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CHAPTER I

INTRODUCTION

1.1 Motivation

A very important aspect of trajectory reconstruction is to assess the accuracy of

pre-flight predictions of the entry trajectory. This assessment serves a dual purpose.

First, trajectory reconstruction confirms: computational models of the atmosphere,

planetary gravitational models, vehicle aerodynamic characteristics, and predicted

vehicle flight performance. Second, trajectory reconstruction highlights discrepancies

in each of these four things. That is, entry reconstruction makes us aware of how

well we know what we know, and it helps make note of where our models may not be

correct.

For example, trajectory reconstruction highlighted both the anomalistic distur-

bance torques experienced by the Mars Exploration Rovers during entry, and tra-

jectory reconstruction helped quantify the extent to which the Mars Phoenix Lander

landed long. The torques experienced by the Mars Exploration Rovers were explained

by the incomplete burning away during entry of the thermal blanket on the forebody

of each spacecraft. [287] Without trajectory reconstruction, this problem would not

have been identified, and mitigations could not be developed for future mission de-

signs. While the long landing of the Mars Phoenix lander is yet unexplained, it

does perhaps highlight the need for additional instrumentation on board entry vehi-

cles and improved local atmospheric monitoring capabilities around non–terrestrial

bodies that are being explored.

Typically, spacecraft entering Earth’s atmosphere are well instrumented and there
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exists much data with which to reconstruct the entry trajectory.1 [278] In contrast,

while numerous entry systems have flown in non–terrestrial atmospheres, often these

systems are not adequately instrumented or the flight team not adequately funded to

perform the statistical engineering reconstruction required to quantify performance

and feedforward lessons learned into future missions. As such, entry system perfor-

mance and reliability levels remain unsubstantiated and improvement in aerothermo-

dynamic and flight dynamics modeling remains data poor. This research focuses on

comparing methods for providing an accurate estimate of the atmosphere flown in and

the trajectory flown by a robotic entry system. Best estimate values and uncertainties

are provided, where applicable.

1.2 Objectives

This thesis compares two Kalman filter methods for obtaining information from pre-

vious entry data (i.e. from the Mars Pathfinder entry). The comparison is done

in an effort to quantitatively and qualitatively compare the Kalman filter methods

of reconstructing trajectories and atmospheric conditions from entry systems flight

data. The first Kalman filter method used is extended Kalman filtering.2 Extended

Kalman filtering has been used extensively in trajectory reconstruction both for or-

biting spacecraft and for planetary probes. It represents a standard against which

to compare the other Kalman filter method. The second Kalman filter method is

unscented Kalman filtering. As the literature suggested, unscented Kalman filter-

ing offers improved performance over extended Kalman filtering, and this improved

performance is demonstrated for entry, descent, and landing trajectory reconstruc-

tion. Unscented Kalman filtering has not been applied to entry, descent, and landing

1Genesis [69] and Stardust [68] are notable exceptions to this. Neither mission included instru-
mentation to provide data for trajectory reconstruction such as inertial measurement units.

2To some extent, most estimation methods such as Kalman filtering are fundamentally related
to least squares.
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trajectory reconstruction.3

Additionally, a formulation for trajectory reconstruction using collocation was

desired, and it was desired that the trajectory simulation capabilities of collocation

be evaluated. Collocation has also not been applied to entry, descent, and landing

trajectory reconstruction. While collocation is not an estimation technique, it is

useful for simulating entry, descent, and landing trajectories, and it may be useful for

reconstructing entry, descent, and landing trajectories.

1.3 A Word on the Uniqueness of the Trajectory Recon-
struction Problem

Unlike many applications where measurements are made, the states in trajectory

reconstruction are generally not observable. The global positioning system on Earth

makes it easy to determine our location, but it does not exist on other planets. The

location of a spacecraft must often be determined by the inertial measurement unit

acceleration data alone while performing entry descent, and landing from an initial

state that has some uncertainty. And without certain knowledge of where it started

from, the spacecraft could easily get lost until it finds the ground with its radar

altimeter. The radar altimeter finds that landmark of the ground that allows the

spacecraft to orient itself on the way to the surface of the planet. This is analogous

to a blind man walking on the street. He knows where he started from, and he has

a rough idea of where he is as he is walking. Periodically, however, he needs to

find landmarks he knows along his route to verify his location. So unlike terrestrial

navigation, there is no visibility of position and velocity during entry, descent, and

landing.

3Unscented Kalman filtering has been used for the reconstruction of Mars Odyssey’s aerobraking.
[127, 128, 129]
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1.4 Contributions

The contributions of this research, as will be discussed, are:

(1) The extended Kalman filter was originally developed for signal processing ap-

plications and only later applied to trajectory reconstruction. Similarly, unscented

Kalman filtering was developed for signal processing applications, and this work rep-

resents its first application to the reconstruction of entry, descent, and landing tra-

jectories.

(2) The reformulation of the entry, descent, and landing trajectory reconstruction

problem using collocation has been demonstrated by the author. This approach

dubbed “TRUC”, after “trajectory reconstruction using collocation” posits that en-

try, descent, and landing trajectory design tools using collocation may also be used

for entry, descent, and landing trajectory reconstruction. As a first step, the perfor-

mance of entry, descent, and landing trajectory simulation using collocation (TSUC)

has been demonstrated by the author. Additionally, a solution procedure for deter-

mining the state values that satisfy the defect constraints has been developed. This

procedure allows the trajectory to be determined from the controls and parameters

of the simulation in a deterministic way.4

(3) Trajectory reconstruction results from the unscented Kalman filter were com-

pared against the trajectory reconstruction done using the extended Kalman filter.

From this, guidance on choosing a method for the reconstruction of future trajectories

was established. This guidance included trajectory reconstruction using collocation

based on its expected capabilities.

4The review of the literature for this research indicates that collocation has not been used for
entry, descent, and landing trajectory reconstruction, so this solution procedure has not been used
for entry, descent, and landing trajectory reconstruction using collocation.
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CHAPTER II

BACKGROUND AND MOTIVATION

In the following sections, an overview of methods for reconstructing atmospheric

information from observations is provided. Next, a historical review is presented of

the trajectory reconstruction work performed for several planetary probe missions.

While primarily focused on Mars, Venus, and Earth-return missions, the Galileo

(Jupiter) and Huygens (Titan) missions are also discussed. Emphasis is placed on

the reconstruction of trajectories and atmospheres from inertial measurements of the

motion of a planetary probe entering a body’s atmosphere.

2.1 Measurement Techniques

A number of methods for measuring the variations of density and pressure with alti-

tude in an atmosphere have been devised. Descriptions of some of those which have

been used to survey the Earth’s atmosphere were reported by Hanessian [113], Kon-

dratyev [159], and Peterson [204]. Early on, it was noted that one of the primary

objectives of robotic probes was to characterize non–terrestrial atmospheres, not only

in terms of composition, but by finding temperature, pressure, and density profiles.

[238] As Alvin Seiff [317], of the NASA Ames Research Center, wrote in a NASA

technical note:

One of the early objectives of space probes sent to Mars and Venus will

be to determine the characteristics of the atmospheres on those planets

for scientific purposes. Characteristics of interest include profiles of gas

density, temperature, and pressure above the planet surface, and chem-

ical composition of the atmosphere. Because of practical limitations, it
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is doubtful that the first probes will convey a very complete picture of

the atmosphere, and a good initial objective will be to define the above

properties broadly, although certainly the more that can be learned from

an early probe the better. [238]

Given the dynamics of an atmosphere, real-time “weather reports” are needed

to make the most accurate predictions of a planetary probe’s entry trajectory and

landing site. Knowledge of the atmospheric entry conditions also aids in the design

of the spacecraft [220]. A summary of the different methods that can be used to

determine various atmospheric properties are listed in Table 1. The following sections

will present an overview of various methods for obtaining information on planetary

and natural satellite atmospheres.

Table 1: Methods for determining atmospheric properties.

Method Composition Density Temperature Pressure Wind Speed
Radio occultation X* X* X*
Photometric occultation X* X* X*
Spectroscopic measurements X X
In situ measurements X X X X X
Doppler tracking X X
Inertial measurement units X X* X

*When observations are combined with composition information obtained from another method.

2.1.1 Remote Sensing

Radio Occultation Occultation is the interruption of photons from some source

such as a star, planet, or spacecraft due to a passing celestial body such as a planet

(see Figure 1). Radio occultation refers specifically to the occultation of a radio signal

from a spacecraft due to the atmosphere of a planet interposed between the source

of the radio signal and the receiver. The interposing celestial body might be Mars

between Earth and Mariner 4 [89] or Venus between Earth and Mariner 5 [90, 91].

The atmosphere of the celestial body refracts the signal, and a refractivity profile

for the atmosphere is established. From the atmospheric refractivity profile, one can
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retrieve, in sequence, profiles of the atmospheric density (given the composition),

pressure, and temperature [319]. For radio signals, the Doppler shift of the radio

signal is used to determine the refractivity profile rather than the “bending” of the

signal [132] since the amount of bending is small. From the atmospheric refractive

index, one can retrieve, in sequence, profiles of the atmospheric density, pressure,

and temperature [319]. Information on atmospheric turbulence can also be obtained

with single-frequency radio occultation, but turbulence is better determined from

dual-frequency observations [315].

Direction of Planetary Motion 

Radio Signal 

Radio
Signal
Source 

Radio
Signal

Receiver

Unrefracted Signal 

Refracted Signal 

Figure 1: Radio occultation by Mars of a signal sent from
Earth.

Before the atmospheric refractivity profile can be used to obtain the density pro-

file of the atmosphere, the composition of the atmosphere must be determined. The

atmospheric composition can be determined using ground-based spectroscopic ob-

servations for many gases. An atmospheric profile of number density can then be

determined using the refractivity and composition through the use of empirical rela-

tions from refractivity experiments with gas mixtures. Knowing the composition, it

is a simple step to go from the number density profile to the mass density profile of

the atmosphere. Pressure then follows from the hydrostatic equation (to be discussed
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further in § 2.1.4), and temperature then follows from pressure and the ideal gas

equation of state.

Radio occultation measurements of temperature and pressure are limited by sig-

nal power and critical refraction. For example, on the Mariner 5 mission to Venus,

loss of lock on the 423.3 MHz channel occurred 0.3 min after encounter. At this

time, the lowest point on the ray passed 35 km above the surface where the pres-

sure of the Venusian atmosphere was approximately 6 atm. No information about

the atmosphere was determined below this altitude. The depth to which the radio

signal probed before the loss of lock occurred was limited by the power of Mariner 5’s

transmitter. However, even with unlimited radio signal power, obtaining data down

to the surface would not have been possible because of critical refraction. (Critical

refraction occurs in atmospheric regions where the radius of curvature of a horizontal

ray due to refraction becomes equal to, or smaller than, the distance from the top

of the atmosphere to the planetary center of mass. No rays can probe tangentially

through such regions since they are effectively bent to intersect with the planet.)

The critical refractive properties of the atmosphere of Venus became known when the

Venera 4 lander made its direct measurements on October 18, 1967 (one day prior to

the Mariner 5 occultation experiments). [90] Radio occultation measurements were

also used during the Viking missions to obtain atmospheric temperature and pressure

profiles [92].

Photometric Occultation Photometric occultation is generally used to determine

the shape of planetary bodies that lack an atmosphere such as moons and asteroids.

However, when stars are occulted by planetary atmospheres such as the occultation

of Regulus (α-Leonis) on July 7, 1959 by Venus [58], refractive observations can be

combined with additional observations to obtain temperature and pressure profiles
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for the atmosphere (see Figure 2). The additional information necessary includes at-

mospheric composition, surface temperature from microwave observations, and other

remote temperature measurements to provide anchor points for the temperature pro-

file. Occultation of stars passing behind natural satellite and planetary atmospheres

also allows spectroscopic measurements to be made.

I’

I

ω

R

β

R
r

E

ω

V

M

E’

Occulting Shell

Figure 2: The effect of atmospheric refraction on the du-
ration of occultation. At the time of apparent ingress (I)
and egress (E), the apparent radius is R = V I = V E cor-
responds to the observed duration of the occultation. The
apparent radius is less than the true radius of the occulting
shell, and the difference (ω) is due to refraction. [58]

Spectroscopic Measurements Occultation of stars passing behind natural satel-

lite and planetary atmospheres also allows comparisons to be made of the star’s

spectra with and without an intervening atmosphere to see where absorption in the

electromagnetic spectrum occurs. Spectroscopic measurements of sunlight reflected

from natural satellite and planetary bodies allows their composition to be determined.

[220, 28] Spectroscopic measurements can be used to characterize the composition of

both an atmosphere and a rocky body. For example, water, carbon dioxide, and ozone

all have strong, easily identifiable absorption bands at infrared wavelengths.
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2.1.2 In Situ Measurements

The best measurements of atmospheric properties are made in situ and then trans-

mitted to Earth. The first in situ measurements of atmospheric composition were

made on October 18, 1967 by Venera 4 on Venus [197, 155, 177]. Similar measure-

ments were made in Jupiter’s atmosphere by Galileo on December 7, 1995 [318, 185],

and on Titan by Huygens on January 14, 2005 [150, 235]. On Mars, Mars 6 ob-

served the presence of inert gases (suspected to be carbon dioxide and argon) on

March 12, 1974 [189, 124] and specific abundances for gases were measured by Viking 1

on July 20, 1976 [198, 194]. Instruments for atmospheric measurements used on sev-

eral robotic probe missions are listed in Table 2 on page 10 for missions performing

entry at celestial bodies beyond the Asteroid Belt, Table 3 on page 11 for missions

performing entry at Venus, Table 4 on page 13 for missions performing entry at Earth,

and Table 5 on page 16 for missions performing entry at Mars.

Table 2: Instruments (or types of measurements) for ob-
taining atmospheric information used on several robotic
missions performing entry at celestial bodies beyond the
Asteroid Belt.

Galileo [318, 248, 244] Huygens [150]
Accelerometers X X
Gyroscopes
Pressure sensor X X
Temperature sensor X X
Mass spectrometer X X
Gas chromatograph X
Shock layer radiometer
Trace species detector
Cloud sensors X X
Aerosol analyzer X
Net flux radiometer X
Solar flux sensors
Lightning detectors X
Hydrogen-Helium ratio X
Energetic particles X
Wind speed X X
Descent imager X
Surface science X
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In situ measurements have included temperature, pressure, wind speed, and com-

position. Measuring temperature and pressure on the surface of a planet is relatively

straightforward. Landing a spacecraft onto the surface of another planet, however, is

fraught with complications. Additionally, once the lander has landed, it must survive

long enough to make the measurements and transmit the data back to Earth.

On Venus, with its high temperature and high pressure environment, for example,

the greatest challenge is having the spacecraft survive until it reaches the surface.

Venera 7 was the first spacecraft to successfully return data from the surface of Venus

[22, 134]. The density of Venus’ atmosphere makes possible in situ measurements of

temperature and pressure while descending on a parachute with minimal impact from

the effects of the spacecraft’s descent through the atmosphere. Vega 1 and Vega 2

were able to measure atmospheric temperature and pressure from 0 km to 63 km

above ground level [59].

Table 3: Instruments (or types of measurements) for ob-
taining atmospheric information used on several robotic
missions performing entry at Venus.*

Pioneer Venus Pioneer Venus
Venera Large Probe Small Probes Vega

Accelerometers X X[50] X[50] X
Gyroscopes X[147] X[59]
Pressure sensor X[17] X[50] X[50] X[169]
Temperature sensor X[17] X[50] X[50] X[169]
Mass spectrometer X X X
Gas chromatograph X X X
Shock layer radiometer
Trace species detector X X
Cloud sensors X X X X
Aerosol analyzer X X
Net flux radiometer X X
Solar flux sensors X X X
Lightning detectors X X
Hydrogen-Helium ratio
Energetic particles
Wind speed X X X X
Descent imager
Surface science X X

*The instruments used by Venera, Vega, Pioneer Venus Large Probe, and Pio-
neer Venus Small Probes are provided in reference [240] except where noted.
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In-flight measurements of atmospheric temperature and pressure are complicated

because, at supersonic and hypersonic speeds, an instrument may not directly mea-

sure freestream conditions.1 Experiments involving a number of forms of observations,

such as acceleration, spectral distribution and intensity of shock-layer radiation, os-

cillation frequency, etc., were proposed in [238], and the experiments were developed

in more detail in [249] and [205].

The most comprehensively instrumented probe flown on Earth was the Planetary

Atmosphere Experiments Test (PAET) vehicle [250] (see Figure 3), which was built

to carry instruments for making the observations discussed in the previous paragraph.

The PAET instruments included temperature sensors, pressure sensors, accelerome-

ters, a mass spectrometer, and a radiometer (to aid in the determination of atmo-

spheric composition) (see Figure 4 and Figure 5). Future generations of the PAET

atmospheric structure instrument flew on Viking 1 and Viking 2 (2nd generation),

Pioneer Venus (3rd generation), and Galileo (4th generation). [248] The atmospheric

structure instrument consisted of accelerometers, temperature sensors, and pressure

sensors.

630 SEIFF ET AL. 

equipment, batteries, pyrotechnic system, 
radar transponder, and spin axis rate gyro, 
was mounted on the back face of the fore- 
body structure, a conical, ring-stiffened 
aluminum shell (Fig. 6). The ‘equipment 
was located and mounted with due atten- 
tion to loading of the structure under 75g 
deceleration, and to center-of-mass loca- 
tion and inertial properties of the probe. 
(Moments of inertia about the axis of 
symmetry and lateral axes were 4.80 and 
3.20kg m2, respectively.) 

The probe total weight of 62.1 kg was 
distributed as follows : 

Instruments 14.0kg 
Date handling and 

communications 6.9 
Power and cabling 7.9 
Structure 15.3 
Heat shield 10.7 
Miscellaneous 7.3 

Total 62.1 

The beryllium nose section provided a 
region free from ablation products for the 

composition measurements, both of which 
took samples in the uncontaminated flow 
over the nose. The two pressure ports and 
some heat transfer gauges were also located 
in the beryllium nose. The ablator covering 
the aluminum forebody structure was a 
low density silicone elastomer (0.45g/cm3). 
The afterbody structure was extremely 
light, a fiberglass honeycomb covered with 
a very low density silicone elastomer 
ablator (0.27g/cm3). This ablator was 
required to be radio transparent before, 
during, and after ablation, since the VHF 
telemetry and C-band radar transponder 
antennas were mounted internally. 

The selection of a digital data handling 
and communication system was motivated 
primarily by a need to read and transmit 
the accelerometer measurements to an 
accuracy of 0.1% of peak, but also 
provided a realistic simulation of the 
communication design for probe missions 
to the planets. For a period of 25sec, prior 
to radio blackout and continuing until 
after blackout, the primary experiment 

FIG. 5. Entry vehicle with afterbody cut away to show antennas and umbilical column. 

Figure 3: Cut-away view of the PAET vehicle. [250]

1Density can also be determined from pressure and velocity measurements during entry. [326, 192]
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Table 4: Instruments (or types of measurements) for ob-
taining atmospheric information used on several robotic
missions performing entry at Earth.

PAET [250, 240] Genesis [69] Stardust [68]
Accelerometers X
Gyroscopes
Pressure sensor X
Temperature sensor X
Mass spectrometer X
Gas chromatograph
Shock layer radiometer X
Trace species detector X
Cloud sensors
Aerosol analyzer
Net flux radiometer
Solar flux sensors
Lightning detectors
Hydrogen-Helium ratio
Energetic particles
Wind speed
Descent imager
Surface science

PLANETARY 
ATMOSPHERIC 

PROBE 
531 Figure 4: Interior view of the PAET vehicle. [250]
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FIG. 8. Location of sensor ports on the entry probe. 

and two temperature sensors, deployed 
through openings in the forebody near the 
base of the cone at a flight Mach number of 
about 2. (2) For composition analysis, a 
quadrupole mass spectrometer with mass 
range from 10 to 90a.m.u., and a continu- 
ous flow sampling system with an inlet 
leak; and a spectral radiometer, with 
seven-channels sensing optical radiation 
from the 2-cm thick luminous shock layer 
during the high speed portion of the entry. 
Figure 8 shows the location of sensor ports 
and sensors on the vehicle. The functional 
and physical descriptions of the instru- 
ments, their calibrations, and accura’cy 
estimates follow. 

The accelerometers were of the pendulous 
test mass, force rebalance type. (They were 
provided by Bell Aerospace Company.) 
The test mass is flexure mounted, held 
accurately in a capacitatively sensed, 
fixed position by application of a measured 
electromagnetic force in the direction of 
the applied acceleration. These sensors are 

accurate to within lop4 of reading, and 
have long-term stability (zero shifts) less 
than 10e4g. The four sensors and t,heir 
electronics were assembled in a rigid 
substructure (Fig. 9) mounted at the probe 
center of mass. 

In placing the sensors within this pack- 
age attention was given to avoiding or 
minimizing angular and centripetal inputs. 
Since all test masses could not be put 
physically on the vehicle center of mass, 
that location was given to the primary 
axial sensor (test mass on the c.m. within 
2mm). The test mass of the back-up or 
redundant sensor for a, was also on the 
vehicle axis, but 5.5cm ahead of the c.m. 
It therefore experienced centripetal inputs 
due to pitching and yawing rates to a peak 
level of O.O3g, which may be compared to 
the telemetry resolution limit of 0.125g for 
this sensor. The y and z axis sensors were 
in the plane of the c.m., displaced laterally 
about 5cm off the vehicle x axis, and were 
located with the a, test mass on the 

Figure 5: Sensor ports on the PAET vehicle. [250]

In 1967, a study was conducted on the design of a thoroughly instrumented probe

(see Figure 6) to determine the properties of the Martian atmosphere [101], but it was

not built. Nevertheless, several robotic missions have made in situ measurements on

Mars. The Mars 6 descent vehicle made temperature and pressure measurements as

it descended [16] . The temperature measurements were biased due to entry heating,

but could be used to obtain the stagnation point temperature [85, 325]. Viking 1 and

2, Mars Pathfinder, the Mars Exploration Rovers, and Mars Phoenix Lander have all

made in situ measurements on Mars, although the Mars Exploration Rovers did not

make in situ measurements of temperature and pressure, and Mars Pathfinder only

measured surface properties.
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Figure 6: Design proposed in 1967 for a probe to determine
the atmospheric properties of the Martian atmosphere. The
probe is enclosed inside a shell that spins up the probe for
stabilization and is jettisoned prior to entry. [101] The ∆v
rocket and the mechanical spin system are in the middle,
right portion of the figure.

The Mars Science Laboratory (MSL) will have a suite of instrumentation em-

bedded in the heatshield of the entry vehicle. Called MEDLI for “Mars Science

Laboratory Entry, Descent and Landing Instrumentation,” the instrumentation will
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measure temperature, pressure, and recession of the thermal protection system. The

data collected will aid in the understanding of the aerodynamics, aerothermodynam-

ics, flight dynamics, and material response of the thermal protection system, as well

as permit more accurate aerodynamics, atmosphere, and trajectory reconstruction.2

[196]

Table 5: Instruments (or types of measurements) for ob-
taining atmospheric information used on several robotic
missions performing entry at Mars.

Mars Mars
Viking Mars Exploration Phoenix

Mars 6 [261] 1 and 2 Pathfinder [267] Rovers [53, 11] Lander [255]
Accelerometers X X[240] X X X
Gyroscopes X[239] X X
Pressure sensor X X[239] X X
Temperature sensor X X[239] X X
Mass spectrometer X[124] X[240] X
Gas chromatograph X[240]
Shock layer radiometer
Trace species detector
Cloud sensors X X[46] X
Aerosol analyzer
Net flux radiometer
Solar flux sensors
Lightning detectors
Hydrogen-Helium ratio
Energetic particles
Wind speed X X
Descent imager X
Surface science X X X

2.1.3 Doppler Tracking

Doppler tracking uses the Doppler shift of a radio signal from a spacecraft to determine

the velocity of the spacecraft and other state and model parameters. Atmospheric

2Essentially, the actual entry flight of a spacecraft represents the best opportunity to collect data
on the performance of the flight vehicle since the actual flight conditions cannot always be simulated
in tests on Earth. Hence, data for model validation may be lacking. The improved models can
then be used for designing future spacecraft. For example, aerodynamic heating uncertainties can
be greater than 50%, especially near the shoulders of aeroshells. Such uncertainties require thicker,
heavier aeroshells than may be necessary. Additionally, pressure data taken in–flight will help
resolve the separation of aerodynamic coefficient uncertainties with uncertainties in the atmospheric
conditions.
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wind profiles can also be determined from Doppler tracking.3 Generally, the source

of the radio signal is a spacecraft descending to the surface of a planet or natural

satellite. There may be one or more receivers of the signal. Often, the NASA Deep

Space Network (DSN) or the Very Large Array (VLA) constitute the Earth-based

receiver. If there is a second spacecraft in the vicinity of the celestial body of interest

(such as with paired orbiter-lander or flyby-lander missions), it may be used as another

receiver. Two receivers in different locations allows two components of the lander’s

velocity to be determined.
AVDUEVSKY ET AL. 267 
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FIG. 4. Altitude distribution of temperature based on measured temperatures and calcula­
tions of distance descended based on Doppler frequency-shift observations. 

height distributions of temperature and pressure 
Venus atmosphere can be determined not only 
e temperature and Doppler frequency measure­
made by Venera 7 as a function of time, but 

rom the temperature measurements alone by 
~g that the variation of temperature with height 
the adiabatic law. In that case the distance which 
'Paratus descended can be easily calculated with­
:elocity measurements. From the first law of 

ynamics we have 

dp 
Tds=di--, 

p 

s is the entropy and i the gas enthalpy. If the 
tic law is valid, ds=O and di=dp/p. Assuming 
tatic equilibrium in the Venus atmosphere, 
ents of distance covered in the vertical may then 

'tten as 

1 
~zad=-~i, 
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'0 g is the acceleration due to gravity on Venus. 
:e results for the vertical distance (~Zad) descended 

ction of time for an atmospheric abundance of 
"C02and 3% N2 are included in Fig. 3, with the 
ated values plotted in such a way that both curves 
'de at the base point. Despite the overall agree-
of the z(r) curves, some systematic disagreement 
aled in the region corresponding to the descent 
between 08: 15: 00 and 08: 35: 00. The distance 

.~ed by the apparatus from the base point to the 
:e determined assuming adiabatic conditions 

to be 2 km greater than the mean value of the 
.ce calculated from the measurements of VD. 

face temperature T = 747K. Comparison of this curve 
with that obtained from the T(r) and VD(r) measure­
ments confirms the conclusion made in the analysis of 
Fig. 4 that the temperature profile deduced from the 
Venera 7 data is close to adiabatic. However, this com­
parison also shows that in the case of the explicit 
assumption of the adiabatic law for a C02 atmosphere, 
the effective depth of the atmosphere counted below 
the base point is 2 km greater than the mean depth 
value derived from the VD measurements. It is worth­
while to note that this discrepancy falls within the 
measurement errors. 

The height distribution of pressure corresponding to 
the T(h) data in Fig. 6 is shown in Fig. 7. In this case 
the pressure profile was determined from the corre­
sponding potential temperature isopleth on an adia­
batic chart for 97% CO2 and 3% N 2. From a comparison 
of the p(h) curves in Figs. 5 and 7, it follows that pres­
sure-height distributions above and below the base 
point generally coincide in both cases. However, the 
surface pressure in the first case proves to be equal to 
86 kg cm-2, and in the second to 97 kg cm-2

• This dis­
crepancy is mainly due to the disagreement in the dis­
tances descended in the two cases (Fig. 3) and to the 
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Figure 7: Temperature profile of Venus’ atmosphere based
on measured temperatures and altitudes from Doppler
tracking. [22]

Doppler tracking was used extensively as part of exploration missions to Venus.

Doppler tracking was used to determine the velocity of the Venera and Vega landers

(see Figure 7) [155, 22, 6, 7, 8, 316, 18] and to obtain profiles of the atmospheric

winds [155, 7, 8, 154, 153]. Doppler tracking was also used during the Pioneer Venus

mission to obtain more than one component of the spacecraft’s velocity. [14] At Mars,

Doppler tracking was used during Mars 6 flyby-lander mission [16] and the Viking

orbiter-lander missions [182]. Changes in the speed of the Galileo probe at Jupiter

3Wind measurements generally require a separate ground station in addition to sensors at altitude
in the atmosphere. Doppler tracking is the most straightforward method for use at non–terrestrial
planets and natural satellites with atmospheres [133]
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caused by zonal winds also created a small but measurable effect in Galileo’s relay

carrier frequency. [14]

2.1.4 Inertial Measurement Units

Properties of planetary and natural satellite atmospheres can also be determined from

observations made by an entry vehicle passing through the atmosphere. Considerable

attention has been focused on knowledge of the acceleration experienced by a body,

having known aerodynamic characteristics (with known uncertainties associated with

them) and entering an atmosphere on a ballistic trajectory. [205] Measurements

of the motion of the entry vehicle can be used to construct the density and pressure

structure of the atmosphere.4 [205] The motion of an entry body is generally measured

using inertial measurement units (IMUs). An inertial measurement unit contains

accelerometers for measuring the translational motion of the entry vehicle, and it

may also contain gyroscopes for measuring rotational motion.

Detailed procedures for obtaining the density and pressure profiles of a planetary

atmosphere from measurements of accelerations experienced by a vehicle making a

ballistic entry into the atmosphere of a planet are given in [238, 204]. Atmospheric

temperature profiles can also be determined given composition information. Early

work focused on a spherical entry bodies [47, 204, 205, 120], though some work in-

volved conical bodies [262] including the fourth flight of the NASA Planetary Entry

Parachute Program (PEPP) [263].

Atmospheric density (ρ) is determined from the axial acceleration (aA) experi-

enced by the entry vehicle assuming: the vehicle’s aerodynamic properties (i.e. drag

coefficient (CD) and aerodynamic reference area (S)), the speed of the entry vehicle

(v), and its mass (m) are all known.5

4However, the uncertainties of the spacecraft’s aerodynamic coefficients and the uncertainties of
the atmospheric conditions cannot be separated unless separate measurements are made of either
the actual flight atmospheric conditions or the pressure distribution around the spacecraft in–flight.

5The speed of the entry vehicle (v) is known from the reconstruction of the spacecraft’s trajectory
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Fig. 12 Over-all spacecraft /booster configuration.

shown in Fig. 9. The various combinations of stratosphere
scale height 0 and tropopause altitude yT which satisfy the
communication blackout time increment and velocity decre-
ment are shown in Fig. 10. The intersection of the two curves
in Fig. 10 (the one that satisfies the At requirement, and the
one that satisfies the A 7 requirement) yield the nominal
values of ft and yT for the atmosphere. The effect of entry
flight-path angle uncertainties on these parameters also is
shown. Finally, Fig. 11 shows the complete profile of the
predicted atmosphere which is compared with the actual
density profile used by NASA Ames in deriving the simulated
DSIF data.

Capsule- Spacecraft Configuration

The previous sections describe a typical planetary explora-
tion mission using the semipassive probe concept, and develop
the necessary theory for analyzing the resulting data. Space-
craft and capsule configurations that can successfully ac-
complish the exploration mission, including the proposed ex-
periment, are described below.

Spacecraft Configuration

The physical arrangement of the capsule and spacecraft for
a typical design using a Mariner C spacecraft is shown in Figs.
12 and 13. This arrangement allows for doppler tracking
while the capsule is still attached to the spacecraft. It also
allows for capsule verification prior to ejection. The location
of the spacecraft and capsule centers of gravity along the cap-
sule ejection thrust line provide for minimum perturbation as
a result of separation. Mechanical separation is accomplished
through use of a spring-guide combination to minimize cap-

Table 4 Simulated doppler data: Mars atmosphere
entry*

tj sec V} fps t, sec V, fps t, sec V, fps

Data before blackout
0
0.8
2.8
4.0

50.0
50.8
51.6

26,134
26,143
26,164
26,177

672
652
634

5.2
6.4
7.6
8.8

Data after
52.4
53.2
54.0

26,190
26,204
26,217
26,230

blackout
617
602
587

10.0
11.2
12.0
13.0
14.0

54.8
56.4
58.0

26,243
26,256
26,265
26,275
26,285

573
548
527

MARS ENTRY
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PROPULSION SYSTEM
/- PLANETARY SCAN
' SUBSYSTEM

•CANOPUS SENSOR

SOLAR PANELS
(4 PLACES)

Fig. 13 Spacecraft bus and Mariner probe.

sule orientation drift after ejection and prior to spin-up.
The sterilization shroud, not shown, would fit around the
capsule, and would be separated just prior to capsule-space
craft separation.

Capsule Configuration

Capsule configuration is shown in Fig. 14. The capsule is
2 ft in diameter and has a ballistic coefficient of 0.2 slug/ft2.
The weight corresponding to this value of m/CDA is 19 Ib.

The capsule itself consists of a 2-in. foam spherical shell
covered with phenolic nylon which serves both as an ablator
and as an external structure. The major subsystems are
mounted on a tray bonded to the foam filling the area under
the tray. The spin jets are located on external straps that
support the separation engine. Both the spin jets and engines
are jettisoned prior to entry. A helix antenna is embedded in
the foam and, coupled with the transponder, provides for
doppler tracking. A clock and battery pack complete the
major subsystems.

PHENOLIC NYLON
0.022 TO 0.2 ON ENTRY FACE T0 EARTH

HELIX ANTENNA
STRAP SEPARATION

SEE DETAIL A-A

SPIN JETS (2)

FLOOR STIFFENING

SQUIB. JL PYROFUSE
BAND

5-POUND-THRUST ENGINE'
"7\.s\__\ ENTRY'ATTITUDE A-A

a Nonrotating planet: m/CnA = const = 0.25; entry angle = 74°.

SPIN-AXIS

Fig. 14 Mariner probe detail,
Figure 8: A spherical entry vehicle proposed in refer-
ence [120] for obtaining Martian atmospheric profiles of den-
sity and pressure. Both the engine and the spin jets were to
be jettisoned prior to entry.

ma =
1

2
ρv2CDS (1)

ρ =
2ma

v2CDS
(2)

Vehicle drag coefficients are not greatly affected by the composition of the atmo-

sphere in which a vehicle flies [130], so the composition of the atmosphere can be

neglected when finding the atmosphere’s density profile. Typically for ballistic entry

vehicles flying at zero angle of attack, the axial acceleration (aA) is used in equation 2.

ρ =
2maA
v2CDS

(3)

The atmospheric pressure (p) profile can be determined by integrating the hydro-

static equation, which can be expressed in terms of the velocity (v) and flight path

from the accelerometer data.
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angle (γ) of the entry vehicle.

dp = −ρgdh (4)

p = −
∫ h

∞
ρgdh (5)

and

dh = −(v sin γ)dt (6)

p =

∫ t

0

ρgvsin γdt (7)

The atmospheric temperature (T ) profile can then be determined by using the

ideal gas equation of state if the molecular mass (MW ) of the atmosphere is known.

p = ρ
<

MW
T (8)

T =
p

ρ <
MW

(9)

2.1.5 Light Detection and Ranging

Light Detection and Ranging (LIDAR), also known as Laser Detection and Ranging

(LADAR), can be used to determine position and velocity and is expected to improve

real–time navigation significantly for pinpoint landing [3] and remotely piloted ve-

hicles [2]. LIDAR can also be used to obtain various atmospheric information [178]

including: measuring wind speeds [254, 93], carbon dioxide concentration in the at-

mosphere [254], molecular species temperature and pressure [179], measurement of

gas and aerosol profiles [4, 221], and trace gas concentration [44].
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2.1.6 Descent Imaging

The Descent Imager / Spectral Radiometer (DISR) provided images during part of

the descent of the Huygens probe to the surface of Saturn’s natural satellite Titan.

Altitude, attitude information (“tip and tilt”, as well as rotation), and wind velocity

[146] can be determined from descent imaging. By imaging the same surface feature

at different altitudes, descent imaging can also serve to verify the reconstruction of

altitude from inertial measurement units [146], even if the size of the surface feature

is not known. If the size of the surface feature is known, the altitude estimation is

more accurate. Clouds, fog, and dust can limit the use of descent imaging depending

on what part of the spectrum the image is taken from. Higher resolution images

enhance the accuracy of reconstruction, and allow reconstruction to begin at higher

altitudes. However, higher resolution images require more memory space to store,

present a higher computational burden for in–flight processing, and take longer to

transmit to Earth.

