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Abstract—In this paper, we first reconsider, in a different light,
the addition of a prediction step to active contour-based visual
tracking using an optical flow and clarify the local computation of
the latter along the boundaries of continuous active contours with
appropriate regularizers. We subsequently detail our contribution
of computing an optical flow-based prediction step directly from
the parameters of an active polygon, and of exploiting it in object
tracking. This is in contrast to an explicitly separate computation
of the optical flow and its ad hoc application. It also provides an
inherent regularization effect resulting from integrating mea-
surements along polygon edges. As a result, we completely avoid
the need of adding ad hoc regularizing terms to the optical flow
computations, and the inevitably arbitrary associated weighting
parameters. This direct integration of optical flow into the ac-
tive polygon framework distinguishes this technique from most
previous contour-based approaches, where regularization terms
are theoretically, as well as practically, essential. The greater
robustness and speed due to a reduced number of parameters of
this technique are additional and appealing features.

Index Terms—Level-set methods, motion estimation, object
tracking, optical flow, polygon evolution, region-based active
contours.

1. INTRODUCTION

HE problem of tracking moving objects in digital video

data remains of great research interest in computer vi-
sion on account of various applications in video surveillance,
monitoring, robotics, and video coding. Algorithms for ex-
tracting and tracking moving objects or targets over time in a
video sequence are essential components in such applications.
Tracking methods may be classified into two categories [1]:
1) motion-based approaches, which use motion segmentation
of temporal image sequences by grouping moving regions
over time, and by estimating their motion models [2]-[7];
2) model-based approaches exploit some model structure to
generally combat noisy conditions in the scene. Objects are
usually tracked using a template of a three-dimensional (3-D)
object such as 3-D models in [8]-[12]. Usage of this high-level

Manuscript received April 13, 2003; revised May 8, 2004. The associate ed-
itor coordinating the review of this manuscript and approving it for publication
was Dr. Christine Guillemot.

G. Unal is with the Intelligent Vision and Reasoning Department,
Siemens Corporate Research, Princeton, NJ 08540 USA (e-mail:
gozde.unal @siemens.com).

H. Krim is with the Electrical and Computer Engineering Depart-
ment, North Carolina State University, Raleigh, NC 27695 USA (e-mail:
ahk@eos.ncsu.edu).

A. Yezzi is with the School of Electrical Engineering, Georgia In-
stitute of Technology, Atlanta, Atlanta, GA 30332-02501 USA (e-mail:
ayezzi@ece.gatech.edu).

Digital Object Identifier 10.1109/TTP.2005.847286

semantic information yields robust algorithms at a high compu-
tational cost. Another classification of object tracking methods
due to [1] based on the type of information that the tracking
algorithm uses is as follows. 1) Boundary-based methods use
the boundary information along the object’s contour. Methods
using snake models such as [13]-[16], employ parameterized
snakes (such as B-splines), and constrain the motion by as-
suming certain motion models, e.g., rigid, or affine. In [13],
a contour’s placement in a subsequent frame is predicted by
an iterative registration process, where rigid objects, and rigid
motion are assumed. In another tracking method with snakes
[17], the motion estimation step is skipped, and the snake
position from any given image frame is carried to the next
frame. Other methods employ geodesic active contour models
[1], and [18], which also assume rigid motion and rigid objects.
2) Region-based methods, such as [2]-[4], [19], [45] on the
other hand, segment a temporal image sequence into regions
with different motions. Regions segmented from each frame by
a motion segmentation technique are matched to estimate mo-
tion parameters [20]. They usually employ parametric motion
models, and they are computationally more demanding than
boundary-based tracking methods because of region-matching
cost.

Another tracking method, referred to as geodesic active re-
gions [21], incorporates both boundary-based and region-based
approaches, and an affine motion model is assumed. In feature-
based trackers, one usually seeks similar features in subsequent
frames. For instance, in [22], the features in subsequent frames
are matched by a deformation of a current feature image onto
the next feature image, and a level-set methodology is used to
carry out this approach. One of the advantages of our technique
is that of avoiding to have to match features, e.g., boundary con-
tours, in a given image frame to those on successive ones. In
another paper by Mansouri [23], the region competition func-
tional is utilized in tracking in a time-varying image sequence
rather than segmenting in a still image. Instead of having a mo-
tion estimation step, the region tracking problem is posed as a
Bayesian estimation problem, and solved in a variational frame-
work. While both this method and that proposed herein fall into
a general variational framework, the former is distinguished by
its Bayesian setting in a level-set contour model. Similarly, there
are other approaches to object tracking which use posterior den-
sity estimation techniques [24], [25]. All of these algorithms
similarly share a high computational cost, which we mean to
avoid in this paper.

Motion of objects in a 3-D real world scene is projected onto
two-dimensional (2-D) image plane, and this projected motion,
referred to as “apparent motion,” or “2-D image motion,” or
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sometimes also as“optical flow,” is to be estimated. In a time-
varying image sequence, I(z,y,t) : [0,a] x [0,b] x [0,T] —
R*, (a,b,T € RT) image motion may be described by a 2-D
vector field V(x, y, t), which specifies the direction and speed of
the moving target at each grid point (z, y), and time ¢. The mea-
surement of visual motion is equivalent to computing V(z, y, t)
from I(x,y,t) [26].

