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denotes the mathematical “expectation of” a quantity.
subscript denoting a final boundary condition.
nonlinear function of the state vector.

Jacobian matrix of f.

acceleration due to gravity.

altitude.

nonlinear function relating the state vector to the measurement vector.

scale height.

measurement matrix, or
system Hamiltonian.

subscript denoting a discrete time point, or
subscript denoting a column of a matrix.

subscript denoting a discrete time point, or
subscript denoting a segment of time.
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identity matrix.

scalar objective function.

multiplying matrix factor.

subscript denoting a discrete time point.
Kalman gain.

length of the state vector, or
lift.

mass.
Mach number.
molecular mass.

subscript denoting a discrete time point, or
subscript denoting a segment of time.

pressure.
a posteriori error covariance matrix.

error covariance matrix of x.

error covariance matrix of x and y.

error covariance matrix of y.

@ Priori error covariance matrix.

process noise matrix.

radius.

time derivative of radius.

measurement noise matrix.

ideal gas constant.

distance along the length of a time segment.
aerodynamic reference area.

time.

temperature, or
total time of interest.

xxi



u control vector.

v velocity.

0 time derivative of velocity.

A measurement noise.

w process noise.

wmean)  weight for means.

w(eov) weight for covariances.

x element of the state vector x.

Tsystem derivative  State time derivative calculated using a differential equation.
Tinterpolation  State time derivative calculated using interpolation.

X state vector.

b'd time derivative of x.

Xpest estimate  DESt estimate trajectory.

Xreference leference trajectory.

Xreference time derivative of the reference trajectory.

Xirue true trajectory.

Xirue time derivative of the true trajectory.

X~ a priori estimate of the state.

X a posteriori estimate of the state.

% time derivative of the estimate of the state.
X~ a priori estimate of the state—error.

X a posteriori estimate of the state—error.

X sigma-—vector.

y measurement vector.

Yreference Measurement vector corresponding to the reference trajectory.

Virue measurement vector corresponding to the true trajectory.
Y side force.
Yy measurement vector corresponding to sigma-vector X.

poell
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Greek Symbols in Equations

angle of attack, or
constant determining the spread of sigma—points around a mean.

sideslip angle, or
constant constant used to incorporate prior knowledge of the distribution
of x.

flight path angle.

time derivative of flight path angle.
defect at the center of a time segment.
longitude.

time derivative of longitude.
secondary scaling parameter.

scaling parameter, or
vector of adjoint (or costate) values.

vector of sensitivities associated with final condition constraints.
density.

bank angle, or
standard deviation.

latitude, or
scalar cost function.

time derivative of latitude.

state transition matrix, or
o+,

azimuth.
time derivative of azimuth.
vector of algebraic functions.

rotation rate of a planet or moon.

xxiil



CHAPTER 1

INTRODUCTION

1.1 Motivation

A very important aspect of trajectory reconstruction is to assess the accuracy of
pre-flight predictions of the entry trajectory. This assessment serves a dual purpose.
First, trajectory reconstruction confirms: computational models of the atmosphere,
planetary gravitational models, vehicle aerodynamic characteristics, and predicted
vehicle flight performance. Second, trajectory reconstruction highlights discrepancies
in each of these four things. That is, entry reconstruction makes us aware of how
well we know what we know, and it helps make note of where our models may not be
correct.

For example, trajectory reconstruction highlighted both the anomalistic distur-
bance torques experienced by the Mars Exploration Rovers during entry, and tra-
jectory reconstruction helped quantify the extent to which the Mars Phoenix Lander
landed long. The torques experienced by the Mars Exploration Rovers were explained
by the incomplete burning away during entry of the thermal blanket on the forebody
of each spacecraft. [287] Without trajectory reconstruction, this problem would not
have been identified, and mitigations could not be developed for future mission de-
signs. While the long landing of the Mars Phoenix lander is yet unexplained, it
does perhaps highlight the need for additional instrumentation on board entry vehi-
cles and improved local atmospheric monitoring capabilities around non-terrestrial
bodies that are being explored.

Typically, spacecraft entering Earth’s atmosphere are well instrumented and there



exists much data with which to reconstruct the entry trajectory.! [278] In contrast,
while numerous entry systems have flown in non—terrestrial atmospheres, often these
systems are not adequately instrumented or the flight team not adequately funded to
perform the statistical engineering reconstruction required to quantify performance
and feedforward lessons learned into future missions. As such, entry system perfor-
mance and reliability levels remain unsubstantiated and improvement in aerothermo-
dynamic and flight dynamics modeling remains data poor. This research focuses on
comparing methods for providing an accurate estimate of the atmosphere flown in and
the trajectory flown by a robotic entry system. Best estimate values and uncertainties

are provided, where applicable.

1.2 Objectives

This thesis compares two Kalman filter methods for obtaining information from pre-
vious entry data (i.e. from the Mars Pathfinder entry). The comparison is done
in an effort to quantitatively and qualitatively compare the Kalman filter methods
of reconstructing trajectories and atmospheric conditions from entry systems flight
data. The first Kalman filter method used is extended Kalman filtering.? Extended
Kalman filtering has been used extensively in trajectory reconstruction both for or-
biting spacecraft and for planetary probes. It represents a standard against which
to compare the other Kalman filter method. The second Kalman filter method is
unscented Kalman filtering. As the literature suggested, unscented Kalman filter-
ing offers improved performance over extended Kalman filtering, and this improved
performance is demonstrated for entry, descent, and landing trajectory reconstruc-

tion. Unscented Kalman filtering has not been applied to entry, descent, and landing

LGenesis [69] and Stardust [68] are notable exceptions to this. Neither mission included instru-
mentation to provide data for trajectory reconstruction such as inertial measurement units.

2To some extent, most estimation methods such as Kalman filtering are fundamentally related
to least squares.



trajectory reconstruction.?

Additionally, a formulation for trajectory reconstruction using collocation was
desired, and it was desired that the trajectory simulation capabilities of collocation
be evaluated. Collocation has also not been applied to entry, descent, and landing
trajectory reconstruction. While collocation is not an estimation technique, it is
useful for simulating entry, descent, and landing trajectories, and it may be useful for

reconstructing entry, descent, and landing trajectories.

1.3 A Word on the Uniqueness of the Trajectory Recon-
struction Problem

Unlike many applications where measurements are made, the states in trajectory
reconstruction are generally not observable. The global positioning system on Earth
makes it easy to determine our location, but it does not exist on other planets. The
location of a spacecraft must often be determined by the inertial measurement unit
acceleration data alone while performing entry descent, and landing from an initial
state that has some uncertainty. And without certain knowledge of where it started
from, the spacecraft could easily get lost until it finds the ground with its radar
altimeter. The radar altimeter finds that landmark of the ground that allows the
spacecraft to orient itself on the way to the surface of the planet. This is analogous
to a blind man walking on the street. He knows where he started from, and he has
a rough idea of where he is as he is walking. Periodically, however, he needs to
find landmarks he knows along his route to verify his location. So unlike terrestrial
navigation, there is no visibility of position and velocity during entry, descent, and

landing.

3Unscented Kalman filtering has been used for the reconstruction of Mars Odyssey’s aerobraking.
[127, 128, 129]



1.4 Contributions

The contributions of this research, as will be discussed, are:

(1) The extended Kalman filter was originally developed for signal processing ap-
plications and only later applied to trajectory reconstruction. Similarly, unscented
Kalman filtering was developed for signal processing applications, and this work rep-
resents its first application to the reconstruction of entry, descent, and landing tra-

jectories.

(2) The reformulation of the entry, descent, and landing trajectory reconstruction
problem using collocation has been demonstrated by the author. This approach
dubbed “TRUC”, after “trajectory reconstruction using collocation” posits that en-
try, descent, and landing trajectory design tools using collocation may also be used
for entry, descent, and landing trajectory reconstruction. As a first step, the perfor-
mance of entry, descent, and landing trajectory simulation using collocation (TSUC)
has been demonstrated by the author. Additionally, a solution procedure for deter-
mining the state values that satisfy the defect constraints has been developed. This
procedure allows the trajectory to be determined from the controls and parameters

of the simulation in a deterministic way.*

(3) Trajectory reconstruction results from the unscented Kalman filter were com-
pared against the trajectory reconstruction done using the extended Kalman filter.
From this, guidance on choosing a method for the reconstruction of future trajectories
was established. This guidance included trajectory reconstruction using collocation

based on its expected capabilities.

4The review of the literature for this research indicates that collocation has not been used for
entry, descent, and landing trajectory reconstruction, so this solution procedure has not been used
for entry, descent, and landing trajectory reconstruction using collocation.



CHAPTER 11

BACKGROUND AND MOTIVATION

In the following sections, an overview of methods for reconstructing atmospheric
information from observations is provided. Next, a historical review is presented of
the trajectory reconstruction work performed for several planetary probe missions.
While primarily focused on Mars, Venus, and Earth-return missions, the Galileo
(Jupiter) and Huygens (Titan) missions are also discussed. Emphasis is placed on
the reconstruction of trajectories and atmospheres from inertial measurements of the

motion of a planetary probe entering a body’s atmosphere.

2.1 Measurement Techniques

A number of methods for measuring the variations of density and pressure with alti-
tude in an atmosphere have been devised. Descriptions of some of those which have
been used to survey the Earth’s atmosphere were reported by Hanessian [113], Kon-
dratyev [159], and Peterson [204]. Early on, it was noted that one of the primary
objectives of robotic probes was to characterize non—terrestrial atmospheres, not only
in terms of composition, but by finding temperature, pressure, and density profiles.
[238] As Alvin Seiff [317], of the NASA Ames Research Center, wrote in a NASA

technical note:

One of the early objectives of space probes sent to Mars and Venus will
be to determine the characteristics of the atmospheres on those planets
for scientific purposes. Characteristics of interest include profiles of gas
density, temperature, and pressure above the planet surface, and chem-

ical composition of the atmosphere. Because of practical limitations, it



is doubtful that the first probes will convey a very complete picture of
the atmosphere, and a good initial objective will be to define the above
properties broadly, although certainly the more that can be learned from

an early probe the better. [238]

Given the dynamics of an atmosphere, real-time “weather reports” are needed
to make the most accurate predictions of a planetary probe’s entry trajectory and
landing site. Knowledge of the atmospheric entry conditions also aids in the design
of the spacecraft [220]. A summary of the different methods that can be used to
determine various atmospheric properties are listed in Table 1. The following sections
will present an overview of various methods for obtaining information on planetary

and natural satellite atmospheres.

Table 1: Methods for determining atmospheric properties.

Method Composition Density Temperature Pressure Wind Speed
Radio occultation v vE vE

Photometric occultation v vE vE

Spectroscopic measurements v v

In situ measurements v v v v v
Doppler tracking v v
Inertial measurement units v vE v

*When observations are combined with composition information obtained from another method.

2.1.1 Remote Sensing

Radio Occultation Occultation is the interruption of photons from some source
such as a star, planet, or spacecraft due to a passing celestial body such as a planet
(see Figure 1). Radio occultation refers specifically to the occultation of a radio signal
from a spacecraft due to the atmosphere of a planet interposed between the source
of the radio signal and the receiver. The interposing celestial body might be Mars
between Earth and Mariner 4 [89] or Venus between Earth and Mariner 5 [90, 91].
The atmosphere of the celestial body refracts the signal, and a refractivity profile

for the atmosphere is established. From the atmospheric refractivity profile, one can



retrieve, in sequence, profiles of the atmospheric density (given the composition),
pressure, and temperature [319]. For radio signals, the Doppler shift of the radio
signal is used to determine the refractivity profile rather than the “bending” of the
signal [132] since the amount of bending is small. From the atmospheric refractive
index, one can retrieve, in sequence, profiles of the atmospheric density, pressure,
and temperature [319]. Information on atmospheric turbulence can also be obtained
with single-frequency radio occultation, but turbulence is better determined from

dual-frequency observations [315].

Direction of Planetary Motion

@ Radio Signal Unrefracted Signal

________ Radio
Radio AL /P Signal
Signal \\I{d\sl@al Receiver
Source ~~-

,\/

Figure 1: Radio occultation by Mars of a signal sent from
Earth.

Before the atmospheric refractivity profile can be used to obtain the density pro-
file of the atmosphere, the composition of the atmosphere must be determined. The
atmospheric composition can be determined using ground-based spectroscopic ob-
servations for many gases. An atmospheric profile of number density can then be
determined using the refractivity and composition through the use of empirical rela-
tions from refractivity experiments with gas mixtures. Knowing the composition, it
is a simple step to go from the number density profile to the mass density profile of

the atmosphere. Pressure then follows from the hydrostatic equation (to be discussed



further in § 2.1.4), and temperature then follows from pressure and the ideal gas
equation of state.

Radio occultation measurements of temperature and pressure are limited by sig-
nal power and critical refraction. For example, on the Mariner 5 mission to Venus,
loss of lock on the 423.3 MHz channel occurred 0.3 min after encounter. At this
time, the lowest point on the ray passed 35 km above the surface where the pres-
sure of the Venusian atmosphere was approximately 6 atm. No information about
the atmosphere was determined below this altitude. The depth to which the radio
signal probed before the loss of lock occurred was limited by the power of Mariner 5’s
transmitter. However, even with unlimited radio signal power, obtaining data down
to the surface would not have been possible because of critical refraction. (Critical
refraction occurs in atmospheric regions where the radius of curvature of a horizontal
ray due to refraction becomes equal to, or smaller than, the distance from the top
of the atmosphere to the planetary center of mass. No rays can probe tangentially
through such regions since they are effectively bent to intersect with the planet.)
The critical refractive properties of the atmosphere of Venus became known when the
Venera 4 lander made its direct measurements on October 18, 1967 (one day prior to
the Mariner 5 occultation experiments). [90] Radio occultation measurements were
also used during the Viking missions to obtain atmospheric temperature and pressure

profiles [92].

Photometric Occultation Photometric occultation is generally used to determine
the shape of planetary bodies that lack an atmosphere such as moons and asteroids.
However, when stars are occulted by planetary atmospheres such as the occultation
of Regulus (a-Leonis) on July 7, 1959 by Venus [58], refractive observations can be

combined with additional observations to obtain temperature and pressure profiles



for the atmosphere (see Figure 2). The additional information necessary includes at-
mospheric composition, surface temperature from microwave observations, and other
remote temperature measurements to provide anchor points for the temperature pro-
file. Occultation of stars passing behind natural satellite and planetary atmospheres

also allows spectroscopic measurements to be made.
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Figure 2: The effect of atmospheric refraction on the du-
ration of occultation. At the time of apparent ingress (I)
and egress (F), the apparent radius is R = VI = VE cor-
responds to the observed duration of the occultation. The
apparent radius is less than the true radius of the occulting
shell, and the difference (w) is due to refraction. [58]

Spectroscopic Measurements Occultation of stars passing behind natural satel-
lite and planetary atmospheres also allows comparisons to be made of the star’s
spectra with and without an intervening atmosphere to see where absorption in the
electromagnetic spectrum occurs. Spectroscopic measurements of sunlight reflected
from natural satellite and planetary bodies allows their composition to be determined.
[220, 28] Spectroscopic measurements can be used to characterize the composition of
both an atmosphere and a rocky body. For example, water, carbon dioxide, and ozone

all have strong, easily identifiable absorption bands at infrared wavelengths.



2.1.2 In Situ Measurements

The best measurements of atmospheric properties are made in situ and then trans-
mitted to Earth. The first in situ measurements of atmospheric composition were
made on October 18, 1967 by Venera 4 on Venus [197, 155, 177]. Similar measure-
ments were made in Jupiter’s atmosphere by Galileo on December 7, 1995 [318, 185],
and on Titan by Huygens on January 14, 2005 [150, 235]. On Mars, Mars 6 ob-
served the presence of inert gases (suspected to be carbon dioxide and argon) on
March 12, 1974 [189, 124] and specific abundances for gases were measured by Viking 1
on July 20, 1976 [198, 194]. Instruments for atmospheric measurements used on sev-
eral robotic probe missions are listed in Table 2 on page 10 for missions performing
entry at celestial bodies beyond the Asteroid Belt, Table 3 on page 11 for missions
performing entry at Venus, Table 4 on page 13 for missions performing entry at Earth,

and Table 5 on page 16 for missions performing entry at Mars.

Table 2: Instruments (or types of measurements) for ob-
taining atmospheric information used on several robotic
missions performing entry at celestial bodies beyond the
Asteroid Belt.

Galileo [318, 248, 244] Huygens [150]
Accelerometers v v
Gyroscopes
Pressure sensor
Temperature sensor
Mass spectrometer
Gas chromatograph
Shock layer radiometer
Trace species detector
Cloud sensors
Aerosol analyzer
Net flux radiometer
Solar flux sensors
Lightning detectors
Hydrogen-Helium ratio
Energetic particles
Wind speed
Descent imager
Surface science
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In situ measurements have included temperature, pressure, wind speed, and com-
position. Measuring temperature and pressure on the surface of a planet is relatively
straightforward. Landing a spacecraft onto the surface of another planet, however, is
fraught with complications. Additionally, once the lander has landed, it must survive
long enough to make the measurements and transmit the data back to Earth.

On Venus, with its high temperature and high pressure environment, for example,
the greatest challenge is having the spacecraft survive until it reaches the surface.
Venera 7 was the first spacecraft to successfully return data from the surface of Venus
[22, 134]. The density of Venus’ atmosphere makes possible in situ measurements of
temperature and pressure while descending on a parachute with minimal impact from
the effects of the spacecraft’s descent through the atmosphere. Vega 1 and Vega 2
were able to measure atmospheric temperature and pressure from 0 km to 63 km

above ground level [59].

Table 3: Instruments (or types of measurements) for ob-
taining atmospheric information used on several robotic
missions performing entry at Venus.*

Pioneer Venus Pioneer Venus
Venera  Large Probe Small Probes  Vega

Accelerometers v v'[50] v [50] v
Gyroscopes v'[147) v'[59]
Pressure sensor v [17] v'[50] v'[50] v'[169]
Temperature sensor v [17] v'[50] v'[50] v'[169]
Mass spectrometer v v v
Gas chromatograph v v v
Shock layer radiometer

Trace species detector v v
Cloud sensors v v v v
Aerosol analyzer v v
Net flux radiometer v v

Solar flux sensors v v v
Lightning detectors v v
Hydrogen-Helium ratio

Energetic particles

Wind speed v v v v
Descent imager

Surface science v

*The instruments used by Venera, Vega, Pioneer Venus Large Probe, and Pio-
neer Venus Small Probes are provided in reference [240] except where noted.
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In-flight measurements of atmospheric temperature and pressure are complicated
because, at supersonic and hypersonic speeds, an instrument may not directly mea-
sure freestream conditions.! Experiments involving a number of forms of observations,
such as acceleration, spectral distribution and intensity of shock-layer radiation, os-
cillation frequency, etc., were proposed in [238], and the experiments were developed
in more detail in [249] and [205].

The most comprehensively instrumented probe flown on Earth was the Planetary
Atmosphere Experiments Test (PAET) vehicle [250] (see Figure 3), which was built
to carry instruments for making the observations discussed in the previous paragraph.
The PAET instruments included temperature sensors, pressure sensors, accelerome-
ters, a mass spectrometer, and a radiometer (to aid in the determination of atmo-
spheric composition) (see Figure 4 and Figure 5). Future generations of the PAET
atmospheric structure instrument flew on Viking 1 and Viking 2 (2nd generation),
Pioneer Venus (3rd generation), and Galileo (4th generation). [248] The atmospheric
structure instrument consisted of accelerometers, temperature sensors, and pressure

Sensors.

UMBILICAL COLUMN

VHF ANTENNAS

GROUND
PLANE

HONEYCOMB
TRACKING AFTERBODY
ANTENNAS

Figure 3: Cut-away view of the PAET vehicle. [250]

!Density can also be determined from pressure and velocity measurements during entry. [326, 192]
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Table 4: Instruments (or types of measurements) for ob-
taining atmospheric information used on several robotic

missions performing entry at Earth.

PAET [250, 240]

Genesis [69]

Stardust [68]

Accelerometers
Gyroscopes

Pressure sensor
Temperature sensor
Mass spectrometer
Gas chromatograph
Shock layer radiometer
Trace species detector
Cloud sensors

Aerosol analyzer

Net flux radiometer
Solar flux sensors
Lightning detectors
Hydrogen-Helium ratio
Energetic particles
Wind speed

Descent imager
Surface science

N NN N

PECTROMETER :)

Figure 4: Interior view of the PAET vehicle. [250]

13



1 AMBIENT TEMPERATURE PROBES

2 PRESSURE PORTS

3 HEAT TRANSFER SENSORS

4 RADIOMETER WINDOW

5 MASS SPECTROMETER INLET

6 HEAT SHIELD PLUGS

7 AFTERBODY HEAT SHIELD
TEMPERATURE SENSOR

Figure 5: Sensor ports on the PAET vehicle. [250]

In 1967, a study was conducted on the design of a thoroughly instrumented probe
(see Figure 6) to determine the properties of the Martian atmosphere [101], but it was
not built. Nevertheless, several robotic missions have made in situ measurements on
Mars. The Mars 6 descent vehicle made temperature and pressure measurements as
it descended [16] . The temperature measurements were biased due to entry heating,
but could be used to obtain the stagnation point temperature [85, 325]. Viking 1 and
2, Mars Pathfinder, the Mars Exploration Rovers, and Mars Phoenix Lander have all
made in situ measurements on Mars, although the Mars Exploration Rovers did not
make in situ measurements of temperature and pressure, and Mars Pathfinder only

measured surface properties.
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Figure 6: Design proposed in 1967 for a probe to determine
the atmospheric properties of the Martian atmosphere. The
probe is enclosed inside a shell that spins up the probe for
stabilization and is jettisoned prior to entry. [101] The Av
rocket and the mechanical spin system are in the middle,
right portion of the figure.

The Mars Science Laboratory (MSL) will have a suite of instrumentation em-
bedded in the heatshield of the entry vehicle. Called MEDLI for “Mars Science

Laboratory Entry, Descent and Landing Instrumentation,” the instrumentation will
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measure temperature, pressure, and recession of the thermal protection system. The
data collected will aid in the understanding of the aerodynamics, aerothermodynam-
ics, flight dynamics, and material response of the thermal protection system, as well

as permit more accurate acrodynamics, atmosphere, and trajectory reconstruction.?

[196]

Table 5: Instruments (or types of measurements) for ob-

taining atmospheric information used on several robotic

missions performing entry at Mars.

Mars Mars
Viking Mars Exploration Phoenix
Mars 6 [261] 1 and 2 Pathfinder [267] Rovers [53, 11] Lander [255]

Accelerometers v v'[240] v v v
Gyroscopes v'[239] v v
Pressure sensor v v'[239] v v
Temperature sensor v v'[239] v v
Mass spectrometer v'[124] v'[240] v
Gas chromatograph v'[240]

Shock layer radiometer

Trace species detector

Cloud sensors v v'[46] v
Aerosol analyzer

Net flux radiometer

Solar flux sensors

Lightning detectors

Hydrogen-Helium ratio

Energetic particles

Wind speed v v
Descent imager v
Surface science v v v

2.1.3 Doppler Tracking

Doppler tracking uses the Doppler shift of a radio signal from a spacecraft to determine

the velocity of the spacecraft and other state and model parameters. Atmospheric

2Essentially, the actual entry flight of a spacecraft represents the best opportunity to collect data
on the performance of the flight vehicle since the actual flight conditions cannot always be simulated
in tests on Earth. Hence, data for model validation may be lacking. The improved models can
then be used for designing future spacecraft. For example, aerodynamic heating uncertainties can
be greater than 50%, especially near the shoulders of aeroshells. Such uncertainties require thicker,
heavier aeroshells than may be necessary. Additionally, pressure data taken in—flight will help
resolve the separation of aerodynamic coefficient uncertainties with uncertainties in the atmospheric
conditions.
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wind profiles can also be determined from Doppler tracking.> Generally, the source
of the radio signal is a spacecraft descending to the surface of a planet or natural
satellite. There may be one or more receivers of the signal. Often, the NASA Deep
Space Network (DSN) or the Very Large Array (VLA) constitute the Earth-based
receiver. If there is a second spacecraft in the vicinity of the celestial body of interest
(such as with paired orbiter-lander or flyby-lander missions), it may be used as another
receiver. Two receivers in different locations allows two components of the lander’s

velocity to be determined.
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J The end of measurements made| =~y
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Figure 7: Temperature profile of Venus’ atmosphere based
on measured temperatures and altitudes from Doppler
tracking. [22]

Doppler tracking was used extensively as part of exploration missions to Venus.
Doppler tracking was used to determine the velocity of the Venera and Vega landers
(see Figure 7) [155, 22, 6, 7, 8, 316, 18] and to obtain profiles of the atmospheric
winds [155, 7, 8, 154, 153]. Doppler tracking was also used during the Pioneer Venus
mission to obtain more than one component of the spacecraft’s velocity. [14] At Mars,
Doppler tracking was used during Mars 6 flyby-lander mission [16] and the Viking

orbiter-lander missions [182]. Changes in the speed of the Galileo probe at Jupiter

3Wind measurements generally require a separate ground station in addition to sensors at altitude
in the atmosphere. Doppler tracking is the most straightforward method for use at non—terrestrial
planets and natural satellites with atmospheres [133]
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caused by zonal winds also created a small but measurable effect in Galileo’s relay

carrier frequency. [14]
2.1.4 Inertial Measurement Units

Properties of planetary and natural satellite atmospheres can also be determined from
observations made by an entry vehicle passing through the atmosphere. Considerable
attention has been focused on knowledge of the acceleration experienced by a body,
having known aerodynamic characteristics (with known uncertainties associated with
them) and entering an atmosphere on a ballistic trajectory. [205] Measurements
of the motion of the entry vehicle can be used to construct the density and pressure
structure of the atmosphere.* [205] The motion of an entry body is generally measured
using inertial measurement units (IMUs). An inertial measurement unit contains
accelerometers for measuring the translational motion of the entry vehicle, and it
may also contain gyroscopes for measuring rotational motion.

