variable is true. We thus invoke the

probability compiler in the current context to compute this probability δ. This rule covers
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∅ ⊢ l : τ τ countable

Υ;Λ ⊢ l λx : τ � 〈x = l〉 p-lit

Υ ⊢ ε : bool Υ;Λ ⊢ ε $ λx : bool � 〈x〉 7→ δ

Υ;Λ ⊢ ε λx : bool � if x then δ else 1− δ
p-bool

{Υ;Λ ⊢ ε1 ⊥ εi}i=2,3 {Υ;Λ ⊢ εi  δi}i=1,2,3

Υ;Λ ⊢ if ε1 then ε2 else ε3  
λx � δ1 true ∗ δ2 x+ δ1 false ∗ δ3 x

p-if

Λ = {x} ⊔ {y1, ..., ym} J (Υ;Λ) 7→ δ

Υ;Λ ⊢ x λx �
∫

λ(y1, ..., ym) � δ
p-var

Λ = {x1, ..., xn} ⊔ {y1, ..., ym} J (Υ;Λ) 7→ δ

Υ;Λ ⊢ (x1, ..., xn) λ(x1, ..., xn) �
∫

λ(y1, ..., ym) � δ
p-vars

Υ;Λ ⊢ ε δ

Υ;Λ ⊢ fst ε λx �
∫

λy � δ (x, y)
p-fst

Υ;Λ ⊢ ε1 ⊥ ε2 {Υ;Λ ⊢ εi  δi}i=1,2

Υ;Λ ⊢ (ε1, ε2) λ(x1, x2) � δ1 x1 ∗ δ2 x2
p-pair

Υ;Λ ⊢ ε1 ⊥ ε2 {Υ;Λ ⊢ εi  δi}i=1,2

Υ;Λ ⊢ ε1 + ε2  λx : R �
∫

λt : R � δ1 t ∗ δ2 (x− t)
p-plus

Figure 10: The transform-to-pdf converter, multivariate cases.

J (Υ; ∅) 7→ 1
j-nil

Υ; ∅ ⊢ e y δ J (Υ;Λ) 7→ δ′

J (Υ, x : τ ∼ e; Λ, x) 7→ δ x ∗ δ′ j-cons

Figure 11: The joint pdf body constructor, J (Υ;Λ) 7→ δ.

the cases for < and =. The ability to represent the pmf of a Boolean random variable

allows us to encode arbitrary probability queries. Rule p-if computes the pdf of a mixture,

which is a weighted combination of the component pdfs, where the mixing probability

is the probability the if-condition is true. For this to be valid, the if-condition must be

independent of its branches, as required. For instance, the pdf of

var x ∼ random in

var y ∼ uniform 2 3 in return (if x < 1/2 then x else y).

is not equivalent to λx � (1/2) ∗ 〈0< x < 1〉 + (1/2) ∗ 〈2< x < 3〉, as would be calculated

without the restriction (there should be no probability mass on [1/2, 1]).

Rule p-var is a special case of p-vars. The transform corresponding to p-vars is a

function that returns a permutation of a subset of components of its tuple argument. We
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assume x1, ..., xn and y1, ..., ym are distinct, and we use ⊔ to denote disjoint union. The

resulting pdf is a marginal pdf. The marginal pdf of a joint pdf f on A × B is given

by g(x) =
∫

λy � f(x, y) dµB; g is a pdf on A whose density at x is given by adding up

the contribution of the joint pdf along the other dimension, B. The corresponding process

is one which generates tuples but then discards the second component, returning the first.

We generalize to higher dimensions by integrating out random variables not appearing in

the result tuple. When this set is empty (m = 0), the integral reduces to δ. The resulting

pdf may be computationally inefficient due to a large number of nested integrals. More

efficient schemes that take advantage of the graphical structure of the probabilistic model,

such as variable elimination, are possible [67]. The judgment J (Υ;Λ) 7→ δ constructs

the body of the joint pdf of the active random variables (Figure 11). Rule j-cons first

computes the pdf of e, parametric in all of the preceding random variables (thus, invoking

the distribution-to-pdf converter with no active random variables). It then constructs the

product with the pdfs of the remaining active variables; the product of these parametric

pdfs is the joint pdf. The terms δ and δ′ in j-cons have type τ → R and R, respectively.

The judgment returns an open term and relies on the fact that the free variables will be

bound appropriately by the invoking judgment. Rule p-fst is analogous to p-vars; we ask

for a pdf and compute the marginal pdf of the first component. We define an analogous

rule for snd. Rules p-pair and p-plus state the well known results that the joint pdf and

the pdf of the sum of independent random variables is the product of and convolution of

their individual pdfs, respectively.

On the face of it, these rules handle mixture models and joint models, but where they

really shine is on general hierarchical models. For example, the pdf of

hier := var x ∼ random in var y ∼ uniform 0 x in return y

is not immediately obvious. The process is generated by sampling a value x uniformly from

(0,1), and then sampling uniformly from (0, x), discarding x. We calculate the pdf with

∅; ∅ ⊢ hier y δ, which builds Υ := y : R ∼ uniform 0 x, x : R ∼ random and Λ := y, x for
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Υ;Λ ⊢ y  δ. Rule p-var then produces

λy �

∫

λx �(〈0<(y−0)/(x−0)<1〉∗1/(x−0))∗〈0<x<1〉∗1

for δ, where we have β-reduced for clarity. The body of the inner λ-abstraction is generated

by the joint pdf body constructor; the two non-trivial multiplicands are the parametric

pdf of uniform 0 x and the pdf of random, respectively. With some manipulation we can

show δ corresponds to f(y) =
∫ 1
y
1/x dx = − log(y) for y ∈ (0, 1) and zero otherwise. The

rules do not perform algebraic simplifications, but the benefit of automation can still be felt

clearly.

Modularity Some RV transforms are inconvenient to work with, preventing us from

calculating certain pdfs. For example, we cannot calculate the pdf of std normal from

scratch because its specification uses cos, which we do not handle. However, the design

allows us to modularly address cases like this, where we want to specially handle the pdf

for a specific distribution. We can add the rule Υ;Λ ⊢ std normal y φ, where φ := λx �

exp(−x ∗ x/2)/sqrt(2 ∗ π) is the pdf of the standard normal. This new rule is used by the

joint body constructor whenever std normal appears on the spine of a distribution, enabling

the calculation of pdfs for hierarchical models using std normal that were previously not

compilable. For example, the pdf of normal µ σ can now be calculated as

Υ;Λ ⊢ σ ∗ x+ µ δ δ′′ := λx′′ � φ x′′

Υ;Λ ⊢ σ ∗ x δ′ δ′ := λx′ � φ (x′/σ) ∗ (1/σ)

Υ;Λ ⊢ x δ′′ δ := λx � φ ((x− µ)/σ) ∗ (1/σ)

using the rules p-var, p-scale, and p-linear, where Λ := x and Υ := x : R ∼ std normal.

We can see δ is equivalent to the classic formula for the normal pdf, f(x)= 1
σ
√
2π

exp(− 1
2σ2 (x−

µ)2). Likewise, we can now handle distributions like the log-normal and mixture-of-Gaussians.

To support an infinite discrete distribution with a known pdf, such as the Poisson distri-

bution, we can add a new primitive to the core calculus (poisson ε) and handle it specially

in the distribution-to-pdf converter.
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2.6 Empirical evaluation

We implement an enhanced version of the pdf compiler in the probabilistic language In-

fer.NET Fun [11], which is embedded in F# [63]. The enhancements include rules for

handling arrays and records (based on the rules for tuples), fail statements, match and

general if expressions, and—for performance reasons—deterministic let expressions. The

implementation is detailed in [8], which also describes a proof of soundness for the compiler.

We evaluate the compiler on synthetic textbook examples and real examples from sci-

entific applications that use Markov chain Monte Carlo (MCMC) for performing Bayesian

inference. We wish to validate that the pdf compiler handles these examples and under-

stand how it reduces the developer burden as well as its performance impact.

MCMC methods are commonly used for Bayesian inference and generate samples from

the posterior distribution. The idea of MCMC is to construct a Markov chain in the

parameter space of the model, whose equilibrium distribution is the posterior distribution

over model parameters. Neal [45] gives an excellent review of MCMC methods. We here

use Filzbach [52], an adaptive MCMC sampler based on the Metropolis-Hastings algorithm.

All that is required for such algorithms is the ability to calculate a function proportional

to the posterior density, given a set of parameters. The posterior does not need to be from

a mathematically convenient family of distributions. Samples from the posterior can then

serve as its representation, or be used to calculate marginal distributions of parameters or

other integrals under the posterior distribution.

The posterior density is proportional to the product of the likelihood function of the

data and the density function of the prior distribution. Filzbach and other MCMC libraries

require users to write these two functions, in addition to the probabilistic generative func-

tions used to generate synthetic data, which are used for model validation. With our pdf

compiler, we can instead compile these density functions from the generative code. This

relieves domain experts from having to write the density code in the first place, as well

as from the error-prone task of manually keeping their model code and their density code

in synch. Instead, both the pdf and synthetic data are derived from the same declarative

specification of the model.
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Implementation. Since Fun is a sublanguage of F#, we implement our models as F#

programs and use the quotation mechanism of F# to capture their syntax trees. Running

the F# program corresponds to sampling data from the model. To compute the pdf, the

compiler takes the syntax tree (of F# type Expr) of the model and produces another Expr

corresponding to a deterministic F# program as output. We then use run-time code gen-

eration to compile the generated Expr to MSIL bytecode, which is just-in-time compiled

to executable machine code when called, just as for statically compiled F# code. Our

implementation supports arrays and records, which are both translated using adaptations

of the corresponding rules for tuples. For efficiency, the implementation must avoid intro-

ducing redundant computations, translating the use of substitution in the formal rules to

more efficient let-bindings that share the values of expressions that would otherwise be

re-computed. As is common practice, our implementation and Filzbach both work with the

logarithm of the density, which avoids products of densities in favor of sums of log-densities

where possible, to avoid numerical underflow.

Metrics. We consider scientific models with existing implementations for MCMC-based

inference, written by domain experts. We are interested in how the modelling and infer-

ence experience would change,in terms of developer effort and performance impact, when

adopting the Fun-based solution.

We assess the reduction in developer burden by measuring the code sizes (in lines-of-code

(loc)) of the original implementations of model and density code, and of the corresponding

Fun model. For the synthetic examples, we have written both the model and the density

code. The original implementations of the scientific models contain helper code such as I/O

code for reading and writing data files in an application-specific format. Our loc counts do

not consider such helper code, but only count the code for generating synthetic data from

the model, code for computing the logarithm of the posterior density of the model, and

model-related code for setting up and interacting with Filzbach itself. We also compare the

running times of the original implementations versus the Fun versions, not including data

manipulation before and after running inference.
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Table 1: Lines-of-code and running time comparisons of synthetic and scientific models.

Example orig loc loc, Fun time time, Fun

mixture of Gaussians F# 32 20 0.63x 1.77 4.78 2.7x

linear regression F# 27 18 0.67x 0.63 2.08 3.3x

species distribution C# 173 37 0.21x 79 189 2.4x

net primary productivity C# 82 39 0.48x 11 23 2.1x

global carbon cycle C# 1532 402 0.26x – 764 –

2.6.1 Examples

Synthetic examples. Our synthetic examples are models for two classic problems in

statistics and machine learning: the supervised learning task linear regression, and the

unsupervised learning task mixture of Gaussians. The latter can be thought of as a proba-

bilistic version of k-means clustering. In linear regression, inference is trying to determine

the coefficients of the line. In mixture of Gaussians, inference is trying to determine the

unknown mixing bias and the means and variances of the Gaussian components.

Species distribution. The species distribution problem is to give the probability that

certain species will be present at a given site, based on climate factors. It is a problem

of long-standing interest in ecology and has taken on new relevance in light of the issue of

climate change. The particular model that we consider is designed to mitigate regression

dilution arising from uncertainty in the predictor variables, for example, measurement er-

ror in temperature data [38]. Inference tries to determine various features of the species

and the environment, such as the optimal temperature preferred by a species, or the true

temperature at a site.

Global carbon cycle. The dynamics of the Earth’s climate are intertwined with the

terrestrial carbon cycle, and better carbon models (modelling how carbon in the air gets

converted to biomass) enable better constrained projections about these systems. We con-

sider a fully data-constrained terrestrial carbon model by [61]. It is a composition of various

submodels for smaller processes such as net primary productivity, the fine root mortality

rate or the fraction of trees that are evergreen versus deciduous. Inference tries to determine

50



the different parameters of these submodels.

Discussion. Table 1 reports the metrics for each example. The loc numbers show sig-

nificant reduction in code size, with more significant savings as the size of the model grows.

The larger models (where the Fun versions are ≈ 25% of the size of the original) are more

indicative of the savings in developer and maintenance effort, since smaller models have a

larger fraction of boiler-plate code. We find the running times encouraging: we have made

little attempt to optimize the generated code, and preliminary testing indicates that much

of the performance slow-down is due to constant factors.

The global carbon cycle model is composed of submodels, each with their own dataset.

Unfortunately, it is unclear from the original source code how this composition translates

to a run of inference, making it difficult to know what constitutes a fair comparison. Thus,

we do not report a running time for the full model. However, we can measure the running

time of individual submodels, such as net primary productivity, where the data and control

flow are simpler.

2.7 Related work

Our work builds on a long tradition of probabilistic functional languages, most connected to

the probability monad in some way. They work by incorporating distributional semantics

into a functional language, so that one can express values which represent a distribution over

possible outcomes. The distribution can either be manifest (available to the programmer)

or implicit (existing only in the metatheory). An early incarnation of the latter was given

by Kozen in [34], in which he provides the semantics for an imperative language endowed

with a random number primitive supplying samples from Uniform(0,1). Values of type A

in the object language are given semantics in functions of type (A → [0, 1]) → [0, 1] in the

metatheory. These functions represent distributions over A and satisfy the expected laws for

measures. Kozen’s work is far-reaching and will continue to inspire future languages: it can

accommodate continuous and hybrid distributions; it handles unbounded iteration (general

recursion), a traditionally thorny issue for probabilistic languages; and it even provides a

treatment of distributions on function types. However, pdfs are not addressed at all.
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Though not explicitly cast as functional or monadic, Kozen’s approach forms the basis

for Audebaud and Paulin-Mohring’s monadic development for reasoning about randomized

algorithms in Coq [3]. Their focus is on verification, and they define the probability monad

from first principles (modulo an axiomatization of arithmetic on the [0,1] interval), whereas

we provide it axiomatically. We hope to inspire a cross-fertilization of ideas between the

efforts as we bring our theory of pdfs into Coq.

