

EFFECTIVE REUSE OF COUPLING TECHNOLOGIES FOR

EARTH SYSTEM MODELS

A Dissertation

Presented to

The Academic Faculty

by

Ralph Dunlap

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

College of Computing

Georgia Institute of Technology

August 2013

Copyright © 2013 by Ralph Dunlap

 EFFECTIVE REUSE OF COUPLING TECHNOLOGIES FOR

EARTH SYSTEM MODELS

Approved by:

Dr. Spencer Rugaber, Co-Advisor

School of Computer Science

Georgia Institute of Technology

 Dr. David Bader

School of Computational Science and

Engineering

Georgia Institute of Technology

Dr. Leo Mark, Co-Advisor

School of Computer Science

Georgia Institute of Technology

 Dr. Venkatramani Balaji

Modeling Systems Group

NOAA/GFDL and Princeton University

Dr. Shamkant Navathe

School of Computer Science

Georgia Institute of Technology

 Date Approved: May 3, 2013

To my wife and best friend Maria

iv

ACKNOWLEDGEMENTS

 This road to a Ph.D. was a long, hard journey. Along the way I learned just as

much about myself as I did about computer science. It humbled me and exposed to me

who I truly am. I guess sometimes we have to go down to the depths before we find the

truth and uncover the treasure we seek.

I am thankful for the loving support of my family, especially my wife Maria who

was my source of strength in the times when I had none. I am also thankful for the

confidence-giving and hopeful words of my Mom who encourgaged me in countless

ways and pushed me to be bold and courageous. My advisors, Leo Mark and Spencer

Rugaber were patient and believed that I could do it even when I did not believe it

myself. Towards the end, at the hardest times, I was supported by an enormous

community of friends and family with literally hundreds of prayers, emails, text

messages, and phone calls. There are far too many to mention them all, but I am forever

grateful to all those who walked alongside me during this journey. Without them, I would

have given up long ago.

―Or one may think of a diver, first reducing himself to nakedness, then

glancing in mid-air, then gone with a splash, vanished, rushing down through

green and warm water into black and cold water, down through increasing

pressure into the death-like region of ooze and slime and old decay; then up

again, back to colour and light, his lungs almost bursting, till suddenly he

breaks surface again, holding in his hand the dripping, precious thing that he

went down to recover. He and it are both coloured now that they have come up

into the light: down below, where it lay colourless in the dark, he lost his

colour, too.‖

C.S. Lewis, Miracles

v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

SUMMARY .. xii

I INTRODUCTION ... 1

The Emergence of Coupled Climate Models .. 1

Problem Description ... 4

Solution Approach .. 8

Thesis .. 11

Contributions... 11

II RELATED WORK .. 14

Coupled Earth System Models.. 14

Requirements for Model Coupling ... 18

Code Reuse ... 26

Coupling Technologies ... 30

Modularity and Invasiveness .. 40

III COUPLING TECHNOLOGIES FEATURE MODEL ... 49

Feature Analysis Process .. 51

Coupling Technologies Analyzed ... 52

Coupling Technologies Feature Diagrams.. 53

Conclusions ... 70

IV CUPID: A DOMAIN SPECIFIC LANGUAGE FOR COUPLED EARTH

SYSTEM MODELS ... 74

COSMO-CLM
2
 Case Study .. 75

Benefits of DSLs ... 82

vi

The Cupid DSL ... 85

Case Study: Coupled Flow Demo ... 92

Evaluation ... 96

Discussion ... 102

Conclusions ... 106

V CC-OPS: COMPONENT-BASED COUPLING OPERATORS 109

CC-Op Interface Specifications .. 118

Metadata Standards for Earth System Models .. 123

Metadata Validation with the Common Information Model (CIM) 125

Implementation ... 141

Discussion ... 150

Conclusions ... 157

VI CONCLUSIONS AND FUTURE DIRECTIONS ... 160

Thesis Revisited .. 160

Feature Modularity.. 162

Variability Management for Earth System Models 163

Round-trip Engineering with Framework Specific Modeling Languages 166

REFERENCES ... 184

vii

LIST OF TABLES

Table 1: Coupling Approaches and Implementations ... 30

Table 3: Analyzed coupling technologies ... 53

Table 4: Features of the generated Coupled Flow implementation left

untouched, modified, and inserted manually .. 100

Table 5: DSL support for ESMF abstract types and API methods 102

Table 6: A mapping of ApCIM elements to ESMF API parameters. Element

names listed in bold are extensions to the existing ApCIM schemata. 134

viii

LIST OF FIGURES

Figure 1: The architecture of a coupled climate model featuring four major

interacting constituents: atmosphere, ocean, land, and sea ice. .. 3

Figure 2: Overview of thesis research contributions including the coupling

technologies feature analysis, Cupid domain-specific language, and

Component-based coupling operators (CC-Ops) .. 12

Figure 3: A coupling architecture in which each model is a separate binary—

i.e., retains its own thread of control. All models execute concurrently with

periodic data exchanges. ... 22

Figure 4: A hierarchical coupling architecture in which each component is

controlled by a component above it in the hierarchy. Data exchanges are

managed by specialized mediator components (shown in dark grey). 24

Figure 5: Coupling spectrum .. 26

Figure 6: A SIDL specification ... 36

Figure 7: An example feature model .. 50

Figure 8: Top level of coupling technologies feature diagram ... 54

Figure 9: Constituent models feature .. 55

Figure 10: Grid feature.. 56

Figure 11: Coupler feature .. 57

Figure 12: Capabilities feature .. 59

Figure 13: Numerics feature ... 60

Figure 14: Environment feature .. 61

Figure 15: Setup feature .. 62

Figure 16: Software architecture feature ... 64

Figure 17: Connectors feature ... 66

Figure 18: Driving feature ... 68

Figure 19: CESM architecture .. 76

Figure 20: The first coupling approach was to adapt COSMO into a first class

component of the CESM architecture such that it would be called by the

existing CPL7 driver ... 78

Figure 21: The second coupling approach was to integrate COSMO with a

standalone version of CLM into a single executable with CLM called as a

subroutine. ... 79

ix

Figure 22: The third coupling approach leveraged asynchronous

communication calls and the OASIS coupler which allowed both COSMO

and CESM to retain control. ... 80

Figure 23: The conceptual architecture of a coupled Earth System Model.

The superstructure layer defines the architecture and flow of control, the

science layer contains computations derived from discrete forms of PDEs,

and the infrastructure layer contains abstract data types, utilities, and other

building blocks. ... 84

Figure 24: The Cupid workflow. The specification is build graphically and

input to the Cupid compiler. The compiler generates an ESMF-based

implementation which is compiled and linked to the ESMF library. 87

Figure 25: Infrastructure classes in the ESMF domain model .. 88

Figure 26: Superstructure classes in the ESMF domain model .. 90

Figure 27: The model-to-text template for generating an ESMF initialization

method. Bold code inside square brackets is part of the template language.

Lines 2-7 are the required ESMF subroutine interface. Lines 12-14 set

properties of any ESMF_ArraySpec objects. Lines 16-22 and 24-26

instantiate ESMF_DistGrid and ESMF_Grid objects, respectively. Lines 28-

35 instantiate ESMF_Field objects. .. 91

Figure 28: Architecture of ESMF Coupled Flow Demo Application 92

Figure 29: Static dependency counts in the ESMF Coupled Flow Demo

application ... 94

Figure 30: XML representation of the FlowSolver component specification 94

Figure 31: Screenshot of Cupid's Eclipse-based visual builder .. 96

Figure 32: The first bar in each pair indicates the number of lines of code

generated by the DSL compiler. The second bar in each pair indicates the

number of lines of code in the final implementation, including code added by

hand. .. 97

Figure 33: The number of lines of codes untouched, inserted, and modified in

the final implementation of the Coupled Flow Demo .. 98

Figure 34: A visualization of the FlowSolverMod.F90 source code with lines

colored to indicate different concerns: superstructure (light grey), science

(medium grey), and infrastructure (dark grey). .. 101

Figure 35: A component-based implementation of the Coupled Flow

application ... 114

Figure 36: Sample ESMF code showing instantiation of ESMF_Grid and

ESMF_Field datatypes. Metadata such as the grid bounds, parallel

decomposition, and field stagger location are provided as API parameters. 117

Figure 37: Sample code showing the ESMF redistribution operation. The call

the ESMF_FieldRedistStore precomputes and caches the communication

x

pattern. Subsequent calls to ESMF_FieldRedist reuse the cached pattern for

efficiency... 117

Figure 38: A component that provides a single interface (Redistribution) and

requires a single interface (CommContext). The Redistribution interface

definition is shown to the right. Methods identify a schema (redist.xsd) for

type checking incoming metadata. Cross-interface constraints are validated

using a separate schema (redist.sch). .. 119

Figure 39: SIDL interface specifications .. 120

Figure 40: An XML representation of metadata required for the ESMF

Redistribution operation.. 123

Figure 41: A self-contained redistribution operator with two interfaces,

source and destination. Data flows into the source interface and out of the

destination interface. Metadata flows into the component at both interfaces

and is used to compute the operation. Single- and cross-interface schemata

constrain the allowed metadata. .. 126

Figure 42: The ApCIM SoftwareComponent and ModelComponent complex

types defined in the software package XML schema. .. 129

Figure 43: The GridSpec complex type. An element of type GridSpec may

contain multiple XML elements of type GridMosaic, each of which may

contain multiple XML elements of type GridTile. ... 131

Figure 44: The GridTile type defines properties of a single tile in a grid

mosaic. .. 132

Figure 45: The Deployment type describes details of how a software

component is deployed to computing resources. .. 133

Figure 46: The ApCIM Deployment XML Schema complex type definition. 135

Figure 47: An XML Schema document showing an abstract Decomposition

type (lines 14-16) with two concrete types, BlockRegularDecomposition

(lines 18-26) and BlockIrregularDecomposition (lines 28-38). The ApCIM

type Deployment is extended to include an element of type Decomposition

(lines 40-49). ... 137

Figure 48: A set of Schematron assertions ensure that all required metadata

elements are present at an interface and ensure internal consistency of the

metadata. For example, the assertion on lines 27-37 verifies consistency

between the number of processors specified for the model component and the

specification of the processor ranks. ... 139

Figure 49: A composite XML document is constructed by the ESMF

Redistribution CC-Op in order to check cross-interface constraints. 140

Figure 50: A Schematron schema enforces cross-interface constraints. 141

xi

Figure 51: Two implementations of the redistribution coupling operator.

Because they share a common interface, one implementation may be

substituted for another... 142

Figure 52: SIDL class definition of the ESMF Redistribution operator. 143

Figure 53: Control flow through Babel's intermediate object representation.

Image recreated from [61]. ... 143

Figure 54: Fortran language method implementation template generated by

the Babel compiler .. 144

Figure 55: High level outline of redistSend method implementation 145

Figure 56: Mean execution time (per process) for a single invocation of the

redistSend method for a 1024x1024 Cartesian grid. Timings for MCT and

ESMF-based components are shown. Data labels are shown for the MCT-

based component ... 147

Figure 57: Total execution time compared to total time spent inside stubs and

skeletons for a test program invoking 101 redistributions of a 1024x1024

Cartesian grid. Overhead is less than .015% in all cases. The inverse scaling

is due to the high initialization cost versus the relatively small number of

redistributions performed. ... 147

Figure 58: Component overhead for the MCT-based redistribution CC-Op 148

Figure 59: Execution time for a redistribution operation of a 1024x1024

Cartesian grid for 2, 4, 8, 16, and 32 sending processes using an ESMF-based

CC-Op. The first column for each pair shows the execution time for the first

invocation of the component. The second column in each pair shows

execution time for the next 100 invocations of the same operator. 149

Figure 60: Cache effect for MCT-based redistribution CC-Op. 150

xii

SUMMARY

 Designing and implementing coupled Earth System Models (ESMs) is a challenge

for climate scientists and software engineers alike. Coupled models incorporate two or

more independent numerical models into a single application, allowing for the simulation

of complex feedback effects. As ESMs increase in sophistication, incorporating higher

fidelity models of geophysical processes, developers are faced with the issue of managing

increasing software complexity.

Recently, reusable coupling software has emerged to aid developers in building

coupled models. Effective reuse of coupling infrastructure means increasing the number

of coupling functions reused, minimizing code duplication, reducing the development

time required to couple models, and enabling flexible composition of coupling

infrastructure with existing constituent model implementations. Despite the widespread

availability of software packages that provide coupling infrastructure, effective reuse of

coupling technologies remains an elusive goal: coupling models is effort-intensive, often

requiring weeks or months of developer time to work through implementation details,

even when starting from a set of existing software components. Coupling technologies

are never used in isolation: they must be integrated with multiple existing constituent

models to provide their primary services, such as model-to-model data communication

and transformation. Unfortunately, the high level of interdependence between coupling

concerns and scientific concerns has resulted in high interdependence between the

infrastructure code and the scientific code within a model‘s implementation. These

dependencies are a source of complexity which tends to reduce reusability of coupling

infrastructure.

 This dissertation presents mechanisms for increasing modeler productivity based

on improving reuse of coupling infrastructure and raising the level of abstraction at which

modelers work. This dissertation argues that effective reuse of coupling technologies can

xiii

be achieved by decomposing existing coupling technologies into a salient set of

implementation-independent features required for coupling high-performance models,

increasing abstraction levels at which model developers work, and facilitating integration

of coupling infrastructure with constituent models via component-based modularization

of coupling features. The contributions of this research include:

(1) a comprehensive feature model that identifies the multi-dimensional design space

of coupling technologies used in high-performance Earth System Models,

(2) Cupid, a domain-specific language and compiler for specifying coupling

configurations declaratively and generating their implementations automatically,

and

(3) Component-based Coupling Operators (CC-Ops), a modular approach to code

reuse of coupling infrastructure based on component technologies for high-

performance scientific settings.

The Cupid domain-specific language is evaluated by specifying a coupling

configuration for an example fluid dynamics model and measuring the amount of code

generated by the Cupid compiler compared to a hand-coded version. The CC-Op

approach is evaluated by implementing several CC-Ops using an existing high-

performance component framework and measuring performance in terms of scalability

and overhead.

1

CHAPTER I

INTRODUCTION

The Emergence of Coupled Climate Models

 Modern coupled general circulation models (GCMs) have their roots in early

numerical weather prediction models. Lewis Richardson proposed the idea that future

weather could be predicted by solving the basic equations of atmospheric motions with

numerical approximations using the current weather as initial conditions [1]. In the late

1940s, John von Neumann and Jule Charney performed the first successful numerical

weather forecast using newly available electronic computers—a vast improvement over

the mechanical calculators used by Richardson [2]. Throughout the 1950s and 1960s,

atmospheric models continued to improve with the increase of horizontal and vertical

resolutions and the introduction of physical processes such as radiation [3-5].

 Meanwhile, modeling of the large-scale ocean circulation began as an

independent effort with the first global ocean general circulation model appearing in the

late 1960s [6]. Although independent ocean and atmospheric models produced useful

results for short runs, it was recognized that long term simulations would require realistic

modeling of the feedbacks between these two components of the climate system [7]. The

first coupled atmosphere-ocean general circulation models were constructed by Manabe

[8] and Bryan [9].

 Over the past sixty years, the predictive capability of coupled general circulation

models has improved considerably. The latest assessment report of the Intergovernmental

Panel on Climate Change (IPCC) outlines a number of reasons for improvements in

coupled atmosphere-ocean model predictions including enhanced scrutiny of GCMs

through international model inter-comparison projects, more comprehensive and diverse

2

testing strategies, increased model resolution, improved parameterizations, and the

ongoing inclusion of new geophysical processes [10].

 Easterbrook has identified the building of coupled Earth System Models
1
 (ESMs)

for understanding climate change as a software grand challenge [11]. ESMs,

incorporating deep knowledge from a number of scientific and technical disciplines, are

built by large software teams including both scientists and software engineers and have

evolved over decades. The resulting software is highly complex, and complexity

continues to grow as the models increase in fidelity with respect to the geophysical

processes they model. As complexity has increased, issues related to coupling model

components have come to the forefront. Randall describes the steady increase in

complexity of atmospheric general circulation models (AGCMs): ―Coupling complexity

arises because AGCMs are including ever more coupled processes, and are linked to an

increasingly wide variety of similarly elaborate models representing other components of

the Earth system‖ [12]. It has become clear that the quality and sustainability of

tomorrow‘s ESMs are intimately linked to our ability to effectively couple independent

models into a single system.

 The importance of the interactions among the components in the climate system

and the large influence of the various feedback effects imply that coupling is critical for

successful long-term simulations of Earth‘s climate. Model coupling is essential to many

other areas of science and engineering as well—advances in computational power have

enabled simulation of complex physical systems composed of multiple interacting

components. Two general classifications of coupled simulations are multi-physics

models, which simulate interactions among different kinds of physical phenomena, and

1
 Whereas General Circulation Models (GCMs) primarily model the dynamics and physical processes of

the atmosphere and oceans, Earth System Models (ESMs) include additional systems such as terrestrial

processes, ice dynamics, and the biosphere.

3

multi-scale models, which include two or more models of different spatiotemporal scales.

Examples of both multi-physics and multi-scale models are found in the geosciences

community: ESMs comprise multiple physical processes and some models allow

coupling across scales, such as NCAR‘s Nested Regional Climate Model
2
, which features

a global-scale climate model with an embedded regional model.

Figure 1 shows the architecture of a climate model with four interacting

constituents, an atmosphere model, ocean model, land model, and sea ice model. The

arrows indicate data flow among the constituent models. Historically, each of the

constituents have been developed independently and then composed together to form a

coupled system.

Atmosphere
Model

Land
Model

Sea Ice
Model

Ocean Model

Figure 1: The architecture of a coupled climate model featuring four major interacting constituents:

atmosphere, ocean, land, and sea ice.

 At the most fundamental level, model coupling involves aspects of data

communication and synchronization. Each constituent model participating in a coupled

system makes its calculations for discrete moments in modeled time. Periodically, data is

exchanged between models when a destination model requires information from a source

2
 http://www.nrcm.ucar.edu/

http://www.nrcm.ucar.edu/

4

model in its own calculations. A coupled model is a set of two or more constituent

models together with the software infrastructure required to manage communication and

coordinate among the constituents. The very earliest coupled climate simulations featured

custom coupling code designed for a specific set of constituent models [8, 9]. During the

past decade, reusable coupling software has been made available to ESM developers to

reduce the burden of composing models. These software packages provide coupling

infrastructure—i.e., software that aids in coordination of and communication among the

constituents participating in a coupled model.

 The current generation of reusable coupling infrastructure software such as the

Earth System Modeling Framework [13], OASIS coupler [14-16], and Model Coupling

Toolkit [17, 18], aims to reduce the implementation burden by providing generic

implementations of functions commonly required when coupling numerical models. As

detailed in the Related Work chapter, these coupling technologies employ different forms

of code reuse, including traditional software libraries, component-based technologies,

high performance frameworks, and generative reuse.

Problem Description

 The goals of software reuse are to reduce duplication of effort, increase

productivity, and improve software quality [19]. Effective reuse of coupling

infrastructure means increasing the number of coupling functions reused, reducing code

duplication, reducing the development time required to couple models, and enabling

flexible composition of coupling infrastructure with existing constituent model

implementations. Despite the availability of myriad software packages that provide

coupling functions, effective reuse of coupling technologies remains an elusive goal:

coupling models is effort-intensive, often requiring weeks or months of developer time to

work through implementation details, even when starting from a set of existing software

components. The very nature of coupling technologies implies that they are never used in

5

isolation. Instead, they must be integrated with multiple existing constituent models to

provide their primary services, such as model-to-model data communication and

transformation. For example, a coupling technology that requires information about a

model‘s grid structure and domain decomposition may receive this information via public

Application Programming Interface (API) methods that clients call. Use of a given

coupling technology often also requires integration with other infrastructure pieces that

offer supporting or complementary functionality, such as interpolation weight generation

or parallel I/O. These infrastructure pieces may be embedded in existing software

components, such as a legacy atmosphere or ocean model, or may be provided by other

coupling technologies or infrastructure components in the form of subroutine libraries or

application frameworks.

Although developing a coupled model requires careful integration of many

functions, there is no reference architecture for an ESM that assigns responsibility of

functions to components and defines how those components interact. The result is a

mismatch of assumptions: Which component will provide the domain decomposition?

Who is responsible for defining the grid structure? Is the coupling technology also

responsible for file I/O? Does the control loop reside in a driver or does each constituent

maintain a separate thread of control? Lack of clarity on these high-level questions can

result in architectural mismatch [20] and it unfortunately remains to be a significant

problem in the ESM domain. Concretely, architectural mismatch leads to several

problems when coupling models:

(1) Duplicated infrastructure. Multiple models each contain their own

infrastructure which, at least conceptually, provides the same or similar

functionality. This results in excessive code and technical incompatibilities

because the duplicated pieces were not designed to work together.

(2) Different modular structures. One solution to reducing duplicated

infrastructure is to replace the duplicated parts in one model with

6

infrastructure from another model. However, due to incompatible modular

structures, it is difficult to isolate only the part of one model‘s infrastructure

that corresponds to a module from another model.

(3) Conflicting control paradigms. Some models retain their own thread of

control and some expect to be controlled by another component. Coupling two

models with conflicting control paradigms requires either converting a self-

controlled model to a called model or adding synchronization code that

enables the two models to execute concurrently with separate control threads.

(4) Complex build process. Duplicate infrastructure and mismatched assumptions

lead to dependency management issues. Two models may depend on libraries

that are mutually incompatible. If they are to be coupled, then the

incompatibility must be resolved, perhaps by making manual code

modifications to remove the conflicting dependency from one of the models.

This state of affairs is not necessarily due to a lack of commitment to architectural

design; other factors that stem from the way ESMs and their constituent models have

evolved impact architectural choices. In many cases, a constituent model that is part of

an ESM evolved from a model designed for standalone (non-coupled) execution. The

assumption when it was originally developed, then, is that the standalone model should

provide its own infrastructure. The constituent‘s infrastructure may be designed into the

model or may be imported from external libraries. Later, when brought into a coupled

configuration, it can be difficult to integrate the constituent either because it has a

customized, embedded infrastructure, or because its external dependencies are not

compatible with the target coupled model.

7

Additionally, it is hard to predict how a model will be used in the future. Talks at

the recent Workshop on Coupling Technologies for Earth System Modeling
3
 identified

several cases in which existing models were coupled together. These include the

integration of the NEMO ocean model into the CESM climate model, coupling the WRF

atmosphere to the NEMO ocean, and coupling the COSMO-CLM regional atmospheric

model to the CESM CLM land model. Even a model with a carefully designed

architecture cannot foresee all possible uses—architectural mismatch may still arise when

the model is used in new contexts.

Integration of models into a coupled system is further complicated by poor

abstraction—developers must manage a large number of low-level implementation

details in order to harmonize data and control structures among two or more models.

Moreover, in almost all cases it is assumed that coupling models is a programming task.

Reasoning about model composition happens at the level of the source code and manual

source code changes are presumed, even when coupling existing models. This way of

operating introduces the burden of understanding existing model source code, a time

consuming task even if the number of required code changes ends up being small. The

process of understanding an existing model implementation may include code inspection,

studying model documentation, executing the model, and talking with others who are

familiar with the model. The coupled model developer pays special attention to those

aspects that are important to coupling, including, at least, control flow, data flow, data

structures and associated metadata, parallel data decomposition, concurrency, and time

management.

The alternative is to reason about higher-level abstractions that can be understood

in terms of the domain itself and can be assembled together with little or no programming

3
 https://wiki.cc.gatech.edu/CW2013

8

required. To be sure, some higher-level abstractions have been formulated, such as

Larson‘s theoretical framework for describing coupled systems [21, 22] and graphical

schema for depicting coupling workflows as a series of communication and

transformation operations [23]. But, despite the fact that the set of communication and

transformation operations required for high performance model coupling are well-

understood, deriving an implementation automatically from high-level coupling

descriptions is still beyond the state of the art. The thesis research presented here brings

modern principles of software engineering to bear on the problem, with the goal of

enhancing modeler productivity by raising the level of abstraction and improving the way

coupling infrastructure is composed with constituent models.

Solution Approach

 To address problems associated with ineffective reuse of coupling infrastructure,

we first perform a domain analysis on a set of existing coupling technologies in order to

identify domain-level abstractions required for coupling models that are independent of

any particular implementation. The domain analysis method we chose is feature analysis

[24], which is based on decomposing a domain concept into a set of features. Features are

increments in functionality that can be configured independently. Feature analysis results

in a feature model, a tree of features in which sub-features further refine parent features.

The top level domain concept in the feature model is ―Coupling Technology‖ and some

example features include types of grids (domain discretizations), options for grid

interpolation, communication operations such as repartitioning (redistribution) of

distributed data structures, and control paradigms for advancing constituent models in

time. While these features are present in all ESMs, their implementations and

modularizations differ widely, leading to issues of heterogeneity and architectural

mismatch when attempting to couple constituents. Feature analysis helps to reduce the

9

complexity of the domain, isolates the essential abstractions, and identifies candidates for

separate modularization.

