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Interpretation of edge pedestal rotation measurements in DIlI-D
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A novel methodology for inferring experimental toroidal angular momentum transfer rates from
measured toroidal rotation velocities and other measured quantities has been developed and applied
to analyze rotation measurements in the DIII-D [J. Luxon, Nucl. Fusion 42, 6149 (2002)] edge
pedestal. The experimentally inferred values have been compared with predictions based on atomic
physics processes and on neoclassical toroidal viscosity. The poloidal rotation velocities have been
calculated from poloidal momentum balance using neoclassical parallel viscosity and a novel
retention of all terms in the poloidal momentum balance, and compared with measured values in the
DIII-D edge pedestal. © 2008 American Institute of Physics. [DOI: 10.1063/1.2830653]

I. INTRODUCTION

There is a long-standing research interest in the steep-
gradient edge pedestal region (e.g., Refs. 1-4) of high con-
finement (H-mode) tokamaks, stimulated at least in part by
predictions5 6 that, because of the “stiffness” observed in core
plasma temperature profiles, the achievable central tempera-
tures and densities in future tokamaks will be sensitive to the
values of the temperature and density at the top of the edge
pedestal.

We previously have shown’® that momentum balance
determines a requirement on the main ion pressure gradient
L;} =—(dp;! )/ pi=(V,i= Vpinchs,) | D;» Where V,; is the radial
particle velocity (which must satisfy the continuity equa-
tion), Vpincn,; is a collection of terms involving the poloidal
and toroidal rotation velocities and other terms (radial and
toroidal electric field, beam momentum input), and D; is a
diffusion coefficient type term involving interspecies and
viscous momentum transfer frequencies. It was found® that
the pinch term (hence the rotation velocities and the radial
electric field) dominated the determination of the edge pres-
sure gradient in several DIII-D’ shots. Thus, the next ques-
tion is what causes the structure in the rotation velocity pro-
files in the edge pedestal (which in turn cause the structure in
the density and pressure profiles in the edge pedestal). We
note the probable relevance to our investigation of previous
investigations of nonmonotonic toroidal rotation velocities
observed in the vicinity of steep pressure gradients—at inter-
nal transport barriers'’ and in supershots.'1

Thus motivated, we have undertaken a study of rotation
velocities measured in the DIII-D edge pedestal. Detailed
edge profile data that were assembled for the velocity pro-
files (and density and temperature profiles) in the edge ped-
estal of two H-mode DIII-D plasmas are described in Sec. II.
The formalism used for the interpretation of these data is
described in Secs. III-V. The interpretation of the data to
infer information on the momentum transfer rates existing in
the edge plasma and to compare with predictive calculations
of the poloidal rotation velocities are discussed in Sec. VI.
Finally, the results are summarized and conclusions are dis-
cussed in Sec. VIL
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Il. ROTATION MEASUREMENTS AND ANALYSIS

The DIII-D charge-exchange recombination (CER) spec-
troscopy system12 enables measurements of toroidal and po-
loidal velocities for the dominant carbon VI impurity spe-
cies. Edge pedestal rotation profiles and density and
temperature profiles averaged over several measurements
have been analyzed for three shot/times, employing the for-
malism presented in subsequent sections. The rotation profile
data are discussed in this section, and the density and tem-
perature profiles have been discussed in previous papers.13’14

Discharge 119436 was run in a lower single null divertor
(SND) configuration with plasma current /,=1.0 MA, toroi-
dal field B,=1.6 T, and average triangularity 6=0.35. During
the time of interest (3.0-3.5s), the injected beam power
Pieam Was 4.3 MW, the line-averaged density (n,) was about
0.34 X 10?° m=3, the global stored energy Wyup was about
0.55 MJ, and the average edge localized mode (ELM) period
was 15.3 ms. Even though the global parameters, such as
(n,) and Wyyp, were approximately constant during the time
of interest, the conditions in the pedestal were constantly
changing due to the effect of ELMs. The period 80%—-99%
between ELMs was chosen for analysis for this shot.

Discharge 98889 was also run in a lower SND configu-
ration with /,=1.2 MA, toroidal field B,=2.0 T, and average
6=0.07. During the time of interest (3.75—-4.11 s), Ppeam Was
3.1 MW, {(n,) was about 0.40 X 10 m~3, Wyup was about
0.59 MJ, and the average ELM period was 36.0 ms. Similar
to discharge 119436, the maximum electron pressure gradi-
ent varied by at least a factor of 2-3 during an ELM cycle,
even though the global parameters were roughly constant
during the time of interest. The period 40%—60% between
ELMs was chosen for analysis for this shot.

Discharge 118897 was also a lower SND configuration
with Ip=1.4 MA, toroidal field B,=2.0 T, and average o
=0.4. At the time of interest (2.14 s), the plasma was in a
well-developed ELM-free H-mode stage with slowly varying
parameters  Ppo,n=2.35 MW, (n,)=7.7x10" m=3, and
WMHD=O.68 MlJ.

Composite density and temperature profiles, for use in
thermal transport calculations, were obtained by fitting data
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FIG. 1. Measured (CER) toroidal and poloidal rotation velocities for DIII-D
shot 118897.
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from appropriate time bins during the time of interest in
these discharges.l‘%’14 For the ELMing shots 119436 and
98889, this process began with the use of an algorithm to
determine the start and end time of each ELM, from filtering
of a D, signal. The interval between adjacent ELMs was
then subdivided into typically five time intervals for the pur-
pose of binning the data. These intervals were chosen to be
some fraction of the time between the ELMs (10%—-20%,
20%—-40%, 40%—-60%, 60%-80%, and 80%-99%). These
temperature and density data were then averaged within each
bin and fit.

