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Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a
continued growth in the understanding of signaling pathways involved in the formation and maturation of new
blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much
time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascu-
larization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of
whole networks of genes may lead to greater insight into the underlying physiology since the coordinated
response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the
processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not
activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a
variety of experimental sources (-omics) and analyzes how the interactions of the system components can give
rise to the function and behavior of that system. This review focuses on how systems biology approaches have
been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid
novel pro-angiogenic drug discovery.

Introduction

The field of tissue engineering seeks to replace dam-
aged, injured, or missing tissues with biologically com-

patible substitutes to maintain, restore, and improve tissue
and organ function. However, the most important factor for
the survival of tissue-engineered biological substitutes is the
incorporation of a vascular supply to provide the appropri-
ate delivery of oxygen, nutrients, progenitor, and inflam-
matory cells, and a mode for waste and metabolite efflux.
Many tissue engineers have focused on creating cell-seeded
or even prevascularized constructs1–4 and sophisticated
methods of growth-factor-releasing biodegradable polymeric
systems5–7 to improve the integration and vascularization of
biological implants. Although great strides have been made
with this approach, no prevascularized tissue-engineered
constructs are currently being employed clinically.

A major hurdle in this area is the sheer complexity of
microvascular growth and our incomplete understanding of
the process. Angiogenesis, the process by which new capil-
laries sprout from preexisting vessels, involves the coordi-
nated response of different cell types and molecular signals
across various spatial and temporal scales. Early experi-
mental progress in angiogenesis research highlighted the
importance of vascular endothelial growth factor (VEGF) as
a key angiogenic stimulus.8 As a result of early success, most

pro-angiogenic clinical trials to date have focused on in-
creasing neovascularization via the delivery of a single
growth factor or gene (most notably, VEGF). However, the
disappointing clinical outcomes of single-factor therapies for
promotion of angiogenesis serve to highlight the complexity
of cell signaling networks that govern microvascular growth
and remodeling. Even so, much attention is presently
focused on preclinical studies that identify combinations of
promising angiogenic agents, including the fibroblast growth
factors (FGFs), platelet-derived growth factors (PDGFs), ang-
iopoeitins (Ang-), and the transforming growth factors
(TGFs).6,9,10 However, as screening libraries of potential drug
candidates and drug combinations experimentally is prohib-
itively time consuming, expensive, and relatively limitless in
scope,11 many researchers have begun to turn to computa-
tional approaches.12

Over the past 20 years or more, numerous mathematical
and computational models of angiogenesis have been built to
enhance our understanding of the process (for detailed re-
views of the subject, see Refs.13,14). In 1998, a group of
physiologists, biomedical engineers, and bioinformatics ex-
perts initiated the Microcirculation Physiome Project with
the goal ‘‘to create a World Wide Web accessible database of
the microcirculation.’’ The Microcirculation Physiome Project
was created to integrate biological and functional data with
computational models from the gene to the tissue level.15
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Although the vision of the founders has yet to fully materi-
alize, significant progress has been made in the area of
microvascular network modeling. Much of this work can be
found at one online database, a resource for computational
models on the microcirculatory system (www.physiology
.arizona.edu=people=secomb=network.html) or via links from
the Physiome Project Web page (www.physiome.org=Links=
#group).16

Systems biology can be defined as the integration and
analysis of complex biological data from a variety of exper-
imental sources, and how the interactions of the system
components give rise to the function and behavior of that
system. Scientists have worked from a reductionist per-
spective, which is by definition hypothesis-driven. In the
past decade, however, systems biologists have challenged
conventional experimentation and introduced new possibil-
ities in testing scientific hypotheses.17 These so-called holistic
approaches aim to discover new emergent phenomena from
combining the reductionist approach with network-level
analysis of whole biological systems. In this manner, groups
of data (-omics) have emerged, including genomics (gene
sequencing), transcriptomics (RNA transcripts), and pro-
teomics (protein expression and modification). Thus, the goal
of systems biology is to develop a comprehensive integrated
system in which all ‘‘omic’’ data can be incorporated and
interpreted in a manner in which the whole is greater than

the sum of the parts.16 To this end, the use of network
analysis tools has emerged to help explain experimental re-
sults and elucidate coordinated signaling pathways of entire
networks of growth factors and genes that would otherwise
not be possible through the examination of single-component
regulation alone.