Feature implementations are the elements of software reuse. In this dissertation,

two methods are considered for feature implementation: a language-based approach in

which features are represented as constructs in a domain-specific language (DSL), and a

component-based approach in which features are implemented as separate components in

a high-performance component framework.

The DSL approach to feature implementation is top-down: a coupling

configuration is specified as an instance of the DSL and its implementation is generated

automatically. This approach directly addresses the issue of low abstraction by hiding

implementation details from the developer. Our results indicate that the DSL is viable for

specifying parts of coupling infrastructure. We also identified some limitations to our

DSL due primarily to the abstraction gap between the encoded science in a constituent

model and DSL instances. The DSL is called Cupid and its compiler is implemented as

an application generator [25] that translates DSL instances into source code with calls to

the Earth System Modeling Framework (ESMF). The DSL approach offers concise

specification and reduced error proneness but less flexibility when compared to

approaches based on general purpose programming languages.

The component-based approach to feature implementation is bottom-up: each

component implements a feature and components can be composed to build a coupled

model from a set of fine-grained parts. The component-based approach addresses the

issue of architectural mismatch through improved modularity and explicit separation of

interface and implementation. Because components are black boxes with explicit

interfaces, it is easier to isolate and substitute parts of a coupled model‘s infrastructure.

Our component-based feature implementations are called Component-based Coupling

Operators (CC-Ops). CC-Ops are in line with previous research which recommends

building large reusable systems from a set of orthogonal subcomponents which facilitate

10

substitution [20]. Example CC-Ops include a Redistributor (for repartitioning of

distributed data between models), a Regridder (for grid-to-grid interpolation), and an

Accumulator (for managing time integrated data). Each of these is an independent

infrastructure piece, instead of a function embedded in a coupling technology. An

important part of CC-Op interfaces is their separation of data and metadata. Data

interfaces are typed using primitive types such as floats, doubles, and arrays, while

associated metadata is represented declaratively and validated by an attached metadata

schema. Compared with existing framework-based coupling technologies, CC-Ops are

more modular and enable ad hoc mixing of coupling operators instead of the all-or-

nothing adoption style typical of software frameworks.

 The expected benefits of improving modularity between constituent models and

coupling infrastructure include:

 Intentionality, program understanding, and improved verification. ESM software

is complex. Randall contends that there is probably no single individual who

understands an entire climate model codebase [12]. Moreover, code complexity

can be a significant barrier to verification and validation of ESMs. Parnas states

that one of the expected benefits of modularity is comprehensibility: ―it should be

possible to study the system one module at a time‖ [26]. Moreover, previous

research has shown that a key to program understanding is first ―unraveling the

interrelationships of program components‖ [27]. David et al. suggest that

scientific models should retain a high degree of semantic density—i.e., the

scientific coding should be concise and should not require an extensive amount of

interleaved coupling infrastructure code obscuring the scientific content [28].

 Interoperability and reuse. Kalnay et al. point out the difficulties involved in

integrating ―codes which are not modular and have incompatible structures‖ [29].

Reuse of existing model code is increasingly important in order to study the

effects of coupling existing models that were not originally designed to be

11

coupled. The emergence of component-based coupling technologies and their

increasing levels of adoption point to the community‘s desire to move toward

more modular designs. Interoperability plays an important role in facilitating the

implementation of ensembles—that is, a series of similar runs in which different

versions of a constituent model are used for sensitivity analysis experiments.

 Maintainability and evolution. Parnas introduced information hiding as an

effective criterion for deciding how to modularize programs [26]. In this way, one

module would not know and not depend on implementation details of another,

implying that the modules could be changed independently. Baldwin and Clark

observe that ―it is the nature of modular designs to tolerate the new and

unexpected as long as the novelty is contained within the confines of a hidden

module‖ [30]. Modularity between models and coupling infrastructure allow each

to retain an independent path of evolution. This is important as each evolves on a

different timescale: the legacy iceberg of scientific code evolves slowly relative to

the rapid evolution of coupling infrastructures to take advantage of the latest

hardware and software advances.

Thesis

 The thesis of this dissertation is that a feature-oriented view of coupling

infrastructure enables effective reuse of coupling technologies by:

1. decomposing coupling technologies into a salient set of implementation-

independent features required for coupling high-performance models,

2. increasing the level of abstraction at which model developers work by

encoding features in a domain-specific language, and

3. facilitating integration of coupling infrastructure with constituent models via

component-based modularization of features.

Contributions

12

In summary, the research contributions presented in this dissertation are mapped

out in Figure 2. First, a feature-oriented view of coupling infrastructure is presented in the

form of a feature model derived from a domain analysis of popular reusable coupling

technologies. The feature-oriented approach elicits a rich, domain-specific vocabulary for

describing the structures and behaviors of coupling infrastructure. The feature model is

presented in chapter III.

Coupling Technologies
Feature Model

Generative Reuse Component-based Reuse

Cupid
Domain-Specific Language

Component-based Coupling
Operators (CC-Ops)

 domain analysis over six
existing coupling
technologies

forms of reuse

implementimplement

 self-contained coupling operators
 fine-grained reuse
 minimal API via external metadata
 small component overhead

 language-based architectural
specification

 framework-specific (ESMF)
 automatic code generation

Figure 2: Overview of thesis research contributions including the coupling technologies feature analysis,

Cupid domain-specific language, and Component-based coupling operators (CC-Ops)

 Secondly, in chapter IV, we present the Cupid DSL and compiler and evaluate the

effectiveness of this approach for improving modeler productivity by raising the level of

abstraction at which coupling infrastructure is specified and generating implementations

automatically.

13

 Thirdly, in chapter V, we present CC-Ops, self-contained components that enable

fine-grained reuse of coupling infrastructure such as data redistribution and grid

interpolation. We show how emerging metadata standards for describing climate models

and their output can be adapted to serve as CC-Op interface schemata, thereby taking a

step toward interface standardization of coupling operators. Regarding performance, we

show that CC-Ops‘ minimal overhead ensures they are suitable for high-performance

modeling applications and that CC-Ops do not adversely affect the scalability of the

underlying coupling operator when compared to existing coupling technologies.

 Finally, in chapter VI, we summarize our conclusions and describe directions for

future research.

14

CHAPTER II

RELATED WORK

 This chapter contains background information related both to coupled modeling

and software engineering. The first section entitled Coupled Earth System Models

contains a brief treatment of the climate system and its simulation, motivates the need for

coupled models, and covers basic terminology related to coupling. The next section,

Requirements for Model Coupling, describes the fundamentals of model coupling in an

abstract manner, including software requirements for implementing couplings in a high

performance setting, and outlines the architecture of typical ESMs. The Code Reuse

section diverges into a general discussion on forms of code reuse from the software

engineering literature as background for the Reusable Coupling Technologies section,

which describes the current approaches to high performance ESM coupling and

representative implementations. The final section on Modularity and Invasiveness

presents an overview of the literature on code modularity and its benefits and drawbacks

for the ESM domain.

Coupled Earth System Models

 While we are primarily interested in the software used to implement ESMs, it will

be helpful to first outline an elementary understanding of the climate system and how

mathematical simulations of Earth‘s climate are formulated.

 Whereas weather is concerned with the detailed, continuous fluctuations of

atmospheric conditions at a particular location in time and space, climate can be

considered the ―averaged weather‖ in which short-term fluctuations of the atmosphere are

ignored [31]. That being said, it is important to note that the same variables relevant to

weather prediction, such as precipitation, temperature, wind, humidity, and cloudiness,

15

are also relevant to climate studies. Furthermore, the set of thermo-hydrodynamical

conservation laws that serve as the foundation of weather prediction models are also the

basis of climate models. However, in the case of climate, instead of instantaneous

predictions, we are primarily interested in long-term statistics that describe the kind and

amount of variability expected on regional and global scales over time periods of months,

years, decades, or longer.

 The behavior of the climate as a whole is dictated by interactions among the

major internal systems as well as external factors. The atmosphere, a thin layer of a

gaseous mixture distributed over the earth‘s surface, is considered the central component

of the climate system due to its rapid response rate and the amount of variability observed

even over short time scales. The hydrosphere consists of all liquid water present in the

system, including the oceans, seas, lakes, rivers, and underground water. The oceans,

which cover two-thirds of the earth‘s surface, have enormous potential for energy

storage, respond to external forcings much more slowly than the atmosphere, and act as

temperature regulators. The cryosphere is made up of all snow and ice on the earth‘s

surface and is subject to both seasonal and longer-term variability. The high reflectivity

and low thermal conductivity of the cryosphere means it tends to reflect solar radiation

and insulate underlying land and water from losing heat. The lithosphere includes the

land surfaces, which affect atmospheric circulations, and the ocean floor and has the

longest response time of all the subsystems. The biosphere, including terrestrial and

marine flora and fauna, influences the reflectivity of the surface, the amount of friction

between the atmosphere and surface, and the chemical makeup of the atmosphere via

processes such as respiration, photosynthesis, and pollution.

 The subsystems mentioned above are intimately linked by complex physical

processes. Energy, momentum, and matter are continuously exchanged across subsystem

boundaries resulting in complex feedbacks. Therefore, an accurate understanding of

earth‘s climate requires both knowledge of the independent, heterogeneous subsystems

16

and of the positive and negative feedbacks caused by subsystem interactions and external

factors.

 Although a full treatment of the interconnections among the climatic subsystems

is out of scope, an outline of some basic interactions is appropriate to motivate the need

for building coupled models. For more information about subsystem interactions, the

reader is referred to climate physics textbooks such as [31-33]. At the atmosphere-surface

boundary, wind forcings have significant impact on upper ocean circulations (which in

turn affect deeper ocean circulations) as well as ice motions. Energy transfer at the

surface is dependent on the air temperature and amount of moisture in the atmosphere.

This in turn affects whether quantities of surface ice remain the same, increase, or

decrease. Evaporation from the ocean is the primary source of moisture in the

atmosphere, and the thermal inertia of the ocean decreases the temperature extremes of

the atmosphere above it when compared to temperature distributions above land and ice.

The temperature distribution at the ocean‘s surface and its salinity are the primary

determinants of where ice will form. Ocean currents are also responsible for melting ice

and moving it. The ocean also acts as a reservoir for carbon dioxide (CO2), thereby

reducing the amount of CO2 in the atmosphere. Sea ice affects atmosphere and ocean

temperature profiles due to its high reflectivity (albedo), which reduces the amount of

solar radiation absorbed, and its insulating effect, which reduces transfer of heat, matter,

and momentum between the ocean and the atmosphere.

In addition to these internal interactions, external forcings affect the global climate

system including solar radiation, gravity and anthropogenic forcings. Solar radiation

supplies nearly all the energy consumed by the climate system. Anthropogenic forcings

are inputs to the climate system due to human activities, especially greenhouse gas

emissions from fossil fuel consumption. Decades of independent research efforts have

concluded that human-induced climate change is unequivocal [34] providing impetus to

17

understand the full of effects of anthropogenic climate change on global, regional, and

local scales.

 Mathematical models of the climate system range in complexity from simple

zero-dimensional energy balance models to three-dimensional time-dependent general

circulation models. A simple energy balance model considers only a single variable, the

global mean temperature, which is determined by balancing absorbed solar radiation with

emitted terrestrial radiation [31]. While simple models are useful for studying the effects

of physical processes in isolation, we are primarily interested in the more complex

dynamical models that explicitly simulate the long-term evolution of global circulation

patterns and provide a comprehensive, time-dependent mathematical description of the

state of the atmosphere, oceans, and other domains of the earth system. That being said,

when compared to weather prediction models, the value of climate models is not in

accurately predicting detailed day-to-day fluctuations, but in their ability to predict long-

term statistical properties of future climates [35].

 The scientific basis of climate models rests in fundamental physical laws

expressed by various equations, such as those governing conservation of mass,

momentum, and energy. The set of equations describes the interrelationships of various

quantities (e.g., temperature, density, velocity, etc.) and are highly nonlinear. Although

they do not have a closed-form solution, the set of equations along with initial and

boundary conditions form a well-posed mathematical problem [31]. That being said, a

number of issues make mathematical modeling of the climate difficult: some physical

processes and feedback mechanisms affecting the climate are still poorly understood, the

mathematical equations are highly complex, and boundary conditions are often inaccurate

or incomplete [31]. Nonetheless, significant progress has been made by choosing a subset

of the processes to model explicitly while using simplifying assumptions to parameterize

the others.

18

 Analytical solutions do not exist for a climate model‘s set of partial differential

equations requiring the use of discrete approximations of the continuous equations. A

range of numerical techniques are used in modern climate models. For example, to

compare these approximations, coupled models that participated in the IPCC Fourth

Assessment Report (AR4) include atmospheric components that employ spectral, semi-

Lagrangian, and Eulerian finite-volume and finite-difference numerical methods [36].

Model resolutions have continued to increase in step with increases in computing power.

AR4 atmospheric model resolutions range horizontally from ~1.1° x 1.1° to ~4° x 5° and

vertically from twelve to fifty-six levels. The range of different discretization methods in

use has prompted efforts to develop a standardized description of ESM grids in order to

facilitate inter-comparison of datasets produced by different models [37].

Requirements for Model Coupling

 Larson defines a coupled model abstractly as consisting of N constituent models

that collectively model a complex system through their evolution and mutual interaction

[21]. The term model or numerical model may be used to refer to either a constituent—

one member of a coupled model—or to a coupled model itself. Each constituent model

solves its equations of evolution on its domain—the spatio-temporal area modeled—to

calculate its state—the current values of the set of modeled physical quantities. As a

model evolves forward in time, its state is updated based on its current state plus a set of

input variables defined on the model‘s boundary domain—a subset of the model‘s

domain that overlaps with another model‘s domain. The overlap domain among two or

more models may be a lower-dimensional shared boundary (e.g., two three-dimensional

domains share a two-dimensional boundary) or may partially or fully overlap. Output

variables are computed from a model‘s state and are also defined on a model‘s boundary

domain. Field is a generalized term that refers to an element of a model‘s state, input

variables, or output variables. Couplings are transformations from one constituent‘s input

19

variables to another constituent‘s output variables and are defined on the overlap domain

between the two constituents.

 Larson distinguishes explicit coupling, which allows independent state

computation by each constituent and exchange of data as boundary conditions or

interfacial fluxes, from implicit coupling, which requires repeated, shared state-to-state

computation to arrive at a self-consistent solution. Constituent models evolve forward in

time by solving their respective equations for each timestep and participating in coupling

events—transformations of one model‘s output variables to another model‘s input

variables—when input variables require updating. Coupling events may be scheduled or

triggered by a threshold. Furthermore, the form of the delivered data may be

instantaneous—a model‘s output variable is calculated at or near the model time at the

moment of the coupling event—or integrated, in which the output variable is averaged or

accumulated over a period of modeled time. A constituent‘s domain is discretized into a

finite set of elements called the numerical grid (or simply grid). During coupling

transformations, output variables require grid interpolation (also called regridding or

mesh transformation) when domain discretization schemes differ among two or more

constituents.

 A coupler is the software abstraction that mediates the composition of constituent

models into a single simulation. The responsibilities of couplers include:

 Parallel data transfer. Couplers communicate output variables from one or more

constituents to input variables of one or more constituents. When two constituents

exhibit data parallelism, the coupler must utilize a distributed transfer protocol

called redistribution, repartitioning or MxN data transfer [17] to communicate

data between distributed data structures.

 Regridding and field transformations. If constituents do not share a discretization

scheme (numerical grid), the coupler is required to interpolate field data so that

the target model receives data in its native numerical representation. The coupler

20

either manages each model‘s distributed grid data structure itself, or has

knowledge of each constituent‘s numerical grid (e.g., coordinates for each grid

point) via configuration metadata or by querying each constituent model.

Additionally, the coupler averages and/or accumulates field data when

constituents have different timestep lengths.

 Resource allocation. Each constituent is assigned a cohort—a set of processes on

which to execute. The coupler may employ sequential composition, in which each

constituent is executed on the same cohort one after the other, parallel

composition, in which each constituent has a distinct cohort, or a hybrid

configuration in which some of the constituents execute sequentially and some in

parallel [38].

 Time management. The coupler mediates time among the constituent models

either by providing a centralized clock abstraction shared by all constituents or by

monitoring the time of constituents to ensure field data are transferred at the

correct time and that constituents remain synchronized.

 Driving. If the constituents feature inversion of control—i.e., are designed to be

invoked by another software component—then the coupler, or a separate software

module called a driver, invokes the constituent models iteratively within a master

time loop. If the constituents exhibit their own thread of control, then no external

driver is required. In this case, however, a synchronization mechanism is required

to ensure that data are communicated at the appropriate times.

 Other tasks. The coupler may be responsible for a number of other tasks including

reading configuration files, ensuring consistency of the global domain comprised

of the union of the constituents‘ domains, and coordinating writing and reading of

restart files if model execution must be interrupted [39].

 A number of scientific and numerical issues involved with coupling have been

identified in the literature. One difficulty is the large separation of response time scales

21

among the climatic subsystems [33, 40]. While the atmosphere responds to changes in

external forcings on a time scale of hours to months, the ocean response is much slower:

the deep-water response time, for example, is on the order of centuries. Meanwhile, ice,

snow, and ocean surface processes respond on time scales of days to years. Early coupled

models dealt with heterogeneous time scales using ―asynchronous coupling‖ in which

constituent models would each be run for disproportionate amounts of time [41]. For

example, the computationally-intensive atmosphere model could be run for a single year

and the same seasonal averages could be used to force the ocean model for five years.

Beginning in the 1980s, asynchronous coupling for climate sensitivity experiments was

abandoned in favor of synchronous coupling in which coupling exchanges could occur at

least once per model day. For today‘s models, a typical configuration is for the

atmosphere-land-ice to have a coupling interval on the order of a fifteen minutes, while

the atmosphere-ocean couples hourly.

 Another difficulty discovered in early atmosphere-ocean coupled models is the

tendency for a coupled model to drift to an equilibrium state far removed from the

observed climate, even if the constituent models behave well for prescribed boundary

conditions when run independently [40]. This indicates that small, systematic errors that

are apparently insignificant for uncoupled constituent models can lead to significant

deviations and unrealistic results when the constituents are run in coupled mode. One

method of dealing with this is to apply ―flux corrections‖ at the atmosphere-surface

boundary in order to maintain control runs that are close approximations of the observed

system [42]. A flux correction is an additional term added to a surface flux field (e.g., net

heat flux) in order to force the two models‘ flux calculations into agreement. As models

have improved over time, however, the need for flux adjustments has diminished; most of

the coupled models that participated in the IPCC‘s Fourth Assessment Report do not use

a flux adjustment of any kind [36]. Issues such as the large range of response time scales

of the constituent models and the need for flux corrections in early models illustrate that

22

model coupling is not simply a matter of communicating field data between models, but

is a complex and evolving process mediated by expert scientists.

 The typical coupled climate model used for the latest Intergovernmental Panel on

Climate Change (IPCC) assessment report contains constituent models representing at

least the major physical domains in the Earth system: atmosphere, oceans, land, and sea

ice. The physical system itself, with reservoirs for heat, momentum, and moisture and

the exchange boundaries between them, is a key influence on the software architecture of

today‘s ESMs. Figure 3 (recreated from the introduction chapter) depicts the architecture

of an ESM with four constituent models. Each model retains its own thread of control,

exchanging data periodically when the field data of one model is required by another.

Atmosphere
Model

Land
Model

Sea Ice
Model

Ocean Model

Figure 3: A coupling architecture in which each model is a separate binary—i.e., retains its own thread of

control. All models execute concurrently with periodic data exchanges.

 Other architectures are possible, such as the hierarchical component organization

espoused by the Earth System Modeling Framework (ESMF). In this case, a coupled

23

model is built from a set of modules (called components
4
), each of which may be a

constituent model or a coupler. Multiple coupler modules appear in the architecture,

typically mediating interaction between two or more models at the same level in the

hierarchy. This architecture is depicted in Figure 4. The Phys2Dyn coupler manages

distributed data transfer between the Physics and Dynamics components and each

component is controlled by the component immediately above it in the hierarchy. In this

case, the Physics and Dynamics components are stepped forward in time by the

Atmosphere component.

How should we characterize the different approaches used to couple models?

Bulatewicz offers a taxonomy of coupling approaches based on how constituent models

are integrated. The four approaches identified are: monolithic, scheduled,

communication-based, and component-based [43]. The applicability of each approach is

dependent upon scientific requirements, especially whether feedback processes must be

modeled.

4
 The term ―component‖ is heavily overloaded in the ESM domain and its definition is more closely related

to the software engineering notion of ―module.‖ Components in the software engineering literature

typically offer binary compatibility and abstract away platform-specific details such as programming

language and object location. The term is used throughout this dissertation, and the specific meaning will

be clarified when necessary.

24

Atmosphere OceanAtm2Ocn Coupler

Driver

Physics DynamicsPhys2Dyn Coupler

Figure 4: A hierarchical coupling architecture in which each component is controlled by a component

above it in the hierarchy. Data exchanges are managed by specialized mediator components (shown in dark

grey).

 The monolithic approach is a brute force method, requiring manual merging

of code from two existing models into a single code base. This approach

describes early coupling implementations when very little reusable coupling

infrastructure existed. This approach does have advantages. For example,

simulation performance is enhanced when modules access global data

structures thereby reducing the number of data copies required. This approach

may also reduce development time if the model codebases are small, have

simple data structures, and do not have conflicting dependencies.

 The scheduled approach assumes the models are independent programs that

do not affect each other during execution. Instead, the output from one model

is used as input to the next model. This approach is appropriate for one-way

coupling in which feedback effects are ignored. An advantage of this

approach is that models can remain as independent programs which can be

compiled separately and retain independent maintenance paths. Another

advantage is that upstream models (data producers) can execute independently

from downstream models (data consumers) with minimal coordination

25

required. However, this method often requires the use of data conversion

routines so that data consumers can make use of output from data producers.

 Communication-based approaches allow constituent models to remain as

independently executing programs that exchange data during execution via

some form of message passing [44, 45]. This approach requires

instrumentation of model source code with library calls for sending and

receiving data.

 Component-based approaches require the modularization of model source

code into reusable software components [46, 47]. Components have standard

interfaces and must be situated in a component framework.

 The latter two approaches are most applicable to the ESM domain. The

monolithic approach, while viable for smaller codebases, is unworkable as model

complexity (and code size) increases. This approach does allow for high performance, but

largely ignores the advantages of modularity resulting in complicated code that is hard to

understand, verify, and unit test. The scheduled approach, while viable for one-way

coupling in which data flows from a source model to a target model, is of less concern

due to the importance of feedback effects in ESMs and the need to model strongly

coupled physical phenomena while maintaining high performance. Both the

communication-based and component-based approaches are viable for ESMs because

they allow for modeling the feedback effects of strongly-coupled phenomena while

providing high performance.

 The approaches to coupling may be placed on a spectrum as depicted in Figure 5.

In general, moving to the left on the spectrum indicates more loosely coupled

implementations, higher degrees of modularity, and a reduced number of inter-module

dependencies. Moving to the right on the spectrum indicates more tightly coupled

implementations, increased amounts of shared infrastructure, and increased potential for

high performance.

26

Figure 5: Coupling spectrum

Code Reuse

 Before examining the set of existing coupling technology software packages, we

review forms of code reuse that have been leveraged for the development of coupled

ESMs including subroutine libraries, frameworks, components, and generative

programming.

Subroutine Libraries

 A subroutine or procedural library is a software reuse mechanism for sharing

concrete solution fragments in the form of a set of data structures and procedures. Clients

use the library by instantiating library data types and making calls to library functions. In

a strict procedural library model, all calls are directed from the client to the library, and

the library completes all operations without revealing any intermediate state before

returning control to the client [48]. Procedural libraries requiring asynchronicity, such as

providing an event notification, may break the one-directional calling paradigm by

employing callbacks—procedures that are registered with the library and are then called

by the library at some later point.

27

Frameworks

 An object-oriented framework is a set of cooperating classes, some of which are

abstract, that make up a reusable design for a class of similar applications [49].

Frameworks freeze certain design decisions and encapsulate them in predefined object

collaborations that the user need not program manually. Frameworks provide a hook

mechanism by which an application developer can extend the framework‘s functionality.

At run time, frameworks feature inversion of control—that is, the framework itself retains

the thread of control, calling the user‘s implementation as dictated by the collaboration

patterns encoded in the framework.

 Framework can be classified by the kind of reuse supported—either white box or

black box [50]. White box framework reuse is typically based on implementation

inheritance and often requires the user to have intimate knowledge of internal structures.

As such, white box implementations are often tightly coupled to the framework itself.

Black box framework reuse is based on object composition in which parameterized

objects are plugged together dynamically. Black box frameworks are easier to use, but

their development is more complex since the framework developer must anticipate and

provide adequate parameters for a wide range of use cases [51].

 Due to the potential for reducing development effort and increasing software

quality, frameworks are considered one of the most mature software reuse paradigms

today [49, 52]. However, some disadvantages have been identified both in terms of

framework reuse and the runtime properties of frameworks. Inversion of control can

complicate framework reuse by obscuring object interactions that occur behind the scenes

[53]. Czarnecki and Eisenecker point out that frameworks can lead to fragmented designs

with ―many little methods and classes‖ [24]. This leads to excessive implementation

complexity and reduces program understanding. Frameworks typically use the same

method to represent both inter- and intra-application variability—class inheritance.