Detailed procedures for obtaining the density and pressure profiles of a planetary
atmosphere from measurements of accelerations experienced by a vehicle making a
ballistic entry into the atmosphere of a planet are given in [238, 204]. Atmospheric
temperature profiles can also be determined given composition information. Early
work focused on a spherical entry bodies [47, 204, 205, 120], though some work in-
volved conical bodies [262] including the fourth flight of the NASA Planetary Entry
Parachute Program (PEPP) [263].

Atmospheric density (p) is determined from the axial acceleration (a4) experi-
enced by the entry vehicle assuming: the vehicle’s aerodynamic properties (i.e. drag
coefficient (Cp) and aerodynamic reference area (5)), the speed of the entry vehicle

(v), and its mass (m) are all known.?

4However, the uncertainties of the spacecraft’s aerodynamic coefficients and the uncertainties of
the atmospheric conditions cannot be separated unless separate measurements are made of either
the actual flight atmospheric conditions or the pressure distribution around the spacecraft in—flight.
5The speed of the entry vehicle (v) is known from the reconstruction of the spacecraft’s trajectory
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(1)

(2)

Vehicle drag coefficients are not greatly affected by the composition of the atmo-
sphere in which a vehicle flies [130], so the composition of the atmosphere can be
neglected when finding the atmosphere’s density profile. Typically for ballistic entry

vehicles flying at zero angle of attack, the axial acceleration (a4 ) is used in equation 2.

(3)

The atmospheric pressure (p) profile can be determined by integrating the hydro-

static equation, which can be expressed in terms of the velocity (v) and flight path



angle () of the entry vehicle.

dp = —pgdh (4)
h
p=— [ podn (5)
and

dh = —(vsin~y)dt (6)

t
p= / pgusin ydt (7)

0

The atmospheric temperature (") profile can then be determined by using the

ideal gas equation of state if the molecular mass (M W) of the atmosphere is known.

r
p= PWT (8)
P
A (©)
3t

2.1.5 Light Detection and Ranging

Light Detection and Ranging (LIDAR), also known as Laser Detection and Ranging
(LADAR), can be used to determine position and velocity and is expected to improve
real-time navigation significantly for pinpoint landing [3] and remotely piloted ve-
hicles [2]. LIDAR can also be used to obtain various atmospheric information [178]
including: measuring wind speeds [254, 93], carbon dioxide concentration in the at-
mosphere [254], molecular species temperature and pressure [179], measurement of

gas and aerosol profiles [4, 221], and trace gas concentration [44].
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2.1.6 Descent Imaging

The Descent Imager / Spectral Radiometer (DISR) provided images during part of
the descent of the Huygens probe to the surface of Saturn’s natural satellite Titan.
Altitude, attitude information (“tip and tilt”, as well as rotation), and wind velocity
[146] can be determined from descent imaging. By imaging the same surface feature
at different altitudes, descent imaging can also serve to verify the reconstruction of
altitude from inertial measurement units [146], even if the size of the surface feature
is not known. If the size of the surface feature is known, the altitude estimation is
more accurate. Clouds, fog, and dust can limit the use of descent imaging depending
on what part of the spectrum the image is taken from. Higher resolution images
enhance the accuracy of reconstruction, and allow reconstruction to begin at higher
altitudes. However, higher resolution images require more memory space to store,
present a higher computational burden for in—flight processing, and take longer to

transmit to Earth.
2.1.7 Magnetometer Measurements

Magnetometers can measure the strength and direction of a magnetic field. Since
the magnetic field at any point around Earth is relatively unique, magnetometer
measurements can be used to determine altitude and latitude [257, 258] by matching
the magnetometer measurements to a model of the Earth’s magnetic field. Spacecraft
attitude [26, 52, 51, 216, 211, 215, 214] and changes in attitude [51, 289] can also
be determined. In order for magnetometer measurements to be used, the planet
or natural satellite of interest must have a significant and mapped magnetic field.
Earth, Jupiter, Ganymede, Saturn, Uranus, and Neptune are the only solar system
bodies with appreciable magnetic fields. The use of magnetometer measurements also
requires an up-to—date model of the magnetic field, and magnetic fields are subject

to change. For example, as of 2009, the Earth’s magnetic north pole was moving from
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Canada to Russia at the rate of approximately 64 kilometers per year. [173] This is
approximately four times faster than its rate of movement at the beginning of the

20th century.

2.2 Reconstructed Mission Data

A survey of several robotic planetary probe missions was conducted to determine
if there was a standard method of trajectory reconstruction for entry, descent, and
landing. This standard method would then be used to evaluate the two methods under
investigation in this research® for possible application to trajectory reconstruction.
Generally, the entry, descent, and landing trajectory reconstructions were performed
by either directly integrating the accelerometer data obtained during entry or by
using Kalman filtering” in conjunction with the accelerometer data. In some cases,
both direct integration and Kalman filtering were used for trajectory reconstruction.
For other missions, radar tracking data was used and a description of how the data
was processed to reconstruct the trajectory is not explicitly stated, even though some
form of data reduction or filtering was probably used. Though direct integration was
the most widely used method of trajectory reconstruction, extended Kalman filtering
was selected as the standard to evaluate the two new techniques against as it provides
an estimate of uncertainty, which direct integration does not.

A summary of the methods used to reconstruct the trajectory of each spacecraft
are listed in Table 6 on page 29 for missions performing entry at Venus, Table 7 on
page 31 for missions performing entry at Earth, and Table 8 on page 42 for missions
performing entry at Mars, and Table 9 on page 45 for missions performing entry at
celestial bodies beyond the Asteroid Belt. The following paragraphs briefly discuss

each mission or series of missions.

6The two methods under investigation in this research being: (1) the unscented Kalman filter
(UKF) and (2) trajectory reconstruction (TRUC). This thesis compares these two methods with
extended Kalman filtering for reconstructing entry, descent, and landing trajectories.

"Usually with the extended Kalman filter form of the Kalman filter.

22



2.2.1 Venus Missions

Venera The sixteen Venera missions to Venus consisted of: flyby spacecraft (Ven-
era 1 and 2), probes (Venera 3, 4, 5, and 6), landers (Venera 7 and 8), orbiters
(Venera 15 and 16), and orbiter-lander pairs (Venera 9, 10, 11, 12, 13, and 14). Data
was returned from Venera 4, 5, and 6, but contact was lost before any of these space-
craft reached the surface of Venus. Venera 7 (see Figure 9) was the first spacecraft
to return data from another planet when it landed on Venus on December 15, 1970.
Venera 7 operated for 23 minutes after landing. [134] Sufficient data was returned
to construct profiles of atmospheric temperature and pressure. [22] Follow-on mis-
sions provided additional data confirming the Venera 7 measurements. By the end of
the Venera missions, sufficient data had been received to construct profiles of Venus’
atmospheric temperature, pressure, density, and winds using a combination of ac-
celerometer measurements, in situ measurements, and Doppler / radar tracking.

It is assumed that the trajectories of the Venera landers were reconstructed deter-
ministically using direct integration as the method is not always generally discussed
in the literature (cf. [17], [19], [147]). Applying filtering to the reconstruction of the
Venera—lander trajectories is discussed in reference [21]. However, reference [21] was
published over a year after the last Venera—lander (Venera 14) was launched (Novem-
ber 4, 1981), so it is not clear if filtering was later applied to the reconstruction of

the Venera trajectories.
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Figure 10: The Venera 7 entry capsule. [Image credit:
NSSDC]

Pioneer Venus The Pioneer Venus missions consisted of an orbiter and four probes:

one “large” probe (see Figure 12) and three small probes (see Figure 13) (the “north,”
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“night,” and “day” probes). Each probe entered Venus’ atmosphere at a different
location (see Figure 11). The orbiter was launched before the probes and inserted
into Venus orbit on December 4, 1978. The landers entered Venus’ atmosphere on
December 9, 1978.

Temperature and pressure data were received from all four probes. The data al-
lowed the construction of temperature, pressure, density, and wind profiles for Venus’
atmosphere. [247] However, temperature data from all four probes ceased at approx-
imately 12.5 km altitude, so the temperature was extrapolated from that altitude to
the surface. [246]

A post-flight investigation determined the cause of the data loss to be a short
in an electrical connection for the atmosphere structure instrument and the net flux
radiometer. Kapton insulation and kynar shrink tubing were used for these electrical
connections, and these materials dissolve after prolonged exposure to sulfuric acid.
[251] The data loss occurred at the same time as other anomalies in several other probe
instruments. There was also an increase in ambient light seen by the nephelometers

at the time of the anomaly. [246]
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The entry trajectory reconstruction process presented in reference [86] for the
Pioneer Venus probes evolved from simulation studies and error analysis results. Ini-
tially two types of methods were considered. These methods differ principally in the
manner by which spacecraft state predictions were obtained. One method, termed

the “conventional method,” obtained a state prediction by integrating the computed
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forces based on an a priori atmospheric and aerodynamic model. The conventional
method employed a Bayesian batch estimator. [87, 86] In the other method, referred
to as the “deterministic method,” the state predictions were obtained by integrating
the measured accelerations from some predetermined set of initial conditions. A form
of the deterministic method [303] was successfully employed by the Viking Project
to reconstruct the two Viking lander entries through the Martian atmosphere. [86]
References [303] and [230] utilize Kalman filtering algorithms, and the same algorithm
was employed for the Pioneer Venus probes in the deterministic method. [86] Similar

options for trajectory reconstruction are discussed in references [301, 302, 303, 230].

Vega The Vega 1 and 2 missions flew by Venus on their way to an encounter with
Halley’s Comet in 1986. At Venus, each Vega spacecraft deployed a lander inside
a spherical aeroshell (see Figure 14). Each lander deployed a balloon that drifted
near an altitude of 53.6 km. [232] The balloons and landers recorded temperature
and pressure data. The data from the landers were used to construct atmospheric
profiles of temperature, pressure, and density. [59, 169] Atmospheric density profiles
calculated using the ideal gas equation and from accelerometer measurements were
in good agreement with each other. [169] Vertical wind speed profiles were also
constructed from Doppler measurements [153], and a reference model for minimum,
mean, and maximum zonal winds was created from the data [190]. No mention is
made of data filtering, so it is presumed that direct integration was used with the
accelerometer measurements. However, some data filtering of data reduction may

have been used with the Doppler tracking data.
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Table 6: Trajectory reconstruction methods and atmo-
spheric information obtained from several robotic missions
performing entry at Venus.

Pioneer Venus Pioneer Venus
Venera’? Large Probe?  Small Probes/ Vega?

Trajectory Reconstruction Method

Radar Tracking v v
Direct Integration® Ve v
Kalman Filter Ve v

Atmosphere Reconstruction
Density Profile
Pressure Profile
Temperature Profile
Winds

ASENENEN
ASENENEN
ESENENEN
ASENENEN

°If accelerometer data was available for trajectory reconstruction and extended Kalman
filtering is not specifically mentioned, it is assumed that direct integration was the method used
for trajectory reconstruction.

YReferences [155, 147, 316, 19, 18, 20, 153].

¢Applying filtering to the reconstruction of the Venera—lander trajectories is discussed in
reference [21]. However, reference [21] was published over a year after the last Venera-lander
(Venera 14) was launched (November 4, 1981), so it is not clear that filtering was later applied to
the reconstruction of the Venera trajectories.

dReferences [87, 246, 247].

©The entry trajectory reconstruction process presented in reference [86] for the Pioneer
Venus probes evolved from simulation studies and error analysis results. Initially two types of
methods were considered. These methods differ principally in the manner by which spacecraft
state predictions were obtained. One method, termed the “conventional method,” obtained a
state prediction by integrating the computed forces based on an textita priori atmospheric and
aerodynamic model. The conventional method employed a Bayesian batch estimator. [87, 86] In
the other method, referred to as the “deterministic method,” the state predictions were obtained by
integrating the measured accelerations from some predetermined set of initial conditions. A form of
the deterministic method [303] was successfully employed by the Viking Project to reconstruct the
two Viking lander entries through the Martian atmosphere. [86] References [303] and [230] utilize
Kalman filtering algorithms, the same algorithm was employed for the Pioneer Venus probes in
the deterministic method. [86]

fReferences [87, 246, 247).

9References [160, 59, 153, 169].
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2.2.2 Earth-return Missions

Genesis and Stardust The Genesis and Stardust spacecraft were not equipped
with onboard sensor data for a traditional trajectory reconstruction. Instead, a best
estimated trajectory was calculated using the final navigation state vector at entry
interface and tracking data from the UTTR tracking stations. Atmospheric density

and wind profiles were obtained from balloon data prior to entry.® [69, 68]
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Figure 15: The Genesis and Stardust sample return cap-
sules.

8Four hours prior to entry for Genesis [69], and two hours prior to entry for Stardust [68].
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Table 7: Trajectory reconstruction methods and atmo-
spheric information obtained from several robotic missions
performing entry at Earth.

PAET? Genesis® Stardust®

Trajectory Reconstruction Method
Radar Tracking v v Vel
Direct Integration® v
Kalman Filter

Atmosphere Reconstruction

Density Profile v v v
Pressure Profile v
Temperature Profile v
Winds v v

¢If accelerometer data was available for trajectory reconstruction and
extended Kalman filtering is not specifically mentioned, it is assumed that
direct integration was the method used for trajectory reconstruction.

PPAET was discussed in § 2.1.2.

“Reference [69].

4No onboard sensor data for a traditional trajectory reconstruction was
available from Genesis. Instead, a best estimated trajectory was calculated
using the final navigation state vector at entry interface and tracking data
from the UTTR tracking stations. Atmospheric density and wind profiles were
obtained from balloon data four hours prior to entry. [69]

“Reference [68].

fAs with Genesis, no onboard sensor data for a traditional trajectory
reconstruction was available from Stardust. Instead, a best estimated trajec-
tory was calculated using the final navigation state vector at entry interface
and tracking data from the UTTR tracking stations. Atmospheric density and
wind profiles were obtained from balloon data two hours prior to entry. [68]

2.2.3 Mars Missions

Mars 3 & Mars 6 Mars 6 (see Figure 16) was one of the Mars—series space-
craft (Mars 1 through 7) launched by the Soviet Union from 1962 to 1973. Mars 1
came within approximately 193,000 km of Mars, but its communication system failed
when it was 106,760,000 km from Earth. Mars 2 and 3 arrived at Mars on Novem-
ber 27, 1971 and December 2, 1971, respectively. Mars 2 crashed on Mars at ap-
proximately 45°S, 302°W. Having entered the atmosphere at too steep of an angle

it crashed into the surface before its parachute system was activated. [203] Mars 3
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achieved the first soft landing on Mars at approximately 45°S, 158°W, but ceased op-
erating after 20 seconds on the surface [183], perhaps because of the violent Martian
dust storm taking place when it landed. [108]

Mars 4, 5, 6, and 7 arrived at Mars in February and March of 1974. Mars 4
arrived first on February 10, 1974. Passing as close as 2200 km altitude, it took
several photographs as it flew by Mars. Mars 5 arrived on February 12, 1974 and was
placed into a highly elliptical orbit around Mars with an eccentricity of 0.74974 and a
periapsis altitude of 5150 km. Mars 7 arrived next on March 9, 1974. Unfortunately,
an on board systems failure caused its lander to fly by Mars at an altitude of 1300 km.
Mars 6 arrived at Mars on March 12, 1974. [189]

The descent velocity of Mars 6 was determined using the Doppler shift in the
signal transmitted to the orbiter up until the descent vehicle reached a speed between
60 m/s and 65 m/s when communication ceased. The relative velocity measurement
was used to determine the maximum deceleration experienced by the descent vehicle.
The analysis of the Doppler shift was performed on Earth using recorded data [16],
and references [222, 152] present further analysis of the Mars 6 transmissions. Refer-
ence [152] includes estimates of the atmospheric temperature, pressure, and density
profiles, as well as a wind profile from 0.2 km to approximately 7.5 km above the
landing site. Accelerometer measurements were also made and used for the trajec-
tory reconstruction. [16] No discussion was found of any data reduction or filtering
techniques used for the reconstruction, so it is presumed that direct integration of the

accelerometer measurements was used to reconstruct the trajectory.
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Figure 16: The Mars 6 entry vehicle. 1) motor for sep-
arating the entry capsule, 2) motor for ejecting the draw
parachute, 3) antennas for communication with the orbiter,
4) parachute container, 5) radio-altimeter antenna, 6) aero-
dynamic deceleration cone, 7) instruments and equipment
of the automatic control system, 8) main parachute, and 9)
the lander. [261]

The Mars 6 descent vehicle made temperature and pressure measurements as it
descended. The temperature measurements were biased due to entry heating, but
the pressure measurements provided a means of estimating atmospheric temperature
during descent. [16] Temperature and pressure profiles from 20 km to 0 km altitude
(above the landing site at 23.9°S, 19.5°W) were constructed. [261]

Mars 6 also carried a mass spectrometer. Measurements were made of atmo-
spheric composition. The mass spectrometer data were stored on board during the
descent and scheduled to be transmitted after landing. However, communications
ceased before the data could be transmitted. The current to the vacuum pump was
transmitted as an engineering parameter, however. The current data showed a steep
increase. It was hypothesized that this indicated the presence of an inert gas which
could not be removed by the pump. [126] Carbon dioxide was hypothesized to make

up no less than 75% of the Martian atmosphere since the pump’s electric current data
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fell around the 35% argon / 65% carbon dioxide calibration curve for the pump. [124]

Viking The Viking missions consisted of two orbiter-lander pairs (see Figure 17).
Viking 1 landed in the Chryse Planitia region at 22.5°N, 48.0°W on July 20, 1976
[259], and Viking 2 landed in the Utopia Planitia region at 47.89°N, 225.86°W on
September 3, 1976 [193]. The Viking landers had a reaction control system [123], and
center of gravity placement was used to trim the Viking aeroshells at an angle of attack
of -11.1° [76]. The landers made measurements of the structure of the atmosphere
during entry and descent using accelerometers, pressure, and temperature sensors
(see Figure 18).

Profiles of atmospheric density, temperature, and pressure were established using
atmospheric deceleration measurements, as well as direct measurements of tempera-
ture and pressure below approximately 20 km altitude. [79, 243, 239, 242, 156, 157
Kalman filtering was used in the reconstruction process. [121, 79] A mass spec-
trometer measured the physical and chemical properties of the atmosphere of Mars
beginning at an altitude near 200 km. [194] Preliminary data determined the abun-
dance of gases in the Martian atmosphere to be: 95% carbon dioxide, 0.1% to 0.4%

oxygen, 2% to 3% nitrogen, and 1% to 2% argon. [198]

(a) Orbiter. (b) Lander.

Figure 17: The Viking 1 spacecraft. [Image credit:
NSSDC]
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Mars Pathfinder Mars Pathfinder (see Figure 19) was launched on December 4, 1996
and landed on Mars on July 4, 1997. [299] Three scientific instruments collected
data: (1) the Imager for Mars Pathfinder [256], (2) the a—proton x-ray spectrometer
(APXS) [224], and (3) an atmospheric structure investigation / meteorology package

(ASI/MET) [252]. The atmospheric structure investigation / meteorology package
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contained the accelerometers that provided the acceleration data for Pathfinder’s tra-
jectory reconstruction. Low—pass filters in the accelerometer electronics attenuated
signal frequencies above 5 Hz to suppress the effects of noise and spacecraft dynamic
motion. [252] Mars Pathfinder also deployed a small rover named Sojourner, which
carried the a—proton x—ray spectrometer. [106, 105, 285]

Profiles of atmospheric density, temperature, and pressure were constructed, along
with a best estimate trajectory. Best estimate trajectories were constructed by (1)
directly integrating accelerometer data [237, 175, 313, 314], (2) using a linearized
Kalman filter applied to both accelerometer data and radar altimeter data [49], and
(3) using a combination of accelerometer and altimeter measurements using sequential

filtering and smoothing techniques [270, 269].
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Figure 19: Dimensions of the Mars Pathfinder Aeroshell.
[269, 103]
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Mars Exploration Rovers The Mars Exploration Rover (MER) mission consisted
of two identical spacecraft (see Figure 20): Spirit and Opportunity. The Spirit
(MER A) spacecraft was launched on June 10, 2003. On January 4, 2004, Spirit
landed in Gusev Crater (14.59°S, 175.3°E) on Mars. The Opportunity (MER B)
spacecraft was launched on July 7, 2003. On January 25, 2004, Opportunity landed
in Meridiani Planum (1.98°S, 5.94°W) on Mars. [70]

Spirit and Opportunity’s entry, descent, and landing sequence was similar to that
used for the Mars Pathfinder mission. [269] Each spacecraft decelerated with its
aeroshell and heatshield, then deployed a supersonic parachute, jettisoned its heat-
shield, and used retrorockets to minimize its velocity above the surface of Mars. The
lander was then separated from the backshell and dropped to the surface protected
by airbags (see Figure 21). Once the motion of the lander ceased, the Spirit rover

was deployed to make in situ science measurements.
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Figure 21: Entry, descent, and landing sequence for the
Mars Exploration Rovers. [33]

Each MER spacecraft was equipped with two Litton LN-200S inertial measure-
ment units. One inertial measurement unit was located in the backshell of the space-
craft’s aeroshell, and the other inertial measurement unit was located in the rover.
[53] Both inertial measurement units included 3-axis accelerometers and gyroscopes.
The data obtained by the inertial measurement units has been archived in the NASA
Planetary Data System. [148] The inertial measurement units have a dynamical range
of 80 g, (gn = 9.80665 1) with a 2.4 mg,, resolution, and noise levels of 1.6 mg,. The
MER inertial measurement units obtained measurements at a frequency of 400 Hz.
This data rate produced more data than the spacecraft could effectively use, so the
inertial measurement unit data was summed yielding measurements at an effective
frequency of 8 Hz. This change in the effective data rate reduced the effective noise

to 300 pg,. [53] In comparison, the effective noise for the Mars Pathfinder mission
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accelerometers was less than 5 mg, [175].

Post-flight analysis of the Mars Exploration Rover inertial measurement units
demonstrated that the y—axis accelerometer was rotated by 0.31528° and the x—axis
accelerometer was rotated by 0.10886° relative to the principle body axes. These
values were determined such that the attitude oscillation was centered on 0° (no
bias in the mean normal acceleration signals) for the oscillations near the parachute
deployment condition. The total rotation of the backshell inertial measurement unit
axes was 3°. [253]

IMU output processing was performed on the spacecraft for all of the 8 Hz mea-
surements. Due to memory limitations on-board the spacecraft, the frequency of
the saved data varied depending on the EDL phase. Some of the transformed data
was transmitted to Mars Global Surveyor during the EDL sequence. The radio link
between Spirit and Mars Global Surveyor was somewhat intermittent due to the rel-
ative motion of the spacecraft and the real-time nature of the data transmission.
The interrupted communication caused some of this data to be lost. Fortunately,
the data returned during entry, descent, and landing and the stored data sent back
after landing are complementary in many cases. Specifically for Spirit, the two data
streams were both at 4 Hz, but on alternating 8 Hz timesteps, which resulted in
an effective 8 Hz data set (minus the data lost over the radio link). [148] Despite
the difficulties in transmitting the inertial measurement unit data, the trajectories
were reconstructed using inertial measurement unit data and profiles of atmospheric
density, temperature, and pressure were constructed. [312]

To construct the pressure and temperature profiles, a boundary condition at ei-
ther the top or bottom of the atmosphere must be used. This boundary condition can
come from a measurement by a temperature or pressure sensor (which the Mars Explo-
ration Rovers did not have), typically at the bottom of the atmosphere. Alternatively

(though more approximate), the pressure at the threshold altitude of the density data
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can be estimated by extrapolating the estimated density profile upward assuming a
constant scale height (H) (i.e. isothermally) to obtain a boundary condition for the

hydrostatic equation at the top of the atmosphere: [250, 243, 247, 245, 175, 312]

Pthreshold = (ng)threshold (10)

Post—flight reconstruction revealed anomalistic disturbance torques during the
entries of the Mars Exploration Rovers. Due to the accessibility of the remains of
Opportunity’s aeroshell, the Opportunity rover took pictures of its aeroshell on the
surface. These photographs showed that portions of the aeroshell thermal blanket
assembly still remained. [287] This blanket assembly was designed to burn off very
early in the entry. However, the thermal blanket design was carried over from the
Mars Pathfinder mission, which experienced significantly more heating during entry
due to Pathfinder’s higher entry velocity. [64]

Profiles of atmospheric density, temperature, and pressure were constructed, along
with a best estimate trajectory. Best estimate trajectories were constructed by (1)
directly integrating accelerometer data with initial condition modifications to match
altimeter and landing site measurements [33], (2) using a linearized Kalman filter
applied to the accelerometer data [308], and (3) directly integrating accelerometer

data coupled with a Monte Carlo analysis? to quantify uncertainty [312].1°

9Reference [312] assumed: (1) normally distributed uncertainties for the trajectory, (2) uncer-
tainties in the entry state that were the same as Mars Pathfinder’s entry state uncertainties, and
(3) a fixed uncertainty of 0.01 73 for the axial acceleration based on an analysis of pre-entry data.

10 Additionally, reference [61] discusses possible methodologies for use in reconstructing the entry,
descent, and landing trajectories of the Mars Exploration Rovers including: least—squares, weighted
least—squares, sequential-batch least—squares, and extended Kalman filtering. However, no later
papers (references [62, 70, 64, 63]) discuss applying these methods as part of the reconstruction.
Reference [62] compares preliminary post-landing reconstruction data such as peak deceleration
and the time of heatshield jettison with the pre—flight predictions. Reference [70] discusses pre—
mission trajectory analysis. Reference [64] also compares preliminary post-landing reconstruction
data such as peak deceleration and the time of heatshield jettison with the pre—flight predictions.
And reference [64] discusses each stage of the Mars Exploration Rovers’ entry, descent, and landing
scenario.
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Mars Phoenix Lander The Mars Phoenix Lander (see Figure 22) was launched
on August 4, 2007 [255] and landed on Mars on May 25, 2008 [67]. Profiles of at-
mospheric density, temperature, and pressure were constructed, along with a best
estimate trajectory by smoothing the inertial measurement unit data using a moving

average and then directly integrating the data. [34, 311]

Figure 22: An artist’s conception of the Mars Phoenix
Lander on the surface of Mars. [Image credit: NASA / JPL]
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Table 8: Trajectory reconstruction methods and atmo-
spheric information obtained from several robotic missions
performing entry at Mars.