2.1.7 Magnetometer Measurements

Magnetometers can measure the strength and direction of a magnetic field. Since

the magnetic field at any point around Earth is relatively unique, magnetometer

measurements can be used to determine altitude and latitude [257, 258] by matching

the magnetometer measurements to a model of the Earth’s magnetic field. Spacecraft

attitude [26, 52, 51, 216, 211, 215, 214] and changes in attitude [51, 289] can also

be determined. In order for magnetometer measurements to be used, the planet

or natural satellite of interest must have a significant and mapped magnetic field.

Earth, Jupiter, Ganymede, Saturn, Uranus, and Neptune are the only solar system

bodies with appreciable magnetic fields. The use of magnetometer measurements also

requires an up–to–date model of the magnetic field, and magnetic fields are subject

to change. For example, as of 2009, the Earth’s magnetic north pole was moving from
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Canada to Russia at the rate of approximately 64 kilometers per year. [173] This is

approximately four times faster than its rate of movement at the beginning of the

20th century.

2.2 Reconstructed Mission Data

A survey of several robotic planetary probe missions was conducted to determine

if there was a standard method of trajectory reconstruction for entry, descent, and

landing. This standard method would then be used to evaluate the two methods under

investigation in this research6 for possible application to trajectory reconstruction.

Generally, the entry, descent, and landing trajectory reconstructions were performed

by either directly integrating the accelerometer data obtained during entry or by

using Kalman filtering7 in conjunction with the accelerometer data. In some cases,

both direct integration and Kalman filtering were used for trajectory reconstruction.

For other missions, radar tracking data was used and a description of how the data

was processed to reconstruct the trajectory is not explicitly stated, even though some

form of data reduction or filtering was probably used. Though direct integration was

the most widely used method of trajectory reconstruction, extended Kalman filtering

was selected as the standard to evaluate the two new techniques against as it provides

an estimate of uncertainty, which direct integration does not.

A summary of the methods used to reconstruct the trajectory of each spacecraft

are listed in Table 6 on page 29 for missions performing entry at Venus, Table 7 on

page 31 for missions performing entry at Earth, and Table 8 on page 42 for missions

performing entry at Mars, and Table 9 on page 45 for missions performing entry at

celestial bodies beyond the Asteroid Belt. The following paragraphs briefly discuss

each mission or series of missions.

6The two methods under investigation in this research being: (1) the unscented Kalman filter
(UKF) and (2) trajectory reconstruction (TRUC). This thesis compares these two methods with
extended Kalman filtering for reconstructing entry, descent, and landing trajectories.

7Usually with the extended Kalman filter form of the Kalman filter.
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2.2.1 Venus Missions

Venera The sixteen Venera missions to Venus consisted of: flyby spacecraft (Ven-

era 1 and 2), probes (Venera 3, 4, 5, and 6), landers (Venera 7 and 8), orbiters

(Venera 15 and 16), and orbiter-lander pairs (Venera 9, 10, 11, 12, 13, and 14). Data

was returned from Venera 4, 5, and 6, but contact was lost before any of these space-

craft reached the surface of Venus. Venera 7 (see Figure 9) was the first spacecraft

to return data from another planet when it landed on Venus on December 15, 1970.

Venera 7 operated for 23 minutes after landing. [134] Sufficient data was returned

to construct profiles of atmospheric temperature and pressure. [22] Follow-on mis-

sions provided additional data confirming the Venera 7 measurements. By the end of

the Venera missions, sufficient data had been received to construct profiles of Venus’

atmospheric temperature, pressure, density, and winds using a combination of ac-

celerometer measurements, in situ measurements, and Doppler / radar tracking.

It is assumed that the trajectories of the Venera landers were reconstructed deter-

ministically using direct integration as the method is not always generally discussed

in the literature (cf. [17], [19], [147]). Applying filtering to the reconstruction of the

Venera–lander trajectories is discussed in reference [21]. However, reference [21] was

published over a year after the last Venera–lander (Venera 14) was launched (Novem-

ber 4, 1981), so it is not clear if filtering was later applied to the reconstruction of

the Venera trajectories.
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Fro. 2. The Venera 7 automatic station, a typical spacecraft of the Venera series. Entry capsule 
propulsi<m mechanism, solar panels, and radio antenna can all be seen. 

mos t  p rominen t  modificat ion was of the 
Venera  7 descent  appara tus .  Since its main  
purpose  was to reach the p lane t ' s  surface, 
and  to opera te  there,  it was designed as an 
exper imenta l  landing capsule. Wi th  the 
previous  measu remen t s  and  ex t reme  esti- 
ma tes  of  the  a tmospher ic  pa r ame te r s  a t  
the  surface, the  landing capsule was 
designed to endure  t empera tu re s  and  
pressures up  to 800°K and 180arm respec- 
t ively.  While the to ta l  weight  of  the 
Venera  7 s ta t ion  remained  unchanged  as 
compared  to previous  ones (1180kg), the 
descent  a p p a r a t u s  became abou t  100kg 
heavier  due to s t ruc tura l  i m p r o v e m e n t s  
and  the  deve lopmen t  of  special hea t  
p ro tec t ion  measures  to provide  necessary 
insulat ion propert ies .  The  stresses a t  the 
t ime  of  touchdown on the Venus surface 
were reduced b y  the e m p l o y m e n t  of  
honeycomb  const ruct ion techniques.  Main 

e lements  of  the design of the  Venera 
a u t o m a t i c  s ta t ions  are shown in Fig. 2, 
which displays the  Venera  7 version. 

Decoupl ing of the descent  a p p a r a t u s  
f rom the f lyby module  took  place for each 
mission a t  a dis tance of  20-40 thousand  
ki lometers  f rom the planet .  The regime of 
ae rodynamic  drag in the  a tmosphere  of  
Venus began f rom a veloci ty  of  abou t  
l l . 2 k m s e c  -1 a t  an angle to the  local 
hor izontal  of  a p p r o x i m a t e l y  60 70 °. Pa ra -  
chutes were opened when the  a p p a r a t u s  
veloci ty  decreased to abou t  200msec  -1, 
corresponding to an ambien t  pressure of  
p _~ 0.6 a tm.  

The Venera  7 descent  a p p a r a t u s  t h a t  
landed on the  surface of Venus is shown in 
Fig. 3. I t  has a somewha t  oblong con- 
f igurat ion and  contains a hermet ical ly  
sealed container  of  spherical  configura- 
t ion with  rad io te lemet ry  and  measur ing  

Figure 9: The Venera 7 spacecraft. [177]

Figure 10: The Venera 7 entry capsule. [Image credit:
NSSDC]

Pioneer Venus The Pioneer Venus missions consisted of an orbiter and four probes:

one “large” probe (see Figure 12) and three small probes (see Figure 13) (the “north,”
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“night,” and “day” probes). Each probe entered Venus’ atmosphere at a different

location (see Figure 11). The orbiter was launched before the probes and inserted

into Venus orbit on December 4, 1978. The landers entered Venus’ atmosphere on

December 9, 1978.

Temperature and pressure data were received from all four probes. The data al-

lowed the construction of temperature, pressure, density, and wind profiles for Venus’

atmosphere. [247] However, temperature data from all four probes ceased at approx-

imately 12.5 km altitude, so the temperature was extrapolated from that altitude to

the surface. [246]

A post-flight investigation determined the cause of the data loss to be a short

in an electrical connection for the atmosphere structure instrument and the net flux

radiometer. Kapton insulation and kynar shrink tubing were used for these electrical

connections, and these materials dissolve after prolonged exposure to sulfuric acid.

[251] The data loss occurred at the same time as other anomalies in several other probe

instruments. There was also an increase in ambient light seen by the nephelometers

at the time of the anomaly. [246]
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Fig. 7 Probe and bus entry sites as viewed from Earth.
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Fig. 8 Large-probe descent.

The nominal entry sites for the bus and four probes are
shown in Fig. 7. The entry of all five spacecraft will take place
over a period of 2 hr and all will be operating simultaneously.
To assure no loss of data, the spacecraft entry will be timed to
be in view of two DSN stations.

Large-Probe Mission Description
At the time of large-probe release, the bus is aligned with

the expected probe entry velocity vector so that the nominal
entry angle of attack is near zero. Since the bus spins at 15
rpm at release, the large probe will be spin-stabilized at 15
rpm during the 24-day coast. During this period, the only unit
operating is the coast timer, which is set prior to separation so
as to initiate probe operation prior to Venus entry.

The Venus entry and descent phase is shown schematically
in Fig. 8. At 2/2 hr prior to the expected entry time, the coast
timer turns on the receiver in preparation for entry operation.
At 22 min prior to entry, the probe spacecraft subsystems are
turned on, and DSN acquisition of the probe carrier signal is
established. Then 5 min later, the instruments are turned on,
and calibration data are transmitted at 256 bps. At 5 min prior
to entry, the spacecraft is configured for the entry phase. The
data rate is reduced to 128 bps and is stored in the 3072-bit
memory. During entry, the probe will experience high
deceleration levels (nominally 323 g), high heating rates, and a
communication blackout period for approximately 10 sec.
After completion of the entry phase, as measured by an ac-
celeration switch at 5.5 g decreasing deceleration, the
spacecraft is reconfigured to the normal descent mode, the
data rate is increased to 256 bps, and communication is re-
established with Earth. Shortly afterwards, the parachute is
deployed, extracting the pressure vessel module from the
deceleration module. The pressure vessel descends on the
parachute from 67 to 46 km alt. At 18 min after entry, the
parachute is jettisoned, and the pressure vessel continues to
descend, impacting the Venus surface approximately 56 min
after initial entry.
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Fig. 9 Orbiter exploded view.

Small-Probe Mission Description
The small-probe coast timer is set by the bus, prior to

separation, to activate the stable oscillator and battery heater
2 hr prior to entry. At 22 min prior to entry, the probe
spacecraft subsystems are turned on, and the unmodulated
carrier is transmitted for DSN acquisition. Then 5 rnin later,
scientific instruments are turned on, and calibration data are
transmitted at 64 bps. At 5 min prior to entry, the yo-yo's are
deployed, reducing the spin rate by a factor of 4 to 12 rpm. At
the same time, the blackout configuration is established, and
scientific data are stored in the memory during the brief (5 to
13 sec) blackout periods that the small probes experience
during their entry deceleration (up to 565 g). The nominal
descent configuration is re-established by the accelerometer
sensing the deceleration decreasing below 5.5 g. At this time,
the doors that protect the pressure inlet, temperature sensor,
and net flux radiometer from the entry heating open, and two
booms deploy the sensor into the freestream. Scientific data
are transmitted back to Earth at 64 bps for the next 16 min. At
that time, at approximately 30 km alt, the data rate is reduced
to 16 bps (to allow for reduced rf transmission throughout the
atmosphere). Impact will occur at approximately 59 min after
entry.

Orbiter Mission
Orbiter Spacecraft Description

The primary mission of the orbiter is to place a payload of
12 scientific instruments in orbit around Venus. As can be
seen in Fig. 9, the orbiter shares much in common with the
bus spacecraft. The substitution of a high-gain antenna for
the probe support structure and the addition of an orbit in-
sertion motor and a deployable 4.6-m magnetometer boom
are the principal differences. The despun high-gain antenna
provides communication with the Earth at ranges as great as
250 x 106 km. The orbit insertion motor is used to place the
orbiter spacecraft in a 24-hr orbit around Venus. The entire
orbiter, including its Centaur attach fitting, has a mass of 599
kg at launch and 372 kg in orbit around Venus.

Figure 11: Pioneer Venus entry sites as seen from Earth.
[73]
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Table 3 Large- and small-probe subsystem characteristics
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Fig. 3 Large-probe pressure vessel internal arrangement.

deceleration module also provides the pyrotechnic hardware
for bus/probe separation, aft cover release, pressure
vessel/aeroshell mechical separation, and jettison of the
parachute. The pressure vessel contains the pyrotechnic
devices for the electrical separation of the pressure vessel and
aeroshell.

The pressure vessel module consists of a pressure vessel and
the internal electronics and scientific instruments. The
pressure vessel is designed to maintain an internal atmosphere
of nitrogen (N2) at an absolute pressure of 55 to 207 kPa while
withstanding an external absolute pressure of 9653 kPa. The
pressure shell is 73 cm in diam and approximately 0.6 cm
thick and is constructed in three titanium pieces. The aft
hemisphere provides mechanical access via a 9.5-cm port and
ground cooling for test through a 6-cm port. It also has a port
for the antenna and windows for two instruments. A midbay
section includes the inlets and windows for the remaining
scientific instruments and four electrical feedthroughs for
electrical access to the pressure vessel. The forward section is
separately removable for access to the forward bay. In all,
there are 15 penetrations to the pressure vessel, and a total of
7.6 m of seals are required to prevent the nitrogen atmosphere
from leaking out during transit or the hot Venus atmosphere
from leaking in during descent. Internal equipment is
mounted on two approximately 65-cm-diam beryllium shelves
which provide heat sinking during descent. Thermal
protection for the internal electronics is provided by a 2.5-cm,
41-layer Kapton blanket that is restrained by a titanium sheet

Telemetry

C ommunic atio

Large Probe

Battery: 19 cell, Ag-Zn
(40 A-hr)

Electronics: 28 V ±10%
15 on/off relays

Onboard sequencer

24-day timer

128 stored command descent
sequence

Convolutionally encoded PCM/
PSK/PM

8-bit word, 64-word frames

72 data channels
2 formats

3072 bit memory (blackout)

256 bps

Crossed dipole omni antenna

40 watt power amplifier

S-band transponder

Small Probe

20 cell, Ag-Zn
(11 A-hr)

Same
10 on/off relays

Same

Same

Same

Same

Same

Same

Same

Same
16 and 64 bps

Same

1 0 W power amplifier

insulation retainer. The thermal design maintains the tem-
peratures of electronics and instruments below 50°C even
with an exterior temperature of 493 °C. The general interior
arrangement of the probe is seen in Fig. 3. A 78-cm-diam
titanium sheet fairing covers the forward portion of the
pressure vessel and provides the aerodynamic shape required
for a stabilized aerodynamic descent in the Venus at-
mosphere. The structural and mechanical interface with the
deceleration module is provided by a 9.7-cm-high titanium
adaptor ring that is 89 cm in diam.

A summary of large-probe subsystem characteristics is
given in Table 3. The large probe carries a payload of seven
scientific instruments (see Table 2) with a combined mass of
35 kg and consuming 106 W of electrical power. Of the seven
instruments, three require inlets for sampling the atmosphere,
and four require windows for viewing the atmosphere. All of
the windows are made of sapphire except the window for the
infrared instrument. The need for transmissibility in the 10-/z
region and the ability to withstand an absolute pressure of
9653 kPa and 493 °C has led to the choice of natural diamond
as the only material that can meet the requirements. The
diamond window is approximately 1.8 cm diam and weighs 13
carats.

Small-Probe Description
The three small probes provide the capability for

simultaneous measurement of Venus atmospheric charac-
teristics at widely separated locations. For this reason, the
small probe is designed to accommodate a range of entry
angles from - 20 to - 75 deg and communication angles up to
60 deg. The small probe is a self-contained system after
separation from the bus, operating on internal power and a
preprogrammed command sequence. During entry in the
Venus atmosphere, at a speed of 11.6 km/sec, the
deceleration force will reach a maximum of 565 g. The probe
will begin scientific measurements at an altitude greater than
65 km, and the descent time to the Venus surface will be 59
min. The probe will be designed to withstand the surface of an
absolute pressure of 9653 kPa and 493 °C but is not required
to survive impact.

The small-probe mass is 97 kg and consists of a pressure
vessel module and a deceleration module (shown in exploded
view in Fig. 4). However, there is no parachute, and the small-
probe pressure vessel module does not separate from the
deceleration module. The deceleration module consists of a
76-cm-diam, 45-deg blunt cone aeroshell with a 19-cm nose
radius. A carbon phenolic heatshield is bonded to the titanium
aeroshell structure. A pyrotechnically released flyaway clamp
restrains the probe while attached to the bus and is part of the
deceleration module. The spin rate is reduced by a factor of 4

(a) Exploded view.

NOVEMBER 1977 THE PIONEER VENUS PROGRAM 685

Table 3 Large- and small-probe subsystem characteristics

HEAT SHIELD/
AEROSHELL
STRUCTURE

Fig. 2 Large-probe exploded view.

POWER AMPLIFIER

PRESSURE VESSEL
AFT SECTION

COOLANT PORT-

INTERSHELF
SUPPORT
STRUCTURE

ANTENNA

ACCESS HATCH

AFT INSULATION
BLANKET

FWD INSULATION
BLANKET ASSEMBLY

PRESSURE VESSEL'

AERO FAIRING

PYRO
CONTROL UNIT

NEUTRAL
MASS SPEC

SOLAR FLUX
RADIOMETER

BATTERY

Fig. 3 Large-probe pressure vessel internal arrangement.

deceleration module also provides the pyrotechnic hardware
for bus/probe separation, aft cover release, pressure
vessel/aeroshell mechical separation, and jettison of the
parachute. The pressure vessel contains the pyrotechnic
devices for the electrical separation of the pressure vessel and
aeroshell.

The pressure vessel module consists of a pressure vessel and
the internal electronics and scientific instruments. The
pressure vessel is designed to maintain an internal atmosphere
of nitrogen (N2) at an absolute pressure of 55 to 207 kPa while
withstanding an external absolute pressure of 9653 kPa. The
pressure shell is 73 cm in diam and approximately 0.6 cm
thick and is constructed in three titanium pieces. The aft
hemisphere provides mechanical access via a 9.5-cm port and
ground cooling for test through a 6-cm port. It also has a port
for the antenna and windows for two instruments. A midbay
section includes the inlets and windows for the remaining
scientific instruments and four electrical feedthroughs for
electrical access to the pressure vessel. The forward section is
separately removable for access to the forward bay. In all,
there are 15 penetrations to the pressure vessel, and a total of
7.6 m of seals are required to prevent the nitrogen atmosphere
from leaking out during transit or the hot Venus atmosphere
from leaking in during descent. Internal equipment is
mounted on two approximately 65-cm-diam beryllium shelves
which provide heat sinking during descent. Thermal
protection for the internal electronics is provided by a 2.5-cm,
41-layer Kapton blanket that is restrained by a titanium sheet
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insulation retainer. The thermal design maintains the tem-
peratures of electronics and instruments below 50°C even
with an exterior temperature of 493 °C. The general interior
arrangement of the probe is seen in Fig. 3. A 78-cm-diam
titanium sheet fairing covers the forward portion of the
pressure vessel and provides the aerodynamic shape required
for a stabilized aerodynamic descent in the Venus at-
mosphere. The structural and mechanical interface with the
deceleration module is provided by a 9.7-cm-high titanium
adaptor ring that is 89 cm in diam.

A summary of large-probe subsystem characteristics is
given in Table 3. The large probe carries a payload of seven
scientific instruments (see Table 2) with a combined mass of
35 kg and consuming 106 W of electrical power. Of the seven
instruments, three require inlets for sampling the atmosphere,
and four require windows for viewing the atmosphere. All of
the windows are made of sapphire except the window for the
infrared instrument. The need for transmissibility in the 10-/z
region and the ability to withstand an absolute pressure of
9653 kPa and 493 °C has led to the choice of natural diamond
as the only material that can meet the requirements. The
diamond window is approximately 1.8 cm diam and weighs 13
carats.

Small-Probe Description
The three small probes provide the capability for

simultaneous measurement of Venus atmospheric charac-
teristics at widely separated locations. For this reason, the
small probe is designed to accommodate a range of entry
angles from - 20 to - 75 deg and communication angles up to
60 deg. The small probe is a self-contained system after
separation from the bus, operating on internal power and a
preprogrammed command sequence. During entry in the
Venus atmosphere, at a speed of 11.6 km/sec, the
deceleration force will reach a maximum of 565 g. The probe
will begin scientific measurements at an altitude greater than
65 km, and the descent time to the Venus surface will be 59
min. The probe will be designed to withstand the surface of an
absolute pressure of 9653 kPa and 493 °C but is not required
to survive impact.

The small-probe mass is 97 kg and consists of a pressure
vessel module and a deceleration module (shown in exploded
view in Fig. 4). However, there is no parachute, and the small-
probe pressure vessel module does not separate from the
deceleration module. The deceleration module consists of a
76-cm-diam, 45-deg blunt cone aeroshell with a 19-cm nose
radius. A carbon phenolic heatshield is bonded to the titanium
aeroshell structure. A pyrotechnically released flyaway clamp
restrains the probe while attached to the bus and is part of the
deceleration module. The spin rate is reduced by a factor of 4

(b) Internal view.

Figure 12: Pioneer Venus Large Probe. [73]
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Fig. 5 Small-probe pressure vessel internal arrangement.

prior to entry by two pyrotechnically released despin weights
(yo-yo's).

The pressure vessel module consists of a pressure vessel
internal structure, the internal electronics, and scientific
instruments. The pressure vessel is designed to maintain an
internal atmosphere of xenon at an absolute pressure of 28 to
207 kPa. The two-piece titanium shell is 46 cm in diam and
approximately 0.36 cm thick. It provides electrical access by
three feedthroughs and mechanical access via a 9.5-cm in-
spection port. Three housings on the aft section provide entry
protection for the deployment mechanisms, scientific in-
strument sensors, and optical ports. The deployment
mechanisms (shown deployed) deploy two instruments after
probe entry. Thermal protection for the contents of the shell is
provided by a 61-layer Kapton blanket immediately adjacent
to the pressure vessel wall. Heat capacity and a mounting
surface for the internal electronics is provided by two 39-cm-
diam shelves machined from hot-pressed beryllium block. The
internal arrangement of the small probes is shown in Fig. 5.
There are a total of eight penetrations to the small-probe
pressure vessel and 2.7 m of seals. A summary of small-probe
subsystem characteristics is given in Table 3.

Multiprobe Mission Description!
The multiprobe spacecraft launch will take place during the

period from August 7-24, 1978, the launch window for the
1978 Venus type I launch opportunity. The launch vehicle will

MULTIPROBE
LAUNCH
7 AUG 1978 RELEASE

LARGE PROBE
15NOV

_ ' EARTH AT
EARTH PROBE

^RELEASE' AT ORBITER ENCOUNTER
SMALL PROBES ENCOUNTER
AT 48 rpm
19NOV

fFinal and more detailed mission planning may change some of the
mission parameters described in this and the orbiter mission
description.

19NOV

Fig. 6 Mission interplanetary trajectories.

place the multiprobe on the desired type I interplanetary
trajectory as shown in Fig. 6 after a 12- to 18-min coast
period in a 167-km Earth parking orbit. During the launch
phase, spacecraft engineering telemetry will be transmitted
from the forward omni antenna. Immediately prior to
separation, the Centaur will orient the spacecraft to a normal -
to-the-ecliptic attitude, with the positive spin axis in the
direction of the South ecliptic pole. The separation switches
will initiate a command sequence stored in the command
processor memory which results in spacecraft spinup to
approximately 15 rpm. It is expected that ground station
acquisition, at Canberra, will occur within 4 hr after launch.
Within the first few days, the jets will be calibrated in
preparation for the first trajectory correction maneuver at
L + 5 days. This maneuver requires a velocity correction of up
to 12.1 m/sec to correct launch vehicle injection errors. The
maneuver will be performed in either a normal-to-the-ecliptic
attitude or, after a precession around the sunline, to an at-
titude that allows use of axial jets. The selection will depend
upon which mode minimizes propellant usage. Subsequent
maneuvers, if required, will be performed at L + 20 days and
£"-34 days to correct execution errors resulting from the
preceding maneuvers. During transit to Venus, telemetry will
be transmitted from the forward omni antenna. The com-
mand and control of the multiprobe normally will be exer-
cised by utilizing the DSN 26-m network. During maneuver
periods and probe checkouts starting at L + 60 days, the 64-m
antennas will be used.

At approximately £-28 days, the spacecraft spin axis will
be precessed to an attitude in the ecliptic plane so that the
medium-gain horn can be used for communications. The large
probe is separated from the multiprobe at £-24 days. The
release attitude is selected so that the probe will enter the
atmosphere with a near-zero angle of attack. Immediately
after release, the spin axis orientation will be precessed to the
small-probe targeting attitude to allow use of the medium-
gain horn. At £-23 days, the multiprobe will be spun up to
48.5 rpm, and a pulsed radial jet maneuver will be performed
to effect a velocity correction of 5.1 m/sec to achieve the
desired small-probe targeting. The three probes will be
released at £-20 days. The 48.5-rpm spin rate will provide
tangential velocity at separation sufficient to achieve the
desired target points. Since the sun will be only 17 deg
removed from the positive spin axis, the bus can only remain
in the probe release attitude a total of 4 hr. Immediately after
small-probe release, the spin axis will be precessed to an at-
titude that allows use of the medium-gain horn and provides a
sun angle of 40 deg. At £-18 days, a velocity correction
maneuver of 19.1 m/sec will move the trajectory aim point to
that desired for bus entry and slow the arrival by 90 min so
that the bus will arrive after impact of all probes on Venus. At
£-8 days, the bus will be oriented to the final entry attitude,
and at £-2 days, the bus will be despun to 10 rpm. The
scientific instruments will then be checked out, and on Dec. 9,
1978, the bus will arrive at Venus and provide the desired
sampling before its destruction during atmospheric entry at
approximately 110 to 120 km alt.

(a) Exploded view.
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Fig. 5 Small-probe pressure vessel internal arrangement.

prior to entry by two pyrotechnically released despin weights
(yo-yo's).

The pressure vessel module consists of a pressure vessel
internal structure, the internal electronics, and scientific
instruments. The pressure vessel is designed to maintain an
internal atmosphere of xenon at an absolute pressure of 28 to
207 kPa. The two-piece titanium shell is 46 cm in diam and
approximately 0.36 cm thick. It provides electrical access by
three feedthroughs and mechanical access via a 9.5-cm in-
spection port. Three housings on the aft section provide entry
protection for the deployment mechanisms, scientific in-
strument sensors, and optical ports. The deployment
mechanisms (shown deployed) deploy two instruments after
probe entry. Thermal protection for the contents of the shell is
provided by a 61-layer Kapton blanket immediately adjacent
to the pressure vessel wall. Heat capacity and a mounting
surface for the internal electronics is provided by two 39-cm-
diam shelves machined from hot-pressed beryllium block. The
internal arrangement of the small probes is shown in Fig. 5.
There are a total of eight penetrations to the small-probe
pressure vessel and 2.7 m of seals. A summary of small-probe
subsystem characteristics is given in Table 3.

Multiprobe Mission Description!
The multiprobe spacecraft launch will take place during the

period from August 7-24, 1978, the launch window for the
1978 Venus type I launch opportunity. The launch vehicle will

MULTIPROBE
LAUNCH
7 AUG 1978 RELEASE

LARGE PROBE
15NOV

_ ' EARTH AT
EARTH PROBE

^RELEASE' AT ORBITER ENCOUNTER
SMALL PROBES ENCOUNTER
AT 48 rpm
19NOV

fFinal and more detailed mission planning may change some of the
mission parameters described in this and the orbiter mission
description.
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Fig. 6 Mission interplanetary trajectories.

place the multiprobe on the desired type I interplanetary
trajectory as shown in Fig. 6 after a 12- to 18-min coast
period in a 167-km Earth parking orbit. During the launch
phase, spacecraft engineering telemetry will be transmitted
from the forward omni antenna. Immediately prior to
separation, the Centaur will orient the spacecraft to a normal -
to-the-ecliptic attitude, with the positive spin axis in the
direction of the South ecliptic pole. The separation switches
will initiate a command sequence stored in the command
processor memory which results in spacecraft spinup to
approximately 15 rpm. It is expected that ground station
acquisition, at Canberra, will occur within 4 hr after launch.
Within the first few days, the jets will be calibrated in
preparation for the first trajectory correction maneuver at
L + 5 days. This maneuver requires a velocity correction of up
to 12.1 m/sec to correct launch vehicle injection errors. The
maneuver will be performed in either a normal-to-the-ecliptic
attitude or, after a precession around the sunline, to an at-
titude that allows use of axial jets. The selection will depend
upon which mode minimizes propellant usage. Subsequent
maneuvers, if required, will be performed at L + 20 days and
£"-34 days to correct execution errors resulting from the
preceding maneuvers. During transit to Venus, telemetry will
be transmitted from the forward omni antenna. The com-
mand and control of the multiprobe normally will be exer-
cised by utilizing the DSN 26-m network. During maneuver
periods and probe checkouts starting at L + 60 days, the 64-m
antennas will be used.

At approximately £-28 days, the spacecraft spin axis will
be precessed to an attitude in the ecliptic plane so that the
medium-gain horn can be used for communications. The large
probe is separated from the multiprobe at £-24 days. The
release attitude is selected so that the probe will enter the
atmosphere with a near-zero angle of attack. Immediately
after release, the spin axis orientation will be precessed to the
small-probe targeting attitude to allow use of the medium-
gain horn. At £-23 days, the multiprobe will be spun up to
48.5 rpm, and a pulsed radial jet maneuver will be performed
to effect a velocity correction of 5.1 m/sec to achieve the
desired small-probe targeting. The three probes will be
released at £-20 days. The 48.5-rpm spin rate will provide
tangential velocity at separation sufficient to achieve the
desired target points. Since the sun will be only 17 deg
removed from the positive spin axis, the bus can only remain
in the probe release attitude a total of 4 hr. Immediately after
small-probe release, the spin axis will be precessed to an at-
titude that allows use of the medium-gain horn and provides a
sun angle of 40 deg. At £-18 days, a velocity correction
maneuver of 19.1 m/sec will move the trajectory aim point to
that desired for bus entry and slow the arrival by 90 min so
that the bus will arrive after impact of all probes on Venus. At
£-8 days, the bus will be oriented to the final entry attitude,
and at £-2 days, the bus will be despun to 10 rpm. The
scientific instruments will then be checked out, and on Dec. 9,
1978, the bus will arrive at Venus and provide the desired
sampling before its destruction during atmospheric entry at
approximately 110 to 120 km alt.

(b) Internal view.

Figure 13: Pioneer Venus Small Probe. [73]

The entry trajectory reconstruction process presented in reference [86] for the

Pioneer Venus probes evolved from simulation studies and error analysis results. Ini-

tially two types of methods were considered. These methods differ principally in the

manner by which spacecraft state predictions were obtained. One method, termed

the “conventional method,” obtained a state prediction by integrating the computed
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forces based on an a priori atmospheric and aerodynamic model. The conventional

method employed a Bayesian batch estimator. [87, 86] In the other method, referred

to as the “deterministic method,” the state predictions were obtained by integrating

the measured accelerations from some predetermined set of initial conditions. A form

of the deterministic method [303] was successfully employed by the Viking Project

to reconstruct the two Viking lander entries through the Martian atmosphere. [86]

References [303] and [230] utilize Kalman filtering algorithms, and the same algorithm

was employed for the Pioneer Venus probes in the deterministic method. [86] Similar

options for trajectory reconstruction are discussed in references [301, 302, 303, 230].

Vega The Vega 1 and 2 missions flew by Venus on their way to an encounter with

Halley’s Comet in 1986. At Venus, each Vega spacecraft deployed a lander inside

a spherical aeroshell (see Figure 14). Each lander deployed a balloon that drifted

near an altitude of 53.6 km. [232] The balloons and landers recorded temperature

and pressure data. The data from the landers were used to construct atmospheric

profiles of temperature, pressure, and density. [59, 169] Atmospheric density profiles

calculated using the ideal gas equation and from accelerometer measurements were

in good agreement with each other. [169] Vertical wind speed profiles were also

constructed from Doppler measurements [153], and a reference model for minimum,

mean, and maximum zonal winds was created from the data [190]. No mention is

made of data filtering, so it is presumed that direct integration was used with the

accelerometer measurements. However, some data filtering of data reduction may

have been used with the Doppler tracking data.
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Fig. 1. Re-entry vehicle. Main characteristics: duration of autonomous flight after separation from fly-by 
vehicle, ~2  days; velocity of entry in atmosphere, ~ I l km/s; maximum acceleration at entry, ~210 g; 

duration of flight in atmosphere up to opening of thermal protection shell, ~ 1 rain. 
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3. RE-ENTRY, LANDING AND 
CRUISING PROGRAMS 

The profile of descent (Fig. 7) includes the follow- 
ing stages: 

Oaerodynamic  braking of the re-entry vehicle in the 
upper layers of the atmosphere, 
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Indicator of phase Hygrometer 
transitions 

~ "  Landing device Optical aerosol 
anatyser 

At the surface: Temperature ~ 500°C, Pressure N 100 kg/cm z 

Fig. 2. Lander. Main characteristics: beginning of scientific measurements at the altitude of 93 km; 
duration of descent up to surface impact, 65 min; velocity at surface, 8 m/s; coordinates of landing site, 
latitude 7 °, longitude 180°; mode of scientific measurements on surface, with cyclicity of 7 min; mass of 

Lander, 750 kg; mass of scientific equipment, 117 kg. 

Figure 14: Vega entry vehicle. The lander is contained
inside the spherical aeroshell. [160]
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Table 6: Trajectory reconstruction methods and atmo-
spheric information obtained from several robotic missions
performing entry at Venus.

Pioneer Venus Pioneer Venus
Venerab Large Probed Small Probesf Vegag

Trajectory Reconstruction Method
Radar Tracking X X
Direct Integrationa Xc X
Kalman Filter Xe X

Atmosphere Reconstruction
Density Profile X X X X
Pressure Profile X X X X
Temperature Profile X X X X
Winds X X X X

aIf accelerometer data was available for trajectory reconstruction and extended Kalman
filtering is not specifically mentioned, it is assumed that direct integration was the method used
for trajectory reconstruction.

bReferences [155, 147, 316, 19, 18, 20, 153].
cApplying filtering to the reconstruction of the Venera–lander trajectories is discussed in

reference [21]. However, reference [21] was published over a year after the last Venera–lander
(Venera 14) was launched (November 4, 1981), so it is not clear that filtering was later applied to
the reconstruction of the Venera trajectories.

dReferences [87, 246, 247].
eThe entry trajectory reconstruction process presented in reference [86] for the Pioneer

Venus probes evolved from simulation studies and error analysis results. Initially two types of
methods were considered. These methods differ principally in the manner by which spacecraft
state predictions were obtained. One method, termed the “conventional method,” obtained a
state prediction by integrating the computed forces based on an textita priori atmospheric and
aerodynamic model. The conventional method employed a Bayesian batch estimator. [87, 86] In
the other method, referred to as the “deterministic method,” the state predictions were obtained by
integrating the measured accelerations from some predetermined set of initial conditions. A form of
the deterministic method [303] was successfully employed by the Viking Project to reconstruct the
two Viking lander entries through the Martian atmosphere. [86] References [303] and [230] utilize
Kalman filtering algorithms, the same algorithm was employed for the Pioneer Venus probes in
the deterministic method. [86]

f References [87, 246, 247].
gReferences [160, 59, 153, 169].
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2.2.2 Earth-return Missions

Genesis and Stardust The Genesis and Stardust spacecraft were not equipped

with onboard sensor data for a traditional trajectory reconstruction. Instead, a best

estimated trajectory was calculated using the final navigation state vector at entry

interface and tracking data from the UTTR tracking stations. Atmospheric density

and wind profiles were obtained from balloon data prior to entry.8 [69, 68]

III. Earth Return Overview

The Genesis event timeline for final Earth approach is shown in
Fig. 4, which highlights the trajectory correction maneuvers (TCM)
that were baselined for attaining the proper entry conditions.
Williams et al. [1] provide an overview of the entire Earth return
strategy showing all of the required TCMs. Before TCM-10, which
occurred at entry (E) minus 10 days, the Genesis return trajectory
was on a path that missed the Earth. Only after TCM-10 was
successfully executed did the trajectory of the SRC become targeted
at the Earth, with placement of the nominal landing location being in
the western portion of UTTR.