Moreover, frameworks alone do not adequately support separation of concerns of

28

crosscutting aspects such as synchronization, transaction semantics, and error handling.

Other reuse issues have been discussed in the literature, including framework integration

and adaptation, maintenance, increased debugging complexity, and the steep learning

curve to understand new frameworks. At run time, frameworks rely on dynamic binding

to implement variability—i.e., the target of a method call is lookup up at runtime based

on the type of object receiving the call. This can lead to performance degradation when

compared to a statically bound implementation.

Components

 Szyperski et al. define a software component as ―a unit of composition with

contractually specified interfaces and explicit context dependencies only. A software

component can be deployed independently and is subject to composition by third parties‖

[48]. Technologies such as the Common Object Request Broker Architecture (CORBA)
5

and the Component Object Model (COM)
6
 enable interoperability of software

components by providing services for deployment and composition. CORBA provides a

layer that abstracts concerns for object location, programming language, operating

system, communication protocol, and hardware platform [54]. Components have

interface specifications that describe how clients can interact with the component. The

CORBA Interface Description Language (IDL) is a language for describing the interfaces

of components written in different programming languages. IDL specifications include

method signatures grouped into modules. An IDL compiler generates implementation

artifacts known as stubs and skeletons. Stubs, also called proxy objects, can be

instantiated and are designed to look like local objects—that is, clients need not be

concerned with where the component is deployed or details of its native interface—and

5
 http://www.omg.org/spec/CORBA/3.2/

6
 https://www.microsoft.com/com

http://www.omg.org/spec/CORBA/3.2/

29

are responsible for marshaling arguments before sending them through the component

technology‘s communication layer. On the receiving end, skeletons receive the

arguments, unmarshal them, and pass them to the receiving component.

Generative Programming

 Generative Programming (GP) is a software engineering paradigm based on

modeling software system families such that end products can be produced automatically

by assembling reusable implementation components based on an input specification [24].

GP includes a domain engineering phase, which results in a generative domain model—

an explicit representation of the common and variable properties of systems in the

domain and their interdependencies, and a set of reusable assets, such as components,

domain-specific languages, and/or software architectures that can be exploited to produce

concrete applications.

 Domain-specific languages (DSLs) trade generality of a language for

expressiveness tailored to a specific domain [55]. The expected benefits of developing a

DSL include increased productivity, the ability to work at a high level of abstraction,

reduced maintenance cost, and support for domain-level validation and optimizations

[56]. DSLs can be textual or graphical in nature. With respect to GP, DSLs are used as

the specification language to ―order‖ concrete products [24].

 Most approaches to developing a DSL involve three phases: (1) analysis, in which

the problem domain is identified and domain knowledge is gathered and clustered into

semantic notations and operations that form the abstract syntax of the DSL; (2)

implementation, in which a software library is constructed that implements the semantic

notations and a compiler is built that translates the DSL syntax into library calls; and (3)

use, in which DSL programs are written and compiled [56].

The existence of a DSL indicates the maturity of a domain as it is the final stage

in the progression of reusable software from traditional subroutine libraries to object-

30

oriented frameworks to DSLs [56]. Previous work in the software engineering

community has shown that a DSL can be generated from a framework by eliciting a

domain model from the structures and behaviors encoded in the framework API [50, 57]

Coupling Technologies

The following section describes in greater detail the coupling approaches

currently in use for high-performance ESMs and identifies for each approach the forms of

code reuse supported and representative coupling technology implementations. We do

not consider couplers that are designed for only a single, specialized purpose (e.g., a

particular climate model‘s coupler), but coupling technologies designed with software

reuse in mind.

Table 1: Coupling Approaches and Implementations

Coupling Approach Forms of Code Reuse Representative Technologies

Building Blocks Library, Components,

Framework

MCT

Asynchronous Communication Library, Components OASIS, Bulatewicz PCI

Independent Deployment Components CCA

Integrated Framework ESMF, FMS

Generate from Specification Generator BFG2

Building Blocks

 The building blocks approach follows a bottom-up development paradigm.

Abstract data types and functions related to coupling are provided as a toolkit, typically

embedded in a subroutine library. This approach is architecturally neutral—it does not

place structural requirements on the models to be coupled.

 The Model Coupling Toolkit (MCT) is an implementation of the building blocks

approach [18]. The set of tools provided by MCT includes abstractions for describing

domain decomposition, a random-access storage type for field data, communication

31

schedulers for parallel repartitioning of distributed arrays, grid-to-grid interpolation via

sparse matrix multiplication, a physical-space representation for storing grid point details

(coordinates, cell lengths, areas, and volumes), a utility for spatial integration and

averaging, accumulators for temporal summation and averaging, and a merge facility for

combining data from multiple sources into a single target [18]. Coupling using MCT

requires that field data in the constituent models be first converted into MCT data types.

Asynchronous Communication

This coupling approach exhibits a high degree of modularity, as each constituent

model is implemented as a separate executable program with its own embedded

infrastructure and control structures. Inter-model data dependencies are handled by

placing asynchronous communication calls at points in the control flow where data is

required or produced. Models are assembled into a coupled application by linking each

model to an external communication library and executing the constituents in a multiple

program multiple data (MPMD) mode—i.e., each model is a separate program retaining

its own thread of control and its own address space. Synchronization between models is

achieved through inter-process communication calls that block until field data required

from a producer model is available. The sophistication of the external communication

library determines the kinds of field transformations that are possible as data is

transferred among the models in a coupled application.

 This approach has the advantage of allowing constituent models to achieve a low

degree of coupling. However, model developers must provide a separate infrastructure

for each constituent, potentially reducing the amount of reused code. Furthermore,

asynchronous communication calls can be added to existing model implementations with

minimal restructuring of existing code. Constituents do not allow inversion of control but

32

instead carry their own hard-coded control flow thereby limiting control over global

execution scheduling. Coupling technologies implementing this approach include the

OASIS coupler [14] and the Bulatewicz Potential Coupling Interface and related runtime

environment [58, 59].

OASIS is a complete implementation of a transformation and interpolation engine

and associated driver [14]. The Driver–Transformer (referred to as the ―coupler‖) and

constituent models remain as separate executables during a model run. The OASIS

Driver is responsible for spawning the constituent models if MPI2 is available; otherwise,

the user must start the components separately. Communication with the coupler is

accomplished by inserting API calls and linking the PSMILe library to each constituent

model. The API for data exchanges is based on the idea that a constituent model should

not make any assumptions about which other software component provides or consumes

its data. The configuration of the coupled application is described externally in XML files

or as Fortran namelists including, for each constituent model, a description of the

source/target of each input/output field, the exchange frequency, and the transformations

that should be applied. Calls to PRISM_Get() and PRISM_Put() receive and send

data respectively, and may be placed anywhere in the constituent model code. For this

reason, the inter-model time coordination is implicit for models coupled with OASIS.

Similarly, Bulatewicz offers an asynchronous communication approach to coupling

designed to eliminate the need to directly manipulate model source code, thereby

allowing fast prototyping of coupled models [43, 58, 59]. The approach is based around a

constituent model representation called the Potential Coupling Interface (PCI), an

annotated flow graph that describes those aspects of a model that affect how it can be

coupled to other models. The PCI represents the coupling potential of a model and

contains a set of coupling points where state variables can be exchanged. The primary

advantage of this approach is to increase the model‘s flexibility: instead of statically

33

assigned linkages, a separate configuration phase is introduced in which the user

determines the set of linkages for a particular run. The PCI is created only once for a

model (unless the source code changes) and is used to automatically instrument the

model with communication calls. After instrumentation, the compiled code is called a

coupling-ready executable.

Using the PCIs as input, scientists create a coupling specification using the Coupling

Description Language (CDL). The coupling specification represents one particular

configuration of models in a coupled system. Coupling points specified in the PCI are

linked together and actions are assigned at each coupling point. The available actions are

send, which allows the value of a state variable in one model to be used at a coupling

point in another model, update, which changes the value of a state variable based on a

user-provided update function, and store, which creates new, independent state variables

that do not exist in any model, but may be accessed at coupling points.

PCICouple is the runtime system that coordinates execution of a specified

coupled model configuration. The runtime system manages several kinds of components

as separate processes: model instances; couplers, which queue sent data and apply data

mappings; updaters, which contain built-in update functions and user-provided functions;

and controllers, which start all other processes and provide them with metadata from the

coupling specification.

The Bulatewicz approach is similar to the OASIS coupler with the PSMILe

library in the following respects:

 both are communication-based approaches in which send/receive calls are located

in the source code at the place where data is produced/required,

 both are MPMD approaches in which models and couplers execute in separate

processes, and

 both allow dynamic configuration of couplings via metadata.

 The primary differences between the two approaches are:

34

 the Bulatewicz approach does not directly support interpolation, although this

could perhaps be handled with user-defined update functions, and

 the Bulatewicz approach allows for automated instrumentation of source code

with communication calls while those calls must be programmed manually for the

OASIS approach.

Independent Deployment

The independent deployment approach hides implementation details behind

interfaces and provides a composition mechanism for linking interfaces, typically by

deploying the independent units into a component framework. Unlike the asynchronous

communication and integrated approaches which require some amount of code

modification to existing constituent models, this approach shifts the focus away from

programming to ―wiring up‖ interfaces. This requires the component developer to

anticipate possible behavioral variations ahead of time to ensure that components are a

generic as possible. While easing the burden of composition, this approach offers less

flexibility than approaches that expose and allow changes to constituent model

implementations.

The Common Component Architecture is a specification of a standard component

architecture targeted at high performance scientific computing applications [47]. CCA

itself is not a framework, but a specification that enables components developed in the

context of CCA-compliant frameworks to interoperate. Ccaffeine is one example of a

CCA-compliant framework [60]. The high-level structures in the CCA specification are

components (units of software that can be composed), ports (interfaces through which

components can interact), and frameworks (software responsible for connecting

components and managing their interactions).

In order to maintain programming language independence, components and ports

are described using the Scientific Interface Description Language (SIDL). SIDL is an

35

interface specification language analogous to other IDLs, but with special support for

scientific applications, including support for array-based data types and programming

languages popular in scientific communities [61]. A SIDL specification provides a

language-neutral, declarative description of the public methods that make up the interface

of a scientific component. SIDL specifications are object-oriented, supporting classes,

interfaces, single inheritance for classes, and multiple inheritance for interfaces. The

SIDL compiler, called Babel, translates SIDL specifications into language-specific stubs

and skeletons and glue code that enable interoperability among different programming

languages, including C, C++, Fortran, Java, and Python.

 There are eight main elements that comprise a SIDL specification: packages,

interfaces, classes, methods, exceptions, contract clauses, types, and comments. These are

briefly described here. For a detailed description, see the Babel Users‘ Guide [62].

Packages define a namespace hierarchy and all SIDL types must be part of a package.

Packages may be versioned, nested within other packages, and referenced in other

packages via the package import mechanism. An interface defines a set of methods

available to callers of classes implementing the interface. Classes also define a set of

methods that a caller can invoke on an object and, unless declared as abstract, class

methods have implementations provided by the user. A class may inherit from a single

parent class and may implement multiple interfaces. Methods defined inside interfaces

and classes are public routines that clients can invoke. Methods have a return type, an

explicit set of named and typed arguments, and a mode specifier for each argument,

which may be in, out, or inout. Exceptions can be used to indicate errors or

unexpected behavior inside a method. Exceptions are mapped to native language features

so that client‘s can examine thrown exceptions and react accordingly. Optional contract

clauses define preconditions and postconditions on method calls and invariant conditions

at the class and interface level.

36

 SIDL types include atomic types, such as bool, int, and double, and complex

types, such as arrays, structs, enums, classes, and interfaces. SIDL supports three kinds of

arrays: regular arrays include a portable API for accessing array data and metadata across

programming languages, generic arrays do not include a data type or dimension and can

be used to create generic interfaces that operate over different kinds of arrays, and raw

arrays allow direct access to array data with minimal overhead when performance is

critical. Figure 6 shows an example SIDL specification with a package named

―CoupledFlow‖ containing a single class called ―FlowSolver.‖

import CplGen;

package CoupledFlow version 1.0 {

 class FlowSolver implements-all

 UniformLogicallyRectangular,

 RegularDecomposition {

 void init(

 out array<double,2> sie,

 out array<double,2> u,

 out array<double,2> v,

 out array<double,2> omega,

 out array<double,2> rho,

 out array<double,2> rhoi,

 out array<double,2> rhou,

 out array<double,2> rhov,

 out array<double,2> p,

 out array<double,2> q,

 out array<double,2> flag,

 out array<double,2> de

);

 /* additional methods elided */

 }

}

Figure 6: A SIDL specification

37

Bocca is a CCA-based development environment with the goal of enabling rapid

component-based prototyping without sacrificing robust, HPC-based software

engineering practices [63]. The Bocca tool is command line based and can automatically

generate SIDL files based on a high-level specification (script) provided by the user. The

script describes a project structure in terms of ports and components. Bocca is language-

agnostic, invoking Babel to generate language-dependent wrappers.

The OnRamp tool addresses the difficulties in adapting existing code to

component-based frameworks by allowing developers to instrument existing codes with

special annotations that indicate component and interface boundaries [64]. OnRamp

relies on Bocca for generating application skeletons, and can automatically insert user

code from the original source into the generated skeletons.

CCA and its attendant tool chain are targeted at a broad range of HPC

applications. The advantage of this approach is in CCA‘s ability to support a wide range

of scientific HPC applications. The tradeoff is lack of built-in support for commonly

needed domain-specific functions such as support for data decomposition, descriptions of

typical grids used in geophysical models, abstractions for coordinating constituent model

time, and parallel grid interpolation algorithms.

Integrated

 The integrated approach requires constituent models to be modularized and linked

with a common framework that coordinates interactions and provides technical services.

Compared with the asynchronous communication approach, models coupled using this

approach have a lesser degree of independence as they are dependent on a common

framework. Unlike the independent deployment approach, constituent models must

undergo implementation changes in order to be integrated with the framework. However,

compared with component technologies, frameworks are typically more domain-specific,

providing a pre-defined structure for a family of closely related software products.

38

Therefore, frameworks can significantly reduce model development time through reuse

of domain-specific design and behaviors. Implementations of the framework approach

include the Earth System Modeling Framework and the Flexible Modeling System.

 The Earth System Modeling Framework (ESMF) is a high performance coupling

framework [46]. ESMF provides a set of technical services (termed infrastructure) and

defines abstract component interfaces (termed superstructure). ESMF promotes building

coupled models hierarchically with parent models controlling child sub-models. Although

written in Fortran, ESMF behaves much like an object-oriented framework through its

use of generalized model interfaces (init, run, and finalize calls) and

inversion of control—that is, ESMF components are subject to external control by a

parent component or driver. There are two types of components in an ESMF application:

gridded components and coupler components. Gridded components represent the primary

scientific and computational modules that interact in a coupled ESM. ESMF coupler

components adhere to the mediator design pattern [65, 66] in which interactions between

two or more computational components are isolated and encapsulated in a separate

object. This architectural approach enables gridded components to be used in multiple

contexts since components do not explicitly reference each other. ESMF couplers are

customized for specific ESMF gridded components. A large number of technical services

are provided including domain decomposition, repartitioning, interpolation, scatter/gather

of field data, a clock object for inter-model time coordination, support for different

calendars, tools for configuration management, the ability to output field-level metadata,

and other services.

The Flexible Modeling System (FMS) [67] is a coupling framework offering both

a utility layer of common technical services (infrastructure) and an architectural layer for

defining top level structures in the coupled model (superstructure). The technical services

provided by FMS include I/O, exception handling, and functions for Interpolation and

Repartitioning field data in parallel. While both ESMF and FMS recognize the

39

infrastructure/superstructure distinction, ESMF defines generic component interfaces

while FMS defines domain-specific scientific interfaces for a pre-determined set of

components (atmosphere, ocean, ocean surface/sea ice, and land surface models). The

scientific interfaces are defined both in terms of a set of control subroutines (e.g.,

ocean_model_init(), update_ocean_model(), ocean_model_end())

and specific data structures for holding the fields exchanged between models. These data

structures contain hard-coded field names and are defined for specific coupling

boundaries (e.g., ice_ocean_boundary_type).

Generate from Specification

 The generative approach requires the user to provide a coupling specification;

code required to implement the coupling is generated automatically. The most prominent

implementation of this approach in the ESM domain is the Bespoke Framework

Generator (BFG).

BFG [68] is designed to enable flexibility in configuring and deploying instances

of coupled ESMs. It is a framework generator because it produces customized packaging

and control code based on user-supplied prospective metadata [69]. The framework code

generated by BFG is defined as ―the run-time infrastructure that calls component models

and allows them to communicate; this infrastructure may be source code or

configurations of third-party tools such as the OASIS coupler.‖ A design constraint for

BFG is the desire to leave component models completely unchanged thereby precluding

re-architecting of model code to match any predefined interfaces, inserting in-place calls

to specialized functions for sending or receiving data, or even adding annotations at

potential communication points in model code. The user provides configuration metadata

to the BFG code generator in three XML files: The definition metadata describes an

individual model, its entry points, and the input and output data associated with the entry

point. The composition metadata describes the communication flow among the entry

40

points. The deployment metadata describes how models are distributed into executable

units, how many processes are assigned to each executable, and the sequencing of the

models during a run.

BFG does not have knowledge of the numerical properties of the constituent

models other than the number and size of array dimensions and does not support utility

functions such as repartitioning (transferring a distributed data object from one

decomposition layout to another) or interpolation (mapping data points from a source grid

to a destination grid) natively—instead, such services are left to external libraries, which

may be described in the configuration metadata as entry points or may be defined as

specially supported targets (e.g., OASIS).

Modularity and Invasiveness

 As the complexity of ESMs continues to increase, the ESM community is

beginning to recognize the importance of good modularity in order to improve

maintainability of model implementations, ensure code readability, and increase

interoperability. In general, modularization, or breaking software systems into smaller

pieces, is recognized as a way to deal with software complexity. According to Baldwin

and Clark, ―a module is a unit whose structural elements are powerfully connected among

themselves and relatively weakly connected to elements in other units‖ [30]. Modules

exhibit structural independence while still maintaining integrity of function. The benefits

of modular designs have been recognized for many years, including the ability to

distribute the development labor to individual programmers or teams, increased

flexibility and maintainability of programs, improved comprehensibility of programs, the

ability to reuse modules in new contexts and substitute different implementations of

existing modules, and the ability to extend/contract programs by choosing

subsets/supersets of modules [26, 70]. Parnas introduced information hiding as an

effective criterion for deciding how to modularize programs [26]. In this way, one

41

module would not know and not depend on implementation details of another, implying

that the modules could be changed independently. In other words, a change in one

module is less likely to affect another module.

 Degree of coupling is a measure of the level of interdependence between software

modules [71]. Qualitatively speaking, two modules that are tightly or highly coupled

exhibit strong interconnections, loosely coupled modules have weak interconnections and

decoupled modules have no interconnections. Although an abstract definition of coupling

has been useful for good design heuristics, the imprecise definition of ―interconnection‖

and what it means for an interconnection to be ―strong‖ or ―weak‖ makes it difficult to

use it as a metric for formal comparisons of modular designs. To work towards a more

precise definition of coupling, Meyers provides six distinct levels of coupling [72]. These

were later ordered by Page-Jones [73] according to their effects on certain qualities such

as understandability and maintainability. Meyers‘ six-level scheme was extended by

Offutt et al. to include several new levels of coupling and directionality [74]. The Offutt

et al. coupling levels are reproduced below in Table 2. Each variable use is classified as a

computation-use (C-use) in which a variable is used in an assignment or output statement,

a predicate-use (P-use) in which a variable is used in a predicate statement, or an indirect-

use (I-use) in which a variable is a C-use that affects some later predicate in the module.

 As originally conceived, the degree of coupling between modules could be

determined manually by code inspection. Offutt et al. recognizes the limitations of this

approach and presents an algorithm for computing levels of inter-module coupling using

static analysis techniques including data flow analysis and program slicing to determine

define-use information for each variable in a module [74].

It has long been recognized that minimizing coupling between program modules

promotes independence of modules and has been associated with a number of desirable

software qualities such as maintainability, verifiability, flexibility, reusability,

interoperability, and reduced fault-proneness [75, 76].

42

Table 2: Offutt et al. extended coupling levels based on Meyers‘ original six-level scheme

Coupling Type Coupling

Level

Directionality Definition

Independent

Coupling

0 Commutative A does not call B and B does not call A,

and there are no common variable

references or common references to

external media between A and B

Call Coupling 1 Commutative A calls B or B calls A but there are no

parameters, common variable references or

common references to external media

between A and B

Scalar Data Coupling 2 Bidirectional A scalar variable in A is passed as an actual

parameter to B and it has a C-use by no P-

use or I-use

Stamp Data

Coupling

3 Bidirectional A record in A is passed as an actual

parameter to B and it has a C-use but no P-

use or I-use

Scalar Control

Coupling

4 Bidirectional A scalar variable in A is passed as an actual

parameter to B and it has a P-use

Stamp Control

Coupling

5 Bidirectional A record in A is passed as an actual

parameter to B and it has a P-use

Scalar Data/Control

Coupling

6 Bidirectional A scalar variable in A is passed as an actual

parameter to B and it has an I-use but no P-

use

Stamp Data/Control

Coupling

7 Bidirectional A record in A is passed as an actual

parameter to B and it has an I-use but no P-

use

External Coupling 8 Commutative A and B communicate through an external

medium such as a file.

Non-Local Coupling 9 Commutative A and B share references to the same non-

local variable; a non-local variable is

visible to a subset of the modules in the

system.

Global Coupling 10 Commutative A and B share reference to the same global

variable; a global variable is visible to the

entire system

Tramp Coupling 11 Bidirectional A formal parameter in A is passed to B as

an actual parameter, B subsequently passes

the corresponding formal parameter to

another procedure without B having

accessed or changed the variable.

Page-Jones succinctly explains why low coupling between software modules is

desirable in three basic principles: (1) fewer interconnections between modules reduces

the chance of the ―ripple effect‖—that is, a fault in one module causing failures in other

modules, (2) fewer interconnections between modules reduces the chance that changes in

43

one module will require changes in other modules, and (3) fewer interconnections

between modules facilitates program understanding by reducing the amount of internal

detail that must be known about the use of a module [73].

 Yourdon and Constantine point out that the degree of coupling of modules can be

decreased by ensuring that programming structures are minimally connected ―and yet are

sufficient for the realization of all actual program functions‖ [71]. In abstract terms,

Page-Jones states that coupling between modules can be reduced by eliminating

unnecessary relationships, reducing the number of necessary relationships, and by

reducing the ―tightness‖ of necessary relationships. Furthermore, interconnections

should be narrow (the number of parameters and size of data should be minimized),

direct (easy to comprehend without having to refer to other information), local (data is

communicated with parameters instead of remote references), obvious (the connection

mechanism is straightforward and not unnecessarily complex), and flexible (such that

module interfaces can be changed easily) [73]. Two or more modules that are not

minimally connected exhibit pathological connections such as a module branching into

another module or a module making explicit references to data elements within another

module‘s boundaries.

The forms of code reuse employed by coupling technologies imply different modularity

characteristics. Libraries provide fine-grained modules (e.g., subroutines) that can be

composed in a bottom-up manner with existing implementations. This provides a high

degree of flexibility but modules remain at a low level of abstraction. Components are

typically more coarse-grained reuse artifacts and most are aimed at binary compatibility

by enforcing interactions only through explicit interfaces. Components abstract some

platform specific implementation details (e.g., programming language) and shift the focus

from implementation to composition. Frameworks provide an application structure with

pre-defined collaboration patterns. Therefore, the user‘s implementation is tightly

44

coupled with the framework itself making reuse of code artifacts between frameworks

difficult. Generative approaches based on specifications raise the level of abstraction

above general purpose programming language constructs. If the entire application can be

specified at the higher level of abstraction, the modular aspects of the generated code are

arguably of minimal concerns, especially if domain-specific optimizations can be applied.

On the other hand, if the generative approach is used in a bottom-up fashion, where

partial implementations must be combined with existing software assets, modular code

generation is preferable.

 There are early advocates of modularization and standardization to promote

interoperability of constituent model implementations. Meehl discusses the importance of

defining a coupling interface—a set of parameters that must be passed between

constituents—as well as the need for unit conversion, interpolation between incompatible

grids, structuring the coupling intervals, and taking temporal averages [41]. Pielke and

Arritt recognized the proliferation of subroutines with similar ―mathematical and physical

framework[s]‖ in atmospheric models and the potential increases in productivity if

modules could be borrowed from one code base and plugged into another with minimal

effort [77]. No specific recommendations are given for how to architect such a standard,

but the authors note that ―plug-compatibility‖ would be more easily achieved in code

bases that are already modular in nature. Kalnay et al. offer some practical advice on how

to ―make the ‗physics‘ routines easily transferable between models with only a few hours

of work‖ [29]. The recommendations are primarily targeted at physical parameterization

subroutines and are presented as a list of best-practice coding conventions. Example

recommendations include ensuring that subprograms refer only to intrinsic Fortran

functions, restricting communication with subprograms to be only through the argument

list, disallowing references to global data in COMMON blocks, organizing arrays such

that the horizontal index is the inner-most index, and specifying the number of vertical

levels via an argument list parameter. In many respects the set of recommendations are

45

extensions of common-sense software engineering principles. The authors indicate that

the recommendations were widely accepted by modeling centers internationally.