Mars Mars
Viking Mars Exploration Phoenix
Mars 6° 1 and 2¢ Pathfinder® Rovers’ Lander™

Trajectory Reconstruction Method
Radar Tracking
Direct Integration®
Kalman Filter
Atmosphere Reconstruction
Density Profile
Pressure Profile
Temperature Profile
Winds

ANEN
Q\

RNRNENEN
RSN AN
RS S ENEN

PR NN ENEN

RNRNENEN

\/d

°If accelerometer data was available for trajectory reconstruction and extended Kalman
filtering is not specifically mentioned, it is assumed that direct integration was the method used
for trajectory reconstruction.

bReferences [16, 152].

“References [243, 79].

dParachute phase winds were also reconstructed in reference [241].

¢References [237, 175, 269, 313, 314, 49].

FReferences [312, 33, 308].

9 Atmospheric wind profiles at the time of the Mars Exploration Rover landings were recon-
structed in reference [286] using data from the Thermal Emission Spectrometer aboard the Mars
Global Surveyor spacecraft.

hReference [34].

2.2.4 Galileo (Jupiter)

The Galileo probe and orbiter were launched by the Space Shuttle Atlantis on Octo-
ber 18, 1989 and arrived in the Jovian system on December 7, 1995. The need for an
entry probe aspect of the Galileo mission to Jupiter arose in part from an inability
to obtain sufficient information by remote sensing to adequately constrain models of
formation and evolution of the outer planets. [318] The Galileo probe entered the at-
mosphere of Jupiter on December 7, 1995 [27], and began directly sampling the Jovian
atmosphere at the 0.42 bar pressure level [318] after the descent module had jetti-
soned the aeroshell (see Figure 23). The probe signal was lost near the 24 bar pressure
level at 61.4 minutes after entry. [318] The data collected by the Galileo probe en-

abled the reconstruction of the trajectory and the atmosphere. Atmospheric profiles
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of density, pressure, and temperature were reconstructed using both accelerometer
data and in situ measurements made during Galileo’s descent on its parachute. [244]
Reference [244] does not discuss any data reduction or filtering, so it is assumed that
direct integration of the accelerometer data was used to reconstruct the trajectory.
Doppler measurements were restricted to the line of sight between the Galileo probe
and orbiter [14] and tracking of the probe carrier frequency by the Very Large Array
[318]. This data allowed the construction of a wind speed profile between the 0.49 bar

and the 24 bar pressure levels. [14, 15]

Figure 23: Aeroshell of the Galileo probe. [Image credit:
NASA]

2.2.5 Huygens (Titan)

The Huygens probe (see Figure 24) was built and operated by the European Space
Agency as part of the Cassini-Huygens international science mission to the Saturnian
system. Cassini-Huygens was launched on October 15, 1997 and entered orbit around
Saturn on July 1, 2004. The Huygens probe separated from the Cassini orbiter on
December 25, 2004, entered Titan’s atmosphere on January 14, 2005, and landed in
the Xanadu region. [163]

The atmosphere was first detected at approximately 1500 km when atmospheric
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drag exceeded the threshold of sensitivity of the accelerometers in Huygens’ atmo-
spheric structure instrument. [95] The data collected by Huygens’ atmospheric struc-
ture instrument [94] allowed the reconstruction of the probe’s trajectory, as well as
density, pressure, and temperature profiles by means of (1) direct integration with
least squares fitting between the entry and descent phases [151, 149, 165, 13] and
(2) Kalman filtering of accelerometer data [1, 277, 279, 150]. A wind profile was
constructed using descent imagery [146] from approximately 55 km altitude to the
surface of Titan. [288] A wind profile was also constructed using Doppler tracking
data [32], and this profile was used to model the spinning, coning, and tilting of

Huygens during descent [74].

Electrostatic dischargers (3x)

HASI Stud with
P and T sensors

Parachute container

HASI deployable

booms with %2 ! 1 Thoas
electrical sensors (2x) \ //

GCMS inlet SSP inlet
ACP inlet

DISR-S: Sensor Head

e

v

Heat-shield and Back Cover Telemetry antennae (2x)
Separation mechanisms (3x)

Figure 24: Sensor locations on the Huygens probe. [235]
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Table 9: Trajectory reconstruction methods and atmo-
spheric information obtained from several robotic missions
performing entry at celestial bodies beyond the Asteroid
Belt.

Galileo® Huygens?

Trajectory Reconstruction Method
Radar Tracking Ve

Direct Integration® v

Kalman Filter v
Atmosphere Reconstruction

Density Profile v v

Pressure Profile v v

Temperature Profile v v

Winds v v

¢If accelerometer data was available for trajectory recon-
struction and extended Kalman filtering is not specifically men-
tioned, it is assumed that direct integration was the method used
for trajectory reconstruction.

YDensity, pressure, and temperature profiles may be found
in reference [244]. The wind profile may be found in reference [14].

“Whether or not direct integration or Kalman filtering was
used for Galileos trajectory reconstruction is not clear from the
literature. In addition to accelerometer data, Doppler tracking
data from the Very Large Array was used for reconstruction.

dReferences [95, 150, 1]. A wind profile was constructed
using descent imagery in reference [288].
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CHAPTER II1

STUDY OBJECTIVES AND METHODS

3.1 Study Objectives

This chapter begins with a discussion of the origins of estimation theory including the
first great advance by Karl Friedrich Gauss [97] for determining the orbits of celestial
bodies. The three branches of estimation are then introduced: (1) smoothing, (2) fil-
tering, and (3) prediction. Some applications of the techniques of estimation to signal
processing are then discussed. The Kalman filter (KF) is discussed in detail with em-
phasis being placed on the extended Kalman filter due to its application to trajectory
reconstruction, as discussed in the previous chapter. An alternative Kalman filter for
possible application to entry, descent, and landing trajectory reconstruction is then
introduced. Then, collocation is discussed along with a formulation for trajectory

reconstruction using collocation, as well as trajectory simulation using collocation.

3.2 FEstimation

The origin of estimation theory dates back at least to the time of Kepler [102], if not
to earlier astronomers, and their attempts to “fit” orbits to celestial observations.
However, the analytical tool that was needed to cope with these orbit determination
problems did not appear until Gauss [97, 265] presented his least-squares method.
[180]

In 1809, the German mathematician Johann Karl Friedrich Gauss wrote his classic
treatise Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambien-
tium [97] ( Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic

Sections). In Theoria Motus, Gauss made the following statement while discussing
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the problem of determining the orbital elements of a celestial body from available

measurement data [264]:

If the astronomical observations and other quantities, on which the com-
putations of orbits is based, were absolutely correct, the elements also,
whether deduced from three or four observations, would be strictly ac-
curate (so far indeed as the motion is supposed to take place exactly
according to the laws of Kepler), and, therefore, if other observations
were used, they might be confirmed, but not corrected. But since all our
measurements and observations are nothing more than approximations to
the truth, the same must be true of all calculations resting upon them,
and the highest aim of all computations made concerning concrete phe-
nomena must be to approximate, as nearly as practicable, to the truth.
But this can be accomplished in no other way than by a suitable com-
bination of more observations than the number absolutely requisite for
the determination of the unknown quantities. This problem can only be
properly undertaken when an approximate knowledge of the orbit has
been already attained, which is afterwards to be corrected so as to satisfy

all the observations in the most accurate manner possible. [97]

The next notable advances in estimation theory came in 1941 from Kolmogorov
[158] and in 1949 from Wiener [309]. Though Wiener’s theory was extended by Zadeh
in 1950 [320], later work was greatly stimulated in large measure by the filter theory
results of Swerling in 1959 [281, 280], Kalman in 1960 and 1961 [143, 144], and
Kalman and Bucy in 1961 [145]. The work of Kalman has made the greatest impact
on estimation theory for both the discrete and continuous time problems. Kalman

(and later, Kalman in collaboration with Bucy) treated the filtering and prediction

LStratonovich in 1960 also independently obtained the Kalman filter equations. [275, 276, 142]
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problems in detail, and they laid the foundation for further work in smoothing. [180]

The following paragraphs discuss three aspects of estimation: (1) smoothing, (2)
filtering, and (3) prediction. They are included for the reader’s information, so that
they are aware that estimation is broader than the sequential filtering used in this
research. For the trajectory reconstruction work in this research, sequential filtering
is used, as this is useful for both post—processing of data and real-time processing of

data.

Smoothing Smoothing is the process of estimating the state of a system within the
time span of measured data. The estimate of the state is generally based on all the

measurements available. Three types of smoothing are of interest:?

1. In fixed—interval smoothing, the time span of the data is fixed, and the
estimate of the state is sought for specified times within the fixed time interval
of the data. For example, suppose that for some state, measurements span a
10-second period (from 0 seconds to 10 seconds). No new measurements are
made, and an estimate of the state for any time from 0 to 10 seconds is made

using the 10 seconds of data.

2. In fixed—point smoothing, the point in time at which the estimate of the
state is sought is fixed. The accumulation of new data may increase the time
span of the data. For example, suppose that for some state, measurements
are taken every second. Initially the data spanned 10 seconds (from 0 seconds
to 10 seconds). Also, suppose the point in time at which an estimate of the
state is desired is the 5 second point. The first estimate of the state is made
using the initial 10 seconds of data. When the next measurement is taken at

11 seconds, the estimate of the state at the time of 5 seconds will be updated.

2These definitions of the different types of smoothing have been taken from reference [109].
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The estimate of the state at the time of 5 seconds continues to be updated as

new measurements accumulate.

3. In fixed—lag smoothing, estimates of the state are sought at some time that is
a fixed amount (the fized-lag) from the end of the time span. All the measure-
ments are used to calculate the estimate. As new measurements are accumulated
(i.e. the time span of the measurements increases), the estimates of the state
are computed for times that are still a fixed amount of time from the end of the
time span. For example, suppose that for some state, measurements initially
spanned 10 seconds (from 0 seconds to 10 seconds) with a measurement made
at each second. If the lag is 2 seconds, then the first estimate of the state will
be calculated for the time of 8 seconds. When the first new measurement is
taken one second later, the second estimate will be for the time of 9 seconds
(with 11 seconds of data). The third estimate will be for the time of 10 seconds

(with 12 seconds of data), and so on.

For smoothing, the optimal filter consists of two filters: the forward filter and the
backward filter. [98, 213] The forward filter smooths the data from the initial time
to the time of interest, while the backward filter smooths the data from the end of
the time span to the time of interest. Each filter produces an estimate of the state at
the specified time. Together these filters use all the data to estimate the state of the
system at the specified time. The forward and backward estimates of the state at the
specified time have uncorrelated errors since the process noise and measurement noise
are both assumed to be white noise®. A combination of the forward and backward
estimates (which meets a specified set of conditions defining optimality) yields what

is termed “the optimal estimate” of the state at the specified time. [98]

3 White noise is defined to be a stationary random process having a constant spectral density
function. The term “white” is a carryover from optics, where white light is light containing all
visible frequencies. [39]
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Filtering Filtering is the process of estimating the state of a system at the time
of the last measurement made of the system. Filtering is most useful for removing

extraneous noise from a signal.

Prediction Prediction is the process of estimating the state of a system after the
time of the last measurement made of the system. Prediction is most useful when

measurements of a system’s state cannot be made.
3.2.1 The Kalman Filter

Harold Sorenson has asserted “that the Kalman filter represents the most widely
applied and demonstrably useful result to emerge from ... ‘modern control theory’.”
[266] Put forth in 1960 [143], the Kalman filter is an optimal, recursive filter for linear
systems that does not require the storage of all past data. An update of the state
estimate of a system only requires the previously calculated estimate of the state and
the new measurements. [115] This makes the Kalman filter computationally efficient.
The following paragraphs will describe the Kalman filter* and setup the discussion of

the nonlinear versions of the Kalman filter.

The State Vector and the Process and Measurement Equations The state
of a system is a vector x; which describes the motion of a system at a specific point
in time. (The subscript k denotes a discrete time point.) Typically, the state x; is
unknown, so we use a set of measurements (or observations) yy to estimate it. Given

an initial state xq, future states can be found using the process equation:

Xi+1 = Pra1 Xk + Wi (11)

4This discussion of the Kalman filter is an expanded combination (with more mathematical detail)
of the discussions found in references [116] and [99]. There are lots of ways to derive the Kalman
filter [228, 278] (see, for instance, References [282], [307], [5], [162], [223], and [40]).
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where @1 is the state transition matriz taking the state x; from time % to time
k 4+ 1. The process noise wy is assumed to be additive, white, and Gaussian, with

zero mean and with a covariance matrix defined by

Elw,wi] = (12)
0 n#k
The measurements (or observations) y can be expressed as a function of the state

Xy using the measurement equation:
yi = HgXp + v (13)

where yi is the measurement at time k and Hj is the measurement matriz. The
measurement noise v;, is assumed to be additive, white, and Gaussian, with zero

mean and with a covariance matrix defined by

E[v,vi] = (14)

In addition, the measurement noise v;, is uncorrelated with the process noise wy.
The Kalman filtering problem consists of jointly solving the process and mea-
surement equations for the unknown state in an optimum manner. Suppose that a
measurement yj on a linear dynamical system, described by equations (11) and (13),
has been made at time k. The information contained in the new measurement y; can

be used to update the estimate of the state x;.

The Estimate of the State Let X, denote the a priori estimate of the state (i.e.
the estimate of the state before the measurement was made) that is already available
at time k. With a linear estimator as the objective, we may express the a posteriori

estimate X, (i.e. the estimate of the state after the measurement was made) as a
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linear combination of the a priori estimate X, and the new measurement y;, as
Xp = JiX, + Kiys (15)

where the multiplying matrix factors J; and K are to be determined. Graphically,
the a priori estimate of the state X, and the a posteriori estimate of the state X; are
depicted in Figure 25. To find these two matrices, we first define the a priori and a

posteriori state—error vectors (X, and Xy, respectively) as
X, =X — X, (16)

Altitude @® Measurement

® A priori estimate k= )
(i.e. the reference value o

¢ the state after propagatin
N o the previous best estimatt
e "-o to the time of the ne
o measurement)
o °

@ A posteriori estimateX )
(i.e. the best estimate of

o the state after taking into

account the measuremen

- — = Reference Trajectory

Time

Best Estimate Trajectory

Figure 25: Graphical depiction of the a priori estimate of
the state, the a posteriori estimate of the state, the reference
trajectory, and the best estimate trajectory.

Second, we solve equation (16) for the a priori state estimate and substitute it

into equation (15). Doing this, we have
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= Jr(xx — X;) + Kiy (18b)

Third, we substitute the measurement equation (equation (13)) into equation (18c)

for the measurement y, giving

= Jka — ka(,; + Kk<Hka + Vk) (19b)
)A(k = Jka + KkaXk — Jki]; + Kk;Vk (19C)

Fourth, we substitute this expression (equation (19¢)) for the a posteriori estimate
of the state X, into the a posteriori state—error vector (X as given in equation (17))

giving

X = Xp — Xp, (20a)
= x5, — (Jexp + KpHyxy, — JiX, + Kyvy) (20b)
= x5, — Jpxp — KeHyxy + 3%, — Kyvy (20c)

xp = xx(I — I, — K Hy) + JiX, — Kivy, (20d)

Fifth, we examine the expectation of the inner product of the a posteriori state—
error vector X; and the measurements y;: E[X;y?]. We know, by the principle of

orthogonality (given below), that
E[Xy;|=0fori=1,2 .. ,k—1 (21)

since the a posteriori state—error vector X, is defined as the difference between the
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state x5 and the a posteriori state estimate X;, and the a posteriori state estimate
Xy is contained in the space spanned by the measurements (y1,ys2, ..., yx). Therefore,
the a posterior: state—error vector X, must be orthogonal to the space spanned by
the measurements (y1,ya,...,y; fori = 1,2,....k — 1), and so the inner product of
the a posteriori state—error vector X; and the measurements (yi,yo,...,y; for i =

1,2,...,k —1) is zero.

Principle of Orthogonality Let the stochastic processes

{xx} and {yr} be of zero means, that is

E[xj] =0 for all k
Elyr] =0 for all k
If either

1. the stochastic process {x;} and {yx} are jointly Gaus-
sian, or
2. the optimal estimate Xy, is restricted to be a linear func-
tion of the measurements, and the cost function is the
mean—square error
then the optimum estimate Xj, given the measurements
Y1,¥2, ..., Yk, is the orthogonal projection of x; onto the space

spanned by the measurements.

Sixth, expanding the expectation given in equation (21) by substituting in equa-

tion (20d) for the a posteriori state—error vector X, we have
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Exiy)] = El(xx(I - J, — KpHy) + 11X, — Kivi)y, | (22a)

0 = E[xpy; (I—J, — KyHy) + IhX y7 — Kiviy/ | (22b)
0 = E[xpy; (I—J, — K,Hy)| + E[%,y] | — EKpviy?] (22¢)
0= (I-Jy — KiHy)E[xpy! | + JE[Xy! ] — KiE[Viy, ] (22d)

Now, we substitute in the measurement equation (equation (13)) into the last term

of equation (22d) for the measurement y; giving

0=(1-J, — KeHp) E[xpy] ] + I EX, y! ] — KiE[viy!] (23a)
0=1-J, - KiHp)E[xpy! | + JhEX,y} ]| — KiE[vi(Hix; +v;)7] (23b)

0=(I1-J, - KiHy)E[xpy, ]+ J.E[X,y] | — KiE[viHix]] + Ky Elvv]]  (23¢)
Examining the last term in equation (23c), we note that E[v,v!] = 0 by equation (14),

which reduces equation (23c) to
0= (I-J; — KyHy)E[xry; | + JLEX, Y]] — Kp E[viHx] ] (24)

Examining the last term in equation (24), we note that there is no expectation that
the meaurement noise is correlated with the process, so E[v;H;x!| = 0, and this

reduces equation (24) to
0= (I—J) — KyHy) Elxey; | + I B[%, Y/ | (25)

By invoking the principle of orthogonality again as we did for equation (21), the
expectation in the last term of equation (25) becomes equal to zero: E[X,y;] = 0,

and we have
0=(I-1J;, - K.H,)E[xpy!] (26)
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Since equation (26) is true by orthogonality and E[xy?] # 0, the multiplying matrix

factors J; and K; must satisfy the condition
0=1-J, - K;H; (27)
Hence, we may express Ji as a function of Ky
Jy, =1—-K;Hy (28)

and by substituting this condition on the multiplying matrix factors into equation (15),

we now have for the a posteriori estimate of the state

= (I - KyHp)%x, + Ky (29b)
= )A(]; — Kka)A(]: + Kiryx (29C)

which we finally reduce to
f(k = }A(,; + Kk(yk — kac,;) (30)

and we call the multiplying matrix factor K; the Kalman gain.

The Kalman Gain We would like to define the Kalman gain K} such that the
trace of the error covariance matrix P is minimized. This is equivalent to minimizing
the length of the state—error vector. To do this, we must first obtain an expression for
the error covariance matrix Py, so we can minimize its trace. The error covariance

matrix Py is defined as

P, = E[%X]] (31)
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We know the definition of the a posteriori state-error vector X, from equation (17).
However, in order to define an expression for the error covariance matrix Py, it is
easier to start with equation (20d) and substitute in the expression for the multiplying

matrix factor Ji from equation (28). Doing this, we have

X, = X5 (I = Jp — KpHy) + JiX, — Kpvy, (32a)
— (I (I - KHy) — KHy) + (I - KH)R — Kvy, (32D)
— (I -1+ K Hy — KHy) + (I KHOR — Ky, (32¢)
— %0+ (I - K.Hp)R — Kyvy (324)
% = (I - KHR — Ky (320)

Substituting equation (32e) into the error covariance matrix Py definition (equa-

tion (31)), we have

P, = E[XX;] (33a)
= F[{(I - KHp)%; — Kivi {1 - K Hp)%;, — Kpvi )] (33b)
= BT - KeHu)X, (%) (1 - K Hy)"

— Kkvk(i;)T(I — Kka)T

(33¢)
— (I-KHy)x, viK}
+ KkaVgKg]
= (I - KHy) E[% (%)) (1~ K, H,)"
— Ky E[vi(%;,)"]-(I - K;Hy,) (33d)

— (T - KHy) B[R, vi | K

+ K- E[vivi] KL
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By definition
P, = B[%; (%.)"] (34)
and from equation (14), we know
E [vivi] =Ry (35)

Additionally, we have no expectation that the measurement noise v; is correlated

with the a priori state—error vector X, , so

E[x,vi]=0 (36a)

E [v(%,)'] =0 (36D)

Using equations (34), (35), (36a), and (36b), we have for the error covariance matrix
Py,
P, = E %X} | (37a)
= (I - KiHy)-E[%, (%) (I - KpHy)"
— K- Elvi(%;)"]-(T - KeHy)"
(37b)
+ Ky E[vivi | Ki
=I-KHy) P, - (I—- Kka)T
~K;-0- (I-KH)"
(37¢)
—(I-KyH) - 0-K{
+ K- Ry - K}

P, = (I - K,H,)P, (I-K,H,)" + K, R K} (37d)

To minimize the trace of the error covariance matrix Py, we must take the partial
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derivative of the trace of the error covariance matrix P, with respect to the Kalman

gain Ky, equate it to zero, and solve for the Kalman gain K.

7K, [trace(Py)] = 0 (38a)
7K, [trace(Py)] = af{k [trace{(I — K;Hy)P, (I — KiHy)" + KiRi K} (38b)
0 =2(I-K,Hy) k’aiKk [trace { (I - K;Hy)" }] + 2K,Ry,  (38¢)

0= —2(I - K, H,)P_H} + 2K, R, (38d)

0= —(I-K,H,)P,H + KRy (38¢)

0=-P,H] + K,;H,P, H; + K;R;, (38f)

P H] = K;H,P_H] + KR, (38g)

P H] = K,(H,P, H{ +R,) (38h)

K, =P H} (H,P,H] + R;)™* (38i)

The value of the Kalman gain Ky given by equation (38i) minimizes the trace of the
error covariance matrix P, which is equivalent to minimizing the length of the a

posteriori state—error vector X;.

The Error Covariance Update We can use the optimal Kalman gain Kj given
by equation (38i) along with equation (37d) to obtain a simplified expression for the
error covariance matrix Py. To do this, we first show that the K R,K; term in
equation (37d) is equivalent to (I — K Hj, )P, (K;Hj)". Beginning with the optimal
Kalman gain K, from equation (381i), we post-multiply by (H;P; H} + R;) K7, [5]

and we have
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K, = P H! (H,P,H} +R;)™" (39a)

K. (H,P,Hf + Ry)Kf = P, H} (H,P, H] + Ry) '(H;P, H{ + R,)K]

(39D)
K,H, P, H K] + KR, K, = P, H{ K] (39¢)
K,RiK; = -K,H,P, H, K, + P, H K{ (39d)
=P, H/K] - K,;H,P_H, K} (39)
=P, (K,H,)" — K,H, P, (K:Hy)" (39f)
KR K, = (I - K;H,)P; (K, Hy,)" (39g)

Now, expanding equation (37d) and substituting in equation (39g), we have
P, = (I-KH,)P, (I-K.H,)" + KR K} (40a)
= (I1-KH,)P, — (I-K,H,)P, (K:H,)" + KR, K} (40b)
= (I-KH,)P, — (I - K.H,)P, (K.H;)” + KR, K} (40c)

KRy K7 ’

= (I-KH,)P, - KR K] + KR, KF (40d)
P, = (I-K.H,)P, (40e)

60



Equation (37d) is called the “Joseph form” [110, 43] of the error covariance ma-
trix Py. It generally has better numerical behavior for maintaining both symmetry
and positive semi—definiteness than the simpler form given by equation (40e). For
example, suppose there is a large uncertainty in the initial estimate. In this case,
the a priori error covariance matrix P, starts out with large values along the main
diagonal. If this large initial uncertainty is then followed by a precise measurement
at the initial time step, the a posterior: error covariance matrix Py calculated us-
ing the simplified form: Py, = (I — K;H;P, ) approximates the indeterminate form:
0 x co. The natural symmetry of the Joseph form (equation (37d)), however, has

better numerical behavior in such cases.

Propagation of the State Estimate and the Error Covariance In most of
the preceding paragraphs, we have discussed how to use measurements to update the
estimates of the state and the error covariance. To propagate the state estimate and
the error covariance in time to the next measurement requires the use of the state

transition matrix.

X, = Prp_1Xp—1 (41)
P, =® 1P 1P, + Qi (42)
Where
By 1 =1+ FAL (43)
of
F=_—"— 44
aXX:Xk,1 ( )

and F is the Jacobian of the system and At is the time between the k—th and (k—1)-th
measurements.[321] Alternatively, the error covariance matrix P can be propagated

using the expression for its time derivative below. [100]
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P, =F, P, 1 + P F  + Qi (45)

A summary of the Kalman filter is given in Table 10.

Table 10: Summary of the Kalman filter.

State space model:

Xp+1 = Pr1,6Xk + Wi (46)
Vi = HpXp + Vi (47)

where wy and vy are independent, zero-mean, Gaussian noise processes
with covariance matrices Qx and Ry, respectively.

Initialization: For k = 0, set Xg and Py to their initial values.