Final targeting was accomplished with TCM-11 at E � 2 days,
which shifted the nominal landing location to the desired center of
UTTR. If TCM-11 had not executed or only partially executed, a
contingency maneuver TCM-12 would have been implemented at
E � 1 day to achieve the final desired landing location. At E � 4 h,

the SRC was separated from the main spacecraft, thus starting the
EDL sequence illustrated in Fig. 3. At E � 3:5 h, a TCM was
performed to divert the main spacecraft into an orbit ahead of the
Earth [3]. If TCM-10, 11, and 12 had all been unsuccessful, the
capsule/main spacecraftwould haveflownby theEarth as depicted in
Fig. 4. During mission operations, both TCM-10 and TCM-11
executed successfully, as did the separation and divert maneuvers.
As a result, the desired entry conditions were achieved with high
accuracy as discussed in Sec. IV [4].

IV. Trajectory Simulation

The Genesis atmospheric-entry trajectory is designed to fit within
an envelope of derived requirements and physical constraints based
on the capsule hardware design. As such, for a successful landing, all
entry requirements must be satisfied. Table 1 lists all the EDL
requirements and their specific bounds. Monte Carlo dispersion
analyses, described in subsequent sections, were performed during
the mission operations phase to assess the satisfaction of these
requirements [2], along with those for public safety as described in
detail in [5].

A. Monte Carlo Uncertainty Sources

During the entry, off-nominal conditions may arise that affect the
descent profile. These off-nominal conditions can originate from
numerous sources: capsule mass property measurement uncertain-
ties; separation attitude and attitude rate uncertainties; limited
knowledge of the flight-day atmospheric properties (density and
winds); computational uncertainty with the aerodynamics; and
uncertainties with parachute deployment. In the analysis, an attempt
was made to conservatively quantify and model the degree of
uncertainty in each mission parameter. For this entry, 41 potential
uncertainties were identified. Table 2 captures these uncertainty
sources, respectively, along with their corresponding 3-� variances.
Desai et al. [2] provide an in-depth description of the analysis

Fig. 1 Genesis spacecraft sampling configuration.

Fig. 2 Genesis SRC configuration.

Fig. 3 Nominal Genesis SRC entry sequence.

Fig. 4 Genesis final Earth approach event timeline.

Table 1 EDL requirements and constraints

Requirement Limit

Entry flight-path angle error, deg <� 0:08
Entry velocity, km=s <11:07
Entry attitude, deg <10
Max heat rate,W=cm2 <510
Attitude at max heat rate, deg <10
Max heat load, KJ=cm2 <16:6
Max deceleration, Earth g <40
Drogue chute deployment attitude, deg <30
Drogue chute deployment Mach number >1:1 and <2:3
Main parachute altitude, km >6:7
Landed footprint, km <84
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(a) Genesis. [65]
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Fig. 1 Stardust spacecraft � ight con� guration.

Fig. 2 Stardust SRC con� guration.

Fig. 3 Stardust SRC aerodynamic database.

Trajectory Simulation
The trajectory analysis is performed using the six- and three-

degree-of-freedom (DOF) versions of POST.6 This program has
been utilizedpreviously for similar applications.7¡9 The three-DOF
program (which integrates the translation equations of motion) is
used frombus separationto atmosphericinterface.The six-DOF ver-
sionofPOST (which integratesthe translationaland rotationalequa-
tions of motion) is used from atmospheric interface until parachute
deployment. The three-DOF program is used again from parachute
deployment to landing. The trajectory simulation includes Earth
atmospheric [GRAM-95 (Ref. 10)] and gravitational models, cap-
sule separation and non-instantaneousparachute-deploymentmod-
els, and capsule aerodynamics and mass properties. The validity of
the present approach has been demonstrated recently through com-
parisons between the Mars Path� nder pre� ight predictions of the
� ight dynamics and the � ight data.11

During the entry, off-nominalconditionsmay arise that affect the
descent pro� le. These off-nominal conditions can originate from
numerous sources, such as capsule mass property measurement un-
certainties, separation attitude and attitude rate uncertainties, and
limited knowledge of the � ight-day atmospheric properties (den-
sity, pressure, and winds). Additionally, computational uncertainty
with the aerodynamicanalysis and uncertaintieswith parachute de-
ployment are contributing sources of uncertainty. In this analysis,
an attempt is made to conservatively quantify and model the de-
gree of uncertainty in each mission parameter. For this mission,

Table 1 Exoatmospheric mission uncertainties

Uncertainty 3-¾ Variance

Mass properties
Mass §0.5 kg
c.g. position along spin axis §0.254 cm
c.g. position off spin axis §0.254 cm
Major moment of inertia (Ix x ; Iyy ; Izz ) §20%
Cross products of inertia (Ix y ; Ixz ; Iyz ) §0.015 kg-m2

Postseparation state vector
Position
Velocity

correlated with covariance matrix
producing a 1° of §0.055 deg 1°i D §0.075 deg

Pitch attitude §2.0 deg
Yaw rate §6.0 deg/s
Roll rate C4 rpm, ¡2 rpm

Separation spring-induced velocity
Radial velocity §0.0482 m/s
Cross-track velocity §0.0482 m/s
In-track velocity §0.04 m/s

Table 2 Atmospheric mission uncertainties

Uncertainty 3-¾ Variance

Aerodynamic
Free-molecular aerodynamics

CA §10%
CN ; CY §8%
Cm ; Cn §12%

Hypersonic-continuum aerodynamics
CA §4%
CN ; CY §8%
Cm ; Cn §10%

Supersonic-continuumaerodynamics
CA §10%
CN ; CY §5%
Cm ; Cn §8%

Subsonic-continuumaerodynamics, CA §5%
Hypersonic dynamic stability coef� cients, Cmq , Cnr §0.15
Supersonic dynamic stability coef� cients, Cmq , Cnr §0.15

Atmosphere
Pressure, density, winds: GRAM-95 model 3-¾ Scale factor

Other
Ablation mass §10%
Drogue g-switcha §10%
Drogue deployment timera §1%
Drogue aerodynamics, C a

A §10%
Main chute deployment timera §1%
Main chute aerodynamics, C a

A §15%

aUncertainty sampled using uniform distribution.

41 potential uncertainties were identi� ed. These uncertainties are
grouped into two categories(exoatmosphericand atmospheric) and
are listed in Tables 1 and 2, respectively,along with the correspond-
ing 3-¾ variances. For most of the parameters, a Gaussian distri-
bution is sampled. However, for the center-of-gravity (c.g.) offset
quadrant and parachute-deployment parameters (g-switch, timers,
and aerodynamics), uniformdistributionsare utilized to model their
operating performance.

As will be shown in the results, the successful return of the
cometary samples by the Stardust SRC depends heavily on the
validity of the Monte Carlo analysis. Increased reliance on entry
simulations for mission success places considerable importance on
selecting appropriate uncertainties. As con� dence increases in the
analysisaccuracy,cheaperand/or higherperformanceentry systems
can be selected for future missions.

Results and Discussion
Nominal Mission
Original Entry Sequence

In the original nominal Stardust entry sequence, the SRC enters
the atmosphere with a spin rate of 5 rpm. The spin rate maintains
entry attitude (nominal 0-deg angle of attack) until atmospheric
interface (because the SRC possesses no active control system). As
the SRC descends, it must rely solely on aerodynamic stability in

(b) Stardust. [66]

Figure 15: The Genesis and Stardust sample return cap-
sules.

8Four hours prior to entry for Genesis [69], and two hours prior to entry for Stardust [68].
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Table 7: Trajectory reconstruction methods and atmo-
spheric information obtained from several robotic missions
performing entry at Earth.

PAETb Genesisc Starduste

Trajectory Reconstruction Method
Radar Tracking X Xd Xf

Direct Integrationa X
Kalman Filter

Atmosphere Reconstruction
Density Profile X X X
Pressure Profile X
Temperature Profile X
Winds X X

aIf accelerometer data was available for trajectory reconstruction and
extended Kalman filtering is not specifically mentioned, it is assumed that
direct integration was the method used for trajectory reconstruction.

bPAET was discussed in § 2.1.2.
cReference [69].
dNo onboard sensor data for a traditional trajectory reconstruction was

available from Genesis. Instead, a best estimated trajectory was calculated
using the final navigation state vector at entry interface and tracking data
from the UTTR tracking stations. Atmospheric density and wind profiles were
obtained from balloon data four hours prior to entry. [69]

eReference [68].
f As with Genesis, no onboard sensor data for a traditional trajectory

reconstruction was available from Stardust. Instead, a best estimated trajec-
tory was calculated using the final navigation state vector at entry interface
and tracking data from the UTTR tracking stations. Atmospheric density and
wind profiles were obtained from balloon data two hours prior to entry. [68]

2.2.3 Mars Missions

Mars 3 & Mars 6 Mars 6 (see Figure 16) was one of the Mars–series space-

craft (Mars 1 through 7) launched by the Soviet Union from 1962 to 1973. Mars 1

came within approximately 193,000 km of Mars, but its communication system failed

when it was 106,760,000 km from Earth. Mars 2 and 3 arrived at Mars on Novem-

ber 27, 1971 and December 2, 1971, respectively. Mars 2 crashed on Mars at ap-

proximately 45°S, 302°W. Having entered the atmosphere at too steep of an angle

it crashed into the surface before its parachute system was activated. [203] Mars 3
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achieved the first soft landing on Mars at approximately 45°S, 158°W, but ceased op-

erating after 20 seconds on the surface [183], perhaps because of the violent Martian

dust storm taking place when it landed. [108]

Mars 4, 5, 6, and 7 arrived at Mars in February and March of 1974. Mars 4

arrived first on February 10, 1974. Passing as close as 2200 km altitude, it took

several photographs as it flew by Mars. Mars 5 arrived on February 12, 1974 and was

placed into a highly elliptical orbit around Mars with an eccentricity of 0.74974 and a

periapsis altitude of 5150 km. Mars 7 arrived next on March 9, 1974. Unfortunately,

an on board systems failure caused its lander to fly by Mars at an altitude of 1300 km.

Mars 6 arrived at Mars on March 12, 1974. [189]

The descent velocity of Mars 6 was determined using the Doppler shift in the

signal transmitted to the orbiter up until the descent vehicle reached a speed between

60 m/s and 65 m/s when communication ceased. The relative velocity measurement

was used to determine the maximum deceleration experienced by the descent vehicle.

The analysis of the Doppler shift was performed on Earth using recorded data [16],

and references [222, 152] present further analysis of the Mars 6 transmissions. Refer-

ence [152] includes estimates of the atmospheric temperature, pressure, and density

profiles, as well as a wind profile from 0.2 km to approximately 7.5 km above the

landing site. Accelerometer measurements were also made and used for the trajec-

tory reconstruction. [16] No discussion was found of any data reduction or filtering

techniques used for the reconstruction, so it is presumed that direct integration of the

accelerometer measurements was used to reconstruct the trajectory.
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Fig. 1. T he Mars 6 entry capsule: 1) motor for separating the 
entry capsule; 2) motOr for ejecting the draw parachu tel 3) an­
tennas for communica tion wi th the orbi ter; 4) parachu te con tainer; 
5) radio-altimeter antenna; 6) aerodynamic deceleration cone; 
7) instrumentS and equipment of the automatic control system; 
8) main parachute; 9) the unmanned Martian lander. 

The instrument and parachute container is mounted directly on the upper part of the lander. It contains a 
draw parachute and a main paracbute. a motor for ejeCting the draw parachute and a retro-moror for the soft land· 
ing. the radio-altimeter antennas, the antennas for communication with the orbiter. and some of the scientific 
equipment. 

The unmanned Martian lander is a sealed instrument compartment containing the units of the capSUle Sysl 

(radio-telemetry group, conuol system, and systems for thermal control and power supply). and scientific instru­
ments. Alongside there are the scientific instruments with mechanisms for extending them, antennas of the radio 
complex, and a system for setting up the capsUle in the operating posi tion after landing. 

The lower part of the capsule carries the aerodynamic deceleration con~ whose function is to decrease the 
speed at aunospheric entry and protect the capsule from aerodynamic and heat loads during deceleration. The n 
frame at the base of the cone carnes motors for spin stabiliZing the capsule prior ro aunospheric entry and motl 
for stopping the spin during atmospheric entry. 

The required sequence of operations of the capsule system is provided by a program-time unit. The srructllJ1 
of the aerodynamic cone, the parachutes. and the soft landing motor is chosen to minimize the mass and provide 
reliable opera tion over a wide range of possible conditions encoUD tered in the entry and of characteris tics of the 
Martian armosphere. 

he onboard radio complex of the capsu1~ together with the corresponding equipment on the Mars 6 
orbiter, provide reception and relay to earth of the scientific and telemetry information during tile parachute 
descent. and also information on operation of the onboard systems and the capsule modon during the entire sectiC! 
of the flight from the moment of separation until The landing. 

During the atmospheric descent of the capSUle the following equipment operates: 

a) the temperature and pressure measuring devices. The sensors for pressure P and temp&ature T are dia­
phragm manometers and resistance thermometers. The range of measured temperatures in the descent section is 
from -150 ro + 50·C, with a mean square measurement error of :to 50/0 of full scale. The pressure sensor was desig 
for a measurement range from 0 to 12 mbar, with a mean square error of:l: 50/0 of "the instrument scale in the tern· 
perature range-20 to +50°C; 

b) a mass spectrometer which is carried 10 detennine the chemical composition of the surface layer of the 
atmosphere; 

c) a load-measurement device. consisting of a sensor and a memory unit. The range of load measurement 
+ 32 to - 4 • gees·. The total error in the measurement. of the maXimum load is :l: 1.20/0 of the range of measur 

, 
8 

Figure 16: The Mars 6 entry vehicle. 1) motor for sep-
arating the entry capsule, 2) motor for ejecting the draw
parachute, 3) antennas for communication with the orbiter,
4) parachute container, 5) radio-altimeter antenna, 6) aero-
dynamic deceleration cone, 7) instruments and equipment
of the automatic control system, 8) main parachute, and 9)
the lander. [261]

The Mars 6 descent vehicle made temperature and pressure measurements as it

descended. The temperature measurements were biased due to entry heating, but

the pressure measurements provided a means of estimating atmospheric temperature

during descent. [16] Temperature and pressure profiles from 20 km to 0 km altitude

(above the landing site at 23.9°S, 19.5°W) were constructed. [261]

Mars 6 also carried a mass spectrometer. Measurements were made of atmo-

spheric composition. The mass spectrometer data were stored on board during the

descent and scheduled to be transmitted after landing. However, communications

ceased before the data could be transmitted. The current to the vacuum pump was

transmitted as an engineering parameter, however. The current data showed a steep

increase. It was hypothesized that this indicated the presence of an inert gas which

could not be removed by the pump. [126] Carbon dioxide was hypothesized to make

up no less than 75% of the Martian atmosphere since the pump’s electric current data
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fell around the 35% argon / 65% carbon dioxide calibration curve for the pump. [124]

Viking The Viking missions consisted of two orbiter-lander pairs (see Figure 17).

Viking 1 landed in the Chryse Planitia region at 22.5°N, 48.0°W on July 20, 1976

[259], and Viking 2 landed in the Utopia Planitia region at 47.89°N, 225.86°W on

September 3, 1976 [193]. The Viking landers had a reaction control system [123], and

center of gravity placement was used to trim the Viking aeroshells at an angle of attack

of –11.1° [76]. The landers made measurements of the structure of the atmosphere

during entry and descent using accelerometers, pressure, and temperature sensors

(see Figure 18).

Profiles of atmospheric density, temperature, and pressure were established using

atmospheric deceleration measurements, as well as direct measurements of tempera-

ture and pressure below approximately 20 km altitude. [79, 243, 239, 242, 156, 157]

Kalman filtering was used in the reconstruction process. [121, 79] A mass spec-

trometer measured the physical and chemical properties of the atmosphere of Mars

beginning at an altitude near 200 km. [194] Preliminary data determined the abun-

dance of gases in the Martian atmosphere to be: 95% carbon dioxide, 0.1% to 0.4%

oxygen, 2% to 3% nitrogen, and 1% to 2% argon. [198]

(a) Orbiter. (b) Lander.

Figure 17: The Viking 1 spacecraft. [Image credit:
NSSDC]
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THE VIKING ATMOSPHi 

Description. The Viking acceleratio" 
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Fig. 3. Locations of the atmosphere structure instruments on the Viking entry vehicle and lander. 

388 

The conical forward face of the entry vehicle, called the aeroshell, provides the 
lander with heat protection and stability, and at its trim angle of attack of -11.2°, 
develops aerodynamic lift and drag to fly the prescribed trajectory during the high 
velocity entry. It is jettisoned when the parachute is deployed, to expose the lower 
surface of the lander, the Doppler radar (TDLR) antenna, and the terminal descent 
engines, which are 3 groups of mUltiple small nozzle engines mounted on the lander 

Figure 18: Locations of the Viking atmosphere structure
instruments. [239]

Mars Pathfinder Mars Pathfinder (see Figure 19) was launched on December 4, 1996

and landed on Mars on July 4, 1997. [299] Three scientific instruments collected

data: (1) the Imager for Mars Pathfinder [256], (2) the α–proton x–ray spectrometer

(APXS) [224], and (3) an atmospheric structure investigation / meteorology package

(ASI/MET) [252]. The atmospheric structure investigation / meteorology package
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contained the accelerometers that provided the acceleration data for Pathfinder’s tra-

jectory reconstruction. Low–pass filters in the accelerometer electronics attenuated

signal frequencies above 5 Hz to suppress the effects of noise and spacecraft dynamic

motion. [252] Mars Pathfinder also deployed a small rover named Sojourner, which

carried the α–proton x–ray spectrometer. [106, 105, 285]

Profiles of atmospheric density, temperature, and pressure were constructed, along

with a best estimate trajectory. Best estimate trajectories were constructed by (1)

directly integrating accelerometer data [237, 175, 313, 314], (2) using a linearized

Kalman filter applied to both accelerometer data and radar altimeter data [49], and

(3) using a combination of accelerometer and altimeter measurements using sequential

filtering and smoothing techniques [270, 269].

358 SPENCER ET AL.

Fig. 1 Mars Path� nder EDL sequence of events.

Fig. 2 Path� nder aeroshell dimensions.

Accelerometers
Two sets of threeorthogonallypositionedAllied Signal QA-3000

accelerometerheadseachprovidedthree-axisaccelerationmeasure-
ments during entry. One set of accelerometers was part of the At-
mosphericStructure Investigation/Meteorology(ASI/MET) experi-
ment.The ASI/MET accelerometerswere range switchedduringthe
entry trajectory to provide increased resolution.Dynamic ranges of
16 mg, 800 mg, and 40 g were used. The ASI/MET accelerometers
were aligned parallel to the entry vehicle coordinate system axes.
The second set of accelerometerswas used as the primary input for
the parachute deployment algorithm.2 This set of engineering ac-
celerometers was oriented such that two of the sensor heads were
canted at §45 deg to the entry vehicle Z axis (the longitudinalaxis)
in the Y – Z plane, and the third accelerometerhead was alignedwith
the X axis.

Parachute System
The Path� nder parachute was a modi� ed Viking-heritage disk-

gap-band design, developed by Pioneer Aerospace. The parachute

canopy was made of Dacron®, with Kevlar® suspension lines. The
project requirement for maximum peak dynamic pressure at para-
chute deploymentwas 703 N/m2, although parachutedrop tests had
indicated that dynamic pressures over 800 N/m2 were within the
design capability. The total parachute mass was 17.5 kg.

The stowed parachuteand suspensionlineswere packagedwithin
an overpack, or container,which in turn was inserted into a deploy-
ment canister. Deployment was achieved through use of a mortar
assembly, which was initiated by a pyrotechnic device.

Bridle
Following heatshield release, the lander was deployed below the

backshell along a 20-m bridle. The bridle deployment mechanism
was based on a device that is used for emergencyegress of air crews
from large jet aircraft. The bridle consisted of a rate-limited Kevlar
tether and metallic tape, wound on a centrifugal brake. A triple
bridle was attached to the single bridle at a con� uence point near
the backshell. The triple bridle was connected to the backshell on
the brackets that support the three solid rocket motors used during
terminal descent. The mass of the bridle was 7 kg.

Radar Altimeter
The HoneywellHG8505DAradar altimeterwas activatedfollow-

ing heatshield release. The altimeter maximum range speci� cation
was 1.52 km (5000 ft). The radar altimeter operated in a � rst-return
mode, transmitting a series of noncoherent radar pulses to the sur-
face and clocking the time to the � rst received signal. Altitude data
were provided with 0.3048-m (1-ft) resolution at a frequency of
50 Hz. The mass of the radar altimeter was 1.4 kg.

Rocket-Assisted Deceleration System
The rocket-assisted deceleration (RAD) system was developed

by Thiokol Corporation. Three solid rocket motors, each 85 cm in
length£ 12.7 cm in diameter, were mounted on the backshell. The
rocket motors were ignited simultaneously at a time calculated by
the onboard altimeter-based RAD � ring algorithm. The algorithm
was designed so that the RAD system burn would bring the lander
vertical velocity to zero at a nominal altitude of 13 m above the
ground, with enough impulse left to carry away the backshell and

Figure 19: Dimensions of the Mars Pathfinder Aeroshell.
[269, 103]
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[15] Entry begins at a defined radius from the center of
Mars, which is approximately 128 km above the surface. As
shown in Figure 4, a rapid series of critical events and
activities unfolds over the next six minutes culminating in
the first impact with the surface. Due to the round-trip light
time to Mars of approximately twenty minutes, no control
from Earth is possible, so all of the events are autonomously
controlled within the vehicle. Diagnostic information during
this period is transmitted to Earth using an X-band signal
change every ten seconds, with each change conveying up
to eight bits, as well as the information that can be extracted
from the Doppler shifts observed in the X-band carrier. For
the final portion of the descent, diagnostic information is
also transmitted to the Mars Global Surveyor (MGS) orbiter
using a high-rate, eight kilobit per second UHF link. MGS
is maneuvered to fly over each landing site during the entry,
descent, and landing (EDL) events.
[16] The vehicle enters the Martian atmosphere with an

atmosphere relative velocity of 5400 m/s. The subsequent
stages of EDL are designed to reduce that velocity to zero in
a controlled manner. Four minutes before impact, the entry
vehicle has gone through peak heating and is at peak
deceleration. Two minutes later and two minutes before
impact, the heat shield has completed its job of slowing the
vehicle to about 400 m/s. Given the uncertainty in the a

priori atmospheric density and in the entry flight path angle,
onboard accelerometers are used to determine the vehicle’s
deceleration through the atmosphere and to decide when to
deploy the parachute. At the appropriate derived dynamic
pressure, a supersonic parachute is deployed to decelerate
the vehicle further, and the bottom portion of the heat shield
is separated and drops away. The lander then descends on a
bridle below the backshell. The parachute slows the vehicle
to approximately 75 m/s over the final two minutes of
descent.
[17] A RADAR altimeter locks onto the surface about

35 seconds before impact and provides the measurements
required to decide when to initiate the following events,
which depend on the altitude above the surface and the
descent rate. Eight seconds before impact, airbags are
inflated that completely surround the lander in order to
protect it from the first and subsequent impacts. Two
seconds after airbag inflation, three solid rocket motors
mounted in the backshell are fired to further slow the
vehicle to close to zero velocity relative to the surface at
a target altitude of 15 meters above the surface. The bridle
connecting the lander to the parachute and backshell with
the still-firing rockets is severed to allow those articles to fly
away from the lander. The lander wrapped in its protective
airbags falls the last several meters to the first impact. Due

Figure 3. Diagram illustrating the four major components of the spacecraft (cruise stage, aeroshell,
lander with rover inside, and heatshield).

CRISP ET AL.: MARS EXPLORATION ROVER MISSION ROV 2 - 5

Figure 20: Diagram of the Mars Exploration Rover space-
craft. [53]

Mars Exploration Rovers The Mars Exploration Rover (MER) mission consisted

of two identical spacecraft (see Figure 20): Spirit and Opportunity. The Spirit

(MER A) spacecraft was launched on June 10, 2003. On January 4, 2004, Spirit

landed in Gusev Crater (14.59°S, 175.3°E) on Mars. The Opportunity (MER B)

spacecraft was launched on July 7, 2003. On January 25, 2004, Opportunity landed

in Meridiani Planum (1.98°S, 5.94°W) on Mars. [70]

Spirit and Opportunity’s entry, descent, and landing sequence was similar to that

used for the Mars Pathfinder mission. [269] Each spacecraft decelerated with its

aeroshell and heatshield, then deployed a supersonic parachute, jettisoned its heat-

shield, and used retrorockets to minimize its velocity above the surface of Mars. The

lander was then separated from the backshell and dropped to the surface protected

by airbags (see Figure 21). Once the motion of the lander ceased, the Spirit rover

was deployed to make in situ science measurements.
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Image credit: SPACEREF Image credit: NASA/JPL-Caltech Image credit: NASA/JPL-Caltech

Lander Descent

Heatshield Separation

Parachute Deployment

Cruise Stage Separation

Entry

Cruise

Image credit: NASA Image credit: NASA/JPL-Caltech

Image credit: NASA/JPL-Caltech

Deflation

Airbag Retraction

Radar Ground Acquisition

Airbag Inflation

Bridle Cut

Retrorocket Firing

Stop

Bridle Deployment

Petals Opened

Landing

Bouncing

Image credit: R. Blanchard, “Entry Descent and Landing Trajectory and Atmosphere Reconstruction for the Mars Exploration 
Rovers Missions A and B,” The George Washington University, Performed under NASA-JPL subcontract CCNS20568F, 
April 15, 2008.

Figure 21: Entry, descent, and landing sequence for the
Mars Exploration Rovers. [33]

Each MER spacecraft was equipped with two Litton LN–200S inertial measure-

ment units. One inertial measurement unit was located in the backshell of the space-

craft’s aeroshell, and the other inertial measurement unit was located in the rover.

[53] Both inertial measurement units included 3–axis accelerometers and gyroscopes.

The data obtained by the inertial measurement units has been archived in the NASA

Planetary Data System. [148] The inertial measurement units have a dynamical range

of 80 gn (gn = 9.80665 m
s2

) with a 2.4 mgn, resolution, and noise levels of 1.6 mgn. The

MER inertial measurement units obtained measurements at a frequency of 400 Hz.

This data rate produced more data than the spacecraft could effectively use, so the

inertial measurement unit data was summed yielding measurements at an effective

frequency of 8 Hz. This change in the effective data rate reduced the effective noise

to 300 µgn. [53] In comparison, the effective noise for the Mars Pathfinder mission
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accelerometers was less than 5 mgn [175].

Post–flight analysis of the Mars Exploration Rover inertial measurement units

demonstrated that the y–axis accelerometer was rotated by 0.31528° and the x–axis

accelerometer was rotated by 0.10886° relative to the principle body axes. These

values were determined such that the attitude oscillation was centered on 0° (no

bias in the mean normal acceleration signals) for the oscillations near the parachute

deployment condition. The total rotation of the backshell inertial measurement unit

axes was 1
3
°. [253]

IMU output processing was performed on the spacecraft for all of the 8 Hz mea-

surements. Due to memory limitations on-board the spacecraft, the frequency of

the saved data varied depending on the EDL phase. Some of the transformed data

was transmitted to Mars Global Surveyor during the EDL sequence. The radio link

between Spirit and Mars Global Surveyor was somewhat intermittent due to the rel-

ative motion of the spacecraft and the real–time nature of the data transmission.

The interrupted communication caused some of this data to be lost. Fortunately,

the data returned during entry, descent, and landing and the stored data sent back

after landing are complementary in many cases. Specifically for Spirit, the two data

streams were both at 4 Hz, but on alternating 8 Hz timesteps, which resulted in

an effective 8 Hz data set (minus the data lost over the radio link). [148] Despite

the difficulties in transmitting the inertial measurement unit data, the trajectories

were reconstructed using inertial measurement unit data and profiles of atmospheric

density, temperature, and pressure were constructed. [312]

To construct the pressure and temperature profiles, a boundary condition at ei-

ther the top or bottom of the atmosphere must be used. This boundary condition can

come from a measurement by a temperature or pressure sensor (which the Mars Explo-

ration Rovers did not have), typically at the bottom of the atmosphere. Alternatively

(though more approximate), the pressure at the threshold altitude of the density data
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can be estimated by extrapolating the estimated density profile upward assuming a

constant scale height (H) (i.e. isothermally) to obtain a boundary condition for the

hydrostatic equation at the top of the atmosphere: [250, 243, 247, 245, 175, 312]

pthreshold = (ρgH)threshold (10)

Post–flight reconstruction revealed anomalistic disturbance torques during the

entries of the Mars Exploration Rovers. Due to the accessibility of the remains of

Opportunity’s aeroshell, the Opportunity rover took pictures of its aeroshell on the

surface. These photographs showed that portions of the aeroshell thermal blanket

assembly still remained. [287] This blanket assembly was designed to burn off very

early in the entry. However, the thermal blanket design was carried over from the

Mars Pathfinder mission, which experienced significantly more heating during entry

due to Pathfinder’s higher entry velocity. [64]

Profiles of atmospheric density, temperature, and pressure were constructed, along

with a best estimate trajectory. Best estimate trajectories were constructed by (1)

directly integrating accelerometer data with initial condition modifications to match

altimeter and landing site measurements [33], (2) using a linearized Kalman filter

applied to the accelerometer data [308], and (3) directly integrating accelerometer

data coupled with a Monte Carlo analysis9 to quantify uncertainty [312].10

9Reference [312] assumed: (1) normally distributed uncertainties for the trajectory, (2) uncer-
tainties in the entry state that were the same as Mars Pathfinder’s entry state uncertainties, and
(3) a fixed uncertainty of 0.01 m

s2 for the axial acceleration based on an analysis of pre–entry data.
10Additionally, reference [61] discusses possible methodologies for use in reconstructing the entry,

descent, and landing trajectories of the Mars Exploration Rovers including: least–squares, weighted
least–squares, sequential–batch least–squares, and extended Kalman filtering. However, no later
papers (references [62, 70, 64, 63]) discuss applying these methods as part of the reconstruction.
Reference [62] compares preliminary post-landing reconstruction data such as peak deceleration
and the time of heatshield jettison with the pre–flight predictions. Reference [70] discusses pre–
mission trajectory analysis. Reference [64] also compares preliminary post-landing reconstruction
data such as peak deceleration and the time of heatshield jettison with the pre–flight predictions.
And reference [64] discusses each stage of the Mars Exploration Rovers’ entry, descent, and landing
scenario.
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Mars Phoenix Lander The Mars Phoenix Lander (see Figure 22) was launched

on August 4, 2007 [255] and landed on Mars on May 25, 2008 [67]. Profiles of at-

mospheric density, temperature, and pressure were constructed, along with a best

estimate trajectory by smoothing the inertial measurement unit data using a moving

average and then directly integrating the data. [34, 311]

Figure 22: An artist’s conception of the Mars Phoenix
Lander on the surface of Mars. [Image credit: NASA / JPL]
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Table 8: Trajectory reconstruction methods and atmo-
spheric information obtained from several robotic missions
performing entry at Mars.

Mars Mars
Viking Mars Exploration Phoenix

Mars 6b 1 and 2c Pathfindere Roversf Landerh

Trajectory Reconstruction Method
Radar Tracking X
Direct Integrationa X X X X
Kalman Filter X X X

Atmosphere Reconstruction
Density Profile X X X X X
Pressure Profile X X X X X
Temperature Profile X X X X X
Winds X Xd Xg X

aIf accelerometer data was available for trajectory reconstruction and extended Kalman
filtering is not specifically mentioned, it is assumed that direct integration was the method used
for trajectory reconstruction.

bReferences [16, 152].
cReferences [243, 79].
dParachute phase winds were also reconstructed in reference [241].
eReferences [237, 175, 269, 313, 314, 49].
f References [312, 33, 308].
gAtmospheric wind profiles at the time of the Mars Exploration Rover landings were recon-

structed in reference [286] using data from the Thermal Emission Spectrometer aboard the Mars
Global Surveyor spacecraft.

hReference [34].

2.2.4 Galileo (Jupiter)

The Galileo probe and orbiter were launched by the Space Shuttle Atlantis on Octo-

ber 18, 1989 and arrived in the Jovian system on December 7, 1995. The need for an

entry probe aspect of the Galileo mission to Jupiter arose in part from an inability

to obtain sufficient information by remote sensing to adequately constrain models of

formation and evolution of the outer planets. [318] The Galileo probe entered the at-

mosphere of Jupiter on December 7, 1995 [27], and began directly sampling the Jovian

atmosphere at the 0.42 bar pressure level [318] after the descent module had jetti-

soned the aeroshell (see Figure 23). The probe signal was lost near the 24 bar pressure

level at 61.4 minutes after entry. [318] The data collected by the Galileo probe en-

abled the reconstruction of the trajectory and the atmosphere. Atmospheric profiles
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of density, pressure, and temperature were reconstructed using both accelerometer

data and in situ measurements made during Galileo’s descent on its parachute. [244]

Reference [244] does not discuss any data reduction or filtering, so it is assumed that

direct integration of the accelerometer data was used to reconstruct the trajectory.

Doppler measurements were restricted to the line of sight between the Galileo probe

and orbiter [14] and tracking of the probe carrier frequency by the Very Large Array

[318]. This data allowed the construction of a wind speed profile between the 0.49 bar

and the 24 bar pressure levels. [14, 15]

Figure 23: Aeroshell of the Galileo probe. [Image credit:
NASA]

2.2.5 Huygens (Titan)

The Huygens probe (see Figure 24) was built and operated by the European Space

Agency as part of the Cassini–Huygens international science mission to the Saturnian

system. Cassini–Huygens was launched on October 15, 1997 and entered orbit around

Saturn on July 1, 2004. The Huygens probe separated from the Cassini orbiter on

December 25, 2004, entered Titan’s atmosphere on January 14, 2005, and landed in

the Xanadu region. [163]

The atmosphere was first detected at approximately 1500 km when atmospheric
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drag exceeded the threshold of sensitivity of the accelerometers in Huygens’ atmo-

spheric structure instrument. [95] The data collected by Huygens’ atmospheric struc-

ture instrument [94] allowed the reconstruction of the probe’s trajectory, as well as

density, pressure, and temperature profiles by means of (1) direct integration with

least squares fitting between the entry and descent phases [151, 149, 165, 13] and

(2) Kalman filtering of accelerometer data [1, 277, 279, 150]. A wind profile was

constructed using descent imagery [146] from approximately 55 km altitude to the

surface of Titan. [288] A wind profile was also constructed using Doppler tracking

data [32], and this profile was used to model the spinning, coning, and tilting of

Huygens during descent [74].
320 A.M. Schipper, J.-P. Lebreton / Acta Astronautica 59 (2006) 319 –334

Fig. 1. The Huygens payload sensors accommodation.

instrument (GCMS), the aerosol collector and pyrolyser
(ACP), the Huygens atmospheric structure instrument
(HASI), the doppler wind experiment (DWE), the de-
scent imager and spectral radiometer (DISR) and the
surface science package (SSP). Fig. 1 shows the pay-
load sensors accommodation.

During the last 2 years before the Huygens mission,
a “seventh experiment” has been added, a VLBI exper-
iment using an Earth-based detection of the Huygens
transmitted carrier signal through an elaborate network
of radio telescopes. The interferometric processing of
the detected carrier signal aims for descent trajectory
reconstruction in a complementary manner to one de-
rived from the in situ measurements.

1. Huygens history

1.1. Its place in the ESA science programme

ESA established in the 1980s the Horizon2000 pro-
gramme for its Science activities. Horizon2000 aimed
at using a modest but predictable science budget as dar-

ingly as possible, by defining ambitious missions afford-
able over a large period of time, spanning from 1985 to
2005.

The programme consists of a number of corner-
stone missions and several medium-sized missions, the
latter having more focussed objectives and a smaller
budget envelope. The Huygens–Titan probe is the first
of the medium-sized missions of the Horizon2000
programme. In the early 1990s, the Horizon2000 pro-
gramme was extended into the second decade of the
21st century, through a roadmap called Horizon2000
Plus, extending the ESA science activities to 2015.
Currently, the next 10-year science programme cycle
has been initiated through the cosmic vision roadmap,
the ESA science programme for the period 2016–2025.