As a popular approach to motion estimation, differential tech-
niques [27], [28] assume that a point in a 3-D shape, when pro-
jected onto a 2-D image plane, has a constant intensity over time,
and the corresponding optical flow constraint equation may be
obtained as (x = (z,y))

% + VI(z,t) - V(z,t)=0. (1)
This constraint is, however, insufficient for solving for both
components of V(z,t) = (u(=z,t),v(x,t)), and additional
constraints on the velocity field are required to address the
ill-posed nature of the problem. Horn and Schunck, in their
pioneering work [27], combined the optical flow constraint with
a global smoothness constraint on the velocity field. Imposing
the regularizing smoothness constraint on the velocity over
the whole image yields an oversmoothed motion estimates at
the discontinuity regions such as occlusion boundaries and
edges. Attempts to reduce the smoothing effects along steep
edge gradients included variations such as incorporating an ori-
ented smoothness constraint [29], or a directional smoothness
constraint in a multiresolution framework [30]. Hildreth [26]
proposed imposing the smoothness constraint on the velocity
field only along contours extracted from time-varying images.

Another popular approach to tracking is based on Kalman fil-
tering theory. The dynamical snake model of Terzopoulos and
Szeliski [31] introduces a time-varying snake which moves until
its kinetic energy is dissipated. The potential function of the
snake represents image forces, and a general framework for
a sequential estimation of contour dynamics is presented. The
state space framework is indeed well adapted to tracking for not
only sequentially processing time varying data but for also in-
creasing robustness against noise as well. The dynamic snake
model of [31] along with a motion control term are expressed
as the system equations, whereas the optical flow constraint and
the potential field are expressed as measurement equations by
Peterfreund [32], [33]. The state estimation is performed by
Kalman filtering. An analogy may be obtained here, since a state
prediction step which uses the new information of the most cur-
rent measurement is essential to our technique.

A generic dynamical system may be written as

P(t) =F(P(t)) + V(1)
Y =H(P(t))+ W(t) )

where P is the state vector (here the coordinates of a set of ver-
tices of a polygon), F' and H are the nonlinear vector functions
describing the system dynamics and the output, respectively, V'
and W are noise processes, and Y represents the output of the
system. Only the output Y of the system is measured and its
observation over time serves in achieving one the main goals
of model-based feedback control, namely to infer the complete
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state P. A rich literature on state observation [34] solves the
system (2). This entails a sufficiently close approximation of
the dynamical system and an accounts for noise effects, model
uncertainties, and measurement errors. The implementation in-
vokes an output error term designed to push the states of the
simulated system toward the states of the actual system. The
observer equations may then be written as

A A A

P(t) = F(P(t) + L()(Y () - HP®) @)

where L(t) is the error feedback gain, determining the error dy-
namics of the system. One of the most influential ways in de-
signing this gain is the Kalman filter [35], where L(¢) is usually
called the Kalman gain matrix K which, designed to minimize
the mean square estimation error (the error between simulated
and measured output) exploits the known or estimated statistics
of the Gaussian noise processes V (t) and W (t).

In visual tracking, a sampled continuous reality is available,
i.e., objects being tracked move continuously, but we are only
able to observe the objects at specific times (e.g., depending on
the frame rate of a camera), making Y measurements available
select sampled time instant £. This requires a slightly different
observer which couples underlying continuous dynamics
and sampled measurements. A continuous-discrete extended
Kalman filter is obtained and given by the state estimate propa-
gation equation

P(1) = F(P(1)) @
and the state estimate update equation
Pi(+) = Pi(=) + Ki(Yi — Hi(Pi(-))) Q)

where + denotes values after the update step, — values obtained
from (4), and k is the sampling index. We assume that P con-
tains the (z, y) coordinates of the vertices of the active polygon.
We note that (4) and (5) then correspond to a two step approach
to tracking: 1) state propagation and 2) state update.

In our approach, given a time-varying image sequence, and
initially outlined boundary contours of an object, step 1) is a
prediction step, which predicts the position of a polygon at
time step k based on its position and the optical flow field along
the contour at time step & — 1. This is like a state update step.
Step 2) refines the position obtained by step 1) through a spatial
segmentation, referred to as a correction step, which is like
a state propagation step. Past information is only conveyed by
means of the location of the vertices and the motion is assumed
to be piecewise constant from frame to frame.

A. Our Contribution

The novelty of our contribution, is in computing and utilizing
an optical flow-based prediction step integrated in the parame-
ters of an active polygonal model. This is in contrast to the usual
addition of a prediction step to active contours using an optical
flow with additional adapted regularizers. Our approach indeed
naturally embeds a regularization effect in the polygonal model
by integrating measurements along its edges. This, as a result,
obviates the need for ad hoc regularizing terms to the optical
flow computations.
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Our proposed tracking approach may be viewed as model
based because we will fully exploit a polygonal approximation
model of objects to be tracked. The polygonal model results
from a system of ordinary differential equations developed in
[36]. More specifically, and with minimal assumption on the
shape or boundaries of a target object, an initialized generic ac-
tive polygon on an image, yields a flexible approximation model
of an object. The tracking algorithm is, hence, an adaptation of
this model and is inspired by evolution models which use re-
gion-based data distributions to capture polygonal object bound-
aries [36]. A fast numerical approximation of an optimization of
anewly introduced information measure first yields a set of cou-
pled ODEs, which, in turn, define a flow of polygon vertices to
enclose a desired object.

We note that we avoid a time-varying estimation approach of
[32], [33] which is based on boundary dynamic snake models
and velocity estimation (either model based or optical flow
based). In contrast to the active polygon model, the contour
representation of most previous snake-based techniques, is a
numerically sensitive snake model, which has to be sampled
equidistantly in space. In our velocity estimation step, we
achieve robustness to noise by a spatial averaging of image
information over polygon edges. This is, again, in contrast to
averaging optical flow measurements over time. In addition,
our approach exploits the correlation among neighboring pixels
to achieve robustness.