Computation: For £k = 1,2, ..., compute:

State estimate propagation

X, = Prp—1Xp—1 (48)
State transition matrix
(I)k,kfl =TI+ FAt (49)
Error covariance propagation
P, = ’I’k,k—lpk—1q’£k_1 + Q-1 (50)
Kalman gain matrix
K, =P, H] (H,P, Hf +R;)! (51)
State estimate update
X, =%, + Ki(yr — Hy%y) (52)

Error covariance update

P, = (I-K,H,)P, (I-K;Hy)" + KiRyK] (Joseph form) or  (53)
P, = (I - K;Hy)P, (simplified form) (54)

Applications The Kalman filter and the extended Kalman filter (discussed below)
have been used in many applications for filtering signals and data. Many real-time
processing applications such as radar tracking [56] (and specifically maneuvering tar-
get trajectories [31, 166]), flow rate measurements [292], on-line failure detection in

nuclear power plant instrumentation [291], filtering electrocardiogram signals [233],
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power station control systems [304], ocean modeling [80, 81|, and many, many more
in virtually all engineering disciplines. These applications have all used Kalman fil-
tering because rapid estimates are needed, and the Kalman filter does not require
the storage of past data. This is especially useful for applications where a continuous
stream of data is arriving in real-time.

Additional applications with more fixed data streams include the orbit determi-
nation of Voyager at Jupiter [45], the estimation and prediction of immeasurable
variables [174], bathymetric and oceanographic applications [35], and the trajectory
reconstruction of spacecraft atmospheric flight. The application of the Kalman filter

to trajectory reconstruction occurs via the extended Kalman filter.
3.2.2 The Extended Kalman Filter

While originally formulated for linear systems, the usefulness of the Kalman filter has
been extended to nonlinear systems in the form of the extended Kalman filter (EKF).
The extension to nonlinear systems is possible because the Kalman filter is formulated
in terms of difference equations for discrete time systems. [117] The extended Kalman
filter has been widely used for trajectory reconstruction. The following text describes

the extended Kalman filter and discusses some of its applications.

Three Trajectories Consider the trajectory of a vehicle. There is the true tra-
jectory, which is not knowable since all uncertainty in the motion of the spacecraft
cannot be eliminated. Without incorporating measurements of the vehicle’s motion,
the best approximation of the true trajectory is the reference trajectory. The ref-
erence trajectory is created by modeling the motion of the spacecraft. Finally, the
best estimate of the trajectory can be determined by applying the extended Kalman

filter to the reference trajectory and measurements of the vehicle’s motion. The true,

5The essential idea of the extended Kalman filter was proposed by Stanley F. Schmidt, and it
has been called the “Kalman—Schmidt” filter. [111]
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reference, and best estimate trajectories are related as shown in Figure 26. The as-
sumed initial state of the vehicle is different from its true initial state because of
uncertainty in the initial position and initial velocity of the vehicle. Note that the

reference trajectory and the best estimate trajectory begin at the same initial state.

Altitude @® Measurement

@ A priori estimate (X7)

(i.e. the reference value of
the state after propagating
the previous best estimate
to the time of the next
measurement)

@ A posteriori estimate ( X )
(i.e. the best estimate of
the state after taking into
account the measurement)

- — — Reference Trajectory

Time

True Trajectory

Figure 26: The true, reference, and best estimate trajec-
tories. [187]

State Space Model The state of a system is governed by a set of nonlinear differ-

ential equations [322] of the form
ktrue = f(xtrue) +w (55>

where Xy, is the state vector of the system, Xy, is its derivative, and f(x..) is a
nonlinear function of those states. The process noise w is assumed to be additive,
white, and Gaussian, with zero mean and with a covariance matrix Q.

Similarly, the measurements (or observations) y;.,. can be expressed as a nonlinear

function of the state x4 [322] using an equation of the form

Yirue = h<xtrue) +v (56)
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where yy..c is the measurement at time k& and h(xy,.,.) is a nonlinear function relating
the states to the measurements. The measurement noise v is assumed to be additive,
white, and Gaussian, with zero mean and with a covariance matrix R.

The problem given by equations (55) and (56) represents a nonlinear estimation
problem. However, if a reference trajectory exists that is sufficiently close to the true
trajectory, then the deviations between the reference and true trajectories may be well
approximated by a linear model obtained by truncating a Taylor series expansion of
the deviations. [283, 24]

The state deviation vector x and the measurement deviation vector y are defined
by

X = Xirue — Xreference (57a)

Y = Ytrue — Yreference (57b)

Neglecting the noise term, when equation (55) is expanded about the reference tra-

jectory using a Taylor series, we have

Xtrue = f(XtTue) (58&)
of
f(xtrue) = f(xreference) —+ <8_X)reference (Xtrue - Xreference) + ...
(58b)
of
f(Xtrue) = f(xreference) + a_ (Xtrue - Xreference) (58C>
X reference
of
f(Xtrue) - f(xreference) = & (Xtrue - Xreference) (58d)
reference
. . of
Xtrue — Xreference — (_> (Xtrue - Xreference) (586)
ox reference
of
x = [ — 58f
* (ax) reference x ( )
~————
2
x = Fx (58g)
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where the matrix F is called the Jacobian matrix of f. [9]
A similar process can be followed for the measurement equation. Once again
neglecting the noise term, when equation (56) is expanded about the reference mea-

surement using a Taylor series, we have

Yiruve = h(Xtrue) (59&)
oh
h(Xtrue) - h(Xreference) + (a_x)reference (Xtrue - Xreference) + ...
(59b)
oh
h<Xt'rue) = h(Xrefe'rence) + (a_) (Xtrue - XTeference) (59C)
X reference
oh
h(xtrue> - h(Xreference) = <8_X) (Xtrue - Xreference) (59d)
reference
oh
Yirue — YT’eference - (_) (Xtrue - Xreference) (596)
ox reference
oh
y = (—) X (59f)
X reference
A
=H
y = Hx (59g)

Note that equation (58g) takes the form of a homogeneous linear system of differential

equations. [78] The solution of this homogeneous linear system takes the form
Xpr1 = Phy16Xp (60)

Including the noise terms, the solution to equation (58g) and equation (59g) to-
gether form the same problem we encountered with the linear Kalman filter (see
equation (11) on page 50 and equation (13) on page 51).

Xp41 = Pryp1pXn + Wi (61a)

yi = Hpxp + vi (61b)
Where
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®pi1p=1+FAL (62)

o

aX X=X

F (63)

and F is the Jacobian of the system and At is the time between the (k + 1)-th
and k—th measurements.[321] Note that this is where the linearization comes into the
extended Kalman filter, as the full expression for the state transition matrix ® shown

below has been truncated to only include the linear terms.

2 F3¢3
_|_

(64)

Hence, by using the deviations from a reference trajectory, we are able to linearize
the problem given by equations (55) and (56). This allows us to extend the Kalman
filter to nonlinear problems. A summary of the extended Kalman filter is given in
Table 11 on page 68. The parameters for the extended Kalman filter are given in

Appendix C.
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Table 11: Summary of the extended Kalman filter.

State space model:

Xp+1 = Pri16Xp + Wi (65)
vi = Higxp + vy (66)

where wj; and vj are independent, zero-mean, Gaussian noise processes
with covariance matrices Qi and Ry, respectively.

Definitions: For k =1, 2,..., compute:
of
F=_— 67
ox X=X} ( )
oh
H=_" (68)
axk: x:x;
Initialization: For k = 0, set Xg and Py to their initial values.
Computation: For kK = 1,2, ..., compute:
State estimate propagation
State transition matrix
(I)k,kfl =I+FAt (70)
Error covariance propagation
P, =®u1Pr1®l, 1+ Qus (71)
Kalman gain matrix
K, =P, H (H,P, Hf +R;)"! (72)
State estimate update
X, = %, + Ki(yr — Hy%y) (73)

Error covariance update

P, = (I-KH,)P, (I-KHy)" + KiRyK] (Joseph form) or (74)
P, = (I - K;H;)P, (simplified form) (75)
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3.3 Methods Possibly Applicable to Entry, Descent, and
Landing Trajectory Reconstruction

Kalman filters are a type of dynamic Bayesian® network. [229] Bayesian data anal-
ysis has been used successfully in fault diagnosis for systems in steady—state [167],
and it has been applied successfully to dynamic systems in the form of the Kalman
filter as discussed earlier in § 3.2.1 on page 62. There exist many other variations
of the Kalman filter besides the original and extended forms discussed previously.
The following paragraphs will discuss some of these variations, as well as some other
approaches to filtering and what has been called, by Russell and Norvig [229], “prob-
abilistic reasoning over time”.

After 1960, Kalman’s original linear filter [143] (see § 3.2.1) brought forth many
variations, the most notable of which is the extended Kalman filter (see § 3.2.2). Other
variations include: the linearized Kalman filter [188], the iterated extended Kalman
filter [212], second—order extended Kalman filter, singular evolutive extended Kalman
filter [208, 207, 206], the ensemble Kalman filter [82, 83, 168], and the class of sigma—
point Kalman filters. Sigma—point Kalman filters are the collective name used for
those Kalman filters which use samples from the probability distribution of the state
(i.e. sigma—points) to obtain an update of the state. [170, 171, 172, 217, 218] They
include the unscented Kalman filter [141], the central difference filter [234], and the
divided difference filter [195, 125].

Most of the variations of the Kalman filter are attempts to “extend” the capa-
bilities of Kalman’s original linear filter to nonlinear problems. Nevertheless, the
extended Kalman filter has achieved great success when applied to nonlinear prob-
lems. Improvement was still possible, though, leading others to alter it and make

further refinements.

6“Bayesian” after Thomas Bayes (1702-1761) who was a Presbyterian minister and mathemati-
cian. He “is best known for Bayes rule for computing the a posteriori probability of an event” (italics
added) [298] in An Essay towards Solving a Problem in the Doctrine of Chances. [25]
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One thing difficult for the “extended” Kalman filters to overcome, however, was
the linearization of the nonlinear problems before they could be used with the “ex-
tended” Kalman filters. In 1995, Julier, Uhlmann, and Durrant—-Whyte gave a new
perspective with their unscented transformation [141]. The unscented transforma-
tion was the first truly revolutionary change in applying Kalman filters to nonlin-
ear problems. The unscented Kalman filter has seen wide use within the aerospace
community for the reconstruction of Mars Odyssey’s aerobraking [127, 128, 129], for
reconstructing the path of a sailplane [284], for determining in—flight the angular rela-
tionship of the body axes and the navigation axes for strapdown inertial measurement
units [200], for terrain-referenced navigation [181], for locating and tracking targets
[209, 227, 324, 323], for estimating the attitude of a pico satellite [260], for estimating
the lift force on an F-15 aircraft with a damaged stabilator [42], and for the gyroless
attitude control of multi-body satellites [88], to name a few applications. Outside the
aerospace community, applications include: model-based hand tracking [273], speech
processing [96], anti-lock brakes [161], brake—actuated manipulators [57], and moni-
toring structural behavior [48]. The unscented transformation has also been applied
to both particle filters [294] and batch filters [201], and like the extended Kalman
filter, it has an “iterated” version [23]. For these reasons, unscented Kalman filter-
ing has been selected as one of the methods to evaluate for its utility when applied
to the trajectory reconstruction of entry, descent, and landing trajectories, and it is
discussed in more detail in § 3.3.1 on page 73.

Other filters include: the Benes filter [29], the Daum filter [55], and particle filters
[10]. The Benes filter applies to continuous-time problems involving Wiener processes.
Wiener processes are the processes that govern Brownian motion. [271] The Daum
filter applies to continuous—time problems of variables with exponential distributions.
The Daum filter may be said to include the continuous—time Kalman filter in the

sense that the Gaussian distribution is the exponential of a quadratic function.
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Particle filters, like ensemble Kalman filters, propagate a Monte Carlo set of points
from the probability distribution of the state.” Where ensemble Kalman filters use
the Monte Carlo points (the “ensemble”) as an alternative means of calculating and
updating covariances, particle filters employ importance sampling to determine which
particles (or samples) continue to propagate. Particles judged to be the most impor-
tant may end up having many copies of themselves continue to propagate, and as
a result, all of the samples may eventually become copies of just a single particle.
By increasing the number of samples, it is possible to stave off particle homogeneity.
However, this is often undesirable due to the computational burden associated with
additional samples. Another approach is to use an alternative importance sampling
scheme “to move particles to areas of high observational likelihood” [293]. To this
end, particle filters may employ Markov Chain Monte Carlo steps or Kalman filters in
the importance sampling scheme. Sigma—point particle filters [293] and, in particular,
the unscented particle filter can outperform standard particle filters [294].

The particle filter was not selected to be one of the methods used for this inves-
tigation for two reasons. First, the unscented particle filter can outperform standard
particle filters and the unscented Kalman filter has already been selected for this
investigation, and second, the computational load for particle filters can be much
higher than Kalman filters depending on the number of particles used.® Additionally,
one method with which the computational load is expected to be high, trajectory
reconstruction using collocation (discussed in detail in § 3.3.2 beginning on page 79),
has already been selected for this investigation.

Two additional methods that might be used for the trajectory reconstruction of

entry, descent, and landing trajectories include artificial neural networks [176, 131]

"While sigma-point filters also propagate a set of points, these points are not chosen at random
as would be done in a Monte Carlo method. [140]

80ne study found the computational load for a particle filter using 25,000 particles to be approx-
imately 100 times higher than the unscented Kalman filter. [84]

71



and direct collocation coupled with an optimizer [36]. Artificial neural networks
were rejected as a possibility because their use would require many data sets for
training and reconstructed entry trajectory data is readily available for only four
Mars missions, one Jupiter mission, and one Titan mission. Simulated data sets
could be made, but then the artificial neural network would be trained to model the
simulation tool and not the actual flight of the planetary probe.

In regard to the collocation method, collocation converts® an optimal control prob-
lem into a set of algebraic constraints. [122, 114, 225] The set of algebraic constraints
can then be solved numerically, giving a solution to the original problem. Often,
optimal control problems have both state variables and control variables. Collocation
discretizes'® both the control variables and the state variables using an implicit inte-
gration method that represents the state variables as piecewise cubic polynomials.!!
These piecewise cubic polynomials form a set of discrete algebraic constraints.

For an entry trajectory, the total trajectory time can be discretized into segments
based on the measurement times of an inertial measurement unit. Because of this,
it may be possible to reconstruct an entry, descent, and landing trajectory based on
the algebraic constraints from using collocation. This approach would allow the same
collocation tools used to design a flight mission to also be used for the reconstruction
process'? And that is the primary reason why it was selected to be part of this study.
[36] Additionally, when used in a Monte Carlo simulation with a trajectory simulation
posed as an initial value problem, collocation may allow estimates of state uncertainty

to be obtained. [228]

9The word “transcribes”, rather than “converts”, is often used to describe the process of problem
reformulation.

10Frequently, this way of discretization is known as “Direct Collocation and Nonlinear Program-
ming”. [122]

"Higher order polynomials can be used. Reference [225] recommends third—, fifth—, or seventh—
order polynomials.

12 An example of a trajectory design tool that uses collocation is Optimal Trajectories by Implicit
Simulation (OTIS). [199, 300, 226]
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3.3.1 The Unscented Kalman Filter

Description The unscented Kalman filter represents the next improvement in Kalman
filters. Where the extended Kalman filter provides an approximation to optimal non-
linear estimation [118] using linearization, the unscented Kalman filter does not use
linearization. Instead, it deals directly with the nonlinear problem. Since extended
Kalman filtering is often used for trajectory reconstruction as discussed in Chapter 2,
the unscented Kalman filter represents an obvious choice as an additional method to
be applied to the reconstruction of entry, descent, and landing trajectories.

The unscented Kalman filter (UKF) was first proposed by Julier, Uhlmann, and
Durrant-Whyte in 1995 [141] as an alternative to the extended Kalman filter for
nonlinear problems. Further development work was done by Julier and Uhlmann
(137, 138, 135, 140, 136, 139], as well as by van der Merwe, Wan, and Nelson [305,
306, 294, 295, 296, 297, 293].13

The basic difference between the extended Kalman filter and the unscented Kalman
filter stems from the manner in which Gaussian random variables are represented for
propagation through the system dynamics. [118] The uncertainty distribution of the
state is propagated through a linearization in the extended Kalman filter, and the
extended Kalman filter requires calculating first—order sensitivities of the dynamic
equations (Jacobians). In contrast, the unscented Kalman filter uses a set of sam-
ple points from the state’s uncertainty distribution. These sample points are called
sigma—points. They capture the mean and variance of the uncertainty of the state,
and they can be propagated through a nonlinear system. The result is that the
unscented Kalman filter achieves second—order accuracy rather than the extended

Kalman filter’s first-order accuracy.'* The unscented Kalman filter’s improvement in

13This discussion of the unscented Kalman filter is largely taken from reference [119] with addi-
tional material from reference [293].

14The variance estimate for the extended Kalman filter can be much greater than theory would
predict. [236]
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accuracy is said to be obtained with no additional computational cost over that of
the extended Kalman filter. [195, 125] Although it has been said that the algorithmic
complexity is arguably less favorable [228] it can be demonstrated, for purely linear
problems, that the Jacobian—less unscented formulation yields equivalent results to

the linear Kalman filter. [170] A flowchart of the algorithm is shown in Figure 27.

o Find the cross-correlation
Initialize | between the state errors
state and > Form the state sigma points | —>

. | and the measurement
covariance
l model errors
Propagate the sigma points
in time through
the state function Calculate the
l unscented
Kaman gain
Calculate the predicted state
and covariance using the
weighted sigma points 4
l Update the state and
covariance with observation
Form the measurement information
sigma points (noise)
] ,
Increment Yes More No bone
counter observations?

Figure 27: The unscented Kalman filter algorithm. [219]

The Nonlinear Process and Measurement Equations The state of a system
is a vector x; which describes the motion of a system at a specific point in time. (The
subscript k denotes a discrete time point.) Typically, the state x; is unknown, so we
use a set of measurements (or observations) yj to estimate it. Given an initial state

Xq, future states can be found using the nonlinear process equation:
Xk+1 = f(Xk) + Wi (76)

where f is a nonlinear function taking the state x; from time £ to time k + 1. The
process noise wy, is assumed to be additive, white, and Gaussian, with zero mean and

with a covariance matrix defined by
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Elw,wi] = (77)
0 n#k
The measurements (or observations) yj can be expressed as a nonlinear function

of the state x; using the measurement equation:

where yj, is the measurement at time k£ and h is the nonlinear function transforming
the state x into the measurement y. The measurement noise v, is assumed to be
additive, white, and Gaussian, with zero mean and with a covariance matrix defined

by

Elvavi] = (79)
0 n#k

In addition, the measurement noise v;, is uncorrelated with the process noise wy.

The Unscented Transformation The unscented transformation is a method for
calculating the statistics of a random variable which undergoes a nonlinear transfor-
mation. [138] Consider the propagation of the state x of dimension L through the
nonlinear functions given in equations (76) and (78). Assume x has a mean X and an
error covariance matrix P;. To calculate the statistics, we form a matrix X of 2L + 1

sigma—vectors X; according to

Xo = )A(k,1 (80&)

X =%+ (VL NPy i=1,....L (80b)

(&:&FV—QKL+MPQ i=L+1,...2L (80¢)
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These sigma—vectors are propagated through the process equation to obtain

X1 = (A1) (81)

Before computing the a priori estimate of the state X, , we compute the weights for

the sample mean and covariance with

mean )\
" = (822)
wime) — 1 i=1,...,2L (82D)
! 2(L+ \) Y
(cov) A 2
_ 1 — 82
“o [ & (82¢)
wlee) = 1 i=1,...,2L (82d)
! 2(L + \) Y

where

e [ is the dimension of x.

A= a?(L + k) — L is a scaling parameter.

(L + M\)Py is the matrix square root of (L + \)P,.1°

e (v is a constant that determines the spread of the sigma—points around the mean

%. It is usually set to a small positive value: 1074 < a <1 .

e x is a secondary scaling parameter which is usually set to 0 or 3 — L. If & is
chosen such that kK = 3 — L then the kurtosis of one state of the sigma-points

agrees with that of the Gaussian distribution. [141, 140]

[ is used to incorporate prior knowledge of the distribution of x. For Gaussian

distributions, § = 2 is optimal. [136]

15The matrix square root may be obtained using Cholesky decomposition. [30, 274] An important
note on the square root of the error covariance matrix Py, from reference [140]: If the matrix square
root A of P is of the form P = AT A, then the sigma-—vectors are formed from the rows (i = 1,..., L)
of A. However, for a square root A of P that is of the form P = AA”, then the sigma-vectors are
formed from the columns (i =1,...,L) of A.
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The a priori estimate of the state X, and the error covariance matrix P, can now

be calculated using

oL
X, = Z wz(mean)Xi,Hk—l (83)
i—0
_ 2L (cov) A~ ~-\T
Py = Z w; (Xi»k\kﬂ - Xk) (Xi,klkfl - Xk) + Qk (84)
i=0

We follow a similar process to obtain an estimate for the measurement y, and the

covariances (Py,y, and Py,, ) necessary to calculate the unscented Kalman gain Kj.

Vijk—1 = h(Xpjp—1) (85)
2L
Vi = Z R VT (86)
i=0
2L
cov ~— ~aN\T
Py.y. = Z w,( ) Vise—1 = 95 ) (Vik-1— 3% ) + Ra (87)
=0
2L ,
Pyy, = ngwv) (Xikp—1 — %5 ) Vikie—r — %) (88)
=0
Ky = PXkYkP;klyk (89)

Knowing the unscented Kalman gain Kj, we can update the estimates of the state

X, and the error covariance Py.

X, =%, + Ki(yr —3;) (90)

P,=P, - KkPYkYng (91)

A summary of the unscented Kalman filter is given in Table 12 on page 78. The

parameters for the unscented Kalman filter are given in Appendix D.
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Table 12: Summary of the unscented Kalman filter.

State space model:
X1 = f(Xk) + Wy (92)

Yi = h(Xk) —+ vg (93)

where wy and v are independent, zero-mean, Gaussian noise processes
with covariance matrices Qx and Ry, respectively.

Initialization: For k = 0, set Xg and Py to their initial values.

Computation: For k =1, 2, ..., compute:
Sigma—points

Xo=Xp_1 (94a)

X, =Ryt + (,/(L+A)P,H) i=1,....L (94b)

i

Xy = Rp1 — («/(L+)\)Pk_1) i=L+1,...,2L (94c)

Weights '

(mean) A
0 L+ (95a)
(mean) 1 .
\ = =1,...,2L 95b
. 2(L+ \) T (95b)
(cov) A 2
= — ]_ —
wg T + a4+ (95¢)
(cov) _ 1 i —1.....2L 95d
w; 2(L i )\) 1 R ( )
Time-update equations
Xyo—1 = £(A—1) (96)
2L
}A(; = Z wgmean)Xi7k|k71 (97)
i=0
2L .
Py =Y (X1 — %) (Xipt — %) + Q. (98)
i=0
Measurement-update equations
Vije—1 = h(Xpp-1) (99)
2L
Vi = Z wgmean)yi,kwq (100)
i=0

2L
Py,y. = Z wi Vikpo-1=95%) Vige—1 — 5’;;)T + Ry (101)
i=0

2L
cov ~"— o N\T
Pyy. = sz( " (Xikiko1 = %) Vikko1 — 95) (102)
1=0
Ki =Py, y, Py, (103)
Xe =%, + Kilyr — 91) (104)
P, =P, — K;P,,, K} (105)




3.3.2 Trajectory Reconstruction Using Collocation (TRUC)

Introduction Although, the reconstruction of an entry trajectory can be posed as
a continuous two-point boundary value problem.'® Posing trajectory reconstruction
as an initial value problem allows collocation to obtain estimates of state uncertainty,

as well as estimates of the state. [228]

Optimal Control In the optimal control problem!7, a control history is sought that
takes a set of states x from specified initial conditions x, to a desired final state x;
subject to a set of constraints, while minimizing a performance index .J. The states

are defined by a system of differential equations given by
x = f(x,u,t) (106)
where
e X is the state vector.
e u is the control vector.

e f is a function of the state and control vectors.

The desired final boundary conditions x; are specified by a vector of algebraic

functions W of the states at the final time ¢;
P(xs) =0 (107)

In addition to satisfying the constraints on the final state, an optimal control history

is sought that minimizes the scalar performance function

16The atmospheric entry point represents one boundary condition, and the entry state is known
very well (i.e. it is a good initial boundary condition) from interplanetary spacecraft navigation
information. The landing site location can be determined extremely accurately (i.e. it is an excellent
final boundary condition) from radio triangulation with orbiting spacecraft. Additionally, using
images of the lander’s position on the surface of the planet, the lander’s position relative to known
topographical features can be determined.

1"The following description of optimal control and collocation is taken from references [60] and
[114].
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7 = 6(x)) (108)

where ¢ is a scalar cost function based on the final state.

One approach to solving the optimal control problem is to adjoin both the sys-
tem differential equations (equation (106)) and the constraints on the final state
(equation (107)) to the scalar performance function (equation (108)) creating a new

augmented cost function

ty
J=¢+uTW ¢ / N (E(x, u, £) — %)dt (109)

to

where
e 1 is a vector of sensitivities associated with the final condition constraints.
e A is a vector of adjoint (or costate) values.

The following necessary conditions from the calculus of variations must be verified

for optimality of the augmented cost function.

T
A= a; (110)
0P
N = G (111)
OHT
S =0 (112)

where
e H = \'f is the system Hamiltonian.
e d=0¢p+v1W.

Equations (110) through (112) are collectively referred to as the Euler-Lagrange

equations in the calculus of variations. Their solution must also satisfy equation (106)
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subject to the specified initial conditions and the final condition constraints. These
equations constitute a two—point boundary value problem whose solution provides
an indirect solution to the original optimal control problem. However, this method
of solving the optimal control problem is very sensitive to the initial guess of the
adjoint values. In contrast, collocation can transcribe the optimal control problem
into a set of algebraic constraints that can be used to solve the optimal control
problem without making use of the Euler-Lagrange equations, even though the Euler—

Lagrange equations can still be used.