Commenting on the Kalnay recommendations, Hack notes that higher level

complications arise including dealing with different data structures and different model

time steps. Therefore, the Kalnay guidelines ―represent a minimum requirement for

facilitating the routine coupling of complex climate system component models‖ [35].

 To many, the possibility of true plug-compatibility of model components is

viewed as unrealistic or even fantasy. According to Randall:

 ―There are any number of concrete examples of real parameterizations that

have been developed for one specific model and that, for very good physical

and/or numerical reasons, can be transferred to another model only through a

major surgical procedure, somewhat analogous to an organ transplant but

more painful. One reason for such difficulties is that the different

components of a model have to be designed to work together. For example, a

land surface vegetation parameterization or a sea ice parameterization or a

snow-cover parameterization inevitably makes close connections with the

boundary layer turbulence parameterization to which it is coupled.

Adaptations can indeed be made for purposes of porting, but only though a

substantial amount of work… It is easy to talk about plugging together

modules, but the reality is that a global model must have a certain

architectural unity or it will fail‖ [78].

 Recently, the importance of maintaining good modularity between constituent

models and coupling technologies has come to the forefront under the concept of

invasiveness. As it stands today, model developers are typically required to modify

constituent model source code—sometimes substantially—in order to take advantage of a

coupling technologies‘ capabilities. Lloyd et al. define framework invasiveness as the

degree of dependency between a modeling framework and model code [79]. The authors

46

indicate that framework invasiveness occurs due to the use of the framework API and

framework-specific data structures, the requirement to implement interfaces and extend

framework classes, the need for a large amount of ―boilerplate‖ code expected by the

framework, the additional language, platform, and library dependencies introduced by the

framework itself, and the organizational investment required to adopt the framework

(e.g., training, financial, development). From the perspective of coupled models, a high

degree of framework invasiveness indicates tight coupling between a coupling

technology and the constituent models.

 In the literature, several motivations are given for limiting framework

invasiveness and improving modularity. First, the large amount of legacy code, its

maintenance, and its evolution provide impetus for non-invasive frameworks. Regarding

environmental modeling frameworks, David et al. state that ―the environmental modeling

community maintains many legacy models still in use based on algorithms and equations

developed decades ago. What has changed and continues to change are the hardware and

software infrastructures that house and deliver the output from environmental models‖

[28]. The sense is that the encoded science is relatively stable—or at least evolves

slowly—while the computing infrastructure (both software and hardware) changes on a

faster timescale. The requirement for non-invasiveness, therefore, is based on the need to

add a framework‘s capabilities to an existing code base without requiring significant

refactoring. Such refactorings might involve an extended development period during

which the code is unstable and the model‘s output cannot be trusted scientifically.

Related to this is the ability to change from one modeling framework to another or to

support multiple frameworks at the same time.

 David et al. also state that environmental modeling frameworks ―should allow the

modeler to retain intellectual ownership of the models and associated source code. The

model source code should not be ‗owned‘ by the framework, i.e., it must exist and be

sustainable outside the framework to ensure independent and ongoing development.‖ The

47

requirement for non-invasiveness, therefore, enables ongoing evolution of modeling

components and the ability of the model to function outside of the framework. This

implies that a model should be self-contained in that it can produce its primary scientific

computation without requiring any essential functionality from the modeling framework.

Non-invasiveness is viewed as a way to simplify a model‘s implementation, promoting

understandability of the model‘s code, and as a mechanism to ease framework adoption

by preventing scientists from having to be expert software engineers.

 Finally, non-invasiveness can promote interoperability with other scientific

models by reducing a model‘s dependence on framework-specific data structures and

functions. Emphasis is placed on coding models primarily in general purpose

programming languages, which are standardized and have widely available tool support.

The underlying assumption is that interoperability is best achieved by a ―least common

denominator‖ solution, instead of agreeing on a common modeling framework or writing

code to adapt frameworks to each other.

 Some steps have been taken to reduce invasiveness and promote modularity.

Armstrong et al. describe the requirement to add flexibility to the configuration of an

ESM called GENIE and the researchers‘ hesitation to adopt any of the existing coupling

technologies due to the ―desire to leave component models unchanged‖ [68]. Instead, the

authors propose a modeling paradigm in which constituent models are represented as

Fortran modules, which are agnostic to any particular coupling technology, and

infrastructure code is generated.

 Some coupling technologies are designed specifically to reduce the amount of

code changes required for constituent models. For instance, the OASIS coupler is

designed to require only ―minor modifications in the original application code‖ in order

to ensure ―the lowest possible degree of interference in the component codes‖ [14]. The

designers of the Model Coupling Toolkit (MCT) ―chose to build a toolkit and library in

order to allow a maximum of flexibility to users with a minimum of modification to

48

existing source code‖ [18]. The authors state that ―calling frameworks‖—i.e., those

coupling technologies that feature inversion of control—―require their users to make

substantial structural modification to their legacy codes.‖ Bulatewicz et al. argue that

model coupling is ―a nontrivial task that is not adequately supported by existing

frameworks‖ and that ―current frameworks often require direct manipulation of model

source code, which is prohibitively difficult in many situations‖ [58]. The authors present

an approach for fast-prototyping of coupled models based on code annotations and

automatic generation of calls for communicating field data. Similarly, Hulette et al.

recognize that scientific component frameworks ―introduce a learning curve that is a

barrier to adoption‖ and offer a tool-based solution called OnRamp that relies on code

annotations to generate components for the Common Component Architecture (CCA)

tool-chain [64].

 While minimization of source code changes is desirable, performance gains can

be realized when all constituents participating in a coupled model are efficiently

integrated by sharing a common coupling infrastructure. Redler et al., for example,

reference the modularity–performance tradeoff with respect to two coupling technologies,

OASIS4 and ESMF: ―While an ESMF application, being more integrated, will most

probably be more efficient compared to an OASIS4 coupled system, ESMF may require a

deeper level of intervention in the application code‖ [14]. Valcke and Dunlap compare

the ―multiple executable‖ approach to the ―integrated, mono-executable approach‖ noting

that the integrated approach ―is more flexible and in some cases more efficient as the

component models can be executed concurrently, sequentially, or in some hybrid mode

and coupling exchanges can be optimized as shared memory accesses. Components can

be nested within other components allowing many possible configurations of couplers

and components. However, this approach requires that components expose both data and

control interfaces‖ [80].

49

CHAPTER III

COUPLING TECHNOLOGIES FEATURE MODEL

 In order to address the computational complexity of the latest generation ESMs,

computer science and cyberinfrastructure researchers have recently come together in a

series of coupling workshops
7
 aimed at better understanding the fundamentals of model

coupling in the ESM domain, its computational challenges, and the strengths and

weaknesses of existing solution approaches [80]. A key goal of the first two workshops

has been to lay out the set of software artifacts that have had significant impact on

coupled ESMs. As indicated in the Related Work chapter, a large number of coupling

technologies have emerged, and additional solutions continue to appear on the scene

(e.g., the C-Coupler and Yet Another Coupler
8
). Given the large number of coupling

technologies currently in use, an important next step for community convergence is to

analyze the existing software systems and to begin building a more rigorous

understanding of the domain, including identification of the essential software features

required to effectively couple ESMs. To that end, this chapter presents a formal coupling

technologies domain model derived by the feature analysis method.

 Feature analysis is the systematic examination of applications in a domain with

the goal of producing a feature model that identifies a concise and descriptive set of

common and variable properties of domain concepts and constraints among them [24]. A

feature is a unit of user-visible value. Features are abstract, representing a stakeholder‘s

requirements, a design decision, and/or a configuration option. Features can be selected

to produce a configuration, describing a desired end product. From the configuration, an

7
 https://wiki.cc.gatech.edu/CW2013

8
 https://wiki.cc.gatech.edu/CW2013/index.php/Program

50

automated generator can then be used to assemble reusable assets into a concrete

implementation.

 A key advantage of feature orientation is the ability to express variability in an

implementation-independent way [24]. Traditional object-oriented design convolutes the

variation itself with the variation mechanism. For example, when representing an object-

oriented design using a UML class diagram, an immediate decision must be made about

how to implement the variability: inheritance, aggregation, parameterized class, etc. By

abstracting above this decision, the feature-oriented approach decouples what varies from

how to implement the variability. The results of a feature analysis can be expressed as a

feature diagram—an annotated tree in which nodes denote features. Nodes are connected

with directed edges, and edges have decorations that define the semantics between parent

and child nodes. Figure 7 shows a simple feature diagram for a car.

Car

EngineTransmission
Navigation

System

Automatic Manual
Voice

Activated

Touchscreen

Activated
4 Cylinder 6 Cylinder Turbo

Mandatory

Feature

Optional

Feature
Alternative Features

(choose one)

Or Features

(choose at least one)

Key

Figure 7: An example feature model

 The root node of a feature diagram is called the concept node. The example

diagram describes the concept Car. All nodes directly below the concept node represent

51

features, and lower nodes represent subfeatures. Mandatory features are denoted by a

simple edge ending with a filled circle. In the example diagram, both Transmission and

Engine are mandatory features. Optional features are denoted by a simple edge ending

with an open circle. In the example, the Navigation System feature is optional. Subsets

of features may be alternatives to each other, meaning that exactly one member of the

subset is included in any configuration. This possibility is represented in a feature

diagram by connecting the edges pointing to alternative features with an arc. The

Transmission feature has two alternative subfeatures: Automatic and Manual. If an arc

connecting edges pointing to two or more features is filled in, it indicates that the set of

features are or-features. Within a set of or-features, any non-empty subset of the features

can be included in a configuration. In the example, if the optional Navigation System

feature is included, then it will either be Voice Activated, Touchscreen Activated, or

both.

Feature Analysis Process

 The feature analysis of coupling technologies we conducted is based on

information found in technical documentation that accompanies the coupling

technologies as well as peer-reviewed articles that describe the technologies and their

uses. The initial feature analysis was conducted in a bottom-up fashion by gathering a

large list of features that couplers support. The resulting feature diagrams contained over

one hundred features at the leaf level. We dealt with this complexity by abstracting

related sub-features into common higher-level features, sometimes producing a hierarchy

several levels deep. During this process, we have defined a vocabulary that describes the

space of features supported by couplers for ESMs. When alternative terms were found in

the literature, we either chose one of the terms or selected a different term which we felt

best described the semantics of the set of alternative features. We also created an issues

list (containing nearly 100 items) when it was not clear what a particular feature

52

represented, whether it really was a feature, or where it should be located in the feature

model. The feature model has undergone several refactorings as issues in the list have

been addressed.

 Clearly, the set of features resulting from the analysis are interrelated. However,

our goal is to maintain, as much as possible, orthogonality among the features in the

diagrams. Two features are orthogonal if their occurrences in an ESM are independent.

Because orthogonality contributes to separation of concerns, it aids modularity.

Modularity, it turn, facilitates reuse and, in the case of generative reuse (reuse via code

generation), the design of a code generator: where two or more orthogonal features can

be varied independently, the code associated with those features may likewise be varied

independently.

 We have extended the feature diagram notation in two ways. First, we allow a

diagram to be split into pieces: A box in a diagram may have its background shaded. This

means that the corresponding feature and its subfeatures are elaborated in a separate

diagram. Second, where a feature has many subfeatures, each of which is not further

elaborated, then, instead of using boxes, we present the subfeatures as a bulleted list

under the given feature.

Coupling Technologies Analyzed

 The coupling technologies we analyzed are currently used in scientific applications or

are under active development. Our goal is to paint a relevant picture of the state of the

practice for ESM couplers. Table 2 lists the coupling technologies we considered. The

following subsections provide a brief description of each technology included in the

feature analysis. When a feature corresponding to our feature model is mentioned directly

in the text, Arial font is used. If a feature is mentioned indirectly, we give the name of the

specific feature in square brackets. If a feature name is ambiguous, ancestor features are

included in the name with each feature separated by a forward slash (e.g.,

53

Coupler/Generality). It is important to note that the studied technologies each have a

different scope of use. As such, this is not an apples-to-apples comparison, but is

intended to reveal the set of features that are relevant when writing couplers for ESMs

and, ultimately, for generating them.

Table 3: Analyzed coupling technologies

Acronym Full Name Reference Latest Released Version

BFG2 Bespoke Framework Generator [68] bfg2-beta

ESMF Earth System Modeling Framework [46] ESMF_4_0_0rp2

FMS Flexible Modeling System [67] Riga (internal)

MCT Model Coupling Toolkit [18] 2.6.0

OASIS/PSMILe Ocean Atmosphere Sea Ice Soil /

PRISM System Model Interface

Library

[14] OASIS4

TDT Typed Data Transfer [81] 12 June 2008

Coupling Technologies Feature Diagrams

 For readability, we present the feature analysis as a series of feature diagrams.

The original work is available as a technical report [82] and has been published as a

journal article [83]. The top-level concept is Coupling Technology. The first diagram

includes the top-level concept and several broad feature categories. Each of these top-

level features are further refined in separate diagrams.

 Figure 8 shows the top-level feature diagram. The concept node, Coupling

Technologies, has five major features. These represent five categories of primary

importance for coupler design: properties of the Constituent Models, the Coupler itself,

the computational Environment in which the coupled application executes, the Setup of

the coupled application, and aspects of the Software Architecture of the coupled

application. All of the features supported by the coupling technologies we analyzed fit

into one of these major features.

54

Coupling

Technologies

Environment
Software

Architecture
Setup

Constituent

Models
Coupler

Figure 8: Top level of coupling technologies feature diagram

Term Definition

Constituent Models Supported features of the models being coupled

Coupler

Software module that encapsulates data communication and transformation

functions between constituent models

Target Environment Computational environment in which the technology can run

Setup Initialization and configuration procedures

Software Architecture Structural characteristics of the coupled models

55

Constituent Models

Constituent

Models

 Active

 Passive

(Data-Only)

 Null/Dead

NestingMode
Field

Data

ANSI

Standard
Primitives

 int

 float

 double

 char

Composites

 Structures

 Arrays

 Indexable

User

Defined

 Scientific

 Input-Output

 Exchange grid

Type Grids

Figure 9: Constituent models feature

Term Definition

Mode Whether constituent models perform active calculations, read from a file, or

perform no calculations

 Active Constituent model actively produces online field data

 Passive (Data-Only) Constituent model provides offline field data from a file

 Null/Dead No calculations performed, but can be used for testing

Type Broad classification of the constituent model

 Scientific Expresses scientific equations, parameterizations, or theories

 Input-Output Communication with file system or user

 Exchange grid Specialized component that contains a grid that is the union of vertices of two

or more parent grids

Field Data The data produced by the model for use by other models

 Primitives The kinds of data that the coupler can transfer between models

 Composites The kinds of composite data structures supported

 Structures Combinations of primitives and other structures

 Arrays Support for array-based data

 Indexable Random access into the data structure via an index

 User-defined User-defined data types are supported

 ANSI Standard ANSI standard types are supported

Nesting Components may be nested inside of other components

Grids Properties of numerical grids

56

Grids

 The material in this section is an impoverished version of the Gridspec, a separate

effort conducted at GFDL to standardize descriptions of numerical discretization schemes

[37].

Grid

Regularity

 Regular

 Stretched

 Rotated

 Gaussian

reduced

 Unstructured

Geometry

 Logically

rectangular

 Tripolar

 Cubed sphere

 ...

Adaptive

Inherited

Definition
Dimensionality

 2D

 3D

Fractional Areas

 Masking

 Complementarity

 Tiling (dynamic,

clipping)

Domain

Coordinates

 Index space

 Physical

space

 User defined

Inter-grid

 Exchange grid

 Transfer

vector

Figure 10: Grid feature

57

Coupler

Coupler

Access to

Scientific

Content

 Hooks

 Embedded

Manifestation

 Separate

executable

 Subroutine

Generality

 Constituent

models

 Greater than

binary

cardinality

Capabilities Parallel

 Multiple

coupler

instances

Figure 11: Coupler feature

Term Definition

Capabilities Functional requirements

Manifestation How the coupler executes with respect to the rest of the application code

 Separate executable The coupler executes in a separate process

 Subroutine The coupler executes within the same process as the constituent model as a

subroutine call

Access to Scientific Content The means by which the component accesses scientific computations

 Hooks Call to science code located elsewhere

 Embedded The component contains encoded science

 None A purely infrastructural component that contains no embedded science

Parallel Whether the coupler supports transfer of field data and other features in parallel

 Multiple coupler instances Parallelism is achieved by instantiating multiple couplers, each assigned its own

subset of fields

Generality Degree to which specific kinds of scientific components are recognized or required

by the coupler

 Constituent models The coupler is generic such that arbitrary

models can be coupled without requiring changes to the coupler

 Greater than binary

endpoint cardinality

The coupler can manage more than two constituent components

 The Coupler feature (Figure 11) describes properties of the software module(s)

that encapsulate communication and transformation functions among the constituent

models. The Capabilities feature is a container for the set of functional requirements

fulfilled by the coupler and is elaborated in another diagram. The sibling features are

non-functional in nature. The choice of a coupler‘s Manifestation determines whether it

is a separate executable (OASIS) or executes within the same processes as the constituent

58

models as subroutine calls (FMS, MCT). TDT, which exhibits a lower level of

abstraction than the other technologies, can be used to support both manifestations.

ESMF-based couplers are typically not designed as separate executables (see later

discussion on the nature of mediators). BFG is specifically designed to allow flexibility in

this area—that is, both coupler manifestations are supported. Access to Scientific

Content is an optional feature and determines whether or not customized scientific code

(i.e., code dealing with a specific coupling scenario) is supported by the coupler. Hooks

are calls to custom code that appears outside the coupler (BFG supports this through

specification of entry points). Some couplers allow Embedded science to appear directly

in the coupler (ESMF, FMS). Couplers built from MCT and TDT may or may not contain

scientific content. The generic OASIS coupler does not support arbitrary Embedded

science code, although user-defined transformations are supported (modeled as a separate

feature [Capabilities/Numerics/Value Mapping/Scalar Transforms]). The optional

Parallel feature determines whether the coupler supports transfer of field data and other

Capabilities in parallel. All coupling technologies analyzed support parallelism directly

(BFG, ESMF, FMS, ESMF, OASIS) or could be used to build a parallel coupler (TDT).

Finally, the Generality feature specifies whether the coupler is generic with respect to

the Constituent Models (OASIS) and the endpoint cardinality (e.g., the number of

constituents that can be connected to the coupler). BFG can be considered generic

because the constituent models are configured externally via metadata. FMS is not

generic because it targets specific constituent models. ESMF couplers are typically

designed to couple specific components. MCT and TDT can be used to write generic or

non-generic couplers.

59

Capabilities

Capabilities

Data Assimilation
Redistribution /

Repartitioning

 Broadcast

 Scatter / gather

Initiation

Responsibility

Model Driver

Integrated

Driver /

Coupler

Optimization

Automatic Ignoring of

Generated but

Unrequested Field Data

Intersection

only

Transmission

Data Transfer Numerics

Figure 12: Capabilities feature

Term Definition

Transfer of data Transmission of field data among components

 Initiation Responsibility The locus of data transfer initiation

 Model The model initiates data transfer

 Driver A driver initiates data transfer

 Integrated

Coupler/Driver

An integrated coupler/driver initiates data transfer

 Optimization Optimizations applied to the data transfer

 Automatic ignoring of

generated but unrequested

field data

Non-used fields are not transferred

 Intersection only

transmission

No redundant data transferred

Redistribution /

repartitioning

The ability to move data among address spaces in parallel

 Broadcast The ability to broadcast multi-dimensional data from a single address space

into multiple address spaces

 Scatter / gather The ability to distribute multi-dimensional data from a single address space

into multiple address spaces (scatter) and vice versa (gather)

Data assimilation The degree to which the coupling technology provide support for

incorporating observational datasets

Numerics Data alteration performed when moving data between models

file:///C:/Users/Rocky/Documents/writing/svndocs/cfRev8.18.xls%23RANGE!A1

60

Numerics

Numerics

Interpolation /

Regridding

Time

 Accumulation

 Averaging

 Summation

Space

 Dimensionality

(2D, 3D)

 Bilinear

 Higher order

 Integration

 Averaging

 Conservation

 Weight calculation

 User-defined

weights

 Spectral

transformation

 Vector field

Value

Mapping

 Correction vs. data in files

 Merging

 Scalar transforms

Unit

conversion

Weighted

Model

Merging

Figure 13: Numerics feature

Term Definition

Value mapping Transformation that can be applied to fields before or after a coupling exchange

Correction vs. data in files Transformation based on data in an external file

Merging Destination value based on a linear combination of multiple source fields

Scalar transforms Multiplication by or addition with a scalar

Interpolation / Regridding

The spatial and temporal interpolation capabilities supported by the coupling

technology

 Space Spatial interpolation

 Time Temporal interpolation

 Accumulation Ability to accumulate field data from past time steps

 Averaging Average of accumulated field data

 Summation Sum of accumulated field data

 Vector field Support for interpolation of vector fields

Unit conversion Ability to convert among different kinds of units

Weighted Model Merging Merging data from multiple models into a single dataset

61

Environment

Environment

Execution

Model

Memory

 Shared

 Distributed

Multi

Processing

Programming

Language

 Fortran (77,90)

 C/C++

 Java

 Python

Platform

 Supercomputer

 Workstation / laptop

 Web service

Concurrency

Operating

System

 Unix (Linux, *BSD,

AIX, OSX)

 Windows(98, NT, 2K,

XP, Cygwin)

Figure 14: Environment feature

Term Definition

Platform Target computational environment(s) supported

 Supercomputer Support for massively parallel, high performance environments

 Workstation / laptop Support for personal workstations

 Web Service Support for web service-based environments (including execution on third

party computing resources)

Execution Model Supported memory architectures, concurrency and multi-processing, and the

use of multiple threads

 Memory Supported memory architecture

 Shared Shared memory architecture

 Distributed Distributed memory architecture

 Concurrency Support for concurrent execution

 Multi Processing Support for multi-processing

Operating System Supported operating systems

Programming Language Language in which coupled components may be written

62

Setup

Setup

Configuration

Mechanism

 XML

 Text

 Checkout/

configuration

parameter

 Compile

parameter

 Runtime

parameter

 Hard coding

Topology

 Component-

Processor

mapping

 Coupling fields

connections

Data

 Initial conditions

 Boundary values

 Physical constants

Domain

Decompostion

Component

Conformance

Checking

Run

 Time step

 Duration

 Mapping to

executables

 Data transfer

protocols

 Grid type

 Grid resolution

 Component

schedule

 Exchange protocol

(source, target,

period, regridding,

transformations)

Field-level

Metadata

Components

Figure 15: Setup feature

Term Definition

Configuration How the coupled application‘s setup is parameterized to

enable user configuration

 Mechanism Medium and format of expressing a configuration

 XML Configuration parameters in XML file

 Text Configuration parameters in plain text file

 Checkout/configuration

parameter

Configuration set by incorporating specific source code

 Compile parameter Configuration set statically via a compile-time parameter

 Runtime parameter Configuration set dynamically via a run-time parameter

 Hard coding Configuration set in program statements

63

 Run Configuration settings related to the run of the coupled

application

 Time Step Configuration of time step length for the coupled model and

constituent models

 Duration Length of run

 Mapping to executables Selection of which components will run as separate

executables

 Data transfer protocols Selection of communication protocols for data transfer

 Grid type Selection of the kind of grid used

 Grid resolution Selection of grid resolution

 Component schedule Order in which components will execute

 Exchange protocol

(source, target, period, regridding,

transformations)

Settings related to how data will be exchanged

 Topology The high-level spatial arrangement of components including

how they are mapped onto processors

 Component-processor mapping Components assigned directly to processors

 Coupling field connections How data output from one component is mapped to inputs of

another component

 Data Data structure initialization

 Initial conditions

 Boundary values Initialization of data objects containing boundary conditions

 Physical constants Initialization of physical constants

 Field-level Metadata Configuration of field descriptors

 Domain decomposition Specification of how domain will be distributed across

computing resources

Component Conformance Checking The ability to confirm (statically or dynamically) that a

component conforms to certain properties

Components Specification of which components will participate in the run

and how they should be configured

64

Software Architecture

Software

Architecture

Style

 Inversion of Control

 Embedded

 Sandwich

 Metadata-Configured

Connectivity

 Direct Coupling

 Mediator

 Run-time

Reconfiguration

Connectors Driving

Figure 16: Software architecture feature

Term Definition

Connector Behavioral patterns describing how components interact

Driving Support for control abstractions that mediate component sequencing

and step the constituent models forward in time

Style Idiomatic patterns of component and connector organization including

constraints on their interactions

 Inversion of Control The client code implements predefined interfaces that are called by the

framework using a predetermined control pattern

 Embedded Invocations of coupling-related capabilities are embedded directly in

client code

 Sandwich Client code sits between framework superstructure and library

infrastructure

 Central Registry Component is connected to a central registry that contains knowledge

of related components

 Point to Point Component is connected directly to one or more other components

 Mediator Separate component encapsulates interactions between components

 Run-time

reconfiguration

Connectivity of components can be altered at run-time

65

 Software Architecture is one of the top-level features identified during the

analysis (Figure 16). The three subfeatures identify important aspect of the software

architecture of the coupled model: the low-level Connectors (elaborated in Figure 17)

used to transfer data, features related to Driving the constituent models forward in time

(elaborated in Figure 18), and the overall architectural Style employed. An architectural

style is a pattern of structural organization including constraints on how software

components in a system are combined [84]. The styles identified by our analysis include

Inversion of Control, in which constituent models expose interfaces which are called by

a framework (ESMF, FMS, BFG), Embedded, in which coupling-related invocations are

embedded directly in client code, the Sandwich architecture, in which a single

technology provides both an architecture and utility functions (ESMF, FMS), Metadata-

Configured Connectivity, in which the connectivity of constituent models is determined

by external metadata (BFG, OASIS), Direct Coupling, in which constituent models have

direct references to one another (ESMF), Mediator, in which a separate component

encapsulates interactions between constituent models (BFG, ESMF, FMS, MCT,

OASIS), and Run-time Reconfiguration, in which connectivity of constituent models

can be altered dynamically (TDT).