To better contrast existing continuous contour tracking
methods to those based on polygonal models, and clarify dif-
ferences between them, we proceed to a parallel development
in this sequel. When used in formulating a tracking problem,
active contours are considered continuous. This consists of
moving each sample point on the contour with a velocity which
preserves curve integrity. Under noisy conditions, however, the
velocity field estimation usually requires regularization fol-
lowing its typical initialization as the normal component of the
moving target boundaries, as shown in Fig. 1. The polygonal
approximation of a target on the other hand, greatly simplifies
the prediction step by only requiring a velocity field at the
vertices as illustrated in Fig. 1. The resulting reduced number
of vertices is clearly well adapted to man-made objects and is
appealing in its simple and fast implementation.

This paper is organized as follows. In Section II, as noted ear-
lier, for a better comparison context of tracking techniques, we
present a continuous contour tracker, with an additional smooth-
ness constraint. In Section III, we present a polygonal tracker
and compare it to the continuous tracker. We provide simula-
tion results and conclusions in Section IV.

II. TRACKING WITH ACTIVE CONTOURS

Although there is a vast literature and a large diversity of
models incorporating optical flow, we present an explanation
and implementation on use of optical flow in visual tracking to
establish a common ground among all these techniques which
is useful to clarify the general idea, to fairly compare our results
and show the benefits of novelties of our contribution.

Evolution of curves is a widely used technique in various
applications of image processing such as filtering, smoothing,
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Fig. 1. Left: Velocity vectors normal to local direction of boundaries of an
object which is translating horizontally toward left. Right: Velocity vectors at
vertices of the polygonal boundary.

segmentation, tracking, registration, to name a few. Curve evo-
lutions consist of propagating a curve via partial differential
equations (PDEs). Denote a family of curves by C(p,t') =
(X(p,t'),Y(p,t)), a mapping fromZ C R x [0,7"] — R?,
where p € 7 is a parameter along the curve, and ¢’ parameter-
izes the family of curves. This curve may serve to optimize an
energy functional over a region R and, thereby, serve to capture
contours of given objects in an image with the following [36],
[37]

£©) = | /R F (&, y)dady = éyzaRw’N)ds ©)

where N denotes the outward unit normal to C (the boundary
of R), ds the Euclidean arclength element, and where FF =
(F, F?) is chosen so that V - F = f. Toward optimizing this
functional, it may be shown [37] that a gradient flow for C with
respect to F/ may be written as

oC
o7 =N @)

where ¢’ denotes the evolution time variable for the differential
equation.

A. Continuous Tracker With Optical Flow Constraint

Image features, such as edges or object boundaries, are often
used in tracking applications. In the following, we will similarly
exploit such features in tandem with an optical flow constraint
which serves to predict a velocity field along object boundaries.
This in turn is used to move the object contour in a given image
frame I(z,t) to the next frame I(z, ¢ + 1). If a 2-D vector field
V (z,t) is computed along an active contour, the curve may be
moved with a speed V in time according to

% :V(pvt)'

This is effectively equivalent to

dC(p,t

YWD _ (v 1) Np )N G.)
as it is well known that a reparameterization of a general curve
evolution equation is always possible, which in this case yields
an evolution along the normal direction to the curve [38]. The
velocity field V' (z) at each point on the contour at time ¢ may,
hence, be represented in terms of a parameter p as V(p) =
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C

Fig. 2. Two-dimensional velocity field along a contour.

v (p)N(p) +vT (p)T(p), with T(p) and N (p) respectively de-
noting unit vectors in the tangential and normal directions to an
edge (Fig. 2).

Using (1), we may proceed to compute an estimate of the or-
thogonal component v=. Using a set of local measurements de-
rived from the time-varying image I(z,t) and brightness con-
straints, would indeed yield

—Ii(z,t)

— 8
1@ ®)

vi(z,t) =

This provides the magnitude of the velocity field in the direction
orthogonal to the local edge structure. It may in turn be used to
write a curve evolution equation which preserves a consistency
between two consecutive frames

w1 _ iy, )N, 1),

0<t< 1. 9
ot - T ©)

An efficient method for implementation of curve evolutions,
due to Osher and Sethian [39], is the so-called, level-set method.
The parameterized curve C(p,t) is embedded into a surface,
which is called a level-set function ®(xz,y,t) : RZx [0, T] — R,
as one of its level sets. This leads to an evolution equation for
®, which amounts to evolving C in (7), and written as

0P
- = —JIIVel.

o (10)

The prediction of the new location of the active contour on the
next image frame of the image sequence can, hence, be obtained
as the solution of the following PDE

0P
- = vVl

0<t< 1.
ot - =

an
In the implementation, a narrowband technique which solves
the PDE only in a band around the zero level set is utilized [40].
Here, v+ is computed on the zero level set and extended to other
levels of the narrowband [39]. Most active contour models re-
quire some regularization to preserve the integrity of the curve
during evolution, and a widely used form of this regularization
is the arc length penalty. Then, the evolution for the prediction
step takes the form