While suitable for semantics and verification, Kozen’s representation is not ideal for

direct use in computing certain operations. For instance, it is unclear how to sample or

compute general expectations efficiently given a term of type (A → [0, 1]) → [0, 1]. More

recent works explore alternate concrete embodiments of the probability monad; Ramsey

and Pfeffer discuss some of the possibilities [55]. A popular choice is to represent distribu-

tions as weighted lists or trees. This has the drawback that only distributions with finitely

many outcomes are expressible (ruling out essentially all commonly used continuous distri-

butions), and pmfs are the only supported form of pdfs. On the other hand, distributions

can occur on arbitrary types, expectation and computing the pmf is straightforward, and

the approach works well as an embedded domain-specific language (pfp [19], hansei [32],

probability monads in Haskell [55]). Dedicated languages like ibal [50] or Church [23] offer

more scope for program analysis, which is crucial for escaping the limitations of an em-

bedded approach and mitigates some of the fundamental drawbacks of the representation.

Ultimately, however, these languages do not support continuous or hybrid distributions (nor

their pdfs) in a general sense. Although, inference for Church also uses MCMC, but works

with distributions over the runs of a program instead of over its return value [68].

Sampling functions are a fun alternative representation. They are used by λ© [48] to

support continuous and hybrid distributions in a true sense and also allow distributions on

arbitrary types. Distributions are represented by sampling functions that return a sample

from the distribution when requested. Sampling and sampling-based routines are the only

supported operations, thus pdfs are not accommodated.

Another recent work also rigorously supports continuous and hybrid distributions by

providing a measure transformer semantics for a core functional calculus [11]. The work
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does not provide pdfs but is novel for its ability to support conditional probability in

the presence of zero probability events in continuous spaces, a feature necessary in many

machine learning applications. Their formalization is similar to ours, as both are based in

standard measure theory. They have independently recognized the importance of analyzing

distributions by their transformations, doing so in the context of conditional probability,

whereas we have developed the idea for pdfs. This hints that reasoning via transforms may

be a technique that is more broadly applicable to other program analyses for probabilistic

languages.

The Hierarchical Bayes Compiler (hbc) is a toolkit for implementing hierarchical Bayesian

models [15]. Its specification language represents a different point in the design space. Es-

sentially, it removes return while adding a set of standard distributions (with pdfs) to the

core calculus. This guarantees that all constructible models are ac. Many powerful models

used in machine learning are expressible in hbc. However, something as basic as adding

two random variables is not. Furthermore, if a distribution outside of the provided set is

required, it must be added to the core. This is the fundamental tension surrounding return:

with it, the core is minimal, expressivity is high, and pdfs are non-trivial; without it, pdfs

are easily supported, but the core becomes large, and expressivity is crippled. hbc is not

formally defined.

An entirely different tradition incorporates probabilistic semantics into logic program-

ming languages (Markov Logic [56], blog [41], blp [31], prism [57]). These languages are

well suited for probabilistic knowledge engineering and statistical relational learning. In

Markov Logic, for instance, programmers associate higher weights with logical clauses that

are more strongly believed to hold. The semantics of a set of clauses is given by undirected

graphical models, with the weights determining the potential functions (e.g. by Boltzmann

weighting). Certain continuous distributions can be supported by manipulating the poten-

tial function calculation. Supporting pdfs in this context should not be problematic; the

potential functions (essentially, unnormalized pdfs) always exist, by design. However, like

hbc, it appears these languages are not quite as expressive as is possible in a probabilistic

functional language.
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The AutoBayes system [24] shares a key feature with our language in that pdfs are

manifest in the object language. AutoBayes automates the derivation of maximum likeli-

hood and Bayesian estimators for a significant class of statistical models, with a focus on

code generation, and can express continuous distributions and pdfs. However, despite their

focus on correctness-by-construction, the language is not formally defined. Furthermore, it

is unclear how general the language actually is, i.e. how “custom” the models can be. Our

work could serve as a formal basis for their system.

2.8 Conclusion

We have presented a formal language capable of expressing discrete, continuous and hybrid

distributions and their pdfs. Our novel contributions include a type system for absolutely

continuous distributions and a modular pdf calculation procedure. The type system uses

the new ideas of RV transforms and non-nullifying functions. There are several interest-

ing avenues for future work. The first is to address pdfs in the context of conditional

probability, perhaps by incorporating our formalization of pdfs with the ideas presented

in [11]. Secondly, to provide a complete account of continuous probability, one must sup-

port expectation. Generically supporting expectation requires a treatment of integrability

or summability; reasoning via the RV transform may be a productive route. Finally, com-

bining this work with a formal language for optimization such as [2] would create a true

formal language for statistics, which would be able to express statistical problems in the

object language itself. Current languages express probability; any notion of statistics is

outside the language.
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CHAPTER III

A SYNTACTIC THEORY OF OPTIMIZATION

Mathematical programs (MPs) are a class of constrained optimization problems that include

linear, mixed-integer, and disjunctive programs as well as other forms. Strategies for solving

MPs rely heavily on various transformations between these subclasses. There is a great

need to automate these transformations because they are algebraically cumbersome and

require expertise in specialized topics. However, most are currently not automated because

MP theory does not practice treating programs as syntactic objects. In this chapter, we

review Tyles [1, 2], the first syntactic definition of MP. Building on this, we provide a

novel formalization of the big-M method, in the style of the convex-hull formalization

given in Tyles. Both of these are widely-used transformations for reformulating disjunctive

constraints. Finally, we implement both transformations and compare with state-of-the

art solutions. We have implemented our object language as an embedded domain-specific

language in OCaml and use it to experiment with the different transformations provided.

3.1 Introduction

The equations governing engineering systems rarely dictate a unique solution. Usually, a de-

signer needs to find the optimal solution amongst a space of feasible ones. Such constrained

optimization problems are often expressed as mathematical programs (MPs), which consist

of a numerical objective that is to be maximized (or minimized) subject to some constraints.

Solving MPs efficiently is an important problem across science and engineering. The nature

of the constraints allowed is a key issue affecting both the kinds of systems that can be

represented and the efficiency of algorithms. An MP is more specifically called a linear

program (LP) when the constraints are linear algebraic equations and inequalities on the

reals. A mixed-integer linear program (MILP) additionally allows restricting variables to be

integer valued, which allows expressing problems not possible in LP. We discuss a superset

of these that also allows Boolean expressions and most importantly disjunctive constraints.
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Throughout this work, the term disjunctive constraint refers to a disjunction over

(in)equations involving reals, and is unrelated to Boolean disjunction which is a statement

purely over Boolean variables. Both are an important modeling tool, and transforming

disjunctive constraints is especially challenging. Consider the designer of a chemical plant

who must decide between one of two reactors to purchase. The reactors operate in different

regimes: Reactor 1 operates under greater temperature and pressure than Reactor 2. Higher

temperature and pressure lead to an increased reaction rate and thus increased monthly

revenue; however, they also come with higher operating costs. The operating regimes are

pictured in Figure 12a and are described by

R1 =













x1 ≥ 1

x2 ≥ 1

x1 + x2 ≤ 5













R2 =







5 ≤ x1 ≤ 8

4 ≤ x2 ≤ 7






(4)

where x1 and x2 correspond to temperature and pressure. Our goal is to maximize profit.

An intuitive way to express this problem is as a disjunctive program:

max
{

profit(x1, x2) | R1 ∨R2; x1, x2 ∈ R
}

(5)

This represents finding a point which satisfies the constraint R1 or the constraint R2 and

for which profit is maximized.

Unfortunately, MP solvers do not directly accept disjunctive programs as input. A

naive approach of addressing this problem is to perform two separate optimizations (one

for each region individually) and take the maximum, but this does not scale well as the

constraints take more complex forms (e.g. nested disjunctions, additional logical conditions

between constraints). The currently best-known strategies reformulate the program into an

equivalent MILP, for which there are good solvers.

One such efficient reformulation technique is Balas’ convex-hull method [5]. Applying
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this method to our problem yields the constraint













xA1 ≥ yA

xA2 ≥ yA

xA1 + xA2 ≤ 5yA













∧







5yB ≤ xB1 ≤ 8yB

4yB ≤ xB2 ≤ 7yB






(6a)

x1 = xA1 + xB1 (6b)

x2 = xA2 + xB2 (6c)

1 = yA + yB (6d)

which interestingly has no disjunctions. We will see later how this constraint is equivalent to

R1∨R2 but for now focus on the mechanization challenges. Note that several new variables

had to be introduced, the original constraints had to be modified, and some new equations

are added. Consider the general case of a disjunction with n variables, k disjuncts, and an

average of m inequalities per disjunct. The convex-hull method requires generating kn+ k

new variables, manipulating km inequalities, and creating n+1 new equations. Remarkably,

neither the theoretical definitions of MP nor MP software support locally scoped variable

declarations. The numerous variable names generated must thus be unique across the entire

program.

In practice, k andm are magnified further for two reasons. Firstly, Balas’ theory requires

each disjunct to be bounded, which often is attained by adding a lower and upper bound for

every variable in each disjunct. This increases the number of inequalities per disjunct from

m to m+2n. Secondly, the method applies only to disjunctions in disjunctive normal form.

Nested disjunctions can be first converted to DNF, compounding the number of disjuncts, or

the convex-hull method can be applied iteratively starting from the inner-most disjunction,

compounding the number of inequalities within outer disjuncts at each step.

The reformulation is error-prone not just because of the tedious algebra, but also because

the resulting equations are non-intuitive. Even on small problems, it is challenging to

recognize how the output represents the original constraint. Finally, one must of course be

familiar with the reformulation methods to apply them. Automation is clearly called for.
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The reformulations we present have been widely used by experts for many years. How-

ever, there has been limited to no support for them in MP software tools. This is because

current MP theory focuses on the study of the numerical behavior of algorithms and does

not treat programs as syntactic objects. MPs are defined in a canonical matrix form, which

does not support basic operations required for automating transformations such as variable

introduction and compositional construction of programs. Tyles demonstrates that the for-

mal methods of language design capably address long standing needs in the mathematical

programming community. In this chapter, we present more evidence of the benefits of the

formal approach. Specifically, our contributions in contrast with Tyles are:

• We formalize the big-M method for reformulating disjunctive constraints. This is

done in the style of the convex-hull formalization given in Tyles. The fact that we are

so easily able to implement the big-M method in Tyles—despite the fact that it has

resisted a successful implementation for so long—showcases the power of the formal

approach to language design.

• The original software in Tyles implements the concept of treating MPs as syntactic ob-

jects, but does not connect to numerical solvers. We provide such an implementation,

which comes in two parts: an embedded domain-specific language (EDSL) in OCaml

for succinct construction of MPs, and implementations of the big-M and convex-hull

reformulations. Our software outputs programs in the popular AMPL language and

the industry standard MPS format. This allows us to pass the programs generated by

our software to existing solvers and study their behavior. We find that our software

generates efficient programs.

3.2 Background

3.2.1 Mathematical programming

The standard definition of a linear program is

max {cx | Ax ≤ b, x ∈ Rn} (7)
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where c is a 1×n dimensional coefficient vector, x is an n×1 vector of real valued variables,

A is an m×n coefficient matrix, and b is an m× 1 vector of constants. Thus, cx is a scalar,

and the matrix inequality Ax ≤ b represents m individual inequalities. The inequalities

represent a polyhedron, such as either region R1 or R2 in Figure 12a, and is called the

feasible space of the LP.

Representing discrete choices requires a more expressive language than LP. We need a

language that allows expressing not just R1 or R2 separately but their union R1∪R2. There

are two rather distinct methods for accomplishing this. The first is to enrich LP with a

discrete type, such as is done with mixed-integer linear programming (MILP). In MILP,

variables may be integer or real valued. The standard definition [46] is

max{cx+ hy | Ax+Gy ≤ b, x ∈ Rn, y ∈ Zp} (8)

where x and y represent vectors of real and integer variables, respectively.

However, integers are often not an intuitive model of discrete choice, and become pro-

hibitively difficult for larger problems. Alternatively, LP can be enriched with disjunctive

constraints, which lead to more compact and comprehensible models [5, 54]. The canonical

matrix form of a disjunctive constraint is

[

A1x ≤ b1
]

∨
[

A2x ≤ b2
]

(9)

We still do not have Boolean expressions, nor disjunctive constraints not in DNF, nor

methods for introducing locally scoped variables, nor an obvious way to insert new con-

straints or extract specific ones to manipulate. In short, these definitions do not provide an

abstract syntax that can be operated on formally. In this section, we define such a syntax

and include brief discussion of the fairly straightforward type system and semantics.

3.2.2 Review of Tyles: a language for mathematical programming

The language Tyles is a formal language for expressing mathematical programs. It consists

of types τ , expressions e, constraints c (called propositions in logic), and programs p. The
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syntax is

τ ::= real | bool (10a)

e ::= x | r | true | false | not e | e1 or e2 | e1 and e2

| −e | e1 + e2 | e1 − e2 | e1 ∗ e2 (10b)

c ::= T | F | isTrue e | e1 = e2 | e1 ≤ e2

| c1 ∨ c2 | c1 ∧ c2 | ∃x :τ � c (10c)

p ::= maxx1:τ1,...,xm:τm {e | c} (10d)

A mathematical program p consists of an objective e that must be maximized subject to a

constraint c. Minimizing is equivalent to maximizing −e. This definition is similar to (8)

but the objective and constraint are not in a matrix form.

Disregarding isTrue e for the moment, constraints are essentially a conjunction or dis-

junction over (in)equations on the reals. Disjunction c1∨ c2 is the key novelty. Conjunction

alone provides a language for expressing what is normally referred to as a system of linear

equations in linear algebra.

Although it is not common in the MP literature, variables must be explicitly introduced

with an existential quantifier. This clarifies the semantics and provides the practical benefit

of locally scoped variables. Universal quantifiers would extend the language to include semi-

infinite programs, an interesting but less developed class of problems. Variables introduced

at the program level behave as existentially quantified; the only distinction being that they

can also be used in the objective.

In addition, we have Boolean propositions in the form isTrue e, where e must be an

expression of type bool. There is a distinction between Boolean truth versus truth of

numeric propositions (true and false versus T and F). This type distinction, embodied as

a syntactic distinction in the definition, is essential since the algorithms for solving these

classes of propositions are entirely different. The convex-hull and big-M methods are useful

only for the disjunctive constraint c1∨c2 and should not be applied to the Boolean expression

e1 or e2. Additionally, Boolean expressions can be negated, but there is no negation at the

constraint level because MPs do not allow strict inequalities.
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Expressions are categorized into the types real and bool; integers will be discussed

shortly. They include variables, rational constants r, Boolean constants, and the usual

numeric and Boolean operators. We wish only to support linear terms, and so the restriction

on e1 ∗ e2 is that e1 has no free variables. Nonlinear programs are certainly important, but

the transformations we are focusing on apply only to linear constraints.

Agarwal’s thesis [1] details the type system and semantics for an extended version of

this language that includes indexing capabilities, but one point is worth clarifying here.

Mathematical programs involve real numbers, which raises the issue of computing over

them. This is a fundamental challenge being pursued by others in various contexts [51, 44].