Collocation Collocation is a method of solving the differential equations in an op-
timal control problem by transcribing the differential equations into a set of algebraic
constraints.'® The set of algebraic constraints can then be solved numerically using
a constrained optimization method, giving a solution to the original problem. Often,
optimal control problems have both state variables and control variables. Colloca-
tion discretizes both the control variables and the state variables using an implicit
integration method that represents the state variables as piecewise cubic polynomials.

The total time of interest T is discretized into n segments with n + 1 nodes, and
the time between nodes 7; (i.e. the length of time segment j) may vary. Within
each segment of time, the piecewise cubic polynomials constitute an approximate
integration formula for the state differential equations. This formulation for the
approximate integration of the system of equations transforms them into a set of
discrete algebraic constraints imposed within each time segment. Using Hermite
interpolation, cubic polynomials are defined for each state within each time segment
using the values of the states at the nodes and the state time derivatives at the nodes.
The values of the states are then selected such that the interpolated derivatives agree

with the differential equations at the center of each time segment.

18Collocation, as discussed here, has been successfully used for trajectory design, so it was chosen
for trajectory reconstruction.
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The basic procedure can be derived as follows. Let each state x be represented by

cubic polynomials of the form
xTr = C(] + 018 + 0282 + 0383 (113)

on each time segment j where, to simplify the argument, the segment length is one

and 0<s<1. Let

Tjl_o = Tj0 (114a)
Tjlg_y = Tjf (114b)
%S_O i (114c)
% =iy (114d)

where

e x is the value of state x at the beginning of time segment j.
e 1;; is the value of state x at the end of time segment j.

e i is the value of the time derivative of state x at the beginning of time segment
7.
e 1 is the value of the time derivative of state z at the end of time segment j.

Differentiating equation (113) and evaluating it at s = 0 and s = 1 gives

1 0 00 Co Zj0

010 o0||C i
= (115)

1 111 CQ Zjf

01 2 3| |C iif

Inverting the 4 X 4 matrix in equation (115) gives
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Co 1 0 0 0 Zj0
C 0o 1 0 0 Z,
= 7 (116)
02 -3 -2 3 —1 ZL’jf
Cs 2 1 =2 1| |iy

Now, using equation (116), evaluating equation (113) at the center of each time
segment (i.e. s = %), and with the time segment length denoted by 7}, we have the

interpolated value of the state at the center of the time segment x. to be
1 T; . .
Tie = 5(Tj0 +a¢) + 5 (F50 = Ey5) (117)

Similarly, for the derivative at the center of the time segment

, 3 1
Tje = — 5 (@jo — @jp) = 7 (&j0 + djy) (118)

J

Define the defect at the center of the time segment as

A = (&je) (119)

system derivative (ch)interpolation

where

A is the defect, which is the difference between the state time derivative cal-
culated using the differential equations defining the state (equation (106)) and

the state time derivative calculated using interpolation (equation (118)).

(T5¢) g0 .. is the state time derivative calculated using the differential
ystem derivative

equations defining the state (equation (106)).

(Zje)interpolation 15 the state time derivative calculated using interpolation (equa-

tion (118)).

&jo and &, are calculated from the state equation (equation (106)).
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The values of z;y and z;; are varied to drive the defect A to zero and provide an
accurate approximation of the solution. The defects for each time segment constitute
a set of nonlinear algebraic constraints, which are a function of the states and controls

at each node of the time segments.

Application to Trajectory Reconstruction For the trajectories in this research,
a three-degree-of-freedom simulation was used. The translational motion is described
by the state equation given in equation (120)!? and the expressions for the state

derivatives are given in equations (121) through (209)). [60]

_7;_
¢
6

x =f(x) = (120)
U
gl

7= wvsiny (121)

_ VC0oS7y oSy

' 122
b= (122)
. vVCosysiny
i i 1
0 r COS ¢ (123)
. 1 .
v =—(Ysinf — Dcosf)
m
— gsinvy (124)

+ Q21 cos ¢(sin y cos ¢ — cos ysin ¢ cos )

9The state variables radius r, latitude ¢, and longitude @ give the three components of position,
and the state variables velocity v, flight path angle v, and azimuth ¢ give the three components of
velocity.
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where

1
4 =—(Lcoso — Dsin3sino — Y cos Fsino)

muv

+ (2 - Q) cos 7y
roow

+ 2Q cos psin )

2
+ 2 eos ¢(cosy cos ¢ + siny sin ¢ cos )
v

1

) = ———(Lsino + Dsinfcoso + Y cos fcos o)

Mo cos 7y
v COS

sin ¢ tan ¢

— 2Q)(cos ¢ cos 1 tany — sin @)
2

cos ¢ sin ¢ sin Y
v COS Y

(125)

(126)

e ('p is the drag coefficient of the spacecraft. It is a function of the angle of attack

a and Mach number M of the of the spacecraft: Cp = Cp(a, M).

a and Mach number M of the spacecraft: Cp = Cp(a, M).

angle 8 and Mach number M of the spacecraft: Cy = Cy (5, M).

C, is the lift coefficient of the spacecraft. It is a function of the angle of attack

Cy is the side force coefficient of the spacecraft. It is a function of the side-slip

D is the aerodynamic drag force acting on the spacecraft. D = % pv2SCp where

the drag coefficient C'p is a function of the angle of attack o and Mach number

M of the spacecraft: Cp = Cp(a, M).

g is the local acceleration of gravity at the spacecraft’s position.
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the lift coefficient C';, is a function of the angle of attack o and Mach number

M of the spacecraft: Cp = Cp (o, M).
m is the mass of the spacecraft.
M is the Mach number of the spacecraft.

r is the spacecraft’s local radius measured from the center of the planet at which

entry is taking place.

S is the aerodynamic reference area of the spacecraft.
t is time.

v is the spacecraft’s velocity.

Y is the aerodynamic side force acting on the spacecraft. ¥ = % pv2SCy where
the side force coefficient Cy is a function of the side-slip angle § and Mach

number M of the spacecraft: Cy = Cy (3, M).
« is the angle of attack of the spacecraft.
[ is the side-slip angle of the spacecraft.

v is the spacecraft’s flight path angle, which is positive above the local horizon-

tal.

0 is the spacecraft’s longitude.

p is the local atmospheric density at the spacecraft’s position.
o is the bank angle of the spacecraft.

¢ is the spacecraft’s latitude.

1 is the spacecraft’s azimuth, which is positive when measured clockwise from

north.
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e () is the rotation rate of the planet at which entry is taking place.

and these variables may be categorized into state variables and parameters as shown
in Table 13. Note that there are no control variables, as the angle of attack a, the
side—slip angle (3, and the bank angle o for the spacecraft will be set to zero for the
duration of the trajectory to be consistent with the process models of the two Kalman

filters and compare the three methods on an equal basis.

Table 13: Categorization of the variables into state vari-
ables and parameters for trajectory reconstruction using col-
location.

State Variables Parameters

ASSESIESE

DD WL NI Ne T

As stated above, the total trajectory time can be discretized into segments based
on the measurement times of an inertial measurement unit. If there are n mea-
surements taken, then there are n nodes and n — 1 time segments. For each time

segment j (1 <j<n — 1), the state time derivatives at the center of each time seg-

ment (&je) . iom derivative €A1 be calculated using the differential equations above (equa-

tions (121) through (209)), and the interpolated values of the state time derivatives at

the center of each time segment (Z;.) can be calculated using equation (118)

interpolation

as follows.
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3 1

Tje = =5 (jo = 1) = 5 (Tjo + 7j)
J
. 3 1. .
Gje = — 5 (bjo = biz) = 7 (Gjo + &jf)
J
. 3 1. .
Oje = —57 (0jo = 035) = 7 (050 + 0j)
J
: 3 1, . )
Vje = — 5 (Vo = Vip) = 7 (Bjo + Bjy)
J
: 3 1. .
Vie = —ﬁ(%‘o —%f) — Z(%’o +%if)
J

: 3 1 . :
bje = —Q—Tj(%‘o = ig) = 7 (Wjo +iy)
Hence, the defects at the center of each time segment j are

A"’J‘ = (rjc)system derivative (ch)interpolation

A¢7j = (quc)system derivative (¢jc)interpolation
Ae’]’ = (ejc)system derivative <9jc)interpolation
AUJ = <i}jc)system derivative (i}jc)interpolation

A’YJ = (f}/jc)system derivative (ijc)interpolation

A’/’»j = (¢jc)system derivative <ch)interpolation

(127a)
(127h)
(127¢)
(127d)
(127e)

(127f)

(128a)
(128b)
(128¢)
(128d)
(128e)

(128f)

Note that there are (6 states) x (n — 1 time segments) defect equations, and there are

six state variables whose initial and final values (x;o and x,;) for the time segment?

are varied to drive the defects (A, Ay, Do, Ay jy Ay, and Ay ;) to zero.?

The initial boundary condition is x19, and x;; = X410 for 1<j<n —1 (ie. for

two consecutive time segments, the final state of the first time segment is the initial

20Except for the first time segment, where the initial conditions of the problem give the initial

value of the state.

2IHowever, for practical computational reasons, it may not be possible to actually enforce that

each defect equal zero, so a tolerance of 1075 has been set on the defects for this research.
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state of the second time segment). If we number the states by time node rather than

by using initial “,” and final “;” subscripts, we have

]
2
02
V2
V2

V2
x=|: (129)

Vn
Un

as the vector of state variables x that are varied to drive the defects A to zero.

In addition to driving the defects A to zero to satisfy the equations of motion, for
the trajectory reconstruction, it is desirable to minimize the sum of the squares of
the residual error between the calculated body frame accelerations and the measured
accelerations from the inertial measurement unit (equation (132)). Since the inertial
measurement units measure accelerations in the body frame, the aerodynamic forces
experienced by the spacecraft must be transformed to the body frame. This can be
accomplished by using a transformation matrix [A— B] to transform the aerodynamic

forces from the aerodynamic frame to the body frame.
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cosacos3 sinasino —cosasinfcoso  —cosasinFsino — sina cos o
[A—B] = sin 3 cos [3 cos o cos Asino

sinacos 3 —sinasinfcoso —cosasing  cosacoso — sinasin Fsin o

(130)
Using this matrix, for the calculated body frame accelerations, we have for each

measurement time

Ay D
a— = [A—B - 131
a| =1A-8] v | - (131)
a, L
The objective function for the accelerations Jucceleration may be expressed as
Jacceleration - Z ||acalculated - ameasured”? (132)

i=1

where the objective is to minimize the sum of the squares of the difference between
the calculated acceleration acyjculated @annd measured acceleration aeasured at €ach mea-
surement time ¢ for all the measurements n.

A summary of trajectory reconstruction using collocation as described above is
given in Table 14 on page 91. Note that controls u are required for the more general
problem, so in the context of the general problem, they appear in the state equation
x = f(x,u), and they would also be varied to obtain an optimal solution as shown in

Table 14.
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Table 14: Summary of trajectory reconstruction using col-
location (TRUC).

Given:
x = f(x,u) (133)
Minimize:
n
2
Jacceleration = Z ||acalculated - ameasured”i (134)
=1

Subject to:

A= (Sbjc>system derivative (j;jc)interpolation =0 (135)
where the n measurements are taken in the time span, and the time span is
divided into n — 1 time segments j by the measurement times. The defects
A above are calculated at the center of each time segment for each state
variable with

(136)

(xjc)system derivative o tje

. 3 1, . .
('rjc)intcrpolation = _i(xjo - xjf) + Z(xjo + xjf) (137)

by varying: the state vector x and the control vector u.
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Reconstructing the Trajectory Examining this trajectory reconstruction prob-

lem further reveals that there are several possible approaches to reconstructing the

trajectory by solving the algebraic constraints from collocation.

1. One way:

(a)

(2)

All the unknown states would be adjusted simultaneously based on the
optimization method chosen. (If this is the beginning of the optimization,

all the unknown states would be initialized to some initial guess.)

The defect constraint of each time segment (equation (128)) would be

checked to see if it is satisfied.

If the defect constraints are not satisfied, then the states would be adjusted

again, and the defect constraints checked again.

If the defect constraints are satisfied, then the objective function (equa-

tion (132)) would be computed based on those states.

The new computed value of the objective function would be compared

against the best minimum value found so far.

If the new computed value of the objective function was lower than the
best minimum value found so far, then it would be saved, along with the

values of the states, and the next iteration would begin.

This process would be repeated until the iteration limit was reached, or

the unknown states were no longer significantly changing.

2. A second way, would use two sets of state variables at each node with unknown

state variables, where one set is the final state for the preceding node, and

the next set is the initial state for the following node. This way would require

continuity constraints at each node to verify that the two sets of state variables
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at each node with unknown state variables were close enough to be within the

tolerance limit for continuity.

(a) All the unknown states would be adjusted simultaneously based on the
optimization method chosen. (If this is the beginning of the optimization,

all the unknown states would be initialized to some initial guess.)

(b) The defect constraint of each time segment (equation (128)) would be

checked to see if it is satisfied.

(¢) The continuity constraint at each node would be checked to see if it is

satisfied.

(d) If the either the defect constraints are not satisfied, or the continuity con-
straints are not satisfied, then the states would be adjusted again, and the

defect and continuity constraints checked again.

(e) If the defect constraints and continuity constraints are satisfied, the objec-

tive function (equation (132)) would be computed based on those states.

(f) The new computed value of the objective function would be compared

against the best minimum value found so far.

(g) If the new computed value of the objective function was lower than the
best minimum value found so far, then it would be saved, along with the

values of the states, and the next iteration would begin.
(h) This process would be repeated until the iteration limit was reached, or

the unknown states were no longer significantly changing.

3. A third way, could use either of the above methods with the initial state used
as an additional unknown in the optimization, and add a constraint to satisfy

the initial condition.
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4. A fourth way, assuming no information on uncertainty was desired, could use
any of the above methods with a fixed initial condition and a fixed final condi-

tion.

And there are probably many more variations that could be proposed by changing
subtle features. And while they may result in small improvements in minimizing the
objective function given in Table 14, the computational effort involved in obtaining

that small gain is likely to not be worth the effort.

An Alternative Method So let us propose an alternative method for finding
the state values at each node in a deterministic fashion that does not require an
optimizer. Using it will not necessarily result in minimizing the objective function
(equation (132)) proposed above, and in fact, the objective function is not necessary
for its implementation. In its essence, it is simply an integration of the trajectory??,
and therefore, a simulation not a true reconstruction.?®> However, this is not to be
dismissed. Chapters 4 and 5 will show that it is enough like integration, that if the
values of the controls are defined at every node in the entire trajectory, this research
posits that it is not necessary to vary the states at each node as independent variables
in an optimization process, as they can be determined directly from the values of the
controls and the parameters of the problem.?* This result means that only the controls
have to be independent variables in an optimization (or nonlinear programming)
process used to solve an entry, descent, and landing trajectory reconstruction problem

transcribed by collocation into a set of algebraic constraints. This reduction in the

22The equivalence of Runge-Kutta methods and collocation methods has already been established.
12)

23Modeling the problem here on an equal basis with the Kalman filters is equivalent to simulating
the trajectory using collocation.

24Tf you accept that integration is being done, then you also understand that there is only one
valid solution. With only one valid solution, then, if you do a reconstruction using a method as
described above, you will sacrifice the validity of the solution in order to obtain a lower value of the
objective function.
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number of independent variables greatly reduces the solution space that must be
searched.

Now, let us describe the solution procedure.

Recall that there are no control variables, as the angle of attack «, the side—slip
angle 3, and the bank angle o for the spacecraft are set to zero for the duration of
the trajectory to be consistent with the process models of the two Kalman filters, so
the three methods can be compared on an equal basis. Consider the defects in the

first (j = 1) time segment shown below in equation (138).

Ar1 = (T1.0)gystem derivative — ("¢ interpolation (138a)
Agy = (Q‘Slac>system derivative (Q'Slvc)interpolation (138b)
Ae,l = (91:C>system derivative (él,c)interpolation <138C>
Av,l = (@1,c)system derivative ('Ol,c)interpolation (138d)
Ayy = <,:)/170)system derivative (;yl’c)interpolation (138e)
Aw,l = (¢1vc)system derivative (¢1’3)interpolation (138f)

The defects of the first time segment are a function of the interpolated system
derivatives at the center of the time segment and the system derivatives at the center
of the time segment from the equations of motion given in equations (121) through
(209). The system derivatives from the equations of motion are a function of the
state, and by examining the expressions for the interpolated system derivatives in
equation (139), we see that they also are only a function of the state, specifically the
final value of the state for the time segment since the initial state is specified from

the initial conditions of the problem.
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3 1

7‘,1,0 = _2_E(T1’0 — T17f> — Z(fljo =+ 7‘"17f) (139&)

) 3 1 . .
D1 = —2—T1(¢1,0 — ¢1f) — Zl(¢1’0 + ¢1.7) (139b)

) 3 1 . )
01 = —2—T1(01,0 — 01 5) — 1(91,0 +615) (139¢)

) 3 1. .
Ve = —2—711(1)1,0 — V1) — Z('ULO + U1 ¢) (139d)
e =~ (10 = M) = 100 + 1) (139)
T,e = 2T 71,0 — V1. f 1 V1,0 T V1,5 €

. 3 1 . )
Pie= —2—T1(1/11,0 — 1) — Z(iﬂl,o + 1) (139f)

So the six defects given in equation (138) constitute a set of six equations in six
unknowns. To solve this set of equations:
First, we set the final state for the segment equal to the initial state for the

segment. The initial state is a convenient guess for the final state.
Xf = X (140)

as a consequence of this, the time derivatives of the initial and final states are also

equal. X; = %o (141)

Then, we substitute the formula for the interpolated derivative at the center of the
time segment into the defect vector equation, set the defect vector equal to zero, and

solve for the time segment’s final state.

2T (. 1. . .
Xf = Xo + ? ((XC)system derivative + Z(XO + Xf)) (142)

Using this final state, we can calculate the new final values of the time derivatives for

the ti t. Y
e time segmen x; = f(xy) (143)

Using the known values of the initial state and its time derivatives, along with the
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values of the final state and its time derivatives calculated above, we can calculate

the interpolated value of the state at the center of the time segment.

1 T
Xe = §(X0 + Xf) + g(Xo — Xf) (144)
We then calculate its interpolated derivative
o = — (%0 — x7) — + (ko + %) (145)
Xe = oT Xo Xr 4 X0 Xt
and its system derivative.
(Xc)sys‘cem derivative — f<XC) (146>

And, now, we can calculate the new defect vector for the time segment.

A= (%) (147)

system derivative (Xc)interpolation

We can then repeat this process until all the elements of the defect vector are driven
to zero.?> This procedure can then be repeated for each time segment until the last
node is reached. Alternatively, if we consider the defects for the entire trajectory as
constituting a system of 6 x (n — 1)—equations in 6 x (n — 1)—unknowns, the state at
each node could be set to the initial state, and the procedure could be implemented
on the entire trajectory at once. A summary of this solution procedure is given in
Table 15 on page 98.

Additionally, this research posits that for entry, descent, and landing trajectory
design with both states and controls using collocation, the solution procedure given
in Table 15 could be used to calculate the states that allow the defect constraints
from collocation to be met at each iteration of the optimization, while using only the

control variables as the independent variables of the optimization.

250r below our defect tolerance.
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Table 15: The solution procedure to obtain states that
meet the defect constraints of collocation when given a set
values for the controls. This procedure can be used when
performing trajectory simulation using collocation (TSUC)
or trajectory reconstruction using collocation (TRUC).

Given:
x = f(x) (148)
and an initial condition xq.
Initialization: For j =1, set X1 5 = X310 and X; 5 = X1 0.
Computation: For each time segment j = 1,2, ..., compute:
An update to the final value of the state
275 (. 1. .
Xjf = Xo + 7] <(ch)system derivative + Z(on + xjf)) (149)

The final value of the state time derivative
x5 = f(x57) (150)
The interpolated state at the center of the time segment

1 15 . .
Xje = 5 (%0 +%;5) + (i = %55) (151)
Its interpolated derivative

3 1

(ch)interpolation = _ﬁ(xjo - Xjf) - Z(on + xjf) (152)
J
And its system derivative
()'(jc)systcm derivative f(ch) (153)

The new defect vector

Aj = (XjC)

system derivative (ch)interpolation

Then repeat this process until all the elements of the defect vector
for time segment j are driven to zero.

Finally, repeat this procedure for each time segment j
until the final state at the last node has been found.*

*Though the sequential formulation above is used here, it is possible,
to implement this solution method in a simultaneous manner by
solving for all the unknown states at once, rather than repeating

it for each time segment. However, due to the presence of the

initial condition, that is not necessary though it would allow
parallelization that would speed up the computation.
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CHAPTER IV

TRAJECTORY RECONSTRUCTION OF A SAMPLE
PROBLEM

As stated earlier, extended Kalman filtering (EKF) has been used extensively in
trajectory reconstruction both for orbiting spacecraft and for planetary probes. It
forms the standard to which the unscented Kalman filtering (UKF) will be compared.
Additionally, trajectory simulation using collocation (TSUC) is conducted. The two
Kalman filters are used to reconstruct the entry, descent, and landing trajectory of a
sample problem similar to Mars Pathfinder, while collocation is used to simulate it.
The purpose of this sample problem is to understand the capabilities of the Kalman
filters when the true trajectory is known, and to compare the results from trajectory
simulation using collocation using the solution procedure of Table 15 to the Monte

Carlo simulation conducted using explicit integration of the dynamics.

4.1 Description of the Sample Problem

As a sample problem, a Mars Pathfinder—like vehicle entry at Mars was simulated,
so the trajectory could be reconstructed. The sample problem’s entry conditions are
given in Table 16 and the acceleration time history is given Figure 28. The sample
problem was created in the same simulation environment as the one the trajectory
reconstructions were performed in. However, noise was added to the accelerations
obtained from the true trajectory of the sample problem to simulate noisy accelera-
tion data from an inertial measurement unit. The mean noise level for the simulated
acceleration measurements was 0 pug with a standard deviation of 1500 ug, and the

measurement frequency was 32 Hz. The sample problem entry vehicle did not jettison
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any mass during entry, and parachute deployment occurred at approximately 142 s.
The simulation was ended when the altitude of the entry vehicle reached 0.268 km.
Plots of the altitude, velocity, and flight path angle time histories are given in Fig-
ures 29, 30, and 31, respectively. The density profile of the Martian atmosphere for

the sample problem is shown in Figure 117.

Table 16: The values of the sample problem’s state vari-
ables at entry.

State Variable Mean Uncertainty (1o)
Radius 3522200 m 1000 m
Aerocentric latitude 22.630 3°N 0.1°
Longitude 337.9976°E 0.1°
Inertial velocity 7264.2 7 1.0 2
Inertial flight path angle -14.0614° 0.1°
Inertial azimuth 253.1481° 0.1°

Acceleration (m / s?

-50!
0

Time (s)

Figure 28: Sample problem acceleration time history.
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Figure 29: Sample problem altitude time history.
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Figure 30: Sample problem velocity time history.
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Figure 32: Sample problem atmospheric density profile.



4.2 Trajectory Performance for the Sample Problem

Each of the Kalman filters discussed in Chapter 3 was used to reconstruct the tra-
jectory of the simulated sample problem, and the trajectory was simulated using

collocation.
4.2.1 Altitude

The reconstruction of the sample problem altitude is shown in Figure 33. Each of the
Kalman filters discussed in Chapter 3 appear to agree well with the simulated sample
problem, and the residuals of the time history of the sample problem altitude and the
reconstructions shown in Figure 33 are shown in Figure 34. Note the increasing di-
vergence of the extended Kalman filter from the simulated sample problem beginning
near the time of parachute deployment. The unscented Kalman filter maintains good
agreement with the simulated sample problem, even though it deviates slightly from
the simulation near the end of the trajectory. TSUC also maintains good agreement

with the simulated sample problem.

140
= Simulation
120z —H&— EKF
UKF
100 —A— TSUC
g
- 80
Q
<
£ 60
<
40
20
0
0

Figure 33: The time history of the sample problem altitude
is reconstructed and simulated.
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Figure 34: The residuals of the time history of the sample
problem altitude shown in the previous figure.

4.2.2 Velocity

The reconstruction of the sample problem velocity is shown in Figure 35. Both
Kalman filters discussed in Chapter 3 appear to agree well with the simulated sample
problem, and the residuals of the time history of the sample problem velocity and
the reconstructions shown in Figure 35 are shown in Figure 36. Note the divergence
of the extended Kalman filter from the simulated sample problem velocity beginning
near the time of parachute deployment and the subsequent recovery approximately
50 seconds later. The recovery is most likely due to the spacecraft reaching terminal
velocity on the parachute, as the terminal velocity is the same regardless of the method
used for reconstruction. The unscented Kalman filter maintains good agreement with
the simulated sample problem’s velocity throughout the entire trajectory. TSUC also

maintains good agreement with the simulated sample problem.
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Figure 35: The time history of the sample problem velocity
is reconstructed and simulated.
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Figure 36: The residuals of the time history of the sample
problem velocity shown in the previous figure.

4.2.3 Flight Path Angle

The reconstruction of the sample problem flight path angle is shown in Figure 37.

Both Kalman filters discussed in Chapter 3 appear to agree well with the simulated
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sample problem, and the residuals of the time history of the sample problem flight
path angle and the reconstructions shown in Figure 37 are shown in Figure 38. Note
the divergence of the extended Kalman filter from the simulated sample problem
flight path angle beginning near the time of parachute deployment and the subsequent
recovery near the end of the trajectory. The unscented Kalman filter maintains good
agreement with the simulated sample problem’s flight path angle throughout the
entire trajectory with some slight variation. TSUC also maintains good agreement

with the simulated sample problem
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Figure 37: The time history of the sample problem flight
path angle is reconstructed and simulated.
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Figure 38: The residuals of the time history of the sample
problem flight path angle shown in the previous figure.