Figures 1 and 2 show measured poloidal and toroidal
rotation data, obtained from the C VI 529.05 nm line, for
discharges 118897 and 119436, respectively. These measure-
ments are obtained from a system of interleaved vertically
viewing and toroidally viewing chords of the CER system.12
For each pair of vertical and toroidal chords that are sepa-
rated by less than 0.005 m, knowledge of the chord geometry
and the magnetic equilibrium is used to uniquely decompose
the line-of-sight velocities to obtain poloidal and toroidal
rotation. As plotted, the toroidal rotation is positive when in
the direction of plasma current for these discharges, which is
also the direction of neutral beam injection; the poloidal ro-
tation is positive when in the direction of the poloidal mag-
netic field. All data have been mapped to the normalized rho
coordinate, where rho is the square root of the toroidal flux,
with equilibria obtained at the appropriate data acquisition
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FIG. 2. Measured (CER) toroidal and poloidal rotation velocities for DIII-D
shot 119436.
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time. Error bars on each measurement, based on photon sta-
tistics, are obtained via standard propagation of errors. In
some cases, the symbols used in these plots are larger than
these error bars.

For discharge 118897, the data were obtained with an
averaging time of 5 ms, and four frames of data are shown in
the time interval 2120—-2170 ms. The neutral beam viewed
by the edge CER chords was modulated during this time and
background spectra obtained with the beam off were sub-
tracted from spectra with the beam on in order to remove
intrinsic emission from C VI in the plasma periphery. For
discharge 119436, data were acquired with an averaging time
of 0.552 ms. This short time allowed the CER system to
capture the time variation of edge parameters within an ELM
cycle. The data shown were obtained in the last 20% of the
ELM cycle for ELMs occurring in the time window
3000-3400 ms. Beam modulation was not used for this
analysis. The ELMs are not perfectly periodic; thus, some of
the vertical scatter in the rotation velocities may be due to
variations in the length of the various ELM cycles.

The poloidal rotation data for both discharges show the
characteristic dip of several km/s in the pedestal (in the vi-
cinity of tho=0.95-0.98), which is routinely observed in
H-mode discharges in DIII-D. The toroidal rotation de-
creases with increasing rho, with some flattening at the
plasma edge in discharge 119436. The measurement of the C
VI toroidal rotation near the plasma edge should not be con-
sidered a measure of the main ion velocity nor should the
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impurity poloidal rotation be considered a measure of the
main ion poloidal rotation. In TFTR, it was shown that the
notch in the C VI toroidal rotation velocity was a result of
the large pressure gradient for the main jons."" Similar phys-
ics could be occurring in the H-mode pedestal and forcing
the impurity toroidal rotation profile to be different than the
main ion rotation. In fact, previous measurements in DIII-D
have shown that the impurity and main ion velocities can be
significantly different in both the poloidal and toroidal
directions.”” One of the goals of this paper is to examine the
coupling between main ion and carbon rotation in the poloi-
dal and toroidal directions.

Great care has been taken to make accurate measure-
ments of rotation velocities down to the level of a few km/s.
For instance, a system of neon lamps is used to obtain cali-
bration spectra after every discharge, for the purpose of de-
termining the location on each detector of the unshifted C VI
529.05 nm line.'® For this purpose, the unshifted wavelength
of this line has been determined to required accuracy from
opposing measurements of toroidal velocity in tokamak
plasmas.l(’ In addition, neon spectra data are obtained from
within the vessel, by the injection of a neutral beam into
neon gas, to correct for a small, high-order aberration in the
spectrometers, which causes the location of the wavelength
reference to be slightly different for illumination from exter-
nal lamps as opposed to illumination from within the vessel.

Good knowledge of the geometry of the viewing chords
and of the beam geometry is required to accurately remove
contributions of toroidal rotation from the vertical chords in
order to obtain poloidal rotation. The chord geometry is gen-
erally checked with in-vessel measurements both before and
at the end of each major campaign in DIII-D. The geometry
of the beamlines has been determined from a variety of sur-
vey techniques, including thermocouple measurements from
the hit spot of the beam on the inner wall. Small errors in the
geometry cannot be ruled out, but there is no reason to sus-
pect any problems for the edge measurements presented
here. Other possible sources of error include atomic physics
effects due to gyromotion and energy-dependent cross-
section effects.'”’ Correcting for these is a complex process
and the corrections are not yet available in the codes used for
edge rotation analysis at DIII-D. However, these effects are
small at low temperature and are not expected to be a sig-
nificant problem.

Other systematic errors could arise from the inability to
adequately remove the contribution of the intrinsic edge C
VI 529.05 nm light to the CER spectra. For discharge
118897, the beam modulation technique mostly eliminates
this problem. In cases where the modulation technique is not
available, such as for discharge 119436, it is rarely possible
to separate the intrinsic emission from the CER emission in
the pedestal via the spectral fitting process. Thus, the results
can contain some effect from the intrinsic emission, which
might not have the same rotation as the CER emission. Gen-
erally, the CER line is quite strong relative to the intrinsic
emission except for measurements at the separatrix and on
the open field lines. Thus, this effect is not generally a sig-
nificant problem.

In summary, the approach here is to obtain multiple ro-
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tation profiles for nominally identical plasma conditions. The
scatter in the results gives the best available estimate of the
uncertainties in the measurements. However, there may re-
main small systematic errors in mapping data to magnetic
equilibria. For the CER data, measured at the outer mid-
plane, the plausible magnitude of these errors is no more
than about 2% of the normalized toroidal flux. Along the
vertical chord of the Thomson scattering system, the plau-
sible errors are 3%—4% of the normalized toroidal flux.
However, it is believed that the procedure used to adjust the
location of the Thomson data to the separatrix, described,
e.g., in Ref. 14, eliminates most of the systematic error in
mapping for the Thomson system. The potential mapping
errors for these two systems imply that there could be sys-
tematic errors in quantities that require data from both sys-
tems; e.g., the experimental main ion pressure gradient and
the collisional ion-electron energy exchange term in the en-
ergy flux calculation.