It does not however affect the transformations we provide because they are purely syntactic

manipulations, and all real expressions are carried through unaltered. We were careful to

include only rational constants instead of reals in the syntax, but this is due to an unrelated

issue. It is a specification of MILPs that constants be rational, else an optimum may not

exist [46]. Despite the MP community’s classical treatment of reals, it is interesting to note

that their desired interpretation of disjunction and existential quantification is certainly

constructive. It is expected that any MP solver explain how the constraints are satisfied by

providing witnesses for all variables and information on which disjoint region the optimal

was found in.

The convex-hull method is applicable only when all disjuncts represent a bounded region,

and the big-M method requires computing lower and upper bounds on arbitrary expressions.

Thus we need a treatment of bounds, and also we have yet to support integers. These needs

are satisfied by introducing refined types

ρ ::= [rL, rU ] | [rL,∞) | (−∞, rU ] | real

| 〈rL, rU 〉 | 〈rL,∞) | (−∞, rU 〉 | int

| {true} | {false} | bool (11)

which can be thought of as subsets of types τ . Square brackets denote real intervals, and

angle brackets integer intervals. Classically, integers are a subset of the reals.
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Bounds can be provided for variables at the time they are introduced by a slight modi-

fication of the syntax; type declarations are replaced with refined type declarations. These

occur in existential quantifiers and at the program level. Instead of ∃x :τ �c we allow ∃x :ρ �c,

and instead of maxx1:τ1,...,xm:τm {e | c} we allow maxx1:ρ1,...,xm:ρm {e | c}.

We keep track of variable bounds with a refined type context

Υ ::= • | Υ, x :ρ (12)

which is a list of variables associated with their bounds. This is more informative than

the usual context used in typing judgments. It provides not just variables’ types but also

retains knowledge of restrictions on the variables’ values.

Free variables and substitution are defined in the usual way. Let FV (e) and FV (c) refer

respectively to the free variables of an expression and constraint. For example, FV (∃x :

ρ � x + (1 − y)) = {y} because x is bound within the body of an existential constraint.

Let {e/x} e′ denote the substitution of e for x in e′, handling variable capture as needed.

Similarly, {e/x} c substitutes e for x in constraint c. Programs p are not allowed to have

free variables because their definition is not inductive.

3.3 Transforming syntactic constructs

The class of programs covered by p include disjunctive constraints and Booleans, but the

best solvers accommodate only mixed-integer linear programming (MILP) constraints which

do not allow either of these forms. We pursue the standard strategy of transforming the

richer constraint forms to lower-level MILP constraints, with the important distinction that

our definitions lead to a software implementation. Transformations for handling Boolean

propositions and for using the convex-hull method on disjunctive constraints are described

in [1, 2], so we start by immediately presenting the big-M formalization. The target language

for our transformations is a subset of the source language, but we also discuss a reformulation

to indicator constraints, a new constraint form supported by CPLEX.
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Figure 12: A disjunctive region and two reformulations.

3.3.1 The big-M transformation

We now turn our attention to transformations for disjunctive constraints c1 ∨ c2. The

methods make no use of standard logical laws, such as DeMorgan’s (recall constraints cannot

be negated), and it is perhaps surprising that it is even possible to eliminate the disjunction

entirely. However, we know it is possible, under a mild condition, due to Balas’ convex-hull

method, the big-M method, and other techniques [5, 4, 54, 29].

The general idea is that the dichotomy expressed by disjunction is embodied instead in

the discrete nature of integer variables. An integer binary variable yi ∈ {0, 1} is associated

with each ith disjunct of a disjunction, and the disjunction is replaced by conjunction. Just

one yi is required to be 1 and only the constraints of the corresponding disjunct are enforced.

Disjuncts j 6= i get reduced to tautologies.

There are several ways to apply this general approach. A naive method is to multiply

the inequalities in each disjunct by its corresponding binary variable. For example, R1∨R2

from our introductory example would become













x1y
A ≥ yA

x2y
A ≥ yA

(x1 + x2)y
A ≤ 5yA













∧







5yB ≤ x1y
B ≤ 8yB

4yB ≤ x2y
B ≤ 7yB






(13a)

1 = yA + yB (13b)

where we have introduced the binary variables yA and yB. Unfortunately, this simple

transformation is also a poor one. Multiplying two variables creates nonlinear and possibly
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nonconvex programs, which are significantly more complex to solve. Both the big-M and

convex-hull methods produce linear constraints.

The big-M method states that (9) can be reformulated into the equivalent mixed-integer

linear constraints

A1x− b1 ≤ M1(1− y1) (14a)

A2x− b2 ≤ M2(1− y2) (14b)

y1 + y2 = 1 (14c)

where yi ∈ {0, 1} and M i are the so called big-M parameters. These are known upper

bounds on Aix − bi. Consider y1 = 1 and y2 = 0. The second inequality reduces to

A2x − b2 ≤ M2, which is trivially satisfied because, by definition, M2 is the maximum

value the left-hand side could take. Effectively, the second disjunct is disregarded. The first

inequality reduces to A1x− b1 ≤ 0, which is the original first disjunct. Conversely, only the

second disjunct is enforced if y1 = 0 and y2 = 1. So these MILP constraints are seen to be

equivalent to the original disjunctive constraint.

The computational efficiency of this method is crucially dependent on the choice of the

big-M parameters, of which there are quite a few since M1 and M2 are vectors. Casual

users usually set them to some arbitrarily large value to avoid the effort of computing them.

Even experts often resort to this because it preserves model modularity. A tight M implies

certain bounds on the left-hand-side variables. Any changes to the bounds specified when

the variable was introduced would require one to search through their entire program to

verify that all the M ’s are still valid. A liberally large value avoids this. In contrast, our

automation solution preserves modeling simplicity while providing computational efficiency.

We use interval arithmetic to compute tight big-M parameters automatically.

Our definition of the big-M method requires two auxiliary judgments to be first intro-

duced. First, we need an operation for computing big-M parameters. Let Υ ⊢ e⇋ [rL, rU ]

be the judgment that computes lower and upper bounds rL and rU for the expression e in

the refined context Υ, where rL and rU may take on the values of −∞ and ∞. Its defi-

nition uses interval arithmetic over unary negation and the binary operators +, −, and ∗
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by propagating derived bounds from subterms to enclosing terms. For example, under the

context x : [−1, 2], y : [0, 100], the expression −5 ∗ x+ y generates the interval [−10, 105].

Second, we define an operation to convert an inequality to its big-M form. Let Υ ⊢

e⊗ c ⇀ c′ be the judgment that rewrites constraint c to its big-M form c′, where the e will

supply the necessary 1− y term. Its definition is

Υ ⊢ e1 − e2 ⇋ [rL, rU ]

Υ ⊢ e⊗ e1 ≤ e2 ⇀ e1 ≤ e2 + e ∗ rU
(15a)

{

Υ ⊢ e⊗ cj ⇀ c′j

}

j∈{A,B}
Υ ⊢ e⊗ cA ∧ cB ⇀ c′A ∧ c′B

(15b)

Υ, x : ρ ⊢ e⊗ c ⇀ c′

Υ ⊢ e⊗ ∃x : ρ � c ⇀ ∃x : ρ � c′
(15c)

The first rule is the interesting one. It converts the inequality e1 ≤ e2 by computing bounds

for e1− e2, where the upper bound is the desired big-M parameter. The lower bound is not

needed. This upper bound multiplied by e, which will be of the form 1−y, is then added to

the appropriate side of the inequality. Conjunctive constraints and existential constraints

recurse into their subterms, where in the latter case we add the introduced variable to the

context. Other forms need not be defined because they are compiled away prior to applying

the big-M method.

A finite upper bound on e1 − e2 must exist. Our software assures this and prints an

informative message when a finite bound cannot be computed.

Finally, we define the main big-M compiler. Let Υ ⊢ c
bigm7−→ c′ be a judgment converting

a disjunctive constraint c to an MILP constraint c′ via the big-M method:

{

Υ ⊢ cj
prop7−→ c′j

}

j∈{A,B}

Υ
ctxt7−→ Υ′

{

Υ′ ⊢ (1− yj)⊗ c′j ⇀ c′′j

}

j∈{A,B}

Υ ⊢ cA ∨ cB
bigm7−→







∃yA : 〈0, 1〉 � ∃yB : 〈0, 1〉�

(yA + yB = 1) ∧ (c′′A ∧ c′′B)







(16)

First, the disjuncts themselves are compiled using the overall constraint compiler
prop7−→,

defined subsequently. This converts the disjuncts to MILP form. Then, in the converted
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context, for each disjunct cj we introduce a corresponding binary variable and rewrite cj to

a big-M form. Finally, the overall result is constructed with appropriate introduction of the

y’s, the equation forcing the sum of y’s to be 1, and with the original disjunction cA ∨ cB

replaced with the conjunction c′′A ∧ c′′B.

3.3.2 The indicator constraint transformation

Recently, the CPLEX system has been extended to natively handle a new constraint form

known as an indicator constraint, which is now supported by languages that interface to it

such as AMPL and GAMS. Indicator constraints can be seen as a restricted alternative to

disjunctive constraints. They are of the form

y = k ⇒ e1 op e2

where y is a binary variable, k ∈ {0, 1}, and op ∈ {≤,=,≥} i.e. the head of the implication

is simply a binary condition and the body is a single numerical relation. The idea is that

instead of writing a disjunctive constraint, one can write two indicator constraints, where

the heads are mutually exclusive and the bodies represent the disjuncts.

Our constraint from (5) can be represented with indicator constraints as follows:













yA = 1 ⇒ x1 ≥ 1

yA = 1 ⇒ x2 ≥ 1

yA = 1 ⇒ x1 + x2 ≤ 5













∧



















yB = 1 ⇒ 5 ≤ x1

yB = 1 ⇒ x1 ≤ 8

yB = 1 ⇒ 4 ≤ x2

yB = 1 ⇒ x2 ≤ 7



















(17)

yA + yB = 1 (18)

For this toy example, the formulation is reasonably intuitive also, although we feel the

disjunctive version is still more natural. However, indicator constraints would be difficult

to use on more involved problems with nested disjunctive conditions since they can only

occur at the “top level” of a program; they cannot occur even in the body of another

indicator constraint. Essentially, one would have to convert disjunctions to DNF before

they could be represented with this feature.
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The main reason the developers of CPLEX introduced indicator constraints was as an

alternative to the big-M formulation, which can exhibit numerical problems when casual

users choose liberally large big-M parameters. CPLEX handles these constraints specially

in a manner that does not require any big-M style parameter and report that both numerical

accuracy and computation times are substantially improved in many problems1.

To allow experimentation, we have defined and implemented a transformation for con-

verting arbitrary constraints in our language down to indicator constraints. We omit a

formal definition as it is rather straightforward. Roughly, for every ith disjunct in a dis-

junction, it replaces every inequality with an indicator constraint where the head is yi = 1

and the body is the inequality itself, and the disjunction is replaced with a conjunction.

Disjunctions are converted to DNF prior to applying this technique.

We have avoided adding implications in general to our object language because they raise

additional complications, but we have added enough support to output indicator constraints

to a format accepted by CPLEX.

3.3.3 Transformation of the top-level mathematical program

The transformations presented thus far can now be employed to define an overall constraint

and program transformation.

Let Υ ⊢ c
prop7−→ c′ mean within context Υ, constraint c is converted to c′. The defini-

tion simply employs the judgments we have detailed above for those forms requiring any

transformation. Equations and inequalities are unaltered, and the procedure recurses on

conjunctive and existential constraints. Our software allows selecting which specific trans-

formation to use for the disjunctive constraint, and one can optionally perform a conversion

to CNF or DNF on any constraint or Boolean expression.

Given this, transforming a mathematical program is now straightforward. Let p
prog7−→ p′

represent a program transformation. The definition is

1Based on comments from the ILOG company’s website. We are not aware of any published literature
on indicator constraints.
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{

ρj
rtype7−→ ρ′j

}m

j=1
x1 :ρ1, . . . , xm :ρm ⊢ c

prop7−→ c′

maxx1:ρ1,...,xm:ρm {e | c} prog7−→ maxx1:ρ′1,...,xm:ρ′m
{e | c′}

(19)

Since the objective e must be of type real, it is already in MILP form and need not be

transformed. The types and constraints are transformed using their respective procedures.

3.4 Implementation

We have implemented our object language as an embedded domain-specific language (EDSL)

in OCaml, and all transformations are OCaml functions operating on this language’s ab-

stract syntax tree. All source code is freely available from the first author’s website. The

EDSL enables us to enhance our object language with functionality inherited from the host

language. The primary benefits in our case are the following:

• Our object language does not have let bindings. Instead, we can use OCaml’s let,

which is useful for assigning names to model parameters, and long expressions and

constraints.

• With OCaml as the meta-language, we can use OCaml functions to define macros

over our object language. This is convenient for defining parameterized expressions

and constraints. For example, in jobshop scheduling, there is a constraint that a job

a must precede job b at a stage k, or vice versa. This can be succinctly written as

precedes a b k |/ precedes b a k.

• Our object language does not include indexing, but we were able to define a set of

functions that effectively do so at the meta-level. This is essential as no real-world

MP model can be written without indexing.

We will see examples of each in the following section. It is surprising that the popular mod-

eling languages such as GAMS and AMPL do not provide the first two benefits. Numerous

complex expressions and constraints have to be repeated in full. CPLEX’s C++ API does

of course lead to similar capabilities with C++ serving as the meta-language.

The general strategy for indexing is to turn indexed variables into functions that generate

the appropriate variable name. For instance, a variable γi,j would be represented in OCaml
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as

let gamma i j = ivar["gamma"; of_n i; of_n j]

where ivar is a helper function for creating indexed variables and of n converts integers to

strings. An expression like

let i = 1 in gamma i (i+1)

represents the object language variable gamma_1_2. This approach works because all in-

dexing expressions are at the meta-language level and disappear by the time the object

language compiler sees the program.

This is not to say that an EDSL is the optimal solution. For example, we do not get

type-checking of object language programs when the OCaml compiler is invoked to compile

EDSL code (instead, it occurs when the EDSL code is run). Techniques for extending EDSLs

to provide more static safety can be provided by other techniques, such as generalized

algebraic data types (GADTs), and is the subject of other work.

Once a program is specified in our EDSL, one of the various constraint transformations

we have defined can be applied selectively or to the whole program. The transformed

program, whether a pure MILP or an MILP enhanced with indicator constraints, can be

printed to the industry-standard MPS format and the AMPL modeling language.