1.2. The probe’s development

The Huygens probe has been developed and operated
after substantial scientific, technical and programmatic
planning efforts by American and European scientific,
agency and industrial teams. The mission outline and

Figure 24: Sensor locations on the Huygens probe. [235]
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Table 9: Trajectory reconstruction methods and atmo-
spheric information obtained from several robotic missions
performing entry at celestial bodies beyond the Asteroid
Belt.

Galileob Huygensd

Trajectory Reconstruction Method
Radar Tracking Xc

Direct Integrationa X
Kalman Filter X

Atmosphere Reconstruction
Density Profile X X
Pressure Profile X X
Temperature Profile X X
Winds X X

aIf accelerometer data was available for trajectory recon-
struction and extended Kalman filtering is not specifically men-
tioned, it is assumed that direct integration was the method used
for trajectory reconstruction.

bDensity, pressure, and temperature profiles may be found
in reference [244]. The wind profile may be found in reference [14].

cWhether or not direct integration or Kalman filtering was
used for Galileos trajectory reconstruction is not clear from the
literature. In addition to accelerometer data, Doppler tracking
data from the Very Large Array was used for reconstruction.

dReferences [95, 150, 1]. A wind profile was constructed
using descent imagery in reference [288].
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CHAPTER III

STUDY OBJECTIVES AND METHODS

3.1 Study Objectives

This chapter begins with a discussion of the origins of estimation theory including the

first great advance by Karl Friedrich Gauss [97] for determining the orbits of celestial

bodies. The three branches of estimation are then introduced: (1) smoothing, (2) fil-

tering, and (3) prediction. Some applications of the techniques of estimation to signal

processing are then discussed. The Kalman filter (KF) is discussed in detail with em-

phasis being placed on the extended Kalman filter due to its application to trajectory

reconstruction, as discussed in the previous chapter. An alternative Kalman filter for

possible application to entry, descent, and landing trajectory reconstruction is then

introduced. Then, collocation is discussed along with a formulation for trajectory

reconstruction using collocation, as well as trajectory simulation using collocation.

3.2 Estimation

The origin of estimation theory dates back at least to the time of Kepler [102], if not

to earlier astronomers, and their attempts to “fit” orbits to celestial observations.

However, the analytical tool that was needed to cope with these orbit determination

problems did not appear until Gauss [97, 265] presented his least-squares method.

[180]

In 1809, the German mathematician Johann Karl Friedrich Gauss wrote his classic

treatise Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambien-

tium [97] (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic

Sections). In Theoria Motus, Gauss made the following statement while discussing
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the problem of determining the orbital elements of a celestial body from available

measurement data [264]:

If the astronomical observations and other quantities, on which the com-

putations of orbits is based, were absolutely correct, the elements also,

whether deduced from three or four observations, would be strictly ac-

curate (so far indeed as the motion is supposed to take place exactly

according to the laws of Kepler), and, therefore, if other observations

were used, they might be confirmed, but not corrected. But since all our

measurements and observations are nothing more than approximations to

the truth, the same must be true of all calculations resting upon them,

and the highest aim of all computations made concerning concrete phe-

nomena must be to approximate, as nearly as practicable, to the truth.

But this can be accomplished in no other way than by a suitable com-

bination of more observations than the number absolutely requisite for

the determination of the unknown quantities. This problem can only be

properly undertaken when an approximate knowledge of the orbit has

been already attained, which is afterwards to be corrected so as to satisfy

all the observations in the most accurate manner possible. [97]

The next notable advances in estimation theory came in 1941 from Kolmogorov

[158] and in 1949 from Wiener [309]. Though Wiener’s theory was extended by Zadeh

in 1950 [320], later work was greatly stimulated in large measure by the filter theory

results of Swerling in 1959 [281, 280], Kalman in 19601 and 1961 [143, 144], and

Kalman and Bucy in 1961 [145]. The work of Kalman has made the greatest impact

on estimation theory for both the discrete and continuous time problems. Kalman

(and later, Kalman in collaboration with Bucy) treated the filtering and prediction

1Stratonovich in 1960 also independently obtained the Kalman filter equations. [275, 276, 142]
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problems in detail, and they laid the foundation for further work in smoothing. [180]

The following paragraphs discuss three aspects of estimation: (1) smoothing, (2)

filtering, and (3) prediction. They are included for the reader’s information, so that

they are aware that estimation is broader than the sequential filtering used in this

research. For the trajectory reconstruction work in this research, sequential filtering

is used, as this is useful for both post–processing of data and real–time processing of

data.

Smoothing Smoothing is the process of estimating the state of a system within the

time span of measured data. The estimate of the state is generally based on all the

measurements available. Three types of smoothing are of interest:2

1. In fixed–interval smoothing, the time span of the data is fixed, and the

estimate of the state is sought for specified times within the fixed time interval

of the data. For example, suppose that for some state, measurements span a

10–second period (from 0 seconds to 10 seconds). No new measurements are

made, and an estimate of the state for any time from 0 to 10 seconds is made

using the 10 seconds of data.

2. In fixed–point smoothing, the point in time at which the estimate of the

state is sought is fixed. The accumulation of new data may increase the time

span of the data. For example, suppose that for some state, measurements

are taken every second. Initially the data spanned 10 seconds (from 0 seconds

to 10 seconds). Also, suppose the point in time at which an estimate of the

state is desired is the 5 second point. The first estimate of the state is made

using the initial 10 seconds of data. When the next measurement is taken at

11 seconds, the estimate of the state at the time of 5 seconds will be updated.

2These definitions of the different types of smoothing have been taken from reference [109].
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The estimate of the state at the time of 5 seconds continues to be updated as

new measurements accumulate.

3. In fixed–lag smoothing, estimates of the state are sought at some time that is

a fixed amount (the fixed-lag) from the end of the time span. All the measure-

ments are used to calculate the estimate. As new measurements are accumulated

(i.e. the time span of the measurements increases), the estimates of the state

are computed for times that are still a fixed amount of time from the end of the

time span. For example, suppose that for some state, measurements initially

spanned 10 seconds (from 0 seconds to 10 seconds) with a measurement made

at each second. If the lag is 2 seconds, then the first estimate of the state will

be calculated for the time of 8 seconds. When the first new measurement is

taken one second later, the second estimate will be for the time of 9 seconds

(with 11 seconds of data). The third estimate will be for the time of 10 seconds

(with 12 seconds of data), and so on.

For smoothing, the optimal filter consists of two filters: the forward filter and the

backward filter. [98, 213] The forward filter smooths the data from the initial time

to the time of interest, while the backward filter smooths the data from the end of

the time span to the time of interest. Each filter produces an estimate of the state at

the specified time. Together these filters use all the data to estimate the state of the

system at the specified time. The forward and backward estimates of the state at the

specified time have uncorrelated errors since the process noise and measurement noise

are both assumed to be white noise3. A combination of the forward and backward

estimates (which meets a specified set of conditions defining optimality) yields what

is termed “the optimal estimate” of the state at the specified time. [98]

3White noise is defined to be a stationary random process having a constant spectral density
function. The term “white” is a carryover from optics, where white light is light containing all
visible frequencies. [39]
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Filtering Filtering is the process of estimating the state of a system at the time

of the last measurement made of the system. Filtering is most useful for removing

extraneous noise from a signal.

Prediction Prediction is the process of estimating the state of a system after the

time of the last measurement made of the system. Prediction is most useful when

measurements of a system’s state cannot be made.

3.2.1 The Kalman Filter

Harold Sorenson has asserted “that the Kalman filter represents the most widely

applied and demonstrably useful result to emerge from . . . ‘modern control theory’.”

[266] Put forth in 1960 [143], the Kalman filter is an optimal, recursive filter for linear

systems that does not require the storage of all past data. An update of the state

estimate of a system only requires the previously calculated estimate of the state and

the new measurements. [115] This makes the Kalman filter computationally efficient.

The following paragraphs will describe the Kalman filter4 and setup the discussion of

the nonlinear versions of the Kalman filter.

The State Vector and the Process and Measurement Equations The state

of a system is a vector xk which describes the motion of a system at a specific point

in time. (The subscript k denotes a discrete time point.) Typically, the state xk is

unknown, so we use a set of measurements (or observations) yk to estimate it. Given

an initial state x0, future states can be found using the process equation:

xk+1 = Φk+1,kxk + wk (11)

4This discussion of the Kalman filter is an expanded combination (with more mathematical detail)
of the discussions found in references [116] and [99]. There are lots of ways to derive the Kalman
filter [228, 278] (see, for instance, References [282], [307], [5], [162], [223], and [40]).
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where Φk+1,k is the state transition matrix taking the state xk from time k to time

k + 1. The process noise wk is assumed to be additive, white, and Gaussian, with

zero mean and with a covariance matrix defined by

E[wnw
T
k ] =


Qk n = k

0 n6=k
(12)

The measurements (or observations) yk can be expressed as a function of the state

xk using the measurement equation:

yk = Hkxk + vk (13)

where yk is the measurement at time k and Hk is the measurement matrix. The

measurement noise vk is assumed to be additive, white, and Gaussian, with zero

mean and with a covariance matrix defined by

E[vnv
T
k ] =


Rk n = k

0 n6=k
(14)

In addition, the measurement noise vk is uncorrelated with the process noise wk.

The Kalman filtering problem consists of jointly solving the process and mea-

surement equations for the unknown state in an optimum manner. Suppose that a

measurement yk on a linear dynamical system, described by equations (11) and (13),

has been made at time k. The information contained in the new measurement yk can

be used to update the estimate of the state xk.

The Estimate of the State Let x̂−k denote the a priori estimate of the state (i.e.

the estimate of the state before the measurement was made) that is already available

at time k. With a linear estimator as the objective, we may express the a posteriori

estimate x̂k (i.e. the estimate of the state after the measurement was made) as a
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linear combination of the a priori estimate x̂−k and the new measurement yk as

x̂k = Jkx̂
−
k + Kkyk (15)

where the multiplying matrix factors Jk and Kk are to be determined. Graphically,

the a priori estimate of the state x̂−k and the a posteriori estimate of the state x̂k are

depicted in Figure 25. To find these two matrices, we first define the a priori and a

posteriori state–error vectors (x̃−k and x̃k, respectively) as

x̃−k = xk − x̂−k (16)

x̃k = xk − x̂k (17)

Measurement

A priori estimate (     )
(i.e. the reference value of
the state after propagating
the previous best estimate
to the time of the next

−x̂

Altitude

to the time of the next
measurement)

A posteriori estimate (    )
(i.e. the best estimate of
the state after taking into
account the measurement)

Reference Trajectory

Best Estimate Trajectory

x̂

Time

Figure 25: Graphical depiction of the a priori estimate of
the state, the a posteriori estimate of the state, the reference
trajectory, and the best estimate trajectory.

Second, we solve equation (16) for the a priori state estimate and substitute it

into equation (15). Doing this, we have
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x̂k = Jkx̂
−
k + Kkyk (18a)

= Jk(xk − x̃−k ) + Kkyk (18b)

x̂k = Jkxk − Jkx̃
−
k + Kkyk (18c)

Third, we substitute the measurement equation (equation (13)) into equation (18c)

for the measurement yk giving

x̂k = Jkxk − Jkx̃
−
k + Kkyk (19a)

= Jkxk − Jkx̃
−
k + Kk(Hkxk + vk) (19b)

x̂k = Jkxk + KkHkxk − Jkx̃
−
k + Kkvk (19c)

Fourth, we substitute this expression (equation (19c)) for the a posteriori estimate

of the state x̂k into the a posteriori state–error vector (x̃k as given in equation (17))

giving

x̃k = xk − x̂k (20a)

= xk − (Jkxk + KkHkxk − Jkx̃
−
k + Kkvk) (20b)

= xk − Jkxk −KkHkxk + Jkx̃
−
k −Kkvk (20c)

x̃k = xk(I− Jk −KkHk) + Jkx̃
−
k −Kkvk (20d)

Fifth, we examine the expectation of the inner product of the a posteriori state–

error vector x̃k and the measurements yTi : E[x̃ky
T
i ]. We know, by the principle of

orthogonality (given below), that

E[x̃ky
T
i ] = 0 for i = 1, 2, ..., k − 1 (21)

since the a posteriori state–error vector x̃k is defined as the difference between the
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state xk and the a posteriori state estimate x̂k, and the a posteriori state estimate

x̂k is contained in the space spanned by the measurements (y1,y2, ...,yk). Therefore,

the a posteriori state–error vector x̃k must be orthogonal to the space spanned by

the measurements (y1,y2, ...,yi for i = 1, 2, ..., k − 1), and so the inner product of

the a posteriori state–error vector x̃k and the measurements (y1,y2, ...,yi for i =

1, 2, ..., k − 1) is zero.

Principle of Orthogonality Let the stochastic processes

{xk} and {yk} be of zero means, that is

E[xk] = 0 for all k

E[yk] = 0 for all k

If either

1. the stochastic process {xk} and {yk} are jointly Gaus-

sian, or

2. the optimal estimate x̂k is restricted to be a linear func-

tion of the measurements, and the cost function is the

mean–square error

then the optimum estimate x̂k, given the measurements

y1,y2, ...,yk, is the orthogonal projection of xk onto the space

spanned by the measurements.

Sixth, expanding the expectation given in equation (21) by substituting in equa-

tion (20d) for the a posteriori state–error vector x̃k, we have
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E[x̃ky
T
i ] = E[(xk(I− Jk −KkHk) + Jkx̃

−
k −Kkvk)y

T
i ] (22a)

0 = E[xky
T
i (I− Jk −KkHk) + Jkx̃

−
k yTi −Kkvky

T
i ] (22b)

0 = E[xky
T
i (I− Jk −KkHk)] + E[Jkx̃

−
k yTi ]− E[Kkvky

T
i ] (22c)

0 = (I− Jk −KkHk)E[xky
T
i ] + JkE[x̃−k yTi ]−KkE[vky

T
i ] (22d)

Now, we substitute in the measurement equation (equation (13)) into the last term

of equation (22d) for the measurement yi giving

0 = (I− Jk −KkHk)E[xky
T
i ] + JkE[x̃−k yTi ]−KkE[vky

T
i ] (23a)

0 = (I− Jk −KkHk)E[xky
T
i ] + JkE[x̃−k yTi ]−KkE[vk(Hixi + vi)

T ] (23b)

0 = (I− Jk −KkHk)E[xky
T
i ] + JkE[x̃−k yTi ]−KkE[vkHix

T
i ] + KkE[vkv

T
i ] (23c)

Examining the last term in equation (23c), we note that E[vkv
T
i ] = 0 by equation (14),

which reduces equation (23c) to

0 = (I− Jk −KkHk)E[xky
T
i ] + JkE[x̃−k yTi ]−KkE[vkHix

T
i ] (24)

Examining the last term in equation (24), we note that there is no expectation that

the meaurement noise is correlated with the process, so E[vkHix
T
i ] = 0, and this

reduces equation (24) to

0 = (I− Jk −KkHk)E[xky
T
i ] + JkE[x̃−k yTi ] (25)

By invoking the principle of orthogonality again as we did for equation (21), the

expectation in the last term of equation (25) becomes equal to zero: E[x̃−k yTi ] = 0,

and we have

0 = (I− Jk −KkHk)E[xky
T
i ] (26)
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Since equation (26) is true by orthogonality and E[xky
T
i ] 6= 0, the multiplying matrix

factors Jk and Kk must satisfy the condition

0 = I− Jk −KkHk (27)

Hence, we may express Jk as a function of Kk

Jk = I−KkHk (28)

and by substituting this condition on the multiplying matrix factors into equation (15),

we now have for the a posteriori estimate of the state

x̂k = Jkx̂
−
k + Kkyk (29a)

= (I−KkHk)x̂
−
k + Kkyk (29b)

= x̂−k −KkHkx̂
−
k + Kkyk (29c)

x̂k = x̂−k + Kkyk −KkHkx̂
−
k (29d)

which we finally reduce to

x̂k = x̂−k + Kk(yk −Hkx̂
−
k ) (30)

and we call the multiplying matrix factor Kk the Kalman gain.

The Kalman Gain We would like to define the Kalman gain Kk such that the

trace of the error covariance matrix Pk is minimized. This is equivalent to minimizing

the length of the state–error vector. To do this, we must first obtain an expression for

the error covariance matrix Pk, so we can minimize its trace. The error covariance

matrix Pk is defined as

Pk = E[x̃kx̃
T
k ] (31)
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We know the definition of the a posteriori state–error vector x̃k from equation (17).

However, in order to define an expression for the error covariance matrix Pk, it is

easier to start with equation (20d) and substitute in the expression for the multiplying

matrix factor Jk from equation (28). Doing this, we have

x̃k = xk(I− Jk −KkHk) + Jkx̃
−
k −Kkvk (32a)

= xk(I− (I−KkHk)−KkHk) + (I−KkHk)x̃
−
k −Kkvk (32b)

= xk(I− I + KkHk −KkHk) + (I−KkHk)x̃
−
k −Kkvk (32c)

= xk · 0 + (I−KkHk)x̃
−
k −Kkvk (32d)

x̃k = (I−KkHk)x̃
−
k −Kkvk (32e)

Substituting equation (32e) into the error covariance matrix Pk definition (equa-

tion (31)), we have

Pk = E[x̃kx̃
T
k ] (33a)

= E[{(I−KkHk)x̃
−
k −Kkvk}{(I−KkHk)x̃

−
k −Kkvk}T ] (33b)

= E[(I−KkHk)x̃
−
k (x̃−k )T (I−KkHk)

T

−Kkvk(x̃
−
k )T (I−KkHk)

T

− (I−KkHk)x̃
−
k vTk KT

k

+ Kkvkv
T
k KT

k ]

(33c)

= (I−KkHk)·E[x̃−k (x̃−k )T ]·(I−KkHk)
T

−Kk·E[vk(x̃
−
k )T ]·(I−KkHk)

T

− (I−KkHk)·E[x̃−k vTk ]·KT
k

+ Kk·E[vkv
T
k ]·KT

k

(33d)
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By definition

P−k = E
[
x̃−k (x̃−k )T

]
(34)

and from equation (14), we know

E
[
vkv

T
k

]
= Rk (35)

Additionally, we have no expectation that the measurement noise vk is correlated

with the a priori state–error vector x̃−k , so

E
[
x̃−k vTk

]
= 0 (36a)

E
[
vk(x̃−k )T

]
= 0 (36b)

Using equations (34), (35), (36a), and (36b), we have for the error covariance matrix

Pk

Pk = E
[
x̃kx̃

T
k

]
(37a)

= (I−KkHk)·E[x̃−k (x̃−k )T ]·(I−KkHk)
T

−Kk·E[vk(x̃
−
k )T ]·(I−KkHk)

T

− (I−KkHk)·E[x̃−k vTk ]·KT
k

+ Kk·E[vkv
T
k ]·KT

k

(37b)

= (I−KkHk) ·P−k · (I−KkHk)
T

−Kk · 0 · (I−KkHk)
T

− (I−KkHk) · 0 ·KT
k

+ Kk ·Rk ·KT
k

(37c)

Pk = (I−KkHk)P
−
k (I−KkHk)

T + KkRkK
T
k (37d)

To minimize the trace of the error covariance matrix Pk, we must take the partial
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derivative of the trace of the error covariance matrix Pk with respect to the Kalman

gain Kk, equate it to zero, and solve for the Kalman gain Kk.

∂

∂Kk

[trace(Pk)] = 0 (38a)

∂

∂Kk

[trace(Pk)] =
∂

∂Kk

[trace{(I−KkHk)P
−
k (I−KkHk)

T + KkRkK
T
k }] (38b)

0 = 2(I−KkHk)P
−
k

∂

∂Kk

[
trace

{
(I−KkHk)

T
}]

+ 2KkRk (38c)

0 = −2(I−KkHk)P
−
k HT

k + 2KkRk (38d)

0 = −(I−KkHk)P
−
k HT

k + KkRk (38e)

0 = −P−k HT
k + KkHkP

−
k HT

k + KkRk (38f)

P−k HT
k = KkHkP

−
k HT

k + KkRk (38g)

P−k HT
k = Kk(HkP

−
k HT

k + Rk) (38h)

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (38i)

The value of the Kalman gain Kk given by equation (38i) minimizes the trace of the

error covariance matrix Pk, which is equivalent to minimizing the length of the a

posteriori state–error vector x̃k.

The Error Covariance Update We can use the optimal Kalman gain Kk given

by equation (38i) along with equation (37d) to obtain a simplified expression for the

error covariance matrix Pk. To do this, we first show that the KkRkKk term in

equation (37d) is equivalent to (I−KkHk)P
−
k (KkHk)

T . Beginning with the optimal

Kalman gain Kk from equation (38i), we post–multiply by (HkP
−
k HT

k + Rk)K
T
k , [5]

and we have
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Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (39a)

Kk(HkP
−
k HT

k + Rk)K
T
k = P−k HT

k (HkP
−
k HT

k + Rk)
−1(HkP

−
k HT

k + Rk)K
T
k

(39b)

KkHkP
−
k HT

kKT
k + KkRkKk = P−k HT

kKT
k (39c)

KkRkKk = −KkHkP
−
k HT

kKT
k + P−k HT

kKT
k (39d)

= P−k HT
kKT

k −KkHkP
−
k HT

kKT
k (39e)

= P−k (KkHk)
T −KkHkP

−
k (KkHk)

T (39f)

KkRkKk = (I−KkHk)P
−
k (KkHk)

T (39g)

Now, expanding equation (37d) and substituting in equation (39g), we have

Pk = (I−KkHk)P
−
k (I−KkHk)

T + KkRkK
T
k (40a)

= (I−KkHk)P
−
k − (I−KkHk)P

−
k (KkHk)

T + KkRkK
T
k (40b)

= (I−KkHk)P
−
k − (I−KkHk)P

−
k (KkHk)

T︸ ︷︷ ︸
KkRkKT

k

+KkRkK
T
k (40c)

= (I−KkHk)P
−
k −KkRkK

T
k + KkRkK

T
k (40d)

Pk = (I−KkHk)P
−
k (40e)

60



Equation (37d) is called the “Joseph form” [110, 43] of the error covariance ma-

trix Pk. It generally has better numerical behavior for maintaining both symmetry

and positive semi–definiteness than the simpler form given by equation (40e). For

example, suppose there is a large uncertainty in the initial estimate. In this case,

the a priori error covariance matrix P−k starts out with large values along the main

diagonal. If this large initial uncertainty is then followed by a precise measurement

at the initial time step, the a posteriori error covariance matrix Pk calculated us-

ing the simplified form: Pk = (I −KkHkP
−
k ) approximates the indeterminate form:

0 × ∞. The natural symmetry of the Joseph form (equation (37d)), however, has

better numerical behavior in such cases.

Propagation of the State Estimate and the Error Covariance In most of

the preceding paragraphs, we have discussed how to use measurements to update the

estimates of the state and the error covariance. To propagate the state estimate and

the error covariance in time to the next measurement requires the use of the state

transition matrix.

x̂−k = Φk,k−1x̂k−1 (41)

P−k = Φk,k−1Pk−1Φ
T
k,k−1 + Qk−1 (42)

Where

Φk,k−1 = I + F∆t (43)

F =
∂f

∂x x=xk−1

(44)

and F is the Jacobian of the system and ∆t is the time between the k–th and (k−1)–th

measurements.[321] Alternatively, the error covariance matrix P can be propagated

using the expression for its time derivative below. [100]
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Ṗk = Fk−1Pk−1 + Pk−1F
T
k−1 + Qk−1 (45)

A summary of the Kalman filter is given in Table 10.

Table 10: Summary of the Kalman filter.

State space model:

xk+1 = Φk+1,kxk + wk (46)
yk = Hkxk + vk (47)

where wk and vk are independent, zero-mean, Gaussian noise processes
with covariance matrices Qk and Rk, respectively.

Initialization: For k = 0, set x̂0 and P0 to their initial values.

Computation: For k = 1, 2, ..., compute:

State estimate propagation

x̂−k = Φk,k−1x̂k−1 (48)

State transition matrix

Φk,k−1 = I + F∆t (49)

Error covariance propagation

P−k = Φk,k−1Pk−1ΦT
k,k−1 + Qk−1 (50)

Kalman gain matrix

Kk = P−k HT
k (HkP−k HT

k + Rk)−1 (51)

State estimate update

x̂k = x̂−k + Kk(yk −Hkx̂−k ) (52)

Error covariance update

Pk = (I−KkHk)P−k (I−KkHk)T + KkRkKT
k (Joseph form) or (53)

Pk = (I−KkHk)P−k (simplified form) (54)

Applications The Kalman filter and the extended Kalman filter (discussed below)

have been used in many applications for filtering signals and data. Many real-time

processing applications such as radar tracking [56] (and specifically maneuvering tar-

get trajectories [31, 166]), flow rate measurements [292], on-line failure detection in

nuclear power plant instrumentation [291], filtering electrocardiogram signals [233],
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power station control systems [304], ocean modeling [80, 81], and many, many more

in virtually all engineering disciplines. These applications have all used Kalman fil-

tering because rapid estimates are needed, and the Kalman filter does not require

the storage of past data. This is especially useful for applications where a continuous

stream of data is arriving in real-time.

Additional applications with more fixed data streams include the orbit determi-

nation of Voyager at Jupiter [45], the estimation and prediction of immeasurable

variables [174], bathymetric and oceanographic applications [35], and the trajectory

reconstruction of spacecraft atmospheric flight. The application of the Kalman filter

to trajectory reconstruction occurs via the extended Kalman filter.

3.2.2 The Extended Kalman Filter

While originally formulated for linear systems, the usefulness of the Kalman filter has

been extended to nonlinear systems in the form of the extended Kalman filter (EKF).5

The extension to nonlinear systems is possible because the Kalman filter is formulated

in terms of difference equations for discrete time systems. [117] The extended Kalman

filter has been widely used for trajectory reconstruction. The following text describes

the extended Kalman filter and discusses some of its applications.

Three Trajectories Consider the trajectory of a vehicle. There is the true tra-

jectory, which is not knowable since all uncertainty in the motion of the spacecraft

cannot be eliminated. Without incorporating measurements of the vehicle’s motion,

the best approximation of the true trajectory is the reference trajectory. The ref-

erence trajectory is created by modeling the motion of the spacecraft. Finally, the

best estimate of the trajectory can be determined by applying the extended Kalman

filter to the reference trajectory and measurements of the vehicle’s motion. The true,

5The essential idea of the extended Kalman filter was proposed by Stanley F. Schmidt, and it
has been called the “Kalman–Schmidt” filter. [111]
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reference, and best estimate trajectories are related as shown in Figure 26. The as-

sumed initial state of the vehicle is different from its true initial state because of

uncertainty in the initial position and initial velocity of the vehicle. Note that the

reference trajectory and the best estimate trajectory begin at the same initial state.

MeasurementAltitude

A priori estimate (     )
(i.e. the reference value of
the state after propagating

x̂

t e state a te p opagat g
the previous best estimate
to the time of the next
measurement)

A posteriori estimate (    )
(i.e. the best estimate of
the state after taking into

x̂

g
account the measurement)

Reference Trajectory

True Trajectory
Time

Figure 26: The true, reference, and best estimate trajec-
tories. [187]

State Space Model The state of a system is governed by a set of nonlinear differ-

ential equations [322] of the form

ẋtrue = f(xtrue) + w (55)

where xtrue is the state vector of the system, ẋtrue is its derivative, and f(xtrue) is a

nonlinear function of those states. The process noise w is assumed to be additive,

white, and Gaussian, with zero mean and with a covariance matrix Q.

Similarly, the measurements (or observations) ytrue can be expressed as a nonlinear

function of the state xtrue [322] using an equation of the form

ytrue = h(xtrue) + v (56)
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where ytrue is the measurement at time k and h(xtrue) is a nonlinear function relating

the states to the measurements. The measurement noise v is assumed to be additive,

white, and Gaussian, with zero mean and with a covariance matrix R.

The problem given by equations (55) and (56) represents a nonlinear estimation

problem. However, if a reference trajectory exists that is sufficiently close to the true

trajectory, then the deviations between the reference and true trajectories may be well

approximated by a linear model obtained by truncating a Taylor series expansion of

the deviations. [283, 24]

The state deviation vector x and the measurement deviation vector y are defined

by

x = xtrue − xreference (57a)

y = ytrue − yreference (57b)

Neglecting the noise term, when equation (55) is expanded about the reference tra-

jectory using a Taylor series, we have

ẋtrue = f(xtrue) (58a)

f(xtrue) = f(xreference) +

(
∂f

∂x

)
reference

(xtrue − xreference) + . . .

(58b)

f(xtrue) = f(xreference) +

(
∂f

∂x

)
reference

(xtrue − xreference) (58c)

f(xtrue)− f(xreference) =

(
∂f

∂x

)
reference

(xtrue − xreference) (58d)

ẋtrue − ẋreference =

(
∂f

∂x

)
reference

(xtrue − xreference) (58e)

ẋ =

(
∂f

∂x

)
reference︸ ︷︷ ︸
4
=F

x (58f)

ẋ = Fx (58g)
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where the matrix F is called the Jacobian matrix of f . [9]

A similar process can be followed for the measurement equation. Once again

neglecting the noise term, when equation (56) is expanded about the reference mea-

surement using a Taylor series, we have

ytrue = h(xtrue) (59a)

h(xtrue) = h(xreference) +

(
∂h

∂x

)
reference

(xtrue − xreference) + . . .

(59b)

h(xtrue) = h(xreference) +

(
∂h

∂x

)
reference

(xtrue − xreference) (59c)

h(xtrue)− h(xreference) =

(
∂h

∂x

)
reference

(xtrue − xreference) (59d)

ytrue − yreference =

(
∂h

∂x

)
reference

(xtrue − xreference) (59e)

y =

(
∂h

∂x

)
reference︸ ︷︷ ︸
4
=H

x (59f)

y = Hx (59g)

Note that equation (58g) takes the form of a homogeneous linear system of differential

equations. [78] The solution of this homogeneous linear system takes the form

xk+1 = Φk+1,kxk (60)

Including the noise terms, the solution to equation (58g) and equation (59g) to-

gether form the same problem we encountered with the linear Kalman filter (see

equation (11) on page 50 and equation (13) on page 51).

xk+1 = Φk+1,kxk + wk (61a)

yk = Hkxk + vk (61b)

Where
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Φk+1,k = I + F∆t (62)

F =
∂f

∂x x=xk

(63)

and F is the Jacobian of the system and ∆t is the time between the (k + 1)–th

and k–th measurements.[321] Note that this is where the linearization comes into the

extended Kalman filter, as the full expression for the state transition matrix Φ shown

below has been truncated to only include the linear terms.

Φk+1,k = I + F∆t+
F 2t2

2!
+
F 3t3

3!
+ . . . (64)

Hence, by using the deviations from a reference trajectory, we are able to linearize

the problem given by equations (55) and (56). This allows us to extend the Kalman

filter to nonlinear problems. A summary of the extended Kalman filter is given in

Table 11 on page 68. The parameters for the extended Kalman filter are given in

Appendix C.
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Table 11: Summary of the extended Kalman filter.

State space model:

xk+1 = Φk+1,kxk + wk (65)
yk = Hkxk + vk (66)

where wk and vk are independent, zero-mean, Gaussian noise processes
with covariance matrices Qk and Rk, respectively.

Definitions: For k = 1, 2, ..., compute:

F =
∂f
∂x x=xk

(67)

H =
∂hk

∂xk x=x−k

(68)

Initialization: For k = 0, set x̂0 and P0 to their initial values.

Computation: For k = 1, 2, ..., compute:

State estimate propagation

˙̂xk = fk(x̂k) (69)

State transition matrix

Φk,k−1 = I + F∆t (70)

Error covariance propagation

P−k = Φk,k−1Pk−1ΦT
k,k−1 + Qk−1 (71)

Kalman gain matrix

Kk = P−k HT
k (HkP−k HT

k + Rk)−1 (72)

State estimate update

x̂k = x̂−k + Kk(yk −Hkx̂−k ) (73)

Error covariance update

Pk = (I−KkHk)P−k (I−KkHk)T + KkRkKT
k (Joseph form) or (74)

Pk = (I−KkHk)P−k (simplified form) (75)
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3.3 Methods Possibly Applicable to Entry, Descent, and
Landing Trajectory Reconstruction

Kalman filters are a type of dynamic Bayesian6 network. [229] Bayesian data anal-

ysis has been used successfully in fault diagnosis for systems in steady–state [167],

and it has been applied successfully to dynamic systems in the form of the Kalman

filter as discussed earlier in § 3.2.1 on page 62. There exist many other variations

of the Kalman filter besides the original and extended forms discussed previously.

The following paragraphs will discuss some of these variations, as well as some other

approaches to filtering and what has been called, by Russell and Norvig [229], “prob-

abilistic reasoning over time”.

After 1960, Kalman’s original linear filter [143] (see § 3.2.1) brought forth many

variations, the most notable of which is the extended Kalman filter (see § 3.2.2). Other

variations include: the linearized Kalman filter [188], the iterated extended Kalman

filter [212], second–order extended Kalman filter, singular evolutive extended Kalman

filter [208, 207, 206], the ensemble Kalman filter [82, 83, 168], and the class of sigma–

point Kalman filters. Sigma–point Kalman filters are the collective name used for

those Kalman filters which use samples from the probability distribution of the state

(i.e. sigma–points) to obtain an update of the state. [170, 171, 172, 217, 218] They

include the unscented Kalman filter [141], the central difference filter [234], and the

divided difference filter [195, 125].

Most of the variations of the Kalman filter are attempts to “extend” the capa-

bilities of Kalman’s original linear filter to nonlinear problems. Nevertheless, the

extended Kalman filter has achieved great success when applied to nonlinear prob-

lems. Improvement was still possible, though, leading others to alter it and make

further refinements.

6“Bayesian” after Thomas Bayes (1702–1761) who was a Presbyterian minister and mathemati-
cian. He “is best known for Bayes rule for computing the a posteriori probability of an event” (italics
added) [298] in An Essay towards Solving a Problem in the Doctrine of Chances. [25]
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One thing difficult for the “extended” Kalman filters to overcome, however, was

the linearization of the nonlinear problems before they could be used with the “ex-

tended” Kalman filters. In 1995, Julier, Uhlmann, and Durrant–Whyte gave a new

perspective with their unscented transformation [141]. The unscented transforma-

tion was the first truly revolutionary change in applying Kalman filters to nonlin-

ear problems. The unscented Kalman filter has seen wide use within the aerospace

community for the reconstruction of Mars Odyssey’s aerobraking [127, 128, 129], for

reconstructing the path of a sailplane [284], for determining in–flight the angular rela-

tionship of the body axes and the navigation axes for strapdown inertial measurement

units [200], for terrain–referenced navigation [181], for locating and tracking targets

[209, 227, 324, 323], for estimating the attitude of a pico satellite [260], for estimating

the lift force on an F–15 aircraft with a damaged stabilator [42], and for the gyroless

attitude control of multi–body satellites [88], to name a few applications. Outside the

aerospace community, applications include: model–based hand tracking [273], speech

processing [96], anti–lock brakes [161], brake–actuated manipulators [57], and moni-

toring structural behavior [48]. The unscented transformation has also been applied

to both particle filters [294] and batch filters [201], and like the extended Kalman

filter, it has an “iterated” version [23]. For these reasons, unscented Kalman filter-

ing has been selected as one of the methods to evaluate for its utility when applied

to the trajectory reconstruction of entry, descent, and landing trajectories, and it is

discussed in more detail in § 3.3.1 on page 73.

Other filters include: the Beneš filter [29], the Daum filter [55], and particle filters

[10]. The Beneš filter applies to continuous–time problems involving Wiener processes.

Wiener processes are the processes that govern Brownian motion. [271] The Daum

filter applies to continuous–time problems of variables with exponential distributions.

The Daum filter may be said to include the continuous–time Kalman filter in the

sense that the Gaussian distribution is the exponential of a quadratic function.
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Particle filters, like ensemble Kalman filters, propagate a Monte Carlo set of points

from the probability distribution of the state.7 Where ensemble Kalman filters use

the Monte Carlo points (the “ensemble”) as an alternative means of calculating and

updating covariances, particle filters employ importance sampling to determine which

particles (or samples) continue to propagate. Particles judged to be the most impor-

tant may end up having many copies of themselves continue to propagate, and as

a result, all of the samples may eventually become copies of just a single particle.

