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ABSTRACT 

We propose an information-theoretic method for multi-phase 
image segmentation, in an active contour-based framework. Our 
approach is based on nonparametric density estimates, and is able 
lo solve problems involving arbitraly probability densities for the 
region intensities. This is achieved by maximizing the mutual in- 
formation between the region labels and the image pixel intensi- 
ties, io order to segment up to 2'" regions using m curves. The 
method does not require any priortraining regarding the regions of 
interest, but rather leams the probability densities during the evo- 
lution process. We present some illustrative experimental results, 
demonstrating the power ofthe proposed segmentation approach. 

1. INTRODUCTION 

A number of active contour-based variational techniques have re- 
cently been developed and used in image segmentation. These 
methods are based on fairly simple statistical models for the inten- 
sities of the regions to be segmented. For example, either simple 
Gaussian intensity models are assumed, or a particular discrimina- 
tive feature (such as the intensity mean or variance) is used [ 5 ] .  

This work considers more general problems where the regions 
to be segmented may not he separable hy a simple discriminative 
feature, or by using simple Gaussian probability densities. We 
present an information-theoretic segmentation approach, which can 
deal with a variety of intensity distributions. Some previous tech- 
niques which have relations to our approach include the region 
competition method of 161, and the supervised texture segmenta- 
tion method of [4]. Our strategy is different h m  previous methods 
in three majorways. First, unlike e.g. [6] ,  our approach is based on 
nonparametric statistics. Secondly, unlike e.g. [4], our technique 
requires no training. Thirdly, the optimization problem we pose is 
based on a new information-theoretic cost functional utilizing mu- 
tual information. In particular, we cast the segmentation problem 
as the maximization of the mutual information between the region 
labels and the image pixel intensities. 

We have previously described a two-region version of this a p  
proach [3]. In this paper, we provide an extension of this tech- 
nique for images with more than two regions, by incorporating the 
multi-phase segmentation formulation of [ I ]  into our information- 
theoretic, nonparametric segmentation framework. Our method 
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uses m level set functions to segment up to 2"' regions, and the 
resulting curve evolution equation (motion equation) NmS out to 
he a natural generalization of nonparametric region competition. 
The nonparametric aspect of our approach makes it especially a p  
pealing in applications where there is little or no prior information 
about the statistical properties ofthe regions to be segmented. We 
present the effectiveness of the proposed segmentation strategy on 
a number of synthetic and real scenes. 

2. INFORMATION THEORETIC APPROACH TO IMAGE 
SEGMENTATION MULTI-PHASE FRAMEWORK 

2.1. Problem Statement 

We consider an n-ary (i.e. n-region) image segmentation prob- 
lem, where RI , .  . . , R, denote the true unknown regions, and the 
image intensity at pixel x, denoted by G(z), is drawn from the 
density p, if x E Q, where p,'s are unknown. Figure I(a) illus- 
trates this image model when n = 4. 

Fig. 1. Multi-phase segmentation image model. (a): Illustration of 
the case n = 4: true regions R I , .  . . , R.A. with the associated dis- 
tributions p , ,  . . . , p r .  (b): Illustration of the two curves (61, b), 
the regions R++, R+-, R-+, R-- partitioned hy the curves. 

The goal of n-aly image segmentation by curve evolution is 
to move a set ofcurves {e,, . . . ,e,,,> (equivalently, a set oflevel 
set functions { @ I , .  . .,9,,,)) such that these curves partition the 
image domain into the true regions R I , .  . . , R+,. Each curve C, 
partitions the image domain into the two regions, the region in- 
side the curve and the region outside the curve (& does the same 
thing by its sign). Thus the m level set functions partition the 
image domain into 2"' regions, each of which we label by the 
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signs of the level set functions in that region, For instance, when 
m = 2, we have 4 regions, R++, I&, R-+, R-_ as illustrated 
in Figure I@). More formally, we define R++ as a closure of the 
open set {xI+i(x) > 0, +z(x) > 0). R+-, R-+,  and R-- are 
similarly defined. 