3.5 Results

We now present examples from chemical engineering and operations research that we model

using the intuitive Boolean and disjunctive constraints supported by our software. We then

analyze the programs automatically generated by applying the various transformations we

have defined and will compare our solutions to both manually performed transformations,

and a competing automated solution. We will look at the computational efficiency of dif-

ferent reformulations and compare the manual case to the automated case.
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3.5.1 Experimental setup and performance metrics

We will be looking at the computational efficiency of different reformulations. To do this

we will take the MP for our case studies and reformulate them to MILP form using dif-

ferent reformulation techniques. We will then solve the resulting MILP programs using

ILOG’s CPLEX solver—a widely used, efficient solver for, among other things, LP and

MILP problems. We compare four transformation strategies:

• Three are our automated transformations of the big-Mmethod, the convex-hull method,

and our indicator constraint transformation. Only one input specification is needed for

all three, namely, a version of the example implemented using our EDSL. Compiling

the example with different options yields the three transformations.

• The fourth is CPLEX’s Concert Technology. CPLEX offers a C++ API to their solver

technology which allows a user to use C++ objects and overloaded operators to write

down models in an intuitive manner. They provide Booleans and logical conditions

over linear inequalities, which are automatically transformed into equivalent forms

that use indicator constraints. The software is proprietary and their conversion to

indicator constraints likely differs from the one we described in Section 3.3.2.

We do not compare to other software because either they do not support Boolean and

disjunctive constraints or they call out to CPLEXmaking the comparison redundant. Mosel,

another popular MP software, has an extension called Kalis that does support disjunctions,

but it is a constraint programming solver using solution techniques unrelated to MILP

algorithms.

For each of the above strategies, the metrics we will look at are:

• The number of continuous variables and constraints. These numbers give a rough

picture of the potential computational difficulty of the program. Note that these

counts treat indexed variables as distinct from each other, e.g. x1, . . . , xn counts as n

variables rather than one; thus, they are not a good indication of the size of programs

that human modelers actually manipulate. They are indicative only of algorithmic

complexity, not modeling complexity.
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• The number of discrete variables. This is especially relevant to computational com-

plexity because solvers spend a large portion of their time branching on different

possible values of discrete variables. In all of our examples, the only discrete variables

are binary variables.

• CPU time needed for solving. This of course is the primary metric of interest. How-

ever, the other metrics give a better picture of what the transformations are actually

doing.

All experiments were run on a machine running Linux 2.6.18 with 8GB of RAM, 4GB of

swap space, and eight 2.6GHz Intel Xeon processors with 4MB caches.

3.5.2 Example: switched flow process

Figure 13 depicts a tank being filled by two pumps whose flow rates switch between two

values depending on other requirements of the system. The tank is being emptied contin-

uously at a rate of F out = 1.8. Initially, the material level in the tank is M0 = 20.0. The

tank’s maximum capacity Mmax = 150.0 and the material level should never fall below

Mmin = 10.0 to avoid equipment damage.

Process α represents the first pump, which can be either on or off. When it is on, it

provides material to the tank at rate 2.0. There is also an operating cost of 10.0 per unit

time for running the pump. To avoid over-heating the pump, it is forbidden to continuously

run it longer than 30.0 time units. There are no operating costs while it is off, but it must

not be switched on again in less than 2.0 time units to allow it time to cool. When it is

switched on again, if at all, a startup cost of 50.0 is incurred. Process β is similar, but it

represents a pump that is always on, either at a high or low setting.

We wish to study how the material level changes over time and to understand the cost

of running the system for Tmax = 500.0 time units. Our objective is to minimize cost. The

first step is to formalize the problem. The most natural formulation involves disjunctive

constraints and Boolean variables. The full model requires over two pages of constraints, so

here we will present only the most instructive components relating to the transformations

we are interested in.
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Figure 13: Schematic of switched flow process.

The first constraint we consider models the transitions of process α between its on and

off modes:













Zα(on, off, i)

ĉα(i) = 0.0

r̂α(i) = −Re(i)













∨



















Zα(off, on, i)

Re(i) ≥ 2.0

ĉα(i) = 50.0

r̂α (i) = −Re (i)



















∨













Y Y α(i)

ĉα(i) = 0.0

r̂α(i) = 0.0













∀i ∈ N\{n} (20)

The set N = {1, . . . , n} numbers the set of discrete events that occur during the execution

of the system. The Boolean variable Zα(q, q′, i) indicates whether the process transitioned

from mode q to q′ at event i (e.g. from on to off). The variable ĉα(i) represents the cost

incurred at event i. Some behaviors depend on the time elapsed since a previous event

(e.g. the pump cannot be turned on again immediately after being turned off), we need

some time-related bookkeeping: the clock variable Re(i) measures the time elapsed since

the last event, and r̂α(i) is a helper variable that represents clock adjustment at the end of

each event. For instance, the second disjunct states that if the pump transitions from off

to on at event i, two time units must have elapsed since the last event, the cost incurred

as a result will be 50.0 cost units, and the clock variable will be adjusted by exactly the

opposite amount it currently is, i.e. it will be reset to zero. Finally, the Boolean variable

Y Y α(i) indicates whether event i is a “non-event”, e.g. it switches from on to on. This
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permits solutions where the pump changes its state fewer than, rather than exactly, n times.

Altogether, this disjunction describes the transition behavior of process α: either the pump

was turned off, resetting the clock and incurring no cost; or it was turned on after a period

of time, resetting the clock, incurring cost; or nothing happened, incurring no cost and

letting the clock run.

The second constraint involves only Boolean expressions and provides the definition of

Y Y α(i); namely, a “non-event” at event i for a process a ∈ {α, β} is when it transitions

from on to on or from off to off (likewise with hi and lo for process β):

Y Y a(i) ⇔
∨

q∈Qa

Za(q, q, i) ∀i ∈ N\{n}, ∀a ∈ {α, β} (21)

where Qα = {on, off} and Qβ = {hi, lo}.
Both of these constraints can be concisely written in our EDSL. Equation 20 is written

as

(* disjunction over transitions of alpha *)

_CONJ(_N1, fun i->

conj [ isTrue (goesFromTo Alpha On Off i);

costJmp Alpha i ==^ lit 0.0;

clockJmp R i ==^ neg (clock R Pe i); ]

|/ conj [ isTrue (goesFromTo Alpha Off On i);

clock R Pe i >=^ lit 2.0;

costJmp Alpha i ==^ lit 50.0;

clockJmp R i ==^ neg (clock R Pe i); ]

|/ conj [ isTrue (isDummyTrans Alpha i);

costJmp Alpha i ==^ lit 0.0;

clockJmp R i ==^ lit 0.0; ]

);

and Equation 21 is written as

(* definition of isDummyTrans *)

_CONJ(_N1,fun i-> isTrue ( isDummyTrans Alpha i <==>

(goesFromTo Alpha On On i ||^ goesFromTo Alpha Off Off i) ));

_CONJ(_N1,fun i-> isTrue ( isDummyTrans Beta i <==>

(goesFromTo Beta Hi Hi i ||^ goesFromTo Beta Lo Lo i) ));

The EDSL is fairly straightforward, and we can see that the code coincides nicely with

the mathematical notation. In most cases, we have appended a caret (^) to standard
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Table 2: Switched flow process: Comparison of automatic reformulations. IC, BM and CH
refer to the indicator constraint, big-M, and convex-hull transformations as implemented
by our software.

Method #vars (#binary) #constr. (#IC) solve time (sec)

Concert 1061 (874) 1080 (718) 36.85
IC 477 (291) 1001 (438) 11.60
BM 477 (291) 1198 3.37
CH 1194 (631) 2747 1.09

OCaml relational and arithmetic operators to denote the corresponding MP operator (+^,

<=^, etc.). We distinguish Boolean and and or (&&^ and ||^) from the propositional

operators ∧ and ∨ (/| and |/). Because capitalized names are reserved for modules and

constructors in OCaml, some variable and function names must be prepended with an

underscore. Furthermore, literals must be lifted to the object level using lit. The function

conj generates a conjunction from a list of constraints while _CONJ generates a conjunction

from an index set and an indexed expression.

The performance metrics for experiments on this example are in Table 2. The main

outcome is that the methods perform largely as expected: tighter formulations are solved

faster. Indeed, convex-hull is the fastest formulation despite generating the largest number

of constraints. As expected, the big-M method uses the same number of binary variables

as the indicator constraint transformation, but needs a larger number of constraints be-

cause it handles equality constraints as a pair of inequalities, while the indicator constraint

transformation handles equalities directly. Curiously, the Concert formulation introduces

more binary variables than the convex hull method, more indicator constraints than our

indicator constraint transformation, and is the slowest. Overall, we can see that for this

example our transformations perform reasonable reformulations that in fact outperform an

existing automated transformation provided by a state-of-the-art solver.

3.5.3 Example: strip packing

It is however known that the convex-hull method can perform poorly on problems with a

large number of disjunctions. The strip packing problem from operations research involves

packing n rectangles without rotation or overlap into a strip of width W that is unbounded
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to the right. The goal is to minimize the length of the strip needed to pack the rectangles.

This is a frequently studied problem and we have available reformulations done manually by

experts, which allows us to compare our automatically generated programs with expertly

generated ones.

The mathematical model of the strip packing problem is

min lt (22a)

s.t. lt ≥ xi + Li ∀i ∈ N (22b)

[xi + Li ≤ xj ]

∨ [xj + Lj ≤ xi]

∨ [yi −Hi ≥ yj ]

∨ [yj −Hj ≥ yi] ∀i, j ∈ N, i < j (22c)

0 ≤ xi ≤ UB − Li ∀i ∈ N (22d)

Hi ≤ yi ≤ W ∀i ∈ N (22e)

where N = {1, . . . , n}. This formulation tracks the (x, y)-position of the top left corner of

each rectangle and relates them via constraints involving the rectangle lengths and heights,

Li and Hi. The first constraint states that the optimal length is greater than the rightmost

side of each rectangle; the disjunctive constraint states that for a rectangle i, another

rectangle j must either be to the right, to the left, below, or above of it (in a non-overlapping

manner); and the final constraints are just some bounds on the positions. The parameter

UB is an upper bound on the optimal value; in our experiments, we set this equal to the

sum of the rectangle lengths.

For our experiments, we implemented the MP form of strip packing with our EDSL

and compared it to reformulations manually performed by an expert of both the big-M and

convex-hull methods. The manual reformulations were taken from [58], and we used them

verbatim, with no modifications. We then ran the reformulations on a medium problem

consisting of 12 rectangles and a large problem consisting of 21 rectangles. The results are

in Table 3 and Table 4, respectively.
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Table 3: Strip packing (12 rectangles): Expert vs. automatic reformulations.

Method #vars (#binary) #constr. (#IC) solve time (sec)

IC 289 (264) 342 (264) 1.83
BM 289 (264) 342 1.22
CH 1345 (264) 2718 168.38
BM, expert 289 (264) 342 1.82
CH, expert 1345 (264) 1662 149.57

Table 4: Strip packing (21 rectangles): Expert vs. automatic reformulations.

Method #vars (#binary) #constr. (#IC) solve time (sec)

IC 883 (840) 1071 (840) 24.44
BM 883 (840) 1071 55.01
CH 4243 (840) 8631 991.68
BM, expert 883 (840) 1071 29.56
CH, expert 4243 (840) 5271 ≥ 3600.00

The results show that convex-hull is indeed not the optimal solution technique in all

scenarios. The number of constraints and variables outweighs any benefits from having

a tight formulation per disjunction. Also, we can see that the automatic versions of the

big-M and convex-hull transformations are on par with the expertly coded versions. The

number of binary variables is equal across all methods because they all introduce one binary

variable per disjunct, and there are no Boolean variables in the source program. Many of

the numbers are identical between the expertly coded and automated versions, as expected

with the simple program structure of strip packing. Also, the expertly coded convex-hull

method contains fewer constraints because the expert is able to reason that some constraints

are redundant given their bounds, e.g. 0 ∗ y ≤ xi is unnecessary for constraining xi if it is

already declared that xi ∈ R+.

In general, it is hard to tell a priori which methods will work well on a given program,

so it is useful to have a tool such as ours that enables experimentation without the manual

overhead. In fact, anecdotal evidence suggests that once the object language has been

properly formalized, adding reformulations is quite easy, so there is a lower barrier to trying

new ideas.
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3.6 Related and future work

Egon Balas first described the convex-hull method in a technical report [5], which was made

available in published form much later [4]. The theory presented there has had significant

impact on MILP algorithms. Although Balas acknowledged that disjunctive constraints are

useful for modeling, the focus has been on the insights they provide to more computationally

efficient formulations. Thus, those working on MP theory have had little motivation to

automate transformations and have not considered the differences arising from programs

written in non-matrix forms.

Raman and Grossmann [54] popularized this method amongst the chemical processing

industry and demonstrated that complex real-world problems could be modeled effectively.

They also included the use of Boolean constraints, and provided a method for tying these

to disjunctive constraints.

Vecchietti and Grossmann [65] describe an implementation of this alternative formu-

lation with similar goals to this work in a software called LogMIP, implemented as an

extension of the GAMS language. They support the convex-hull method, but it is not diffi-

cult to find examples where the software provides erroneous answers, and the semantics of

the input language are rather unclear. For example, the disjunction

[x1 + x2 ≤ 5.0] ∨ [x1 + x2 ≥ 10.0]

has to be written the following way:

equations eq1,eq2,eq3;

eq1.. x1 + x2 =l= 5.0;

eq2.. x1 + x2 =g= 10.0;

eq3.. y =g= 0;

x1.lo = 1.0;

x1.up = 100.0;

$ONTEXT BEGIN LOGMIP
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DISJUNCTION D1;

D1 IS

IF Y THEN

eq1;

ELSE

eq2;

ENDIF;

$OFFTEXT END LOGMIP

The initial lines are pure GAMS, and the LogMIP extensions must be written within

GAMS comments, enclosed by the $ONTEXT and $OFFTEXT lines. The disjunction is ex-

pressed as an IF ... THEN ... ELSE ... statement with the clauses defined as eq1 and

eq2. These are the names of equations defined above in pure GAMS. However, the initial

definitions of eq1 and eq2 are GAMS syntax for requiring both to be true. Thus local

reasoning is broken. The meaning of the initial lines is entirely changed by the addition of

the LogMIP declaration later in the program. Furthermore, using an if-then-else statement

to represent a disjunction appears a bit more like indicator constraints, not the normal

disjunctive constraints on which so much of MILP theory is based. Finally, we found that

an incorrect answer is returned when we ran this program. It appears to be because some

arbitrary bounds are provided for x2, which is not specified with bounds in the input. It is

our hope that the theory developed in this work can be employed as a foundation for future

development of LogMIP.

Sawaya [58] and Liberti [35] discuss many more transformations besides the big-M and

convex-hull methods. Many are related to forms other than disjunctive constraints and so

we feel our syntactic formulation can have wider benefits. Nemhauser and Wolsey [46] and

others discuss the importance of cuts, which our syntactic foundation should be able to

support.

Hooker [27] discusses the promising idea of employing constraint programming (CP)

techniques to solve mathematical programs. One of the challenges for these efforts has
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been that traditional MP theory does not allow referring to constraints as objects which is

essential to CP. Our syntactic formulation immediately provides this.