By increasing the number of samples, it is possible to stave off particle homogeneity.

However, this is often undesirable due to the computational burden associated with

additional samples. Another approach is to use an alternative importance sampling

scheme “to move particles to areas of high observational likelihood” [293]. To this

end, particle filters may employ Markov Chain Monte Carlo steps or Kalman filters in

the importance sampling scheme. Sigma–point particle filters [293] and, in particular,

the unscented particle filter can outperform standard particle filters [294].

The particle filter was not selected to be one of the methods used for this inves-

tigation for two reasons. First, the unscented particle filter can outperform standard

particle filters and the unscented Kalman filter has already been selected for this

investigation, and second, the computational load for particle filters can be much

higher than Kalman filters depending on the number of particles used.8 Additionally,

one method with which the computational load is expected to be high, trajectory

reconstruction using collocation (discussed in detail in § 3.3.2 beginning on page 79),

has already been selected for this investigation.

Two additional methods that might be used for the trajectory reconstruction of

entry, descent, and landing trajectories include artificial neural networks [176, 131]

7While sigma–point filters also propagate a set of points, these points are not chosen at random
as would be done in a Monte Carlo method. [140]

8One study found the computational load for a particle filter using 25,000 particles to be approx-
imately 100 times higher than the unscented Kalman filter. [84]
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and direct collocation coupled with an optimizer [36]. Artificial neural networks

were rejected as a possibility because their use would require many data sets for

training and reconstructed entry trajectory data is readily available for only four

Mars missions, one Jupiter mission, and one Titan mission. Simulated data sets

could be made, but then the artificial neural network would be trained to model the

simulation tool and not the actual flight of the planetary probe.

In regard to the collocation method, collocation converts9 an optimal control prob-

lem into a set of algebraic constraints. [122, 114, 225] The set of algebraic constraints

can then be solved numerically, giving a solution to the original problem. Often,

optimal control problems have both state variables and control variables. Collocation

discretizes10 both the control variables and the state variables using an implicit inte-

gration method that represents the state variables as piecewise cubic polynomials.11

These piecewise cubic polynomials form a set of discrete algebraic constraints.

For an entry trajectory, the total trajectory time can be discretized into segments

based on the measurement times of an inertial measurement unit. Because of this,

it may be possible to reconstruct an entry, descent, and landing trajectory based on

the algebraic constraints from using collocation. This approach would allow the same

collocation tools used to design a flight mission to also be used for the reconstruction

process12 And that is the primary reason why it was selected to be part of this study.

[36] Additionally, when used in a Monte Carlo simulation with a trajectory simulation

posed as an initial value problem, collocation may allow estimates of state uncertainty

to be obtained. [228]

9The word “transcribes”, rather than “converts”, is often used to describe the process of problem
reformulation.

10Frequently, this way of discretization is known as “Direct Collocation and Nonlinear Program-
ming”. [122]

11Higher order polynomials can be used. Reference [225] recommends third–, fifth–, or seventh–
order polynomials.

12An example of a trajectory design tool that uses collocation is Optimal Trajectories by Implicit
Simulation (OTIS). [199, 300, 226]
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3.3.1 The Unscented Kalman Filter

Description The unscented Kalman filter represents the next improvement in Kalman

filters. Where the extended Kalman filter provides an approximation to optimal non-

linear estimation [118] using linearization, the unscented Kalman filter does not use

linearization. Instead, it deals directly with the nonlinear problem. Since extended

Kalman filtering is often used for trajectory reconstruction as discussed in Chapter 2,

the unscented Kalman filter represents an obvious choice as an additional method to

be applied to the reconstruction of entry, descent, and landing trajectories.

The unscented Kalman filter (UKF) was first proposed by Julier, Uhlmann, and

Durrant–Whyte in 1995 [141] as an alternative to the extended Kalman filter for

nonlinear problems. Further development work was done by Julier and Uhlmann

[137, 138, 135, 140, 136, 139], as well as by van der Merwe, Wan, and Nelson [305,

306, 294, 295, 296, 297, 293].13

The basic difference between the extended Kalman filter and the unscented Kalman

filter stems from the manner in which Gaussian random variables are represented for

propagation through the system dynamics. [118] The uncertainty distribution of the

state is propagated through a linearization in the extended Kalman filter, and the

extended Kalman filter requires calculating first–order sensitivities of the dynamic

equations (Jacobians). In contrast, the unscented Kalman filter uses a set of sam-

ple points from the state’s uncertainty distribution. These sample points are called

sigma–points. They capture the mean and variance of the uncertainty of the state,

and they can be propagated through a nonlinear system. The result is that the

unscented Kalman filter achieves second–order accuracy rather than the extended

Kalman filter’s first–order accuracy.14 The unscented Kalman filter’s improvement in

13This discussion of the unscented Kalman filter is largely taken from reference [119] with addi-
tional material from reference [293].

14The variance estimate for the extended Kalman filter can be much greater than theory would
predict. [236]
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accuracy is said to be obtained with no additional computational cost over that of

the extended Kalman filter. [195, 125] Although it has been said that the algorithmic

complexity is arguably less favorable [228] it can be demonstrated, for purely linear

problems, that the Jacobian–less unscented formulation yields equivalent results to

the linear Kalman filter. [170] A flowchart of the algorithm is shown in Figure 27.

Initialize
state and

covariance

Find the cross-correlation
between the state errors

and the measurement
model errors

Calculate the predicted state
and covariance using the
weighted sigma points

Propagate the sigma points
in time through

the state function   

Form the state sigma points

Calculate the
unscented

Kalman gain

Update the state and
covariance with observationcovariance with observation

information

More
observations?

Increment
counter

Done
Yes No

Form the measurement 
sigma points (noise)

Figure 27: The unscented Kalman filter algorithm. [219]

The Nonlinear Process and Measurement Equations The state of a system

is a vector xk which describes the motion of a system at a specific point in time. (The

subscript k denotes a discrete time point.) Typically, the state xk is unknown, so we

use a set of measurements (or observations) yk to estimate it. Given an initial state

x0, future states can be found using the nonlinear process equation:

xk+1 = f(xk) + wk (76)

where f is a nonlinear function taking the state xk from time k to time k + 1. The

process noise wk is assumed to be additive, white, and Gaussian, with zero mean and

with a covariance matrix defined by
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E[wnw
T
k ] =


Qk n = k

0 n6=k
(77)

The measurements (or observations) yk can be expressed as a nonlinear function

of the state xk using the measurement equation:

yk = h(xk) + vk (78)

where yk is the measurement at time k and h is the nonlinear function transforming

the state x into the measurement y. The measurement noise vk is assumed to be

additive, white, and Gaussian, with zero mean and with a covariance matrix defined

by

E[vnv
T
k ] =


Rk n = k

0 n6=k
(79)

In addition, the measurement noise vk is uncorrelated with the process noise wk.

The Unscented Transformation The unscented transformation is a method for

calculating the statistics of a random variable which undergoes a nonlinear transfor-

mation. [138] Consider the propagation of the state x of dimension L through the

nonlinear functions given in equations (76) and (78). Assume x has a mean x̄ and an

error covariance matrix Pk. To calculate the statistics, we form a matrix X of 2L+ 1

sigma–vectors Xi according to

X0 = x̂k−1 (80a)

Xi = x̂k−1 +
(√

(L+ λ)Px

)
i

i = 1, . . . , L (80b)

Xi = x̂k−1 −
(√

(L+ λ)Px

)
i

i = L+ 1, . . . , 2L (80c)
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These sigma–vectors are propagated through the process equation to obtain

Xk|k−1 = f(Xk−1) (81)

Before computing the a priori estimate of the state x̂−k , we compute the weights for

the sample mean and covariance with

w
(mean)
0 =

λ

L+ λ
(82a)

w
(mean)
i =

1

2(L+ λ)
i = 1, . . . , 2L (82b)

w
(cov)
0 =

λ

L+ λ
+ 1− α2 + β (82c)

w
(cov)
i =

1

2(L+ λ)
i = 1, . . . , 2L (82d)

where

• L is the dimension of x.

• λ = α2(L+ κ)− L is a scaling parameter.

•
√

(L+ λ)Px is the matrix square root of (L+ λ)Px.15

• α is a constant that determines the spread of the sigma–points around the mean

x̄. It is usually set to a small positive value: 10−4 ≤ α ≤ 1 .

• κ is a secondary scaling parameter which is usually set to 0 or 3 − L. If κ is

chosen such that κ = 3 − L then the kurtosis of one state of the sigma–points

agrees with that of the Gaussian distribution. [141, 140]

• β is used to incorporate prior knowledge of the distribution of x. For Gaussian

distributions, β = 2 is optimal. [136]

15The matrix square root may be obtained using Cholesky decomposition. [30, 274] An important
note on the square root of the error covariance matrix Pk from reference [140]: If the matrix square
root A of P is of the form P = AT A, then the sigma–vectors are formed from the rows (i = 1, . . . , L)
of A. However, for a square root A of P that is of the form P = AAT , then the sigma–vectors are
formed from the columns (i = 1, . . . , L) of A.

76



The a priori estimate of the state x̂−k and the error covariance matrix P−k can now

be calculated using

x̂−k =
2L∑
i=0

w
(mean)
i Xi,k|k−1 (83)

P−k =
2L∑
i=0

w
(cov)
i

(
Xi,k|k−1 − x̂−k

) (
Xi,k|k−1 − x̂−k

)T
+ Qk (84)

We follow a similar process to obtain an estimate for the measurement ŷ−k and the

covariances (Pykyk
and Pxkyk

) necessary to calculate the unscented Kalman gain Kk.

Yk|k−1 = h(Xk|k−1) (85)

ŷ−k =
2L∑
i=0

w
(mean)
i Yi,k|k−1 (86)

Pykyk
=

2L∑
i=0

w
(cov)
i

(
Yi,k|k−1 − ŷ−k

) (
Yi,k|k−1 − ŷ−k

)T
+ Rk (87)

Pxkyk
=

2L∑
i=0

w
(cov)
i

(
Xi,k|k−1 − x̂−k

) (
Yi,k|k−1 − ŷ−k

)T
(88)

Kk = Pxkyk
P−1

ykyk
(89)

Knowing the unscented Kalman gain Kk, we can update the estimates of the state

x̂k and the error covariance Pk.

x̂k = x̂−k + Kk(yk − ŷ−k ) (90)

Pk = P−k −KkPykyk
KT
k (91)

A summary of the unscented Kalman filter is given in Table 12 on page 78. The

parameters for the unscented Kalman filter are given in Appendix D.
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Table 12: Summary of the unscented Kalman filter.

State space model:
xk+1 = f(xk) + wk (92)

yk = h(xk) + vk (93)

where wk and vk are independent, zero-mean, Gaussian noise processes
with covariance matrices Qk and Rk, respectively.

Initialization: For k = 0, set x̂0 and P0 to their initial values.

Computation: For k = 1, 2, ..., compute:

Sigma–points

X0 = x̂k−1 (94a)

Xi = x̂k−1 +
(√

(L+ λ)Pk−1

)
i

i = 1, . . . , L (94b)

Xi = x̂k−1 −
(√

(L+ λ)Pk−1

)
i

i = L+ 1, . . . , 2L (94c)

Weights

w
(mean)
0 =

λ

L+ λ
(95a)

w
(mean)
i =

1
2(L+ λ)

i = 1, . . . , 2L (95b)

w
(cov)
0 =

λ

L+ λ
+ 1− α2 + β (95c)

w
(cov)
i =

1
2(L+ λ)

i = 1, . . . , 2L (95d)

Time-update equations

Xk|k−1 = f(Xk−1) (96)

x̂−k =
2L∑
i=0

w
(mean)
i Xi,k|k−1 (97)

P−k =
2L∑
i=0

w
(cov)
i

(
Xi,k|k−1 − x̂−k

) (
Xi,k|k−1 − x̂−k

)T
+ Qk (98)

Measurement-update equations

Yk|k−1 = h(Xk|k−1) (99)

ŷ−k =
2L∑
i=0

w
(mean)
i Yi,k|k−1 (100)

Pykyk
=

2L∑
i=0

w
(cov)
i

(
Yi,k|k−1 − ŷ−k

) (
Yi,k|k−1 − ŷ−k

)T
+ Rk (101)

Pxkyk
=

2L∑
i=0

w
(cov)
i

(
Xi,k|k−1 − x̂−k

) (
Yi,k|k−1 − ŷ−k

)T
(102)

Kk = Pxkyk
P−1

ykyk
(103)

x̂k = x̂−k + Kk(yk − ŷ−k ) (104)

Pk = P−k −KkPykyk
KT

k (105)
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3.3.2 Trajectory Reconstruction Using Collocation (TRUC)

Introduction Although, the reconstruction of an entry trajectory can be posed as

a continuous two-point boundary value problem.16 Posing trajectory reconstruction

as an initial value problem allows collocation to obtain estimates of state uncertainty,

as well as estimates of the state. [228]

Optimal Control In the optimal control problem17, a control history is sought that

takes a set of states x from specified initial conditions x0 to a desired final state xf

subject to a set of constraints, while minimizing a performance index J . The states

are defined by a system of differential equations given by

ẋ = f(x,u, t) (106)

where

• x is the state vector.

• u is the control vector.

• f is a function of the state and control vectors.

The desired final boundary conditions xf are specified by a vector of algebraic

functions Ψ of the states at the final time tf

Ψ(xf ) = 0 (107)

In addition to satisfying the constraints on the final state, an optimal control history

is sought that minimizes the scalar performance function

16The atmospheric entry point represents one boundary condition, and the entry state is known
very well (i.e. it is a good initial boundary condition) from interplanetary spacecraft navigation
information. The landing site location can be determined extremely accurately (i.e. it is an excellent
final boundary condition) from radio triangulation with orbiting spacecraft. Additionally, using
images of the lander’s position on the surface of the planet, the lander’s position relative to known
topographical features can be determined.

17The following description of optimal control and collocation is taken from references [60] and
[114].
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J = φ(xf ) (108)

where φ is a scalar cost function based on the final state.

One approach to solving the optimal control problem is to adjoin both the sys-

tem differential equations (equation (106)) and the constraints on the final state

(equation (107)) to the scalar performance function (equation (108)) creating a new

augmented cost function

J = φ+ νTΨ +

tf∫
t0

λT (f(x,u, t)− ẋ)dt (109)

where

• ν is a vector of sensitivities associated with the final condition constraints.

• λ is a vector of adjoint (or costate) values.

The following necessary conditions from the calculus of variations must be verified

for optimality of the augmented cost function.

λ̇ =
∂HT

∂x
(110)

λtf =
∂ΦT

∂xf
(111)

∂HT

∂u
= 0 (112)

where

• H = λT f is the system Hamiltonian.

• Φ = φ+ νTΨ.

Equations (110) through (112) are collectively referred to as the Euler–Lagrange

equations in the calculus of variations. Their solution must also satisfy equation (106)
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subject to the specified initial conditions and the final condition constraints. These

equations constitute a two–point boundary value problem whose solution provides

an indirect solution to the original optimal control problem. However, this method

of solving the optimal control problem is very sensitive to the initial guess of the

adjoint values. In contrast, collocation can transcribe the optimal control problem

into a set of algebraic constraints that can be used to solve the optimal control

problem without making use of the Euler–Lagrange equations, even though the Euler–

Lagrange equations can still be used.

Collocation Collocation is a method of solving the differential equations in an op-

timal control problem by transcribing the differential equations into a set of algebraic

constraints.18 The set of algebraic constraints can then be solved numerically using

a constrained optimization method, giving a solution to the original problem. Often,

optimal control problems have both state variables and control variables. Colloca-

tion discretizes both the control variables and the state variables using an implicit

integration method that represents the state variables as piecewise cubic polynomials.

The total time of interest T is discretized into n segments with n+ 1 nodes, and

the time between nodes Tj (i.e. the length of time segment j) may vary. Within

each segment of time, the piecewise cubic polynomials constitute an approximate

integration formula for the state differential equations. This formulation for the

approximate integration of the system of equations transforms them into a set of

discrete algebraic constraints imposed within each time segment. Using Hermite

interpolation, cubic polynomials are defined for each state within each time segment

using the values of the states at the nodes and the state time derivatives at the nodes.

The values of the states are then selected such that the interpolated derivatives agree

with the differential equations at the center of each time segment.

18Collocation, as discussed here, has been successfully used for trajectory design, so it was chosen
for trajectory reconstruction.
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The basic procedure can be derived as follows. Let each state x be represented by

cubic polynomials of the form

x = C0 + C1s+ C2s
2 + C3s

3 (113)

on each time segment j where, to simplify the argument, the segment length is one

and 0≤s≤1. Let

xj s=0 = xj0 (114a)

xj s=1 = xjf (114b)

dxj
ds s=0

= ẋj0 (114c)

dxj
ds s=1

= ẋjf (114d)

where

• xj0 is the value of state x at the beginning of time segment j.

• xjf is the value of state x at the end of time segment j.

• ẋj0 is the value of the time derivative of state x at the beginning of time segment

j.

• ẋjf is the value of the time derivative of state x at the end of time segment j.

Differentiating equation (113) and evaluating it at s = 0 and s = 1 gives

1 0 0 0

0 1 0 0

1 1 1 1

0 1 2 3





C0

C1

C2

C3


=



xj0

ẋj0

xjf

ẋjf


(115)

Inverting the 4× 4 matrix in equation (115) gives
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

C0

C1

C2

C3


=



1 0 0 0

0 1 0 0

−3 −2 3 −1

2 1 −2 1





xj0

ẋj0

xjf

ẋjf


(116)

Now, using equation (116), evaluating equation (113) at the center of each time

segment (i.e. s = 1
2
), and with the time segment length denoted by Tj, we have the

interpolated value of the state at the center of the time segment xc to be

xjc =
1

2
(xj0 + xjf ) +

Tj
8

(ẋj0 − ẋjf ) (117)

Similarly, for the derivative at the center of the time segment

ẋjc = − 3

2Tj
(xj0 − xjf )−

1

4
(ẋj0 + ẋjf ) (118)

Define the defect at the center of the time segment as

∆ = (ẋjc)system derivative − (ẋjc)interpolation (119)

where

• ∆ is the defect, which is the difference between the state time derivative cal-

culated using the differential equations defining the state (equation (106)) and

the state time derivative calculated using interpolation (equation (118)).

• (ẋjc)system derivative is the state time derivative calculated using the differential

equations defining the state (equation (106)).

• (ẋjc)interpolation is the state time derivative calculated using interpolation (equa-

tion (118)).

• ẋj0 and ẋjf are calculated from the state equation (equation (106)).
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The values of xj0 and xjf are varied to drive the defect ∆ to zero and provide an

accurate approximation of the solution. The defects for each time segment constitute

a set of nonlinear algebraic constraints, which are a function of the states and controls

at each node of the time segments.

Application to Trajectory Reconstruction For the trajectories in this research,

a three-degree-of-freedom simulation was used. The translational motion is described

by the state equation given in equation (120)19 and the expressions for the state

derivatives are given in equations (121) through (209)). [60]

ẋ = f(x) =



ṙ

φ̇

θ̇

v̇

γ̇

ψ̇


(120)

ṙ = v sin γ (121)

φ̇ =
v cos γ cosψ

r
(122)

θ̇ =
v cos γ sinψ

r cosφ
(123)

v̇ =
1

m
(Y sin β −D cos β)

− g sin γ

+ Ω2r cosφ(sin γ cosφ− cos γ sinφ cosψ)

(124)

19The state variables radius r, latitude φ, and longitude θ give the three components of position,
and the state variables velocity v, flight path angle γ, and azimuth ψ give the three components of
velocity.
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γ̇ =
1

mv
(L cosσ −D sin β sinσ − Y cos β sinσ)

+
(v
r
− g

v

)
cos γ

+ 2Ω cosφ sinψ

+
Ω2r

v
cosφ(cos γ cosφ+ sin γ sinφ cosψ)

(125)

ψ̇ =
1

mv cos γ
(L sinσ +D sin β cosσ + Y cos β cosσ)

+
v cos γ

r
sinψ tanφ

− 2Ω(cosφ cosψ tan γ − sinφ)

+
Ω2r

v cos γ
cosφ sinφ sinψ

(126)

where

• CD is the drag coefficient of the spacecraft. It is a function of the angle of attack

α and Mach number M of the of the spacecraft: CD = CD(α,M).

• CL is the lift coefficient of the spacecraft. It is a function of the angle of attack

α and Mach number M of the spacecraft: CL = CL(α,M).

• CY is the side force coefficient of the spacecraft. It is a function of the side-slip

angle β and Mach number M of the spacecraft: CY = CY (β,M).

• D is the aerodynamic drag force acting on the spacecraft. D = 1
2
ρv2SCD where

the drag coefficient CD is a function of the angle of attack α and Mach number

M of the spacecraft: CD = CD(α,M).

• g is the local acceleration of gravity at the spacecraft’s position.

• L is the aerodynamic lift force acting on the spacecraft. L = 1
2
ρv2SCL where
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the lift coefficient CL is a function of the angle of attack α and Mach number

M of the spacecraft: CL = CL(α,M).

• m is the mass of the spacecraft.

• M is the Mach number of the spacecraft.

• r is the spacecraft’s local radius measured from the center of the planet at which

entry is taking place.

• S is the aerodynamic reference area of the spacecraft.

• t is time.

• v is the spacecraft’s velocity.

• Y is the aerodynamic side force acting on the spacecraft. Y = 1
2
ρv2SCY where

the side force coefficient CY is a function of the side-slip angle β and Mach

number M of the spacecraft: CY = CY (β,M).

• α is the angle of attack of the spacecraft.

• β is the side–slip angle of the spacecraft.

• γ is the spacecraft’s flight path angle, which is positive above the local horizon-

tal.

• θ is the spacecraft’s longitude.

• ρ is the local atmospheric density at the spacecraft’s position.

• σ is the bank angle of the spacecraft.

• φ is the spacecraft’s latitude.

• ψ is the spacecraft’s azimuth, which is positive when measured clockwise from

north.
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• Ω is the rotation rate of the planet at which entry is taking place.

and these variables may be categorized into state variables and parameters as shown

in Table 13. Note that there are no control variables, as the angle of attack α, the

side–slip angle β, and the bank angle σ for the spacecraft will be set to zero for the

duration of the trajectory to be consistent with the process models of the two Kalman

filters and compare the three methods on an equal basis.

Table 13: Categorization of the variables into state vari-
ables and parameters for trajectory reconstruction using col-
location.

State Variables Parameters
r CD

φ CL

θ CY

v D
γ g
ψ L

m
S
Y
α
β
ρ
σ
Ω

As stated above, the total trajectory time can be discretized into segments based

on the measurement times of an inertial measurement unit. If there are n mea-

surements taken, then there are n nodes and n − 1 time segments. For each time

segment j (1≤ j≤n − 1), the state time derivatives at the center of each time seg-

ment (ẋjc)system derivative can be calculated using the differential equations above (equa-

tions (121) through (209)), and the interpolated values of the state time derivatives at

the center of each time segment (ẋjc)interpolation can be calculated using equation (118)

as follows.
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ṙjc = − 3

2Tj
(rj0 − rjf )−

1

4
(ṙj0 + ṙjf ) (127a)

φ̇jc = − 3

2Tj
(φj0 − φjf )−

1

4
(φ̇j0 + φ̇jf ) (127b)

θ̇jc = − 3

2Tj
(θj0 − θjf )−

1

4
(θ̇j0 + θ̇jf ) (127c)

v̇jc = − 3

2Tj
(vj0 − vjf )−

1

4
(v̇j0 + v̇jf ) (127d)

γ̇jc = − 3

2Tj
(γj0 − γjf )−

1

4
(γ̇j0 + γ̇jf ) (127e)

ψ̇jc = − 3

2Tj
(ψj0 − ψjf )−

1

4
(ψ̇j0 + ψ̇jf ) (127f)

Hence, the defects at the center of each time segment j are

∆r,j = (ṙjc)system derivative − (ṙjc)interpolation (128a)

∆φ,j = (φ̇jc)system derivative − (φ̇jc)interpolation (128b)

∆θ,j = (θ̇jc)system derivative − (θ̇jc)interpolation (128c)

∆v,j = (v̇jc)system derivative − (v̇jc)interpolation (128d)

∆γ,j = (γ̇jc)system derivative − (γ̇jc)interpolation (128e)

∆ψ,j = (ψ̇jc)system derivative − (ψ̇jc)interpolation (128f)

Note that there are (6 states)× (n− 1 time segments) defect equations, and there are

six state variables whose initial and final values (xj0 and xjf ) for the time segment20

are varied to drive the defects (∆r,j, ∆φ,j, ∆θ,j, ∆v,j, ∆γ,j, and ∆ψ,j) to zero.21

The initial boundary condition is x10, and xjf = xj+1, 0 for 1≤ j≤n− 1 (i.e. for

two consecutive time segments, the final state of the first time segment is the initial

20Except for the first time segment, where the initial conditions of the problem give the initial
value of the state.

21However, for practical computational reasons, it may not be possible to actually enforce that
each defect equal zero, so a tolerance of 10−6 has been set on the defects for this research.
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state of the second time segment). If we number the states by time node rather than

by using initial “0” and final “f” subscripts, we have

x =



r2

φ2

θ2

v2

γ2

ψ2

...

rn

φn

θn

vn

γn

ψn



(129)

as the vector of state variables x that are varied to drive the defects ∆ to zero.

In addition to driving the defects ∆ to zero to satisfy the equations of motion, for

the trajectory reconstruction, it is desirable to minimize the sum of the squares of

the residual error between the calculated body frame accelerations and the measured

accelerations from the inertial measurement unit (equation (132)). Since the inertial

measurement units measure accelerations in the body frame, the aerodynamic forces

experienced by the spacecraft must be transformed to the body frame. This can be

accomplished by using a transformation matrix [A→B] to transform the aerodynamic

forces from the aerodynamic frame to the body frame.
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[A→B] =


cosα cos β sinα sinσ − cosα sin β cosσ − cosα sin β sinσ − sinα cosσ

sin β cos β cosσ cos β sinσ

sinα cos β − sinα sin β cosσ − cosα sinσ cosα cosσ − sinα sin β sinσ


(130)

Using this matrix, for the calculated body frame accelerations, we have for each

measurement time

a =


ax

ay

az

 = [A→B]


D

Y

L

 1

m
(131)

The objective function for the accelerations Jacceleration may be expressed as

Jacceleration =
n∑
i=1

‖acalculated − ameasured‖2i (132)

where the objective is to minimize the sum of the squares of the difference between

the calculated acceleration acalculated and measured acceleration ameasured at each mea-

surement time i for all the measurements n.

A summary of trajectory reconstruction using collocation as described above is

given in Table 14 on page 91. Note that controls u are required for the more general

problem, so in the context of the general problem, they appear in the state equation

ẋ = f(x,u), and they would also be varied to obtain an optimal solution as shown in

Table 14.
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Table 14: Summary of trajectory reconstruction using col-
location (TRUC).

Given:

ẋ = f(x,u) (133)

Minimize:

Jacceleration =
n∑

i=1

‖acalculated − ameasured‖2i (134)

Subject to:

∆ = (ẋjc)system derivative − (ẋjc)interpolation = 0 (135)

where the n measurements are taken in the time span, and the time span is
divided into n− 1 time segments j by the measurement times. The defects
∆ above are calculated at the center of each time segment for each state
variable with

(ẋjc)system derivative = ẋ tjc (136)

(ẋjc)interpolation = −3
2

(xj0 − xjf ) +
1
4

(ẋj0 + ẋjf ) (137)

by varying: the state vector x and the control vector u.
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Reconstructing the Trajectory Examining this trajectory reconstruction prob-

lem further reveals that there are several possible approaches to reconstructing the

trajectory by solving the algebraic constraints from collocation.

1. One way:

(a) All the unknown states would be adjusted simultaneously based on the

optimization method chosen. (If this is the beginning of the optimization,

all the unknown states would be initialized to some initial guess.)

(b) The defect constraint of each time segment (equation (128)) would be

checked to see if it is satisfied.

(c) If the defect constraints are not satisfied, then the states would be adjusted

again, and the defect constraints checked again.

(d) If the defect constraints are satisfied, then the objective function (equa-

tion (132)) would be computed based on those states.

(e) The new computed value of the objective function would be compared

against the best minimum value found so far.

(f) If the new computed value of the objective function was lower than the

best minimum value found so far, then it would be saved, along with the

values of the states, and the next iteration would begin.

(g) This process would be repeated until the iteration limit was reached, or

the unknown states were no longer significantly changing.

2. A second way, would use two sets of state variables at each node with unknown

state variables, where one set is the final state for the preceding node, and

the next set is the initial state for the following node. This way would require

continuity constraints at each node to verify that the two sets of state variables
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at each node with unknown state variables were close enough to be within the

tolerance limit for continuity.

(a) All the unknown states would be adjusted simultaneously based on the

optimization method chosen. (If this is the beginning of the optimization,

all the unknown states would be initialized to some initial guess.)

(b) The defect constraint of each time segment (equation (128)) would be

checked to see if it is satisfied.

(c) The continuity constraint at each node would be checked to see if it is

satisfied.

(d) If the either the defect constraints are not satisfied, or the continuity con-

straints are not satisfied, then the states would be adjusted again, and the

defect and continuity constraints checked again.

(e) If the defect constraints and continuity constraints are satisfied, the objec-

tive function (equation (132)) would be computed based on those states.

(f) The new computed value of the objective function would be compared

against the best minimum value found so far.

(g) If the new computed value of the objective function was lower than the

best minimum value found so far, then it would be saved, along with the

values of the states, and the next iteration would begin.

(h) This process would be repeated until the iteration limit was reached, or

the unknown states were no longer significantly changing.

3. A third way, could use either of the above methods with the initial state used

as an additional unknown in the optimization, and add a constraint to satisfy

the initial condition.
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4. A fourth way, assuming no information on uncertainty was desired, could use

any of the above methods with a fixed initial condition and a fixed final condi-

tion.

And there are probably many more variations that could be proposed by changing

subtle features. And while they may result in small improvements in minimizing the

objective function given in Table 14, the computational effort involved in obtaining

that small gain is likely to not be worth the effort.

An Alternative Method So let us propose an alternative method for finding

the state values at each node in a deterministic fashion that does not require an

optimizer. Using it will not necessarily result in minimizing the objective function

(equation (132)) proposed above, and in fact, the objective function is not necessary

for its implementation. In its essence, it is simply an integration of the trajectory22,

and therefore, a simulation not a true reconstruction.23 However, this is not to be

dismissed. Chapters 4 and 5 will show that it is enough like integration, that if the

values of the controls are defined at every node in the entire trajectory, this research

posits that it is not necessary to vary the states at each node as independent variables

in an optimization process, as they can be determined directly from the values of the

controls and the parameters of the problem.24 This result means that only the controls

have to be independent variables in an optimization (or nonlinear programming)

process used to solve an entry, descent, and landing trajectory reconstruction problem

transcribed by collocation into a set of algebraic constraints. This reduction in the

22The equivalence of Runge–Kutta methods and collocation methods has already been established.
[12]

23Modeling the problem here on an equal basis with the Kalman filters is equivalent to simulating
the trajectory using collocation.

24If you accept that integration is being done, then you also understand that there is only one
valid solution. With only one valid solution, then, if you do a reconstruction using a method as
described above, you will sacrifice the validity of the solution in order to obtain a lower value of the
objective function.
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number of independent variables greatly reduces the solution space that must be

searched.

Now, let us describe the solution procedure.

Recall that there are no control variables, as the angle of attack α, the side–slip

angle β, and the bank angle σ for the spacecraft are set to zero for the duration of

the trajectory to be consistent with the process models of the two Kalman filters, so

the three methods can be compared on an equal basis. Consider the defects in the

first (j = 1) time segment shown below in equation (138).

∆r,1 = (ṙ1,c)system derivative − (ṙ1,c)interpolation (138a)

∆φ,1 = (φ̇1,c)system derivative − (φ̇1,c)interpolation (138b)

∆θ,1 = (θ̇1,c)system derivative − (θ̇1,c)interpolation (138c)

∆v,1 = (v̇1,c)system derivative − (v̇1,c)interpolation (138d)

∆γ,1 = (γ̇1,c)system derivative − (γ̇1,c)interpolation (138e)

∆ψ,1 = (ψ̇1,c)system derivative − (ψ̇1,c)interpolation (138f)

The defects of the first time segment are a function of the interpolated system

derivatives at the center of the time segment and the system derivatives at the center

of the time segment from the equations of motion given in equations (121) through

(209). The system derivatives from the equations of motion are a function of the

state, and by examining the expressions for the interpolated system derivatives in

equation (139), we see that they also are only a function of the state, specifically the

final value of the state for the time segment since the initial state is specified from

the initial conditions of the problem.
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ṙ1,c = − 3

2T1

(r1,0 − r1,f )−
1

4
(ṙ1,0 + ṙ1,f ) (139a)

φ̇1,c = − 3

2T1

(φ1,0 − φ1,f )−
1

4
(φ̇1,0 + φ̇1,f ) (139b)

θ̇1,c = − 3

2T1

(θ1,0 − θ1,f )−
1

4
(θ̇1,0 + θ̇1,f ) (139c)

v̇1,c = − 3

2T1

(v1,0 − v1,f )−
1

4
(v̇1,0 + v̇1,f ) (139d)

γ̇1,c = − 3

2T1

(γ1,0 − γ1,f )−
1

4
(γ̇1,0 + γ̇1,f ) (139e)

ψ̇1,c = − 3

2T1

(ψ1,0 − ψ1,f )−
1

4
(ψ̇1,0 + ψ̇1,f ) (139f)

So the six defects given in equation (138) constitute a set of six equations in six

unknowns. To solve this set of equations:

First, we set the final state for the segment equal to the initial state for the

segment. The initial state is a convenient guess for the final state.

xf = x0 (140)

as a consequence of this, the time derivatives of the initial and final states are also

equal. ẋf = ẋ0 (141)

Then, we substitute the formula for the interpolated derivative at the center of the

time segment into the defect vector equation, set the defect vector equal to zero, and

solve for the time segment’s final state.

xf = x0 +
2T

3

(
(ẋc)system derivative +

1

4
(ẋ0 + ẋf )

)
(142)

Using this final state, we can calculate the new final values of the time derivatives for

the time segment. ẋf = f(xf ) (143)

Using the known values of the initial state and its time derivatives, along with the
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values of the final state and its time derivatives calculated above, we can calculate

the interpolated value of the state at the center of the time segment.

xc =
1

2
(x0 + xf ) +

T

8
(ẋ0 − ẋf ) (144)

We then calculate its interpolated derivative

ẋc = − 3

2T
(x0 − xf )−

1

4
(ẋ0 + ẋf ) (145)

and its system derivative.

(ẋc)system derivative = f(xc) (146)

And, now, we can calculate the new defect vector for the time segment.

∆ = (ẋc)system derivative − (ẋc)interpolation (147)

We can then repeat this process until all the elements of the defect vector are driven

to zero.25 This procedure can then be repeated for each time segment until the last

node is reached. Alternatively, if we consider the defects for the entire trajectory as

constituting a system of 6× (n− 1)–equations in 6× (n− 1)–unknowns, the state at

each node could be set to the initial state, and the procedure could be implemented

on the entire trajectory at once. A summary of this solution procedure is given in

Table 15 on page 98.

Additionally, this research posits that for entry, descent, and landing trajectory

design with both states and controls using collocation, the solution procedure given

in Table 15 could be used to calculate the states that allow the defect constraints

from collocation to be met at each iteration of the optimization, while using only the

control variables as the independent variables of the optimization.

25Or below our defect tolerance.
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Table 15: The solution procedure to obtain states that
meet the defect constraints of collocation when given a set
values for the controls. This procedure can be used when
performing trajectory simulation using collocation (TSUC)
or trajectory reconstruction using collocation (TRUC).

Given:

ẋ = f(x) (148)

and an initial condition x0.

Initialization: For j = 1, set x1,f = x1,0 and ẋ1,f = ẋ1,0.