Transcriptomics and proteomics have recently contributed
to unraveling the complexity of angiogenesis. During the
complex process of neovascularization, the balance of pro-
and antiangiogenic growth factors (i.e., statins and throm-
bospondin) controls the rate and extent of microvascular
growth (Fig. 1). Matrix metalloproteinases (MMPs) degrade
the extracellular matrix (ECM), allowing for endothelial cells
(ECs) to form a sprout tip. ECM-bound factors that are re-
leased allow ECs to migrate and proliferate as a function of
local growth factor gradients. As sprouts form, they can
anastomose to adjacent vessels, retract in the absence of pro-
angiogenic stimuli, or split or branch. The fate of several
sprouts eventually result in a newly organized capillary net-
work that, with the onset of flow, carries blood, oxygen, nu-
trients, and cells to surrounding tissues. Although the process
of angiogenesis occurs under both physiological (i.e., exercise)
and pathological (i.e., cancer) conditions, the signaling net-
works and governance of the process are tightly regulated. For
example, studies using transcriptomics approaches system-
atically compared the gene expression profiles of ECs isolated

FIG. 1. (A) Sprouting: Released growth factors stimulate the release of enzymes that degrade the basement membrane as
well as metalloproteinases that digest the extracellular matrix (ECM). Endothelial cells begin to form a migration column,
proliferating toward the angiogenic gradient. Degraded ECM fragments act as haptotactic signals and further encourage cell
migration. (B) Maturation: Metalloproteinases continue to degrade the ECM to allow for pericyte migration, and platelet-
derived growth factor, transforming growth factor-b, and angiopoeitin signaling attract pericytes to new vessels. Once
surrounding the vessel, pericytes secrete new matrix, reduce vessel permeability, and induce endothelial quiescence. (C)
Intracellular: Intracellular signaling including angiopoietins and growth factors stimulate actin F-actin activity within the cell,
allowing it to probe its environment, expand toward a gradient, contract, and ultimately move forward. Color images
available online at www.liebertonline.com=ten.
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from normal, tumor, and regenerating blood vessels.18 Not
surprisingly, ECs expressed different gene expression profiles
depending on their pathological state.

In this review, we will discuss both bottom-up and top-
down methods that have been taken to elucidate pro-
angiogenic targets. In addition, we will summarize the
different types of systems biology approaches that have been
employed to clarify our understanding of microvascular re-
modeling and identify potential therapeutic approaches. We
will discuss several -omics approaches and how they have
already been exploited to provide new insights to the fields
of tissue engineering and vascular biology. Lastly, we will
summarize the network analysis tools that can be utilized to
elucidate signaling mechanisms of novel pro-angiogenic
drug candidates.

Bottom-Up Modeling Approaches

In the bottom-up systems biology approach, information
is initially gathered about all the components of a system and

then constructed into a model that is subsequently used to
predict systemic properties. For example, molecular signal-
ing pathways may be combined to predict cellular functions,
which can then affect tissue patterning or even organ de-
velopment. Experimental validation of the models and ap-
propriate refinement and iteration are critical. The ultimate
goal of bottom-up systems biology is to combine the path-
way models into a larger, unified model of the entire bio-
logical system of interest, that is, tissue or organ (Fig. 2).

Most angiogenesis models to date have taken the bottom-
up approach. These modeling approaches can be classified
into four subcategories: continuum models (processes are
continuous in time and space), discrete models (system
components are individual entities), stochastic models
(probability dictates the occurrence of biological events), and
deterministic models (system outcomes are determined by
previous system inputs).13 Although early models captured
some of the key processes of angiogenesis (e.g., average
capillary sprout density), they are limited because of their
constraints in only one spatial dimension.19,20 Nearly two