4.3 Monte Carlo Solution Space for the Sample Problem

Next, a 10,000 run Monte Carlo simulation was performed by sampling from the
initial condition distributions shown in Table 16 on page 100. For each trajectory run
in the Monte Carlo simulation, the sample problem acceleration data was integrated
from the chosen initial condition. This was done in an attempt to characterize the
mean and uncertainty of the solution space, so that they could be compared with
the predictions from the methods discussed in Chapter 3.! The extended Kalman
filter results and the unscented Kalman filter results from the previous section are
compared here with the mean of the Monte Carlo solution space for the sample
problem dynamics.? Both Kalman filters were expected to predict the mean trajectory

well, and this was indeed the case. Regarding the uncertainty around their best

'Note that for this comparison, the initial conditions for the extended Kalman filter and the
unscented Kalman filter were the mean initial conditions as discussed in Chapter 3. The initial
conditions for the TSUC Monte Carlo were sampled at random from the entry state distributions
given in Table 16.

2In the next section, each Monte Carlo run will be done with the Kalman filters, rather than just
with the dynamics.
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estimates of the (mean) trajectory, the extended Kalman filter did not perform as
well as the unscented Kalman filter, though this result was expected based on the
literature. TSUC’s simulation of the uncertainty around the mean trajectory also

compared well with the Monte Carlo simulation.

A Note on Monte Carlo Simulations In the real world, there are many more
sources of error that should be included in Monte Carlo simulations. Beyond the

entry state, uncertainty exists in such things as:
e The dynamics model
e The gravitational model
e The atmospheric model including density, pressure, temperature, and winds
e The aerodynamic coefficients of the spacecraft
e The mass of the spacecraft
e The location of the center of mass of the spacecraft
e The moment of inertias of the spacecraft

However, as there was no error from these sources in the sample problem’s true
trajectory, there is no need to account for them in the Monte Carlo simulations for
the sample problem. Because the sample problem trajectory was run in the same
simulation as the reconstructions, uncertainty from any of the sources listed above
would have to be explicitly added. The only noise added was the noise added to the

acceleration data, as discussed earlier.
4.3.1 Altitude

The mean altitude from the Monte Carlo simulation is shown in Figure 39 with

the best estimate (mean) altitude from the Kalman filters and TSUC’s mean. Both
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Kalman filters appear to agree well with the mean Monte Carlo altitude, and the
residuals of the altitude time histories shown in Figure 39 relative to the mean Monte
Carlo altitude are shown in Figure 40. Note the increasing divergence of the ex-
tended Kalman filter from the mean Monte Carlo altitude beginning near the time
of parachute deployment. The unscented Kalman filter continues to maintain good
agreement with the mean Monte Carlo altitude, even though they deviate slightly
from the mean Monte Carlo altitude near the end of the trajectory. TSUC’s simula-

tion also compared well with the Monte Carlo simulation.

Monte Carlo
—H— EKF

UKF
—&— TSUC Monte Carlo

Altitude ( km )

Figure 39: The mean altitude from the Monte Carlo simu-
lation is shown with the best estimate (mean) altitude from
the Kalman filters and TSUC’s mean.
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Figure 40: The residuals of the altitude time histories
shown in the previous figure relative to the mean Monte
Carlo altitude.

The 30 uncertainty for altitude from the Monte Carlo simulation is shown in Fig-
ure 41 with the propagated 30 uncertainty for altitude from the Kalman filters. The
prediction of the 30 uncertainty for altitude by the methods discussed in Chapter 3
agree well with the uncertainty for altitude from the Monte Carlo simulation for ap-
proximately the first 60 seconds of the trajectory. At that point, the extended Kalman
filter’s prediction begins to diverge from the Monte Carlo simulation and decreases
until it settles near the initial value of the 30 uncertainty for altitude. The unscented
Kalman filter continues to maintain good agreement with the Monte Carlo simula-
tion’s 3o uncertainty for altitude throughout the entire trajectory. TSUC also agrees
well with the Monte Carlo. The residuals of the 30 uncertainty for altitude shown
in Figure 41 relative to the Monte Carlo simulation’s 30 uncertainty for altitude are

shown in Figure 42.
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Figure 41: The 30 uncertainty for altitude from the Monte
Carlo simulation is shown with the propagated 3¢ uncer-
tainty for altitude from the Kalman filters and TSUC’s 30
uncertainty.
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Figure 42: The residuals of the 3o uncertainty for altitude
shown in the previous figure relative to the Monte Carlo
simulation’s 30 uncertainty for altitude.
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4.3.2 Velocity

The mean velocity from the Monte Carlo simulation is shown in Figure 43 with
the best estimate (mean) velocity from the Kalman filters. Both Kalman filters
discussed in Chapter 3 appear to agree well with the mean Monte Carlo velocity,
and the residuals of the velocity time histories shown in Figure 43 relative to the
mean Monte Carlo velocity are shown in Figure 44. Note the divergence of the
extended Kalman filter from the mean Monte Carlo velocity beginning near the time
of parachute deployment and the subsequent recovery approximately 50 seconds later.
The recovery is most likely due to the spacecraft reaching terminal velocity on the
parachute, as the terminal velocity is the same regardless of the method used for
reconstruction. The unscented Kalman filter and TSUC maintain good agreement

with the mean Monte Carlo velocity throughout the entire trajectory.
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Figure 43: The mean velocity from the Monte Carlo simu-
lation is shown with the best estimate (mean) velocity from
the Kalman filters and TSUC’s mean.

112



—B— EKF
UKF
—A— TSUC Monte Carlo

1 |
250 300

1 ! 1
50 100 150 200
Time (s)

Velocity Mean Residuals (Absolute Value) (m/ s)

Figure 44: The residuals of the velocity time histories
shown in the previous figure relative to the mean Monte
Carlo velocity.

The 30 uncertainty for velocity from the Monte Carlo simulation is shown in Fig-
ure 45 with the propagated 30 uncertainty for velocity from the Kalman filters. The
prediction of the 30 uncertainty for velocity by the Kalman filters discussed in Chap-
ter 3 agree well with the uncertainty for velocity from the Monte Carlo simulation
for approximately the first 35 seconds of the trajectory. At that point, the extended
Kalman filter’s prediction begins to diverge from the Monte Carlo simulation and
decreases until it settles near zero. The unscented Kalman filter continues to main-
tain good agreement with the Monte Carlo simulation’s 3o uncertainty for velocity
throughout the entire trajectory. TSUC also agrees well with the Monte Carlo. The
residuals of the 30 uncertainty for velocity shown in Figure 45 relative to the Monte

Carlo simulation’s 30 uncertainty for velocity are shown in Figure 46.
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Figure 45: The 30 uncertainty for velocity from the Monte
Carlo simulation is shown with the propagated 3¢ uncer-
tainty for velocity from the Kalman filters and TSUC’s 30
uncertainty.
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Figure 46: The residuals of the 30 uncertainty for velocity
shown in the previous figure relative to the Monte Carlo
simulation’s 30 uncertainty for velocity.
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4.3.3 Flight Path Angle

The mean flight path angle from the Monte Carlo simulation is shown in Figure 47
with the best estimate (mean) flight path angle from the Kalman filters. Both Kalman
filters discussed in Chapter 3 appear to agree well with the mean Monte Carlo flight
path angle, and the residuals of the flight path angle time histories shown in Figure 47
relative to the mean Monte Carlo flight path angle are shown in Figure 48. Note the
divergence of the extended Kalman filter from the mean Monte Carlo flight path
angle beginning near the time of parachute deployment and the subsequent recovery
near the end of the trajectory. The unscented Kalman filter and TSUC maintain
good agreement with the simulated sample problem’s flight path angle throughout

the entire trajectory with some slight variation.
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Figure 47: The mean flight path angle from the Monte
Carlo simulation is shown with the best estimate (mean)
flight path angle from the Kalman filters and TSUC’s mean.
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Figure 48: The residuals of the flight path angle time
histories shown in the previous figure relative to the mean
Monte Carlo flight path angle.

The 30 uncertainty for flight path angle from the Monte Carlo simulation is shown
in Figure 49 with the propagated 3¢ uncertainty for flight path angle from the Kalman
filters. The prediction of the 30 uncertainty for flight path angle by the Kalman filters
discussed in Chapter 3 agree well with the uncertainty for flight path angle from the
Monte Carlo simulation for approximately the first 50 seconds of the trajectory. At
that point, the extended Kalman filter’s prediction begins to diverge from the Monte
Carlo simulation and decreases until it settles near zero. The unscented Kalman
filter continues to maintain good agreement with the Monte Carlo simulation’s 3o
uncertainty for flight path angle throughout the entire trajectory. TSUC also agrees
well with the Monte Carlo. The residuals of the 30 uncertainty for velocity shown
in Figure 49 relative to the Monte Carlo simulation’s 30 uncertainty for velocity are

shown in Figure 50.
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Figure 49: The 30 uncertainty for flight path angle from
the Monte Carlo simulation is shown with the propagated

for flight path angle from the Kalman filters

and TSUC’s 30 uncertainty.
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Figure 50: The residuals of the 30 uncertainty for flight

path angle shown in the previous figure relative to the Monte
Carlo simulation’s 30 uncertainty for flight path angle.
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4.4 Tragectory Performance with Poor Initial Conditions

Finally, a 1,000 run Monte Carlo simulation was performed to determine if each
Kalman filter could bound, within its predicted uncertainty bounds, the mean resid-
ual (error) between the Kalman filter’s best estimate of the trajectory and the simu-
lated sample problem in spite of a poor initial state. This might occur, for example,
if the true entry state was different from the mean entry state, as in the real world
the true entry state is not known with absolute certainty. The results of this investi-
gation are shown in Figures 51 to Figures 53 for the extended Kalman filter and in
Figures 54 to Figures 59 for the unscented Kalman filter.

This Monte Carlo simulation was performed by:

1. Sampling from the initial condition distributions shown in Table 16 on page 100.
This initial condition was used to initialize each of the methods discussed in

Chapter 3.3

2. Each method was then run using the above initial condition and the noisy

sample problem accelerometer data discussed above.

3. Once all the Monte Carlo runs were completed, the difference (residual error)
between the Monte Carlo run’s reconstruction and the true trajectory was com-

puted for each Monte Carlo run.

4. Then, the mean and standard deviation of the residuals was then computed,

and they are plotted in the following plots for each method.

3Note that since the true entry state for this problem is also the mean entry state given in
Table 16, the mean of the “poor” entry states that are sampled from the distribution of the true
entry state given in Table 16 will approach the value of the true entry state as the number of Monte
Carlo runs increases. In fact with the 1,000 runs done in this study, they appear to be identical, as
their difference shown in the following plots appears to be zero.
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4.4.1 The Extended Kalman Filter

The Monte Carlo mean residual between the extended Kalman filter’s best estimate of
altitude and the simulated sample problem’s altitude is shown in Figure 51. In spite
of a poor initial state, the extended Kalman filter is able to bound the mean Monte
Carlo altitude residual within its predicted 3o uncertainty bounds. Figure 52 shows
the Monte Carlo mean residual between the extended Kalman filter’s best estimate
of velocity and the simulated sample problem’s velocity. The poor initial state causes
the extended Kalman filter to over predict the accuracy of its best estimate of velocity,
as shown in Figure 52 by the mean Monte Carlo velocity residual falling outside the
extended Kalman filter’s predicted 3o uncertainty bounds approximately 45 seconds
into the trajectory. Figure 53 shows the Monte Carlo mean residual between the
extended Kalman filter’s best estimate of flight path angle and the simulated sample
problem’s flight path angle. The poor initial state can cause the extended Kalman
filter to over predict the accuracy of its best estimate of flight path angle, as shown
in Figure 53 by the mean Monte Carlo flight path angle residual falling outside the
extended Kalman filter’s predicted 3o uncertainty bounds approximately 100 seconds

into the trajectory.
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Figure 51: The Monte Carlo mean residual between the

extended Kalman filter’s best estimate of altitude and the
simulated sample problem’s altitude.
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Figure 52: The Monte Carlo mean residual between the
extended Kalman filter’s best estimate of velocity and the
simulated sample problem’s velocity.
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Figure 53: The Monte Carlo mean residual between the
extended Kalman filter’s best estimate of flight path angle
and the simulated sample problem’s flight path angle.

4.4.2 The Unscented Kalman Filter

The Monte Carlo mean residual between the unscented Kalman filter’s best estimate
of altitude and the simulated sample problem’s altitude is shown in Figure 54. In
spite of a poor initial state, the unscented Kalman filter is able to bound the mean
Monte Carlo altitude residual within its predicted 3o uncertainty bounds.

Figure 55 shows the Monte Carlo mean residual between the unscented Kalman
filter’s best estimate of velocity and the simulated sample problem’s velocity. In spite
of a poor initial state, the unscented Kalman filter is able to bound the mean Monte
Carlo velocity residual within its predicted 30 uncertainty bounds approximately
99.7% of the time as shown in Figures 55 to 58 indicating that it does not over
predict the accuracy of its best estimate of velocity. Figure 56 shows closer look at
the beginning of the trajectory. The unscented Kalman filter is able to bound the

mean Monte Carlo velocity residual within its predicted 30 uncertainty bounds at
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the beginning of the trajectory. A closer look near parachute deployment is shown
in Figure 57. Near parachute deployment, the mean Monte Carlo velocity residual
falls outside the unscented Kalman filter’s predicted 30 uncertainty bounds. This
unbounded portion of the residuals represents approximately 0.3% of the trajectory.
Hence, in spite of a poor initial state, the unscented Kalman filter is able to bound
the mean Monte Carlo velocity residual within its predicted 3o uncertainty bounds
approximately 99.7% of the time indicating that it does not over predict the accuracy
of its best estimate of velocity. A closer look at the end of the trajectory is shown in
Figure 58, where the unscented Kalman filter is able to bound the mean Monte Carlo
velocity residual within its predicted 3o uncertainty bounds.

The Monte Carlo mean residual between the unscented Kalman filter’s best es-
timate of flight path angle and the simulated sample problem’s flight path angle is
shown in Figure 59. In spite of a poor initial state, the unscented Kalman filter is
able to bound the mean Monte Carlo flight path angle residual within its predicted

30 uncertainty bounds.
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Figure 54: The Monte Carlo mean residual between the

unscented Kalman filter’s best estimate of altitude and the
simulated sample problem’s altitude.
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Figure 55: The Monte Carlo mean residual between the
unscented Kalman filter’s best estimate of velocity and the
simulated sample problem’s velocity.
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Figure 56: A closer look at the Monte Carlo mean resid-
ual between the unscented Kalman filter’s best estimate of
velocity and the simulated sample problem’s velocity.
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Figure 57: A closer look at the Monte Carlo mean resid-
ual between the unscented Kalman filter’s best estimate of
velocity and the simulated sample problem’s velocity. This
unbounded portion of the residuals represent approximately
0.3% of the trajectory.
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Figure 58: A closer look at the Monte Carlo mean resid-
ual between the unscented Kalman filter’s best estimate of
velocity and the simulated sample problem’s velocity.
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Figure 59: The Monte Carlo mean residual between

the

unscented Kalman filter’s best estimate of flight path angle

and the simulated sample problem’s flight path angle.
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4.4.3 Trajectory Simulation Using Collocation (TSUC)

The Monte Carlo mean residual between TSUC’s simulation of altitude and the simu-
lated sample problem’s altitude is shown in Figure 60. In spite of a poor initial state,
TSUC is able to bound the mean Monte Carlo altitude residual within its simulated
30 uncertainty bounds.

Figure 61 shows the Monte Carlo mean residual between TSUC’s simulation of
velocity and the simulated sample problem’s velocity. In spite of a poor initial state,
TSUC is able to bound the mean Monte Carlo velocity residual within its simulated
30 uncertainty bounds approximately 99.7% of the time as shown in Figures 61 to 64
indicating that its usefulness for simulating trajectories. TSUC is able to bound the
mean Monte Carlo velocity residual within its predicted 3¢ uncertainty bounds at
the beginning of the trajectory. A closer look near parachute deployment is shown in
Figure 63. Near parachute deployment, the mean Monte Carlo velocity residual falls
outside TSUC’s simulated 30 uncertainty bounds. This unbounded portion of the
residuals represents approximately 0.3% of the trajectory. Hence, in spite of a poor
initial state, TSUC is able to bound the mean Monte Carlo velocity residual within
its simulated 30 uncertainty bounds approximately 99.7% of the time indicating that
its usefulness for simulating trajectories. A closer look at the end of the trajectory
is shown in Figure 64, where TSUC is able to bound the mean Monte Carlo velocity
residual within its simulated 30 uncertainty bounds.

The Monte Carlo mean residual between TSUC’s simulation of flight path angle
and the simulated sample problem’s flight path angle is shown in Figure 65. In spite
of a poor initial state, TSUC is able to bound the mean Monte Carlo flight path angle

residual within its simulated 30 uncertainty bounds.
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Figure 60: The Monte Carlo mean residual between
TSUC’s simulation of altitude and the simulated sample
problem’s altitude.
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Figure 61: The Monte Carlo mean residual between
TSUC’s simulation of velocity and the simulated sample
problem’s velocity.
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Figure 62: A closer look at the Monte Carlo mean residual
sample problem’s velocity.

between TSUC’s simulation of velocity and the simulated
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Figure 63: A closer look at the Monte Carlo mean residual
between TSUC’s simulation of velocity and the simulated

sample problem’s velocity. This unbounded portion of the
residuals represent approximately 0.3% of the trajectory.
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A closer look at the Monte Carlo mean residual

between TSUC’s simulation of velocity and the simulated
sample problem’s velocity at the end of the trajectory.
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Figure 65: The Monte Carlo mean residual between
TSUC’s simulation of flight path angle and the simulated
sample problem’s flight path angle.

4.5 Summary

Both Kalman filters discussed in Chapter 3 were able to reconstruct the mean trajec-
tories nearly equally well. While the extended Kalman filter did demonstrate some
difficulties, the unscented Kalman filter had only slight difficulties, and they gener-
ally seem identical from the plots. Regarding the estimation of uncertainties, the
unscented Kalman filter clearly performed better than the extended Kalman filter
and did not over predict the accuracy of their best estimates. Now, we consider these
results in the context of the details of each method.?

The extended Kalman filter propagates a nominal trajectory that represents a
“best guess” of the trajectory based on the process model. The nominal trajectory’s
estimate of the state is updated at each measurement time using the measurement

data to obtain a best estimate of the state at each measurement time, and the nominal

4Please see Chapter 3 for the details of each Kalman filter.
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trajectory is propagated from that best estimate of the state. There are two items that
can explain the extended Kalman filter’s difficulties reconstructing a mean trajectory.
First, the nominal trajectory is only as good as the process model. If the process model
is too poor, then the update of the state using the measurement data may not be big
enough to get the nominal trajectory back on track, and the best estimate will drift
away from the true trajectory. Second, the update of the state using the measurement
data is done with the Kalman gain (please see equation (38i) on page 59). The
extended Kalman filter’s Kalman gain must take into account both the uncertainty in
the state and the measurement noise, where the state uncertainty (the error covariance
matrix) is propagated using a linearization of the nonlinear state equations via the
state transition matrix (please see Table 11 on page 68). This can result in a poor
propagation of the state uncertainty, which results in a poor Kalman gain, a poor
state estimate, and poor update of the state uncertainty, especially at highly nonlinear
portions of the trajectory such as peak deceleration and parachute deployment. It
is possible that through the addition of process noise that the extended Kalman
filter would better propagate the initial state uncertainties and bound the residuals
between its best estimate and the true trajectory. However, as is discussed below, the
unscented Kalman filter can already do this, and it does not require process noise to
be added. Additionally, any process noise added to the extended Kalman filter would
have to be added to the unscented Kalman filter, so the two Kalman filters could be
compared on an equal basis.

In contrast, the unscented Kalman filter performs, what is essentially, a mini—
Monte Carlo. The sigma—points are sampled from the initial uncertainty distribution
of the state and propagated forward in time using the nonlinear system equations
to the next measurement time. The nominal state is the mean of the sigma—points

(note that this is not simply a propagation of the previous mean, as in the extended
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Kalman filter case), and the error covariance matrix is calculated from the sigma—
points, as well. This provides the unscented Kalman filter with a better nominal value
of the state to be updated by the measurement data. While the unscented Kalman
filter’s Kalman gain also takes into account both the uncertainty in the state and the
measurement noise, it is found using the sigma points (please see equations (85) to
(89) on page 77). As the sigma—points were propagated forward in time using the
nonlinear system equations, no linearization was involved. This allows the unscented
Kalman filter to obtain a better estimate of both the state and its uncertainty when
compared to the extended Kalman filter, as shown in this chapter for entry, descent,
and landing trajectory reconstruction.

TSUC’s Monte Carlo simulation compared well with the explicit integration Monte
Carlo simulation indicating its usefulness for simulating trajectories using the solution
procedure in Table 15 on page 98 for determining the values of the state from the
controls and parameters of the simulation.

In the next chapter, each Kalman filter will be tested with real-world data, where

the true trajectory is unknown.
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CHAPTER V

TRAJECTORY RECONSTRUCTION FOR MARS

PATHFINDER

As stated earlier, extended Kalman filtering (EKF') has been used extensively in tra-
jectory reconstruction both for orbiting spacecraft and for planetary probes. It forms
the standard to which the unscented Kalman filter (UKF) is tested. Additionally,

Mars Pathfinder’s trajectory will be simulated using collocation.

5.1 Mars Pathfinder

Mars Pathfinder was launched aboard a Delta II rocket [38] in December 4, 1996 [299]
and traveled close to 500 million kilometers [191] to reach Mars. It entered the Mar-
tian atmosphere on July 4, 1997 [184] and landed approximately five minutes later in
the Ares Vallis region of Chryse Planitia [290, 107, 54, 75, 112] at 19.33°N (aerode-
tic), 326.45°E! (see Figure 66). The direct entry method used by Pathfinder to reach
the surface of Mars resulted in significant cost—savings since no propellant was needed
to capture it into a parking orbit around Mars before landing [310, 202] as with the
Viking orbiter—landers [121, 77].

Pathfinder’s entry configuration is shown in Figure 19 on page 36. Pathfinder did
not have a reaction control system and followed a ballistic flight path. [104] Although
Pathfinder’s aeroshell is statically unstable for densities less than 2 x 1077 %, the
gyroscopic stability caused by Pathfinder’s two rotations per minute spin mitigated

this aerodynamic moment. [191]

'Based on landmark recognition. Lander radiometric tracking places the landing site at
19.28°N (aerodetic), 326.48°E, and the best estimate from flight data was 19.09°N (aerocen-
tric), 326.48°E. [269]
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Pathfinder’s entry, descent, and landing sequence is shown in Figure 67, and the
times of several events are listed in Table 17. The spacecraft decelerated with its
aeroshell and heatshield, then deployed a supersonic parachute, jettisoned its heat-
shield, and used retrorockets to minimize its velocity above the surface of Mars. The
lander was then separated from the backshell and dropped to the surface protected
by airbags. Once the motion of the lander ceased, the lander’s petals opened, and
it deployed instruments to make in situ science measurements. Three scientific in-
struments collected data once on the surface: (1) the Imager for Mars Pathfinder
[256], (2) the a—proton x-—ray spectrometer (APXS) [224], and (3) an atmospheric
sTSUCture investigation / meteorology package (ASI/MET) [252]. Mars Pathfinder

also deployed a small rover named Sojourner. [106, 105, 285]

. -
Phoenlx

Viking 2

Figure 66: Landing site of Mars Pathfinder. [Image credit:
The NASA Goddard Space Flight Center]
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Figure 67: Entry, descent, and landing sequence for Mars
Pathfinder. [71, 72, 33]

Table 17: The times of some notable events during Mars
Pathfinder’s entry, descent, and landing. [269]

Event Time after Entry (s)
Entry interface 0

Mortar fire 171.4
Parachute open 172.7
Heatshield jettison 192.1
Deployment of lander on bridle 211.4
Airbag inflation 295.2
Rocket deceleration 299.1
Parachute bridle cut 301.3

First bounce 305

5.2 Reconstruction

5.2.1 Initial Conditions

The initial conditions (i.e. the entry state vector xo) for Mars Pathfinder are listed
in Table 18. Both the mean value and the 1o uncertainty are given for each state

variable. These initial values are propagated forward in time until parachute bridle
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cut. Time histories of altitude, velocity, and flight path angle are presented below, as
well as a density profile of the Martian atmosphere at the time of Mars Pathfinder’s
entry. A comparison is made with a previous reconstruction [269] of Mars Pathfinder’s
trajectory that is available in the literature. The previous reconstruction is based on
a combination of accelerometer and altimeter measurements using sequential filtering

and smoothing techniques.

Table 18: The values of Mars Pathfinder’s state variables

at entry.

State Variable Mean [269, 49]  Uncertainty (1o) [49]
Radius 3522200 m 1700 m
Aerocentric latitude 22.630 3°N 0.04°
Longitude 337.9976°E 0.01°

Inertial velocity 7264.2 7 0.7 %
Inertial flight path angle -14.0614° 0.02°
Inertial azimuth 253.1481° 0.02°

5.2.2 Accelerometer Data

During entry, the accelerations experienced by Mars Pathfinder were recorded by ac-
celerometers in Pathfinders atmospheric structure and meteorology instrument. The
threshold of acceleration detection due to atmospheric drag was expected to occur at
an atmospheric density of 2 x 1071 £&. The acceleration data [164] shown in Fig-
ure 68 was stored onboard the spacecraft and later transmitted to Earth. The mean
noise level for the simulated acceleration measurements was 0 pug with a standard
deviation of 1500 ug [49], and the measurement frequency was 32 Hz [164]. Low—pass
filters in the accelerometer electronics attenuated signal frequencies above 5 Hz to
suppress the effects of noise and spacecraft dynamic motion. [252] The data was fur-
ther smoothed to facilitate reconstruction as shown in Figure 69 to remove the spikes

in acceleration caused by the gain transitions of the accelerometers.
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Figure 68: The Mars Pathfinder accelerometer data show-

ing the data spikes from the accelerometers transitioning to

different sensitivity levels. [164, 269]
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Figure 69: The Mars Pathfinder accelerometer data after
smoothing.