9 _ o — vtV

0<t<1
ot - -

(12)
where k(z,y,t) is the curvature of the level-set function
®(z,y,t),and & > 0 € R is a weight determining the desired
amount of regularization.
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Upon predicting the curve at the next image frame, an up-
date/correction step is usually required in order to refine the po-
sition of the contour on the next image frame. One typically ex-
ploits region-based active contour models to update the contour
or the level-set function. These models assume that the image
consists of a finite number of regions, that are characterized by
a predetermined set of features or statistics such as means, and
variances. These region characteristics are in turn used in the
construction of an energy functional of the curve which aims
at maximizing a divergence measure among the regions. One
simple and convenient choice of a region-based characteristic is
the mean intensity of regions inside and outside a curve [41],
[42], which leads the image force f in (10) to take the form

flz,y) = (u—v)I(z,y) —u+ I(z,y) —v) (13)
where u and v respectively represent the mean intensity inside
and outside the curve. Region descriptors based on informa-
tion-theoretic measures or higher order statistics of regions may
also be employed for increasing the robustness against noise
and textural variations in an image [36]. The correction step
is, hence, carried out by

0P
- =dr— f|Vel,

o 0<t' <1

(14)
on the next image frame I(x,y,t + 1). Here, o’ > 0 € R is
included as a very small weight to help preserve the continuity
of the curve evolution, and 7" is an approximate steady-state
reaching time for this PDE.

To clearly show the necessity of the prediction step in (12)
in lieu of an update step alone, we show in the next example
a video sequence of two marine animals. In this clear scene,
a curve evolution is carried out on the first frame so that the
boundaries of the two animals are outlined at the outset. Sev-
eral images from this sequence shown in Fig. 3 demonstrate the
tracking performance with and without prediction respectively
in (rows 3 and 4) and (rows 1 and 2). This example clearly shows
that the prediction step is crucial to a sustained tracking of the
target, as a loss of target tracking results rather quickly without
prediction. Note that the continuous model’s “track loss” is due
to the fact that region-based active contours are usually based
on nonconvex energies, with many local minima, which may
sometimes drive a continuous curve into a single point, usually
due to the regularizing smoothness terms.

In the noisy scene of Fig. 4 (e.g., corrupted with Gaussian
noise), we show a sequence of frames for which a prediction
step with an optical flow-based normal velocity, may lead to a
failed tracking on account of excessive noise. Unreliable esti-
mates from the image at the prediction stage are the result of
noise. At the correction stage, on the other hand, the weight
of the regularizer, i.e., the arc length penalty, requires a signif-
icant increase. This, in turn, leads to rounding and shrinkage
effects around the target object boundaries. This is tantamount
to saying that the joint application of prediction and correction
cannot guarantee an assured tracking under noisy conditions as
may be seen in Fig. 4. One may indeed see that the active con-
tour loses track of the rays after some time. This is a strong in-
dication that additional steps have to be taken into account in
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Fig. 3.

Two rays are swimming gently in the sea (frames 1, 10, 15, 20, 22, 23, 24, and 69 are shown left to right, top to bottom). Rows 1 and 2: Tracking without

prediction. Rows 3 and 4: Tracking with prediction using optical flow orthogonal component.

Fig. 4. Two-rays-swimming video noisy version (frames 1, 8, 13, 20, 28, 36, 60, and 63 are shown). Tracking with prediction using optical flow orthogonal

component.

reducing the effect of noise. This may be in the form of regular-
ization of the velocity field used in the prediction step.

B. Continuous Tracker With Smoothness Constraint

Due to a well-known aperture problem, a local detector can
only capture the velocity component in the direction perpendic-
ular to the local orientation of an edge. Additional constraints
are, hence, required to compute the correct velocity field. A
smoothness constraint, introduced in [26] relies on the physical
assumption that surfaces are generally smooth, and generate a
smoothly varying velocity field when they move. There are still
infinitely many solutions. A single solution may be obtained by
finding a smooth velocity field that exhibits the least amount of
variation among the set of velocity fields which satisfy the con-
straints derived from the changing image. The smoothness of the
velocity field along a contour can be introduced by a familiar ap-
proach such as [ [|0V /0s||?ds. Image constraints may be sat-
isfied by minimizing the difference between the measurements
vL and the projection of the velocity field V onto the normal

direction to the contour, i.e., N. The overall energy functional,
thus defined by Hildreth [26], is given by

E(V):/CHZ—ZHst—l—,B/C[V-N—vL]st (15)

where (3 is a weighting factor that expresses the confidence in
the measured velocity constraints. The estimate of the velocity
field V may be obtained by way of minimizing this energy. This
is in turn carried out by seeking a steady state solution of a PDE
corresponding to the Euler Lagrange equations of the functional.
In light of our implementation of the active contour model via a
level-set method, the target object’s contour is implicitly repre-
sented as the zero level set of a higher dimensional embedding
function ®. The solution for the velocity field V, defined over
an implicit contour embedded in @, is obtained with additional
constraints such as derivatives that depend on V' which are in-
trinsic to the curve (a different case where data defined on a
surface embedded into a 3-D level-set function is given in [43]).
Following the construction in [43], the smoothness constraint of
the velocity field, i.e., the first term in (15), corresponds to the
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Fig. 5. Velocity normal to local direction of boundaries of an object which is
translating horizontally is shown on the left, and the velocity field computed
from (16) is given on the right (with 3 = 0.1, a time step of 0.24, and number
of iterations = 400).

Dirichlet integral with the intrinsic gradient, and using the fact
that the embedding function @ is chosen as a signed distance
function, the gradient descent of this energy can be obtained as

Vo L\ Vo s
e — P —— o<t <T".
Ve ”)nwn’ =r=

(16)

Also by construction, the extension of the data defined on the
curve C over the narrowband satisfies VV - V® = 0, which
helped lead to (16) (here the gradient operator V also acts on
each component of V' separately). This PDE can be solved with
an initial condition taken as the v1 N, to provide estimates for
the full velocity vector V at each point on the contour, indeed at
each point of the narrowband.