An integrated modeling code'® was used to supplement
the experimental data. This code (i) calculated particle and
power balances on the core plasma to determine the net par-
ticle and heat outfluxes from the core into the scrape-off
layer (SOL), calculated using measured energy confinement
times and particle confinements times from “die-away”” mea-
surements, which were input to (ii) an extended two-point
divertor plasma model (with radiation and atomic physics)
that calculated densities and temperatures in the SOL and
divertor and the ion flux incident on the divertor plate, which
(iii) was recycled as neutral atoms and molecules that were
transported through the two-dimensional divertor region
across the separatrix to fuel the core plasma. For the ELMing
shots, this code calculated “steady-state” (averaged over
ELMs) heat and particle outfluxes into the SOL (based on
matching experimental line-averaged density). This steady-
state particle outflux was used to calculate a recycling neutral
source at the divertor plate, which was held constant over the
ELM cycle (i.e., averaged over ELMs). However, a time-
dependent neutral influx into the pedestal regions was then
calculated using this “ELM-averaged” recycling source and
the time-dependent experimental edge pedestal density and
temperature profiles discussed above, resulting in different
neutral influxes at different times in the interval between
ELMs.

lll. PARTICLE AND MOMENTUM BALANCE

The interpretation of the rotation measurements in this
paper is based on particle and momentum balance. A fluid
model for the edge plasma was employed, with kinetic ef-
fects included via constitutive relations for the collisional
friction and viscosity. The basic equations are first written for
a general ion species j in the presence of other ion species &,
which interact collisionally (with a sum over k implied).
Subsequently, the formalism is reduced to two species: a
main ion species and an impurity species.

The particle continuity equation for ion species j is
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on;
= . Y= Y —_
VI =Vonu=5-—1 (1)

where S;-=n,(r, O)njo(r, O{oTv)ign=n.(r, O vios(r,6) is the
ionization source rate of ion species j and ny, is the local
concentration of neutrals of species j. The time-independent
momentum balance equation for ion species j is

~ &(n!‘mivi) 2)
a

where p; is the pressure, 77; represents the viscous momen-
tum flux, E represents the electric field, Fj=—njmjv4k(vj
- ;) represents the interspecies collisional friction, M; rep-
resents the external momentum input rate (e.g., due to neu-
tral beams), the next-to-last term represents the momentum
loss rate due to elastic scattering and charge exchange with
neutrals of all ion species k {vy ox ;= 21l (TV)e +{TV) o |ia}
and as usual (nj,mj,ej,vj) denote particle density, mass,
charge, and velocity of species j, respectively.

In the following sections, we will use these equations in
two different ways. First, we will formally solve these equa-
tions for the rotation velocities, presuming the use of mea-
sured data to evaluate the various “coefficients” arising in
various theoretical prescriptions for the friction, viscosity,
etc., and make the usual type of comparison of the calculated
rotation velocities with the experimental ones. Second, we
will “solve these equations backwards” for the composite
momentum transport rate (due to the viscous, inertial, and
atomic physics mechanisms), which is necessary to produce
the measured rotation velocities by using the measured rota-
tion velocities (and density and temperature) profiles as
nput.

IV. TOROIDAL ROTATION

Toroidal rotation is governed by the flux surface aver-
aged (FSA) toroidal component of the angular momentum
balance equation. The toroidal angular momentum balance
equations follows from Eq. (2) by multiplication by the ma-
jor radius.

One of the purposes of this paper is to use the above
equations to interpret measured velocity profiles to extract
information about the underlying momentum transport rates.
For this purpose, it is useful to rewrite these equations in
terms of angular momentum transport rates anmjvxjv@- as-
sociated with process x. The quantity v,; is referred to as the
angular momentum transfer frequency. Expressions for these
angular momentum transfer frequencies can be derived from
different theoretical models for the various momentum trans-
port mechanisms, as discussed immediately below and in
Ref. 19, and evaluated using experimental data to obtain the-
oretical values for the angular momentum transfer frequen-
cies. In order to obtain experimental values for angular mo-
mentum transfer frequencies for comparison, the rewritten
toroidal angular momentum balance equations can be solved
for the value of the composite angular momentum transfer
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frequency that is required to yield the measured toroidal ro-
tation velocity, using experimental data to evaluate the vari-
ous terms in the equation.
It is shown elsewhere'? that the flux surface average neo-
classical viscous toroidal torque can be written in the form
(R*V ¢+ V - 11y = Rnjm;viq. jUg; 3)

]

and that the inertial, or convective torque can be similarly
written

<R2 \% ¢ -V- (njmjvjv)> = anmjvinert,jUQSj + anmjVion’jv¢j,
4)

where the vy ; and v, ; are angular momentum transfer
frequencies defined in terms of viscosity coefficients and/or
radial and poloidal gradients of the density, temperature, and
rotation velocities. Anomalous viscosity is usually modeled
with the same mathematical structure as the neoclassical per-
pendicular viscosity but with an enhanced viscosity coeffi-
cient, so that anomalous viscosity can also be recast in the
form of Eq. (3). For our purposes in this paper, the radial
gradients that enter the theoretical definitions of these angu-
lar momentum transfer frequencies can be evaluated from
measured density, temperature, and rotation velocity profiles.
The atomic physics angular momentum loss due to charge-
exchange and elastic scattering of recycling or beam injected
neutrals has the same Rnjm;v, vy, form. [The
Rnjm;v,,, v, term in Eq. (4) arises from use of Eq. (1) in
evaluating the term on the left.]