Computation: For each time segment j = 1, 2, ..., compute:

An update to the final value of the state

xjf = x0 +
2Tj

3

(
(ẋjc)system derivative +

1
4

(ẋj0 + ẋjf )
)

(149)

The final value of the state time derivative

ẋjf = f(xjf ) (150)

The interpolated state at the center of the time segment

xjc =
1
2

(xj0 + xjf ) +
Tj

8
(ẋj0 − ẋjf ) (151)

Its interpolated derivative

(ẋjc)interpolation = − 3
2Tj

(xj0 − xjf )− 1
4

(ẋj0 + ẋjf ) (152)

And its system derivative

(ẋjc)system derivative = f(xjc) (153)

The new defect vector

∆j = (ẋjc)system derivative − (ẋjc)interpolation (154)

Then repeat this process until all the elements of the defect vector
for time segment j are driven to zero.

Finally, repeat this procedure for each time segment j
until the final state at the last node has been found.*

*Though the sequential formulation above is used here, it is possible,
to implement this solution method in a simultaneous manner by
solving for all the unknown states at once, rather than repeating
it for each time segment. However, due to the presence of the
initial condition, that is not necessary though it would allow
parallelization that would speed up the computation.
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CHAPTER IV

TRAJECTORY RECONSTRUCTION OF A SAMPLE

PROBLEM

As stated earlier, extended Kalman filtering (EKF) has been used extensively in

trajectory reconstruction both for orbiting spacecraft and for planetary probes. It

forms the standard to which the unscented Kalman filtering (UKF) will be compared.

Additionally, trajectory simulation using collocation (TSUC) is conducted. The two

Kalman filters are used to reconstruct the entry, descent, and landing trajectory of a

sample problem similar to Mars Pathfinder, while collocation is used to simulate it.

The purpose of this sample problem is to understand the capabilities of the Kalman

filters when the true trajectory is known, and to compare the results from trajectory

simulation using collocation using the solution procedure of Table 15 to the Monte

Carlo simulation conducted using explicit integration of the dynamics.

4.1 Description of the Sample Problem

As a sample problem, a Mars Pathfinder–like vehicle entry at Mars was simulated,

so the trajectory could be reconstructed. The sample problem’s entry conditions are

given in Table 16 and the acceleration time history is given Figure 28. The sample

problem was created in the same simulation environment as the one the trajectory

reconstructions were performed in. However, noise was added to the accelerations

obtained from the true trajectory of the sample problem to simulate noisy accelera-

tion data from an inertial measurement unit. The mean noise level for the simulated

acceleration measurements was 0 µg with a standard deviation of 1500 µg, and the

measurement frequency was 32 Hz. The sample problem entry vehicle did not jettison
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any mass during entry, and parachute deployment occurred at approximately 142 s.

The simulation was ended when the altitude of the entry vehicle reached 0.268 km.

Plots of the altitude, velocity, and flight path angle time histories are given in Fig-

ures 29, 30, and 31, respectively. The density profile of the Martian atmosphere for

the sample problem is shown in Figure 117.

Table 16: The values of the sample problem’s state vari-
ables at entry.

State Variable Mean Uncertainty (1σ)
Radius 3 522 200 m 1 000 m
Aerocentric latitude 22.630 3°N 0.1°
Longitude 337.997 6°E 0.1°
Inertial velocity 7 264.2 m

s 1.0 m
s

Inertial flight path angle -14.061 4° 0.1°
Inertial azimuth 253.148 1° 0.1°

100

150

200
Sample Problem

A
cc

el
er

at
io

n 
( 

m
 /

 s
² 

)

 

x
y
z

0 50 100 150 200 250 300
-50

0

50

Time ( s )

A
cc

el
er

at
io

n 
( 

m
 /

 s
² 

)

 

Figure 28: Sample problem acceleration time history.
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Figure 29: Sample problem altitude time history.
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Figure 30: Sample problem velocity time history.
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Figure 31: Sample problem flight path angle time history.
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Figure 32: Sample problem atmospheric density profile.
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4.2 Trajectory Performance for the Sample Problem

Each of the Kalman filters discussed in Chapter 3 was used to reconstruct the tra-

jectory of the simulated sample problem, and the trajectory was simulated using

collocation.

4.2.1 Altitude

The reconstruction of the sample problem altitude is shown in Figure 33. Each of the

Kalman filters discussed in Chapter 3 appear to agree well with the simulated sample

problem, and the residuals of the time history of the sample problem altitude and the

reconstructions shown in Figure 33 are shown in Figure 34. Note the increasing di-

vergence of the extended Kalman filter from the simulated sample problem beginning

near the time of parachute deployment. The unscented Kalman filter maintains good

agreement with the simulated sample problem, even though it deviates slightly from

the simulation near the end of the trajectory. TSUC also maintains good agreement

with the simulated sample problem.
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Figure 33: The time history of the sample problem altitude
is reconstructed and simulated.
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Figure 34: The residuals of the time history of the sample
problem altitude shown in the previous figure.

4.2.2 Velocity

The reconstruction of the sample problem velocity is shown in Figure 35. Both

Kalman filters discussed in Chapter 3 appear to agree well with the simulated sample

problem, and the residuals of the time history of the sample problem velocity and

the reconstructions shown in Figure 35 are shown in Figure 36. Note the divergence

of the extended Kalman filter from the simulated sample problem velocity beginning

near the time of parachute deployment and the subsequent recovery approximately

50 seconds later. The recovery is most likely due to the spacecraft reaching terminal

velocity on the parachute, as the terminal velocity is the same regardless of the method

used for reconstruction. The unscented Kalman filter maintains good agreement with

the simulated sample problem’s velocity throughout the entire trajectory. TSUC also

maintains good agreement with the simulated sample problem.
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Figure 35: The time history of the sample problem velocity
is reconstructed and simulated.
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Figure 36: The residuals of the time history of the sample
problem velocity shown in the previous figure.

4.2.3 Flight Path Angle

The reconstruction of the sample problem flight path angle is shown in Figure 37.

Both Kalman filters discussed in Chapter 3 appear to agree well with the simulated
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sample problem, and the residuals of the time history of the sample problem flight

path angle and the reconstructions shown in Figure 37 are shown in Figure 38. Note

the divergence of the extended Kalman filter from the simulated sample problem

flight path angle beginning near the time of parachute deployment and the subsequent

recovery near the end of the trajectory. The unscented Kalman filter maintains good

agreement with the simulated sample problem’s flight path angle throughout the

entire trajectory with some slight variation. TSUC also maintains good agreement

with the simulated sample problem
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Figure 37: The time history of the sample problem flight
path angle is reconstructed and simulated.
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Figure 38: The residuals of the time history of the sample
problem flight path angle shown in the previous figure.

4.3 Monte Carlo Solution Space for the Sample Problem

Next, a 10,000 run Monte Carlo simulation was performed by sampling from the

initial condition distributions shown in Table 16 on page 100. For each trajectory run

in the Monte Carlo simulation, the sample problem acceleration data was integrated

from the chosen initial condition. This was done in an attempt to characterize the

mean and uncertainty of the solution space, so that they could be compared with

the predictions from the methods discussed in Chapter 3.1 The extended Kalman

filter results and the unscented Kalman filter results from the previous section are

compared here with the mean of the Monte Carlo solution space for the sample

problem dynamics.2 Both Kalman filters were expected to predict the mean trajectory

well, and this was indeed the case. Regarding the uncertainty around their best

1Note that for this comparison, the initial conditions for the extended Kalman filter and the
unscented Kalman filter were the mean initial conditions as discussed in Chapter 3. The initial
conditions for the TSUC Monte Carlo were sampled at random from the entry state distributions
given in Table 16.

2In the next section, each Monte Carlo run will be done with the Kalman filters, rather than just
with the dynamics.
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estimates of the (mean) trajectory, the extended Kalman filter did not perform as

well as the unscented Kalman filter, though this result was expected based on the

literature. TSUC’s simulation of the uncertainty around the mean trajectory also

compared well with the Monte Carlo simulation.

A Note on Monte Carlo Simulations In the real world, there are many more

sources of error that should be included in Monte Carlo simulations. Beyond the

entry state, uncertainty exists in such things as:

• The dynamics model

• The gravitational model

• The atmospheric model including density, pressure, temperature, and winds

• The aerodynamic coefficients of the spacecraft

• The mass of the spacecraft

• The location of the center of mass of the spacecraft

• The moment of inertias of the spacecraft

However, as there was no error from these sources in the sample problem’s true

trajectory, there is no need to account for them in the Monte Carlo simulations for

the sample problem. Because the sample problem trajectory was run in the same

simulation as the reconstructions, uncertainty from any of the sources listed above

would have to be explicitly added. The only noise added was the noise added to the

acceleration data, as discussed earlier.

4.3.1 Altitude

The mean altitude from the Monte Carlo simulation is shown in Figure 39 with

the best estimate (mean) altitude from the Kalman filters and TSUC’s mean. Both
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Kalman filters appear to agree well with the mean Monte Carlo altitude, and the

residuals of the altitude time histories shown in Figure 39 relative to the mean Monte

Carlo altitude are shown in Figure 40. Note the increasing divergence of the ex-

tended Kalman filter from the mean Monte Carlo altitude beginning near the time

of parachute deployment. The unscented Kalman filter continues to maintain good

agreement with the mean Monte Carlo altitude, even though they deviate slightly

from the mean Monte Carlo altitude near the end of the trajectory. TSUC’s simula-

tion also compared well with the Monte Carlo simulation.
Monte Carlo

100

120

140

m
 )

Monte Carlo
EKF
UKF
TSUC Monte Carlo

40

60

80

A
lti

tu
de

 ( 
km

0 50 100 150 200 250 300
0

20

Time ( s )

 

10
-2

10
0

lu
te

 V
al

ue
) (

 k
m

 )

 
EKF
UKF
TRUC Monte Carlo

10
-4

10

an
 R

es
id

ua
ls 

(A
bs

ol

0 50 100 150 200 250 300
10

-6

Time ( s )

A
lti

tu
de

 M
ea

n

 

Figure 39: The mean altitude from the Monte Carlo simu-
lation is shown with the best estimate (mean) altitude from
the Kalman filters and TSUC’s mean.
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Figure 40: The residuals of the altitude time histories
shown in the previous figure relative to the mean Monte
Carlo altitude.

The 3σ uncertainty for altitude from the Monte Carlo simulation is shown in Fig-

ure 41 with the propagated 3σ uncertainty for altitude from the Kalman filters. The

prediction of the 3σ uncertainty for altitude by the methods discussed in Chapter 3

agree well with the uncertainty for altitude from the Monte Carlo simulation for ap-

proximately the first 60 seconds of the trajectory. At that point, the extended Kalman

filter’s prediction begins to diverge from the Monte Carlo simulation and decreases

until it settles near the initial value of the 3σ uncertainty for altitude. The unscented

Kalman filter continues to maintain good agreement with the Monte Carlo simula-

tion’s 3σ uncertainty for altitude throughout the entire trajectory. TSUC also agrees

well with the Monte Carlo. The residuals of the 3σ uncertainty for altitude shown

in Figure 41 relative to the Monte Carlo simulation’s 3σ uncertainty for altitude are

shown in Figure 42.
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Figure 41: The 3σ uncertainty for altitude from the Monte
Carlo simulation is shown with the propagated 3σ uncer-
tainty for altitude from the Kalman filters and TSUC’s 3σ
uncertainty.
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Figure 42: The residuals of the 3σ uncertainty for altitude
shown in the previous figure relative to the Monte Carlo
simulation’s 3σ uncertainty for altitude.
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4.3.2 Velocity

The mean velocity from the Monte Carlo simulation is shown in Figure 43 with

the best estimate (mean) velocity from the Kalman filters. Both Kalman filters

discussed in Chapter 3 appear to agree well with the mean Monte Carlo velocity,

and the residuals of the velocity time histories shown in Figure 43 relative to the

mean Monte Carlo velocity are shown in Figure 44. Note the divergence of the

extended Kalman filter from the mean Monte Carlo velocity beginning near the time

of parachute deployment and the subsequent recovery approximately 50 seconds later.

The recovery is most likely due to the spacecraft reaching terminal velocity on the

parachute, as the terminal velocity is the same regardless of the method used for

reconstruction. The unscented Kalman filter and TSUC maintain good agreement

with the mean Monte Carlo velocity throughout the entire trajectory.Monte Carlo
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Figure 43: The mean velocity from the Monte Carlo simu-
lation is shown with the best estimate (mean) velocity from
the Kalman filters and TSUC’s mean.
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Figure 44: The residuals of the velocity time histories
shown in the previous figure relative to the mean Monte
Carlo velocity.

The 3σ uncertainty for velocity from the Monte Carlo simulation is shown in Fig-

ure 45 with the propagated 3σ uncertainty for velocity from the Kalman filters. The

prediction of the 3σ uncertainty for velocity by the Kalman filters discussed in Chap-

ter 3 agree well with the uncertainty for velocity from the Monte Carlo simulation

for approximately the first 35 seconds of the trajectory. At that point, the extended

Kalman filter’s prediction begins to diverge from the Monte Carlo simulation and

decreases until it settles near zero. The unscented Kalman filter continues to main-

tain good agreement with the Monte Carlo simulation’s 3σ uncertainty for velocity

throughout the entire trajectory. TSUC also agrees well with the Monte Carlo. The

residuals of the 3σ uncertainty for velocity shown in Figure 45 relative to the Monte

Carlo simulation’s 3σ uncertainty for velocity are shown in Figure 46.
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Figure 45: The 3σ uncertainty for velocity from the Monte
Carlo simulation is shown with the propagated 3σ uncer-
tainty for velocity from the Kalman filters and TSUC’s 3σ
uncertainty.
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Figure 46: The residuals of the 3σ uncertainty for velocity
shown in the previous figure relative to the Monte Carlo
simulation’s 3σ uncertainty for velocity.
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4.3.3 Flight Path Angle

The mean flight path angle from the Monte Carlo simulation is shown in Figure 47

with the best estimate (mean) flight path angle from the Kalman filters. Both Kalman

filters discussed in Chapter 3 appear to agree well with the mean Monte Carlo flight

path angle, and the residuals of the flight path angle time histories shown in Figure 47

relative to the mean Monte Carlo flight path angle are shown in Figure 48. Note the

divergence of the extended Kalman filter from the mean Monte Carlo flight path

angle beginning near the time of parachute deployment and the subsequent recovery

near the end of the trajectory. The unscented Kalman filter and TSUC maintain

good agreement with the simulated sample problem’s flight path angle throughout

the entire trajectory with some slight variation.Monte Carlo
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Figure 47: The mean flight path angle from the Monte
Carlo simulation is shown with the best estimate (mean)
flight path angle from the Kalman filters and TSUC’s mean.

115



Monte Carlo
0  

Monte Carlo

-40

-20

A
ng

le
 ( 

° 
)

EKF
UKF
TRUC Monte Carlo

-80

-60

Fl
ig

ht
 P

at
h 

0 50 100 150 200 250 300
-100

Time ( s )

 

10
2

e)
 ( 

° 
)

 
EKF

10
-2

10
0

ls 
(A

bs
ol

ut
e 

V
al

ue EKF
UKF
TSUC Monte Carlo

-6

10
-4

10

ng
le

 M
ea

n 
R

es
id

ua
l

0 50 100 150 200 250 300
10

-8

10
6

Time ( s )

Fl
ig

ht
 P

at
h 

A
n

 

Figure 48: The residuals of the flight path angle time
histories shown in the previous figure relative to the mean
Monte Carlo flight path angle.

The 3σ uncertainty for flight path angle from the Monte Carlo simulation is shown

in Figure 49 with the propagated 3σ uncertainty for flight path angle from the Kalman

filters. The prediction of the 3σ uncertainty for flight path angle by the Kalman filters

discussed in Chapter 3 agree well with the uncertainty for flight path angle from the

Monte Carlo simulation for approximately the first 50 seconds of the trajectory. At

that point, the extended Kalman filter’s prediction begins to diverge from the Monte

Carlo simulation and decreases until it settles near zero. The unscented Kalman

filter continues to maintain good agreement with the Monte Carlo simulation’s 3σ

uncertainty for flight path angle throughout the entire trajectory. TSUC also agrees

well with the Monte Carlo. The residuals of the 3σ uncertainty for velocity shown

in Figure 49 relative to the Monte Carlo simulation’s 3σ uncertainty for velocity are

shown in Figure 50.
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Figure 49: The 3σ uncertainty for flight path angle from
the Monte Carlo simulation is shown with the propagated
3σ uncertainty for flight path angle from the Kalman filters
and TSUC’s 3σ uncertainty.
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Figure 50: The residuals of the 3σ uncertainty for flight
path angle shown in the previous figure relative to the Monte
Carlo simulation’s 3σ uncertainty for flight path angle.

117



4.4 Trajectory Performance with Poor Initial Conditions

Finally, a 1,000 run Monte Carlo simulation was performed to determine if each

Kalman filter could bound, within its predicted uncertainty bounds, the mean resid-

ual (error) between the Kalman filter’s best estimate of the trajectory and the simu-

lated sample problem in spite of a poor initial state. This might occur, for example,

if the true entry state was different from the mean entry state, as in the real world

the true entry state is not known with absolute certainty. The results of this investi-

gation are shown in Figures 51 to Figures 53 for the extended Kalman filter and in

Figures 54 to Figures 59 for the unscented Kalman filter.

This Monte Carlo simulation was performed by:

1. Sampling from the initial condition distributions shown in Table 16 on page 100.

This initial condition was used to initialize each of the methods discussed in

Chapter 3.3

2. Each method was then run using the above initial condition and the noisy

sample problem accelerometer data discussed above.

3. Once all the Monte Carlo runs were completed, the difference (residual error)

between the Monte Carlo run’s reconstruction and the true trajectory was com-

puted for each Monte Carlo run.

4. Then, the mean and standard deviation of the residuals was then computed,

and they are plotted in the following plots for each method.

3Note that since the true entry state for this problem is also the mean entry state given in
Table 16, the mean of the “poor” entry states that are sampled from the distribution of the true
entry state given in Table 16 will approach the value of the true entry state as the number of Monte
Carlo runs increases. In fact with the 1,000 runs done in this study, they appear to be identical, as
their difference shown in the following plots appears to be zero.
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4.4.1 The Extended Kalman Filter

The Monte Carlo mean residual between the extended Kalman filter’s best estimate of

altitude and the simulated sample problem’s altitude is shown in Figure 51. In spite

of a poor initial state, the extended Kalman filter is able to bound the mean Monte

Carlo altitude residual within its predicted 3σ uncertainty bounds. Figure 52 shows

the Monte Carlo mean residual between the extended Kalman filter’s best estimate

of velocity and the simulated sample problem’s velocity. The poor initial state causes

the extended Kalman filter to over predict the accuracy of its best estimate of velocity,

as shown in Figure 52 by the mean Monte Carlo velocity residual falling outside the

extended Kalman filter’s predicted 3σ uncertainty bounds approximately 45 seconds

into the trajectory. Figure 53 shows the Monte Carlo mean residual between the

extended Kalman filter’s best estimate of flight path angle and the simulated sample

problem’s flight path angle. The poor initial state can cause the extended Kalman

filter to over predict the accuracy of its best estimate of flight path angle, as shown

in Figure 53 by the mean Monte Carlo flight path angle residual falling outside the

extended Kalman filter’s predicted 3σ uncertainty bounds approximately 100 seconds

into the trajectory.
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Figure 51: The Monte Carlo mean residual between the
extended Kalman filter’s best estimate of altitude and the
simulated sample problem’s altitude.
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Figure 52: The Monte Carlo mean residual between the
extended Kalman filter’s best estimate of velocity and the
simulated sample problem’s velocity.
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Figure 53: The Monte Carlo mean residual between the
extended Kalman filter’s best estimate of flight path angle
and the simulated sample problem’s flight path angle.

4.4.2 The Unscented Kalman Filter

The Monte Carlo mean residual between the unscented Kalman filter’s best estimate

of altitude and the simulated sample problem’s altitude is shown in Figure 54. In

spite of a poor initial state, the unscented Kalman filter is able to bound the mean

Monte Carlo altitude residual within its predicted 3σ uncertainty bounds.

Figure 55 shows the Monte Carlo mean residual between the unscented Kalman

filter’s best estimate of velocity and the simulated sample problem’s velocity. In spite

of a poor initial state, the unscented Kalman filter is able to bound the mean Monte

Carlo velocity residual within its predicted 3σ uncertainty bounds approximately

99.7% of the time as shown in Figures 55 to 58 indicating that it does not over

predict the accuracy of its best estimate of velocity. Figure 56 shows closer look at

the beginning of the trajectory. The unscented Kalman filter is able to bound the

mean Monte Carlo velocity residual within its predicted 3σ uncertainty bounds at
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the beginning of the trajectory. A closer look near parachute deployment is shown

in Figure 57. Near parachute deployment, the mean Monte Carlo velocity residual

falls outside the unscented Kalman filter’s predicted 3σ uncertainty bounds. This

unbounded portion of the residuals represents approximately 0.3% of the trajectory.

Hence, in spite of a poor initial state, the unscented Kalman filter is able to bound

the mean Monte Carlo velocity residual within its predicted 3σ uncertainty bounds

approximately 99.7% of the time indicating that it does not over predict the accuracy

of its best estimate of velocity. A closer look at the end of the trajectory is shown in

Figure 58, where the unscented Kalman filter is able to bound the mean Monte Carlo

velocity residual within its predicted 3σ uncertainty bounds.

The Monte Carlo mean residual between the unscented Kalman filter’s best es-

timate of flight path angle and the simulated sample problem’s flight path angle is

shown in Figure 59. In spite of a poor initial state, the unscented Kalman filter is

able to bound the mean Monte Carlo flight path angle residual within its predicted

3σ uncertainty bounds.
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Figure 54: The Monte Carlo mean residual between the
unscented Kalman filter’s best estimate of altitude and the
simulated sample problem’s altitude.
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Figure 55: The Monte Carlo mean residual between the
unscented Kalman filter’s best estimate of velocity and the
simulated sample problem’s velocity.
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Figure 56: A closer look at the Monte Carlo mean resid-
ual between the unscented Kalman filter’s best estimate of
velocity and the simulated sample problem’s velocity.
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Figure 57: A closer look at the Monte Carlo mean resid-
ual between the unscented Kalman filter’s best estimate of
velocity and the simulated sample problem’s velocity. This
unbounded portion of the residuals represent approximately
0.3% of the trajectory.
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Figure 58: A closer look at the Monte Carlo mean resid-
ual between the unscented Kalman filter’s best estimate of
velocity and the simulated sample problem’s velocity.
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Figure 59: The Monte Carlo mean residual between the
unscented Kalman filter’s best estimate of flight path angle
and the simulated sample problem’s flight path angle.
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4.4.3 Trajectory Simulation Using Collocation (TSUC)

The Monte Carlo mean residual between TSUC’s simulation of altitude and the simu-

lated sample problem’s altitude is shown in Figure 60. In spite of a poor initial state,

TSUC is able to bound the mean Monte Carlo altitude residual within its simulated

3σ uncertainty bounds.

Figure 61 shows the Monte Carlo mean residual between TSUC’s simulation of

velocity and the simulated sample problem’s velocity. In spite of a poor initial state,

TSUC is able to bound the mean Monte Carlo velocity residual within its simulated

3σ uncertainty bounds approximately 99.7% of the time as shown in Figures 61 to 64

indicating that its usefulness for simulating trajectories. TSUC is able to bound the

mean Monte Carlo velocity residual within its predicted 3σ uncertainty bounds at

the beginning of the trajectory. A closer look near parachute deployment is shown in

Figure 63. Near parachute deployment, the mean Monte Carlo velocity residual falls

outside TSUC’s simulated 3σ uncertainty bounds. This unbounded portion of the

residuals represents approximately 0.3% of the trajectory. Hence, in spite of a poor

initial state, TSUC is able to bound the mean Monte Carlo velocity residual within

its simulated 3σ uncertainty bounds approximately 99.7% of the time indicating that

its usefulness for simulating trajectories. A closer look at the end of the trajectory

is shown in Figure 64, where TSUC is able to bound the mean Monte Carlo velocity

residual within its simulated 3σ uncertainty bounds.

The Monte Carlo mean residual between TSUC’s simulation of flight path angle

and the simulated sample problem’s flight path angle is shown in Figure 65. In spite

of a poor initial state, TSUC is able to bound the mean Monte Carlo flight path angle

residual within its simulated 3σ uncertainty bounds.
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Figure 60: The Monte Carlo mean residual between
TSUC’s simulation of altitude and the simulated sample
problem’s altitude.
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Figure 61: The Monte Carlo mean residual between
TSUC’s simulation of velocity and the simulated sample
problem’s velocity.
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Figure 62: A closer look at the Monte Carlo mean residual
between TSUC’s simulation of velocity and the simulated
sample problem’s velocity.
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Figure 63: A closer look at the Monte Carlo mean residual
between TSUC’s simulation of velocity and the simulated
sample problem’s velocity. This unbounded portion of the
residuals represent approximately 0.3% of the trajectory.
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Figure 64: A closer look at the Monte Carlo mean residual
between TSUC’s simulation of velocity and the simulated
sample problem’s velocity at the end of the trajectory.
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Figure 65: The Monte Carlo mean residual between
TSUC’s simulation of flight path angle and the simulated
sample problem’s flight path angle.

4.5 Summary

Both Kalman filters discussed in Chapter 3 were able to reconstruct the mean trajec-

tories nearly equally well. While the extended Kalman filter did demonstrate some

difficulties, the unscented Kalman filter had only slight difficulties, and they gener-

ally seem identical from the plots. Regarding the estimation of uncertainties, the

unscented Kalman filter clearly performed better than the extended Kalman filter

and did not over predict the accuracy of their best estimates. Now, we consider these

results in the context of the details of each method.4

The extended Kalman filter propagates a nominal trajectory that represents a

“best guess” of the trajectory based on the process model. The nominal trajectory’s

estimate of the state is updated at each measurement time using the measurement

data to obtain a best estimate of the state at each measurement time, and the nominal

4Please see Chapter 3 for the details of each Kalman filter.
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trajectory is propagated from that best estimate of the state. There are two items that

can explain the extended Kalman filter’s difficulties reconstructing a mean trajectory.

First, the nominal trajectory is only as good as the process model. If the process model

is too poor, then the update of the state using the measurement data may not be big

enough to get the nominal trajectory back on track, and the best estimate will drift

away from the true trajectory. Second, the update of the state using the measurement

data is done with the Kalman gain (please see equation (38i) on page 59). The

extended Kalman filter’s Kalman gain must take into account both the uncertainty in

the state and the measurement noise, where the state uncertainty (the error covariance

matrix) is propagated using a linearization of the nonlinear state equations via the

state transition matrix (please see Table 11 on page 68). This can result in a poor

propagation of the state uncertainty, which results in a poor Kalman gain, a poor

state estimate, and poor update of the state uncertainty, especially at highly nonlinear

portions of the trajectory such as peak deceleration and parachute deployment. It

is possible that through the addition of process noise that the extended Kalman

filter would better propagate the initial state uncertainties and bound the residuals

between its best estimate and the true trajectory. However, as is discussed below, the

unscented Kalman filter can already do this, and it does not require process noise to

be added. Additionally, any process noise added to the extended Kalman filter would

have to be added to the unscented Kalman filter, so the two Kalman filters could be

compared on an equal basis.

In contrast, the unscented Kalman filter performs, what is essentially, a mini–

Monte Carlo. The sigma–points are sampled from the initial uncertainty distribution

of the state and propagated forward in time using the nonlinear system equations

to the next measurement time. The nominal state is the mean of the sigma–points

(note that this is not simply a propagation of the previous mean, as in the extended
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Kalman filter case), and the error covariance matrix is calculated from the sigma–

points, as well. This provides the unscented Kalman filter with a better nominal value

of the state to be updated by the measurement data. While the unscented Kalman

filter’s Kalman gain also takes into account both the uncertainty in the state and the

measurement noise, it is found using the sigma points (please see equations (85) to

(89) on page 77). As the sigma–points were propagated forward in time using the

nonlinear system equations, no linearization was involved. This allows the unscented

Kalman filter to obtain a better estimate of both the state and its uncertainty when

compared to the extended Kalman filter, as shown in this chapter for entry, descent,

and landing trajectory reconstruction.

TSUC’s Monte Carlo simulation compared well with the explicit integration Monte

Carlo simulation indicating its usefulness for simulating trajectories using the solution

procedure in Table 15 on page 98 for determining the values of the state from the

controls and parameters of the simulation.

In the next chapter, each Kalman filter will be tested with real–world data, where

the true trajectory is unknown.
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CHAPTER V

TRAJECTORY RECONSTRUCTION FOR MARS

PATHFINDER

As stated earlier, extended Kalman filtering (EKF) has been used extensively in tra-

jectory reconstruction both for orbiting spacecraft and for planetary probes. It forms

the standard to which the unscented Kalman filter (UKF) is tested. Additionally,

Mars Pathfinder’s trajectory will be simulated using collocation.

5.1 Mars Pathfinder

Mars Pathfinder was launched aboard a Delta II rocket [38] in December 4, 1996 [299]

and traveled close to 500 million kilometers [191] to reach Mars. It entered the Mar-

tian atmosphere on July 4, 1997 [184] and landed approximately five minutes later in

the Ares Vallis region of Chryse Planitia [290, 107, 54, 75, 112] at 19.33°N (aerode-

tic), 326.45°E1 (see Figure 66). The direct entry method used by Pathfinder to reach

the surface of Mars resulted in significant cost–savings since no propellant was needed

to capture it into a parking orbit around Mars before landing [310, 202] as with the

Viking orbiter–landers [121, 77].

Pathfinder’s entry configuration is shown in Figure 19 on page 36. Pathfinder did

not have a reaction control system and followed a ballistic flight path. [104] Although

Pathfinder’s aeroshell is statically unstable for densities less than 2 × 10−7 kg
m3 , the

gyroscopic stability caused by Pathfinder’s two rotations per minute spin mitigated

this aerodynamic moment. [191]

1Based on landmark recognition. Lander radiometric tracking places the landing site at
19.28°N (aerodetic), 326.48°E, and the best estimate from flight data was 19.09°N (aerocen-
tric), 326.48°E. [269]
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Pathfinder’s entry, descent, and landing sequence is shown in Figure 67, and the

times of several events are listed in Table 17. The spacecraft decelerated with its

aeroshell and heatshield, then deployed a supersonic parachute, jettisoned its heat-

shield, and used retrorockets to minimize its velocity above the surface of Mars. The

lander was then separated from the backshell and dropped to the surface protected

by airbags. Once the motion of the lander ceased, the lander’s petals opened, and

it deployed instruments to make in situ science measurements. Three scientific in-

struments collected data once on the surface: (1) the Imager for Mars Pathfinder

[256], (2) the α–proton x–ray spectrometer (APXS) [224], and (3) an atmospheric

sTSUCture investigation / meteorology package (ASI/MET) [252]. Mars Pathfinder

also deployed a small rover named Sojourner. [106, 105, 285]

Viking 2
Phoenix

PathfinderViking 1

Opportunity Spirit

Mars 3

Mars 6

Image credit: http://mola.gsfc.nasa.gov/images/map.jpg

Figure 66: Landing site of Mars Pathfinder. [Image credit:
The NASA Goddard Space Flight Center]
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Lander Descent

Heatshield Separation

Parachute Deployment

Cruise Stage Separation

Entry

Cruise

Deflation

Airbag Retraction

Radar Ground Acquisition

Airbag Inflation

Bridle Cut

Retrorocket Firing

Stop

Bridle Deployment

Petals Opened

Landing

Bouncing

Figure 67: Entry, descent, and landing sequence for Mars
Pathfinder. [71, 72, 33]

Table 17: The times of some notable events during Mars
Pathfinder’s entry, descent, and landing. [269]

Event Time after Entry (s)
Entry interface 0
Mortar fire 171.4
Parachute open 172.7
Heatshield jettison 192.1
Deployment of lander on bridle 211.4
Airbag inflation 295.2
Rocket deceleration 299.1
Parachute bridle cut 301.3
First bounce 305

5.2 Reconstruction

5.2.1 Initial Conditions

The initial conditions (i.e. the entry state vector x0) for Mars Pathfinder are listed

in Table 18. Both the mean value and the 1σ uncertainty are given for each state

variable. These initial values are propagated forward in time until parachute bridle
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cut. Time histories of altitude, velocity, and flight path angle are presented below, as

well as a density profile of the Martian atmosphere at the time of Mars Pathfinder’s

entry. A comparison is made with a previous reconstruction [269] of Mars Pathfinder’s

trajectory that is available in the literature. The previous reconstruction is based on

a combination of accelerometer and altimeter measurements using sequential filtering

and smoothing techniques.

Table 18: The values of Mars Pathfinder’s state variables
at entry.

State Variable Mean [269, 49] Uncertainty (1σ) [49]
Radius 3 522 200 m 1 700 m
Aerocentric latitude 22.630 3°N 0.04°
Longitude 337.997 6°E 0.01°
Inertial velocity 7 264.2 m

s 0.7 m
s

Inertial flight path angle -14.061 4° 0.02°
Inertial azimuth 253.148 1° 0.02°

5.2.2 Accelerometer Data

During entry, the accelerations experienced by Mars Pathfinder were recorded by ac-

celerometers in Pathfinders atmospheric structure and meteorology instrument. The

threshold of acceleration detection due to atmospheric drag was expected to occur at

an atmospheric density of 2 × 10−10 kg
m3 . The acceleration data [164] shown in Fig-

ure 68 was stored onboard the spacecraft and later transmitted to Earth. The mean

noise level for the simulated acceleration measurements was 0 µg with a standard

deviation of 1500 µg [49], and the measurement frequency was 32 Hz [164]. Low–pass

filters in the accelerometer electronics attenuated signal frequencies above 5 Hz to

suppress the effects of noise and spacecraft dynamic motion. [252] The data was fur-

ther smoothed to facilitate reconstruction as shown in Figure 69 to remove the spikes

in acceleration caused by the gain transitions of the accelerometers.
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Figure 68: The Mars Pathfinder accelerometer data show-
ing the data spikes from the accelerometers transitioning to
different sensitivity levels. [164, 269]
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Figure 69: The Mars Pathfinder accelerometer data after
smoothing.

5.2.3 Altimeter Data

Near the end of parachute descent, the altitude of Mars Pathfinder was recorded by

an altimeter. The noise level for the altimeter measurements was 0.3 m [49] and

the measurement frequency was 8 Hz. A plot of the altimeter data [37] is shown in

Figure 70.
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Figure 70: The Mars Pathfinder altimeter data. [37]

5.2.4 Digitized Data

While the Kalman filters discussed in Chapter 3 can be used to reconstruct Mars

Pathfinder’s entry trajectory and compared against each other, it is also useful to com-

pare the Kalman filters against the “truth”. Unfortunately, the true Mars Pathfinder

entry trajectory cannot be known, so an independent reconstruction of Mars Pathfinder’s

entry trajectory was sought for comparison with this investigation. The 1999 Mars

Pathfinder entry trajectory reconstruction by David Spencer and others in Refer-

ence [269] was selected to provide an independent reconstruction of Mars Pathfinder’s

entry trajectory. Recall, as discussed in Chapter 2, that the trajectory reconstruction

by David Spencer and others [269] used a combination of accelerometer and altimeter

measurements using sequential filtering and smoothing techniques [270, 269]. As this

is a different process from the Kalman filters discussed in Chapter 3, the results from

the Kalman filters discussed in Chapter 3 will differ from the reconstruction by David
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Spencer and others [269]. However, the comparison will speak to the general accu-

racy of the Kalman filters discussed in Chapter 3, while the extended Kalman filter

reconstruction, as one accepted standard of trajectory reconstruction2, will speak to

the specific capabilities of the unscented Kalman filter discussed in Chapter 3 for this

investigation.

In a discussion with David Spencer regarding the 1999 reconstruction of Mars

Pathfinder’s trajectory [269], he stated that the data is “long gone” [268], so the

altitude, velocity, flight path angle, and density plots shown in Figures 71, 72, and 120

were digitized using the Engauge Digitizer digitizing software [186]. For the altitude

time history, the resolution of Figure 71 is approximately 0.2 km
pixel

with a possible

error in the digitized altitude of at least 0.8 km based on a four pixel curve width.