A blowup of a simple object subjected to a translational mo-
tion from a video sequence is shown in Fig. 5. The velocity
vector at each sample point on the active contour moves from
one frame to the next. The initial normal velocities are shown on
the left, and the final velocity field is obtained as a steady state
solution of the PDE in (16) and is shown on the right. It can
be observed that the correct velocity on the boundary points, is
closely approximated by the solution depicted on the right. Note
that the zero initial normal speeds over the top and bottom edges
of the object have been corrected to nonzero tangential speeds
as expected.

The noisy video sequence of two-rays-swimming, shown
in the previous section, is also tested with the same evolution
technique, replacing the direct normal speed measurements
vL by the projected component of the estimated velocity field,
that is V' - N as explained earlier. It is observed in Fig. 6
that the tracking performance is, unsurprisingly, improved
upon utilizing Hildreth’s method, and the tracker kept a better
lock on objects. This validates the adoption of a smoothness
constraint on the velocity field. The noise presence, however,
heavily penalizes the length of the tracking contours, which in
turn, leads to severe roundedness in the last few frames. If we
furthermore consider its heavy computational load, we realize
that the continuous tracker with its Hildreth-based smoothness
constraint is highly impractical. Note that this last approach
offers a new light on active contour tracking with a smoothness
constraint, and helps us introduce our new approach.

In an attempt to address these problems and to better consider
issues related to speed, we next propose a polygonal tracker
nearly an order of magnitude faster than the most effective con-
tinuous tracker introduced in the previous sections. The advan-
tage of our proposed technique is made clear by the resulting
tracking speeds of various approaches displayed in Fig. 7. It is

ov

W:Vss_ﬂ(‘/
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readily observed that the smoothness constraint on the velocity
field of a continuous tracker significantly increases the compu-
tation time of the algorithm, and that a more robust performance
is achievable.

III. POLYGONAL TRACKER

The goal of this section is to propose and develop a simple and
efficient region-based tracking algorithm well adapted to polyg-
onal objects. The idea is built on the insights gained from both
the continuous tracker model and the polygon evolution model
introduced in [36]. While technically, conventional discrete par-
ticle-based implementations of active contours (going back to
the snake model of Kass, Witkin, and Terzopoulos [44]) may
be considered polygonal models, there is a key difference both
philosophically and numerically between these more conven-
tional “active contours” implemented discretely as finely sam-
pled polygons and what were are calling “active polygons.” This
difference is that conventional discrete implementations of ac-
tive contours are point-wise in their treatment of the model.
Namely, forces derived from image measurements to evolve
each vertex are obtained only in the vicinity of that particular
vertex. In our case, however, the basic element of the discrete
model is no longer the vertex but instead the edges between ver-
tices along which image information is “accumulated” in order
to determine the motion of the vertex. This represents a varia-
tion on the mathematical treatment of the model as well as its
numerics. In conventional snakes, it is desirable to have very
closely spaced vertices since many sample points are needed to
approximate the underlying “nonpolygonal” model (otherwise
very little image information will be used) whereas in an “ac-
tive polygon” it is desirable to have very few vertices in order to
yield longer edges (which in turn allow for more averaging of
image information along edges). Its suitability to tracking prob-
lems and its amenability to Kalman Filter-inspired prediction
and correction steps make it an all around good choice as we
elaborate next.

A. Velocity Estimation at Vertices

We presented in [36] gradient flows which could move
polygon vertices so that an image domain be parsed into mean-
ingfully different regions. Specifically, we considered a closed
polygon P as the contour C, with a fixed number of vertices,
sayn € N, {P1,...,P,} = {(zi,yi),i = 1,...n}. The first
variation of an energy functional £(C) in (6) for such a closed
polygon is detailed in [36]. Its minimization yields a gradient
descent flow by a set of coupled ordinary differential equations
(ODEs) for the whole polygon, and, hence, an ODE for each
vertex Py, and given by

0Py,

1
o~ Nk ./0 pf(L(p, Pr—1, Py))dp

1
+N2,k/ (1 —=p)f(L(p, P, Pry1))dp (17)
0

where Ny (resp. N3 1) denotes the outward unit normal of
edge (Prp—1 — Py) (respectively, (P — Py1)), and L param-
eterizes a line between Pj_; and Py, or P, and Py, 1. We note
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Fig. 6. Two-rays-swimming video noisy version (frames 1, 8, 13, 20, 28, 36, 60, and 63 are shown). Tracking with prediction using full optical flow computed
via (16).
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Fig.7. Speed comparisons among different trackers introduced in this paper. From top to bottom, plots depicted are continuous tracker with smoothness constraint,
continuous tracker, polygonal tracker with smoothness constraint, and polygonal tracker.

the similarity between this polygonal evolution equation which
may simply be written in the form
OP;

o = fiN1x+ faNo

and the curve evolution model given in (7), and recall that each
of f1 and f, corresponds to an integrated f on both neighboring
edges of vertex Pj. Whereas each point of the curve in the con-
tinuous model moves as a single entity driven by a functional
f of local as well as global quantities, each polygon edge in
the proposed approach moves as a single unit moved along by
its end vertices. The latter motion is in turn driven by infor-
mation gleaned from two neighboring edges via f. In addition
to the pertinent information captured by the functional f, its
integration along edges provides an enhanced and needed im-
munity to noise and textural variability. This clear advantage
over the continuous tracker, highlights the added gain from a
reduced number of well separated vertices and its distinction
from snake-based models.