Thus, the FSA toroidal angular momentum balance
equation for plasma species j can quite generally be written®

n]mj[ij(Ud,J - U(/,k) + Vdjvd)j] = n]e]E’; + engrrj + le)j’ (5)

where v,; represents the total toroidal angular momentum
transfer frequency due to neoclassical and anomalous viscos-
ity (or torques), convection, atomic physics, and other pro-
cesses (e.g., field ripple) that can be written in the
Rnym;v,jvy; form, v is the interspecies collision frequency
(a sum over all other species k#j is implied), E’; is the
electromagnetically induced toroidal electric field, T,
=n;v,; is the radial particle flux determined by solution of
the continuity equation (1), and M y; is the toroidal compo-
nent of the momentum input (e.g., by neutral beams).

An “anomalous torque” can be represented in the above
equations either by considering the input torque to consist of
neutral beam plus anomalous torques (RM y,=RM ;.
+RM 4 4nom), OF by considering the cross-field angular mo-
mentum transport processes to include neoclassical, inertial,
atomic physics, and anomalous processes (VdeV:g-SC+ ;}m

+ V?,;f’m+ vg;i*"). We use this latter option in this paper.

A. Formal solution of the toroidal rotation equations

The quantities on the right side of Eq. (5) are generally
either known, measured experimentally, or can be deter-
mined by solving the continuity equation, and »; can be
calculated if the density and temperature are known experi-
mentally. Thus, if the vy, are known (e.g., evaluated from
theoretical expressions such as those given above using the
measured density and temperature profiles and rotation ve-
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locity gradient scale lengths), then Eq. (5) can be solved for
the toroidal rotation velocities. For a ‘“two-ion-species”
plasma, Eq. (5) can be summed over both ion species and
electrons, and charge neutrality and ambipolarity can be in-
voked to obtain

Ugj =

_ Ty Vag + M ) 6)

bk ’
njm;Vq; njm;vy;

where M, is the total toroidal momentum input to all spe-
cies. A similar equation obtains for the other ion species k,
but with the j and k subscripts interchanged.

Equation (6) may offer an explanation for the observa-
tion in DIII-D that the measured carbon (species k) rotation
velocity is sometimes in the opposite direction from the mo-
mentum input in the plasma edge. The beam input in the
edge is small and the unmeasured main ion (species j) ve-
locity (which carries most of the angular momentum) could
be in the opposite direction from the measured carbon veloc-
ity (species k).

Using Eq. (6) to eliminate vy, from Eq. (5) yields

[VdeqSk + ijM¢ - Vdj(l’ljejEI; + ejB(,I‘rj)]

[ij(” iMVg; + V) + Vdjnkmkydk]

Uy = (7)
(and a similar equation with “;” and “k” subscripts inter-
changed). The first term in the numerator represents the ex-
ternal momentum input directly to species k and the second
term is related to the external momentum input transferred
collisionally to species k, while the last two terms represent
internal torques due to the induced toroidal electric field and
the radial particle flux. The coordinate system was chosen
such that the positive ¢ direction is in the direction of the
plasma current, so that E‘; and B, are positive.

Equation (7) indicates that in the absence of an external
momentum input (M ,=0) there will be a rotation of species
k in the direction counter to the plasma current when v,
>0 (corresponding to radially outward angular momentum
transport or momentum loss from the flux surface) and T',;
>0 (outward) or small. (The contribution to v,; from charge-
exchange is positive by definition, we consistently calculate
vg;=> 0 from neoclassical viscous and inertial terms, and we
consistently find T',;>0 and increasing with radius in the
edge pedestal because of the ionization of recycling neu-
trals.) Achievement of co-rotation of carbon (species k) in
the absence of net beam momentum input, as has been ob-
served in H-mode plasmas in C-Mod® and DIII-D,*! would
require an anomalous external momentum input (M f;om
>(), the magnitude of which could be inferred from Eq. (7)
if the internal momentum transfer frequencies for both spe-
cies were known.

B. Inference of experimental angular momentum
transfer frequency

A novel approach that we pursue in this paper is to use
the measured rotation velocities as input in ‘“solving the
equations backwards” to infer the local momentum transport
frequency from the toroidal angular momentum equation.
Equation (5) for each species can be readily rearranged to
yield (for the two-ion-species model) a requirement on the
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composite angular momentum transport frequency for all
mechanisms (classical and anomalous viscosity, inertial,
atomic physics, etc.) that must be satisfied in order to pro-
duced the measured rotation velocities

A
_ | neEgteBol, i+ My, Vg
Vdj = ij -{1- (8)
njm;viigp; Ugj

(and a similar expression with the “;” and “k” subscripts
interchanged). All quantities on the right except the rotation
velocities can be readily determined from measurements and
solving the continuity equation. Thus, if the toroidal rotation
velocities for both ion species are also measured, the mo-
mentum transfer frequencies for both species can be deter-
mined from Eq. (8) (plus the same equation with j and k
interchanged).

An immediate problem arises because it is not presently
possible to measure the rotation velocity for deuterium, the
usual main ion species. It is tempting to try using the radial
momentum balance equations for both species, >

E,/By=vy;—f, vy + P}, 9)

where f,=By/B, and P;=(dp;/dr)/(nje;B,), to relate vy,
and vy

(vgj — v =f;1(vej - vy) — (Pj - P)), (10)

but this introduces another unmeasurable quantity; i.e., the
deuterium poloidal velocity. Thus, an unambiguous determi-
nation of the radial transfer rates of toroidal angular momen-
tum requires a measurement of the toroidal rotation veloci-
ties of both the main ion and a dominant impurity ion species
(e.g., a helium plasma with carbon impurity, such as in
Ref. 22).