66

Connectors

Connectors

Type

 Call/return - Argument

passing

 Sockets

 Named Pipes

 Shared memory

 Files

 HTTP

 Asynchronous

notifications

Libraries

 PVM

 MPI (1, 2)

 SVIPC

 TDT

Non-Functional

Characteristic

 SSH security

 Data transfer

synchronization

(blocking, non-

blocking)

 Buffering

 Byte swapping

 Block data transfer

 Protocol extensibility

Figure 17: Connectors feature

Term Definition

Type Kinds of connectors supported by coupling technology

 Call/return -

argument passing

Data is exchanged via subroutine arguments

 Sockets Data is exchanged over a network socket

 Named pipes Data is exchanged via Unix named pipes

 Shared memory (in

both concurrent and

sequential

configurations)

Data is exchanged via mutual reference to a shared memory location

 Disk files Data is exchanged by a combination of file writes and reads

 General get / put

routines

Synchronous data exchange via pushes and pulls

 Message passing Data is exchanged via inter-process message passing

 HTTP Data is exchanged via a network connection using the HTTP protocol

 Asynchronous

notifications

Data is exchanged via asynchronous event notifications

Libraries Compatibility with third-party software libraries

 PVM Parallel Virtual Machine

 MPI Message Passing Interface

 SVIPC System V Inter-process Communication

 TDT Typed Data Transfer

Non-functional

Characteristics

Properties of how the connector‘s protocol functions

 SSH security SSH secured channels

 Data Transfer

Synchronization

Coordination mechanism

 Blocking Blocking synchronization

 Non-blocking Non-blocking synchronization

 Buffering Support for buffering of data during transmission

 Byte swapping Support for byte reordering across heterogeneous machine architectures

67

 Block data transfer Degree to which data can be transferred in bulk

 Protocol Extensibility The degree to which the communication protocol can be extended by the user

 The Connectors feature shown in Figure 17 contains two or-features, Type and

Library, that describe the low-level mechanisms used for data transfer and a third feature

describing Non-Functional Characteristics of the connector. Examples of connector

types include Argument Passing, Shared Memory, and Files. MPI is the most popular

communication Library as it is used either exclusively or optionally by all technologies

we analyzed.

68

Driving

Driving

Location of

Driving Code

Intermodel

Time Coordination

Model Coupler Driver

Explicit Nested

Mismatched

Request-Supply

Frequencies

Different

Calendars

Termination

Control

Mechanism

 Convergence

 Preset limit

Staging

Invocation

Ordering

Mechanism

 Constraints

 Fixed schedule

 Dynamic

schedule

Startup

Extent

 Just Driver

 Driver and

Constituents

Initialize Run Finalize
Multple

Phases

Clock

Figure 18: Driving feature

Term Definition

Location of driving code The location of code that determines component sequencing and time

stepping of the constituent models

Model The constituent models contain driving code and/or proceed forward in time

autonomously

Coupler The coupler contains component sequencing code and directs constituent

models to move forward in time

Driver A separate component manages component sequencing and directs constituent

models to move forward in time

Staging The set of predetermined stages that the constituent models are expected to

support

Multiple phases Multi-phase model computations can be scheduled within a single stage

Initialize Driver can request model initialization

69

Run Driver can request model execution

Finalize Driver can request model finalization

Inter-model time

coordination

Support for sequencing of constituent model executions

Termination control

mechanism

The mechanism by which the driver determines that execution should be

terminated

Convergence Execution terminates when degree of change of a field is less than a specified

absolute or relative amount

Preset limit Execution terminates after a fixed number of iterations

Explicit The sequencing of constituent model timestepping is represented explicitly (in

the code or in a configuration file)

Nested The sequencing of constituent model timestepping can be nested

Invocation ordering

mechanism

The mechanism that determines the sequencing of constituent models as they

move forward in time

Constraints Pre-specified rules

Fixed schedule Pre-specified order

Dynamic schedule Order can vary at run-time

Mismatched request-

supply frequencies

Support for coupling models with different request and supply frequencies or

timestep sizes

Different Calendars Support for different calendar schemes

Clock Support for explicitly managing and incrementing model time

Startup Extent Responsibility for starting up models that participate in the coupled

application

Just Driver Constituent models are started independently from the driver and/or coupler

Driver and Component Driver starts execution of constituent models

 The Driving feature shown in Figure 18 determines whether the coupling

technology supports abstractions for model sequencing and stepping constituent models

forward in time. Even though some technologies do not support Driving directly, the

feature is not optional because code that drives the models forward must appear

70

somewhere [Location of Driving Code]: either the constituent models are autonomous

(OASIS), are controlled by the coupler (ESMF, FMS), or are controlled by a specialized

driver (BFG, ESMF). The three are not mutually exclusive: ESMF couplers, for example,

may drive child models forward in time while a top-level driver is used to control the

major constituent models. MCT and TDT do not support driving directly, but do

constrain where driving code is located.

 Coupling technologies may require constituent models to expose external

interfaces based on a pre-defined set of stages [Staging] (ESMF, FMS). ESMF supports

stages with Multiple Phases so that constituent models can undergo more fine-grained

control (e.g., a run stage with several phases). The Inter-model Time Coordination

feature groups a number of features together including whether model sequencing is

Explicit (BFG, ESMF, FMS) and whether a Clock abstraction is available for tracking

and updating model time (ESMF, FMS). The Startup Extent feature shows that in some

cases the user is responsible for starting the constituent models and driver independently

[Just Driver] or if the driver starts the constituent models [Driver and Constituents].

Conclusions

 In this section we evaluate the feature analysis process we used to develop the

coupling technologies feature model. Specifically, we describe ways in which the process

helped us identify and organize domain knowledge and we also hypothesize on steps that

could be taken to improve the analysis. From the beginning, our goal was to improve

code reuse of coupling technologies via automation (primarily generative), so our

evaluation considers how the feature model has helped us to achieve this goal.

We developed the feature model in a bottom-up fashion by first creating an

exhaustive list of features derived from technical documentation, API specifications, and

scientific publications. The final feature model contains 203 features with 55 internal

71

nodes and 148 leaf nodes. The maximum depth from root node to any leaf is six. We

consider the large number of features as an indicator of domain complexity.

Differences in vocabulary in the source literature mentioned above complicated

the analysis because it was not clear if two similar concepts with different names were

actually different concepts or had synonymous names. This caused us to look deeper into

the sources to resolve domain vocabulary issues. The process could have been facilitated

by introducing a prerequisite process step to define a domain dictionary [24] and vet it

with experts.

The initial list of features was flat and spanned multiple printed pages. Because

feature models are hierarchical, we began identifying intermediate features that would

generalize a subset of the features in the flat list. We found this part difficult because

many intermediate features did not correspond with any domain-level concept mentioned

explicitly in the original sources. For example, we coined the term Manifestation to

generalize whether a Coupler was a subroutine or a separate program, even though the

term Manifestation did not appear in any of the sources. Another example is Generality,

which describes whether a Coupler expects certain kinds of scientific constituent models

or whether the Coupler considers constituent models as black boxes. Again, the term

Generality did not appear explicitly in the sources, although the concept was implied.

Given this, it is unknown whether these intermediate features convey the same meaning

to domain experts as we had in mind.

There are some important qualities of coupling technologies, such as flexibility

and non-invasiveness, which we did not model explicitly as features. Although these

qualities are desireable, we expect them to arise as a function of existing architectural

features selected in a specific configuration. For example, selection of the Inversion of

Control feature means that consituent models must expose a calling interface. For models

implementations that currently retain their own thread of control, exposing these

interfaces requires a shift in control paradigm. This will likely require code refactoring

72

and therefore contribute to the couplers perceived invasiveness. Selection of the

Sandwich architectural style feature means that the coupling technology provides both a

set of higher-level abstractions that dictate the structure of components and a set of

lower-level functions that constituent models call. This architecture requires situating

user code between the two layers. This contributes to the perceived invasiveness of the

coupling technology because refactoring may be required at both the higher and lower

abstraction levels.

A top-down approach could complement the bottom-up approach. For example,

we could have started with a high-level view of the domain including a two- or three-

level decomposition and then fit features from our initial list into the existing structure.

We suspect that this approach would result in a cleaner hierarchy, although it requires a

priori knowledge of the domain to predict the best top-level features.

In addition to the feature model itself, we maintained two complementary

documents during the analysis. First, we maintained a spreadsheet [82] that included a

natural language definition of each feature. Looking back, this indicates that improving

our own understanding of the domain was a key motivator for the feature analysis. The

spreadsheet also included a column for each coupling technology analyzed and an ―X‖ in

the column if the coupling technology supported a particular feature. The second

document we maintained was an issues list. We developed the feature model in a

distributed fashion and we found that resolving inconsistencies via email was

cumbersome. Also, it was difficult to track what changes were made to the feature model

and why. The issues list provided a centralized place to track all discussions about an

issue, including its status, the affected features, possible solutions, and the final solution.

This issues list is included in Appendix A.

The large size of the feature model made the analysis process complex. One way

we dealt with this was to split up the feature model into clusters of related features,

typically by selecting an intermediate feature as the root of a smaller feature model. This

73

allowed us to focus on a cohesive set of domain concepts while ignoring others.

However, a negative side-effect of this approach is that we did not define many cross-tree

constraints because sets of features that should participate in a constraint did not always

appear together in the same context. Essentially, in our approach the local view took

priority, likely reducing our ability to make decisions that would lead to a more globally

consistent feature model. Feature model scalability has already been recognized as a

problem: There are some feature models with thousands of features [85] and previous

work has shown that maintaining large monolithic feature models is problematic [86-88].

One solution to dealing with feature model complexity is to build up large feature

models from smaller feature models using composition rules. Acher et al., for example,

define generic insert and merge operators for combining feature models [89]. Using the

approach, the coupling technologies feature model could be derived by merging multiple

smaller feature models—one for each of the coupling technologies participating in the

analysis. An automated or semi-automated compositional approach would also facilitate

evolution of the feature model because new coupling technologies could be added to the

analysis and the combined feature model recreated.

The complete Feature-Oriented Domain Analysis (FODA) process [90] is more

comprehensive than the process we undertook. Additional phases we did not perform

include information analysis, which captures domain knowledge in a conceptual model

such as an object-oriented model or entity-relationship model and operational analysis,

which captures behavioral relationships between objects in the information model and

features in the feature model [24]. Whereas feature models are primarily designed to

support configuration, the conceptual model output from an information analysis informs

the design of a software architecture that supports all possible feature model

configurations. In the next chapter, the object model of ESMF serves as a conceptual

domain model for the design of a domain-specific language compiler.

74

CHAPTER IV

CUPID: A DOMAIN SPECIFIC LANGUAGE FOR COUPLED

EARTH SYSTEM MODELS

 Complexity of Earth System Models is on the rise. Whereas early coupled climate

models featured two major interacting constituent models, atmosphere and ocean, today‘s

ESMs include at least four major constituents plus multiple smaller sub-models. While

increasing the number of constituents leads to higher fidelity models, with it comes an

increase in code volume and complexity. Developer productivity is stifled due to large

code sizes and the complexities of introducing new constituents into an existing coupled

model. Moreover, deriving useful scientific results from ESMs in a timely manner is

directly dependent on the productivity of model developers. A major problem impacting

developer productivity is the level of abstraction at which developers work: There is little

shielding developers from the implementation details of constituent models. Most ESMs

feature large Fortran code bases, some with over one million lines of code. At the

beginning of this chapter we present a case study showing the development process

involved in coupling a regional atmospheric model with a land model embedded in an

ESM. The study describes a significant effort including time spent analyzing the

architectures of the existing constituents, formulating a coupling strategy, implementing

the strategy, and testing. Even with implementation expediency as a priority, the overall

project required one month of effort from a full time developer plus time from the

scientist overseeing the work.

Unfortunately, the increasing numbers of constituents in ESMs and the

requirement to use existing constituent models in new contexts means that the problem of

low developer productivity will likely become worse. What can be done to improve

productivity? A key part of the solution is raising the level of abstraction such that non-

75

essential implementation details are hidden from the developer. Our approach is to create

a domain-specific language (DSL) and compiler that allows the developer to specify

couplings at a high level of abstraction and to automatically generate implementations.

Our DSL is called Cupid, and the details of the DSL and its compiler are described in this

chapter. Our results indicate that the DSL approach is viable for specifying coupling-

related concerns and that it decreases the amount of Fortran code that the developer

writes by hand. However, we have also identified some important limitations that

prevent the DSL from being a complete solution, at least at the current time.

In the next section we present a case study that shows the development processes

required to implement a coupling between two existing models. The subsequent section

describes the benefits of the DSL approach and, for comparison purposes, includes

background on existing use of code generators for ESMs. We then describe the Cupid

DSL and compiler and show how they can be used to generate parts of a coupled model

implementation from a coupling specification. Finally, we evaluate the DSL approach

and present conclusions.

COSMO-CLM
2
 Case Study

A recent coupling implementation of a regional atmospheric model (COSMO-

CLM) with the NCAR Community Land Model (CLM) helps to characterize

development processes required when coupling existing models.

 COSMO-CLM is developed jointly by the COnsortium for Small-scale Modelling

(COSMO) and the Climate Limited-area Modelling (CLM) Community [91]. Originally

developed as a weather prediction model, it has been expanded within the past decade to

support regional climate simulations. When used in weather prediction mode, COSMO is

equipped with a land model (TERRA_ML) that provides lower boundary conditions to

the atmospheric model. At the implementation level, TERRA_ML is tightly integrated

with the atmospheric model: it is invoked via a subroutine call, and field data is accessed

76

via global memory. Because TERRA_ML does not include some key surface processes

important for the longer time scales of climate simulations, COSMO-CLM scientists

decided to couple the atmospheric model in COSMO-CLM with the Community Land

Model (CLM) developed at NCAR. The newly coupled model is called COSMO-CLM
2

[92].

 Once COSMO-CLM scientists decided that NCAR‘s CLM met the scientific

requirements for the land surface scheme, some technical decisions had to be made

regarding the coupling architecture. CLM is the land model component of the

Community Earth System Model (CESM) [93], an IPCC-class global climate model

developed at NCAR. The developers tasked with implementing the new coupling

considered several possible approaches. Before discussing these approaches, we first look

at the architecture of CESM and the existing coupling interface of CLM.

CESM 1.0

CPL7
driver/coupler

ATM LND ICE OCN

Infrastructure

subroutine
call

GLC

Figure 19: CESM architecture

Figure 19 depicts a high-level view of the architecture of CESM. In this diagram,

five constituent models are included: the atmospheric model (ATM), the land model

(LND), the sea ice model (ICE), the land ice model (GLC), and the ocean model (OCN).

Each constituent in the diagram actually represents a set of possible models that share the

77

same interface: a fully prognostic model, a ―data‖ model (e.g., DATM) that delivers

offline field data read in from files, a ―stub‖ model (e.g., SATM) which does no

computation, and a ―dead‖ model (e.g., XATM), which returns analytic data used to test

the interpolation and field redistribution code in the coupler/driver. The user makes

choices about specific constituents during configuration time. A set of pre-validated

configurations (called ―compsets‖) are included with the CESM distribution.

 In CESM, each constituent model is implemented as a Fortran module with a

standardized interface consisting of three subroutines: one to initialize the model, one to

compute a single timestep, and one to finalize the model. These subroutines are called

from a driver program (CPL7) in a predetermined sequence. The constituents and driver

program share a common infrastructure layer including functions for time management,

I/O, and coupling. The dotted line around the driver, constituents, and infrastructure

indicate that all components are compiled and linked into a single executable (i.e., SPMD

architecture).

 In November 2011, I conducted an interview with Eric Maisonnave, the principal

developer responsible for implementing the new COSMO-CLM coupling, and Edouard

Davin, the lead scientist on the project [94]. The purpose of the interview was to elicit the

development process required to couple COSMO-CLM with CLM. The findings are

summarized here.

Three coupling strategies were initially identified:

1. integrate the COSMO atmospheric model into CESM as a ―first-class‖

component,

2. adapt a standalone version of CLM so that COSMO could invoke it directly

via subroutine calls, or

3. modify the offline atmospheric component (DATM) to send/receive coupling

fields from COSMO via an external coupler (OASIS).

78

CPL7
driver/coupler

COSMO ICE OCN

Infrastructure

GLC
CLM4
(LND)

disabled

COSMO implemented as
a “first class” CESM

atmospheric component

Figure 20: The first coupling approach was to adapt COSMO into a first class component of the CESM

architecture such that it would be called by the existing CPL7 driver

 The first option considered was to adapt the COSMO atmospheric model into a

component within the existing CESM architecture. Figure 20 depicts this option.

Specifically, COSMO would be adapted to implement CESM interfaces and it would be

invoked via the driver in the same way that the existing CESM atmospheric models are

invoked. In this configuration, the sea ice, land ice, and ocean models would be disabled.

Davin noted that this option was considered ―too expensive‖ in comparison with the other

options. Specifically, he mentioned that integrating COSMO into the existing CESM

architecture requires first ―becoming an expert of CESM,‖ a time consuming process.

Furthermore, maintenance becomes a burden with this option: someone must keep

COSMO up to date with new releases of CESM. Although not specifically mentioned by

Davin, the infrastructure layer depicted at the bottom of Figure 20 implies that a fully

integrated COSMO component should use the same infrastructure components for time

management, coupling, and I/O. This entails replacing existing infrastructure within

COSMO with the equivalent CESM infrastructure.

79

CLM 3.5

COSMO

subroutine
call

Figure 21: The second coupling approach was to integrate COSMO with a standalone version of CLM into

a single executable with CLM called as a subroutine.

Option two was implemented at the Swiss Federal Institute of Technology, Zurich

(ETHZ). In this version, COSMO invoked a standalone version of CLM (CLM 3.5)

directly via subroutine calls in a single executable (see Figure 21). This architecture

allows data to be exchanged between the two constituents by accessing variables in a

shared address space. However, this approach entailed an expensive scatter/gather

process in which all field data from CLM was gathered on a single process and then

redistributed. Because the land model only performs calculations on a subset of the global

domain, the total number of grid points managed by each model differed. Furthermore,

both models were configured to distribute grid points evenly among all of the available

processes. The result is that a repartitioning of field data was required for coupling

exchanges so that the COSMO component could access the appropriate land points

required for boundary conditions. For simplicity of implementation, the repartitioning

algorithm required gathering all CLM grid points on a single process and redistributing

the points. This created a significant performance bottleneck compared with a distributed

repartitioning algorithm.

80

CPL7
driver/coupler

DATM ICE OCN

Infrastructure

GLC
CLM4
(LND)

disabled

Adapted version of the
CESM “data”

atmospheric model

OASIS
coupler

COSMO
atmosphere

subroutine
call

inter-process
message

inter-process
message

Figure 22: The third coupling approach leveraged asynchronous communication calls and the OASIS

coupler which allowed both COSMO and CESM to retain control.

Option three, which involved leveraging the DATM ―data‖ atmospheric

component of CESM, was identified as the preferred coupling implementation. In this

approach, DATM was adapted in two ways: First, I/O calls that would normally read

field data from a file were replaced with asynchronous calls to prism_get() for

receiving data from the OASIS coupler. Secondly, DATM, which is normally used for

one-way coupling (i.e., data flowing out of DATM to the other models), was changed to

allow for two-way coupling to enable sending field data from CLM to DATM and

ultimately to COSMO via OASIS.

 The advantages of option three include [95]:

 Simplicity of implementation. The implementation required the least number

of code changes compared to the other two approaches. This is attributed to

the ―non-intrusiveness‖ of the asynchronous prism_put() and

prism_get() calls which can be located in model code wherever field data

is available or required.

 Modularity. COSMO and CLM are loosely coupled because they

communicate only via the external OASIS coupler and do not control each

81

other. Furthermore, the interface between DATM and OASIS is small,

involving only calls to the prism_put() and prism_get() subroutines.

 Scalability. This approach can take advantage of the internal parallelism

already supported by DATM.

 Extensibility. It should be possible to re-use this coupling interface with other

configurations of CESM. In particular, the other components (sea ice, land

ice, and ocean) could be enabled to exchange data with COSMO.

 There is tension between architectural purity and expediency of implementing the

coupled model. In the case of COSMO-CLM
2
, implementation expediency took

precedence and the overall architectures of COSMO-CLM and CESM were both

retained. This decision was made because COSMO-CLM
2
 has an acceptable level of

performance at its current resolution and because the COSMO-CLM developers desired

to keep the two models as separate as possible to allow for independent version updates.

However, it was recognized that further development would be necessary to increase the

resolution and parallelism of the system, and in this case a more integrated solution

would likely be required [95]. The implementation required the addition of eight Fortran

files and modification of three. Changes were made to the build system to include the

OASIS libraries and modified source files and input namelists were modified to read in

the regional grid data from the DATM and CLM components. The total time for

implementation and testing was one person-month.

 We make the following observations about the COSMO-CLM
2
 development

process. First, even though the first approach offered architectural purity and

performance advantages, it was not selected due to the time required to learn the internals

of CESM and the significant development investment required to adopt CESM coupling

infrastructure into COSMO-CLM. Secondly, the OASIS-based solution that was actually

implemented (option three) aims to reduce code modifications through the use of

asynchronous communication calls. We consider this solution the best-case scenario as

82

far as simplifying the implementation burden, although it nonetheless required addition

and/or modification of eleven Fortran source files. We expect that a more integrated

solution, such as use of a framework-based coupling technology, would require even

more extensive changes. Finally, while the one month development time is not so

expensive as to be impractical, we question the long term sustainability of this approach

as model complexity increases and the number of constituents in an ESM continues to

rise. Moreover, we would like to encourage the ESM community to begin taking steps to

greatly reduce or eliminate the need for extensive manual code modifications for

composing constituent models.

Benefits of DSLs

In general, DSLs trade generality of a language for expressiveness tailored to a

specific domain [55]. The expected benefits of developing a DSL include increased

productivity, the ability to work at a high level of abstraction, reduced maintenance cost,

and support for domain-level validation and optimizations [56]. Furthermore, the

existence of a DSL indicates the maturity of a domain as it is the final stage in the

progression of reusable software from traditional subroutine libraries to object-oriented

frameworks to DSLs [56].

DSLs have been shown to provide significant productivity gains in multiple

domains. At Nokia, productivity gains of 1000% have been reported through the use of a

DSL for specifying mobile phone applications [96]. Increased productivity is attributed to

(1) the ability of designers to work at a higher abstraction level so that implementation

details can be ignored, (2) the use of code generators to link designs to

implementations—i.e., developers are ―writing code‖ as they design, and (3) the

existence of a tool effective enough to deter developers from writing code outside the

tool. A study of the DSL/code generator approach at the U.S. AirForce indicates a 300%

productivity increase compared to developing with best-practice code components for the

83

message translation and validation domain [97]. The researchers attributed productivity

gains to the increased flexibility of the generative approach and the ability to deal with a

greater range of specifications by operating at a higher level of abstraction. Finally,

Lucent reports productivity improvements in the range of 3-10 times by using DSLs for

specification of software product lines [98]. Productivity gains are attributed to the ability

of developers to specify only aspects that differ among family members while leaving the

common aspects implicit.

 The goal of the Cupid DSL and compiler is to increase modeler productivity by

raising the level of abstraction of the coupling-related concerns in ESMs. Although

previous studies show the potential of the DSL approach, the success of DSLs in other

domains does not automatically guarantee productivity increases in the Earth System

Modeling domain. Note, for example, that the 10-fold productivity increase reported by

Nokia is due to the ability of the developers to generate code for an entire application

based on a complete specification written in the DSL. An important question for the ESM

domain, then, is to determine how much of the application can be specified at the higher

level of abstraction and generated.

 Although the DSL approach to coupling is novel, code generation has made some

inroads into the ESM domain, but in a limited manner. For example, the Weather

Research and Forecasting model (WRF) and Model for Prediction Across Scales (MPAS)

models support a ―registry‖ tool that generates repetitive code structures that would

otherwise be tedious and error-prone to write by hand [99]. The registry tool generates

code to declare, allocate, and initialize state data, both formal and actual argument lists

for passing data between subroutines, calls to I/O subroutines for state data, code to

implement halo exchanges, and convenience methods for accessing namelist parameters.