FIG. 2. Systems biology approaches to engineer microvascular networks aid pro-angiogenic drug discovery. Bottom-up
approaches focus on collecting and accumulating empirical data about the system and then incorporating these data into a
larger, more unified model that explains emergent behaviors and properties. Top-down approaches are data-driven and
focus on network level integration to identify novel interactions or mechanisms. Experimental validation of the models and
appropriate refinement and iteration are critical. The ultimate goal is to combine top-down and bottom-up approaches to
create a unified model of the entire biological system of interest spanning different spatial and temporal scales. Color images
available online at www.liebertonline.com=ten.
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decades ago, Stokes and Lauffenburger developed a discrete,
stochastic mathematical model of EC migration.21,22 The
model predicted that the rate of vascular sprouting is pri-
marily determined by EC migration rate in the direction of
an angiogenic stimulus, namely, acidic FGF, but that a cer-
tain degree of randomness in migration direction is required
for vessel anastomoses and capillary loop formation. Im-
portantly, their model predictions were validated in vitro by
measuring the displacement of ECs in the presence or ab-
sence of acidic FGF. Although in two space dimensions, the
model did not account for interactions between the ECs and
the ECM.

To this end, more recent models have combined the model
strengths of their predecessors, including ECs, growth fac-
tors, and ECM molecules. Sun et al. elaborated on prior work
by Anderson and Chaplain to create a model that accounts
for the heterogeneity and anisotropy of the ECM.23,24 The
continuous deterministic model included major mechanisms
such as cell proliferation, branching, and anastomosis. Per-
turbations of the model’s parameters revealed that capillary
branching and extension is independent of starting geome-
try, that more tortuous networks with less branching occur
with a highly anisotropic ECM (which slows down EC mi-
gration rate), and that there exists an optimal chemoat-
tractant growth factor concentration that allows for proper
branching and extension.24

Cellular automata (CA) simulations, or agent-based mod-
els, have been used in the natural and social sciences to predict
emergent patterns. This work has extended into the biological
sciences to simulate vascular growth and predict blood vessel
patterning across different spatial and temporal scales. In
agent-based models, each agent behaves according to a given
set of rules and can interact with and modify its surroundings.
A decade ago, Markus et al. developed a CA model of vessel
morphogenesis that describes leaf vein patterning based on
rules for branching, chemotaxis, anastomosis, and tip death.25

By adding an angiogenic gradient to their basic model, the
authors showed a proof of concept that the CA could be ap-
plied to blood vessel growth; however, model revision and
validation were not completed. Peirce et al. developed one of
the first biological agent-based models to predict microvas-
cular network patterning from a rule set based on epigenetic
stimuli, molecular signals (PDGF-BB VEGF, TGF-b), and
cellular behaviors (proliferation, migration, and differentia-
tion).26 The model predicted changes in microvascular pat-
terning in response to hemodynamic forces and exogenous
focal delivery of a growth factor (VEGF) over a 10- or 14-day
period. Model predictions were validated with in vivo exper-
imental results, demonstrating an increase in vascular length
density in response to VEGF treatment or increased circum-
ferential wall strain. Importantly, the model revealed changes
in microvascular patterning in a multicell system (ECs, smooth
muscle cells, perivascular cells, and interstitial precursor cells)
and could prove to be a useful tool for the rationale design of
therapeutic vascularization strategies. Most recently, Qutub
and Popel reported on an agent-based model designed to
predict tip cell activation, stalk cell development, and sprout
formation as a function of local VEGF concentration.27 Rules
and parameters were based on literature values and in vitro
experimental results, and included various growth factors
(VEGF, hypoxia-inducible factor 1, alpha subunit [HIF1a]),
and Notch ligand delta-like 4), MMPs, and cellular functions

(migration, elongation, and proliferation). Another agent-
based modeling study by Bentley, Gerhardt, and Bates
explored the role of VEGF-A and delta-like 4 (D114)=notch
signaling in tip cell formation. This group developed a hier-
archical model focused on VEGF-A-stimulated tip formation
and subsequent D114=notch VEGF receptor 2 (VEGFR-2) in-
hibition. They found that D114=notch inhibition in high VEGF-
A environments increased aberrant vessel growth. Partial or
total inhibition of D114=notch signaling normalized tip cell
response in high VEGF-A environments.28 To date, agent-
based models have proven to be a useful tool for hypothesis
testing and hypothesis generation by providing a platform for
high-throughput and low-cost experiments.