To get around this problem, we use a perturbation analy-
sis of the above toroidal momentum balance equations for a
two-species [deuterium (j); carbon impurity (k)] plasma to
first obtain an estimate of the difference in the deuterium and
carbon toroidal velocities. This difference can be added to
the measured carbon velocity to obtain what we will call an
“experimental” deuterium velocity. The measured carbon ve-
locity and the experimental deuterium velocity can then be
used to solve the toroidal momentum balance equations
backwards for the experimental angular momentum transfer
frequencies (arising from all processes including anomalous
ones) that are required in order for the toroidal momentum
balance equations to yield the two experimental toroidal ve-
locities.

First, the toroidal momentum balance Eq. (5) for the two
species are added to eliminate the friction terms and used to
define an effective momentum transfer frequency
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off _ nZnin!‘ + Vg

mj + nny

_ (njejE/;+ejBQF +M¢J) + (nkekE¢+ ekBBF,k+M(/,k) {njmjvdj(v(/y U¢k)}
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(nym; + nymy) vy

The { } term involving the difference in toroidal velocities is
set to zero to obtain a zeroth-order approximation of the
effective momentum transport frequency Vg,

(Vl E¢+€Bﬁr +M¢j)+(nkekE¢+ekBeI‘rk+M¢k)

(nym;+ nkmk)v¢k

0_
v, =

(12)

which is used, along with the measured carbon toroidal ve-
locity vz in Eq. (5) for the deuterium j species, to obtain a
zeroth-order approximation for the deuterium-carbon veloc-
ity difference

A 0
(njejE¢+ eBer,j+M¢j) —njmdeUz;(p

nm (v + Vd)

(vgj = Vg0 = , (13)
which in turn is used in Eq. (5) for the carbon impurity k
species to solve for the carbon momentum transport fre-
quency

(nkekE¢ + ekBer P M¢k) + }’lkmkaj('U¢j U¢k)0

Vi = (14)
nkmkv¢k

The deuterium momentum transfer frequency is then calcu-
lated from the definition of Eq. (11) using »5"~ 19, which
yields v,; =~ 1,

When we speak subsequently of the experimentally in-
ferred angular momentum transport frequencies, we are re-
ferring to the quantities calculated from experimental data
using Eqgs. (12)—(14), with v,;= Vd We will test (and confirm)
the assumption that the difference in toroidal velocities be-
tween the main ion and principal carbon impurity ion is
small, thus confirming the validity of a perturbation ap-
proach.

V. POLOIDAL ROTATION

Poloidal rotation is governed by the poloidal component
of the momentum balance equation
1 9p;

nm(v;* V)vlg+ [V - TL]e+ =

— M.
r d0 o

]

+ n m 14 k(vf)J ng) + }’ljej('Uerqs Eg)

+ M Vign iVg; + MM Ve ox Vi = 0, (15)

where the poloidal component of the inertial term is'?

nm[(v;- V)il
% N v,ive! 11 19112 ﬁ

sin@| (16)
r 2r (99 R

and the poloidal component of the parallel viscous force will

(1

be written using the neoclassical representations discussed in
the Appendix. We represent the poloidal density, velocity,
and potential asymmetries with a low-order Fourier expan-
sion

nr,6) = nj-)(r)[l +nj cos 0+ n; sin 6]. (17)

This results in a set of FSA (flux surface averaged) poloidal
momentum balance equations, one for each ion species

N A ~ S e 2% .
vgj[— qv¢js(nj+® ) +qujfp(1 + P+ 5"1) +fijk

sk
+fpvat0m,j:| U()k k \l fp

~ 1~s £l 1 Hs 7 5 He
=By =qe 7= qsq’j{z(q’)} + @ fif (B + PO

57\ s 1»\ ~5
—q8v¢j[(v¢j+Pj)(Ds+ E%jnj] (18)

where e=r/R, vy= U‘g]/fpvthj, U= Ui/ U j» ﬁ’—P'/vth],
ﬁj ‘=n;‘le, f,=By/Bg, and CD =¢;P°/T;. The atomic phys-
ics momentum transfer frequency Vatom,j = Vel,ex T Vion CONSISts
of a momentum loss rate due to the charge-exchange and
elastic scattering term that enters the momentum balance di-
rectly plus an ionization term that enters via the inertia terms
analogous to Eq. (4). The electron momentum balance can be
solved for @ =d/g=n"/e(e®°/T,), which represents
the poloidal asymmetry in the electrostatic potential. The
FSA of the electrostatic potential, i.e., DO, is conventionally
determined by integrating the radial electric field radially
inward from the first grounded (in contact with the Vessel)
field line. The friction terms are identified by vy
=vyqR/ vy, and the viscosity terms resulting from the use
of the Shamg—Slgmar2 express1on No;=njm; vﬂqufj(V ) are
identified by f;= s‘mv /(1+8_3/2V )(1+ ), both in
Eq. (18) and in Egs. (20) and (21) below

The term
2 j -1
_ B 4R | JiaBeKTiLy; (19)
T
MV, j U, Uh,j ejB

represents the poloidal rotation driving forces from the V
X B force and the heat flux in the parallel viscous force.