The integrated spatial image information along adjacent
edges of a vertex Pj may also be used to determine the speed
and direction of a vertex on a single image, as well as to estimate

l>ls+1

Fig. 8.
vertex.

Two-dimensional velocity field along two neighbor edges of a polygon

its velocity field on an active polygon laid on a time-varying
image sequence. The estimated velocity vector at each vertex
P, using the two adjacent edges is schematically illustrated in
Fig. 8.

The velocity field V(z,y) at each point of an edge may be
represented as V (p) = v (p) N, (p)+vT (p)T:(p), where T;(p)
and N;(p) are unit vectors in the tangential and normal direc-
tions of edge ¢. Once an active polygon locks onto a target ob-
ject, the unit direction vectors N and T' may readily be deter-
mined. A set of local measurements v (8) obtained from the
optical flow constraint yield the magnitude of a velocity field
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in an orthogonal direction of a local edge structure. Instanta-
neous measurements are unfortunately insufficient to determine
the motion, and an averaged information is shown to be crit-
ical for an improved point velocity estimation. To that end, we
utilize a joint contribution from two edges of a vertex to infer
its resultant motion. Specifically, we address the sensitivity of
the normal velocity measurements to noise by their weighted
integration along neighboring edges of a vertex of interest. This
leads to our prediction equation of vertex velocity

0Py, 1 i
2 ~Ve=Nuk [ pv (L(p, Pr—1, Py))dp
Jo
1
+N2,k/ (1—p)ovt (L(p7Pk,Pk+1))dp (18)
0
for k = 1,...n. To introduce further robustness, and to

achieve more reliable estimates in the course of computing
vL, we may make use of smoother spatial derivatives (larger
neighborhoods).

To fully exploit the vertices of an underlying polygon, our
tracking procedure is initialized by delineating target boundaries
by either region-based active polygon segmentation or manu-
ally. The prediction step of the velocity vector is carried out in
(18), which in turn determines the locations of the polygon ver-
tices at the next time instance on I(z,y,t + 1). In a discrete
setting, the ODE simply corresponds to

Pt +1) = Pi(t) + Vi(t) (19)
if the time step in the discretization is chosen as 1.

The update step of the tracking seeks to minimize the devi-
ation between current measurement/estimate of vertex location
and predicted vertex location, by applying (17). Since both the
prediction as well as the update stages of our technique call
for a polygonal delineation of a target contour, a global regu-
larizing technique we introduced in great detail in [36] is re-
quired to provide stability. Specifically, it makes use of the no-
tion of an electrostatic field among the polygon edges as a means
of self repulsion. This global regularizer technique provides an
evolution without degeneracies and preserves the topology of
the evolving polygon as a simple shape. The polygon-based
segmentation/approximation of a target assumes an adequate
choice of the initial number of vertices. Should this prior knowl-
edge be lacking, we have developed a procedure which auto-
matically adapts this number by periodic additions/deletions of
new/redundant vertices as the case may be [36]. In some of the
examples given below, this adaptively varying number of ver-
tices approach is lumped together with the update step and will
be pointed out in due course.

One may experimentally show that the velocity estimation
step (prediction) of the polygonal tracker indeed improves
performance. The following sequence in Fig. 9 shows a black
fish swimming among a school of other fish. Tracking which
only uses the spatial polygonal segmentation with an adaptive
number of vertices (i.e., just carries the active polygon from
one image frame onto the next one after a number of spatial
segmentation iterations) may lose track of the black fish. In
particular, as one notes in Fig. 9, a partial occlusion of the black
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fish leads to a track loss (frame marked by LOST). The active
polygon may be re-initialized after the occlusion scene (frame
marked by RE-INITIALIZED), but to no avail as another track
loss follows as soon as the fish turns around (second frame
marked by LOST).

On the other hand, and as may be observed in Fig. 10, the
polygonal tracker with the prediction step could follow the black
fish under rougher visibility conditions such as partial occlu-
sions and small visibility area when the fish is making a turn
around itself. A successful tracking continues for all 350 frames
of the sequence. This example demonstrates that the tracking
performance is improved with the addition of the optical flow
estimation step, which, as described earlier, merely entails the
integration of the normal optical flow field along the polygon
adjacent edges to yield a motion estimate of a vertex.

B. Polygonal Tracker With Smoothness Constraint

A smoothness constraint may also be directly incorporated
into the polygonal framework, with in fact much less effort than
required by the continuous framework in Section II-B. In the
prediction stage, an initial vector of a normal optical flow may
be computed all along the polygon over a sparse sampling on
edges between vertices. A minimization of the continuous en-
ergy functional (15) is subsequently carried out by directly dis-
cretizing it, and taking its derivatives with respect to the x and
y velocity field components. This leads to a linear system of
equations which can be solved by a mathematical programming
technique, e.g., the conjugate gradients as suggested in [26].
We have carried out this numerical minimization in order to
obtain the complete velocity field V' along all polygon edges.
For visualizing the effect of the smoothness constraint on the
optical flow, a snapshot from a simple object in translational
motion is shown in Fig. 11 where the first picture in a row de-
picts the normal optical flow component v* N initialized over
the polygon. In this figure, the first row corresponds to a clean
sequence, whereas the second row corresponds to the noisy ver-
sion of the former. The velocity at a vertex may be computed
by integrating according to (18), and shown in the second pic-
ture in a row. The complete velocity V obtained as a result of
the minimization of the discrete energy functional is shown in
the third picture. It is observed that the estimated velocity field
is smooth, satisfies the image constraints, and very closely ap-
proximates the true velocity. This result may be used in the ac-
tive polygon framework by integrating the velocity field along
a neighbor edge pair of each vertex Py, for yet additional im-
provement on the estimate V',