We have compared our software to CPLEX2, which is considered the state-of-the-art

MILP solver. In addition, with respect to the language features we are considering, its API

is the most expressive. It supports Booleans and disjunctive constraints to the full generality

that we do. It also provides a syntactic conversion of these (to indicator constraints) and

was thus the most appropriate tool for comparing our transformations to. Note however

that CPLEX has numerous other features making it an effective algorithm. Our goal is to

supplement those capabilities with operations benefiting from a syntactic perspective.

There are other works that focus specifically on language design. The most widely

used are GAMS [10], AMPL [21], Mosel [13], and OPL [64]. [30] provides a comprehensive

overview. All these support indexing, an essential requirement of any good MP language.

It is interesting that although these are the leading languages, they have limited or no

support for important features such as Booleans and disjunctive constraints. Although our

goal in this work was not to provide a superior object language, we believe our use of formal

programming language methods can lead to better languages.

3.7 Conclusion

We have demonstrated the promise of the formal approach introduced by Tyles by (i) adding

a new transformation, the big-M method, and by (ii) showing that it can indeed be con-

nected to the real world by providing an end-to-end implementation. Hopefully we have

convinced the reader that programming language methodologies can address important

challenges in mathematical programming.

Automation of course has many benefits. Programs are less likely to contain errors, and

good formulations will no longer be restricted to experts familiar with the theory. Also

programs can be maintained in the more compact and intuitive form, easing their develop-

ment. As we implement more transformations, compiler optimizations can be considered.

2http://www.ilog.com
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For instance, we mentioned that sometimes the big-M method is better than the convex-

hull method. Automating these decisions should lead to programs that can be solved faster

than what manual formulation is likely to achieve. In short, all the usual benefits of pro-

gramming language design can benefit the practice of mathematical programming, which

has not previously employed formal methods in their software implementations. Our work

initiates a framework for systematically supporting more elegant constraint forms as well

automating the many more transformations [35] widely used in mathematical programming.
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CHAPTER IV

A SYNTACTIC THEORY OF MACHINE LEARNING

While the research community has recognized the need to study probabilistic programming

languages—which aid users in specifying and solving stochastic models—there has not been

enough work on languages that embrace all facets of machine learning. In particular, there

is little work on languages that incorporate optimization in addition to probability. In

this chapter, we help fill this void by combining the probabilistic language from Chapter 2

and the optimization language from Chapter 3 into a single syntactic theory for machine

learning, implemented using the Coq proof assistant. We demonstrate the applicability of

the theory by mechanizing techniques from different corners of machine learning.

4.1 Introduction

There has been considerable interest in designing and implementing probabilistic program-

ming languages, which aim to simplify the task of specifying and performing inference on

stochastic models. However, these languages only represent the probabilistic account of ma-

chine learning. Notably, they do not provide a primitive for optimization problems. This

is quite unfortunate: many techniques in machine learning make key use of optimization in

their formulations, sometimes omitting any mention of probability altogether! Ideally, we

would extend these probabilistic languages to incorporate optimization, which would allow

users to write programs that use either or both primitives. This is also a morally satisfying

property for any “language for machine learning”. Programs which combine probability

and optimization are able to intrinsically represent learning problems, rather than having

the notion of learning be imposed by an entity external to the program, as we will see with

maximum likelihood estimation.

The primary contribution of this chapter is a unified syntactic theory of machine learning

that incorporates both probability and optimization. We achieve this by unifying the formal

languages for probability and optimization introduced in the previous chapters, providing
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primitive constructs for both in our formalization. We use a type-theoretic approach to

formalizing the necessary mathematical objects, which is the key step that enables this

unification. We show that our formalization is expressive, promotes correctness, and enables

mechanizing useful machine learning techniques:

• Expressive. We show that the formalization captures multiple facets of machine

learning by mechanizing an example that focuses on optimization as well as an exam-

ple that combines probability and optimization. The programs and rewrite theorems

implementing the examples are in a nearly one-to-one correspondence with their re-

spective mathematical statements, demonstrating a low semantic gap between our

language and established mathematical notation.

• Promotes correctness. Our theory promotes correctness to a further degree than

related works. We achieve this by (i) building upon formally defined languages for

probability and optimization, which helps reasoning about programs, and (ii) express-

ing program rewrites as theorems, which provides a path to fully verified algorithm

derivations.

• Enables mechanization of important techniques. We demonstrate the utility of

the theory by using it to mechanize (i) the big-M transformation of L0 regularization

for solving L0 support vector machines and (ii) the expectation maximization principle

for solving maximum likelihood estimation problems.

We implement these ideas in the Coq proof assistant [6]. Coq is based on a foundational

type theory, and this is an important feature of our approach. We reflect on this choice in

the conclusion, after describing our examples.

4.2 Implementing our language as a Coq theory

A proof assistant is software that assists users in the construction of machine-checked proofs.

The Coq system consists of a term language, named Gallina, for defining mathematical

objects and proofs over those objects, as well as a command language for interactively

constructing proof objects. The term language is based on the Calculus of Constructions,
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a dependently typed version of the lambda calculus. Such dependent type theories were

designed to provide syntactic foundations for mechanizing mathematics, making them a

viable vehicle for mechanizing machine learning. In fact, we have designed the languages

presented in previous chapters to be compatible with Gallina. Furthermore, these theories

also have a computational interpretation, which means they are suitable as programming

languages in their own right. This ability to represent mathematics and code in the same

term language fits our needs perfectly, because we will need to iteratively refine a declarative

mathematical problem statement to an equivalent program that is computational.

Proving a theorem proceeds as follows. First, the user defines any mathematical ob-

jects necessary for stating the theorem. These definitions may come from “traditional”

mathematics, such as constructions of real numbers, or from programming, such as data

structures like lists or balanced binary trees. Next, the user states a theorem of interest,

which starts an interactive theorem proving mode. In this mode, the current proof state

is always displayed, listing the current set of assumptions and the current set of goals and

subgoals left to be proved; to start, the set of assumptions is empty and the set of remaining

goals consists only of the main theorem. The user can then enter commands to manipulate

the current proof state, such as applying lemmas to reduce complex goals into a set of

simpler subgoals, until only trivial subgoals remain.

We borrow this mechanism for our task of expressing and solving machine learning

problems. We define constructs for probability distributions and optimization problems, in a

fashion similar to definitions from the previous chapters. We achieve algorithm derivation by

first asserting the existence of an object that satisfies the specification of a desired learning

problem and then building a constructive proof that witnesses the object’s existence. This

witness will be an algorithm that computes a solution to the learning problem, as we will see

in our examples. Finally, we can use Coq’s program extraction capability on the witness

to produce an executable OCaml version of the algorithm. We elaborate on these ideas in

the following sections.
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4.3 Machine learning as a Coq theory

As mentioned above, Coq’s term languageGallina is based on the well-established lambda

calculus and supports standard features such as function abstraction and application, let-

expressions, and recursive datatypes. Furthermore, Coq’s standard library defines theories

for many common types, including Booleans, natural numbers, and real numbers. All that

remains is to define new operators related to probability and optimization. We start with

the notion of stocked spaces from Chapter 2. We do this by writing

Axiom stocked_spec : forall (A : Type), Prop.

which postulates a new predicate stocked_spec which, when given a type A, returns a

proposition that is intended to hold when A represents a stocked space. We will not need

to make use of the actual definition of a space being stocked, so we use the Axiom keyword

instead of the Definition keyword, which allows us to postulate a new uninterpreted

function with a specific signature without needing to supply an implementation. We hook

this into Coq’s typeclass mechanism with

Class stocked (A : Type) := {

stocked_H0 : stocked_spec A

}.

which defines a new parametric record type stocked with a type parameter A and a field

stocked_H0 that holds a proof of the proposition stocked_spec A, i.e. that A is indeed a

stocked space. We do this so that we can leverage typeclass resolution, which is a mechanism

that uses proof search to automatically populate such records where needed. For example,

the declaration

Axiom dist : forall A ‘{stocked A}, Type.

introduces the type constructor dist that, when given a type A and a proof that A is

stocked, returns a type representing distributions over A. The tick mark (‘) notation can be

considered as shorthand for {_ : stocked A}. The curly braces denote an argument that

will be inferred by Coq (by either typeclass resolution or the type inference algorithm) and
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does not need to be supplied by the programmer. So, although dist takes two arguments,

the user only needs to write dist bool to specify the type of Boolean distributions. The

resolution is informed by a database of typeclass instances, which are lemmas about when

one can deduce the existence of a record with the type in question. For example, the code

Instance stocked_R : stocked R.

Proof. admit. Defined.

Instance stocked_prod A B ‘{stocked A} ‘{stocked B} : stocked (A * B).

Proof. admit. Defined.

first asserts that the space of real numbers R is stocked and then asserts that the product

space A * B of two stocked spaces A and B is itself stocked. With these two facts, the

system can infer that two-dimensional Euclidean space R * R is stocked, which would arise

if the user were to write dist (R * R) in a program. The proofs of these lemmas have

been admitted by the programmer, instructing the system to accept them without proof,

analogous to the Axiom mechanism. This step is necessary so long as stocked_spec is

stated as an axiom, but the user can at any time go back and start replacing admitted

definitions and proofs with ones written from first principles, achieving an assumption-free

verified codebase.

In addition to a type for distributions, we also need ways to build the distributions

themselves. We use the same three combinators from before:

Axiom random : dist {x : R | 0 < x < 1}.

Axiom ret : forall {A} ‘{stocked A}, A -> dist A.

Axiom bind : forall {A B} ‘{stocked A} ‘{stocked B},

dist A -> (A -> dist B) -> dist B.

We use a subset type to give random a more informative type of a distribution on the unit

interval, rather than just a distribution on the entire real line. The functions ret and bind

refer to the return and var constructs from before and correspond to the monadic return

85



and bind operations in the probability monad. The types and proofs of stockedness are

inferred automatically. We use Coq’s Notation mechanism to define the syntactic sugar

Notation "’var’ x ~ P ’in’ Q" := (bind P (fun x => Q))

(at level 100, x ident, right associativity).

This allows use to write distributions using the more familiar notation from before:

Program Definition std_normal : dist R :=

var u ~ random in

var v ~ random in

ret (sqrt (-2 * ln u) * cos (2 * PI * v)).

Definition mix {A} ‘{stocked A} (p : R) (P1 P2 : dist A) : dist A :=

var z ~ flip p in

if z then P1 else P2.

The first example defines the standard normal distribution as before. It makes use of the

Program Definition facility to seamlessly insert projections from {x : R | 0 < x < 1}

to R as necessary, which are needed because u and v have the former type while the standard

library functions sqrt, ln, and cos are R-valued. The second example defines a generic

mixture combinator. Note that it requires a proof that A is stocked just to be able to write

dist A in the signature.

We also define an operator for computing the probability density function of a distribu-

tion. We again use the typeclass mechanism, not only for automatically producing proofs,

as we did with stocked, but also for producing code. As before, we start with a specification

for density functions, stated axiomatically:

Axiom is_pdf : forall {A} ‘{stocked A} (P : dist A) (f : A -> R), Prop.

When given a distribution P and a function f, is_pdf returns a proposition that is intended

to hold when f is a pdf of P. This is used in the has_pdf typeclass,
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Class has_pdf {A} ‘{stocked A} (P : dist A) := {

pdf : A -> R;

has_pdf_H0 : is_pdf P pdf

}.

which defines a record type with a field pdf that holds a function and a field has_pdf_H0

that holds a proof that the function is a pdf of P. This record is automatically populated

when P has a pdf that is deducible from the typeclass instances. Instances are used to

encode the pdf calculation rules from Section 2.5 in a more or less one-to-one fashion. For

example, rule p-linear can be written

Instance has_pdf_translate

{A} ‘{stocked A} (P : dist A) (f : A -> R) (c : R)

{_ : has_pdf (var x ~ P in ret (f x))}

: has_pdf (var x ~ P in ret (f x + c)) := {

pdf := fun x => pdf (var x ~ P in ret (f x)) (x - c)

}.

Proof. admit. Defined.

Essentially, the constant has_pdf_translate is evidence that distributions of the form

var x ~ P in ret (f x + c) have a pdf when var x ~ P in ret (f x) has a pdf.

The premises of p-linear appear as arguments to has_pdf_translate and the conclusion

of p-linear appears in the return type and record contents of has_pdf_translate. The

proof that the function is indeed a pdf has been admitted. We can also specify pdfs for

specific distributions, as needed:

Definition phi x := exp (- x*x / 2) / sqrt (2 * PI).

Instance has_pdf_std_normal : has_pdf std_normal := { pdf := phi }.

Proof. admit. Defined.

These instances are combined automatically during typeclass resolution, able to resolve

programs such as pdf (var x ~ std_normal in (x + 5)). The resulting pdf terms can
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further be extracted to OCaml programs as long as implementations are provided for the

real number operations. The current implementation uses floating point.

Finally, we declare an operator for optimization, based on the signature and semantics

given by Agarwal:

Axiom min : forall {A} (f : A -> R) (c : A -> Prop), option R.

When given an objective function f and an optimization constraint c, the operator min

returns a value of type option R, which can take one of two forms: None for when no

minimum value exists, or Some v for when a minimum value v exists. The minimization

ranges over some space A. Our introductory disjunctive constraint optimization example

can now be written

min (fun (x1,x2) => x1 - x2)

(fun (x1,x2) => (x1 >= 1 /\ x2 >= 1 /\ x1 + x2 <= 5)

\/ (5 <= x1 <= 8 /\ 4 <= x2 <= 7) )

using Coq’s logical connectives for conjunction (/\) and disjunction (\/). For presen-

tational simplicity, we write examples in a hypothetical version of Gallina that allows

irrefutable pattern matching (destructuring bind) in a function’s argument list.

4.3.1 Semantics

We employ a shallow embedding of the probability monad so that we can useGallina as our

object language and thus program directly with the semantics. All that remains to achieve

a fully defined semantics for this syntactic theory (based only on axioms from classical

mathematics) is to provide definitions for the few primitives that we have postulated using

the Axiom keyword or the admit tactic; these are stocked_spec, admitted instances of

the stocked typeclass, dist, random, ret, bind, is_pdf, and min. The other operations

(numeric, Boolean, and propositional operations) are defined from first principles in the

Coq standard library.

The semantics of these constructs are nearly identical to the semantics given in previous

chapters, so we give just an informal treatment here, mainly referring back to previous
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definitions and addressing some minor differences. The phrase stocked_spec A is defined

as the proposition that A is a measurable space (there exists a suitable σ-algebra) and

that there exists a measure on A (a function of type (A → R+
∞) → R+

∞ that satisfies the

measure laws), which gives us the stock integral. We achieve the stock integral by the

standard construction for the integral over arbitrary real functions in terms of the integral

over nonnegative real functions. The instances of stocked for reals, integers, Booleans,

and pairs have the semantics given in Section 2.3.3. The semantics for dist, random,

ret, and bind are entirely standard and are given by the probability monad, defined in

Section 2.3.4. The only minor difference is that here the type constructor dist requires the

space to be stocked, which is stronger than necessary (strictly speaking, the space need only

be measurable); this choice is made merely for convenience and could be refactored into a

more precise hierarchy in a straightforward manner.