The 17*°=n*“/ & represent the poloidally asymmetric den-
sity components, which can be obtained by solving the equa-
tions resulting from taking the sin 6 and cos § FSA moments
of the poloidal momentum balance equations24
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[m: 1 « 1
l fjfpv0j+ SU 8fpz Vkvﬁk —L + Eqvatom,ﬂcpv(fj:| +n; |: Qf q+ Zq
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| R 1
Spr k'Ugjl’lk qCDJ-[— ®C]+q;fjfp[ ~(Ug - 7,

0 0
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1 i

1cx1 ion,j

1

Zqul cX j[fpv(ijnzy + Vlon Jnﬂj]

- P )] qf,,z%, v2

lqg n°
— = fi (S + 1, 20
el >] 20)

» 1 1 PR T R
n ffpvej + 81} Spr v; kvﬂk + quatom ffpvaj + I’l prvzaj + Zq - Eqve],cx,jvion,j

k#j

[

1 T [ 1
- 2‘1Ve1,cx,jUpU01”oj = Vion flof) = 4fpVion j 5 Voi

Diverse edge phenomena are represented in the above
equatlons Atomlc physws effects are explicitly indicated by
the Vlon, el o Vawm Vm+ Ve] « terms. The ionization of recy-
cling neutrals also causes the deuterium v, to increase rapidly
with radius just inside the separatrix, because I'=nv, must
increase with radius to satisfy the continuity equation, while
n is decreasing rapidly in the same edge pedestal region. A
poloidal electrostatic field is created in response to the den-
sity asymmetries in satisfaction of the Maxwell-Boltzmann
constraint (electron poloidal momentum balance). We find
that these effects, which are not included in most poloidal
rotation calculations, are important in the calculations to be
discussed later.

In order to provide physical insight, we simplify the
above equations. If we neglect the poloidal asymmetries in
density, rotation velocity, etc. [but retain the poloidal asym-
metry in magnetic field B=B,/(1+¢ cos ) and major radius
R=Ry(1+& cos 6) that has been used above], which reduces
the inertial term in the poloidal momentum balance to the
Vion,; term, the set of Eqgs. (18) reduces to the set

+ Vji + Vatom,j | Voj — VjkVek

qUn,jJ
R

i -1

UiBy 1 vnfia BoK'TiLy;

2

; (22)

which clearly displays the roles of radial particle flows and
radial temperature derivatives in driving poloidal velocity
and the roles of viscosity, friction, ionization, and charge-
exchange of nonrotating neutrals in damping the rotation.
Note that in neglecting the poloidal asymmetries, we have
also perforce neglected the poloidal electric field in writing
Eq. (22).

If the v130051ty functlon 1 1s known for each species
[e.g., fi=e"w /(1+a‘3’2 )(l+ )] the nonlinear set (pair

| s q 1 1O\ A A 3\ e A 1 ~5 ~C~f§ ~5~C
=-2 ”k[ Sefpv ]kv01:| - Z‘I‘DJ[‘I"] + ;fffp[g{(l + O)y; = (Dy; = P))P }] - ql’éi[zs‘{vzﬁjf’fﬁﬁ n;Uy;+ ”j%j}]

—
noj(l +
n

0 0 0

n, ne ~ 16] Ne s
+—n. (+-—fi—@,+n)|. 21

?) n? ¢ 38fjn;.)( ¢ UJ} 1)

J

for two species) of Egs. (18)—(21) or (22) can be solved
numerically for the poloidal rotation velocities.

A. Backward solution for effective viscosity
function f

If both the carbon and deuterium poloidal and toroidal
rotation velocities could be measured, then Egs. (18) or (22)
could be “solved backwards” to evaluate the experimental
viscosity functions using the measured poloidal rotation ve-
locities as input. Since the deuterium poloidal velocity can-
not be measured, we resort to the same type of stratagem
used previously with the toroidal velocities by defining an
effective viscosity function f for both (all) ion species and
combine Egs. (22) in order to eliminate the unknown deute-
rium rotation velocity and obtain (for two ion species) a
quadratic equation for fe,

4V, eff:|

|: ij + Valom,j + R

Vatom,k

B
X[ekvrk ¢,

myVy;

+ qvth,kfeff) exp:| exp

(1 + R Yok VjrVgk
ij ij

__ ejv,;B é, (23)
m;j
which may be solved for f.; by making use of the measured
carbon impurity velocity vj,".
Once the f is determined, it may be used, together with
the measured carbon velocity v, to evaluate the “experi-
mental” deuterium velocity from Eq. (22) for deuterium,

SURP oy .
VilVge — €jVUniBy/m;
ij + Valom,j + qvth,]feff/R

U()j =

(24)

This same type of procedure can be carried out using Eq.
(18) instead of Eq. (22), with similar but more complicated
results.
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FIG. 3. Measured carbon toroidal rotation velocity and deuterium toroidal
rotation velocity calculated using this measured velocity in Eq. (13), be-
tween ELMs in H-mode shot 119436.

VI. INTERPRETATION OF ROTATION MEASUREMENTS

A fit of the measured carbon toroidal rotation velocity
vP shown in Fig. 2 for ELMing H-mode shot 119436 is
plotted in Fig. 3. The difference between the deuterium and
carbon toroidal velocities was calculated using Eq. (13) and
added to this v‘f/j‘kp to obtain the deuterium velocity also shown
in Fig. 3. The relatively small calculated difference between
the velocities of the two species supports the validity of the
underlying assumption of the perturbation analysis of Egs.
(11)—(14) (similar small differences were found also for the
other two discharges considered in this paper). We note that
similarly small differences were found recently between
measured main He ion and carbon impurity ion toroidal ro-
tation velocities in DIII-D' (these results did not emphasize
the edge), although rather larger differences were found
carlier™ in the edge plasma. As discussed in Sec. 1V, the
relative toroidal rotation velocities of the two species de-
pends on the interspecies collision frequency, the toroidal
angular momentum transfer frequencies of the two species,
and the beam momentum input to the two species; at least
the first of which is quite sensitive to the plasma density and
temperature.