Future iterations of CA models would benefit from adding
detailed models of specific angiogenic signaling networks. In
a true bottom-up approach, Mac Gabhann and Popel have
created molecular-level models to investigate the role of
VEGF receptors in angiogenesis. Because most of the clinical
trials aimed at increasing functional vascularization in is-
chemic tissues have failed, computational and mathematical
models that incorporate the molecular-level details of VEGF
signaling that could then be utilized to predict effective
therapies would be a major advancement. For example, Mac
Gabhann et al. developed a three-dimensional model to ap-
proximate the concentrations of VEGF at the single-cell level
in skeletal muscle during exercise.29,30 This type of infor-
mation is currently unobtainable experimentally, but is crit-
ical to understanding cellular responses to local growth
factor gradients. The model accounts for signaling network
details of VEGF, as well as oxygen transport and blood flow.
This type of model could be an extremely valuable tool for
tissue engineers who seek to evaluate local, sustained VEGF
administration in ischemic tissues. With the incorporation of
other molecular-level details of growth factor signaling net-
works, the model could even prove more valuable.

In addition to molecular signals, mechanical stimuli also
govern the structural remodeling response of the microcir-
culation. The role of hemodynamics in the microcirculation
has been studied best by Pries and Secomb.31–34 The authors
have investigated the structural adaptation of microvessels
in response to mechanical forces, including blood flow (shear
stress) and blood pressure (circumferential wall stress).
Several mathematical models of angioadaptation (postnatal
structural remodeling of blood vessels) have been developed
to predict changes in vessel architecture (vessel number, di-
ameter, wall thickness, and length) as a function of blood
flow and pressure.35 Although the mathematical equations
governing blood flow are well documented and are not the
focus of this review, their impact on angiogenesis and re-
modeling have inspired other tissue-engineering-focused
models. Because of the mass transport limitations associated
with tissues >1 mm3, engineers have been trying to pre-
vascularize tissues and engineered scaffolds to increase the
rate of success of tissue-engineered biological implants.
Janakiraman et al. developed a modeling approach for the
rational design of blood vessel networks with mass transport
characteristics that meet the metabolic demand of tissues.36

A two-dimensional microscale model with a bifurcating
network design was created and used to evaluate the effects
of two different network geometries (rectangular vs. square
ducts) on their mass and fluid transport characteristics. The
model revealed that the rectangular ducts exhibited superior
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mass transport efficiency and were easier to fabricate than
the square ducts. Additionally, mass transport efficiency
decreases with an increase in network porosity, revealing a
design criterion to minimize network bifurcations. Jabbar-
zadeh and Abrams developed a model to study growth
factor (VEGF) diffusion in tissue-engineered constructs.37

The authors varied the source of VEGF diffusion (line, line þ
point, and line þ boundary release). Results revealed that a
line source with release throughout the boundary of the
construct led to a more uniform microvascular network
distribution, with vascular coverage proportional to the
amount of VEGF released. Model integration of Janakiraman
and Jabbarzadeh would be useful to rationally design pre-
vascularized tissue-engineered constructs with efficient mass
transport characteristics and sustained growth factor release.

Many computational and mathematical angiogenesis
models have been designed in the context of tumor vascu-
larization because the field of therapeutic microvascular
formation is still in its infancy. However, because the basic
principles upon which tumor models have been built are
similar to the processes governing therapeutic neovascular-
ization, tumor models may prove useful for testing specific
hypotheses, such as the identification of drug candidates.
Arakelyan et al. developed a model to elucidate the role of
specific growth factors on tumor angiogenesis (i.e., Ang-1,
Ang-2, VEGF, and PDGF).38 Importantly, the model pre-
dicted that only dual administration with anti-VEGF and
anti-Ang-1 drugs resulted in significant decreases in tumor
size, an outcome that was not observed with single admin-
istration of either factor alone. Perhaps most interestingly,
the anti-VEGF drug was most effective when the percentage
of immature vessels (vessels lacking pericytes coverage) was
high (95%, relative to mature pericyte-containing vessels).
This result may shed new light on therapeutic neovascular-
ization approaches; perhaps a certain percentage of mural
cells are needed to drive vascular growth and maturation.