Another use of code generation technology can be seen in the OpenPALM dynamic

execution environment which generates code to interface the user‘s implementation with

scheduling and launching modules [100]. This approach replaces explicit calls to a

84

model‘s initialize and finalize subroutines making it easier to start several instances of the

same code in parallel or in a sequence or to choose if a model starts as a standalone

executable or as a subroutine in combination with other models in a single executable.

Finally, the BFG tool generates bespoke (customized) framework code based on a

coupling specification in XML. Code generation is used to achieve flexibility of

deployment: constituent models can be wrapped in a single executable or in multiple

executables, and models can be executed sequentially, concurrently, or in a hybrid mode.

Figure 23: The conceptual architecture of a coupled Earth System Model. The superstructure layer defines

the architecture and flow of control, the science layer contains computations derived from discrete forms of

PDEs, and the infrastructure layer contains abstract data types, utilities, and other building blocks.

 In general, coupling concerns in an ESM can be categorized based on the

conceptual architecture shown in Figure 23. The superstructure layer defines the overall

architecture of the coupled model, including its division into components and the flow of

control. The science layer contains field calculations based on discrete versions of the

underlying mathematical model. The infrastructure layer contains building blocks

including abstract data types for managing metadata and distributed objects,

communication and transformation operators, and other utilities such as a time manager,

85

I/O package, and configuration manager. Although this structure has been used primarily

to describe framework-based architectures such as ESMF- or FMS-based models, when

taken as a conceptual architecture, it can be applied universally to all ESMs. In other

words, all ESMs must have superstructure, science, and infrastructure parts. However,

not all ESMs feature an implementation architecture with these three explicit layers. In

the case of models coupled using OASIS, the overall flow of control defined by the

superstructure is diffused through all participant models because each model retains its

own thread of control. And, in some cases the infrastructure layer is customized for a

particular model, such as MPAS, which contains a customized halo communication

implementation for its unique centroidal Voronoi tessellation grid structure [101].

 Of the coupling technologies studied in the feature analysis presented earlier, only

two include both infrastructure and superstructure abstractions—FMS and ESMF, and

only ESMF is not tied to a particular model (FMS is designed for the GFDL climate

model). In order to generate both infrastructure and superstructure code for a wide range

of ESMs, we chose ESMF as the supporting library for the DSL.

The Cupid DSL

 We describe the process used to derive the Cupid DSL, the DSL‘s abstract syntax,

and how instances of the DSL are translated into implementations. In the next section we

show how the DSL can be used to specify and generate a simple fluid dynamics coupled

model. Most approaches to developing a DSL involve three phases: (1) analysis, in which

the problem domain is identified and domain knowledge is gathered and clustered into

semantic notations and operations that form the abstract syntax of the DSL; (2)

implementation, in which a software library is constructed that implements the semantic

notations and a compiler is built that translates the DSL syntax into library calls; and (3)

use, in which DSL programs are written and compiled [56]. This approach was followed

86

in the development of the Cupid DSL with the recognition that the analysis and some

portions of the implementation phases were completed by the ESMF team—i.e., the

domain knowledge is already encapsulated in the structures and behaviors of the

framework API. Previous work in the software engineering community has shown that a

DSL can be generated from a framework [50, 57].

 The DSL is derived by identifying the domain model elicited by the framework‘s

structures and behaviors. A domain model defines the vocabulary of the domain and

explicitly represents domain concepts and their relationships using some modeling

formalism, such as a class model [24]. The concepts in the domain model map to the

syntactic language constructs of the DSL. Domain concepts include Gridded Component,

Coupler Component, Array, Field, Grid, Clock, etc.

The ESMF code base has explicit infrastructure and superstructure parts as

indicated by the folder structure of the source distribution. The infrastructure contains a

set of abstract data types and technical services accessed in model code by calling

parameterized subroutines as in a traditional library. Some of the main classes in the

infrastructure include DistGrid, a distributed index space, Array, a distributed, multi-

dimensional data structure for storing model state, Grid, an abstraction over DistGrid

that overlays the index space with geographic coordinates, and Field, an abstraction that

relates an underlying Array to a Grid and includes additional metadata. The

superstructure is the set of classes that form the overall architecture of the coupled model,

including scientific components (extensions of the class GridComp), couplers (extensions

of the class CplComp), and Import and Export States, which encapsulate Field data

transferred among gridded and coupler components.

We defined the DSL‘s domain model manually and mechanically by

systematically mapping structures in the framework API to classes the domain model. In

addition to mapping over existing concepts found in the API, we performed some domain

engineering by defining some additional classes that do not explicitly appear in the API.

87

In a few cases, the object hierarchy has been changed to take better advantage of attribute

inheritance—e.g., we introduced an abstract parent class ESMFComponent with subclasses

ESMFGriddedComponent and ESMFCouplerComponent—but the conceptual semantics of

ESMF have not changed during the mapping process. We added classes to the domain

model on an as needed basis by iterating among partially specifying an application,

generating an implementation, comparing the implementation to a complete, hand-coded

application, and finally adding new classes to the DSL domain model, working toward a

specification that describes the hand-coded version as completely as possible. We found

that complete ESMF applications could not be specified using only the DSL constructs.

This will be discussed in greater detail in the evaluation section.

 Figure 24 shows the overall Cupid architecture. A coupling specification is built

using an Eclipse-based visual builder. The Cupid compiler translates the specification

into an ESMF implementation which is compiled and linked to the ESMF binary to

produce an executable.

Figure 24: The Cupid workflow. The specification is build graphically and input to the Cupid compiler.

The compiler generates an ESMF-based implementation which is compiled and linked to the ESMF library.

 The domain model is represented as a set of classes in the Ecore metamodel—a

UML-like object-oriented modeling language. Ecore models are built using the Ecore

88

toolset that is part of the Eclipse Modeling Framework
9
. The UML class diagram in

Figure 25 shows the infrastructure classes derived from the ESMF API. Arrows point

from more specialized classes to general classes. Lines between classes indicate an

association and cardinality constraints appear at the end of each line. The abstract class

ESMFScopedItem is not an explicit member of the ESMF API, although we added it as a

parent of all structures that can be contained within an ESMFGriddedComponent,

ESMFCouplerComponent, ESMFDriver, or ESMFMethod (init, run, finalize). Class

properties (attributes) have been elided to simplify the diagram.

Figure 25: Infrastructure classes in the ESMF domain model

9
 http://www.eclipse.org/modeling/emf/

 pkg Infrastructure

ESMFGrid

ESMFStateItem

ESMFField ESMFArray

ESMFDistGrid

ESMFState

ESMFScopedItem

ESMFClock

ESMFArraySpec

ESMFRouteHandle

ESMFTimeESMFTimeInterv al

Superstructure::

ESMFScope

* 1

*1

*

*

1

1 1

*

89

 Figure 26 shows the superstructure classes in the ESMF domain model. Some of

the classes in the superstructure domain model represent concepts or coding structures

that would be explicit in ESMF-based implementations although they do not appear

explicitly in the API. These classes were added to increase the amount of code generation

possible and to simplify specifications. The added concepts include:

 ESMFNamedEntity, an abstract class for all ESMF objects that have a name,

 ESMFScope, an abstract class for ESMF structures that can contain and define a

scope for other ESMF structures (e.g., a gridded component contains and defines

a scope for field and grid objects),

 ESMFWorkspace, a top level container for organizing multiple components,

 ESMFComponent, an abstract base class with attributes common to gridded

components, coupler components and drivers,

 ESMFDriver, a unit of execution for driving a set of child components,

 ESMFSimpleCoupler, a subclass of ESMFCouplerComponent that supports the

well-defined communication and transformation operations redistribution and

regridding,

 ESMFFieldConnection, a class used to map between fields in two models.

90

Figure 26: Superstructure classes in the ESMF domain model

 The Cupid compiler translates the user‘s specification into ESMF library calls and

other general-purpose programming language constructs. The DSL compiler is an

example of an application generator—a compiler that translates a high-level

specification into a lower-level language, such as a general-purpose programming

language [25]. The compiler is implemented using a set of transformations written in the

MOF Model To Text Transformation Language (MOFM2T) [102]. The MOFM2T

language makes use of templates with placeholders for textual data extracted from a

model. Syntactically, logic that navigates a model and produces text is placed inside

square brackets. Template can be composed by invoking one template from another.

 pkg Superstructure

ESMFComponent

ESMFCouplerComponentESMFGriddedComponent

ESMFWorkspace

ESMFNamedEntity

ESMFScope

ESMFSimpleCouplerComponent

ESMFDriv er

ESMFFieldConnection

Infrastructure::

ESMFScopedItem

1..*

*

dstComponent

1

srcComponent

1

*

children

*

91

 By and large, structures in the specification are mapped to structural features of

Fortran—for example, an ESMFGriddedComponent is mapped to a Fortran module and an

ESMFField is mapped to a Fortran variable of the derived type ESMF_Field. Figure 27

shows the MOFM2T template that generates an ESMF initialization subroutine.

01 [template public genESMFInitMethod(c : ESMFGriddedComponent)]
02 subroutine init_(comp, istate, ostate, clock, rc)

03 type(ESMF_GridComp) :: comp

04 type(ESMF_State) :: istate

05 type(ESMF_State) :: ostate

06 type(ESMF_Clock) :: clock

07 integer, intent(out) :: rc

08

09 rc = ESMF_SUCCESS

10 [genDebugInfo(c.name, 'init_', 'enter')/]
11

12 [for (arraySpec : ESMFArraySpec | c.item->filter(ESMFArraySpec))]
13 call ESMF_ArraySpecSet([arraySpec.name/], rank=[arraySpec.rank/],
14 typekind= [arraySpec.typekind/], rc=rc)
15 [/for]
16 [for (distGrid : ESMFDistGrid | c.item->filter(ESMFDistGrid))]
17 [distGrid.name/] = ESMF_DistGridCreate(
18 minIndex = [toFortranArrayConstructor(distGrid.extent, 'min')/],
19 maxIndex = [toFortranArrayConstructor(distGrid.extent, 'max')/],
20 regDecomp = [toFortranArrayConstructor(distGrid.regularDecompositionSize)/],
21 rc=rc)

22 [/for]
23

24 [for (grid : ESMFGrid | c.item->filter(ESMFGrid))]
25 [grid.name/] = ESMF_GridCreate(distGrid = [grid.distGrid.name/], rc=rc)
26 [/for]
27

28 [for (field : ESMFField | c.item->filter(ESMFField))]
29 [field.name/] = ESMF_FieldCreate(grid=[field.grid.name/],
30 arrayspec = [field.arraySpec.name/], &
31 indexflag = [field.index/], &
32 totalLWidth = [toFortranArrayConstructor(field.totalLWidth)/], &
33 totalUWidth = [toFortranArrayConstructor(field.totalUWidth)/], &
34 name="[field.name/]", rc=rc)
35 [/for]
36

37 ...elided...

38

39 [genDebugInfo(c.name, 'init_', 'exit')/]
40 end subroutine init_

41 [/template]

Figure 27: The model-to-text template for generating an ESMF initialization method. Bold code inside

square brackets is part of the template language. Lines 2-7 are the required ESMF subroutine interface.

Lines 12-14 set properties of any ESMF_ArraySpec objects. Lines 16-22 and 24-26 instantiate

ESMF_DistGrid and ESMF_Grid objects, respectively. Lines 28-35 instantiate ESMF_Field objects.

92

Case Study: Coupled Flow Demo

 The Cupid DSL and compiler have been evaluated by comparing two versions of

a representative ESMF application: The first version is a hand coded implementation

written against the ESMF API in the traditional way. The second version is generated

based on a specification written in the DSL.

Driver
(CoupledFlowApp)

Coupled Flow

Flow Solver Coupler Injector

Figure 28: Architecture of ESMF Coupled Flow Demo Application

 The representative application is a simple coupled fluid dynamics model called

the ―Coupled Flow Demo‖ that exercises many of the key API methods of ESMF. This

demo application is part of the ESMF release and is available on the ESMF web site
10

.

The architecture of the Coupled Flow Demo is depicted in Figure 28. The application

includes three Gridded Components, one Coupler Component, and a Driver program. The

Flow Solver Gridded Component solves the fluid flow PDEs using an explicit finite

difference scheme on a logically rectangular two-dimensional grid with constant cell

spacing. The boundary conditions allow constant inflow from the left, constant outflow to

the right, and free-slip insulated boundaries on the top and bottom. The Flow Solver

component allows a second inflow from the bottom boundary. The Injector Gridded

10

 http://www.earthsystemmodeling.org/users/code_examples/external_demos/ESMF_CoupledFlow_ed.shtml

http://www.earthsystemmodeling.org/users/code_examples/external_demos/ESMF_CoupledFlow_ed.shtml

93

Component models the inflow into the Flow Solver domain by providing a bottom

boundary condition. The Injector component uses an identical grid, although the data

distribution does not match that of the Flow Solver components. The Coupler component

is responsible for communicating data between the Flow Solver and Injector components

by performing a redistribution operation. The Coupled Flow Gridded Component

maintains references to the Flow Solver, Coupler, and Injector Components, invoking

each iteratively for a configurable period of modeled time. The separate top level driver

is included to indicate that the Coupled Flow Gridded Component could be nested as a

sub-component in a larger application.

 The hand written application comprises eight Fortran 90 source files and 2243

lines of code, not including the ESMF library itself. Figure 29 shows a graph of the

source files in the hand-written implementation including dependencies derived from a

static analysis of the code using the Understand Fortran
11

 tool. Arcs are labeled with a

number indicating the number of static dependencies (e.g., variables references,

subroutine calls) between source files.

For the DSL version, we specified the Coupled Flow Demo so that the generated

code would match the modular structure of the hand-coded version as closely as possible.

Specifying the static structure was a straightforward task using the visual builder. First

we created an empty ESMFWorkspace element and then added three

ESMFGriddedComponents (FlowSolver, Injector, and CoupledFlow), an

ESMFSimpleCouplerComponent (Coupler), and an ESMFDriver (CFlowDriver). The

hierarchical relationship shown in Figure 28 was also straightforward to reproduce by

specifying that CoupledFlow is a child of CFlowDriver and FlowSolver, Injector, and

Coupler are children of CoupledFlow.

11

 http://www.scitools.com/

http://www.scitools.com/

94

Figure 29: Static dependency counts in the ESMF Coupled Flow Demo application

01 <component xsi:type="esmf:ESMFGriddedComponent"

02 name="FlowSolver" parent="//@component[name='CoupledFlow']">

03

04 <item xsi:type="esmf:ESMFArraySpec" name="fsArraySpec"

05 typekind="ESMF_TYPEKIND_R4" rank="2"/>

06

07 <item xsi:type="esmf:ESMFDistGrid" name="fsDistGrid">

08 <extent min="1" max="100"/>

09 <extent min="1" max="100"/>

10 <regularDecompositionSize>2</regularDecompositionSize>

11 <regularDecompositionSize>2</regularDecompositionSize>

12 </item>

13

14 <item xsi:type="esmf:ESMFGrid" name="fsGrid"

15 distGrid="//@component[name='FlowSolver']/@item[name='fsDistGrid']"/>

16

17 <item xsi:type="esmf:ESMFField" name="fs_sie"

18 grid="//@component[name='FlowSolver']/@item[name='fsGrid']"

19 arraySpec="//@component[name='FlowSolver']/@item[name='fsArraySpec']">

20 <totalLWidth>1</totalLWidth>

21 <totalLWidth>1</totalLWidth>

22 <totalUWidth>1</totalUWidth>

23 <totalUWidth>1</totalUWidth>

24 </item>

25

26 <!-- ... additional fields elided ... -->

27

28 </component>

Figure 30: XML representation of the FlowSolver component specification

ESMF Demo

esmf_library

esmf_library/superstructure

362

esmf_library/infrastructure

731

1293 / 4698

InjectArraysMod.F90
InjectorMod.F90

25

FlowUtilMod.F90

10

CoupledFlowDemo.F90

3

FlowSolverMod.F90
3

CouplerMod.F90
3

10

FlowArraysMod.F90
603

9
CoupledFlowApp.F90

3

95

 Each ESMF component contains other abstract data types. Specifically, the

FlowSolver component contains an ArraySpec, a DistGrid, a Grid, and multiple Field

objects. The ArraySpec defines the rank, type, and precision of an array, and these are

modeled as properties of the ESMFArraySpec class. The DistGrid describes the global

index space of the FlowSolver component and its decomposition across processors.

Because the FlowSolver uses a simple 2D Cartesian grid, it can be described using two

integer parameters for each dimension. The Coupled Flow decomposition strategy is

simple and can be described using an integer parameter for each dimension of the

distributed grid. The Grid abstract type is built on top of the DistGrid and enables the

user to define a system of coordinates for the grid. For some kinds of grids, such as

curvilinear or unstructured grids, coordinates must be provided for each grid point

individually—this is the most general case. Currently, the DSL does not support the

general case of specifying grid coordinates on a point-by-point basis. Instead, the user

must modify the generated code to supply grid coordinates, either by calculating them on

the fly or reading coordinate data from a file. Fields are specified by providing a field

name and associated ArraySpec and Grid objects that appear in the same scope—i.e.,

these objects cannot be automatically shared across component boundaries. Figure 30 is

an XML representation of the FlowSolver specification. For brevity, only one of the field

elements is shown (fs_sie, lines 17-24), although the other 11 field specifications have a

similar structure. In total, the XML representation of the entire Coupled Flow

specification required 183 lines, assuming all XML attributes appear on the same line as

the element declaration itself.

96

Figure 31: Screenshot of Cupid's Eclipse-based visual builder

Evaluation

 We evaluate the DSL by analyzing the coupling-related concerns that can be

specified in the language and the amount of code that can be generated. Overall, our

experience indicates that the DSL approach is viable for specifying and generating parts

of coupling superstructure and infrastructure. The DSL is well suited to specifying static

(structural) aspects of at least simple coupled models. The visual builder screenshot

shown in Figure 31 clearly shows structural relationships and enables a developer to

quickly grasp the overall architecture of an ESMF-based application. We expect the

generator to provide productivity gains by automating routine development tasks,

especially implementation of boilerplate code required by ESMF.

 Unfortunately, the Cupid DSL and compiler do not support full code generation—

i.e., some parts of the Coupled Flow Demo required hand coding. Figure 32 indicates the

lines of code in the generated code skeleton and the total lines of code in the completed

version, including code that was manually inserted. The horizontal axis lists each file in

97

the generated implementation. Note that, when compared to the original version of the

Coupled Flow Demo implementation, the code from two files FlowArraysMod.F90 and

InjectArraysMod.F90, which primarily deal with declaring and allocating field arrays and

instantiating ESMF_Field objects, have been incorporated into the main gridded

component files, FlowSolverMod.F90 and InjectorMod.F90 respectively. The chart

indicates that one file in particular, FlowSolverMod.F90 required extensive manual

changes. Most of the code in this file is the implementation of the field updates based on

the fluid flow PDEs. The DSL currently does not support specification of the underlying

mathematical model. Therefore, we do not attribute the requirement to modify code to

any inherent limitations of Fortran itself.

 Figure 33 shows for the full implementation, the lines of generated code that were

left untouched (487, 35%), the lines of code that were added (865, 63%), and the lines of

generated code that required modification (31, 2%).

Figure 32: The first bar in each pair indicates the number of lines of code generated by the DSL compiler.

The second bar in each pair indicates the number of lines of code in the final implementation, including

code added by hand.

0
100
200
300
400
500
600
700
800
900

1000

Li
n

e
s

o
f

C
o

d
e

Lines of Code
Generated and Hand Coded

Generated Skeleton

Complete (Generated +
Hand Coded)

98

Figure 33: The number of lines of codes untouched, inserted, and modified in the final implementation of

the Coupled Flow Demo

 Code tangling—the interleaving of code that addresses multiple concerns—is a

limiting factor to the effectiveness of the DSL as a specification language. Figure 34

shows visually the interleaving of concerns by color coding the FlowSovler component‘s

implementation using three colors: light grey for the superstructure, medium grey for the

science, and dark grey for the infrastructure. Significant interleaving is seen even with the

coarse-grained coloring scheme. While generation of both superstructure and

infrastructure implementations is feasible, the template-based code generator does not

adequately address the interleaving of multiple concerns seen in the hand coded version.

 Given that full blown ESMs used in the major climate modeling centers have two to

three orders of magnitude more lines of code (e.g., CESM 1.0 has over 500,000 LOC

[103]), what can be extrapolated from this experiment to actual ESM implementations?

The sample application includes only a basic mathematical model when compared to the

amount of science encoded in an actual ESM. We conclude, therefore, that the relative

Untouched,
487, 35%

Inserted, 865,
63%

Modified, 31,
2%

Lines of Code

99

percentages of generated to hand-modified code would not directly carry over—i.e., if an

attempt were made to generate coupling superstructure and infrastructure for the CESM

model, we do not expect to generate 35% of the final implementation. However, the

sample application includes many of the same features as a complete ESM. Table 4

indicates which generated feature implementations were untouched, which features

required modifying lines of code, and which features were implemented completely by

hand.

 Table 5 lists, for each ESMF type, whether the DSL is able to generate any code

for the type, the number of associated public API methods defined in the ESMF library,

and the number of API method calls supported by the DSL for that type. The DSL

supports some amount of code generation for 11 of the 23 types (~48%) and API calls

can be generated for 38 of the 387 total public API methods (~10%). The low API

coverage is due to several factors: First, only a small portion of the API is required to

generate useful ESMF applications. Our goal is not to cover the API exhaustively, but to

generate enough API calls to arrive at a working application. Secondly, the DSL does not

support the flexibility of the full API. For example, because only regular data

decompositions are supported, there is no need for the explicit decomposition

representation provided by the DELayout type and its associated API methods. Finally,

ESMF supports advanced features such as unstructured grids (ESMF_Mesh) and the

exchange grid (ESMF_XGrid) which are currently not supported by the DSL.