we can 
label each pixel z by its label Lc(z ) .  For instance, if z E R++, 
L c ( x )  = L++. More formally, this partitioning of the image 
domain by the curves C gives us a label 

Given the partitioning by the curves C {E.}? , 

Lc : n - {L++ ...+, . . . , L- }, 

which is a mapping from the image domain n to a set of 2'" label- 
ing symbols {L++ ...+, . . . , L } defined as follows: 

L c ( z )  = i f z  E R8(,), 1 5  i 5 2m, (1) ~ 

wheres(i) istheithelementintheset {++. . . +, , , . , . . - 1. 
By this correspondence between labels and curves, image segmen- 
tation by curve evolution is equivalent to the Zm-ary labeling prob- 
lem. 

2.2. Mutual Information behveen the Image Intensity and the 
Label 

As mentioned before, we have a combination o f  candidate seg- 
menting curves C, and R I ,  . . . , R, are the true unknown regions. 
Now suppose that X is a uniformly distributed random location in 
the image domain n. In this case, the label L c ( X )  is a random 
variable that depends on the c w e s  C. It takes the value 
La(;) E {L++ ...+, . . . , L  } with probability w, where 
IR,(,) I denotes the area of the region Rs(,). On the other hand, the 
image intensity G ( X )  is a random variable that depends on the 
m e  regions {Ri}:=, with the densityp,(,) = p p , .  

NowletusconsiderthemutualinfomationI(G(X); L c ( X ) )  
between the label and the intensity 

I ( G ( X ) ;  L c ( X ) )  

SI 

2m 

= WGW) - ~ P T ( L C ~ I ) = L , ( ~ , ) ~ ( G ( X ) I L C ~ = L ~ ( , ) )  

where the differential entropy h(Z) of a continuous random vari- 
ableZ withsuppoltSisdefinedbyh(Z)=-J,pz(z)logpz(z)dz. 
The entropies h ( G ( X ) )  and h ( G ( X ) I L c ( X )  = La(,)) are func- 
tionals of p q x )  and p q x ) ~ ~ ~ ( x ) = ~ ~ ( ~ ) ,  respectively. The con- 
ditional distribution is given as follows: 

;=I 

PG(X)ILc (x)=L*(<)  
n 

= W X  E R j I ~ k ( x )  L,(~))PG(x)~xER~,L~(x)=L.(,) 
1-1 

Each conditional entropy measures the degree of heterogeneity in, 
each region determined by the c w e s  C. 

Using the data processing inequality [2], we can show that the 
mutual information I ( G ( X ) ;  L c ( X ) )  ismaximized ifandonly if 

the curves C give the correct segmentation,' i.e. 
{R,}:=l = {R*(,)ll 5 i 4 2"). We omit the proof here. 
This result suggests that mutual information is a reasonable cri- 
terion for the segmentation problem we have formulated. How- 
ever, in practice, we really cannot compute the mutual information 
I ( G ( X ) ;  L c ( X ) )  since the regions {Ri}f=l and the probability 
densities PI, . . . p ,  are unknown. 

We thus need to estimate the mutual information as follows: 

f ( G ( X ) ;  L c ( X ) )  (3) 

- --f i(G(X))-EPr(Lc(X) = L,(i))-fi(G(X)ILc(X) = L.(i)) 
2- 

,=I 

This in turn requires us to estimate the densities p q X )  and 
PC(X)ILc (x)=L.(.) .  

2.3. The Energy Functional 

Finally, we combine the mutual information estimate with a regu- 
larization term, and the resulting energy functional to minimize is 
then given by 

where the second term acts as a curve length penalty. 

3. NONPARAMETRIC DENSITY ESTIMATION AND 
GRADIENT FLOWS 

We now describe our density estimation process needed in (3), and 
the gradient flow to minimize E ( C )  of (4). For notational conve- 
nience, we consider the case where m = 2, but the development 
could easily be generalized to any m. 