The phrase is_pdf P f is defined as in Section 2.3.3: the proposition that, for any

measurable set X, the probability of X under the distribution P is equal to the stock

integral of the function f on X. And, in contrast to Tyles, our minimization operator min is

a higher-order function instead of a separate variable binding construct. In essence, we reuse

the variable binding capability provided by lambda functions, as is usual in formalizations

of mathematics using type theories such as the Calculus of Constructions. The phrase

min f c represents the minimization of the objective function f subject to the optimization

constraint c. As in Tyles, the operator returns a value of type option R, which is Some r

when a value r exists such that no setting of the program variable respecting the constraint

attains a smaller value, or is None when no such value exists. In fact, it is straightforward

to define a version of min with a stronger specification, based only on axioms from classical

mathematics, from which min itself can be defined:

Require Import ClassicalEpsilon.

Definition is_min {A} (f : A -> R) (c : A -> Prop) (r : R) : Prop :=

forall (x : A), c x -> f x >= r.

Definition min’ {A} (f : A -> R) (c : A -> Prop)

: {r | is_min f c r} + {~ exists r, is_min f c r}.
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Proof.

destruct (excluded_middle_informative (exists r, is_min f c r)) as [y|n].

pose (constructive_indefinite_description _ y); intuition.

intuition.

Defined.

This operator min’ (morally) returns an option R, decorated with proofs showing that

either the returned value indeed attains the minimum value (in the Some r case) or that

there does not exist a minimum value (in the None case). As in Tyles, we do not make a

distinction between unbounded and infeasible optimization problems.

4.4 The big-M method for L0 regularization

4.4.1 Sparsity in support vector machines: the L0-SVM formulation

The support vector machine (SVM) is a powerful and widely used technique from machine

learning for solving classification problems [12]. Various extensions of SVMs have been

proposed and studied; one of these is the L0-SVM, which augments the SVM formulation

to induce solution sparsity. The L0-SVM starts with the standard SVM primal formulation,

min
w,b,ξ

1

2
‖w‖2 + c‖ξ‖1 s.t.

w ∈ Rd b ∈ R ξ ∈ Rn
+

Y(Xw − b) + ξ ≥ 1
(23)

where R+ is the nonnegative reals, n ∈ N is the number of data points, d ∈ N is the number

of features, y ∈ {−1,+1}n contains the labels, Y = diag(y) ∈ Rn×n, X ∈ Rn×d contains

the dataset, and c ∈ R+ controls how much to penalize the classification errors, as measured

by the slack variables ξ. The bias term b and the weight vector w specify the separating

hyperplane. Next, the L0-SVM adds an L0 penalty term on w to induce sparsity in w,

min
w,b,ξ

1

2
‖w‖2 + c‖ξ‖1 + a‖w‖0 s.t.

w ∈ Rd b ∈ R ξ ∈ Rn
+

Y(Xw − b) + ξ ≥ 1
(24)

where a ∈ R+ controls how much to pay attention to solution sparsity. Both a and c are

selected by the user and can be used to explore different levels of sparsity and toleration of

errors. We can easily state the L0-SVM in our Coq formalization. We first define vectors

of length n as functions indexed by the set {0, . . . , n− 1},
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Definition fin (n : nat) := {k : nat | k < n}.

Definition vec (A : Type) (n : nat) := fin n -> A.

Notation "A ^ n" := (vec A n).

where nat is the type for natural numbers defined in the Coq standard library. Indexing

into vectors is just ordinary function application. We also declare norm operations and dot

product, stated axiomatically for convenience:

Axioms L0 L1 L2 : forall {n}, R^n -> R.

Axiom dot : forall {n}, R^n -> R^n -> R.

Implementations for these operations can be provided at a later stage if necessary. The

Coq version of L0-SVM is nearly identical to its mathematical statement, with the minor

cosmetic difference of using forall-propositions ranging over vector indices to encode the

vector inequalities:

Program Definition L0_SVM

{n d : nat} (* number of points, dimensions *)

(x : (R^d)^n) (* the feature vectors *)

(y : R^n) (* the labels, from {-1,+1} *)

(a c : R) (* penalty tradeoff coefficients *)

:=

min (

fun (w,b,k) : R^d * R * R^n =>

c * L1 k + L2 w / 2 + a * L0 w

)(

fun (w,b,k) =>

(forall i, k i >= 0) /\

(forall i, y i * (dot w (x i) - b) + k i >= 1)

).
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4.4.2 Solving L0-SVM with mixed-integer SVMs

Unfortunately, L0-SVMs cannot be solved efficiently in their given form and must be con-

verted to a formulation that deals directly with the discrete and jumpy nature of a vector

component being zero or nonzero. To accomplish this, we modify the big-M transformation

for disjunctive constraints to handle the discrete choice inherent in L0 penalty terms, which

occur in objective functions. We first illustrate this new transformation using a simple

example before presenting the more general version. Consider the following optimization

problem,

min
x

f(x) + ‖g(x)‖0 s.t. x ∈ Rd (25)

where d, k ∈ N, f : Rd → R is a cost function, and g : Rd → Rk is a vector-valued

penalty function. We take the L0 norm to induce sparsity in g(x). We can rewrite this by

introducing a new optimization variable,

min
x,z

f(x) + ‖z‖1 s.t.
x ∈ Rd z ∈ {0, 1}k

ML · z ≤ g(x) ≤ MU · z
(26)

where ML and MU are lower and upper bounds on the value that any component of g(x)

can take. This reformulation works by having each component of the binary vector z model

whether or not the corresponding component of g(x) is zero. The key issue is to ensure that

components of g(x) do in fact get set to zero when their corresponding components in z are

set to zero. This is accomplished by the big-M (vector) inequality, which for each index i

reduces to 0 ≤ gi(x) ≤ 0 when zi = 0, forcing gi(x) to be zero, and to ML ≤ gi(x) ≤ MU

when zi = 1, which is trivially satisfied and thus does not have an effect on gi(x).

A basic translation of this intuition to Coq is straightforward. We first introduce a

refinement of the reals to use as the type of binary variables:

Definition Bin := {x : R | x = 0 \/ x = 1}.

Definition LB := -1000000.

Definition UB := 1000000.

We hard-code the lower and upper bounds for simplicity of presentation. We can now state

the reformulation as an equality theorem.
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Program Axiom L0_bigM :

forall (A : Type) (n : nat) (r : R)

(f : A -> R) (g : A -> R^n) (c : A -> Prop),

min (fun x : A => f x + r * L0 (g x))

(fun x => c x)

=

min (fun (x,z) : A * Bin^n => f x + r * L1 z)

(fun (x,z) => c x /\ forall i, LB * z i <= (g x) i <= UB * z i).

This statement generalizes the example by permitting the minimization to range over an

arbitrary space A and by accounting for any existing optimization constraint c.

Now we show how to borrow the theorem proving mechanism to perform algorithm

derivation. First, we state a specially formulated existence theorem:

Theorem MI_SVM :

forall {n d} (x : (R^d)^n) (y : R^n) (a c : R),

{ans : option R | ans = L0_SVM x y a c}.

This proposes that for any given inputs, there is an answer (of type option R) that is

the same as the result given by the L0-SVM on those inputs (i.e. the set of such answers

is non-empty); the process of proving this theorem amounts to constructing a term that

represents such an answer. This term will be the reformulation of the original specification,

i.e. of L0-SVM. The following proof script does the actual algorithm derivation:

Proof.

intros; unfold L0_SVM. (* line 1 *)

rewrite L0_bigM; simpl. (* line 2 *)

eapply exist; reflexivity. (* line 3 *)

Defined.

Lines 1 and 3 are fairly clerical in nature; the main action happens in line 2, where we apply

our reformulation L0_bigM using the rewrite tactic. Figures 14 and 15 show the proof
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1 subgoal

n : nat

d : nat

x : (R ^ d) ^ n

y : R ^ n

a : R

c : R

============================

{ans : option R |

ans =

min

(fun (k,b,w) : R ^ n * R * R ^ d =>

c * L1 k + / 2 * L2 w + a * L0 w)

(fun (k,b,w) : R ^ n * R * R ^ d =>

(forall i : fin n, k i >= 0) /\

(forall i : fin n,

y i * (dot w (x i) - b) + k i >= 1))}

Figure 14: Proof state before applying the big-M rewrite.

1 subgoal

n : nat

d : nat

x : (R ^ d) ^ n

y : R ^ n

a : R

c : R

============================

{ans : option R |

ans =

min

(fun (k,b,w,z) : R ^ n * R * R ^ d * Bin ^ d =>

c * L1 k + / 2 * L2 w +

a * L1 (fun i : fin d => ‘(z i)))

(fun (k,b,w,z) : R ^ n * R * R ^ d * Bin ^ d =>

((forall i : fin n, k i >= 0) /\

(forall i : fin n,

y i * (dot w (x i) - b) + k i >= 1)) /\

(forall i : fin d,

LB * ‘(z i) <= w i <= UB * ‘(z i)))}

Figure 15: Proof state after applying the big-M rewrite.
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state displayed by the system before and after line 2 is executed. Again, for reasons of clarity

in presentation, the output has been modified in the style indicated before (using pattern

matching in argument lists). The system successfully unifies and instantiates the different

pieces of the L0_bigM reformulation with respect to the subject of the reformulation, L0_SVM.

The resulting formulation is exactly the mixed integer SVM of Guan et al. [25], albeit

reached via a different series of transformations.

4.5 Expectation maximization for maximum likelihood estimation

4.5.1 The MLE formulation of parameter estimation

Maximum likelihood estimation (MLE) is a classic technique from statistics for performing

parameter estimation, the task of finding parameters for a parameterized stochastic model

that “best explain” observed data. Recall from Section 2.2.3 that MLE takes the “best”

parameters to be the ones which maximize the likelihood function of the model,

θ∗ = argmax
θ

f(x; θ) (27)

where x is some observed data and f is the parameterized pdf of the model. The function

L(θ) := f(x; θ) is known as the likelihood function. It is possible to derive closed-form

solutions of θ∗ for simple models. Take for example a dataset of numbers x1, . . . , xn which

we believe are drawn independently and identically from a normal distribution, whose pa-

rameters (mean µ and variance σ2) we would like to estimate. With some calculus we can

show that µ∗ = 1
n

∑n
i=1 xi and σ2∗ = 1

n

∑n
i=1(xi−µ∗)2. MLE is easily formulated using our

representation. For the common case of MLE over i.i.d. data, which has the mathematical

formulation θ∗ = argmaxθ
∏

i f(xi; θ), we would write:

Axiom PROD : forall {n}, R^n -> R.

Definition MLE {T} {A} ‘{stocked A} {n : nat} (P : T -> dist A)

‘{forall t, has_pdf (P t)} (X : A^n) : option T

:= argmin ( fun t => - PROD (fun i => pdf (P t) (X i)) )

( fun t => True ).

Aside from the increased level of precision that is required for mechanization, this code

is mostly a direct translation of the mathematical statement. The function MLE has two
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explicit parameters: a family of distributions P over a space A, indexed by a parameter of

type T (a mnemonic for “theta”); and a dataset X containing n observations of type A. The

remaining parameters are implicit and do not have to be provided by the programmer; these

include the proof that A is stocked and the proof that the entire family P has a pdf. The

function returns a value of type option T, which is of the form Some t or None depending

on whether or not an optimal parameter value t exists. The definition uses a variant of the

min operator named argmin, which returns the argument that achieves the optimal value in

a minimization problem, when it exists. The subexpression pdf (P t) corresponds directly

to the function f( · ; θ), which we apply to the i-th data point in both formulations. To

express maximization via argmin, we negate the original objective function.

4.5.2 Solving MLE with expectation maximization

There does not always exist a simple and straightforward closed-form expression for maxi-

mum likelihood estimates. Consider the dataset x1, ..., xn of numbers from before, but where

we now posit that they are generated by a mixture of two Gaussians instead of by a single

Gaussian. This new process can be understood as flipping a coin and then drawing a point

from one of the Gaussian components based on the result of the coin flip (for simplicity we

consider an unbiased coin and unit variance for the normals). This model does not have a

convenient likelihood function.

The expectation maximization (EM) algorithm is a technique for finding MLE estimates

in such cases [17, 39, 16]. More accurately, EM is an algorithm template: different models

have different instantiations of the algorithm. EM leverages the fact that, in many cases,

models that have inconvenient likelihood functions still have a convenient joint likelihood,

when considering the hidden variables of the model, in addition to the data variables. In

our example, the hidden variables would be the the result of each coin flip zi ∈ {0, 1} that

generated each data point xi. In a sense, the problem is “easy” if only we knew what values

the hidden variables have taken. In this vein, the standard interpretation of EM casts it as

an iterative algorithm that alternates between hallucinating values for the hidden variables

(the E-step) and re-optimizing for the best values of the parameters (the M-step) based on
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these hallucinations. EM is numerically robust and is guaranteed to make progress toward

a local maximum.

Given x as input:

θcurr := <initialize_randomly >;

while (<convergence_check >) {

J(θ) := Ez|x;θcurr[ log f(x, z; θ) ];
θcurr := argmaxθ J(θ);

}

return θcurr;

Figure 16: General form of the EM algorithm.

The general form of the EM algorithm is shown in Figure 16. The algorithm takes

observed data as input and proceeds by iteratively re-estimating the parameters, starting

from a random initialization. The re-estimation step creates a new guess for the parameter

from an old guess by selecting the value that maximizes the expected joint log-likelihood.

We do this because we do not actually know the values of the hidden variables, so we take

the expectation over all possibilities for the hidden variables. This averaging takes into

account what we know: the observed data and the current guess for the parameters. The

specific instantiation of EM for our running example is shown in Figure 17.

Given x as input:

(θ1, θ2) := <initialize_randomly >;

while (<convergence_check >) {

for i = 1 to n do

γi := φ(xi − θ1) / ( φ(xi − θ1) + φ(xi − θ2) );

θ1 := (
∑n

i=1 γi * xi ) /
∑n

i=1 γi ;

θ2 := (
∑n

i=1 (1 - γi) * xi ) /
∑n

i=1 (1 - γi);

}

return (θ1, θ2);

Figure 17: EM for a mixture of two Gaussians. The function φ is the pdf of the normal
distribution.
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4.5.3 Mechanizing expectation maximization

The most important step in mechanizing EM is to define precisely what is done in the core

step of the algorithm. This is implemented as follows:

Definition EM_step {T Z X} ‘{stocked Z} ‘{stocked X} {n}

(P : T -> dist (Z * X)) ‘{forall t, has_pdf (P t)}

(x : X ^ n) (t_prev : T)

: option T

:= let f t := pdf (P t) in

let Q t := - INT ( fun z : Z^n =>

PROD (fun i => f t_prev (z i, x i) /

INT (fun z : Z => f t_prev (z, x i)))

* SUM (fun i => ln (f t (z i, x i))) ) in

argmin Q (fun _ => True).