100

Table 4: Features of the generated Coupled Flow implementation left untouched, modified, and inserted

manually

Features generated and

untouched

Features generated

requiring modification
Features inserted manually

 Static modular structure

 Instantiation of

components, states,

fields

 Populating import and

export states

 Calls to child

components

 Basic coupling

operations

(redistribution or

regrid)

 Memory cleanup

 Setting grid coordinates

 Inheriting grid from

parent component

 Reading parameters

from Fortran namelists

 Setting initial and

boundary conditions

 Field updates for each

timestep

 Halo operation

101

 m odule Flow Solve rMod

 u se ES MF

 u se Fl owArr aysMo d

 u se Fl owUti lMod

 i mplic it no ne

 p rivat e

 i ntege r, di mensi on(4) , sav e :: nbc

 i ntege r, di mensi on(50), sa ve :: iobs _min, iobs _max, jobs _min, jobs _max
 i ntege r, sa ve :: prin tout

 i ntege r, sa ve :: nobs desc
 i ntege r, sa ve :: iflo _min, iflo _max

 i ntege r, sa ve :: coun ter = 0
 i ntege r, sa ve :: prin t_cou nt = 0

 r eal(k ind=E SMF_K IND_R 8), s ave : : dt
 r eal(k ind=E SMF_K IND_R 4), s ave : : dx, dy

 r eal(k ind=E SMF_K IND_R 4), s ave : : uin , rho in, s iein
 r eal(k ind=E SMF_K IND_R 4), s ave : : gam ma, a kb

 r eal(k ind=E SMF_K IND_R 4), s ave : : q0, u0, v0, s ie0, rho0

 r eal(k ind=E SMF_K IND_R 4), s ave : : sie obs

 t ype(E SMF_R outeH andle), sa ve :: halo handl e

 t ype(E SMF_C lock) :: g lobal _cloc k
 t ype(E SMF_G ridCo mp) : : glo bal_g comp

 p ublic Flow Solve r_reg ister

 c ontai ns

 s ubrou tine FlowS olver _regi ster(comp, rc)

 t ype(E SMF_G ridCo mp) :: co mp

 i ntege r, in tent(out) :: rc

 r c = E SMF_F AILUR E

 c all E SMF_G ridCo mpSet Entry Point (comp , ESM F_MET HOD_I NITIA LIZE, user Rou-t ine=F low_I nit1, phas e=1, rc=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)
 c all E SMF_G ridCo mpSet Entry Point (comp , ESM F_MET HOD_I NITIA LIZE, user Rou-t ine=F low_I nit2, phas e=2, rc=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)
 c all E SMF_G ridCo mpSet Entry Point (comp , ESM F_MET HOD_R UN, u serRo u-tin e=Flo wSolv e, rc =rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_G ridCo mpSet Entry Point (comp , ESM F_MET HOD_F INALI ZE, u serRo u-tin e=Flo w_Fin al, r c=rc)
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 p rint *, "F lowSo lverM od: R egist ered Initi alize , Run , and Fina lize rou-t ines"

 r c = E SMF_S UCCES S

 e nd su brout ine F lowSo lver_ regis ter

 s ubrou tine Flow_ Init1 (gcom p, im port_ state , exp ort_s tate, cloc k, rc)

 t ype(E SMF_G ridCo mp) :: gc omp

 t ype(E SMF_S tate) :: im port_ state

 t ype(E SMF_S tate) :: ex port_ state
 t ype(E SMF_C lock) :: cl ock

 i ntege r, in tent(out) :: rc

 t ype(E SMF_G rid) :: gr id

 r eal(E SMF_K IND_R 8), d imens ion(E SMF_M AXDIM) :: globa l_min _coor d
 r eal(E SMF_K IND_R 8), d imens ion(E SMF_M AXDIM) :: globa l_max _coor d

 i ntege r :: count s(2), elb(2), e ub(2)
 r eal(E SMF_K IND_R 8), p ointe r :: coord X(:), coor dY(:)

 i ntege r :: fileu nit

 n ameli st /i nput/ uin, rhoi n, si ein, &
 gamm a, ak b, q0 , u0, v0, sie0, rho0 , &

 prin tout, sieo bs, n obsde sc, i obs_m in, i obs_m ax, &
 jobs _min, jobs _max, iflo _min, iflo _max

 r c = E SMF_F AILUR E

 c all E SMF_U tilIO UnitG et(un it=fi leuni t, rc =rc)
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 o pen(f ileun it, s tatus ="old ", fi le=". /data /coup led_f low_i nput" ,acti on="r ead", iosta t=rc)

 i f (rc .ne. 0) t hen
 prin t *, "Erro r

 stop
 e ndif

 r ead(f ileun it, i nput, end= 20)

 20 c ontin ue

 c lose(fileu nit)

 c all E SMF_G ridCo mpGet (gcom p, gr id=gr id, r c=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_G ridGe t(gri d, lo calDE =0, s tagge rloc= ESMF_ STAGG ERLOC _CENT ER, &

 excl usive LBoun d=elb , exc lusiv eUBou nd=eu b, &

 rc = rc)
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_G ridGe tCoor d(gri d, lo calDE =0, &
 stag gerLo c=ESM F_STA GGERL OC_CE NTER, &

 coor dDim= 1, fa rrayP tr=Co ordX, rc=r c)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)
 c all E SMF_G ridGe tCoor d(gri d, lo calDE =0, &

 stag gerLo c=ESM F_STA GGERL OC_CE NTER, &
 coor dDim= 2, fa rrayP tr=Co ordY, rc=r c)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 d x = (Coord X(eub (1))- Coord X(elb (1))) /(eub (1)-e lb(1))

 d y = (Coord Y(eub (2))- Coord Y(elb (2))) /(eub (2)-e lb(2))

 p rint *, "F low_I nit1(): dx = ", dx, "dy = ", d y

 c all F lowIn it(gc omp, clock , rc)

 i f(rc .NE. ESMF_ SUCCE SS) t hen
 prin t *, "ERRO R in Flow_ init: flo winit "

 e ndif

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_S tateA dd(im port_ state , &
 fiel dList =(/fi eld_s ie, f ield_ u, fi eld_v , fie ld_rh o, fi eld_p , fie ld_q, &

 fiel d_fla g/), rc=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_S tateA dd(ex port_ state , &
 fiel dList =(/fi eld_s ie, f ield_ u, fi eld_v , fie ld_rh o, fi eld_p , fie ld_q, &

 fiel d_fla g/), rc=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all s etFie ldNee ded(e xport _stat e, "S IE", .true ., rc =rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)
 c all s etFie ldNee ded(e xport _stat e, "U ", .t rue., rc=r c)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)
 c all s etFie ldNee ded(e xport _stat e, "V ", .t rue., rc=r c)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all s etFie ldNee ded(e xport _stat e, "R HO", .true ., rc =rc)
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all s etFie ldNee ded(e xport _stat e, "P ", .t rue., rc=r c)
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all s etFie ldNee ded(e xport _stat e, "Q ", .t rue., rc=r c)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)
 c all s etFie ldNee ded(e xport _stat e, "F LAG", .tru e., r c=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 r c = E SMF_S UCCES S

 e nd su brout ine F low_I nit1

 s ubrou tine Flow_ Init2 (gcom p, im port_ state , exp ort_s tate, cloc k, rc)

 t ype(E SMF_G ridCo mp) :: gc omp
 t ype(E SMF_S tate) :: im port_ state

 t ype(E SMF_S tate) :: ex port_ state
 t ype(E SMF_C lock) :: cl ock

 i ntege r, in tent(out) :: rc

 i ntege r :: i, da tacou nt, c ount

 c harac ter(l en=ES MF_MA XSTR) , dim ensio n(7) :: da tanam es
 t ype(E SMF_F ield) :: t hisfi eld

 r c = E SMF_F AILUR E
 d ataco unt = 7

 d atana mes(1) = " SIE"
 d atana mes(2) = " U"

 d atana mes(3) = " V"

 d atana mes(4) = " RHO"
 d atana mes(5) = " P"

 d atana mes(6) = " Q"

 d atana mes(7) = " FLAG"

 d o i=1 , dat acoun t

 if (.not. isFi eldNe eded(expor t_sta te, f ieldN ame=d atana mes(i), rc =rc)) then

 c ycle

 endi f

 call ESMF _Stat eGet(expor t_sta te, i temSe arch= datan ames(i), i tem-C ount= count , rc= rc)

 if(r c /= ESMF_ SUCCE SS) c all E SMF_F inali ze(en dflag =ESMF _END_ ABORT , rc= rc)

 if(c ount .lt. 1) t hen

 ca ll ES MF_St ateGe t(imp ort_s tate, item Name= datan ames(i), f ield= thisf ield, rc=r c)
 if (rc / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=rc)

 ca ll ES MF_St ateAd d(exp ort_s tate, (/th isfie ld/), rc=r c)

 if (rc / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=rc)

 endi f

 e nddo

 r c = E SMF_S UCCES S

 e nd su brout ine F low_I nit2

 s ubrou tine FlowI nit(g comp, cloc k, rc)

 t ype(E SMF_G ridCo mp) :: gc omp

 t ype(E SMF_C lock) :: cl ock
 i ntege r, op tiona l, in tent(out) :: rc

 i ntege r :: statu s
 i ntege r :: i, j, n

 l ogica l :: isLBo und(2), is UBoun d(2)

 i ntege r, di mensi on(1, 2) :: loca l, gl obal
 t ype(E SMF_G rid) :: gr id

 t ype(E SMF_T imeIn terva l) :: time _step

 s tatus = ES MF_FA ILURE

 i f(pre sent(rc)) then

 rc = ESMF _FAIL URE
 e ndif

 c all E SMF_G ridCo mpGet (gcom p, gr id=gr id, r c=sta tus)

 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in Flowi nit: grid comp get"
 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all F lowAr raysA lloc(grid, stat us)

 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in Flowi nit: arra ysglo balal loc"

 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all E SMF_F ieldH aloSt ore(f ield_ u, ro uteha ndle= haloh andle , rc= rc)
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_G ridGe t(gri d, lo calDe =0, i sLBou nd=is LBoun d, is UBoun d=isU Bound , rc= statu s)

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 pr int * , "jm in = ", jm in, " imin = ", imin

 pri nt *, "jma x = " , jma x, " imax = ", imax

 pri nt *, "jmi n_t = ", j min_t , " i min_t = ", imin _t
 pri nt *, "jma x_t = ", j max_t , " i max_t = ", imax _t

 d o j = jmin _t, j max_t
 do i = im in_t, imax _t

 fl ag(i, j) = 0.0

 endd o

 e nddo

 i f (is LBoun d(1)) then

 do j = jm in_t, jmax _t

 do i = imin_ t, im in-1
 flag(i,j) = 1.0

 en ddo

 endd o

 e ndif

 i f (is UBoun d(1)) then

 do j = jm in_t, jmax _t
 do i = imax+ 1, im ax_t

 flag(i,j) = 2.0

 en ddo
 endd o

 e ndif

 i f (is LBoun d(2)) then

 do j = jm in_t, jmin -1
 do i = imin_ t, im ax_t

 flag(i,j) = 3.0
 en ddo

 endd o

 e ndif

 i f (is UBoun d(2)) then
 do j = jm ax+1, jmax _t

 do i = imin_ t, im ax_t

 flag(i,j) = 4.0
 en ddo

 endd o

 do i = im in_t, imax _t

 if (fla g(i,j max). eq.0. 0) fl ag(i, jmax) = 5. 0

 endd o

 e ndif

 d o j = jmin _t, j max_t

 do i = im in_t, imax _t
 u(i,j) = u0

 rh ou(i, j) = rho0* u0

 endd o
 e nddo

 d o j = jmin _t, j max_t

 do i = im in_t, imax _t

 v(i,j) = v0
 rh ov(i, j) = rho0* v0

 endd o
 e nddo

 d o j = jmin _t, j max_t
 do i = im in_t, imax _t

 p(i,j) = (ga mma-1 .0) * rho0 * si e0
 q(i,j) = q0

 si e(i,j) = s ie0

 rh o(i,j) = r ho0
 rh oi(i, j) = rho0* sie0

 endd o
 e nddo

 d o j = jmin _t, j max_t
 do i = im in_t, imax _t

 if (fla g(i,j).eq. 1.0) then
 rho(i ,j) = rhoi n

 sie(i ,j) = siei n

 rhoi(i,j) = rho in*si ein
 en dif

 endd o

 e nddo

 d o j = jmin _t, j max_t
 do i = im in_t, imax _t

 if (fla g(i,j).eq. 1.0) then

 u(i,j) = u in

 rhou(i,j) = rho in*ui n

 en dif
 endd o

 e nddo

 d o n = 1, n obsde sc
 do j = jo bs_mi n(n), jobs_ max(n)

 gl obal(1,2) = j
 do i = iobs_ min(n),iob s_max (n)

 globa l(1,1) = i

 local = gl obal

 if (j min_t <=j . and. j<=jm ax_t .and. imin _t<=i .and . i<= imax_ t) th en

 fla g(i,j) = - 1

 endif

 en ddo

 endd o

 e nddo

 d o i = iflo _min, iflo _max

 do j = 1, 2
 gl obal(1,1) = i

 gl obal(1,2) = j

 lo cal = glob al

 if (jmi n_t<= j .an d. j< =jmax _t .a nd. i min_t <=i . and. i<=im ax_t) then

 flag(i,j) = 10

 en dif

 endd o

 e nddo

 d o j = jmin , jma x

 do i = im in, i max
 if (fla g(i,j) .eq . -1. 0) th en

 u(i,j) = 0 .0
 rhou(i,j) = 0.0

 en dif

 if (fla g(i,j) .eq . -1. 0) th en
 v(i,j) = 0 .0

 rhov(i,j) = 0.0
 en dif

 if (fla g(i+1 ,j) . eq. - 1.0) then

 u(i,j) = 0 .0
 rhou(i,j) = 0.0

 en dif

 if (fla g(i,j +1) . eq. - 1.0) then
 v(i,j) = 0 .0

 rhov(i,j) = 0.0

 en dif

 endd o

 e nddo

 d o j = jmin , jma x
 do i = im in, i max

 if (fla g(i,j).eq. -1.0 .and. flag (i,j+ 1).ne .-1.0 .and . fla g(i+1 ,j).e q.-1. 0) th en

 u(i,j) = u (i,j+ 1)
 rhou(i,j) = rho u(i,j +1)

 en dif
 if (fla g(i,j).eq. -1.0 .and. flag (i,j- 1).ne .-1.0 .and . fla g(i+1 ,j).e q.-1. 0) th en

 u(i,j) = u (i,j- 1)

 rhou(i,j) = rho u(i,j -1)
 en dif

 if (fla g(i,j).eq. -1.0 .and. flag (i+1, j).ne .-1.0 .and . fla g(i,j +1).e q.-1. 0) th en
 v(i,j) = v (i+1, j)

 rhov(i,j) = rho v(i+1 ,j)

 en dif
 if (fla g(i,j).eq. -1.0 .and. flag (i-1, j).ne .-1.0 .and . fla g(i,j +1).e q.-1. 0) th en

 v(i,j) = v (i-1, j)
 rhov(i,j) = rho v(i-1 ,j)

 en dif

 endd o
 e nddo

 c all E SMF_F ieldH alo(f ield_ u, ha lohan dle, rc=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH alo(f ield_ v, ha lohan dle, rc=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH alo(f ield_ rhou, halo handl e, rc =rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH alo(f ield_ rhov, halo handl e, rc =rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH alo(f ield_ rhoi, halo handl e, rc =rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH alo(f ield_ rho, haloh andle , rc= rc)
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH alo(f ield_ sie, haloh andle , rc= rc)
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH alo(f ield_ p, ha lohan dle, rc=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH alo(f ield_ q, ha lohan dle, rc=rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_C lockG et(cl ock, timeS tep=t ime_s tep, rc=st atus)

 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowS olve: cloc k get time step"
 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all E SMF_T imeIn terva lGet(time_ step, s_r8 =dt, rc=st atus)
 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowS olve: time inte rval get"
 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 w rite(*,*) 'dt = ', d t

 c all F lowSt abili ty(st atus)

 i f(sta tus . NE. E SMF_S UCCES S) th en
 prin t *, "ERRO R in FlowS olve: flow stab ility "

 e ndif
 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 i f(pre sent(rc)) rc = ESMF_ SUCCE SS

 e nd su brout ine F lowIn it

 s ubrou tine FlowS olve(gcomp , imp ort_s tate, expo rt_st ate, clock , rc)

 t ype(E SMF_G ridCo mp) :: gc omp

 t ype(E SMF_S tate) :: im port_ state
 t ype(E SMF_S tate) :: ex port_ state

 t ype(E SMF_C lock) :: cl ock

 i ntege r, in tent(out) :: rc

 i ntege r :: i, j

 i ntege r :: datac ount, coun t

 c harac ter(l en=ES MF_MA XSTR) , dim ensio n(7) :: da tanam es
 t ype(E SMF_F ield) :: t hisfi eld

 t ype(E SMF_T imeIn terva l) :: time _step

 d ataco unt = 7

 d atana mes(1) = " SIE"
 d atana mes(2) = " U"

 d atana mes(3) = " V"
 d atana mes(4) = " RHO"

 d atana mes(5) = " P"

 d atana mes(6) = " Q"
 d atana mes(7) = " FLAG"

 r c = E SMF_F AILUR E

 c ounte r = c ounte r + 1

 print * , "In side FS ru n rou tine FlowS olve"

 glo bal_c lock = clo ck

 glo bal_g comp = gco mp

 c all E SMF_C lockG et(cl ock, timeS tep=t ime_s tep, rc=rc)

 i f(rc .NE. ESMF_ SUCCE SS) t hen
 prin t *, "ERRO R in FlowS olve: cloc k get time step"

 e ndif
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_T imeIn terva lGet(time_ step, s_r8 =dt, rc=rc)

 i f(rc .NE. ESMF_ SUCCE SS) t hen
 prin t *, "ERRO R in FlowS olve: time inte rval get"

 e ndif
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

#ifndef PRIN T_WIT H_TIM ESLIC ING
if (cou nter= =1) t hen

 call FlowP rint(gcomp , clo ck, 0 , rc)
endif

if (cou nter= =2) t hen

 call FlowP rint(gcomp , clo ck, 9 80, r c)

endif

#endif

 d o j = jmin , jma x
 do i = im in, i max

 if (fla g(i,j).eq. 10) t hen

 if (f lag(i ,j-1) .eq.1 0) th en

 sie (i,j- 1) = sie(i ,j)
 v(i ,j-1) = v(i,j)

 rho (i,j- 1) = rho(i ,j)

 endif
 rhoi(i,j) = rho (i,j) *sie(i,j)

 rhov(i,j) = rho (i,j) *v(i, j)

 rhou(i,j) = 0.0
 u(i,j) = 0 .0

 en dif
 endd o

 e nddo

#ifndef PRIN T_WIT H_TIM ESLIC ING

if (cou nter= =1) t hen
 call FlowP rint(gcomp , clo ck, 9 99, r c)

endif

#endif

 c all F lowRh oVel(rc)
 i f(rc .NE. ESMF_ SUCCE SS) t hen

 prin t *, "ERRO R in FlowS olve: flow rhove l"

 e ndif
 if (rc / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=rc)

 c all F lowRh oI(rc)

 i f(rc .NE. ESMF_ SUCCE SS) t hen

 prin t *, "ERRO R in FlowS olve: flow rhoi"
 e ndif

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all F lowRh o(rc)

 i f(rc .NE. ESMF_ SUCCE SS) t hen
 prin t *, "ERRO R in FlowS olve: flow rho"

 e ndif
 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all F lowVe l(rc)
 i f(rc .NE. ESMF_ SUCCE SS) t hen

 prin t *, "ERRO R in FlowS olve: flow vel"
 e ndif

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all F lowSt ate(r c)

 i f(rc .NE. ESMF_ SUCCE SS) t hen

 prin t *, "ERRO R in FlowS olve"

 e ndif

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 d o i=1 , dat acoun t

 if (.no t. is Field Neede d(exp ort_s tate, fiel dName =data names (i), rc=rc)) th en
 cyc le

 en dif

 ca ll ES MF_St ateGe t(exp ort_s tate, item Searc h=dat aname s(i), item -Coun t=cou nt, r c=rc)

 if (rc / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=rc)
 if (coun t .lt . 1) then

 call ESMF_ State Get(i mport _stat e, it emNam e=dat aname s(i), fiel d=thi sfiel d, rc =rc)

 if(rc /= E SMF_S UCCES S) ca ll ES MF_Fi naliz e(end flag= ESMF_ END_A BORT, rc=r c)

 call ESMF_ State Add(e xport _stat e, (/ thisf ield/), rc =rc)
 if(rc /= E SMF_S UCCES S) ca ll ES MF_Fi naliz e(end flag= ESMF_ END_A BORT, rc=r c)

 en dif
 e nddo

 p rint *, "C hecki ng fo r Flo wPrin t: co unter = ", coun ter, " pri ntout = ", prin tout
 i f(mod (coun ter, print out) .eq. 0) th en

 prin t_cou nt = print _coun t + 1
 pri nt *, " Ca lling Flow Print "

 call Flow Print (gcom p, cl ock, print _coun t, rc)

 if(r c /= ESMF_ SUCCE SS) c all E SMF_F inali ze(en dflag =ESMF _END_ ABORT , rc= rc)
 e ndif

 r c = E SMF_S UCCES S

 print * , "Le aving Flow Solve "

 e nd su brout ine F lowSo lve

 s ubrou tine FlowR hoVel (rc)

 i ntege r, op tiona l, in tent(out) :: rc

 i ntege r :: statu s
 i ntege r :: i, j

 r eal(k ind=E SMF_K IND_R 4) :: u_ij , u_i pj, r houu_ m, rh ouu_p
 r eal(k ind=E SMF_K IND_R 4) :: v_ip jm, v _ipjp , rho uv_p, rhou v_m

 r eal(k ind=E SMF_K IND_R 4) :: v_ij , v_i jp, r hovv_ m, rh ovv_p

 r eal(k ind=E SMF_K IND_R 4) :: u_im jp, u _ipjp , rho vu_p, rhov u_m

 r eal(k ind=E SMF_K IND_R 4) :: r_pr evj(i min_t :imax _t), r_cur j(imi n_t:i max_t)
 r eal(k ind=E SMF_K IND_R 4) :: r_pr evi, r_cur i

 s tatus = ES MF_FA ILURE

 i f(pre sent(rc)) then
 rc = ESMF _FAIL URE

 e ndif

 r_ curj = rho u(:,j min-1)

 d o j = jmin , jma x

 r_pr evj = r_cu rj
 r_cu rj = rhou(:,j)

 r_cu ri = rhou(imin- 1,j)

 do i = im in, i max

 r_ previ = r_ curi
 r_ curi = rho u(i,j)

 u_ ij = 0.5 * (u(i-1,j) + u (i,j))
 u_ ipj = 0.5 * (u(i+1,j) + u (i,j))

 if (u_i j .ge . 0.0) the n

 rhouu _m = u_ij * r_p revi

 el se
 rhouu _m = u_ij * rho u(i,j)

 en dif

 if (u_i pj .g e. 0. 0) th en

 rhouu _p = u_ipj * rh ou(i, j)

 el se
 rhouu _p = u_ipj * rh ou(i+ 1,j)

 en dif
 v_ ipjm = 0.5 * (v (i,j- 1) + v(i+1 ,j-1))

 v_ ipjp = 0.5 * (v (i,j) + v(i+1 ,j))

 if (v_i pjm . ge. 0 .0) t hen
 rhouv _m = v_ipj m * r _prev j(i)

 el se
 rhouv _m = v_ipj m * r hou(i ,j)

 en dif

 if (v_i pjp . ge. 0 .0) t hen
 rhouv _p = v_ipj p * r hou(i ,j)

 el se

 rhouv _p = v_ipj p * r hou(i ,j+1)
 en dif

 rh ou(i, j) = rhou(i,j) + (dt /dx)* (rhou u_m-r houu_ p) &
 + (dt/d y)*(r houv_ m-rho uv_p) &

 + (dt/d x)*(p (i,j) +q(i, j)-p(i+1,j)-q(i +1,j))

 endd o

 e nddo

 c all E SMF_F ieldH alo(f ield_ rhou, halo handl e, rc =stat us)

 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowR hoVel : rh ou ha lo"
 if(p resen t(rc)) rc = sta tus

 retu rn

 e ndif

 r_ curj = rho v(:,j min-1)

 d o j = jmin , jma x

 r_pr evj = r_cu rj

 r_cu rj = rhov(:,j)

 r_cu ri = rhov(imin- 1,j)

 do i = im in, i max

 r_ previ = r_ curi

 r_ curi = rho v(i,j)

 v_ ij = 0.5 * (v(i,j-1) + v (i,j))

 v_ ijp = 0.5 * (v(i,j+1) + v (i,j))
 if (v_i j .ge . 0.0) the n

 rhovv _m = v_ij * r_p revj(i)
 el se

 rhovv _m = v_ij * rho v(i,j)

 en dif
 if (v_i jp .g e. 0. 0) th en

 rhovv _p = v_ijp * rh ov(i, j)

 el se
 rhovv _p = v_ijp * rh ov(i, j+1)

 en dif

 u_ imjp = 0.5 * (u (i-1, j) + u(i-1 ,j+1))

 u_ ipjp = 0.5 * (u (i,j) + u(i,j +1))

 if (u_i mjp . ge. 0 .0) t hen
 rhovu _m = u_imj p * r _prev i

 el se
 rhovu _m = u_imj p * r hov(i ,j)

 en dif

 if (u_i pjp . ge. 0 .0) t hen
 rhovu _p = u_ipj p * r hov(i ,j)

 el se
 rhovu _p = u_ipj p * r hov(i +1,j)

 en dif

 rh ov(i, j) = rhov(i,j) + (dt /dy)* (rhov v_m-r hovv_ p) &
 + (dt/d x)*(r hovu_ m-rho vu_p) &

 + (dt/d y)*(p (i,j) +q(i, j)-p(i,j+1)-q(i ,j+1))
 endd o

 e nddo

 c all E SMF_F ieldH alo(f ield_ rhov, halo handl e, rc =stat us)

 i f(sta tus . NE. E SMF_S UCCES S) th en
 prin t *, "ERRO R in FlowR hoVel : rh ov ha lo"