1
V= / pV(L(p, Pr—1, Pi))dp
J0

+ /0 (1—p) V(L(p, Pk, Py1))dp

k=1,...n (20)
as demonstrated on the right in Fig. 11 for n = 4. The ac-
tive polygon can now be moved directly with (19) onto the next
image frame. The update step follows the prediction step to con-
tinue the process. We, however, note that this full velocity esti-
mation is not required in our algorithm even though it produces
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Fig. 9. Black fish swims among a school of other fish. Polygonal tracker with only the correction stage may lose track of the black fish when it is partly occluded

by other fish, or turning backward.

a better velocity esimate, and we do not include this step in our
algorithm for the experimental results.

IV. DISCUSSIONS AND RESULTS

In this section, we substantiate our proposed approach by a
detailed discussion contrasting it to existing approaches, fol-
lowed by numerical experiments.

A. Comparison Between the Continuous and the Polygonal
Approaches

With a limited number of parameters, our active polygon-
based model tracking framework enjoys several advantages
over a continuous tracker, such as speed, reduced sensitivity to
smoothness, inherent robustness to noise by integration of OF

on a group of pixels over the target boundaries. A comparison
between the continuous and the polygonal approaches may be
made on the basis of the following.

e If the true velocity field V' were to be exactly computed,
the polygonal model would move the vertices of the
polygon directly with the full velocity onto the next
frame by dC/0t = V with unnecessary update. Such
information could not, however, be so readily used by a
continuous tracker, as its update would require a solution
toaPDE 0®/0t = (V - N)N (by level-set method). The
zero level-set curve motion, as a solution to the PDE,
only depends on the normal component of the velocity
vector, and is, hence, unable to account for the complete
direction of the velocity. Moreover, additive noise in
continuous contours causes irregular displacements of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 19:0 from IEEE Xplore. Restrictions apply.



754 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 6, JUNE 2005

Fig. 10. Black fish swims among a school of other fish. Polygonal tracker with prediction stage successfully tracks the black fish even when there is partly
occlusion or limited visibility.

Fig. 11. Object is translating horizontally. Row 1: Clean version. Row 2: Noisy version. (Left to right) Picture 1: Velocity normal to local direction of boundaries.
2: Overall integrated velocity at the vertices from picture 1. 3: Velocity field computed through minimization of (15) with conjugate gradients technique. 4: Overall
integrated velocity field at the vertices.
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Fig. 12.  Two-rays-swimming video noisy version (frames 1, 8, 13, 20, 28, 36, 60, and 63 are shown). Tracking via active polygons with prediction using optical
flow normal component.

Fig. 13. A swimming fish in a rocky terrain in the sea (frames 1, 10, 20, 30, 40, 70, 110, and 143 are shown left to right, top to bottom). Rows 1 and 2: Continuous
tracker fails to track the fish. Rows 3 and 4: Polygonal tracker successfully tracks the fish.

contour points, breakups and others. The well-separated
vertex locations of the polygonal model, on the other
hand takes full advantage of the complete optical flow
field to avoid such problems.

The polygonal approach owes its robustness to an aver-
aging of information along edges adjacent to a moving
vertex and gathered at all pixels; this is in contrast to
a pixelwise information of the continuous model. The
noisy video sequence of two-rays-swimming constitutes
a good case study to unveil the pros and cons of both
approaches. The continuous tracker, via a level-set imple-
mentation autonomously handles topological changes,
and conveniently takes care of multiply connected re-
gions, here the two swimming animals. Adapting the
polygonal model to allow topology changes may be

when and where a topological change should occur.
For our intended applications, we do not pursue this
approach. Handling multiple targets is easier than han-
dling topology changes though, because the models we
developed can be extended to multiple polygons which
evolve separately with coupled ODEs.! Snapshots from
the noisy two-rays-swimming sequence illustrate the
polygonal tracker (here, for the sake of example, two
animals could be separately tracked and the results are
overlaid) in Fig. 12. The ability of the continuous tracker
to automatically handle topological changes, is overshad-
owed by its sensitivity to noise which is likely to cause
breakdown making this property less pronounced. The
prediction and update steps, inspired from a statistical
filtering perspective endow the polygonal approach with

done by observing the magnitudes of its self-repulsion ) o
I'We note that this methodology does not make any distinction when two ob-

forces (which kicks in When polygonal edges‘ are about jects cross or partially superpose, and a multihypothesis tracking may be useful
to cross each other). This term can communicate to us in such cases.
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Fig. 14. Walking person (frames shown left to right, top to bottom) is tracked by the polygonal tracker.

much sought robustness. As already seen in Figs. 4 and
6, shrinkage and rounding effects may be very severe
in the presence of a significant amount of noise in the
scene due to necessary large regularization in continuous
tracking. This is in contrast to the electrostatic forces
used in conjunction with the polygonal model as well as
the latter’s resilience to external textural variability. We
also note here that the region-based descriptor f used in

<
‘.
( ~ie

&
Pracassing ims (sec) ove 7-frame windaws.

H

the update step is the same in both the continuous and o )
Fig. 15.  Processing time (averaged over seven window frames) versus frames

?lo:ggonal tracker examples shown, and is as given in (left) for the original sequence and (right) for the sequence subsampled by six
. in time.