This function corresponds to the loop body in Figure 16 and describes how to compute a

new estimate of the parameter from a previous estimate t_prev. It combines the E-step and

M-step. There are three explicit parameters: the previous estimate t_prev, the observed

data x, and the parameterized joint distribution P of the hidden and data variables. The

other parameters are implicitly determined by the system, including a proof that P has a

pdf for any setting of its parameter. Integration with the PROD term in the definition of Q

computes exactly the conditional expectation from Figure 16, specialized to the i.i.d. case

and written in terms of the joint density. This is done in the standard way, normalizing

the joint density by the marginal density of the data, which is itself achieved by integrating

out the hidden variable from the joint density. These integrations are performed by the INT

operator, which corresponds to abstraction integration and reduces to ordinary summation

for finite types.

We are now ready to state the necessary theorem. First, we define a new combinator

for constructing distributions, named extend, in the style of the extend operation in the

measure transformer semantics of Fun [11]:
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Definition extend {A B} ‘{stocked A} ‘{stocked B}

(PA : dist A) (PB : A -> dist B)

: dist (A * B)

:= var a ~ PA in var b ~ PB a in ret (a,b).

This is similar to the bind operation and simply creates a hierarchical model. Unlike bind,

it remembers the first random variable, and returns a joint distribution over both of the

random variables that are introduced. The EM rewrite is now simply

Axiom EM_thm :

forall {T Z X} ‘{stocked Z} ‘{stocked X}

(P1 : T -> dist Z) (P2 : T -> Z -> dist X)

‘{forall t, has_pdf (bind (P1 t) (P2 t))}

‘{forall t, has_pdf (extend (P1 t) (P2 t))}

{n} (x : X^n) (t_init : T) (steps : nat),

MLE (fun t => bind (P1 t) (P2 t)) x

= EM_loop (fun t => extend (P1 t) (P2 t)) x t_init steps.

At a high level this asserts that maximum likelihood problems for hierarchical models of

a particular form can be solved by the EM algorithm. In particular, the models must be

of the form bind (P1 t) (P2 t), which are models where a random variable drawn from

the parameterized distribution P1 is used to construct a random variable from the data

distribution P2. The use of bind is what makes the draw from P1 a hidden variable. As

before, x is a dataset of observations. The function EM_loop applies EM_step to the initial

estimate t_init for the specified number of iterations, steps, to produce a final estimate

for the parameter. Note that the argument to EM_loop is the parameterized joint model,

obtained by using extend instead of bind. The necessary preconditions are computed

automatically, such as the requirement that the marginal and joint models each have a pdf.
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4.5.4 Remarks on semantic preservation

We are mildly abusing the equality relation = provided by the Coq standard library, which

raises questions regarding semantic preservation. For our current investigation, this abuse

turns out to be harmless.

The EM theorem as stated does not actually hold for several reasons. First, EM is only

guaranteed to make progress to a local optimum and may not equal the global optimum.

This is often the case in solvers for nonlinear optimization problems; furthermore, there is

not much more that can be said to characterize the quality of the approximation. Second,

the equality is stated to hold for any initial estimate and any number of iterations, which is

not true. Given this, how would we phrase the semantic preservation theorem for EM if we

cannot characterize the nature of the approximation being made? If we cannot, what was

the purpose of bothering to define a formal semantics in the first place, if not to support

semantic preservation?

Unfortunately, there cannot be a good answer to these questions in the general case:

there are many methods used in practice whose approximation guarantees cannot be char-

acterized, and any pragmatic system will need an “escape hatch” to incorporate such tech-

niques. However, this does not mean it was a waste to define a formal semantics. There are

numerous styles of approximation algorithms, many of which can be characterized. Fur-

thermore, the nature of the guarantee can vary: consider constant factor approximations

vs. approximation algorithms with probabilistic guarantees. The task of structuring an al-

gorithm derivation system in the presence of approximation algorithms—as well as defining

and mechanizing how the guarantees compose—is an interesting open research question. A

formal semantics certainly plays a part in understanding such a system and serves as a basis

on which to state semantic preservation theorems (as equalities or as suitable approximation

statements) for derivations, or fragments thereof, that do not use the escape hatch.

Concretely, one might define a new relation f =~ g, expressing when a function g ap-

proximates a function f, and use this relation in the rewrite theorems (“EM_loop approxi-

mates MLE”) and problem statement theorems (“there exists a term that approximates my

input specification”). Term rewriting would be achieved via Coq’s support for generalized
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rewriting with user-defined relations (which we are in fact already using, in conjunction

with functional extensionality, in order to rewrite under variable binders). This relation

could be implemented as a Coq inductive data type, with a separate case for each kind of

approximation algorithm.

In any case, we have chosen to use the equality relation because it is simple and sufficient

to investigate the issue of whether machine learning principles can be mechanized. We

consistently use equality in a “uni-directional” way—using only left-to-right rewriting—

and thus are treating it as an “approximates” relation.

4.5.5 Mechanizing expectation maximization for a mixture of Gaussians

We demonstrate the mechanization of EM by applying it to our running example of a

mixture of two Gaussians with unit variance. Again, the corresponding Coq code will be

in nearly one-to-one correspondence with the mathematical statement. We start with the

definition of a normal distribution parameterized by just its mean

Definition normal (t : R) : dist R := var x ~ std_normal in ret (x + t).

and use this to write a model for the mixture of two such normals:

Definition mo2g (t : R * R) : dist R :=

var z ~ flip (/2) in (if z then normal (fst t) else normal (snd t)).

Note that we parameterize mo2g by a single parameter of type R * R rather than two

parameters of type R. This is done to fit into the form expected by MLE; the maximum

likelihood estimate for this example can now simply be written as MLE mo2g x, where x is

some dataset of observations. Preparing to solve this maximum likelihood problem proceeds

as before: we propose the existence of a term that computes the MLE solution:

Theorem mo2g_EM : forall {n} (x : R^n) (t_init : R*R) (steps : nat),

{ans | ans = MLE mo2g x}.

One detail here is that the initial parameter estimate, t_init, and the number of iterations,

steps, are part of the theorem statement, which seems unnecessary: why should those de-

tails arise before we have even decided which technique to use to solve this MLE problem?
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n : nat

x : R ^ n

t_init : R * R

steps : nat

============================

?163383 =

EM_loop

(fun t : R * R =>

extend (flip (/ 2))

(fun z : bool => if z then normal (fst t) else normal (snd t))) x

t_init steps

Figure 18: Proof state immediately after applying the EM reformulation.

This turns out to be necessary because of how we have chosen to emulate algorithm deriva-

tion (using equality theorems on output values) and is not a fundamental shortcoming of

our syntactic formalization. The key issue is that we need a way to represent the idea that

solution techniques can introduce parameters of their own, in addition to the parameters

of the original problem. This could be achieved by way of the relation for approximation

algorithms suggested in the previous section. We will continue with the basic version, as it

is enough to demonstrate that our formalization can mechanize EM.

We examine this derivation by its major steps. The first step simply applies the EM

rewrite, after some clerical operations:

Proof.

(* Step 1: Apply the EM rewrite *)

intros; eapply exist; unfold mo2g; rewrite (EM_thm _ _ _ t_init steps).

The major arguments to EM_thm are inferred, from unification against the input specifica-

tion. The proof state after this step is shown in Figure 18; this is exactly the right-hand side

of EM_thm, specialized to the distributions in our example. The question mark variable rep-

resents an existentially quantified variable that has yet to be instantiated and corresponds

to the term we are in the process of deriving. The next step unfolds some definitions so we

can inspect the details of the EM step, and the resulting proof state is shown in Figure 19:

(* Step 2: Inspect the EM step *)
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n : nat

x : R ^ n

t_init : R * R

steps : nat

============================

?163383 =

match_nat steps (Some t_init)

(fun acc : option (R * R) =>

match_option acc None

(fun t : R * R =>

argmin

(fun t0 : R * R =>

- INT

(fun z : bool ^ n =>

PROD

(fun i : fin n =>

(if z i then / 2 else 1 - / 2) *

(if z i then phi (x i - fst t) else phi (x i - snd t)) /

INT

(fun z0 : bool =>

(if z0 then / 2 else 1 - / 2) *

(if z0 then phi (x i - fst t) else phi (x i - snd t)))) *

SUM

(fun i : fin n =>

ln

((if z i then / 2 else 1 - / 2) *

(if z i then phi (x i - fst t0) else phi (x i - snd t0))))))

(fun _ : R * R => True)))

Figure 19: Proof state inspecting the details of the EM step.
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unfold EM_loop, EM_step; simpl.

We see here the guts of EM_loop and EM_step. The function match_nat is the EM “main

loop”, recursing on the number of iterations: on zero iterations it returns the initial pa-

rameter estimate t_init and otherwise does the EM step. The function match_option

handles possibly failing computations: if the optimization in the EM step becomes unde-

fined at some iteration, it returns None as the result of the entire computation; otherwise

it computes the new parameter estimate from the old one, as defined in EM_step. The

integration is performing the conditional expectation over the hidden variable; in this case

it is expressing an “integration” over bool^n (Boolean vectors of length n) which is simply

a sum over all 2n possible assignments of the hidden variables. Note that the EM step in

the final derived algorithm will only have O(n) complexity.

Next we use the fact that the optimum value will be located where the gradient of

the expected joint log-likelihood (function Q in EM_step) is equal to zero. We accomplish

gradient calculation in a similar fashion as pdf calculation, by encoding it as a typeclass.

The main definition is

Class has_gradient {A} ‘{euclidean_space A} (f : A -> R) := {

grad : A -> A

}.

which introduces an operator grad that takes a real-valued function f on a Euclidean

space A and produces a vector field (of type A -> A) corresponding to the gradient. Each

component of the gradient vector corresponds to the partial derivative in that direction.

We define finite products of the real line R as Euclidean spaces; instantiations of A include

vectors R^n, pairs R * R, and even more exotic aggregations like R^n * R * R^k. We

define rules for calculating gradients (i.e. Instances of has_gradient) that include logic

for handling the usual arithmetic operations, in addition to indexed summation SUM and

tuple projections fst and snd.

The main command in this step is grad_opt, which encodes the gradient condition,

applying grad to the expected joint log-likelihood; the remaining commands simply perform
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n : nat

x : R ^ n

t_init : R * R

steps : nat

============================

?163383 =

match_nat steps (Some t_init)

(fun acc : option (R * R) =>

match_option acc None

(fun t : R * R =>

argmin (fun _ : R * R => 0)

(fun x0 : R * R =>

- INT

(fun z : fin n -> bool =>

PROD ( ... ) *

SUM (fun i : fin n => if z i then x i - fst x0 else 0)) = 0 /\

- INT

(fun z : fin n -> bool =>

PROD ( ... ) *

SUM (fun i : fin n => if z i then 0 else x i - snd x0)) = 0)))

Figure 20: Proof state after applying the gradient condition for optimality.

some algebraic simplifications:

(* Step 3: Apply the gradient condition *)

unfold phi; clrewrite_strat (bottomup (hints log_rules)).

setoid_rewrite grad_opt; simpl.

clrewrite_strat (bottomup (hints arith_rules)).

setoid_rewrite fst_if; setoid_rewrite snd_if.

setoid_rewrite prod_eq.

The proof state after this step is shown in Figure 20. Note that the optimization prob-

lem has changed from having a non-trivial objective function with a trivial constraint

(fun _ : R * R => True) to one with a trivial objective function (fun _ : R * R => 0)

and a non-trivial constraint. We elide the body of the indexed multiplication PROD to keep

the presentation simple; it is the same body from the previous step. This new constraint

simply states that the gradient must equal zero, i.e. that both partial derivatives (w.r.t.

each of the two parameters) must equal zero. Note that because the gradient rules use the
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name x (by convention) for naming the variable of differentiation, Coq has (safely) renamed

our parameter t to x0 (the 0 is appended to avoid collision with our name for the dataset,

which incidentally is also x). The last major step is to solve this system of equations, which

happens to be a linear system.

(* Step 4: Solve the resulting system of equations *)

setoid_rewrite eqn_soln1; setoid_rewrite eqn_soln2.

setoid_rewrite INT_iid1; setoid_rewrite INT_iid2.

setoid_rewrite solved_constraint.

setoid_rewrite bool_INT; setoid_rewrite bool_INT.

simpl. clrewrite_strat (bottomup (hints arith_rules)).

This produces the final proof state shown in Figure 21. This big term actually has a

simple form: the EM step in the main EM loop (i.e. the body inside of match_nat and

match_option) simply takes the previous estimate t and produces a new estimate. This

new estimate is a pair where each component is a quotient of two SUMs, exactly of the form

we originally discussed when we introduced EM, shown in Figure 17. We conclude with

reflexivity.

Defined.

which ends the proof and binds this derived algorithm (together with a proof of its equiv-

alence to our input problem) to the name mo2g_EM. We can now use Coq’s Extraction

facility to automatically generate an executable OCaml version of this derived algorithm.

4.6 Lessons learned from using a foundational type theory

We now reflect on some anecdotal lessons we have learned about the benefits of using

type theory for our formalization. In particular, we consider lessons from working in the

framework of a foundational type theory (FTT), such as the Calculus of Constructions or

Martin-Löf’s intuitionistic type theory. Some of these lessons will be all too familiar to

devotees of these type theories, but they deserve to be repeated to the uninitiated.
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n : nat

x : R ^ n

t_init : R * R

steps : nat

============================

?163383 =

match_nat steps (Some t_init)

(fun acc : option (R * R) =>

match_option acc None

(fun t : R * R =>

Some

(SUM

(fun i : fin n =>

/ 2 * / sqrt (2 * PI) *

exp (- ((x i - fst t) * (x i - fst t) * / 2)) /

(/ 2 * / sqrt (2 * PI) *

exp (- ((x i - fst t) * (x i - fst t) * / 2)) +

/ 2 * / sqrt (2 * PI) *

exp (- ((x i - snd t) * (x i - snd t) * / 2))) *

x i) /

SUM

(fun i : fin n =>

/ 2 * / sqrt (2 * PI) *

exp (- ((x i - fst t) * (x i - fst t) * / 2)) /

(/ 2 * / sqrt (2 * PI) *

exp (- ((x i - fst t) * (x i - fst t) * / 2)) +

/ 2 * / sqrt (2 * PI) *

exp (- ((x i - snd t) * (x i - snd t) * / 2)))),

SUM

(fun i : fin n =>

/ 2 * / sqrt (2 * PI) *

exp (- ((x i - snd t) * (x i - snd t) * / 2)) /

(/ 2 * / sqrt (2 * PI) *

exp (- ((x i - fst t) * (x i - fst t) * / 2)) +

/ 2 * / sqrt (2 * PI) *

exp (- ((x i - snd t) * (x i - snd t) * / 2))) *

x i) /

SUM

(fun i : fin n =>

/ 2 * / sqrt (2 * PI) *

exp (- ((x i - snd t) * (x i - snd t) * / 2)) /

(/ 2 * / sqrt (2 * PI) *

exp (- ((x i - fst t) * (x i - fst t) * / 2)) +

/ 2 * / sqrt (2 * PI) *

exp (- ((x i - snd t) * (x i - snd t) * / 2)))))))

Figure 21: Final proof state, depicting the derived algorithm.
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Lesson 1: Types guide us when writing highly abstract code. This is a commonly

cited benefit of using static type checking, particularly in the presence of parametric poly-

morphism (i.e. generics). Consider the definition of EM_step or EM_thm from Section 4.5.3.