For the velocity time history, the resolution of Figure 72 is approximately 10.6 m/s
pixel

with a possible error in the digitized velocity of at least 42.6 m
s

based on a four pixel

curve width. Finally, for the flight path angle time history, the resolution of Figure 72

is approximately 0.106
◦

pixel
with a possible error in the digitized flight path angle of

at least 0.426° based on a four pixel curve width.

2Along with direct integration, as established in Chapter 2.
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Table 4 Landing site solutions

Method Radius, km Longitude, ±E Areodetic latitude, ±

Landmark recognition N/A 326.45 19.33
Lander radiometric 3389.714 326.48 19.28

tracking

Fig. 11 Radar altimeter data during rocket � ring.

errors between the assumed location of surface features on current
U.S. Geographical Survey maps and their actual positions relative
to the Mars latitude/longitude grid. The position determined using
radiometric tracking is assumed to be correct for trajectory recon-
struction purposes.

Flight Path
The Mars Path� nder � ight path during EDL has been recon-

structed from the available � ight data. Two different trajectory es-
timates, one developed using least-squares estimation techniques
and the other using a sequentialestimation scheme, have been com-
puted. Both reconstructions utilized the three-axis accelerometer
and radar altimeter data. A ballistic, zero-lift trajectory is assumed
for the least-squares� t. The sequential estimate makes use of mea-
surements of the received frequency of the X-band carrier signal
broadcast by the spacecraft. The landing site position � x (Table 3)
from postlanding radiometric tracking served as a boundary condi-
tion for the least-squaresestimate and was treated as a multidimen-
sional measurement in the sequential estimate. Finally, the entry
state vector estimate (Table 1) and error covariance matrix from
the navigation team was used as an initial condition for both the
least-squares and sequential estimations.

The least-squaresreconstructionprocess is shown in Fig. 12. The
� rst step in developing this reconstruction was the calculation of
an initial estimate of the position and velocity history. This was
accomplished through integration of the three-degree-of-freedom
kinematic equations of motion in a nonrotating,Mars-centered co-
ordinate frame using accelerometer data and a model for the grav-
itational � eld of Mars. Subsequently, the initial conditions for the
accelerometer-computedtrajectory were numericallyadjusted such
that the resultant trajectorybest � t the radar altimeter data in a least-
squaressense. In addition,the entry conditionswere manipulatedso
that the trajectory terminatedat the landed position � x, as described
earlier.

The sequential reconstructionprocess began in a manner similar
to the least-squaresprocessofFig. 12, in that an initialestimateof the
� ight path was computedfromaccelerometerdata, in this case using
the best-estimated state vector at entry as the initial condition. The
partial derivativesof the trajectoryparameterswith respect to initial
condition errors and accelerometer sensor errors were also com-
puted. This initial reference trajectory was then improved by using
a linearized formulation of the discrete Kalman � lter algorithm8 to

Fig. 12 Least-squares trajectory reconstruction process � owchart.

Fig. 13 Altitudehistory fromballistic least-squaresandsequential tra-
jectory estimates.

estimatecorrectionsusingboth the receivedfrequencyand altimeter
data sets.

The sequential � lter program produced two different estimates
of the corrected � ight path, along with computations of the error
covariance matrix associated with each estimate. The � rst estimate
was obtained by processing the received frequency and altimeter
data from the predicted time of entry interface to the time of ini-
tial impact on the Mars surface. The second estimate was obtained
by processing the same data set, but with time running backward,
using the postlanding position � x and its error covariance as ini-
tial conditions. In addition to estimates of the deviations in position
and velocity from the accelerometer-onlytrajectory, the � lter algo-
rithm also computed estimates of the errors in the measurements,
including accelerometer sensor errors, altimeter errors, and drift of
the spacecraft’s transmit frequency relative to the pro� le predicted
prior to entry. The � nal step in the sequentialreconstructionprocess
was to compute revised estimates of the position and velocity devi-
ations from the reference, i.e., accelerometer-computed,trajectory,
and sensorerror parameters.Estimatesderivedfrom the forwardand
backward � ltering of the received frequencyand altimeterdata were
smoothed together, using the Fraser–Potter smoothing algorithm.9

Figure 13 shows the altitude (measured relative to the landing
site radius) history of the Path� nder spacecraft during EDL, for
the ballistic least-squaresand sequentialestimates. Figure 14 shows
the altitude history for the two estimates during the parachute de-
scent phase, and Fig. 15 compares the estimates during the � nal

Figure 71: Reconstructed Mars Pathfinder altitude time
history from Spencer 1999. [269]
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Fig. 16 Atmosphere-relative velocity and � ight-path angle during EDL.

Fig. 17 Axial and normal acceleration measurements prior to atmospheric entry: ¡ 350 · time · ¡ 50 s.

interpolated to produce an estimate of total angle of attack. This
total angle-of-attack estimate is presented in Fig. 18b.

Note that a total angle-of-attackestimate is not obtainable in this
manner for the � rst 20 s of the atmospheric entry, due to the reso-
lution in the lateral accelerometer channels. However, as the den-
sity increases above 1.0e¡07 kg/m3 at an altitude of approximately
95 km, the An=Az signal is strong enough to discern vehicle atti-
tude. Further detail on the higher altitude portion of the Path� nder
atmospheric entry is provided in Ref. 5.

The presence of two hypersonic static instability regions and a
supersonic dynamic instability region, as predicted in Ref. 11, are
clearly evident in Fig. 18b. In fact, the hypersonic static instability
regions(centeredat approximately55 and 85 s) are strongenough to
be evidentin bothFig. 18b (theangle-of-attackestimatederivedwith
the pre� ight aerodynamic database) and Fig. 18a (accelerometer

data). This derivedangle-of-attackestimatebears strikingsimilarity
to pre� ight predictions.10;12 At the time of peak heating, the vehicle
is estimated to be at a total angle of attack below 3 deg.

Mars Atmosphere Pro� le
A Mars atmosphere pro� le, in terms of temperature, pressure,

and density, has been estimated. The atmosphere properties were
derived based on the sensed accelerations, the assumed axial aero-
dynamiccoef� cients from thePath� nderaerodynamicdatabase,and
the relative velocity obtained from the least-squares trajectory re-
construction:

½ D
2Az

V 2CA.S=m/
(5)

The values of CA are � ight regime dependent,and because all � ight
regimes from free-molecule � ow to subsonic � ow are encountered

Figure 72: Reconstructed Mars Pathfinder velocity and
flight path angle time history from Spencer 1999 [269]
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5.2.5 Altitude

Reconstructed with only Acceleration Data

The digitized altitude time history for Mars Pathfinder from Spencer 1999 [269] is

shown in Figure 73 with the reconstructions by the Kalman filters discussed in Chap-

ter 3 (using only acceleration data) overlaid. Both Kalman filters discussed in Chap-

ter 3 appear to agree well with the digitized data from Spencer 1999 [269]. The

residuals of the altitude time histories shown in Figure 73 relative to the digitized

data from Spencer 1999 [269] are shown in Figure 74. Both Kalman filters discussed

in Chapter 3 contain the residuals within their 3σ uncertainty bounds. The similarity

of the three sets of residuals in Figure 74 indicates that the unscented Kalman filter

was able to reconstruct Mars Pathfinder’s altitude at least as well as the extended

Kalman filter, while TSUC was able to simulate it. While the similarity of the 3σ

uncertainty bounds in Figure 74 indicates that neither Kalman filters tends to over

predict the accuracy of their best estimate more than the other. Figures 75, 76, and 77

show another look at just the altitude residuals for the extended Kalman filter, the

unscented Kalman filter, and TSUC, respectively.

143



S 1999 C i

100

120

140
Spencer 1999 Comparison

 
Spencer 1999
EKF
UKF
TSUC Monte Carlo

20

40

60

80

A
lti

tu
de

 ( 
km

 )

0 50 100 150 200 250 300
-20

0

20

Time ( s )

 

( )

Figure 73: The digitized altitude time history for Mars
Pathfinder from Spencer 1999 [269] is shown with the re-
constructions (using only acceleration data) and the simu-
lation.
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Figure 74: The residuals of the altitude time histories
shown in the previous figure relative to the digitized data
from Spencer 1999 [269].
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Figure 75: Another look at just the altitude residuals be-
tween the extended Kalman filter and the digitized data
from Spencer 1999 [269].

S 1999 C i

2

4

6
Spencer 1999 Comparison

km
 )

 
UKF Residuals
UKF 3 Uncertainty

-2

0

2

lti
tu

de
 R

es
id

ua
ls 

( 

0 50 100 150 200 250 300
-6

-4

Time ( s )

A
l

 

( )

Figure 76: Another look at just the altitude residuals be-
tween the unscented Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 77: Another look at just the altitude residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

Reconstructed with both Acceleration Data and Altimeter Data

The digitized altitude time history for Mars Pathfinder from Spencer 1999 [269] is

shown in Figure 78 with the reconstructions by the Kalman filters discussed in Chap-

ter 3 (using both acceleration data and altimeter data) overlaid. Both Kalman

filters discussed in Chapter 3 appear to agree well with the digitized data from

Spencer 1999 [269]. A close up view of the change in the altitude estimates shown

in Figure 78 when the altimeter acquires the ground is shown in Figure 79. Both

Kalman filters discussed in Chapter 3 update their estimates to included the new

data.3 The residuals of the altitude time histories shown in Figure 78 relative to the

digitized data from Spencer 1999 [269] are shown in Figure 80. Both Kalman filters

discussed in Chapter 3 contain the residuals within their 3σ uncertainty bounds until

the altimeter acquires the ground. Then the 3σ uncertainty bounds for the three

methods collapses to nearly zero due to the high accuracy of the altimeter measure-

ment. Figures 81, 82, and 83 show another look at just the altitude residuals for the

3For TSUC, the altimeter data provides a value of the state and reduces the number of unknown
state variables when altimeter data is available.
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extended Kalman filter, the unscented Kalman filter, and TSUC, respectively.
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Figure 78: The digitized altitude time history for Mars
Pathfinder from Spencer 1999 [269] is shown with the re-
constructions (using both acceleration data and altimeter
data) and the simulation.
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Figure 79: A close up view of the change in the altitude
estimates shown in the previous figure when the altimeter
acquires the ground. The jump suggests that the true entry
state differs from the mean entry state listed in Table 18.
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Figure 80: The residuals of the altitude time histories
shown in the previous figure relative to the digitized data
from Spencer 1999 [269].
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Figure 81: Another look at just the altitude residuals be-
tween the extended Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 82: Another look at just the altitude residuals be-
tween the unscented Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 83: Another look at just the altitude residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].
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5.2.6 Velocity

Reconstructed with only Acceleration Data

The digitized velocity time history for Mars Pathfinder from Spencer 1999 [269] is

shown in Figure 84 with the reconstructions by the Kalman filters discussed in Chap-

ter 3 (using only acceleration data) overlaid. Both Kalman filters discussed in Chap-

ter 3 appear to agree well with the digitized data from Spencer 1999 [269]. The

residuals of the velocity time histories shown in Figure 84 relative to the digitized

data from Spencer 1999 [269] are shown in Figure 85. Neither Kalman filter discussed

in Chapter 3 contains the residuals within their 3σ uncertainty bounds, and the large

divergence of the residuals around 75 seconds is due to peak deceleration. However,

the similarity of the three sets of residuals in Figure 85 indicates that the unscented

Kalman filter was able to reconstruct Mars Pathfinder’s trajectory at least as well

as the extended Kalman filter. While the similarity of the 3σ uncertainty bounds

between the unscented Kalman filter and TSUC in Figure 85 (perhaps better seen

in Figure 87) indicates that unscented Kalman filter compares well against a Monte

Carlo simulation. Unfortunately, the 3σ uncertainty bounds for the extended Kalman

filter rapidly converge to almost zero approximately 50 seconds into the trajectory

(perhaps better seen in Figure 86) indicating that the extended Kalman filter tends

to over predict the accuracy of its best estimate more than the unscented Kalman

filter.
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Figure 84: The digitized velocity time history for Mars
Pathfinder from Spencer 1999 [269] is shown with the re-
constructions (using only acceleration data) and the simu-
lation.
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Figure 85: The residuals of the velocity time histories
shown in the previous figure relative to the digitized data
from Spencer 1999 [269].
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Figure 86: Another look at just the velocity residuals be-
tween the extended Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 87: Another look at just the velocity residuals be-
tween the unscented Kalman filter and the digitized data
from Spencer 1999 [269].

152



S 1999 C i

0

50
Spencer 1999 Comparison

m
 / 

s 
)

 
TSUC Residuals
TSUC 3 Uncertainty

100

-50

lo
ci

ty
 R

es
id

ua
ls 

( 
m

0 50 100 150 200 250 300
-150

-100

Time ( s )

V
el

 

( )

Figure 88: Another look at just the velocity residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

Reconstructed with both Acceleration Data and Altimeter Data

The digitized velocity time history for Mars Pathfinder from Spencer 1999 [269] is

shown in Figure 89 with the reconstructions by the Kalman filters discussed in Chap-

ter 3 (using both acceleration data and altimeter data) overlaid. Both Kalman

filters discussed in Chapter 3 appear to agree well with the digitized data from

Spencer 1999 [269]. The residuals of the velocity time histories shown in Figure 89

relative to the digitized data from Spencer 1999 [269] are shown in Figure 90. Neither

Kalman filter discussed in Chapter 3 contains the residuals within their 3σ uncertainty

bounds, and the large divergence of the residuals around 75 seconds is due to peak

deceleration. However, the similarity of the residuals indicates that the unscented

Kalman filter was able to reconstruct Mars Pathfinder’s velocity at least as well as

the extended Kalman filter. The 3σ uncertainty bounds for the extended Kalman

filter rapidly converge to almost zero approximately 50 seconds into the trajectory

(perhaps better seen in Figure 91) indicating that the extended Kalman filter tends

to over predict the accuracy of its best estimate more than the unscented Kalman

filter. The 3σ uncertainty bounds of the unscented Kalman filter (perhaps better seen
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in Figure 92) converge rapidly to nearly zero when the altimeter acquires the ground.
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Figure 89: The digitized velocity time history for Mars
Pathfinder from Spencer 1999 [269] is shown with the re-
constructions (using both acceleration data and altimeter
data) and the simulation.
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Figure 90: The residuals of the velocity time histories
shown in the previous figure relative to the digitized data
from Spencer 1999 [269].
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Figure 91: Another look at just the velocity residuals be-
tween the extended Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 92: Another look at just the velocity residuals be-
tween the unscented Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 93: Another look at just the velocity residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

5.2.7 Flight Path Angle

Reconstructed with only Acceleration Data

The digitized flight path angle time history for Mars Pathfinder from Spencer 1999 [269]

is shown in Figure 94 with the reconstructions by the Kalman filters discussed in

Chapter 3 (using only acceleration data) overlaid. Both Kalman filters discussed

in Chapter 3 appear to agree well with the digitized data from Spencer 1999 [269].

The residuals of the flight path angle time histories shown in Figure 94 relative to

the digitized data from Spencer 1999 [269] are shown in Figure 95. Neither of the

Kalman filters discussed in Chapter 3 contain the residuals within their 3σ uncer-

tainty bounds, and the large divergence of the residuals centered around 210 seconds

is due to parachute deployment. However, the better bounding of the residuals by

the unscented Kalman filter (perhaps better seen in Figure 97) indicates that it was

able to reconstruct Mars Pathfinder’s flight path angle somewhat better than the ex-

tended Kalman filter. While the similarity of the 3σ uncertainty bounds between the

unscented Kalman filter (perhaps better seen in Figures 97 and 98) indicates that the

unscented Kalman filter agrees well with the collocation simulation. Unfortunately,
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the 3σ uncertainty bounds for the extended Kalman filter are nearly zero before

parachute deployment (perhaps better seen in Figure 96) and during parachute de-

ployment, the residuals for the extended Kalman filter are approximately three times

larger than the residuals for the unscented Kalman filter indicating that the extended

Kalman filter’s best estimate of flight path angle is probably worse than the unscented

Kalman filter and that the extended Kalman filter tends to over predict the accuracy

of its best estimate more than the unscented Kalman filter.
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Figure 94: The digitized flight path angle time history
for Mars Pathfinder from Spencer 1999 [269] is shown with
the reconstructions (using only acceleration data) and the
simulation.
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Figure 95: The residuals of the flight path angle time his-
tories shown in the previous figure relative to the digitized
data from Spencer 1999 [269].
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Figure 96: Another look at just the velocity residuals be-
tween the extended Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 97: Another look at just the velocity residuals be-
tween the unscented Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 98: Another look at just the velocity residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

Reconstructed with both Acceleration Data and Altimeter Data

The digitized flight path angle time history for Mars Pathfinder from Spencer 1999 [269]

is shown in Figure 99 with the reconstructions by the Kalman filters discussed in

Chapter 3 (using both acceleration data and altimeter data) overlaid. Both Kalman
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filters discussed in Chapter 3 appear to agree well with the digitized data from

Spencer 1999 [269]. The residuals of the flight path angle time histories shown in

Figure 99 relative to the digitized data from Spencer 1999 [269] are shown in Fig-

ure 100. Neither of the Kalman filters discussed in Chapter 3 contain the residuals

within their 3σ uncertainty bounds, and the large divergence of the residuals centered

around 210 seconds is due to parachute deployment. However, the better bounding

of the residuals by the unscented Kalman filter (perhaps better seen in Figure 102)

indicates that it was able to reconstruct Mars Pathfinder’s flight path angle somewhat

better than the extended Kalman filter. While the similarity of the 3σ uncertainty

bounds between the unscented Kalman filter and TSUC (perhaps better seen in Fig-

ures 102 and 103) indicates that the unscented Kalman filter agrees well with the

collocation simulation. Unfortunately, the 3σ uncertainty bounds for the extended

Kalman filter are nearly zero before parachute deployment (perhaps better seen in

Figure 101) and during parachute deployment, the residuals for the extended Kalman

filter are approximately three times larger than the residuals for the unscented Kalman

filter indicating that the extended Kalman filter’s best estimate of flight path angle

is probably worse than the unscented Kalman filter and that the extended Kalman

filter tends to over predict the accuracy of its best estimate more than the unscented

Kalman filter. When radar ground acquisition by the altimeter occurs, the extended

Kalman filter’s 3σ uncertainty bounds are already nearly zero, but ground acquisition

causes the unscented Kalman filter to reduce its 3σ uncertainty bounds to nearly zero.

160



S 1999 C i

-20

0
Spencer 1999 Comparison

( °
 )

 
Spencer 1999
EKF
UKF
TSUC Monte Carlo

-60

-40

Fl
ig

ht
 P

at
h 

A
ng

le
 (

0 50 100 150 200 250 300
-100

-80

Time ( s )

F

 

( )

Figure 99: The digitized flight path angle time history for
Mars Pathfinder from Spencer 1999 [269] is shown with the
reconstructions (using both acceleration data and altimeter
data) and the simulation.
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Figure 100: The residuals of the flight path angle time his-
tories shown in the previous figure relative to the digitized
data from Spencer 1999 [269].
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Figure 101: Another look at just the velocity residuals
between the extended Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 102: Another look at just the velocity residuals
between the unscented Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 103: Another look at just the velocity residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

5.2.8 Landing Site

Reconstructed with only Acceleration Data

The landing site for Mars Pathfinder from Spencer 1999 [269] is shown in Figure 104

with the landing site predictions by the Kalman filters discussed in Chapter 3 (using

only acceleration data). Both Kalman filters discussed in Chapter 3 appear to agree

well with each other from afar. Upon closer examination of the landing site predictions

by the Kalman filters discussed in Chapter 3 as shown in Figure 105, the landing site

predicted by the unscented Kalman filter is slightly closer to the actual landing site.
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Figure 104: The landing site for Mars Pathfinder from
Spencer 1999 [269] is shown with the landing site predictions
by the Kalman filters discussed in Chapter 3 (using only
acceleration data).

164



EKF Es timated Landing Site
UKF Estimated Landing Site
TSUC Simulated Landing Site

18.996

19.000

18.992

itu
de

 ( 
°N

 )

18.984

18.988La
ti

326.240 326.244 326.248 326.252 326.256 326.260
18.980

Longitude (  °E )

 

Figure 105: A closer examination of the landing site pre-
dictions by the Kalman filters discussed in Chapter 3.

Reconstructed with both Acceleration Data and Altimeter Data

The addition of the altimeter measurement changes the landing site predictions very

little as shown in Figures 106 and 107.
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Figure 106: The landing site for Mars Pathfinder from
Spencer 1999 [269] is shown with the landing site predictions
by the Kalman filters discussed in Chapter 3 (using both
acceleration data and altimeter data).
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Figure 107: A closer examination of the landing site pre-
dictions by the Kalman filters discussed in Chapter 3 (using
both acceleration data and altimeter data).

5.3 Summary

Both Kalman filters discussed in Chapter 3 were able to reconstruct the trajectory of

Mars Pathfinder nearly equally well. Neither displayed increased residuals in velocity

during peak deceleration, though this may have been due to the quality of the dig-

itization of the data from Spencer and others Mars Pathfinder reconstruction [269].

Concerning flight path angle, the extended Kalman filter exhibited residuals during

parachute deployment (and later) that were approximately three times larger than

those of the unscented Kalman filter. And while the unscented Kalman filter generally
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bounded these increased flight path angle residuals, the extended Kalman filter did

not. Both Kalman filters were in good agreement in their estimates of altitude, and

they were all able to bound their altitude residuals, furthermore, their 3σ uncertainty

bounds for altitude were all in good agreement with each other. The addition of

the altimeter measurement had a large effect on the estimates of altitude from each

of the methods on radar ground acquisition occurred, even though it only slightly

affected the estimates of the other state variables. Additionally, their density profiles

were in good agreement (please see Appendix E). Regarding the location of Mars

Pathfinder’s landing site, both Kalman filters agreed with each other when viewed

from afar. Upon closer examination, the landing site predicted by the unscented

Kalman filter was near TSUC’s simulated landing site, while the extended Kalman

filter’s predicted landing site was approximately 0.01° farther from the actual landing

site. These results indicate that TSUC, using the procedure of Table 15 on page 98

to solve for the state variables, is equivalent to explicit integration in performance,

and also serves to further validate the results from the unscented Kalman filter.
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CHAPTER VI

OBSERVATIONS FROM COMPARING THE TWO

KALMAN FILTERS

6.1 Introduction

The following paragraphs discuss the results from the two Kalman filters in terms

of their reconstruction results, as well as other aspects of their performance. These

other aspects include memory space requirements and the computational time of

each method. Additionally, the effects of noise–level and measurement frequency (or

sampling rate) are discussed.

6.2 Reconstructed Trajectory Results

Both Kalman filters discussed in Chapter 3 were able to reconstruct the sample

problem and Mars Pathfinder’s trajectories nearly equally well. While the extended

Kalman filter did demonstrate some difficulties, the unscented Kalman filter had only

slight difficulties. The unscented Kalman filter showed improved entry, descent, and

landing trajectory reconstruction over the extended Kalman filter. For example, the

extended Kalman had some difficulty with reconstructing the altitude, velocity, and

flight path angle time histories after parachute deployment. This is evident from the

residuals of its best estimate trajectory for the sample problem (where the true tra-

jectory is known) as shown in Figure 34 on page 104 (altitude residuals), Figure 36 on

page 105 (velocity residuals), and Figure 38 on page 107 (flight path angle residuals).

In contrast, for the Mars Pathfinder reconstruction, the unscented Kalman filter had

altitude residuals as large as the extended Kalman filter’s (see Figure 75 on page 145),

and while the extended Kalman filter did demonstrate large velocity residuals in its
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reconstruction of Mars Pathfinder’s trajectory (see Figure 86 on page 152), it was not

alone as the unscented Kalman filter had velocity residuals of similar magnitude (see

Figure 85 on page 151).1 Though the unscented Kalman filter did have lower flight

path angle residuals during the parachute phase of Mars Pathfinder’s descent as shown

in Figure 95 on page 158. Overall, this indicates that the unscented Kalman filter

offers better trajectory reconstruction performance with acceleration measurements

when the vehicle changes configuration in–flight.2 Then again, when the state can be

observed, the unscented Kalman filter does not have significantly better performance

than the extended Kalman filter as shown by the altitude residuals in Figure 80 on

page 148 for the reconstruction of Mars Pathfinder’s altitude when altimeter measure-

ments are included. However, the extended Kalman filter should not be dismissed,

after all: “It has withstood the test of time!” [41]

Regarding the estimation of uncertainties, the unscented Kalman filter clearly per-

formed better than the extended Kalman filter and did not over predict the accuracy

of their best estimates as shown by (1) the propagation of the initial uncertainties for

the sample problem in Figure 42 on page 111, Figure 46 on page 114, and Figure 50

on page 117 when compared to a Monte Carlo simulation and (2) the trajectory re-

construction with poor initial conditions as discussed in § 4.4 beginning on page 118.

These results are consistent with the literature assertion that unscented Kalman

filtering gives improved estimates of the uncertainty over the extended Kalman filter3,

and demonstrates that using TSUC as part of a Monte Carlo simulation allows it to

provide estimates of uncertainty on par with those of an explicit integration of the

1Also, the large velocity residuals that occurred during peak deceleration were almost certainly
due to the quality of the digitization.

2Though, as discussed later, the unscented Kalman filter demonstrated a penalty in terms of
additional computational time for this improved performance. Additionally, improvements in the
model fidelity of the spacecraft configuration changes may allow the extended Kalman filter to achieve
results similar to the unscented Kalman filter. However, the unscented Kalman filter offers the
improved performance without the need to increase model fidelity, and in the case of the unscented
Kalman filter, without the need to add process noise.

3In the context of reconstructing entry, descent, and landing trajectories.
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dynamics. This result indicates that it is equivalent to explicit integration in per-

formance, and also serves to further validate the results from the unscented Kalman

filter. However, as the Monte Carlo for the sample problem in Chapter 4 was only on

the initial conditions, the additional sources of uncertainty listed in Chapter 4 would

also have to be included in Monte Carlos run for real–world missions.

6.3 Memory Usage

Memory usage4 is an important consideration if a method is to be used to process

measurement data in real–time while in–flight. In terms of program size on a non–

volatile hard drive, the storage space required by each Kalman filter was approxi-

mately 2,000,000 bytes. In terms of memory usage, the extended Kalman filter is the

most efficient, though the unscented Kalman filter has comparable memory usage.

6.4 Computational Time

Computational speed is also an important consideration if a method is to be used to

process measurement data in real–time while in–flight. According to the literature

[195, 125], the time required for the unscented Kalman filter to compute its best

estimate of the trajectory is similar to the time required for the extended Kalman

filter to generate its best estimate of the trajectory. This was found to be the case for

entry, descent, and landing trajectory reconstruction as the two Kalman filters were

within the same order of magnitude as shown in Table 19. However, the unscented

Kalman filter was approximately five times slower than the extended Kalman filter,

which is similar to what was found for the bearing–only tracking problem [231], and

it is better than the 1 (EKF) to 11.5 (UKF) ratio for angle–based relative navigation

[272].

4All the coding for this research was done in Matlab, so the specific numbers discussed apply
only to that coding language.
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Table 19: Relative computational times for the extended
Kalman filter and the unscented Kalman filter when per-
forming an entry, descent, and landing trajectory recon-
struction.

Method Relative Computational Time
EKF 1
UKF 4.59

6.5 Noise Level and Frequency of Acceleration Measure-
ments

For the extended Kalman filter and the unscented Kalman filter, a study on how

the noise level and the frequency of acceleration measurements affected each filter’s

performance was conducted. In this study, the test criterion was whether or not each

Kalman filter could bound the altitude, velocity, and flight path angle residuals be-

tween the true trajectory and its best estimate within its predicted 3σ uncertainty

bounds. In other words, to pass the test, each Kalman filter must bound the residuals

approximately 99.7% of the time. Acceleration noise levels from 10 µg to 1,000,000 µg

were tested, and the sampling rate (the frequency at which measurements were taken)

was varied from 2−8 Hz (one measurement every 256 seconds) to 25 Hz (one measure-

ment every 1
32

of a second). The same random noise was added to the data processed

by both filters for each trial, and 100 trials were conducted for each combination of

noise level and sampling rate. The results are given below in Figures 108 through 115.

The extended Kalman filter had the least trouble bounding the altitude residuals,

the next least trouble bounding the flight path angle residuals, and the most trouble

bounding the velocity residuals. The residuals for altitude, velocity, and flight path

angle were also harder for the extended Kalman filter to bound as the frequency of

measurements increased. As the frequency of measurements increased, the extended

Kalman filter was only able to bound the residuals if the noise was substantially

reduced. The bounding of the state residuals at low frequencies of measurement by
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the extended Kalman filter may be due to the quality of the process model. However,

if the unbounded points for altitude, velocity, and flight path angle are expressed as a

fraction of the number of measurements, then the extended Kalman filter is unable to

bound the residuals within its predicted 3σ limits for noise levels equal to or greater

than 10,000 µg for the cases studied (please see Figure 111).

At low frequencies, the extended Kalman filter is just propagating the trajectory

for extended periods, and the process model has enough fidelity to ensure that the

residuals are bounded. It is expected that increasing the process noise would allow the

extended Kalman filter to bound the residuals at higher frequencies of measurement,

as higher process noise implies lower model fidelity and lower process noise implies

higher model fidelity. Based on the results for the extended Kalman filter, it is not

surprising the extended Kalman filter had difficulty bounding the residuals of the

sample trajectory and Mars Pathfinder, as the acceleration noise level for these was

1500 µg [49] and the measurement frequency was 32 Hz [164].

The unscented Kalman filter was able to bound the the altitude, velocity, and flight

path angle residuals 99.7% of the time for all the cases run. The unscented Kalman

filter is, then, a better choice over the extended Kalman filter when uncertainty

information is desired and the residuals must be bounded. However, the best estimate

of the extended Kalman filter is often as good as the best estimate of the unscented

Kalman filter, especially when the state is observable (as in the cases studied here).
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Figure 108: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
extended Kalman filter’s altitude residuals.

Figure 109: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
extended Kalman filter’s velocity residuals.
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Figure 110: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
extended Kalman filter’s flight path angle residuals.

Figure 111: A summary of the results of the study on the
effect of noise level and frequency of acceleration measure-
ments for the extended Kalman filter.
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Figure 112: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
unscented Kalman filter’s altitude residuals.

Figure 113: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
unscented Kalman filter’s velocity residuals.
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Figure 114: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
unscented Kalman filter’s flight path angle residuals.

Figure 115: A summary of the results of the study on the
effect of noise level and frequency of acceleration measure-
ments for the unscented Kalman filter.
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CHAPTER VII

CONCLUSIONS

7.1 Introduction

In the following text, guidelines are suggested on choosing a method for entry, descent,

and landing trajectory reconstruction, and this chapter ends with a summary of the

research and contributions, as well as suggestions for further research.

7.2 How to Choose a Method for Entry Descent and Land-
ing Trajectory Reconstruction: Suggested Guidelines

Guidelines on how to select a method of entry, descent, and landing trajectory recon-

struction are suggested below in Figure 116. The guidelines include trajectory recon-

struction using collocation (TRUC) based on its expected capabilities. Figure 116

reflects these important considerations in choosing a method:

1. Will you need uncertainty information for the state variables?

The unscented Kalman filter and TRUC will provide better uncertainty infor-

mation than the extended Kalman filter. TRUC, however, may require a long

run–time, so the unscented Kalman filter may be the best choice.

2. Will your measurement have extremes in magnitude or is it pretty steady?

The best estimate of the extended Kalman filter may stray during events such

as peak deceleration and parachute deployment, and the residuals of its best

estimate may be unbounded. Although, the best estimates of the unscented

Kalman filter and TRUC may stray, they have demonstrated better bounding

of the residuals. Once again, however, TRUC may require a long run–time.
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3. How frequently are you taking measurements?

Higher frequency measurements tend to be more difficult for the extended

Kalman filter to process unless they have very low noise levels. For TRUC,

more measurements mean a longer run–time, so the unscented Kalman filter

may be the best choice.

4. Will you have measurements of the state (that is, are the states observable)?

If you have direct measurements of the state, the extended Kalman filter is

the best choice. It will provide a fast estimate of the state with uncertainties.

The unscented Kalman filter can also provide the estimate of the state with

uncertainties, but it will be slower. And, if the state is observable, there is

little point in using TRUC since the state is most likely well known, and TRUC

cannot take into account the measurement noise.

5. Will you need to take into account measurement noise / error?

As stated above, TRUC cannot take into account the measurement noise, so

the extended Kalman filter or the unscented Kalman filter are better choices.

6. Is this a real–time application or post–processing?

The quickest real–time response will be with an extended Kalman filter, es-

pecially if the state is observable. If a slightly longer processing time can be

tolerated, though, the unscented Kalman filter would be a better choice, es-

pecially if state is not observable. TRUC should only be used for post–flight

processing of data due to its long computational time.

7. Is the signal–to–noise ratio for your measurements greater than approximately

100?

In the study on how the noise level and the frequency of acceleration mea-

surements affected each filter’s performance, the extended Kalman filter per-

formed best when the signal–to–noise ratio for the acceleration measurements
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was greater than approximately 100. This number also takes into account events

in the trajectory such as peak deceleration and parachute deployment in addi-

tion to things such as terminal descent on the parachute where the acceleration

is relatively steady. Also, when the noise is large compared to the magnitude

of the acceleration force being measured, it will be difficult to accurately deter-

mine the atmospheric density with any of the methods. And, once again, TRUC

cannot take into account the measurement noise, so the unscented Kalman filter

is a better choice when noise levels are relatively high.

ill
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Figure 116: How to Choose a Method for Entry Descent
and Landing Trajectory Reconstruction: Suggested Guide-
lines. The flowchart presumes all three trajectory recon-
struction tools: (1) the extended Kalman filter, (2) the un-
scented Kalman filter, and (3) TRUC exist and are available.
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The flowchart in Figure 116 presumes all three trajectory reconstruction tools:

(1) the extended Kalman filter, (2) the unscented Kalman filter, and (3) TRUC

exist and are available to you. If all three trajectory reconstruction tools are not

available to you, then the preferred choice will depend on what you are starting with,

especially if you already have an entry, descent, and landing trajectory design tool.

For example, if you already have a collocation program for designing entry, descent,

and landing trajectories, then TRUC is a straightforward addition that will allow

your collocation program to also reconstruct entry, descent, and landing trajectories.

However, suppose you have something such as the Program to Optimize Simulated

Trajectories (POST) [210], which is not a collocation program. Presumably, you are

using it to design your entry, descent, and landing trajectories. If you are starting

with the Program to Optimize Simulated Trajectories, it is easier to supplement it

with a Kalman filter for trajectory reconstruction (please see reference [277]).

Now, suppose you have nothing.

Starting from scratch, you would like to develop something to design and recon-

struct entry, descent, and landing trajectories. With either collocation or Kalman

filters, you benefit from having better models of things such as the vehicle’s aerody-

namics and the planet’s (or natural satellite’s) atmosphere. If you cannot have the

best models, then the Kalman filters allow you to account for this by adding what is

called “process noise” (please see Chapter 3). Collocation, and by extension TRUC,

does not have something similar.

A key component of a collocation program for designing entry, descent, and land-

ing trajectories is the optimizer, and a key component of a non–collocation program

for designing entry, descent, and landing trajectories (which uses a Kalman filter for

trajectory reconstruction) is the trajectory integrator. With collocation you must

also develop the optimizer or have one already available that you can use. If you have

an optimizer already available to you, then a collocation program for designing and
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reconstructing entry, descent, and landing trajectories will be faster to develop. With

a non–collocation program using either Kalman filter, you must develop a trajectory

integrator or have one already available that you can use. If you have a trajectory

integrator already available to you, then either Kalman filter will be faster to de-

velop. Additionally, developing a trajectory integrator is easier than developing an

optimizer.

Now, the Kalman filters also allow you to account for measurement noise (please

see Chapter 3). Collocation cannot, although this may be an area for future research

(please see § 7.4). The Kalman filters also provide uncertainty information regarding

their estimates of the state with a single run. And, while the unscented Kalman filter

was demonstrated to be slower than the extended Kalman filter in this investigation,

it gives better estimates of uncertainty. TRUC has to run a Monte Carlo simulation

to get the equivalent uncertainty information, which takes more time.