The inferred angular momentum transfer rates for carbon
(va) and deuterium (v,;= Vg) calculated from Egs. (14) and
(12), respectively, are shown as Cey, and Dy, respectively,
for shot 119436 in Fig. 4. For comparison, the neoclassical
gyroviscous momentum transfer flrequency25 for carbon and
deuterium are shown also, as is the charge exchange plus
elastic scattering plus ionization momentum transfer fre-
quency, Datomic. These same quantities are shown for ELM-
ing H-mode shot 98889 and ELM-free H-mode shot 118897
in Figs. 5 and 6, respectively. The neoclassical perpendicular
angular momentum transfer frequency (not shown) is smaller
by two orders of magnitude. Clearly, the neoclassical viscous
and atomic physics phenomena are insufficient to account for
the experimentally inferred angular momentum transfer rates
over the edge pedestal, except perhaps just inside the sepa-
ratrix (and the version of neoclassical gyroviscosity used for
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1= D (Eq12)
Corp (EGT4)
gyro
ngro ]

—y

o
=3
1

—r
o
w
sl

Momentum Transfer Rate, v(s™")

1.00

0.96
Normalized Radius , p

088  0.92

FIG. 4. Experimentally inferred toroidal angular momentum transfer fre-
quency between ELMs in H-mode shot 119436.

the calculation may overpredict the transport rate in the steep
gradient edge pedestal%). It is interesting that the inferred
momentum transport rates are larger (by about a factor of 5)
in the ELMing shots than in the ELM-free H-mode shot.

A fit of the measured carbon poloidal rotation velocities
from Figs. 1 and 2 and the values of the carbon and deute-
rium velocities calculated from Egs. (18)—(21) and from
Eqgs. (22) are shown for the ELMing H-mode and the ELM-
free H-mode shots 119436 and 118897 in Figs. 7 and 8
respectlvely The Shaing-Sigmar parallel v1s0051ty
70;= vlh/quJ(v”) with fi=¢ 3/21/ i/ (1+e” 32y )(1+v )
was used in the calculations. The experlmental proﬁles are
similar for the two shots, as are the calculated profiles. There
is very little difference in Fig. 7 between the carbon poloidal
velocity profiles calculated with Egs. (18)—(21) (solid
circles) and with Eq. (22) (half-solid circles). On the other

—D—D

- (Eq12)

-
o
hul

98889

-
o
el

"y
o
IN

Momentum Transfer Rate, v (s‘1)
S
w

-
o
—t

0.88 092 096 1.00

Normalized Radius , p

0.84

FIG. 5. Experimentally inferred toroidal angular momentum transfer fre-
quency averaged over ELMs in H-mode shot 98889.
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FIG. 6. Experimentally inferred toroidal angular momentum transfer fre-
quency in ELM-free H-mode shot 118897.

hand, the deuterium velocity calculation with Egs. (18)—(21)
(solid squares falling almost directly under the open squares)
is considerably different from the calculation with Eq. (22)
(half-solid squares).

To provide some perspective, it is noted that the
deuterium-carbon normalized collision frequency ij in-
creased with radius from 7.8 X 1073 at p=0.86 to 6.2 X 1072
at the separatrix, whlle the total atomlc physics normalized
collision frequency valom Vot V -+ Vlon varied from 1.7
X 107 to 8.7 X 1072 over the same range for shot 119436.

The calculated and measured profiles are similar in mag-
nitude, although they differ in sign at certain radial locations.
[Note that the positive sense of the poloidal rotation is taken
as the positive poloidal direction in a right-hand (r—6—¢)
with the positive ¢ direction aligned with the plasma current,
which is down at the outboard midplane for these shots.] The
deuterium velocity calculated from Eq. (18) using the mea-
sured carbon velocity (denoted as Dy;,) is also shown in Fig.

42 —=—DEq(18)
1.6x10 {l—e—C Eq (18)
1|—®—D Eq (22
1.2x10% ——C ES' fzzf
1|—o— C measured
8.0x1 03-_ —o—D “exp” Eq (18)

119436

4.0x10°]
0.0

3 | Positive Vy in “right
-4.0x10° hand current” sense

Poloidal Rotation, Vg (m/s)

084 088 092 096 1.00

Normalized Radius , p

FIG. 7. Poloidal rotation velocities, measured and calculated, between
ELMs in H-mode shot 119436.
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I 1 118897
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= 00

© .

=]

S -2.0x10°1

= 4.0x100 [POsitive Vgin RH current sense

088 092 096 1.00
Normalized Radius, p

FIG. 8. Poloidal rotation velocities, measured and calculated, in ELM-free
H-mode shot 118897.

7 [it falls almost exactly on top of the results calculated for
deuterium when both species’ velocities are calculated from
Eqgs. (18), making it difficult to see the latter].

The negative dip in the poloidal rotation velocity radial
profile that is observed experimentally is not seen in the
calculated profiles. Although the calculated carbon poloidal
rotation velocities are in reasonably good agreement with
measured values in the flattop region inward of the edge
pedestal p=<0.94, the calculations clearly fail to predict the
(negative) dips in poloidal velocity in the edge pedestal re-
gion.

An effective experimental parallel viscosity function fg
was calculated from Eq. (23), using the measured carbon
poloidal rotation velocity as input, and is shown in Fig. 9
Also shown are the neoclassical parallel velocity functions f;
for carbon and deutenum given by the Shaing—Sigmar
expression’ fj—s‘mv J(1+e” 3/21/ )(1+V ;). The experi-

119436
—o— 1.4 (exp) [Eq23]
—— fBe° (Shaing-Sigmar)

—h— f(’:‘e° (Shaing-Sigmar)

1.07
0.8

o
»
1

e o
[ N
1 1

Parallel Viscosity Factor, f

088 092 096 1.00
Normalized Radius , p

0.0+
0.84

FIG. 9. Experimentally inferred and neoclassical calculated viscosity factor
between ELMs in H-mode shot 119436.
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FIG. 10. Poloidal velocity calculation sensitivity studies. (Standard-
potential calculated by integrating Ep;} from ¢y, =—100 eV, V,,4 calculated

rad
by integrating continuity equation.)

mentally inferred f. is in good agreement with the neoclas-
sical viscosity function f; for deuterium for p<<0.95. The
disagreement for p>0.95 may well be due to Eq. (23),
which is based on Egs. (22) for the two species, attempting
to account for the (negative) peaking in the velocity profile
without containing the (unknown) term that causes it.