The type system enables us to write definitions that abstract over the possible types of the

hidden and observed variables (i.e. they are not constrained to be particular types).

However, unlike dynamically typed languages, the definitions must still obey the types;

specifically, by the property of parametricity [66], terms with parametric types can only be

combined in certain ways, much like jigsaw puzzle pieces. This helps the programmer by

catching programs which appear to put the right expressions in the right places, but are

incorrect in subtle ways. This was our experience with EM_step, where there is a subtle

interplay between the pdf, indexed vs. non-indexed versions of the hidden variables, and

the observed data—our first attempts at a definition were type-incorrect. After carefully

examining the types, we were guided toward the correct definition. Catching this error

statically was especially important for us, because the notion of “run time” is far more

delayed in our setting than in general-purpose programming; we have many more steps

between the high-level mathematical specification of input problems and the corresponding

executable code, so there is a high cost to leaving error-finding to run time.

Lesson 2: FTT gives us a way to be pragmatic about verification of program

transformations. There are many approaches to verifying that programs meet certain

specifications. An attractive feature of FTT is that terms and meta-level statements about

those terms (e.g. when they are equal) are written in the same language. Conceptually,

this matches what we do on paper, where we use the one language of mathematics. Fur-

thermore, this feature allows us to write so-called “strong specifications” for stating our

problem statement theorems. Proving these theorems amounts to chaining together the

rewrite theorems and the typeclass instances—which are themselves semantic preservation

theorems—to produce a derived algorithm and corresponding proof of correctness. For-

tunately, implementations of FTT such as Coq allow us to state these auxiliary theorems

axiomatically, without needing to prove everything from first principles all at once. Instead,
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we can prove them over time, while in the meantime use them for algorithm derivation. This

represents a nice pragmatic approach to building up a database of rewrite theorems, while

remaining in a formal and fully verifiable framework.

Lesson 3: FTT greatly clarifies our syntactic understanding of mathematical

objects. This is the biggest benefit of FTT, in our opinion. As mentioned before, FTT

takes a syntactic approach to laying a foundational system for mathematics, making it suit-

able for those who care to mechanize mathematics. Furthermore, the core of these theories

are composed of only a few primitives. Consequently, any formalization of mathematical

objects is constrained to use only these primitives. In particular, variable binding constructs

such as min and varmust be implemented using existing variable binders: either lambda ab-

straction or universal quantification, which are written (fun x => E) and (forall x, E)

in Gallina, respectively (x can appear free in the term E). Adopting FTT’s worldview

on how to formalize mathematics turns out to have a significant impact on our ability to

understand mathematical objects syntactically.

The process of converting informal mathematics-on-paper to syntactic objects often in-

volves dealing with the low-level issue of managing variable names and variable contexts,

and this is the source of many headaches. Compiler writers can attest to the fact that pro-

grams with variables are the trickiest kind of data to write algorithms for. Our pdf compiler

is such an example; the judgments in Section 2.5.3 take great care to keep track of which

variables in the context are random variables and which are parameters. It manipulates

open terms and in certain places relies on variable names coinciding in order to produce

a pdf. The correctness of this program transformation depends crucially on getting this

bookkeeping right, which is in fact extremely tedious and error-prone. By contrast, our

implementation of the exact same logic in Coq performs no such low-level variable man-

agement, eliminating an entire class of variable mis-management errors. This is because

Coq provides only a controlled interface to syntactic manipulation, and it forces the user

to think at the level of proper mathematical objects instead of manipulating open terms,

by handling open terms and contexts under the hood.
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For instance, compare the typeclass instance has_pdf_translate (Section 4.3) against

p-linear, its corresponding rule from the pdf compiler. Instead of reasoning about a real-

valued open term and carefully keeping track of random variables versus parameters (as

p-linear does), has_pdf_translate reasons on a real-valued object (f : A -> R) that is

explicitly parameterized by the random variable is depends on. The role of the probabilistic

context is played by the distribution P, of type dist A. Likewise, we see EM_thm operating on

explicitly parameterized distributions (P1 : T -> dist Z) and (P2 : T -> Z -> dist X),

rather than operating on a non-parameterized distribution and searching it for hidden vari-

ables that are implicit in its structure. Note that the Coq user still writes their programs

with the implicit structure; the system unifies against it to determine the different explicit

pieces. A potential downside of this controlled interface is that it is much harder to arbi-

trarily manipulate collections of variables, as was done in a previous hand-rolled prototype

for EM [7]. Designing a mechanism that is as safe as the Coq solution but retains (most of)

the flexibility of arbitrary variable manipulation remains an interesting research problem.

4.7 Conclusion

We have presented a unified syntactic theory of machine learning. This formalization al-

lows us to express machine learning problems and mechanize useful solution principles in

a way that is quite similar to their original mathematical formulations. We have imple-

mented the ideas in the Coq proof assistant using type theory, highlighting the ways in

which correctness is promoted in our setup. We hope that this work will consolidate the

community’s understanding of existing work and spur the next generation of languages for

machine learning. In particular, we hope this work not only provides a way to formally

understand previous work such as AutoBayes but also encourage future languages to start

incorporating primitives beyond probability distributions in their definitions.
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CHAPTER V

CONCLUSION

We now review the thesis statement as well as the evidence provided in the dissertation that

substantiates the thesis. We also discuss implications of the dissertation and directions for

future work raised by this work.

5.1 Review of thesis statement and dissertation

Recall the thesis statement:

It is possible to construct a syntactic representation of machine learning that is

expressive, promotes correctness, and can mechanize useful solution principles.

We substantiate this existence proposition by providing a witness: a syntactic represen-

tation of machine learning with the necessary properties.

Expressive. The first aspect of expressivity that we provide is the ability for users to

specify both probability and optimization in their programs, in a rich way. Specifically, we

provide constructs for probability distributions, probability density functions, and optimiza-

tion problems. These can be nested and combined arbitrarily, allowing users to represent

their learning problems in almost a direct correspondence with their respective mathemat-

ical formulations, as we show in several examples.

The second aspect of expressivity involves our use of the probability monad. Structuring

our language around the probability monad allows us to express deterministic transforma-

tions of random variables, which arises in the ecological models we use in our empirical re-

sults. Crucially, it also allows us to implement our language as an embedded domain-specific

language in Gallina, the term language of the Coq proof assistant. The embedding allows

us to inherit several features of Gallina, such as its compositionality.
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Promotes correctness. To promote correctness, we take a formal approach to language

design. In particular, we develop our language as an embedded language in Gallina and

inherit a well-understood type system and semantics. The consequence is that we have

a precise mathematical meaning for any program we write in our language. So, even for

programs which arbitrarily mix random variables and optimization variables, we have an

unambiguous understanding of what it is specifying. Compare this with AutoBayes, which is

not formally defined; it is unclear what such arbitrary combinations actually mean, precisely.

We believe this work could serve as a formal foundation for future versions of AutoBayes.

Additionally, with a formal semantics, there is a finally a framework that can be used

for reasoning about the behavior of program transformations. This can be used informally,

by human users who inspect programs before and after a rewrite. This can also be used

formally, by stating and proving semantic preservation theorems. As mentioned before, this

also supports a future agenda of semantic approximation theorems, to handle the ubiquitous

notion of approximation in machine learning.

We demonstrate this claim by implementing our program transformations as theorems

in Coq. These are stated axiomatically for pragmatism, but they can be proven from first

principles over time to fully verify the program transformations. Compare this with the

compilers from related works; though we rely on the writers of the program transformations

to encode them correctly—as related works do—we have a framework in which we can

migrate toward a fully verified compiler.

Can mechanize useful solution principles. To verify that our theory has real-world

benefit, we use it to mechanize several useful techniques, exercising different aspects of the

theory.

First, we define a syntactic framework for probability density functions, which lets us

write a pdf compiler for producing pdfs from probabilistic programs. We apply this com-

piler to Bayesian inference problems from ecology by automating the use of Filzbach, an

MCMC-based sampler, and we achieve tremendous code savings at modest additional com-

putational cost, which greatly reduces developer burden.
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Next, we implement reformulations from optimization. In particular, we formalize the

big-M method for disjunctive constraints, based on the formalization of the convex-hull

method for disjunctive constraints formalized in Tyles, as defined by Agarwal. We also

compare these methods against state-of-the-art solutions, finding that no one method is

universally the best option. This underscores the importance of automation, as we do not

want the user to manually experiment with these alternative in their quest to find the most

efficient reformulation.

Furthermore, we modify this big-M compiler—which deals with discrete choice arising

in the constraint of an optimization problem—to handle discrete choice that arises in the

objective function of an optimization problem. Namely, we define a new compiler that

handles L0 regularization terms. Such terms are often added in machine learning problems

to induce solution sparsity, and their discrete nature often cannot be handled directly,

requiring some sort of reformulation. We show its utility by using it to solve L0 support

vector machines, yielding the recent technique of mixed-integer support vector machines.

Finally, we mechanize the expectation maximization algorithm for solving maximum

likelihood estimation problems. Specifically, we mechanize EM for estimating the means

of a mixture of two Gaussians. The mechanization depends crucially on the previous two

features: pdfs and optimization. Furthermore, it uses the ability to nest optimization

problems inside of expressions, as the core EM step occurs inside of a loop and is expressed

with optimization.

5.2 Directions for future work

While this dissertation lays a firm expressive foundation for the syntactic study of machine

learning problems and reformulations, several question remain to be resolved in order to

take this work past the state of AutoBayes and to accomplish the fully realized vision of

(semi-)automatic derivation of machine learning algorithms. Anecdotal accounts tell us

that the AutoBayes codebase of program transformations reached a plateau in size, after

which adding new reformulations proved to be quite a burden. We believe there are several

reasons for this. First, the AutoBayes language lacks a formal specification (something this
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work provides), which can aid in understanding and guiding the development of program

transformations.

Perhaps more important is that authoring these transformations in AutoBayes is a

relatively crude activity, as it is in most compilers; authors often must deal with low-level

variable management logic. This may be manageable in the traditional view of languages

and compilers, where the responsibility of writing program transformations lies solely with

the compiler writers. However, this does not translate to the vision of such a system

as an assistant to a machine learning researcher, who we expect to invent new algorithm

templates (such as EM) and encode them in the system. Here, our end-user (the researcher)

is interested in writing the programs and their transformations, and they will not be well-

versed in writing compiler algorithm, nor all the issues and pitfalls that follow.

Another factor pushing us toward end-users being involved with program transformation

is the issue of interfacing with existing solvers and solution schemes. The expressivity of

our language is good for lowering the semantic gap between thoughts and code, but it is

in tension with our ability to actually solve arbitrary problem statements. In reality, a

major contribution of our language is to serve as a common representation from which we

can compile to many existing solution techniques, each of which operate within different

subsets of the full-blown expressive language.

In light of this discussion, we see a few important issues to resolve:

Easing the burden of writing program transformations. As discussed, there will

be a shift toward having the end-user write program transformations. An open research

question is: how can we make this process less error-prone, particularly in the face of variable

management issues? Our Coq implementation is one possible approach; we used the built-

in unification capability of the Coq system to pattern match against occurrences of variable

binding. Thus, the user never explicitly manages variables; instead, she writes such program

transformations as statements on functions. To be most effective, this approach needs to be

extended to cleanly handle multiple variables that arise in multivariate functions. In general,

we wish to work out a mechanism for writing program transformations declaratively.
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Interfacing with side-effecting APIs. Interfacing with existing libraries and software

is an unavoidable fact. This raises the question of how can we represent this interface,

semantically. Our language thus far corresponds to an idealized mathematical concept: all

functions are total, and thus do not fail or loop indefinitely. However, real software exhibits

both of these properties. One possible solution is to use a “partiality monad”, which uses

the type system to separate pure computations from possibly side-effecting ones. It remains

to be seen how far this approach can be taken.

Generalizing the scope of probabilistic programming. There are many methods

which do not strictly fall under the probabilistic worldview, but which are nonetheless widely

used. For instance, in supervised learning, a probabilistic programming language wishes

to learn a value of type A -> dist B because it views supervised learning as conditional

density estimation; however, you might also solve the same learning problem with a decision

tree that learns a function of type A -> B. We believe the idea of probabilistic programming

needs to be generalized to include a more general notion of learning, instead of focusing on

just the probabilistic account.
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“The Coq proof assistant reference manual,” INRIA, version, vol. 6, no. 11.

[7] Bhat, S., Agarwal, A., Gray, A., and Vuduc, R., “Toward Interactive Statistical
Modeling,” Procedia Computer Science, vol. 1, no. 1, pp. 1835–1844, 2010.

[8] Bhat, S., Borgström, J., Gordon, A. D., and Russo, C., “Deriving probability
density functions from probabilistic functional programs,” in Tools and Algorithms for
the Construction and Analysis of Systems, pp. 508–522, Springer, 2013.

[9] Bishop, C. and others, Pattern recognition and machine learning. Springer New
York:, 2006.

[10] Bisschop, J. and Meeraus, A., “On the development of a general algebraic mod-
eling system in a strategic-planning environment,” Mathematical Programming Study,
vol. 20, no. Oct, pp. 1–29, 1982.

[11] Borgström, J., Gordon, A. D., Greenberg, M., Margetson, J., and Gael,

J. V., “Measure Transformer Semantics for Bayesian Machine Learning,” in European
Symposium on Programming, pp. 77–96, 2011.

[12] Burges, C. J. C., “A tutorial on support vector machines for pattern recognition,”
Data Mining and Knowledge Discovery, vol. 2, pp. 121–167, 1998.

[13] Colombani, Y. and Heipcke, T., “Mosel: an extensible environment for model-
ing and programming solutions,” in 4th Intl. Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems (CP-
AI-OR’02) (Jussien, N. and Laburthe, F., eds.), (Le Croisic, France), pp. 277–290,
2002.

116



[14] Curtin, R. R., Cline, J. R., Slagle, N. P., Amidon, M. L., and Gray, A. G.,
“MLPACK: A Scalable C++ Machine Learning Library,” in BigLearning: Algorithms,
Systems, and Tools for Learning at Scale, 2011.
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