Top-Down Modeling Approaches

Top-down systems biology approaches are data driven. In
the advent of genomics data, these top-down approaches
have emerged as new ways to study biological constituents
and their interactions. The goal of top-down systems biology
is to discover new molecular mechanisms through an itera-
tive process between experimental data and hypothesis
generation resulting from network level data integration.
These new hypotheses can then be evaluated by experi-
mental techniques and so forth. In this manner, previously
unidentified interactions, mechanisms, and drug candidates
can be identified. These -omics technologies have revolu-
tionized biomedical research, providing new insights into
mechanisms of disease and generating novel diagnostic and
prognostic tools.39 Example applications of these techniques
and analyses are shown in Table 1.

Although top-down, high-throughput approaches reveal
novel facets of a particular system, they are not without
limitations. This is the case for the VEGF signaling pathway,
which has been the target of numerous system-wide studies.
As such, Table 1 highlights high-throughput approaches in
VEGF signaling, their strengths, limitations, and possible
complementary approaches. In the end, the careful selection
of additional assays that support conclusions drawn from
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systems analysis methods will be warranted. Table 1 is not
an exhaustive list of VEGF systems biology approaches. (For
a more thorough review of VEGF systems biology, we refer
you to a review by Mac Gabhann and Popel.40)

Systems biologists use computational analysis tools to
derive hypothesis from large data sets. Computational tools
range in complexity and sophistication, and generate differ-
ent hypotheses based on the nature of the analysis (Fig. 2). In
the context of microarray data, a simple statistical analysis
reveals which genes are significantly up-regulated or down-
regulated compared to a predetermined threshold under a
particular experimental condition. To better understand
multiple gene interactions or patterns of activity, a more
advanced clustering analysis may be required. These tech-
niques are broadly applicable to any large data set and may
be augmented depending on the nature of the system of
interest. Quackenbush provides a more thorough introduc-
tion to the basic computational analyses available.41 How-
ever, the field is constantly changing as new computational
algorithms are developed to deal with complex data sets.

In recent years, genomic and proteomic approaches have
elucidated many cellular and molecular mechanisms of an-
giogenesis and subsequently identified potential therapeutic
targets for the manipulation of this process.42,43 Functional
genomics approaches have been used to compare the gene
expression profiles of ECs isolated from normal, tumor, or
regenerating blood vessels.18,44–46 These studies have shown
that ECs activate different signaling cascades depending on
their location and physiological or pathological state. Such
data can help guide therapies targeted to pro- or anti-
angiogenic drug delivery strategies.

In the context of tumor vascularization, top-down systems
biology techniques have the capacity to unravel the complexity
of angiogenesis. For example, a multiscale model depicting
signaling dynamics between the pro- and antiangiogenic

compounds within tumor cells qualitatively predicted the ef-
fect of endostatin gene therapy. The model determined a crit-
ical endostatin expression level required for therapeutic
inhibition of angiogenesis.47 Genomic analysis of annexin A1
knock out mice revealed that the protein is implicated in in-
flammatory and pro-angiogenic processes, making it an ideal
candidate for cancer therapy.48 Because tumor angiogenesis
applications of systems biology are not the emphasis of this
review, we direct you to Kreeger and Lauffenbuger, who
provide a more thorough review of cancer systems biology
techniques.49

In the previous example of genomic annexin A1 analysis,
the group also reported that annexin A1 overexpression may
be a therapeutic means to increase wound healing.48

Although the application of top-down approaches to thera-
peutic angiogenesis is limited, there are numerous ways to
apply current approaches to developing functional micro-
vasculature. Pathways analysis, for example, can be em-
ployed on genomic data from cDNA microarrays to discover
the mechanisms of action of unknown drug candidates, to
predict efficacy, or to identify new drug leads.50

To provide an example, our group has been investigating
the mechanism of action of the pro-angiogenic molecule
phthalimide neovascular factor (PNF1), a synthetic small
molecule that has demonstrated efficacy in enhancing EC
proliferation and capillary network formation in vitro.51

Additionally, local sustained release of PNF1 has led to
increased neovascularization in the mouse dorsal skinfold
window chamber model of microvascular growth and re-
modeling.52 These results highlight PNF1 as a potential
candidate for pro-angiogenic therapies. However, because its
mechanism of action is unknown, transcriptional profiling
was used to elucidate the mechanism underlying the bio-
logical activity of PNF1.53,54 cDNA microarray data con-
taining *47,000 transcripts were generated for cultures of