VII. SENSITIVITY CALCULATIONS

Since the radial particle velocity (VX B force) and the
poloidal electric field are not usually retained in the devel-
opment of equations for calculating the poloidal rotation ve-
locities from poloidal momentum balance, it is of some in-
terest to investigate the importance of these terms.

The radial particle velocity v, enters the poloidal mo-
mentum balance via the VX B force term and is incorporated
in Egs. (18), (20), and (21) either explicitly or via the o, term
defined in Eq. (19). In the “standard” calculation of poloidal
rotation velocities presented in the previous figures, v, was
evaluated by integrating the continuity equation to obtain the
I',=nv, required at each radius to satisfy particle balance and
then using the experimental value of n to obtain v,.. This
quantity increased rapidly with radius just inside the separa-
trix due to a combination of an increasing ionization particle
source, hence I',=nuv,, and decreasing density. A calculation
was performed setting the quantity v,=0. The carbon rotation
velocity profile for the standard and the v,=0 calculations are
compared in Fig. 10. Clearly the v, term is important in the
edge pedestal region.

Both the poloidal and radial electric fields are assumed
electrostatic; thus, E,=—d®/dr and E,=—d®/rd6. Repre-
senting D (r, ) =D(r)(1+ D¢ cos +D* sin §) leads to E,
=—®O(r)[D* cos #—DC sin A]/r. The electron poloidal mo-
mentum balance with only the E, and pressure gradients
terms retained (or equivalently the Maxwell-Boltzmann dis-

tribution) then determines the relation ®=d" /¢

Phys. Plasmas 15, 012503 (2008)

=n"/e(e®"/T,), where the electron density variation is re-
lated to the ion density variations calculated from Egs. (20)
and (21) by charge neutrality.

In principle, the standard practice for determining the
value of ®O(rsep) is to integrate the current continuity equa-
tion over the divertor and scrape-off layer, using sheath
boundary conditions and taking into account drifts,”’ but
such a calculation is beyond the scope of this paper. The FSA
value of the potential was determined by integrating the ex-
perimental value of the radial electric field inward from the
separatrix  DO(r) =D(ryp) + [PESP(r)dr’ using PO(rg,)
=-100 eV. The experimental radial electric field was nega-
tive at the separatrix, became more negative in the edge ped-
estal then decreased in magnitude and became positive in the
flattop region. We note that it is the product @D (i.e., the
poloidal electric field) that enters the above equations and
that =D/ e=n"""/g(e®°/T,), so the product BOD*
~ E, is independent of ®°.

To test the sensitivity of the poloidal rotation velocity
calculation to the inclusion of the poloidal electric field, the
calculation was repeated for E,=0. The calculated carbon
poloidal velocity profile for E4=0 is also plotted in Fig. 10.
Clearly, the inclusion of E,is important for the determination
of the poloidal rotation velocity in the edge pedestal.

VIil. SUMMARY AND CONCLUSIONS

A methodology was presented for inferring experimental
toroidal angular momentum transfer rates from measured to-
roidal rotation velocities in the edge pedestal. This method-
ology was applied to analyze transfer rates of toroidal angu-
lar momentum in the edge pedestal of three DIII-D H-mode
shots. The inferred angular momentum transfer rates are
larger than can be explained by atomic physics or neoclassi-
cal viscosity, which suggests the presence of other torque/
momentum transport mechanisms (e.g., orbit scrape-off, tur-
bulent).

Calculations of poloidal rotation velocities (based on po-
loidal momentum balance, using neoclassical parallel viscos-
ity, and taking into account atomic physics) were compared
with measured values of the carbon poloidal rotation veloci-
ties in the edge pedestal of three DIII-D shots. In the flattop
region just inside the edge pedestal there was reasonable
agreement between calculation and experiment. However,
the calculation failed to reproduce the measured structure in
the poloidal velocity in the edge pedestal, indicating the
presence of some important momentum transport or torque
input mechanism in the edge pedestal region that was not
accounted for in the calculation.

A novel feature of the poloidal rotation calculation was
retention in the poloidal momentum balance of radial particle
velocity and poloidal electric field terms usually neglected.
Both of these terms were demonstrated to be important in the
edge pedestal.
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APPENDIX: NEOCLASSICAL PARALLEL VISCOUS
FORCE REPRESENTATION

Stacey and Sigrnar25 generalized Braginskii’s flow stress
tensor results™ to toroidal geometry and replaced the Bragin-
skii collisional viscosity coefficient with the Shaing—Sigmar
coefficient given above to obtain for the flow contribution to
the parallel viscous force:

. 3 OB
R St-S _ 2 0720\~
(B V- T =5 7’0jA0j07€0 Vg
3 oB
2 ¢ 920\~
+5 77()jA0jO7€0 Vg (A1)
where
1( dvy; 1\oR 1( 1\6B
o5 ()35 5
0 3\ dly R/)dly 3\By) dl,
Agj = —
Ugj
(A2a)
and
dv,/R
prR_Q;(l;, )
Ad = f (A2b)

This form introduced the contribution of poloidal asymme-
tries in both the poloidal and toroidal velocities (as well as
the density) into the parallel viscous force. The overbar on
the velocity in Egs. (A1), (A2a), and (A2b) distinguishes the
FSA quantity from the poloidally varying quantity. The
Stacey—Sigmar form of the parallel viscous force has been
extended” to take into account neoclassical heat flux contri-
butions
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