5.2.3 Altimeter Data

Near the end of parachute descent, the altitude of Mars Pathfinder was recorded by
an altimeter. The noise level for the altimeter measurements was 0.3 m [49] and

the measurement frequency was 8 Hz. A plot of the altimeter data [37] is shown in

Figure 70.
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Figure 70: The Mars Pathfinder altimeter data. [37]

5.2.4 Digitized Data

While the Kalman filters discussed in Chapter 3 can be used to reconstruct Mars
Pathfinder’s entry trajectory and compared against each other, it is also useful to com-
pare the Kalman filters against the “truth”. Unfortunately, the true Mars Pathfinder
entry trajectory cannot be known, so an independent reconstruction of Mars Pathfinder’s
entry trajectory was sought for comparison with this investigation. The 1999 Mars
Pathfinder entry trajectory reconstruction by David Spencer and others in Refer-
ence [269] was selected to provide an independent reconstruction of Mars Pathfinder’s
entry trajectory. Recall, as discussed in Chapter 2, that the trajectory reconstruction
by David Spencer and others [269] used a combination of accelerometer and altimeter
measurements using sequential filtering and smoothing techniques [270, 269]. As this
is a different process from the Kalman filters discussed in Chapter 3, the results from

the Kalman filters discussed in Chapter 3 will differ from the reconstruction by David
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Spencer and others [269]. However, the comparison will speak to the general accu-
racy of the Kalman filters discussed in Chapter 3, while the extended Kalman filter
reconstruction, as one accepted standard of trajectory reconstruction?, will speak to
the specific capabilities of the unscented Kalman filter discussed in Chapter 3 for this
investigation.

In a discussion with David Spencer regarding the 1999 reconstruction of Mars
Pathfinder’s trajectory [269], he stated that the data is “long gone” [268], so the
altitude, velocity, flight path angle, and density plots shown in Figures 71, 72, and 120
were digitized using the Engauge Digitizer digitizing software [186]. For the altitude

l; ; with a possible

time history, the resolution of Figure 71 is approximately 0.2 Sixel

error in the digitized altitude of at least 0.8 km based on a four pixel curve width.

m/s
pixel

For the velocity time history, the resolution of Figure 72 is approximately 10.6

with a possible error in the digitized velocity of at least 42.6 == based on a four pixel
curve width. Finally, for the flight path angle time history, the resolution of Figure 72
is approximately 0.106 rﬁ with a possible error in the digitized flight path angle of

at least 0.426° based on a four pixel curve width.

2Along with direct integration, as established in Chapter 2.
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Figure 71: Reconstructed Mars Pathfinder altitude time
history from Spencer 1999. [269]
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Figure 72: Reconstructed Mars Pathfinder velocity and
flight path angle time history from Spencer 1999 [269]

142



5.2.5 Altitude

Reconstructed with only Acceleration Data

The digitized altitude time history for Mars Pathfinder from Spencer 1999 [269] is
shown in Figure 73 with the reconstructions by the Kalman filters discussed in Chap-
ter 3 (using only acceleration data) overlaid. Both Kalman filters discussed in Chap-
ter 3 appear to agree well with the digitized data from Spencer 1999 [269]. The
residuals of the altitude time histories shown in Figure 73 relative to the digitized
data from Spencer 1999 [269] are shown in Figure 74. Both Kalman filters discussed
in Chapter 3 contain the residuals within their 3o uncertainty bounds. The similarity
of the three sets of residuals in Figure 74 indicates that the unscented Kalman filter
was able to reconstruct Mars Pathfinder’s altitude at least as well as the extended
Kalman filter, while TSUC was able to simulate it. While the similarity of the 3o
uncertainty bounds in Figure 74 indicates that neither Kalman filters tends to over
predict the accuracy of their best estimate more than the other. Figures 75, 76, and 77
show another look at just the altitude residuals for the extended Kalman filter, the

unscented Kalman filter, and TSUC, respectively.
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Figure 73: The digitized altitude time history for Mars
Pathfinder from Spencer 1999 [269] is shown with the re-
constructions (using only acceleration data) and the simu-
lation.
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Figure 74: The residuals of the altitude time histories
shown in the previous figure relative to the digitized data
from Spencer 1999 [269].

144



Altitude Residuals ( km)

Altitude Residuals ( km )

—HB— EKF Residuals
=B EKF 3¢ Uncertainty

| 1
0 50 100 150 200 250 300
Time (s)

Figure 75: Another look at just the altitude residuals be-
tween the extended Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 76: Another look at just the altitude residuals be-
tween the unscented Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 77: Another look at just the altitude residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

Reconstructed with both Acceleration Data and Altimeter Data

The digitized altitude time history for Mars Pathfinder from Spencer 1999 [269] is
shown in Figure 78 with the reconstructions by the Kalman filters discussed in Chap-
ter 3 (using both acceleration data and altimeter data) overlaid. Both Kalman
filters discussed in Chapter 3 appear to agree well with the digitized data from
Spencer 1999 [269]. A close up view of the change in the altitude estimates shown
in Figure 78 when the altimeter acquires the ground is shown in Figure 79. Both
Kalman filters discussed in Chapter 3 update their estimates to included the new
data.® The residuals of the altitude time histories shown in Figure 78 relative to the
digitized data from Spencer 1999 [269] are shown in Figure 80. Both Kalman filters
discussed in Chapter 3 contain the residuals within their 30 uncertainty bounds until
the altimeter acquires the ground. Then the 3¢ uncertainty bounds for the three
methods collapses to nearly zero due to the high accuracy of the altimeter measure-

ment. Figures 81, 82, and 83 show another look at just the altitude residuals for the

3For TSUC, the altimeter data provides a value of the state and reduces the number of unknown
state variables when altimeter data is available.
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extended Kalman filter, the unscented Kalman filter, and TSUC, respectively.
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Figure 78: The digitized altitude time history for Mars
Pathfinder from Spencer 1999 [269] is shown with the re-
constructions (using both acceleration data and altimeter
data) and the simulation.
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Figure 79: A close up view of the change in the altitude
estimates shown in the previous figure when the altimeter
acquires the ground. The jump suggests that the true entry
state differs from the mean entry state listed in Table 18.
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Figure 80: The residuals of the altitude time histories
shown in the previous figure relative to the digitized data
from Spencer 1999 [269].
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Figure 81: Another look at just the altitude residuals be-
tween the extended Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 82: Another look at just the altitude residuals be-
tween the unscented Kalman filter and the digitized data

from Spencer 1999 [269].
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Figure 83: Another look at just the altitude residuals be-

tween TSUC and the digitized data from Spencer 1999 [269].
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5.2.6 Velocity

Reconstructed with only Acceleration Data

The digitized velocity time history for Mars Pathfinder from Spencer 1999 [269] is
shown in Figure 84 with the reconstructions by the Kalman filters discussed in Chap-
ter 3 (using only acceleration data) overlaid. Both Kalman filters discussed in Chap-
ter 3 appear to agree well with the digitized data from Spencer 1999 [269]. The
residuals of the velocity time histories shown in Figure 84 relative to the digitized
data from Spencer 1999 [269] are shown in Figure 85. Neither Kalman filter discussed
in Chapter 3 contains the residuals within their 30 uncertainty bounds, and the large
divergence of the residuals around 75 seconds is due to peak deceleration. However,
the similarity of the three sets of residuals in Figure 85 indicates that the unscented
Kalman filter was able to reconstruct Mars Pathfinder’s trajectory at least as well
as the extended Kalman filter. While the similarity of the 30 uncertainty bounds
between the unscented Kalman filter and TSUC in Figure 85 (perhaps better seen
in Figure 87) indicates that unscented Kalman filter compares well against a Monte
Carlo simulation. Unfortunately, the 3o uncertainty bounds for the extended Kalman
filter rapidly converge to almost zero approximately 50 seconds into the trajectory
(perhaps better seen in Figure 86) indicating that the extended Kalman filter tends
to over predict the accuracy of its best estimate more than the unscented Kalman

filter.
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Figure 84: The digitized velocity time history for Mars
Pathfinder from Spencer 1999 [269] is shown with the re-
constructions (using only acceleration data) and the simu-
lation.
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Figure 85: The residuals of the velocity time histories
shown in the previous figure relative to the digitized data
from Spencer 1999 [269].

151



Velocity Residuals (m/s)

Velocity Residuals (m/s)

50

—H8B— EKF Residuals
B EKF 36 Uncertainty

| | ‘ | ‘
50 100 150 200 250 300

-100
-150 ‘
0
Time (s)
Figure 86: Another look at just the velocity residuals be-
tween the extended Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 87: Another look at just the velocity residuals be-
tween the unscented Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 88: Another look at just the velocity residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

Reconstructed with both Acceleration Data and Altimeter Data

The digitized velocity time history for Mars Pathfinder from Spencer 1999 [269] is
shown in Figure 89 with the reconstructions by the Kalman filters discussed in Chap-
ter 3 (using both acceleration data and altimeter data) overlaid. Both Kalman
filters discussed in Chapter 3 appear to agree well with the digitized data from
Spencer 1999 [269]. The residuals of the velocity time histories shown in Figure 89
relative to the digitized data from Spencer 1999 [269] are shown in Figure 90. Neither
Kalman filter discussed in Chapter 3 contains the residuals within their 3o uncertainty
bounds, and the large divergence of the residuals around 75 seconds is due to peak
deceleration. However, the similarity of the residuals indicates that the unscented
Kalman filter was able to reconstruct Mars Pathfinder’s velocity at least as well as
the extended Kalman filter. The 30 uncertainty bounds for the extended Kalman
filter rapidly converge to almost zero approximately 50 seconds into the trajectory
(perhaps better seen in Figure 91) indicating that the extended Kalman filter tends
to over predict the accuracy of its best estimate more than the unscented Kalman

filter. The 30 uncertainty bounds of the unscented Kalman filter (perhaps better seen
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in Figure 92) converge rapidly to nearly zero when the altimeter acquires the ground.
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Figure 89: The digitized velocity time history for Mars
Pathfinder from Spencer 1999 [269] is shown with the re-
constructions (using both acceleration data and altimeter
data) and the simulation.
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Figure 90: The residuals of the velocity time histories
shown in the previous figure relative to the digitized data
from Spencer 1999 [269].
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Figure 91: Another look at just the velocity residuals be-
tween the extended Kalman filter and the digitized data

from Spencer 1999 [269].
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Figure 92: Another look at just the velocity residuals be-
tween the unscented Kalman filter and the digitized data

from Spencer 1999 [269].
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Figure 93: Another look at just the velocity residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

5.2.7 Flight Path Angle

Reconstructed with only Acceleration Data

The digitized flight path angle time history for Mars Pathfinder from Spencer 1999 [269]
is shown in Figure 94 with the reconstructions by the Kalman filters discussed in
Chapter 3 (using only acceleration data) overlaid. Both Kalman filters discussed
in Chapter 3 appear to agree well with the digitized data from Spencer 1999 [269].
The residuals of the flight path angle time histories shown in Figure 94 relative to
the digitized data from Spencer 1999 [269] are shown in Figure 95. Neither of the
Kalman filters discussed in Chapter 3 contain the residuals within their 3o uncer-
tainty bounds, and the large divergence of the residuals centered around 210 seconds
is due to parachute deployment. However, the better bounding of the residuals by
the unscented Kalman filter (perhaps better seen in Figure 97) indicates that it was
able to reconstruct Mars Pathfinder’s flight path angle somewhat better than the ex-
tended Kalman filter. While the similarity of the 30 uncertainty bounds between the
unscented Kalman filter (perhaps better seen in Figures 97 and 98) indicates that the

unscented Kalman filter agrees well with the collocation simulation. Unfortunately,
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the 30 uncertainty bounds for the extended Kalman filter are nearly zero before
parachute deployment (perhaps better seen in Figure 96) and during parachute de-
ployment, the residuals for the extended Kalman filter are approximately three times
larger than the residuals for the unscented Kalman filter indicating that the extended
Kalman filter’s best estimate of flight path angle is probably worse than the unscented
Kalman filter and that the extended Kalman filter tends to over predict the accuracy

of its best estimate more than the unscented Kalman filter.
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Figure 94: The digitized flight path angle time history
for Mars Pathfinder from Spencer 1999 [269] is shown with
the reconstructions (using only acceleration data) and the
simulation.
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Figure 95: The residuals of the flight path angle time his-
tories shown in the previous figure relative to the digitized
data from Spencer 1999 [269].
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Figure 96: Another look at just the velocity residuals be-
tween the extended Kalman filter and the digitized data

from Spencer 1999 [269].
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Figure 97: Another look at just the velocity residuals be-
tween the unscented Kalman filter and the digitized data
from Spencer 1999 [269].
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Figure 98: Another look at just the velocity residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].
Reconstructed with both Acceleration Data and Altimeter Data

The digitized flight path angle time history for Mars Pathfinder from Spencer 1999 [269]
is shown in Figure 99 with the reconstructions by the Kalman filters discussed in

Chapter 3 (using both acceleration data and altimeter data) overlaid. Both Kalman
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filters discussed in Chapter 3 appear to agree well with the digitized data from
Spencer 1999 [269]. The residuals of the flight path angle time histories shown in
Figure 99 relative to the digitized data from Spencer 1999 [269] are shown in Fig-
ure 100. Neither of the Kalman filters discussed in Chapter 3 contain the residuals
within their 30 uncertainty bounds, and the large divergence of the residuals centered
around 210 seconds is due to parachute deployment. However, the better bounding
of the residuals by the unscented Kalman filter (perhaps better seen in Figure 102)
indicates that it was able to reconstruct Mars Pathfinder’s flight path angle somewhat
better than the extended Kalman filter. While the similarity of the 30 uncertainty
bounds between the unscented Kalman filter and TSUC (perhaps better seen in Fig-
ures 102 and 103) indicates that the unscented Kalman filter agrees well with the
collocation simulation. Unfortunately, the 30 uncertainty bounds for the extended
Kalman filter are nearly zero before parachute deployment (perhaps better seen in
Figure 101) and during parachute deployment, the residuals for the extended Kalman
filter are approximately three times larger than the residuals for the unscented Kalman
filter indicating that the extended Kalman filter’s best estimate of flight path angle
is probably worse than the unscented Kalman filter and that the extended Kalman
filter tends to over predict the accuracy of its best estimate more than the unscented
Kalman filter. When radar ground acquisition by the altimeter occurs, the extended
Kalman filter’s 3o uncertainty bounds are already nearly zero, but ground acquisition

causes the unscented Kalman filter to reduce its 3o uncertainty bounds to nearly zero.
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Figure 99: The digitized flight path angle time history for
Mars Pathfinder from Spencer 1999 [269] is shown with the
reconstructions (using both acceleration data and altimeter
data) and the simulation.
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Figure 100: The residuals of the flight path angle time his-
tories shown in the previous figure relative to the digitized
data from Spencer 1999 [269].
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Figure 101: Another look at just the velocity residuals
between the extended Kalman filter and the digitized data

from Spencer 1999 [269].
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Figure 102: Another look at just the velocity residuals
between the unscented Kalman filter and the digitized data

from Spencer 1999 [269].
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Figure 103: Another look at just the velocity residuals be-
tween TSUC and the digitized data from Spencer 1999 [269].

5.2.8 Landing Site

Reconstructed with only Acceleration Data

The landing site for Mars Pathfinder from Spencer 1999 [269] is shown in Figure 104
with the landing site predictions by the Kalman filters discussed in Chapter 3 (using
only acceleration data). Both Kalman filters discussed in Chapter 3 appear to agree
well with each other from afar. Upon closer examination of the landing site predictions
by the Kalman filters discussed in Chapter 3 as shown in Figure 105, the landing site

predicted by the unscented Kalman filter is slightly closer to the actual landing site.
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Figure 104: The landing site for Mars Pathfinder from
Spencer 1999 [269] is shown with the landing site predictions
by the Kalman filters discussed in Chapter 3 (using only
acceleration data).
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Figure 105: A closer examination of the landing site pre-
dictions by the Kalman filters discussed in Chapter 3.

Reconstructed with both Acceleration Data and Altimeter Data

The addition of the altimeter measurement changes the landing site predictions very

little as shown in Figures 106 and 107.
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Figure 106: The landing site for Mars Pathfinder from
Spencer 1999 [269] is shown with the landing site predictions
by the Kalman filters discussed in Chapter 3 (using both
acceleration data and altimeter data).
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Figure 107: A closer examination of the landing site pre-
dictions by the Kalman filters discussed in Chapter 3 (using
both acceleration data and altimeter data).

5.3 Summary

Both Kalman filters discussed in Chapter 3 were able to reconstruct the trajectory of
Mars Pathfinder nearly equally well. Neither displayed increased residuals in velocity
during peak deceleration, though this may have been due to the quality of the dig-
itization of the data from Spencer and others Mars Pathfinder reconstruction [269].
Concerning flight path angle, the extended Kalman filter exhibited residuals during
parachute deployment (and later) that were approximately three times larger than

those of the unscented Kalman filter. And while the unscented Kalman filter generally
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bounded these increased flight path angle residuals, the extended Kalman filter did
not. Both Kalman filters were in good agreement in their estimates of altitude, and
they were all able to bound their altitude residuals, furthermore, their 30 uncertainty
bounds for altitude were all in good agreement with each other. The addition of
the altimeter measurement had a large effect on the estimates of altitude from each
of the methods on radar ground acquisition occurred, even though it only slightly
affected the estimates of the other state variables. Additionally, their density profiles
were in good agreement (please see Appendix E). Regarding the location of Mars
Pathfinder’s landing site, both Kalman filters agreed with each other when viewed
from afar. Upon closer examination, the landing site predicted by the unscented
Kalman filter was near TSUC’s simulated landing site, while the extended Kalman
filter’s predicted landing site was approximately 0.01° farther from the actual landing
site. These results indicate that TSUC, using the procedure of Table 15 on page 98
to solve for the state variables, is equivalent to explicit integration in performance,

and also serves to further validate the results from the unscented Kalman filter.
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CHAPTER VI

OBSERVATIONS FROM COMPARING THE TWO

KALMAN FILTERS

6.1 Introduction

The following paragraphs discuss the results from the two Kalman filters in terms
of their reconstruction results, as well as other aspects of their performance. These
other aspects include memory space requirements and the computational time of
each method. Additionally, the effects of noise-level and measurement frequency (or

sampling rate) are discussed.

6.2 Reconstructed Trajectory Results

Both Kalman filters discussed in Chapter 3 were able to reconstruct the sample
problem and Mars Pathfinder’s trajectories nearly equally well. While the extended
Kalman filter did demonstrate some difficulties, the unscented Kalman filter had only
slight difficulties. The unscented Kalman filter showed improved entry, descent, and
landing trajectory reconstruction over the extended Kalman filter. For example, the
extended Kalman had some difficulty with reconstructing the altitude, velocity, and
flight path angle time histories after parachute deployment. This is evident from the
residuals of its best estimate trajectory for the sample problem (where the true tra-
jectory is known) as shown in Figure 34 on page 104 (altitude residuals), Figure 36 on
page 105 (velocity residuals), and Figure 38 on page 107 (flight path angle residuals).
In contrast, for the Mars Pathfinder reconstruction, the unscented Kalman filter had
altitude residuals as large as the extended Kalman filter’s (see Figure 75 on page 145),

and while the extended Kalman filter did demonstrate large velocity residuals in its
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reconstruction of Mars Pathfinder’s trajectory (see Figure 86 on page 152), it was not
alone as the unscented Kalman filter had velocity residuals of similar magnitude (see
Figure 85 on page 151).! Though the unscented Kalman filter did have lower flight
path angle residuals during the parachute phase of Mars Pathfinder’s descent as shown
in Figure 95 on page 158. Overall, this indicates that the unscented Kalman filter
offers better trajectory reconstruction performance with acceleration measurements
when the vehicle changes configuration in—flight.? Then again, when the state can be
observed, the unscented Kalman filter does not have significantly better performance
than the extended Kalman filter as shown by the altitude residuals in Figure 80 on
page 148 for the reconstruction of Mars Pathfinder’s altitude when altimeter measure-
ments are included. However, the extended Kalman filter should not be dismissed,
after all: “It has withstood the test of time!” [41]

Regarding the estimation of uncertainties, the unscented Kalman filter clearly per-
formed better than the extended Kalman filter and did not over predict the accuracy
of their best estimates as shown by (1) the propagation of the initial uncertainties for
the sample problem in Figure 42 on page 111, Figure 46 on page 114, and Figure 50
on page 117 when compared to a Monte Carlo simulation and (2) the trajectory re-
construction with poor initial conditions as discussed in § 4.4 beginning on page 118.

These results are consistent with the literature assertion that unscented Kalman
filtering gives improved estimates of the uncertainty over the extended Kalman filter?,
and demonstrates that using TSUC as part of a Monte Carlo simulation allows it to

provide estimates of uncertainty on par with those of an explicit integration of the

I Also, the large velocity residuals that occurred during peak deceleration were almost certainly
due to the quality of the digitization.

2Though, as discussed later, the unscented Kalman filter demonstrated a penalty in terms of
additional computational time for this improved performance. Additionally, improvements in the
model fidelity of the spacecraft configuration changes may allow the extended Kalman filter to achieve
results similar to the unscented Kalman filter. However, the unscented Kalman filter offers the
improved performance without the need to increase model fidelity, and in the case of the unscented
Kalman filter, without the need to add process noise.

3In the context of reconstructing entry, descent, and landing trajectories.
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dynamics. This result indicates that it is equivalent to explicit integration in per-
formance, and also serves to further validate the results from the unscented Kalman
filter. However, as the Monte Carlo for the sample problem in Chapter 4 was only on
the initial conditions, the additional sources of uncertainty listed in Chapter 4 would

also have to be included in Monte Carlos run for real-world missions.

6.3 Memory Usage

Memory usage? is an important consideration if a method is to be used to process
measurement data in real-time while in—flight. In terms of program size on a non—
volatile hard drive, the storage space required by each Kalman filter was approxi-
mately 2,000,000 bytes. In terms of memory usage, the extended Kalman filter is the

most efficient, though the unscented Kalman filter has comparable memory usage.

6.4 Computational Time

Computational speed is also an important consideration if a method is to be used to
process measurement data in real-time while in—flight. According to the literature
[195, 125], the time required for the unscented Kalman filter to compute its best
estimate of the trajectory is similar to the time required for the extended Kalman
filter to generate its best estimate of the trajectory. This was found to be the case for
entry, descent, and landing trajectory reconstruction as the two Kalman filters were
within the same order of magnitude as shown in Table 19. However, the unscented
Kalman filter was approximately five times slower than the extended Kalman filter,
which is similar to what was found for the bearing-only tracking problem [231], and
it is better than the 1 (EKF) to 11.5 (UKF) ratio for angle-based relative navigation

272].

4All the coding for this research was done in Matlab, so the specific numbers discussed apply
only to that coding language.
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Table 19: Relative computational times for the extended
Kalman filter and the unscented Kalman filter when per-
forming an entry, descent, and landing trajectory recon-
struction.

Method Relative Computational Time
EKF 1
UKF 4.59

6.5 Noise Level and Frequency of Acceleration Measure-
ments

For the extended Kalman filter and the unscented Kalman filter, a study on how
the noise level and the frequency of acceleration measurements affected each filter’s
performance was conducted. In this study, the test criterion was whether or not each
Kalman filter could bound the altitude, velocity, and flight path angle residuals be-
tween the true trajectory and its best estimate within its predicted 3o uncertainty
bounds. In other words, to pass the test, each Kalman filter must bound the residuals
approximately 99.7% of the time. Acceleration noise levels from 10 pg to 1,000,000 ug
were tested, and the sampling rate (the frequency at which measurements were taken)
was varied from 27® Hz (one measurement every 256 seconds) to 2° Hz (one measure-
ment every 3% of a second). The same random noise was added to the data processed
by both filters for each trial, and 100 trials were conducted for each combination of
noise level and sampling rate. The results are given below in Figures 108 through 115.

The extended Kalman filter had the least trouble bounding the altitude residuals,
the next least trouble bounding the flight path angle residuals, and the most trouble
bounding the velocity residuals. The residuals for altitude, velocity, and flight path
angle were also harder for the extended Kalman filter to bound as the frequency of
measurements increased. As the frequency of measurements increased, the extended
Kalman filter was only able to bound the residuals if the noise was substantially

reduced. The bounding of the state residuals at low frequencies of measurement by
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the extended Kalman filter may be due to the quality of the process model. However,
if the unbounded points for altitude, velocity, and flight path angle are expressed as a
fraction of the number of measurements, then the extended Kalman filter is unable to
bound the residuals within its predicted 3¢ limits for noise levels equal to or greater
than 10,000 pg for the cases studied (please see Figure 111).

At low frequencies, the extended Kalman filter is just propagating the trajectory
for extended periods, and the process model has enough fidelity to ensure that the
residuals are bounded. It is expected that increasing the process noise would allow the
extended Kalman filter to bound the residuals at higher frequencies of measurement,
as higher process noise implies lower model fidelity and lower process noise implies
higher model fidelity. Based on the results for the extended Kalman filter, it is not
surprising the extended Kalman filter had difficulty bounding the residuals of the
sample trajectory and Mars Pathfinder, as the acceleration noise level for these was
1500 pg [49] and the measurement frequency was 32 Hz [164].

The unscented Kalman filter was able to bound the the altitude, velocity, and flight
path angle residuals 99.7% of the time for all the cases run. The unscented Kalman
filter is, then, a better choice over the extended Kalman filter when uncertainty
information is desired and the residuals must be bounded. However, the best estimate
of the extended Kalman filter is often as good as the best estimate of the unscented

Kalman filter, especially when the state is observable (as in the cases studied here).
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Figure 108: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
extended Kalman filter’s altitude residuals.
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Figure 109: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
extended Kalman filter’s velocity residuals.
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Figure 110: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
extended Kalman filter’s flight path angle residuals.
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Figure 111: A summary of the results of the study on the
effect of noise level and frequency of acceleration measure-
ments for the extended Kalman filter.
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Figure 112: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
unscented Kalman filter’s altitude residuals.
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Figure 113: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
unscented Kalman filter’s velocity residuals.
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Figure 114: The results of the study on the effect of noise
level and frequency of acceleration measurements for the
unscented Kalman filter’s flight path angle residuals.
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Figure 115: A summary of the results of the study on the
effect of noise level and frequency of acceleration measure-
ments for the unscented Kalman filter.
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CHAPTER VII

CONCLUSIONS

7.1 Introduction

In the following text, guidelines are suggested on choosing a method for entry, descent,
and landing trajectory reconstruction, and this chapter ends with a summary of the

research and contributions, as well as suggestions for further research.