In summary, if you already have a collocation trajectory design program, then

adding TRUC will readily allow you to reconstruct entry, descent, and landing tra-

jectories. If you have a non–collocation program that uses trajectory integration, then

Kalman filters are a better choice. And, finally, if you are starting from scratch, and

you want the most benefit with the shortest development time, then the unscented

Kalman filter is the best choice.

7.3 Summary of Contributions

The contributions of this research, as discussed in detail above, are:

(1) The extended Kalman filter was originally developed for signal processing ap-

plications and only later applied to trajectory reconstruction. Similarly, unscented

Kalman filtering was developed for signal processing applications, and this work rep-

resents its first application to the reconstruction of entry, descent, and landing tra-

jectories.
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(2) The reformulation of the entry, descent, and landing trajectory reconstruction

problem using collocation has been demonstrated by the author. This approach

dubbed “TRUC”, after “trajectory reconstruction using collocation” posits that en-

try, descent, and landing trajectory design tools using collocation may also be used

for entry, descent, and landing trajectory reconstruction. As a first step, the perfor-

mance of entry, descent, and landing trajectory simulation using collocation (TSUC)

has been demonstrated by the author. Additionally, a solution procedure for deter-

mining the state values that satisfy the defect constraints has been developed. This

procedure allows the trajectory to be determined from the controls and parameters

of the simulation in a deterministic way.1

(3) Trajectory reconstruction results from the unscented Kalman filter were com-

pared against the trajectory reconstruction done using the extended Kalman filter.

From this, guidance on choosing a method for the reconstruction of future trajectories

was established. This guidance included trajectory reconstruction using collocation

based on its expected capabilities.

7.4 Suggestions for Future Research

First, there are literally tens2 of additional methods that may also be used for tra-

jectory reconstruction. Some of them are discussed in § 3.3 on page 69, though they

were not selected for this research. Each may have something to offer. Ultimately,

though, better trajectory reconstruction will come through more frequent, more ac-

curate measurements.

Second, demonstrating trajectory reconstruction using collocation (TRUC) using

1The review of the literature for this research indicates that collocation has not been used for
entry, descent, and landing trajectory reconstruction, so this solution procedure has not been used
for entry, descent, and landing trajectory reconstruction using collocation.

2Perhaps hundreds, when variations on each method are taken into account, along with the
different settings that may be involved with any single method.
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the solution procedure for the state variables given in Table 15 on page 98 (or one of

the other solution procedures discussed in Chapter 3) is an area of future research.

Such an approach could allow one to utilize the same collocation trajectory design

tools for the subsequent reconstruction.

Third, investigating the possibility of incorporating of measurement noise into

TRUC is an area of future research. The inability of the method, as presently for-

mulated, to incorporate measurement noise is a distinct disadvantage. As such, the

Kalman filters are better choices when measurement noise must be taken into account,

and the unscented Kalman filter is the best choice for higher noise levels.

Fourth, applying TRUC to a six–degree–of–freedom trajectory reconstruction with

gyroscope data is an area of future research. For this case, the angle of attack α, the

side–slip angle β, and the bank angle σ for the spacecraft could be control variables.

Fifth, it may be possible to reconstruct the atmospheric density profile using

TRUC by making the atmospheric density a control variable, and it may also be

possible to determine atmospheric winds in this manner. In doing this, the aero-

dynamic coefficient uncertainties and the uncertainties of the atmospheric conditions

cannot be separated unless separate measurements are made of either the actual flight

atmospheric conditions or the pressure distribution around the spacecraft in–flight.

Sixth, using the solution procedure in Table 15 on page 98 to calculate values of the

state that satisfy collocation’s defect equations may allow the algebraic constraints

produced from using collocation to be solved while using only the control variables as

the independent variables in general optimal control problems, significantly reducing

the number of independent variables.

Seventh, the bounding of the state residuals at low frequencies of measurement

by the extended Kalman filter may be due to the quality of the process model. At

low frequencies, the extended Kalman filter is just propagating the trajectory for

extended periods. Varying the fidelity of the model and the amount of process noise
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to investigate filter performance is an area of further research.3

Finally, in lieu of one highly accurate method4 of determining location, there is a

need to blend data from different instruments in order to obtain the best estimate of

a spacecraft’s position and velocity in three-dimensional space, hence the blending of

additional data types should be considered for future research. Ultimately, trajectory

reconstruction should occur in real–time, so that the information can be used for

pinpoint landing on the terrestrial bodies of the solar system. As such, incorporating

trajectory reconstruction, with data blending, into the guidance of landers is an area

of further research.

3Luckily, measurement accuracy is improving and sampling rates are increasing, which will aid
trajectory reconstruction.

4The global positioning system is one example of a highly accurate method of position determi-
nation. However, financial constraints prevent us from setting up global positioning systems around
all the bodies in the solar system we would like to explore.
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APPENDIX A

EQUATIONS OF MOTION

For the trajectories in this research, a three-degree-of-freedom simulation was used.

The translational motion is described by the state equation given in equation (155),

where the state variables radius r, latitude φ, and longitude θ give the three compo-

nents of position, and the state variables velocity v, flight path angle γ, and azimuth

ψ give the three components of velocity. The expressions for the state derivatives are

given in equations (156) through (161)). [60]

ẋ = f(x) =



ṙ

φ̇

θ̇

v̇

γ̇

ψ̇


(155)

ṙ = v sin γ (156)

φ̇ =
v cos γ cosψ

r
(157)

θ̇ =
v cos γ sinψ

r cosφ
(158)

v̇ =
1

m
(Y sin β −D cos β)

− g sin γ

+ Ω2r cosφ(sin γ cosφ− cos γ sinφ cosψ)

(159)
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γ̇ =
1

mv
(L cosσ −D sin β sinσ − Y cos β sinσ)

+
(v
r
− g

v

)
cos γ

+ 2Ω cosφ sinψ

+
Ω2r

v
cosφ(cos γ cosφ+ sin γ sinφ cosψ)

(160)

ψ̇ =
1

mv cos γ
(L sinσ +D sin β cosσ + Y cos β cosσ)

+
v cos γ

r
sinψ tanφ

− 2Ω(cosφ cosψ tan γ − sinφ)

+
Ω2r

v cos γ
cosφ sinφ sinψ

(161)

where

• CD is the drag coefficient of the spacecraft. It is a function of the angle of attack

α and Mach number M of the of the spacecraft: CD = CD(α,M).

• CL is the lift coefficient of the spacecraft. It is a function of the angle of attack

α and Mach number M of the spacecraft: CL = CL(α,M).

• CY is the side force coefficient of the spacecraft. It is a function of the side-slip

angle β and Mach number M of the spacecraft: CY = CY (β,M).

• D is the aerodynamic drag force acting on the spacecraft. D = 1
2
ρv2SCD where

the drag coefficient CD is a function of the angle of attack α and Mach number

M of the spacecraft: CD = CD(α,M).

• g is the local acceleration of gravity at the spacecraft’s position.

• L is the aerodynamic lift force acting on the spacecraft. L = 1
2
ρv2SCL where
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the lift coefficient CL is a function of the angle of attack α and Mach number

M of the spacecraft: CL = CL(α,M).

• m is the mass of the spacecraft.

• M is the Mach number of the spacecraft.

• r is the spacecraft’s local radius measured from the center of the planet at which

entry is taking place.

• S is the aerodynamic reference area of the spacecraft.

• t is time.

• v is the spacecraft’s velocity.

• Y is the aerodynamic side force acting on the spacecraft. Y = 1
2
ρv2SCY where

the side force coefficient CY is a function of the side-slip angle β and Mach

number M of the spacecraft: CY = CY (β,M).

• α is the angle of attack of the spacecraft. For the studies conducted in this

investigation, the angle of attack was set to zero for the duration of the trajec-

tory.

• β is the side-slip angle of the spacecraft. For the studies conducted in this in-

vestigation, the side-slip angle was set to zero for the duration of the trajectory.

• γ is the spacecraft’s flight path angle, which is positive above the local horizon-

tal.

• θ is the spacecraft’s longitude.

• ρ is the local atmospheric density at the spacecraft’s position.

188



• σ is the bank angle of the spacecraft. For the studies conducted in this investi-

gation, the bank angle was set to zero for the duration of the trajectory.

• φ is the spacecraft’s latitude.

• ψ is the spacecraft’s azimuth, which is positive when measured clockwise from

north.

• Ω is the rotation rate of the planet at which entry is taking place.

and these variables may be categorized into state variables and parameters as shown

in Table 20.

Table 20: Categorization of the variables in the equations
of motion into state variables and parameters.

State Variables Parameters
r CD

φ CL

θ CY

v D
γ g
ψ L

m
S
Y
α
β
ρ
σ
Ω
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APPENDIX B

ELEMENTS OF THE JACOBIAN

For trajectories with the translational motion described by the six differential equa-

tions beginning on page 186 (equations (156) through (161)) the following equations

(equations (162) through (197)) give the elements of their Jacobian matrix.

∂ṙ

∂r
= 0 (162)

∂ṙ

∂φ
= 0 (163)

∂ṙ

∂θ
= 0 (164)

∂ṙ

∂v
= sin γ (165)

∂ṙ

∂γ
= v cos γ (166)

∂ṙ

∂ψ
= 0 (167)
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∂φ̇

∂r
= −v cos γ cosψ

r2
(168)

∂φ̇

∂φ
= 0 (169)

∂φ̇

∂θ
= 0 (170)

∂φ̇

∂v
=

cos γ cosψ

r
(171)

∂φ̇

∂γ
= −v sin γ cosψ

r
(172)

∂φ̇

∂ψ
= −v cos γ sinψ

r
(173)
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∂θ̇

∂r
= −v cos γ sinψ

r2 cosφ
(174)

∂θ̇

∂φ
= −v cos γ sinψ

r cosφ
· sinφ

cos2 φ
(175)

∂θ̇

∂θ
= 0 (176)

∂θ̇

∂v
=

cos γ sinψ

r cosφ
(177)

∂θ̇

∂γ
= −v sin γ sinψ

r cosφ
(178)

∂θ̇

∂ψ
=
v cos γ cosψ

r cosφ
(179)
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∂v̇

∂r
= −∂g

∂r
sin γ

+ Ω2 cosφ(sin γ cosφ− cos γ sinφ cosψ)

(180)

∂v̇

∂φ
= −∂g

∂φ
sin γ

− 2Ω2r sinφ cosφ sin γ

+ Ω2r sin2 φ cos γ cosψ

− Ω2r cos2 φ cos γ cosψ

(181)

∂v̇

∂θ
= −∂g

∂θ
sin γ (182)

∂v̇

∂v
= 0 (183)

∂v̇

∂γ
= −g cos γ

+ Ω2r cos2 φ cos γ

+ Ω2r sinφ cosφ sin γ cosψ

(184)

∂v̇

∂ψ
= Ω2r sinφ cosφ cos γ sinψ) (185)
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∂γ̇

∂r
= − v

r2

− ∂g

∂r
·cos γ

v

+
Ω2

v
cosφ(cos γ cosφ+ sin γ sinφ cosψ)

(186)

∂γ̇

∂φ
= −∂g

∂φ
·cos γ

v

− 2Ω sinφ sinψ

− 2
Ω2r

v
sinφ cosφ cos γ

− Ω2r

v
sin2 φ sin γ cosψ

+
Ω2r

v
cos2 φ sin γ cosψ

(187)

∂γ̇

∂θ
= 0 (188)

∂γ̇

∂v
= − 1

mv2
(L cosσ −D sin β sinσ − Y cos β sinσ)

+

(
1

r
+

g

v2

)
cos γ

− Ω2r

v2
cosφ(cos γ cosφ+ sin γ sinφ cosψ)

(189)
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∂γ̇

∂γ
= −

(v
r
− g

v

)
sin γ

− Ω2r

v
cos2 φ sin γ

+
Ω2r

v
sinφ cosφ cos γ cosψ

(190)

∂γ̇

∂ψ
= 2Ω cosφ cosψ

− Ω2r

v
sinφ cosφ sin γ sinψ

(191)
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∂ψ̇

∂r
= −v cos γ

r2
sinψ tanφ

+
Ω2

v cos γ
cosφ sinφ sinψ

(192)

∂ψ̇

∂φ
=
v cos γ

r

sinψ

cos2 φ

+ 2Ω sinφ cosψ tan γ − sinφ

+ 2Ω cosφ

+
Ω2r

v cos γ
sinψ(1− 2 sin2 φ)

(193)

∂ψ̇

∂θ
= 0 (194)

∂ψ̇

∂v
= − 1

mv2 cos γ
(L sinσ +D sin β cosσ + Y cos β cosσ)

+
cos γ

r
sinψ tanφ

− Ω2r

v2 cos γ
cosφ sinφ sinψ

(195)
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∂ψ̇

∂γ
= − sin γ

mv cos2 γ
(L sinσ +D sin β cosσ + Y cos β cosσ)

− v sin γ

r
sinψ tanφ

− 2Ω
cosφ cosψ

cos2 γ

+
Ω2r sin γ

v cos2 γ
sinφ cosφ sinψ

(196)

∂ψ̇

∂ψ
=
v cos γ

r
cosψ tanφ

+ 2Ω cosφ sinψ tan γ

+
Ω2r

v cos γ
cosφ sinφ cosψ

(197)

197



APPENDIX C

PARAMETERS FOR THE EXTENDED KALMAN

FILTER

The parameters for the extended Kalman filter are listed below. The state vector and

the equations of motion are given in Appendix A.

x =



r

φ

θ

v

γ

ψ


(198)

F =



∂ṙ
∂r

∂ṙ
∂φ

∂ṙ
∂θ

∂ṙ
∂v

∂ṙ
∂γ

∂ṙ
∂ψ

∂φ̇
∂r

∂φ̇
∂φ

∂φ̇
∂θ

∂φ̇
∂v

∂φ̇
∂γ

∂φ̇
∂ψ

∂θ̇
∂r

∂θ̇
∂φ

∂θ̇
∂θ

∂θ̇
∂v

∂θ̇
∂γ

∂θ̇
∂ψ

∂v̇
∂r

∂v̇
∂φ

∂v̇
∂θ

∂v̇
∂v

∂v̇
∂γ

∂v̇
∂ψ

∂γ̇
∂r

∂γ̇
∂φ

∂γ̇
∂θ

∂γ̇
∂v

∂γ̇
∂γ

∂γ̇
∂ψ

∂ψ̇
∂r

∂ψ̇
∂φ

∂ψ̇
∂θ

∂ψ̇
∂v

∂ψ̇
∂γ

∂ψ̇
∂ψ


(199)
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Hacceleration =


0 0 0 ρvSCL

2m
0 0

0 0 0 ρvSCY

2m
0 0

0 0 0 −ρvSCD

2m
0 0

 (200)

Haltimeter =

[
1 0 0 0 0 0

]
(201)

Q =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(202)

Raltimeter =

[
0.32

]
(203)

Racceleration =


((1500)(9.80665))2 0 0

0 ((1500)(9.80665))2 0

0 0 ((1500)(9.80665))2

 (204)
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APPENDIX D

PARAMETERS FOR THE UNSCENTED KALMAN

FILTER

The parameters for the unscented Kalman filter are listed below. The state vector

and the equations of motion are given in Appendix A.

x =



r

φ

θ

v

γ

ψ


(205)

L = 6 (206)

α = 0.5 (207)
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β = 2 (208)

κ = 3− L (209)

hacceleration(X ) =


0 0 0 ρv2SCL

2m
0 0

0 0 0 ρv2SCY

2m
0 0

0 0 0 ρv2SCD

2m
0 0

 (210)

haltimeter(X ) =

[
h 0 0 0 0 0

]
(211)

Q =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(212)
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Raltimeter =

[
0.32

]
(213)

Racceleration =


((1500)(9.80665))2 0 0

0 ((1500)(9.80665))2 0

0 0 ((1500)(9.80665))2

 (214)
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APPENDIX E

ATMOSPHERIC DENSITY RECONSTRUCTION

E.1 Reconstruction Process

As mentioned in Chapter 2, detailed procedures for obtaining the density profile of

a planetary atmosphere from measurements of accelerations experienced by a vehicle

making a ballistic entry into the atmosphere of a planet are given in [238, 204].

Atmospheric density ρ is determined from the axial acceleration aA experienced by

the entry vehicle assuming: the vehicle’s aerodynamic properties (specifically, the

axial coefficient CA or the drag coefficient CD
1, aerodynamic reference area S, the

speed of the entry vehicle v, and its mass m using equation (216).

maA =
1

2
ρv2CAS (215)

ρ =
2ma

v2CAS
(216)

The values of the variables on the right–hand–side of equation (216) are obtained

in different ways. The following paragraphs discuss how these values are obtained.

The spacecraft’s aerodynamic coefficients are obtained from computational fluid

dynamics simulations of the spacecraft and wind tunnel test data. These aerodynamic

coefficients are not perfectly predicted (in the case of computational fluid dynamics

simulations) or measured (in the case of wind tunnel tests), so they have uncertainties

associated with them. Because the procedures for obtaining the atmospheric density

profile given in [238, 204] require the aerodynamic coefficients (specifically, the axial

1CA = CD when the angle of attack is zero (α = 0).
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coefficient), the aerodynamic coefficient uncertainties and the uncertainties of the at-

mospheric conditions cannot be separated unless separate measurements are made of

either the actual flight atmospheric conditions or the pressure distribution around the

spacecraft in–flight. However, these aerodynamic properties are the best information

available for the spacecraft. In this analysis, a nominal aerodynamic drag coefficient

of 1.68 is used.

The aerodynamic reference area can be obtained from the computer aided design

models of the spacecraft, or it can be obtained from measuring the actual spacecraft.

Generally, because it is needed long before the spacecraft is completely built, it is

obtained from the computer aided design models of the spacecraft.

The mass of the spacecraft can also be determined from the computer aided design

models, or it can be obtained from weighing the actual spacecraft. Since weighing

the spacecraft is not practical (or a safe process for the spacecraft), the spacecraft’s

mass is obtained from the computer aided design models of the spacecraft. However,

during assembly, each piece of the spacecraft is weighed to obtain an accurate “as–

built” mass of the spacecraft. A complication arises with the mass of the spacecraft

because of ablation of the heatshield during entry. The ablation results in mass loss,

and depending on the planet at which entry is occurring, it can be significant. During

Galileo’s entry at Jupiter, it lost approximately 80 kg [185].

Finally, the velocity of the spacecraft is obtained from the trajectory reconstruc-

tion process. Since the value of everything on the right–hand–side of equation (216)

is known at each measurement time, the atmospheric density at each measurement

time can be calculated from equation (216). The densities can then be plotted against

the reconstructed altitude time history to obtain an atmospheric density profile along

the spacecraft’s trajectory.

204



E.2 Sample Problem Atmospheric Density Reconstruction

Since the sample problem discussed in Chapter 4 is simulated data, the true atmo-

spheric density profile is known. The density profile of the Martian atmosphere for

the sample problem discussed in Chapter 4 is shown in Figure 117.
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Figure 117: Sample problem atmospheric density profile.

The density profile of the sample problem is shown in Figure 118. The sample

problem density profile is shown with the Kalman filter reconstructions overlaid,

as well as the collocation simulation. The Kalman filters discussed in Chapter 3

appear to agree well with the simulated sample problem, even though the noise in the

acceleration data at the beginning of the trajectory prevents a better reconstruction

of the density profile at very high altitudes. This is because the noise is close in

magnitude to the accelerations. The residuals of the sample problem density profile

and the reconstructions shown in Figure 118 are shown in Figure 119. The effect of

the noise in the acceleration data at very high altitudes is evident.
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Figure 118: The density profile of the sample problem is
reconstructed using the Kalman filters discussed in Chap-
ter 3. The sample problem density profile is shown with the
reconstructions overlaid.
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Figure 119: The residuals of the sample problem density
profile and the reconstructions shown in the previous figure.

E.3 Mars Pathfinder

E.3.1 Digitized Data

Unfortunately, the true atmospheric density profile experienced by Mars Pathfinder

during its entry cannot be known, so an independent reconstruction of Mars Pathfinder’s

entry trajectory was sought for comparison with this investigation. As with the al-

titude, velocity and flight path angle time histories, the 1999 Mars Pathfinder entry

trajectory reconstruction by David Spencer and others in Reference [269] was selected
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to provide an independent reconstruction of the atmospheric density profile experi-

enced by Mars Pathfinder during its entry. Recall, as discussed in Chapter 2, that the

trajectory reconstruction by David Spencer and others [269] used a combination of

accelerometer and altimeter measurements using sequential filtering and smoothing

techniques [270, 269]. As this is a different process from the methods discussed in

Chapter 3, the results from the Kalman filters discussed in Chapter 3 will differ from

the reconstruction by David Spencer and others [269]. However, the comparison will

speak to the general accuracy of the Kalman filters discussed in Chapter 3, while

the extended Kalman filter reconstruction, as one accepted standard of trajectory

reconstruction2, will speak to the specific capabilities of the unscented Kalman filter

discussed in Chapter 3 for this investigation.

The density plot shown in Figures 120 was digitized using the Engauge Digi-

tizer digitizing software [186]. The resolution of Figure 120 in density is approxi-

mately 0.0079 decades
pixel

with a possible error in the digitized density profile of at least

0.032 decades based on a four pixel curve width. Additionally, the resolution of Fig-

ure 120 in altitude is approximately 0.18 km
pixel

with a possible error in the digitized

altitude of at least 0.71 km based on a four pixel curve width.

2Along with direct integration, as established in Chapter 2.
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a) Normal-to-axial acceleration measurements

b) Angle-of-attack pro� le

Fig. 18 Normal-to-axial accelerations and estimated angle of attack during entry phase.

Fig. 19 Estimated temperature pro� les.

during entry, an iterative scheme has been developed to obtain
the proper value of this aerodynamic coef� cient in the procedure.
This involves calculating the classical scaling parameters such as
Knudsen, Reynolds, and Mach numbers and using an a priori esti-
mate of density as a starting point. Clearly, uncertainty in the esti-
mate of CA translates into density uncertainty.

Once density is obtained, it can then be used to calculatepressure
from the hydrostatic equation,

dp

dh
D ¡½g (6)

This equation is integrated from a starting value of pressure p0,
which is adjusted to provide a smooth variation at large altitudes.
Slight errors in p0 produce large variations in temperature because
the density at these large altitudes is also a small quantity.

The remaining variable, temperature, is calculated from the ideal
gas law:

T D .M=R/ p=½ (7)

Fig. 20 Estimated density pro� les.

where M is the mean molecularweight (43.2685 kg/kmol) and R is
the universalgas constant (8314.34 J/kmol-K). For this analysis, M
is assumed to have a � xed value. This will produce a small error in
the temperature calculations at very high altitudes, roughly above
about 120 km.

Figures19 and 20 show a comparisonof the temperatureand den-
sity pro� les computed from this engineering reconstruction,along
with the pro� les computed by the ASI/MET science team.13 There
are minimal deviationsbetween the two estimated temperaturepro-
� les, and the estimated density pro� les are nearly identical.

Conclusions
The Path� nder EDL sequence of events, � ight path, and atti-

tude history have been reconstructed from the available � ight data.
In addition, an atmosphere pro� le has been estimated. The � ight
data indicate that the Path� nder EDL system performedas expected
throughoutthe hypersonicentry phase. The terminal velocityon the
parachute was higher than expected from pre� ight modeling, but
was within the capabilitiesof the terminal descent system. Pre� ight

Figure 120: Reconstructed Mars Pathfinder atmospheric
density profile from Spencer 1999. [269]

E.3.2 Reconstructed Atmospheric Density Profile

The digitized atmospheric density profile for Mars Pathfinder from Spencer 1999 [269]

is shown in Figure 121 with the atmospheric density reconstructions by the Kalman

filters discussed in Chapter 3, as well as the collocation simulation, overlaid. Both

Kalman filters discussed in Chapter 3 appear to agree well with the digitized data

from Spencer 1999 [269]. The residuals of the atmospheric density profiles shown

in Figure 121 relative to the digitized data from Spencer 1999 [269] are shown in

Figure 122. The similarity of the three sets of residuals indicates that the unscented

Kalman filter was able to reconstruct Mars Pathfinder’s atmospheric density profile

at least as well as the extended Kalman filter.
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Figure 121: The digitized atmospheric density profile for
Mars Pathfinder from Spencer 1999 [269] is shown with the
atmospheric density reconstructions by the Kalman filters
discussed in Chapter 3 overlaid.
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APPENDIX F

LITERATURE CONTRIBUTIONS

F.1 Journal Articles

F.1.1 Relevant Journal Articles

1. “Instrumentation for Entry, Descent, and Landing Trajectory Reconstruction

and Atmospheric Studies at Earth, Venus, Mars, and Titan: A Review,” Journal

of Spacecraft and Rockets, (to be submitted).

2. “A Comparison of Entry, Descent, and Landing Trajectory Reconstruction by

Extended and Unscented Kalman Filters,” IEEE Transactions on Aerospace

and Electronic Systems, (to be submitted).

F.1.2 Other Journal Articles

1. Christian, J., Wells, G., Lafleur, J., Verges, A., Braun, R., “Sizing of an En-

try, Descent, and Landing System for Human Mars Exploration,” Journal of

Spacecraft and Rockets, Vol. 45, No. 1, pp. 130–141, January–February 2008.

F.2 Conference Papers

F.2.1 Relevant Conference Papers

1. Wells, G., Dutta, S., Mattson, S., Lisano, M., “Phoenix Location Determi-

nation Using HiRISE Imagery,” IPPW–7–340, International Planetary Probe

Workshop 7, Barcelona, Spain, June 2010.

2. Wells, G., Braun, R., “Trajectory Reconstruction of a Martian Planetary Probe

Mission: Reconstruction of the Spirit Mars Exploration Rover Entry, Descent,
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and Landing Performance,” AA–3–2008–16, 2nd International ARA Days, Ar-

cachon, France, October 2008.

F.2.2 Other Conference Papers

1. Christian, J., Manyapu, K., Wells, G., Lafleur, J., Verges, A., Braun, R., “Siz-

ing of an Entry, Descent, and Landing System for Human Mars Exploration,”

AIAA–2006–7427, AIAA Space 2006 Conference, San Jose, California, Septem-

ber 2006.

2. Alemany, K., Braun, R., Clark, I., Theisinger, J., Wells, G., “Mars Entry, De-

scent, and Landing Parametric Sizing and Design Space Visualization,” AIAA–

2006–6022, AIAA Astrodynamics Specialist Conference, Keystone, Colorado,

August 2006.

3. Clark, I., Wells, G., Theisinger, J., Braun, R., “An Evaluation of Ballute Entry

Systems for Lunar Return Missions,” AIAA–2006–6276, AIAA Atmospheric

Flight Mechanics Conference, Keystone, Colorado, August 2006.

4. Wells, G., Braun, R., “An Entry Handbook for the Conceptual Design of

Mars Missions,” AA2006–1–34, 1st International ARA Days, Arcachon, France,

July 2006.

5. Wells, G., Lafleur, J., Verges, A. Lewis, C., Christian, J., Manyapu, K., Braun,

R. “Entry Descent and Landing Challenges of Human Mars Exploration,” AAS–

06–072, 29th AAS Guidance and Control Conference, Breckenridge, Colorado,

February 2006.

6. Kipp, D., Dec, J., Wells, G., and Braun, R. “Development of a Planetary Entry

System Synthesis Tool for Conceptual Design and Analysis,” Proceedings of the

3rd International Planetary Probe Workshop, Athens, Greece, June 2005.
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Orbital Space Tourism Concept,” 2005 RASC-AL Design Competition, Coco
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214



REFERENCES

[1] Aboudan, A., Colombatti, G., Ferri, F., and Angrilli, F., “Huygens
Probe Entry Trajectory and Attitude Estimated Simultaneously with Titan
Atmospheric Structure by Kalman Filtering,” Planetary and Space Science,
vol. 56, pp. 573–585, April 2008.

[2] Aitken, M., Busnardo, D., Tolson, R., Amzajerdian, F., and Pier-
rottet, D., “High Speed Lunar Navigation for Crewed and Remotely Piloted
Vehicles,” i–SAIRAS 2010: 10th International Symposium on Artificial Intel-
ligence, Robotics and Automation in Space, NASA ARC–E–DAA–TN 2071,
Sapporo, Japan, August 29, – September 1, 2010.

[3] Aitken, M., Busnardo, D., Tolson, R., Amzajerdian, F., and Pier-
rottet, D., “LIDAR–Aided Inertial Navigation with Extended Kalman Fil-
tering for Pinpoint Landing over Rough Terrain,” 49th AIAA Aerospace Sci-
ences Meeting including the New Horizons Forum and Aerospace Exposition,
AIAA–2011–0428, Orlando, Florida, January 4–7, 2011.

[4] Allen, R. and Copeland, G., “NASA Three–Laser Airborne Differential Ab-
sorption LIDAR System Electronics,” Tech. Rep. NASA–CR–174293, NASA,
December 1984.

[5] Andrade–Cetto, J., “The Kalman Filter,” Tech. Rep. IRI–DT–02–01, In-
stitut de Robòtica i Informàtica Industrial, UPC CSIC, Barcelona, Spain, May
2005.

[6] Andreev, B., Guslyakov, V., Kerzhanovich, V., Kruglov, Y., Lysov,
V., Marov, M., Onishchenko, L., Rozhdestvenskii, M., Sorokin, V.,
and Shnygin, Y., “Venera 8 Wind-Velocity Measurements in the Atmosphere
of Venus,” Cosmic Research, vol. 12, pp. 238–245, March–April 1974.

[7] Andreev, B., Guslyakov, V., Kerzhanovich, V., Kruglov, Y., Lysov,
V., Marov, M., Onishchenko, L., Rozhdestvenskii, M., Sorokin, V.,
and Shnygin, Y., “Venera 8 Wind-Velocity Measurements in the Atmosphere
of Venus,” Cosmic Research, vol. 12, pp. 385–393, May–June 1974.

[8] Antsibor, N., Bakit’ko, R., Ginzburg, A., Guslyakov, V.,
Kerzhanovich, V., Makarov, Y., Marov, M., Molotov, E., Ro-
gal’skii, V., Rozhdestvenskii, M., Sopokin, V., and Shnygin, Y., “Es-
timates of Wind Velocity and Turbulence from Relayed Doppler Measurements
of the Velocity of Instruments Dropped from Venera 9 and Venera 10,” Cosmic
Research, vol. 14, pp. 625–631, September–October 1976.

215



[9] Apostol, T., Calculus: Multi–Variable Calculus and Linear Algebra, with Ap-
plications to Differential Equations and Probability, ch. 8, pp. 269–271. Volume
2, 2nd edition, John Wiley & Sons, New York, 1969.

[10] Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T., “A Tutorial
on Particle Filters for Online Nonlinear / Non–Gaussian Bayesian Tracking,”
IEEE Transactions on Signal Processing, vol. 50, pp. 174–188, February 2002.

[11] Arvidson, R., Anderson, R., Haldemann, A., Landis, G., Li, R., Lin-
demann, R., Matijevic, J., Morris, R., Richter, L., Squyres, S.,
Sullivan, R., and Snider, N., “Physical Properties and Localization In-
vestigations Associated with the 2003 Mars Exploration Rovers,” Journal of
Geophysical Research: Planets, vol. 108, no. E12, 2003.

[12] Ascher, U., Mattheij, R., and Russell, R., Numerical Solution of Bound-
ary Value Problems for Ordinary Differential Equations, ch. 5, pp. 218–219.
Prentice–Hall Inc., 1988.

[13] Atkinson, D., Kazeminejad, B., Gaborit, V., Ferri, F., and Lebre-
ton, J., “Huygens Probe Entry and Descent Trajectory Analysis and Recon-
struction Techniques,” Planetary and Space Science, vol. 53, pp. 586–593, April
2005.

[14] Atkinson, D., Pollack, J., and Seiff, A., “Galileo Doppler Measurements
of the Deep Zonal Winds at Jupiter,” Science, vol. 272, pp. 842–843, May 10,
1996.

[15] Atkinson, D., Pollack, J., and Seiff, A., “The Galileo Probe Doppler
Wind Experiment: Measurement of the Deep Zonal Winds on Jupiter,” Journal
of Geophysical Research, vol. 103, no. E10, pp. 22911–22928, 1998.

[16] Avduevskii, V., Akim, E., Aleshin, V., Borodin, N., Kerzhanovich,
V., Malkov, Y., Marov, M., Morozov, S., Rozhdestvenskii, M.,
Ryabov, O., Subbotin, M., Suslov, V., Cheremukhina, Z., and Shki-
rina, V., “Martian Atmosphere in the Vicinity of the Landing Site of the De-
scent Vehicle Mars-6 (Preliminary Results),” Cosmic Research, vol. 13, pp. 18–
27, January–February 1975.

[17] Avduevskii, V., Borodin, N., Burtsev, V., Malkov, Y., Marov, M.,
Morozov, S., Rozhdestvenskii, M., Romanov, R., Sokolov, S., Fokin,
V., Cheremukhina, Z., and Shkirina, V., “Automatic Stations Venera
9 and Venera 10 - Functioning of Descent Vehicles and Measurement of At-
mospheric Parameters,” Cosmic Research, vol. 14, pp. 577–586, September–
October 1976.

[18] Avduevskii, V., Dobrov, A., Ivanov, N., Karyagin, V., Kuznetsov,
V., Martirosov, M., Mottsulev, B., Pichkhadze, K., Polyakov, V.,
Antsibor, N., Barkhatova, L., and Kerzhanovich, V., “Analysis of the

216



Trajectories of the Venera 13 and Venera 14 Entry Probes in the Atmosphere
of Venus,” Cosmic Research, vol. 21, pp. 111–118, March–April 1983.

[19] Avduevskii, V., Godnev, A., Semenchenko, V., Uspenskii, G., and
Cheremukhina, Z., “Stratosphere of Venus according to the Data of the Ac-
celerometer Measurements of the Venera-11 and Venera-12 Spacecraft,” Cosmic
Research, vol. 20, pp. 649–655, November–December 1982.

[20] Avduevskii, V., Godnev, A., Semenchenko, V., Uspenskii, G., and
Cheremukhina, Z., “Characteristics of the Stratosphere of Venus from Mea-
surements of the Overloads during the Braking of the Venera 13 and Venera 14
Spacecraft,” Cosmic Research, vol. 21, pp. 149–154, March–April 1983.

[21] Avduevskii, V., Ivanov, N., Mot-tsulev, B., Polyakov, V., and
Tikhonov, V., “A Method for a Complex Post-Flight Ballistic Analysis of
the Descent Trajectories for “Venera”-type Landers,” Cosmic Research, vol. 21,
pp. 39–48, January–February 1983.

[22] Avduevsky, V., Marov, M., Rozhdestvensky, M., Borodin, N., and
Kerzhanovich, V., “Soft Landing of Venera 7 on the Venus Surface and
Preliminary Results of Investigations of the Venus Atmosphere,” Journal of the
Atmospheric Sciences, vol. 28, pp. 263–269, March 1971.

[23] Banani, S. and Masnadi–Shirazi, M., “A New Version of Unscented
Kalman Filter,” Proceedings of the World Academy of Science, Engineering,
and Technology, vol. 20, pp. 192–197, April 2007.

[24] Battin, R., An Introduction to the Mathematics and Methods of Astrodynam-
ics. AIAA Education Series, American Institute of Aeronautics and Astronau-
tics, Inc., New York, 1987.

[25] Bayes, T., “An Essay towards Solving a Problem in the Doctrine of
Chances,” communicated by Richard Price, in a letter to John Canton,
http://www.stat.ucla.edu/history/essay.pdf, December 23, 1763.

[26] Bekkeng, J. and Psiaki, M., “Attitude Estimation for Sounding Rockets
Using Microelectromechanical System Gyros,” Journal of Guidance, Control,
and Dynamics, vol. 31, pp. 533–542, May–June 2008.

[27] Bell, II, E. and Grayzeck, E., “Galileo Probe En-
try Timeline,” National Space Science Data Center,
http://nssdc.gsfc.nasa.gov/planetary/galileo probe time.html, NSSDC ID:
1973–052A, June 14, 1996.

[28] Belton, M., “Theory of the Curve Growth and Phase Effects in a Cloudy
Atmosphere: Applications to Venus,” Journal of the Atmospheric Sciences,
vol. 25, pp. 596–609, July 1968.

217
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