3.1. Estimation of the DiiTerential Entropy 

Based on (3), we have 2'" = 4 conditional entropies to estimate, 
"alllely, 
/ L ( G ( X ) I L C ( X ) ~ =  L++), . . . , h ( G ( X ) l L c ( X )  = L--) . In 
ordertocompute h ( C ( X ) l L c ( X )  = L++), weuse the following 
Pmen  density estimate OfpR++ 4 ~ C ( , ~ L , ( X ) = ~ , + :  

T ~ U S  ~ ( G ( X ) ~ L ~ ( X )  = L++) is given by 

- f i (G(X)ILc(X) L++) 

where we haveapproximatedtheentropyh(G(X)ILc(X)=L++), 
which is the expected value of the logarithm of p ~ + + ,  by the sam- 
pIemeanoflogpn++. Similarly, L ( G ( x ) I L ~ ( x )  = L+-), 

'For the sake of notational simplicity we assume 71 = 2"' in ow devel- 
opment here, but the approach is applicable to the case where n < 2*, as 
well. 
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f I (G(X) lLc(X)  = L+), and f I ( G ( X ) l L c ( X )  = L - - )  are 
given by nested region integrals over R+-, R-+, and R--, re- 
spectively. 

3.2. TheGradient Flow for the Information-Theoretic Energy 
Functional 

Based on the first variation of the energy bct ional  E ( C )  in (4), 
we obtain the following coupled motion equations2: 

- 
!%?L@ = [--am + r ( A @ ) E R + + ) l o g @ + + ( G ( A @ ) ) )  at 

- x ( ~ I @ )  E R-+)IogP-+(G(ei(p))) 

+ x(&@) E R+-) l o g P + - ( G ( 6 @ ) ) )  

- x ( ~ I ( P )  E R--)log@--(G(61@)))] (6)  

aQ(p) = I% [-a,, + x ( W ( p ) E R + + ) l o g P + + ( G ( ~ ~ ( p ) ) )  
at 

- X ( e 2 2 )  E R+-)Ioga+-(G(&@))) 
+ x ( & ( P )  E R-+)logP-+(G(Cz(p))) 

- x(&@) E R--) logP--(G(&@)))]  , (7) 

where & and 62 are parameterized by p E [0,1], and x() is an 
indicator function such that x ( c l ( p )  E R++) is 1 if the pixel 
21 (p) i s  in R++ and 0 otherwise. 

For the purpose of illustration, let us observe how these gen- 
eral equations (6) ,  (7) specialize when the topology of the curves 
looks like Figure I(b). For this case, we have the following non- 
parametric region competitrons: 

where H ( . )  is the Heaviside function ( H ( + ) = l  if Q 2 0 and 
H(4) = 0 if 4 < 0). 

Equations (8). (9) involve log likelihood ratio tests comparing 
the hypotheses that the observed image intensity G(e;) at a given 
point on the active contour C, belongs to one region or the other. 

As illustrated in Figure I(b). 21 delineates either the bound- 
ary between +++ and R-+, or the houndaty between R+_ and 
R--, when Cl lies inside or outside the curve 6, respectively. 
Equation (8) exactly reflects this situation and weals  the region 
competition between regions adjacent to the curve d .  Similarly, 
Equation (9) shows the region competition between regions adja- 
cent to the culye 4. 

'These expressions are approximate. since they contain only the dom- 
inant terms contributing to the c w e  evolution. For the complete motion 
equations (for the n = 2 case), see [3] 