The lower number of degrees of freedom present in
moving a polygon makes leaking through background
regions more unlikely than for a continuous curve being
easily attracted toward unwanted regions. This is il-
lustrated by an example shown in Fig. 13, with a fish
swimming in a rocky sea terrain. As the background
bears similar region characteristics as the fish, the con-
tinuous tracker with its ease in split and merge encloses
unrelated regions other than the target fish in the update
step. The polygonal contour, in this case, follows the fish
by preserving the topology of its boundaries. This is also
an illustration for handling topological changes automat-
ically may be either an advantage or a disadvantage.

The speed performance of the polygonal tracker is su-
perior to that of the continuous tracker. A comparison
is given in Fig. 7, where the plots depict the compu-
tation speed versus frames for both the polygonal and
the continuous models. The polygonal tracker with or
without the smoothness constraint is approximately eight
times faster than the continuous model with or without
the smoothness constraint.

The intrinsic regularity of the proposed polygonal tracker
is due to a natural regularizer term which prevents edge
crossings, and has a significant influence only in close
proximity of this near-pathological case.
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Fig. 16. Flatworm swims in a textured sea terrain (frames 1, 8, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 85, 92, 99, and 104 are shown left to right, top to bottom).

Polygonal tracker successfully tracks the flatworm.

B. Experimental Results

Fig. 14 illustrates tracking in snapshots from a video sequence
of a person walking in a parking lot.2 The insertion of a predic-
tion step in the tracking methodology is to speed up the com-
putations by helping the active polygon glide onto a new image
frame in the sequence, and smoothly adapt to displaced object’s
boundaries. The temporal resolution of the given sequence is
quite high, and the scene changes from frame to frame are min-
imal. Nonetheless, when we plot the speeds of the polygonal
tracker with and without the velocity prediction as depicted in
Fig. 15 (left), we observe that the former is faster, confirming
the expected benefit of the prediction step. To verify this ef-
fect for a sequence with lower temporal resolution, we deci-
mate in time the sequence by six, and plot the speeds in Fig. 15
(right). When the temporal resolution of the sequence is de-
creased, the processing time for each frame increases as ex-
pected for both tracking methods. Although our velocity pre-
diction scheme gives rough estimates, the tracking polygon is
mapped to a position which is closer to the new object posi-
tion in the new scene or frame. This is reflected in the given
speed plots where the polygonal tracker without the prediction
step, takes longer to flow the polygon toward the desired object
boundaries.

The polygonal tracker with its ability to utilize various
region-based descriptors could be used for tracking textured
objects on textured backgrounds. A specific choice based
on an information-theoretic measure [36] whose approxi-
mation uses high-order moments of the data distributions
leads the image-based integrand f in (17) to take the form

2The sequences presented as snapshots here can be viewed at

http://users.ece.gatech.edu/~gozde/tracking1.
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Fig. 17. Processing time (averaged over seven window frames) versus frames
(left) for the original sequence and (right) for the sequence subsampled by two
in time.

fo= 2w — v) (Gi(I) —uj) + (G(I) = v;)) with
functions G chosen as for instance G1(¢) = &e=¢/2, and
Go(&) = e=¢"/2. When using the descriptor f in our update
step with an adaptive number of vertices, a flatworm swim-
ming at the sea bottom may be captured through the highly
textured sequence by the polygonal tracker in Fig. 16. The
speed plots in Fig. 17 depict the speeds for the tracker with and
without prediction. The figure on the right is for the original
sequence (whose plot is given on the left) which is temporally
subsampled by two. Varying the number of vertices to account
for shape variations of the worm slows down the tracking in
general. As expected, the tracker with prediction still performs
faster than the tracker without prediction. The difference in
speeds becomes more pronounced in the subsampled sequence
on the left. Similarly, a clownfish on a host anemone shown in
Fig. 18, may also be tracked in a highly textured scene. The
continuous trackers we have introduced in this paper, do not
provide a continuous tracking in either of these examples, and
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Fig. 18.
to right, top to bottom). Polygonal tracker successfully tracks the fish.

they split, leak to background regions, and completely lose
track of the target.

C. Conclusion

In this paper, we have presented a simple but efficient ap-
proach to object tracking combining active contours framework
with the optical-flow based motion estimation. Both curve evo-
lution and polygon evolution models are utilized to carry out the
tracking. The ODE model obtained for the polygonal tracker,
can act on vertices of a polygon for their intra-frame as well as
inter-frame motion estimation according to region-based char-
acteristics as well as the optical-flow field’s known properties.
The latter is easily estimated from a well-known image bright-
ness constraint. We have demonstrated by way of examples and
discussion that our proposed tracking approach effectively and
efficiently moves vertices through integrated local information
with a resulting superior performance. We, moreover, note
that no prior shape model assumptions on targets are made,
since any shape may be approximated by a polygon. While the
topology-change property provided by continuous contours in
the level-set framework is not attained, this limitation may be
an advantage if the target region stays simply connected. We
also note that we avoid widely used assumptions in many object
tracking methods which also exploit a motion detection step,
e.g., a static camera. A motion detection step may also be added
to this framework to make the algorithm more unsupervised
in detecting motion in the scene, or handle the presence of
multiple moving targets in the scene.

Clownfish with its textured body swims in its host anemone (frames 1, 13, 39, 59, 64, 67, 71, 74, 78, 81, 85, 95, 105, 120, 150, and 155 are shown left
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