7.2 How to Choose a Method for Entry Descent and Land-
ing Trajectory Reconstruction: Suggested Guidelines

Guidelines on how to select a method of entry, descent, and landing trajectory recon-
struction are suggested below in Figure 116. The guidelines include trajectory recon-
struction using collocation (TRUC) based on its expected capabilities. Figure 116

reflects these important considerations in choosing a method:

1. Will you need uncertainty information for the state variables?
The unscented Kalman filter and TRUC will provide better uncertainty infor-
mation than the extended Kalman filter. TRUC, however, may require a long

run—time, so the unscented Kalman filter may be the best choice.

2. Will your measurement have extremes in magnitude or is it pretty steady?
The best estimate of the extended Kalman filter may stray during events such
as peak deceleration and parachute deployment, and the residuals of its best
estimate may be unbounded. Although, the best estimates of the unscented
Kalman filter and TRUC may stray, they have demonstrated better bounding

of the residuals. Once again, however, TRUC may require a long run—time.
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. How frequently are you taking measurements?

Higher frequency measurements tend to be more difficult for the extended
Kalman filter to process unless they have very low noise levels. For TRUC,
more measurements mean a longer run—time, so the unscented Kalman filter

may be the best choice.

. Will you have measurements of the state (that is, are the states observable)?

If you have direct measurements of the state, the extended Kalman filter is
the best choice. It will provide a fast estimate of the state with uncertainties.
The unscented Kalman filter can also provide the estimate of the state with
uncertainties, but it will be slower. And, if the state is observable, there is
little point in using TRUC since the state is most likely well known, and TRUC

cannot take into account the measurement noise.

. Will you need to take into account measurement noise / error?
As stated above, TRUC cannot take into account the measurement noise, so

the extended Kalman filter or the unscented Kalman filter are better choices.

. Is this a real-time application or post—processing?

The quickest real-time response will be with an extended Kalman filter, es-
pecially if the state is observable. If a slightly longer processing time can be
tolerated, though, the unscented Kalman filter would be a better choice, es-
pecially if state is not observable. TRUC should only be used for post—flight

processing of data due to its long computational time.

. Is the signal-to—noise ratio for your measurements greater than approximately
1007

In the study on how the noise level and the frequency of acceleration mea-
surements affected each filter’s performance, the extended Kalman filter per-

formed best when the signal-to—noise ratio for the acceleration measurements
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was greater than approximately 100. This number also takes into account events
in the trajectory such as peak deceleration and parachute deployment in addi-
tion to things such as terminal descent on the parachute where the acceleration
is relatively steady. Also, when the noise is large compared to the magnitude
of the acceleration force being measured, it will be difficult to accurately deter-
mine the atmospheric density with any of the methods. And, once again, TRUC
cannot take into account the measurement noise, so the unscented Kalman filter

is a better choice when noise levels are relatively high.

Start

Will you
need
uncertainty
information
for a state
variable?

Steady

Will your
measurement
have
extremes in
magnitude,
or is it pretty
steady?

More than once every second Yes

Extremes

How frequently
are you taking
measurements?

Is the signal-
to-noise ratio
for your
measurements
greater than
approximately

100?

Will you have
measurements of
the state (that is,
are the states
observable)?

Real-time

Less
than
once
every
second

Is this a real-
time
application
or post-
processing?

Will you need
to take into
account
measurement
noise?

Post-processing

TRUC

Figure 116: How to Choose a Method for Entry Descent
and Landing Trajectory Reconstruction: Suggested Guide-
lines. The flowchart presumes all three trajectory recon-
struction tools: (1) the extended Kalman filter, (2) the un-
scented Kalman filter, and (3) TRUC exist and are available.
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The flowchart in Figure 116 presumes all three trajectory reconstruction tools:
(1) the extended Kalman filter, (2) the unscented Kalman filter, and (3) TRUC
exist and are available to you. If all three trajectory reconstruction tools are not
available to you, then the preferred choice will depend on what you are starting with,
especially if you already have an entry, descent, and landing trajectory design tool.
For example, if you already have a collocation program for designing entry, descent,
and landing trajectories, then TRUC is a straightforward addition that will allow
your collocation program to also reconstruct entry, descent, and landing trajectories.
However, suppose you have something such as the Program to Optimize Simulated
Trajectories (POST) [210], which is not a collocation program. Presumably, you are
using it to design your entry, descent, and landing trajectories. If you are starting
with the Program to Optimize Simulated Trajectories, it is easier to supplement it
with a Kalman filter for trajectory reconstruction (please see reference [277]).

Now, suppose you have nothing.

Starting from scratch, you would like to develop something to design and recon-
struct entry, descent, and landing trajectories. With either collocation or Kalman
filters, you benefit from having better models of things such as the vehicle’s aerody-
namics and the planet’s (or natural satellite’s) atmosphere. If you cannot have the
best models, then the Kalman filters allow you to account for this by adding what is
called “process noise” (please see Chapter 3). Collocation, and by extension TRUC,
does not have something similar.

A key component of a collocation program for designing entry, descent, and land-
ing trajectories is the optimizer, and a key component of a non—collocation program
for designing entry, descent, and landing trajectories (which uses a Kalman filter for
trajectory reconstruction) is the trajectory integrator. With collocation you must
also develop the optimizer or have one already available that you can use. If you have

an optimizer already available to you, then a collocation program for designing and
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reconstructing entry, descent, and landing trajectories will be faster to develop. With
a non—collocation program using either Kalman filter, you must develop a trajectory
integrator or have one already available that you can use. If you have a trajectory
integrator already available to you, then either Kalman filter will be faster to de-
velop. Additionally, developing a trajectory integrator is easier than developing an
optimizer.

Now, the Kalman filters also allow you to account for measurement noise (please
see Chapter 3). Collocation cannot, although this may be an area for future research
(please see § 7.4). The Kalman filters also provide uncertainty information regarding
their estimates of the state with a single run. And, while the unscented Kalman filter
was demonstrated to be slower than the extended Kalman filter in this investigation,
it gives better estimates of uncertainty. TRUC has to run a Monte Carlo simulation
to get the equivalent uncertainty information, which takes more time.

In summary, if you already have a collocation trajectory design program, then
adding TRUC will readily allow you to reconstruct entry, descent, and landing tra-
jectories. If you have a non—collocation program that uses trajectory integration, then
Kalman filters are a better choice. And, finally, if you are starting from scratch, and
you want the most benefit with the shortest development time, then the unscented

Kalman filter is the best choice.

7.3 Summary of Contributions

The contributions of this research, as discussed in detail above, are:

(1) The extended Kalman filter was originally developed for signal processing ap-
plications and only later applied to trajectory reconstruction. Similarly, unscented
Kalman filtering was developed for signal processing applications, and this work rep-
resents its first application to the reconstruction of entry, descent, and landing tra-

jectories.
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(2) The reformulation of the entry, descent, and landing trajectory reconstruction
problem using collocation has been demonstrated by the author. This approach
dubbed “TRUC”, after “trajectory reconstruction using collocation” posits that en-
try, descent, and landing trajectory design tools using collocation may also be used
for entry, descent, and landing trajectory reconstruction. As a first step, the perfor-
mance of entry, descent, and landing trajectory simulation using collocation (TSUC)
has been demonstrated by the author. Additionally, a solution procedure for deter-
mining the state values that satisfy the defect constraints has been developed. This
procedure allows the trajectory to be determined from the controls and parameters

of the simulation in a deterministic way.

(3) Trajectory reconstruction results from the unscented Kalman filter were com-
pared against the trajectory reconstruction done using the extended Kalman filter.
From this, guidance on choosing a method for the reconstruction of future trajectories
was established. This guidance included trajectory reconstruction using collocation

based on its expected capabilities.

7.4 Suggestions for Future Research

First, there are literally tens? of additional methods that may also be used for tra-
jectory reconstruction. Some of them are discussed in § 3.3 on page 69, though they
were not selected for this research. Each may have something to offer. Ultimately,
though, better trajectory reconstruction will come through more frequent, more ac-
curate measurements.

Second, demonstrating trajectory reconstruction using collocation (TRUC) using

IThe review of the literature for this research indicates that collocation has not been used for
entry, descent, and landing trajectory reconstruction, so this solution procedure has not been used
for entry, descent, and landing trajectory reconstruction using collocation.

2Perhaps hundreds, when variations on each method are taken into account, along with the
different settings that may be involved with any single method.
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the solution procedure for the state variables given in Table 15 on page 98 (or one of
the other solution procedures discussed in Chapter 3) is an area of future research.
Such an approach could allow one to utilize the same collocation trajectory design
tools for the subsequent reconstruction.

Third, investigating the possibility of incorporating of measurement noise into
TRUC is an area of future research. The inability of the method, as presently for-
mulated, to incorporate measurement noise is a distinct disadvantage. As such, the
Kalman filters are better choices when measurement noise must be taken into account,
and the unscented Kalman filter is the best choice for higher noise levels.

Fourth, applying TRUC to a six—degree—of—freedom trajectory reconstruction with
gyroscope data is an area of future research. For this case, the angle of attack «a, the
side-slip angle (3, and the bank angle o for the spacecraft could be control variables.

Fifth, it may be possible to reconstruct the atmospheric density profile using
TRUC by making the atmospheric density a control variable, and it may also be
possible to determine atmospheric winds in this manner. In doing this, the aero-
dynamic coefficient uncertainties and the uncertainties of the atmospheric conditions
cannot be separated unless separate measurements are made of either the actual flight
atmospheric conditions or the pressure distribution around the spacecraft in—flight.

Sixth, using the solution procedure in Table 15 on page 98 to calculate values of the
state that satisfy collocation’s defect equations may allow the algebraic constraints
produced from using collocation to be solved while using only the control variables as
the independent variables in general optimal control problems, significantly reducing
the number of independent variables.

Seventh, the bounding of the state residuals at low frequencies of measurement
by the extended Kalman filter may be due to the quality of the process model. At
low frequencies, the extended Kalman filter is just propagating the trajectory for

extended periods. Varying the fidelity of the model and the amount of process noise
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to investigate filter performance is an area of further research.?

Finally, in lieu of one highly accurate method* of determining location, there is a
need to blend data from different instruments in order to obtain the best estimate of
a spacecraft’s position and velocity in three-dimensional space, hence the blending of
additional data types should be considered for future research. Ultimately, trajectory
reconstruction should occur in real-time, so that the information can be used for
pinpoint landing on the terrestrial bodies of the solar system. As such, incorporating
trajectory reconstruction, with data blending, into the guidance of landers is an area

of further research.

3Luckily, measurement accuracy is improving and sampling rates are increasing, which will aid
trajectory reconstruction.

4The global positioning system is one example of a highly accurate method of position determi-
nation. However, financial constraints prevent us from setting up global positioning systems around
all the bodies in the solar system we would like to explore.
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APPENDIX A

EQUATIONS OF MOTION

For the trajectories in this research, a three-degree-of-freedom simulation was used.
The translational motion is described by the state equation given in equation (155),
where the state variables radius r, latitude ¢, and longitude # give the three compo-
nents of position, and the state variables velocity v, flight path angle ~, and azimuth
1 give the three components of velocity. The expressions for the state derivatives are

given in equations (156) through (161)). [60]

7'1
¢
0
% = f(x) = (155)
U
v
7= wvsiny (156)
b= ¥ COS 7Y COS (157)
r
. vcosysiny
= ——— 1
7 COS ¢ (158)
. 1 .
0= —(Ysinf — Dcosf)
m
— gsinvy (159)

+ 27 cos ¢(sin y cos ¢ — cos vy sin ¢ cos )
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where

1
4 =—(Lcoso — Dsin3sino — Y cos Fsino)

muv

+ (2 - Q) cos 7y
roow

+ 2Q cos psin )

2
+ 2 eos ¢(cosy cos ¢ + siny sin ¢ cos )
v

1

) = ———(Lsino + Dsinfcoso + Y cos fcos o)

Mo cos 7y
v COS

sin ¢ tan ¢

— 2Q)(cos ¢ cos 1 tany — sin @)
2

cos ¢ sin ¢ sin Y
v COS Y

(160)

(161)

e ('p is the drag coefficient of the spacecraft. It is a function of the angle of attack

a and Mach number M of the of the spacecraft: Cp = Cp(a, M).

a and Mach number M of the spacecraft: Cp = Cp(a, M).

angle 8 and Mach number M of the spacecraft: Cy = Cy (5, M).

C, is the lift coefficient of the spacecraft. It is a function of the angle of attack

Cy is the side force coefficient of the spacecraft. It is a function of the side-slip

D is the aerodynamic drag force acting on the spacecraft. D = % pv2SCp where

the drag coefficient C'p is a function of the angle of attack o and Mach number

M of the spacecraft: Cp = Cp(a, M).

g is the local acceleration of gravity at the spacecraft’s position.
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the lift coefficient C';, is a function of the angle of attack o and Mach number

M of the spacecraft: Cp = Cp (o, M).
m is the mass of the spacecraft.
M is the Mach number of the spacecraft.

r is the spacecraft’s local radius measured from the center of the planet at which

entry is taking place.

S is the aerodynamic reference area of the spacecraft.
t is time.

v is the spacecraft’s velocity.

Y is the aerodynamic side force acting on the spacecraft. ¥ = % pv2SCy where
the side force coefficient Cy is a function of the side-slip angle § and Mach

number M of the spacecraft: Cy = Cy (3, M).

a is the angle of attack of the spacecraft. For the studies conducted in this
investigation, the angle of attack was set to zero for the duration of the trajec-

tory.

[ is the side-slip angle of the spacecraft. For the studies conducted in this in-

vestigation, the side-slip angle was set to zero for the duration of the trajectory.

v is the spacecraft’s flight path angle, which is positive above the local horizon-

tal.
0 is the spacecraft’s longitude.

p is the local atmospheric density at the spacecraft’s position.
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o is the bank angle of the spacecraft. For the studies conducted in this investi-

gation, the bank angle was set to zero for the duration of the trajectory.

¢ is the spacecraft’s latitude.

1 is the spacecraft’s azimuth, which is positive when measured clockwise from

north.

() is the rotation rate of the planet at which entry is taking place.

and these variables may be categorized into state variables and parameters as shown
in Table 20.

Table 20: Categorization of the variables in the equations
of motion into state variables and parameters.

State Variables Parameters

r CD
¢ CL
0 Cy
v D
Y g
v L
m
S
Y
«
B
P
g
Q
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APPENDIX B

ELEMENTS OF THE JACOBIAN

For trajectories with the translational motion described by the six differential equa-
tions beginning on page 186 (equations (156) through (161)) the following equations

(equations (162) through (197)) give the elements of their Jacobian matrix.

o =0 (162)
g—; =0 (163)
% =0 (164)
% — sin~y (165)
g—: = vcosy (166)
g—; =0 (167)
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PARAMETERS FOR THE EXTENDED KALMAN

APPENDIX C

FILTER

The parameters for the extended Kalman filter are listed below. The state vector and

the equations of motion are given in Appendix A.
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Racceleration =

000 £ 00
Hacceleration =10 0 O % 0 0
000 —25 ¢ 0
Haltimeter = |:1 00 00 O:|
0 00O0O0O
0 00 0O0O
0 00 0O0O
Q:
000 0O0O
00 0O0O0O
0 00O0O0O0
Raltimeter = |i032:|
((1500)(9.80665))? 0 0
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0 0 ((1500)(9.80665))?
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APPENDIX D

PARAMETERS FOR THE UNSCENTED KALMAN

FILTER

The parameters for the unscented Kalman filter are listed below. The state vector

and the equations of motion are given in Appendix A.
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0
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Raltimeter - |})3{| (2 13)

((1500)(9.80665))2 0 0
Raceeleration = 0 ((1500)(9.80665))2 0 (214)
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APPENDIX E

ATMOSPHERIC DENSITY RECONSTRUCTION

F.1 Reconstruction Process

As mentioned in Chapter 2, detailed procedures for obtaining the density profile of
a planetary atmosphere from measurements of accelerations experienced by a vehicle
making a ballistic entry into the atmosphere of a planet are given in [238, 204].
Atmospheric density p is determined from the axial acceleration a4 experienced by
the entry vehicle assuming: the vehicle’s aerodynamic properties (specifically, the
axial coefficient C'4 or the drag coefficient Cp', aerodynamic reference area S, the

speed of the entry vehicle v, and its mass m using equation (216).

1
mas = §pU2CAS (215)
2ma
= — 21
P = 2. (216)

The values of the variables on the right-hand-side of equation (216) are obtained
in different ways. The following paragraphs discuss how these values are obtained.

The spacecraft’s aerodynamic coefficients are obtained from computational fluid
dynamics simulations of the spacecraft and wind tunnel test data. These aerodynamic
coefficients are not perfectly predicted (in the case of computational fluid dynamics
simulations) or measured (in the case of wind tunnel tests), so they have uncertainties
associated with them. Because the procedures for obtaining the atmospheric density

profile given in [238, 204] require the aerodynamic coefficients (specifically, the axial

1C4 = Cp when the angle of attack is zero (o = 0).
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coefficient), the aerodynamic coefficient uncertainties and the uncertainties of the at-
mospheric conditions cannot be separated unless separate measurements are made of
either the actual flight atmospheric conditions or the pressure distribution around the
spacecraft in—flight. However, these aerodynamic properties are the best information
available for the spacecraft. In this analysis, a nominal aerodynamic drag coefficient
of 1.68 is used.

The aerodynamic reference area can be obtained from the computer aided design
models of the spacecraft, or it can be obtained from measuring the actual spacecraft.
Generally, because it is needed long before the spacecraft is completely built, it is
obtained from the computer aided design models of the spacecraft.

The mass of the spacecraft can also be determined from the computer aided design
models, or it can be obtained from weighing the actual spacecraft. Since weighing
the spacecraft is not practical (or a safe process for the spacecraft), the spacecraft’s
mass is obtained from the computer aided design models of the spacecraft. However,
during assembly, each piece of the spacecraft is weighed to obtain an accurate “as—
built” mass of the spacecraft. A complication arises with the mass of the spacecraft
because of ablation of the heatshield during entry. The ablation results in mass loss,
and depending on the planet at which entry is occurring, it can be significant. During
Galileo’s entry at Jupiter, it lost approximately 80 kg [185].

Finally, the velocity of the spacecraft is obtained from the trajectory reconstruc-
tion process. Since the value of everything on the right-hand-side of equation (216)
is known at each measurement time, the atmospheric density at each measurement
time can be calculated from equation (216). The densities can then be plotted against
the reconstructed altitude time history to obtain an atmospheric density profile along

the spacecraft’s trajectory.
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E.2 Sample Problem Atmospheric Density Reconstruction

Since the sample problem discussed in Chapter 4 is simulated data, the true atmo-
spheric density profile is known. The density profile of the Martian atmosphere for

the sample problem discussed in Chapter 4 is shown in Figure 117.
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Figure 117: Sample problem atmospheric density profile.

The density profile of the sample problem is shown in Figure 118. The sample
problem density profile is shown with the Kalman filter reconstructions overlaid,
as well as the collocation simulation. The Kalman filters discussed in Chapter 3
appear to agree well with the simulated sample problem, even though the noise in the
acceleration data at the beginning of the trajectory prevents a better reconstruction
of the density profile at very high altitudes. This is because the noise is close in
magnitude to the accelerations. The residuals of the sample problem density profile
and the reconstructions shown in Figure 118 are shown in Figure 119. The effect of

the noise in the acceleration data at very high altitudes is evident.
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Figure 118: The density profile of the sample problem is
reconstructed using the Kalman filters discussed in Chap-

ter 3. The sample problem density profile is shown with the
reconstructions overlaid.
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Figure 119: The residuals of the sample problem density
profile and the reconstructions shown in the previous figure.

E.3 Mars Pathfinder
E.3.1 Digitized Data

Unfortunately, the true atmospheric density profile experienced by Mars Pathfinder
during its entry cannot be known, so an independent reconstruction of Mars Pathfinder’s
entry trajectory was sought for comparison with this investigation. As with the al-
titude, velocity and flight path angle time histories, the 1999 Mars Pathfinder entry

trajectory reconstruction by David Spencer and others in Reference [269] was selected
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to provide an independent reconstruction of the atmospheric density profile experi-
enced by Mars Pathfinder during its entry. Recall, as discussed in Chapter 2, that the
trajectory reconstruction by David Spencer and others [269] used a combination of
accelerometer and altimeter measurements using sequential filtering and smoothing
techniques [270, 269]. As this is a different process from the methods discussed in
Chapter 3, the results from the Kalman filters discussed in Chapter 3 will differ from
the reconstruction by David Spencer and others [269]. However, the comparison will
speak to the general accuracy of the Kalman filters discussed in Chapter 3, while
the extended Kalman filter reconstruction, as one accepted standard of trajectory
reconstruction?, will speak to the specific capabilities of the unscented Kalman filter
discussed in Chapter 3 for this investigation.

The density plot shown in Figures 120 was digitized using the Engauge Digi-
tizer digitizing software [186]. The resolution of Figure 120 in density is approxi-
mately 0.0079 % with a possible error in the digitized density profile of at least
0.032 decades based on a four pixel curve width. Additionally, the resolution of Fig-
km

ure 120 in altitude is approximately 0.18 =25 with a possible error in the digitized
pixe

altitude of at least 0.71 km based on a four pixel curve width.

2Along with direct integration, as established in Chapter 2.
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Figure 120: Reconstructed Mars Pathfinder atmospheric
density profile from Spencer 1999. [269]

E.3.2 Reconstructed Atmospheric Density Profile

The digitized atmospheric density profile for Mars Pathfinder from Spencer 1999 [269]
is shown in Figure 121 with the atmospheric density reconstructions by the Kalman
filters discussed in Chapter 3, as well as the collocation simulation, overlaid. Both
Kalman filters discussed in Chapter 3 appear to agree well with the digitized data
from Spencer 1999 [269]. The residuals of the atmospheric density profiles shown
in Figure 121 relative to the digitized data from Spencer 1999 [269] are shown in
Figure 122. The similarity of the three sets of residuals indicates that the unscented
Kalman filter was able to reconstruct Mars Pathfinder’s atmospheric density profile

at least as well as the extended Kalman filter.
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APPENDIX F

LITERATURE CONTRIBUTIONS

F.1 Journal Articles

F.1.1 Relevant Journal Articles

1. “Instrumentation for Entry, Descent, and Landing Trajectory Reconstruction
and Atmospheric Studies at Earth, Venus, Mars, and Titan: A Review,” Journal

of Spacecraft and Rockets, (to be submitted).

2. “A Comparison of Entry, Descent, and Landing Trajectory Reconstruction by
Extended and Unscented Kalman Filters,” IEEE Transactions on Aerospace

and Electronic Systems, (to be submitted).

F.1.2 Other Journal Articles

1. Christian, J., Wells, G., Lafleur, J., Verges, A., Braun, R., “Sizing of an En-
try, Descent, and Landing System for Human Mars Exploration,” Journal of

Spacecraft and Rockets, Vol. 45, No. 1, pp. 130-141, January—February 2008.

F.2 Conference Papers

F.2.1 Relevant Conference Papers

1. Wells, G., Dutta, S., Mattson, S., Lisano, M., “Phoenix Location Determi-
nation Using HiRISE Imagery,” IPPW-7-340, International Planetary Probe

Workshop 7, Barcelona, Spain, June 2010.

2. Wells, G., Braun, R., “Trajectory Reconstruction of a Martian Planetary Probe

Mission: Reconstruction of the Spirit Mars Exploration Rover Entry, Descent,
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and Landing Performance,” AA-3-2008-16, 2nd International ARA Days, Ar-

cachon, France, October 2008.
F.2.2 Other Conference Papers

1. Christian, J., Manyapu, K., Wells, G., Lafleur, J., Verges, A., Braun, R., “Siz-
ing of an Entry, Descent, and Landing System for Human Mars Exploration,”
ATAA-2006-7427, AIAA Space 2006 Conference, San Jose, California, Septem-
ber 2006.

2. Alemany, K., Braun, R., Clark, I., Theisinger, J., Wells, G., “Mars Entry, De-
scent, and Landing Parametric Sizing and Design Space Visualization,” ATAA-
20066022, ATAA Astrodynamics Specialist Conference, Keystone, Colorado,

August 2006.

3. Clark, I., Wells, G., Theisinger, J., Braun, R., “An Evaluation of Ballute Entry
Systems for Lunar Return Missions,” AIAA-2006-6276, AIAA Atmospheric

Flight Mechanics Conference, Keystone, Colorado, August 2006.

4. Wells, G., Braun, R., “An Entry Handbook for the Conceptual Design of
Mars Missions,” AA2006-1-34, 1st International ARA Days, Arcachon, France,

July 2006.

5. Wells, G., Lafleur, J., Verges, A. Lewis, C., Christian, J., Manyapu, K., Braun,
R. “Entry Descent and Landing Challenges of Human Mars Exploration,” AAS—
06-072, 29th AAS Guidance and Control Conference, Breckenridge, Colorado,
February 2006.

6. Kipp, D., Dec, J., Wells, G., and Braun, R. “Development of a Planetary Entry
System Synthesis Tool for Conceptual Design and Analysis,” Proceedings of the

3rd International Planetary Probe Workshop, Athens, Greece, June 2005.
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7. Clark, L., Francis, S., Otero, R., Wells, G. “Reusable Exploration Vehicle (REV):
Orbital Space Tourism Concept,” 2005 RASC-AL Design Competition, Coco

Beach, Florida, May 2005.
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