4. EXPERIMENTAL RESULTS 

First, we demonstrate our information-theoretic, multi-phase seg- 
mentation method on a synthetic image of geometric objects. The 
image shown in Figure 2(a) contains three regions (circle/rectangle, 
ellipse/hexagon, and background) with Gaussian distributions with 
different means. Hence, in this case we have m = 2, n = 3. The 
initial, intermediate, and final stages of our curve evolution algo- 
rithm are shown in Figure 2, with the inside of the fust (solid) and 
second (dashed) curves capturing the ellipsehexagon region, and 
the background region respectively. Figure 3(a) contains an exam- 
ple with four regions (circle, ellipse, hexagon, and background), 
hence m = 2, n = 4, with again Gaussian distributions with dif- 
ferent means. The f k t  (solid) c w e  has the circle and ellipse in it 
and the second (dashed) curve has the circle and the hexagon in it. 
Equivalently, R++, R+-, R-+, and R-_ capture the circle, the 
ellipse, the hexagon, and the background, respectively. Note that, 
methods such as [SI would also work in these simple examples, but 
would require the selection of an appropriate statistic (in this case 
the mean) a priori, whereas our method does not. The Mumford 
Shah-based multi-phase technique of [I], would also work in this 
case. Figure 4(a) contains an example with four Rgions having 
Gaussian distributions with different variances. Again, R + + ,  R+-, 
R_+, and R-- capture the circle, the ellipse, the hexagon, and 
background, respectively. 

In addition, our approach is directly applicable in problems 
involving more challenging intensity distributions, as we demon- 
strate on a real-image example next. Figure 5(a) shows the image 
of a zebra on a background (m = 1, n = 2). Note that the fore- 
ground intensities appear to have a bimodal density, whereas the 
background appears unimodal. Techniques, such as [5, I ]  are not 
suited to this kind of problem. The final result of our approach 
is shown in Figure 5(d). This  identical image has also been used 
in [4]. Note that unlike the training-based approach of [4], our 
method achieves an accurate segmentation without any supervi- 
sion. 

(a) initial (b) intermediate 

.._ 

.- 

Fig. 2. Evolution of the curve on a synthetic image; three regions 
with different mean intensities. 
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Fig. 3. Evolution of the curve on a synthetic image; four regions 
with different mean intensities. 

5. CONCLUSION 

We have presented a multi-phase, information theoretic n-ary seg- 
mentation technique based on nonparametric density estimates, 
which is able to solve challenging segmentation problems in an 
unsupervised fashion. The technique is geneml in the sen% that it 
could in principle be applied to any segmentation problem where 
pixel intensity distributions could be used to discriminate between 
different regions. On the other hand, the method can also solve 
simple special cases, e.g. when a palticular discriminative feature 
is sufficient for the segmentation task. We have presented some 
preliminary experimental results illustrating the flavor of this tech- 
nique, and ow current work involves the validation of the proposed 
approach on a variety of images. 

6. REFERENCES 

[ I ]  T. E Chan and L. A. Vese. An efficient variational multiphase 
motion for the mumford-shah Segmentation model. In Proc. 
Asilomar ConJ on Signals, Sysfems. and Computers, pages 

[21 T. M. Cover and J. A. Thomas. Elements of Informafion The- 
ofy. Wiley-lntencience, 1991. 

[3] J. Kim, J. W. E 111, A. Yezzi, Jr., M. Cetin, and A. S. Willsky. 
Nonparametric methods for image segmentation using infor- 
mation theory and curve evolution. In Pmc. IEEE Con$ on 
Image Pmcessing, 2002. 

[4] N. Paragios and R. Deriche. Geodesic active regions and level 
set methods for supervised texture segmentation. Int. J. Com- 
puter &ion, 2002. 

151 A. Yezzi, Jr., A. Tsai, and A. Willsky. A statistical approach 
to snakes for bimodal and trimcdal imagery. In Int. Con$ on 
Computer P7sion. pages 898-903, 1999. 

[6] S. C. Zhuand A. Yuille. Regioncompetition: Unifying snakes,; 
region growing, and BayesiMDL for multiband image seg- 
mentation. IEEE Trans. on Patfern Analysis and Machine In- 
telligence, 18(9):884-900, September 1996. 

490-494,2000. 

(c) intennediate (d) final 

Fig. 4. Evolution of the curve on a synthetic image; four regions 
with different intensity variances. 

(a) initial (b) intenuediate 

Fig. 5. Evolution of the cnrve on a zebra image. (Input image: 
courtesy of Nikos Paragios) 
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