FIG. 3. Network analysis tools. Microarray data from a drug of unknown mechanism can be analyzed using a compendium
analysis approach (Pathways Analysis, shown on right) or a genomic-mapping approach (Connectivity Map Analysis, shown
on left). Both top-down approaches rely on literature-derived knowledge bases that are manually curated and contain known
genetic signatures and signaling networks. The unknown data are mapped against data from drugs with known mechanisms
to identify areas of overlap, thereby indicating similarity in drug mechanism. Color images available online at www
.liebertonline.com=ten.
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human microvascular ECs stimulated with PNF1 for various
time points and compared to cultures treated with a vehicle
control. Examination of the data using network analysis tools
revealed a concerted regulation of many gene products that
have known effects on vascular remodeling, providing a
potential window for therapeutic manipulation with PNF1
delivery.

A novel compendium analysis was performed in the
aforementioned interrogation of PNF1’s mechanism. Tradi-
tionally, compendium analyses have been used to compare
the genetic expression profiles of unknown drugs to signa-
tures of known compounds, as drugs with similar genetic
footprints are likely to share mechanistic targets.55 Com-
pendium analysis involves rating the similarity between a
measured data set and the compendium, or compilation, of
previously generated profiles. This technique is visually re-
presented in Figure 3. Realistically, however, transcriptional
profiles of similar drugs tested on the same cell type at
similar concentrations often do not exist, making direct
comparisons difficult and open to interpretation. Likewise,
docking studies require an exhaustive screening process of
all potential binding partners, which is both time consuming
and prohibitively expensive. To this end, our novel com-
pendium approach overlaid the transcriptional profile of a
small molecule on a literature-derived pathway knowledge
database (Ingenuity Pathways Knowledge Base [IPKB],
www.ingenuity.com=products=pathways_knowledge.html).
The IPKB is essentially a library of signaling interactions that
may be used to elucidate associations between previously
unrelated signaling network components. After identifying
new network connections, Ingenuity Pathways Analysis it-
eratively compares and ranks these networks and markers
relevant to the connections (Fig. 3). This process is similar to
determining that two people are related in a family tree
based on the acquisition of new knowledge that they share
the same third cousin. Using Ingenuity Pathways Analysis to
perform a novel compendium analysis, our group identified
signaling networks that were most directly correlated with
the gene expression data (for details, see Ref.54). This meth-
odology revealed that PNF1 predominately affects tran-
scription of genes in the tumor necrosis factor-a (TNF-a)
pathway at earlier time points (1- and 2-h poststimulation),
whereas TGF-b-related signaling molecules are more influ-
ential at later time points (especially after 24 h). Both TNF-a
and TGF-b have known activities in microvascular re-
modeling, and their identification as major players in PNF1-
induced angiogenesis may now lead to drug optimization
protocols and proper therapeutic utilization.

Similar to using the IPKB to conduct compendium ana-
lyses, the Connectivity Map seeks to correlate expression
data with a larger database (Fig. 3). This database contains
catalogs of expression data from human cells exposed
to various drug stimulations or disease states.56 The Con-
nectivity Map has evolved as a resource whereby a
researcher studying a drug candidate, gene, or disease state,
could compare its signature to a reference database to dis-
cover functional connections to known pathways.56 This
Web-based tool is publicly accessible at www.broad.mit
.edu=cmap, allowing researchers to perform their own con-
nectivity map analyses with user-defined signatures in real
time. One large advantage over other compendia-based ap-
proaches is that the Connectivity Map enables the integration

of internal reference data (genome-wide expression profiles)
with external query data provided by users in the form of a
genetic signature. The initial focus of the project is to include
the genetic signatures of all the 1500 small-molecule drugs
licensed by the Food and Drug Administration for human
use; currently, the database contains gene expression profiles
from 453 treatments of four cell lines with 164 bioactive
molecules.57 Ultimately, the goal of the Connectivity Map
project is to connect human diseases with the genes that
underlie them and the drugs that can treat them.

With emerging tools like the Connectivity Map, identifying
genes responsible for the progression of cancer, for example,
may become easier. The hallmark of cancer progression is the
angiogenic switch, a shift of the angiogenic balance to a pro-
angiogenic state.58 Human tumors arise and can exist in the
microscopic state avascularized for months or years. The
switch to a pro-angiogenic phenotype results in rapid neo-
vascularization, tumor growth, and subsequent metastasis.
Although angiogenesis has been widely studied and several
key components of the angiogenic switch have been identified,
the molecular and genetic mechanisms mediating the switch
are largely unknown.59 Abdollahi and colleagues analyzed the
human transcriptome by cDNA arrays using clustering tech-
niques to observe how gene expression was altered after
treatment with endostatin (antiangiogenic), VEGF alone, and
VEGF plus basic FGF (bFGF) (pro-angiogenic). Although
several well-known angiogenic genes were represented in the
network (HIF1a and VEGFR-2), genes only recently reported
as angiogenic were also highlighted by the clustering meth-
odology. Further, genes not known to be connected to angio-
genesis, such as peroxisome proliferator-activated receptor
delta (PPARd), interleukin-6 (IL6), MMP1, and others, were
represented in high numbers, suggesting a broader partici-
pation in the angiogenic switch than previously hypothesized.
To validate this prediction, the authors targeted the removal of
the PPARd hub node by using PPARd�=�mice, and the results
demonstrated a reduction in tumor growth and tumor mi-
crovascular density. This confirms a critical involvement of the
signaling pathway in angiogenesis, and highlights the pow-
erful utility of this top-down systems biology approach.59 In-
terestingly, dual administration of VEGF and bFGF did not
result in a significant upregulation of pro-angiogenic tran-
scripts compared to either factor alone. One potential expla-
nation is that VEGF and bFGF share a common pathway. The
angiogenic phenotype observed in VEGF or bFGF stimulated
tissues could be a result of activating similar downstream
signaling cascades. There exist other known angiogenic stim-
uli, such as sphingosine 1-phosphate for example,60,61 that
presumably have less crosstalk with VEGF signaling due to
their different receptors (sphingosine 1-phosphate: G protein-
coupled receptors, VEGF: receptor tyrosine kinase). It would
be interesting to use systems biology tools to assess stimula-
tion of two pathways, with minimal crosstalk, on angiogene-
sis. This method may identify novel targets of angiogenesis.

Future Directions

In silico strategies aimed at predicting clinical efficacy
could have a major impact on the current pharmaceutical
approach to drug discovery. The development of new drugs
is a risky and costly process; approximately half of all com-
pounds entering phase II clinical trials will fail, resulting in
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over $8 million per drug in amortized costs.11 Thus, the
application of systems biology approaches to drug discovery
could streamline the entire process and save time, money,
and resources. In this review, we have discussed both
bottom-up and top-down systems biology approaches that
have already been taken to identify pro-angiogenic drug
candidates and engineer microvascular networks. Figure 2
visually summarizes how these different approaches probe
the microvasculature at multiple scales. In isolation, each
computational technique deepens the understanding of a
particular facet of the microvascular system. However,
bottom-up modeling and top-down modeling have yet to be
combined in one comprehensive model.

To be ultimately successful, however, all of these systems
methodologies depend on the quality and completeness of the
data at hand. Several bioinformatics databases have evolved
to integrate the various data forms and aid hypothesis gen-
eration.62–64 For example, the Pathway Interaction Database
(http:==pid.nci.nih.gov) is a highly curated, freely available
collection of human signaling and regulatory pathways that
was specifically designed to deal with incomplete knowledge,
complex details, or generalizations.63 Researchers can search
for a single molecule to find its known mechanistic pathway
or for a group of molecules to examine signaling interactions
among them. The database is updated with new pathway
information each month, including the National Cancer In-
stitute (NCI)–Nature Curated collection, Reactome data, and
the BioCarta collection (for a list of pathways, see: http:==pid
.nci.nih.gov=browse_pathways.shtml). Such breadth in im-
ports will hopefully allow researchers to investigate novel
networks and reveal parallel, yet alternative hypotheses, such
as providing a mechanism by which a single pro-angiogenic
compound is not effective and suggesting potential multia-
gent therapies. The future of systems biology will likely re-
quire curated databases and online workstations like the
Physiome Project, Connectivity Map, and Pathway Interaction
Database, among others. Although not without limitations,
top-down and bottom-up systems biology approaches to drug
discovery and microvascular network formation represent the
future in bioinformatics strategies and have already led to
important discoveries regarding the mechanisms of novel
compounds and their interactions at the network scale.
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