 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 i f(pre sent(rc)) rc = ESMF_ SUCCE SS

 i f (co unter .eq. 1) t hen

 call Flow Print (glob al_gc omp, globa l_clo ck, 9 90, r c)

 e nd if

 e nd su brout ine F lowRh oVel

 s ubrou tine FlowR hoI(r c)

 i ntege r, op tiona l, in tent(out) :: rc

 i ntege r :: statu s

 i ntege r :: i, j
 r eal(k ind=E SMF_K IND_R 4) :: rhoi u_m, rhoiu _p, r hoiv_ m, rh oiv_p

 r eal(k ind=E SMF_K IND_R 4) :: dsie dx2, dsied y2

 r eal(k ind=E SMF_K IND_R 4) :: r_pr evj(i min_t :imax _t), r_cur j(imi n_t:i max_t)

 r eal(k ind=E SMF_K IND_R 4) :: r_pr evi, r_cur i

 s tatus = ES MF_FA ILURE

 i f(pre sent(rc)) then

 rc = ESMF _FAIL URE
 e ndif

 r_ curj = rho i(:,j min-1)

 d o j = jmin , jma x

 r_pr evj = r_cu rj

 r_cu rj = rhoi(:,j)

 r_cu ri = rhoi(imin- 1,j)

 do i = im in, i max

 r_ previ = r_ curi

 r_ curi = rho i(i,j)

 if (fla g(i,j).ge. 0.0) then

 if (u(i -1,j) .ge. 0.0) then
 rhoiu _m = u(i-1 ,j) * r_pr evi

 el se

 rhoiu _m = u(i-1 ,j) * rhoi (i,j)
 en dif

 if (u(i ,j) . ge. 0 .0) t hen
 rhoiu _p = u(i,j) * r hoi(i ,j)

 el se

 rhoiu _p = u(i,j) * r hoi(i +1,j)
 en dif

 if (v(i ,j-1) .ge. 0.0) then
 rhoiv _m = v(i,j -1) * r_pr evj(i)

 el se

 rhoiv _m = v(i,j -1) * rhoi (i,j)
 en dif

 if (v(i ,j) . ge. 0 .0) t hen
 rhoiv _p = v(i,j) * r hoi(i ,j)

 el se

 rhoiv _p = v(i,j) * r hoi(i ,j+1)
 en dif

 ds iedx2 = (s ie(i+ 1,j)+ sie(i -1,j) -2.*s ie(i, j))/d x**2
 ds iedy2 = (s ie(i, j+1)+ sie(i ,j-1) -2.*s ie(i, j))/d y**2

 if (fla g(i+1 ,j).e q.-1. 0) ds iedx2 = (2 .*sie obs+s ie(i- 1,j)- 3.*si e(i,j))/dx **2
 if (fla g(i-1 ,j).e q.-1. 0) ds iedx2 = (s ie(i+ 1,j)+ 2.*si eobs- 3.*si e(i,j))/dx **2

 if (fla g(i,j +1).e q.-1. 0) ds iedy2 = (2 .*sie obs+s ie(i, j-1)- 3.*si e(i,j))/dy **2
 if (fla g(i,j -1).e q.-1. 0) ds iedy2 = (s ie(i, j+1)+ 2.*si eobs- 3.*si e(i,j))/dy **2

 if (fla g(i-1 ,j).e q.1.0) dsi edx2 = (si e(i+1 ,j)+2 .*sie in-3. *sie(i,j)) /dx** 2

 if (fla g(i+1 ,j).e q.2.0) dsi edx2 = (si e(i-1 ,j)-s ie(i, j))/d x**2
 if (fla g(i,j -1).e q.3.0) dsi edy2 = (si e(i,j +1)-s ie(i, j))/d y**2

 if (fla g(i,j +1).e q.4.0) dsi edy2 = (si e(i,j -1)-s ie(i, j))/d y**2

 rh oi(i, j) = rhoi(i,j) + (dt /dx)* (rhoi u_m-r hoiu_ p) &

 + (dt/d y)*(r hoiv_ m-rho iv_p) &
 - dt*(p (i,j) +q(i, j))*((u(i, j)-u(i-1,j))/dx &

 + (v(i, j)-v(i,j-1))/dy) &
 + dt*ak b*(ds iedx2 +dsie dy2)

 en dif

 endd o
 e nddo

 d o j = jmin _t, j max_t
 do i = im in_t, imax _t

 if (fla g(i,j).eq. 1.0) then
 rhoi(i,j) = rho in*si ein

 en dif

 if (fla g(i,j).eq. 2.0) then
 rhoi(i,j) = rho i(ima x,j)

 en dif
 if (fla g(i,j).eq. 3.0) then

 rhoi(i,j) = rho i(i,j min)

 en dif
 if (fla g(i,j).eq. 4.0) then

 rhoi(i,j) = rho i(i,j max)
 en dif

 endd o

 e nddo

 c all E SMF_F ieldH alo(f ield_ rhoi, halo handl e, rc =stat us)
 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowR hoI: rhoi halo "

 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 i f(pre sent(rc)) rc = ESMF_ SUCCE SS

 i f (co unter .eq. 1) t hen
 call Flow Print (glob al_gc omp, globa l_clo ck, 9 91, r c)

 e nd if

 e nd su brout ine F lowRh oI

 s ubrou tine FlowR ho(rc)

 i ntege r, op tiona l, in tent(out) :: rc

 i ntege r :: statu s
 i ntege r :: i, j

 r eal(k ind=E SMF_K IND_R 4), d imens ion(i max,j max) :: rh o_new

 r eal(k ind=E SMF_K IND_R 4) :: rhou _m, r hou_p , rho v_m, rhov_ p

 s tatus = ES MF_FA ILURE

 i f(pre sent(rc)) then

 rc = ESMF _FAIL URE
 e ndif

 d o j = jmin , jma x

 do i = im in, i max

 if (u(i -1,j) .ge.0 .0) t hen

 rhou_ m = u (i-1, j)*rh o(i-1 ,j)

 el se
 rhou_ m = u (i-1, j)*rh o(i,j)

 en dif

 if (u(i ,j).g e.0.0) the n
 rhou_ p = u (i,j) *rho(i,j)

 el se

 rhou_ p = u (i,j) *rho(i+1,j)

 en dif

 if (v(i ,j-1) .ge.0 .0) t hen
 rhov_ m = v (i,j- 1)*rh o(i,j -1)

 el se
 rhov_ m = v (i,j- 1)*rh o(i,j)

 en dif

 if (v(i ,j).g e.0.0) the n
 rhov_ p = v (i,j) *rho(i,j)

 el se
 rhov_ p = v (i,j) *rho(i,j+1)

 en dif

 rh o_new (i,j) = rh o(i,j) + (dt/dx)*(rh ou_m- rhou_ p) &
 + (d t/dy) *(rho v_m-r hov_p)

 endd o
 e nddo

 d o j = jmin , jma x
 do i = im in, i max

 rh o(i,j) = r ho_ne w(i,j)

 if (rho _new(i,j). gt.0. 0) si e(i,j) = r hoi(i ,j)/r ho_ne w(i,j)

 endd o

 e nddo

 d o j = jmin _t, j max_t

 do i = im in_t, imax _t
 if (fla g(i,j).eq. 1.0) then

 sie(i ,j) = 2.*s iein - sie (imin ,j)

 rho(i ,j) = 2.*r hoin - rho (imin ,j)

 en dif

 if (fla g(i,j).eq. 2.0) then
 sie(i ,j) = sie(imax, j)

 rho(i ,j) = rho(imax, j)
 en dif

 if (fla g(i,j).eq. 3.0) then

 sie(i ,j) = sie(i,jmi n)
 en dif

 if (fla g(i,j).eq. 4.0) then
 sie(i ,j) = sie(i,jma x)

 en dif

 if (fla g(i,j).eq. -1.0) then
 sie(i ,j) = sieo bs

 rho(i ,j) = rho0
 en dif

 endd o

 e nddo

 c all E SMF_F ieldH alo(f ield_ rho, haloh andle , rc= statu s)
 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowR ho: rho h alo"

 e ndif
 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all E SMF_F ieldH alo(f ield_ sie, haloh andle , rc= statu s)

 i f(sta tus . NE. E SMF_S UCCES S) th en
 prin t *, "ERRO R in FlowR ho: sie h alo"

 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 i f(pre sent(rc)) rc = ESMF_ SUCCE SS

 i f (co unter .eq. 1) t hen
 call Flow Print (glob al_gc omp, globa l_clo ck, 9 92, r c)

 e nd if

 e nd su brout ine F lowRh o

 s ubrou tine FlowV el(rc)

 i ntege r, op tiona l, in tent(out) :: rc

 i ntege r :: statu s
 i ntege r :: i, j

 r eal(k ind=E SMF_K IND_R 4) :: rhoa v

 s tatus = ES MF_FA ILURE

 i f(pre sent(rc)) then

 rc = ESMF _FAIL URE

 e ndif

 d o j = jmin , jma x
 do i = im in, i max

 rh oav = 0.5* (rho(i,j) + rho (i+1, j))

 if (rho av.gt .0.0) u(i, j) = rhou(i,j)/ rhoav
 endd o

 e nddo
 d o j = jmin , jma x

 do i = im in, i max

 rh oav = 0.5* (rho(i,j) + rho (i,j+ 1))
 if (rho av.gt .0.0) v(i, j) = rhov(i,j)/ rhoav

 endd o

 e nddo

 c all E SMF_F ieldH alo(f ield_ u, ha lohan dle, rc=st atus)

 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowV el: u hal o"

 e ndif
 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all E SMF_F ieldH alo(f ield_ v, ha lohan dle, rc=st atus)
 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowV el: v hal o"

 e ndif

 d o j = jmin , jma x
 do i = im in, i max

 om ega(i ,j) = (v(i ,j+1) -v(i, j))/d x - (u(i+1 ,j)-u (i,j))/dy

 endd o
 e nddo

 d o j = jmin _t, j max_t
 do i = im in_t, imax _t

 if (fla g(i,j).eq. 1.0) then
 u(i,j) = u in

 rhou(i,j) = uin *rho(i,j)

 v(i,j) = 0 .0

 rhov(i,j) = 0.0

 en dif
 if (fla g(i,j).eq. 2.0) then

 u(i,j) = u (imax ,j)

 v(i,j) = v (imax ,j)
 en dif

 if (fla g(i,j).eq. 3.0) then

 u(i,j) = u (i,jm in)

 rhou(i,j) = u(i ,j)*r ho(i, j)

 v(i,j) = 0 .0
 rhov(i,j) = 0.0

 en dif
 if (fla g(i,j).eq. 4.0) then

 u(i,j) = u (i,jm ax)

 rhou(i,j) = u(i ,j)*r ho(i, j)
 v(i,j) = 0 .0

 rhov(i,j) = 0.0
 en dif

 if (fla g(i,j).eq. 5.0) then

 v(i,j) = 0 .0
 rhov(i,j) = 0.0

 en dif
 if (fla g(i,j).eq. 10.0) then

 u(i,j) = 0 .0

 rhou(i,j) = 0.0
 en dif

 endd o
 e nddo

 d o j = jmin _t, j max
 do i = im in_t, imax

 if (fla g(i,j) .eq . -1. 0) th en

 u(i,j) = 0 .0
 rhou(i,j) = 0.0

 v(i,j) = 0 .0

 rhov(i,j) = 0.0

 en dif

 if (fla g(i+1 ,j) . eq. - 1.0) then
 u(i,j) = 0 .0

 rhou(i,j) = 0.0
 en dif

 if (fla g(i,j +1) . eq. - 1.0) then

 v(i,j) = 0 .0
 rhov(i,j) = 0.0

 en dif
 endd o

 e nddo

 d o j = jmin , jma x

 do i = im in, i max
 if (fla g(i,j).eq. -1.0 .and. flag (i,j+ 1).ne .-1.0 .and . fla g(i+1 ,j).e q.-1. 0) th en

 u(i,j) = u (i,j+ 1)

 rhou(i,j) = rho u(i,j +1)
 en dif

 if (fla g(i,j).eq. -1.0 .and. flag (i,j- 1).ne .-1.0 .and . fla g(i+1 ,j).e q.-1. 0) th en
 u(i,j) = u (i,j- 1)

 rhou(i,j) = rho u(i,j -1)

 en dif
 if (fla g(i,j).eq. -1.0 .and. flag (i+1, j).ne .-1.0 .and . fla g(i,j +1).e q.-1. 0) th en

 v(i,j) = v (i+1, j)
 rhov(i,j) = rho v(i+1 ,j)

 en dif

 if (fla g(i,j).eq. -1.0 .and. flag (i-1, j).ne .-1.0 .and . fla g(i,j +1).e q.-1. 0) th en

 v(i,j) = v (i-1, j)

 rhov(i,j) = rho v(i-1 ,j)
 en dif

 endd o

 e nddo

 c all E SMF_F ieldH alo(f ield_ u, ha lohan dle, rc=st atus)

 i f(sta tus . NE. E SMF_S UCCES S) th en
 prin t *, "ERRO R in FlowV el: u hal o"

 e ndif
 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all E SMF_F ieldH alo(f ield_ v, ha lohan dle, rc=st atus)

 i f(sta tus . NE. E SMF_S UCCES S) th en
 prin t *, "ERRO R in FlowV el: v hal o"

 e ndif
 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all E SMF_F ieldH alo(f ield_ rhou, halo handl e, rc =stat us)

 i f(sta tus . NE. E SMF_S UCCES S) th en
 prin t *, "ERRO R in FlowV el: rhou halo"

 e ndif
 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all E SMF_F ieldH alo(f ield_ rhov, halo handl e, rc =stat us)

 i f(sta tus . NE. E SMF_S UCCES S) th en
 prin t *, "ERRO R in FlowV el: rhov halo"

 e ndif
 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 i f(pre sent(rc)) rc = ESMF_ SUCCE SS

 i f (co unter .eq. 1) t hen
 call Flow Print (glob al_gc omp, globa l_clo ck, 9 93, r c)

 e nd if

 e nd su brout ine F lowVe l

 s ubrou tine FlowS tate(rc)

 i ntege r, op tiona l, in tent(out) :: rc

 i ntege r :: statu s

 i ntege r :: i, j

 s tatus = ES MF_FA ILURE

 i f(pre sent(rc)) then

 rc = ESMF _FAIL URE
 e ndif

 d o j = jmin _t, j max_t

 do i = im in_t, imax _t

 p(i,j) = (ga mma-1 .0)*r ho(i, j)*si e(i,j)
 endd o

 e nddo
 d o j = jmin , jma x_t

 do i = im in, i max_t

 q(i,j) = q0* rho(i ,j)*u in*sq rt(dx **2+d y**2) *((u(i-1,j)-u(i ,j))/ dx &
 +(v(i,j-1)-v(i ,j))/ dy)

 q(i,j) = max (q(i, j), 0 .0)
 endd o

 e nddo

 d o j = jmin _t, j max_t

 do i = im in_t, imax _t
 if (fla g(i,j).eq. 2.0) then

 p(i,j) = p (imax ,j)

 q(i,j) = q (imax ,j)
 en dif

 if (fla g(i,j).eq. 3.0) then
 p(i,j) = p (i,jm in)

 q(i,j) = q (i,jm in)

 en dif
 if (fla g(i,j).eq. 4.0) then

 p(i,j) = p (i,jm ax)
 q(i,j) = q (i,jm ax)

 en dif

 endd o
 e nddo

 c all E SMF_F ieldH alo(f ield_ p, ha lohan dle, rc=st atus)
 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowS tate: p h alo"
 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 c all E SMF_F ieldH alo(f ield_ q, ha lohan dle, rc=st atus)
 i f(sta tus . NE. E SMF_S UCCES S) th en

 prin t *, "ERRO R in FlowS tate: q h alo"
 e ndif

 i f(sta tus / = ESM F_SUC CESS) call ESMF _Fina lize(endfl ag=ES MF_EN D_ABO RT, r c=sta tus)

 i f(pre sent(rc)) rc = ESMF_ SUCCE SS

 e nd su brout ine F lowSt ate

 s ubrou tine FlowS tabil ity(r c)

 i ntege r, op tiona l, in tent(out) :: rc

 i ntege r :: statu s

 r eal : : sca le, c

 s tatus = ES MF_FA ILURE

 i f(pre sent(rc)) then

 rc = ESMF _FAIL URE
 e ndif

 s cale = sqr t(dx* *2 + dy**2)

 i f(uin *dt/s cale. ge.0. 20) t hen

 prin t *, "Cour ant l imit excee ded b y inf low c ondit ions"
 prin t *, "Plea se de creas e uin , dec rease dt, or in creas e dx and d y ", &

 "and try a gain. "
 retu rn

 e ndif

 i f(q0* rhoin *uin/ scale .ge.0 .20) then

 prin t *, "Visc osity limi t exc eeded by i nflow cond ition s"

 prin t *, "Plea se de creas e q0, decr ease rhoin , dec rease uin, or " , &
 "incr ease dx an d dy and t ry ag ain."

 retu rn
 e ndif

 i f(gam ma.le .1.0) then
 prin t *, "Gamm a mus t be great er th an 1. 0"

 prin t *, "Plea se ch ange gamma and try a gain. "
 retu rn

 e ndif

 c = sq rt(ga mma*(gamma -1.0) *siei n)

 i f(uin /c.ge .1.50) the n

 prin t *, "Mach numb er li mit e xceed ed by infl ow co nditi ons"
 prin t *, "Plea se de creas e uin , dec rease gamm a, or incr ease siein ", &

 "and try a gain. "

 retu rn
 e ndif

 i f(pre sent(rc)) rc = ESMF_ SUCCE SS

 e nd su brout ine F lowSt abili ty

 s ubrou tine Flow_ Final (gcom p, im port_ state , exp ort_s tate, cloc k, rc)

 t ype(E SMF_G ridCo mp) :: gc omp
 t ype(E SMF_S tate) :: im port_ state

 t ype(E SMF_S tate) :: ex port_ state
 t ype(E SMF_C lock) :: cl ock

 i ntege r, in tent(out) :: rc

 r c = E SMF_F AILUR E

 c all F lowAr raysD eallo c(rc)

 i f(rc .NE. ESMF_ SUCCE SS) t hen

 prin t *, "ERRO R in Flow_ Final "
 e ndif

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 c all E SMF_F ieldH aloRe lease (halo handl e, rc =rc)

 i f(rc /= ES MF_SU CCESS) cal l ESM F_Fin alize (endf lag=E SMF_E ND_AB ORT, rc=rc)

 r c = E SMF_S UCCES S

 e nd su brout ine F low_F inal

 end modu le Fl owSol verMo d

Figure 34: A visualization of the FlowSolverMod.F90 source code with lines colored to indicate different

concerns: superstructure (light grey), science (medium grey), and infrastructure (dark grey).

102

Table 5: DSL support for ESMF abstract types and API methods

ESMF Type DSL Supports

Type

ESMF Public API

Methods

DSL Generated API

Methods

ESMF_Alarm 20

ESMF_Array x 22 2

ESMF_ArrayBundle 18

ESMF_ArraySpec x 4 1

ESMF_Attribute 10

ESMF_Calendar 11

ESMF_Clock x 20 2

ESMF_Config 11

ESMF_CplComp x 24 5

ESMF_DELayout 7

ESMF_DistGrid x 10 1

ESMF_Field x 27 9

ESMF_FieldBundle 24

ESMF_Grid x 18 3

ESMF_GridComp x 24 6

ESMF_LocStream 10

ESMF_LocalArray 6

ESMF_Mesh 9

ESMF_State x 18 4

ESMF_Time x 16 1

ESMF_TimeInterval x 18 2

ESMF_VM 29

ESMF_XGrid 6

(Framework level methods) 25 2

23 11 387 38

Discussion

 Cleaveland describes steps involved in building an application generator,

including that of defining the variant and invariant parts of systems that can be generated

[25]. The variant parts correspond to a system‘s specification. The invariant parts are

assumed to be fixed in the domain, so there is no need for the user to specify them. We

found some kinds of variability easier to manage than others. In particular, variability

103

parameterized by black-box portions of ESMF resulted in smaller specifications that

could be written entirely in the syntax of the DSL. Examples of this kind of variability

include defining a Field and adding it to a Coupler or Gridded Component, assigning a

Grid to a Field, assigning a DistGrid to a Grid, and specifying the extents and

decomposition sizes of DistGrids. Another source of variability is the scientific algorithm

for each Gridded Component—i.e., the calculation of the model‘s state variables.

Implementation of the model‘s science is left almost exclusively to the developer in

ESMF applications: The developer provides this code using open-ended programming

within initialize, run, and finalize subroutines registered with Gridded and Coupler

components. The developer has considerable freedom to decide how to interact with the

framework API, including what Infrastructure services to use, how to organize the entire

application into a set of Gridded and Coupler Components, and in what order to invoke

each of the component model‘s subroutines.

 We found this degree of freedom a limiting factor to the DSL. The tradeoff boils

down to concise specification with implicit behaviors on the one hand, and heightened

control and flexibility on the other. For example, an implicit behavior we implemented is

to populate Import and Export State objects during a component‘s initialization based on

the field elements contained inside the component specification. While this reduces the

size of the specification, it limits the ability of the developer to add Import and Export

State items conditionally, or to change the set of items in a State object dynamically.

Another example where the DSL limited flexibility to achieve simpler specification is

related to memory management. ESMF allocates memory automatically based on the

storage requirements of model data. However, the framework is also equipped to wrap

pre-allocated pointers. This allows developers to wrap existing data structures without

affecting existing memory allocation and deallocation procedures. Our DSL does not

support user-managed memory because it would require introducing implementation

language level constructs, such as pointers, into the DSL.

104

 At one point, to support highly flexible specifications, we began adding language

constructs that would enable ad hoc use of ESMF in an attempt to match the flexibility

afforded by open-ended programming. However, the number of language constructs grew

quickly and the language soon became unmanageable. We determined that if we

continued down that path, the DSL would essentially converge to a Turing complete

programming language and the advantages of defining the DSL would be lost. Instead,

we considered alternative approaches that would allow us to keep the DSL small while

still providing implementation flexibility to the developer. These approaches include:

(1) the application skeleton approach, in which the developer fills in ―holes‖ in the

generated skeleton using open-ended programming,

(2) the escape approach, in which a DSL construct is provided that allows the

developer to introduce fragments of Fortran code, and

(3) the scientific interface approach, in which the scientific variability is

encapsulated in a separate module that can be referenced from the DSL

We implemented the first two approaches in the Cupid DSL. The application

skeleton approach is used in the Coupled Flow case study in this chapter. The Fortran

modules representing the Gridded and Coupler Components of the coupled model are

generated with template subroutines for the initialize, run, and finalize methods. ESMF-

specific data structures (Arrays, Fields, DistGrids, Grids) owned by each component are

also generated and included in the module‘s private variables. Some parts of data

structure instantiation are also added to component initialization methods automatically,

such as calling ESMF_ArrayCreate(), ESMF_DistGridCreate(), and similar API methods

to initialize ESMF data structures. This approach has the advantage of giving the

developer maximum flexibility because he or she has the power of a full-blown general

purpose programming language. Unfortunately, this approach can reduce productivity

gains of the DSL approach because the developer must become familiar with the

105

generated implementation—i.e., the developer cannot work entirely at the higher level of

abstraction.

The escape approach allows part of the specification to be expressed in the

underlying implementation language [25]. We implemented this approach by providing a

construct in the specification where fragments of Fortran code could be added. The

provided code is inserted verbatim into the generated implementation. The advantage of

this approach compared to the first is that the custom code is contained within the

specification such that its implementation is not lost if the coupling infrastructure must be

generated again. While this approach provides considerable flexibility, a major drawback

is that in order to reference constructs from the generated code within the escape, the

developer must have a priori knowledge of how the generator works, e.g., what Fortran

constructs will be generated for the coupling infrastructure specification written in terms

of the DSL. This approach, therefore, requires the user to envision the generated code in

order to interface the science code, thereby reducing the cognitive advantage of working

at the DSL‘s higher level of abstraction.

The application skeleton and escape approaches lack explicit module interfaces.

The scientific interface approach requires an explicit interface between the DSL-

generated implementation and the developer‘s code. Modular approaches provide

advantages such as hiding implementation details, automated type checking during

composition and separate compilation. Some interface specification languages designed

for scientific models have emerged, such as the Scientific Interface Description Language

(SIDL) [61], which provides procedural interface descriptions for languages used in high-

performance environments. SIDL, however, does not provide any domain-specific

semantics for describing a model‘s behavior. Self-describing models are another

promising direction. For example, the Basic Model Interface (BMI) defines a set of

interfaces that developers implement within model code that can be used to retrieve

properties of a model such as its grid structure, input and output fields, timestep, and

106

other properties [104]. The BMI is a query interface to the model that can be accessed at

runtime and used to automate and ensure correctness of model compositions.

 Conclusions

 At the beginning of this chapter we gave several examples of DSLs from other

domains that had resulted in productivity increases of 300%-1000%. Given our

experience with the Cupid DSL, do we expect the DSL-based approach to offer similar

increases in productivity for the ESM community? In the cited Nokia case, productivity

increases were attributed to:

(1) the ability of designers to work at a higher abstraction level so that

implementation details could be avoided,

(2) the use of code generators to link designs to implementations, and

(3) the existence of a tool effective enough to deter developers from writing code

outside the tool.

We report some success with respect to factors (1) and (2). Cupid hides

implementation details primarily by representing structural relationships more concisely,

such as the relationship between constituent models and couplers, and the infrastructure

elements contained inside these components, such as DistGrids, Grids, and Fields. The

expand and collapse capabilities of the visual builder allow developers to grasp the

overall coupled model architecture quickly and navigate among the components

efficiently.

However, the criteria from past successful DSLs suggest that significant

productivity gains are primarily realized when developers are able to design all aspects of

a program while the entire implementation layer remains hidden. At the current time,

Cupid users are required to work with some of the generated code directly. The

requirement to move between abstraction levels likely reduces the overall productivity

gains, although we did not attempt to measure the exact effect.

107

Our work on the Cupid DSL has helped to illuminate steps that can be taken to

make the DSL approach more viable in the long term. First, the language itself can be

improved and made more robust. Some of the manual code changes required in the

Coupled Flow case study were a result of missing constructs in the DSL. For example,

the notion of grid inheritance, in which a child model inherits the grid of its parent, could

be encoded in the DSL. The inheritance facilities of object-oriented programming

languages could serve as a model for adding this notion to the DSL. The language could

be extended to better support specification of grid coordinates in a concise manner. One

approach would be to add language constructs that map to community conventions such

as the SCRIP
12

 convention for representing grid coordinates.

Another step in making the DSL approach more viable is to reduce the amount of

domain-independent variability present in constituent model infrastructures. While all

high-performance ESMs must handle concerns like grid definition, data parallelism, and

controlling timestepping, these aspects are not implemented consistently across models.

While a DSL in principle could mediate among different representations and control

structures, there is too much variability to make this a realistic approach. To be viable

today, coupling technologies must allow a high degree of implementation variability. The

success of non-intrusive approaches like the OASIS coupler can be attributed to their

placing few constraints on constituent model implementations.

A final enabler to a more robust DSL for specifying coupled models is better

isolation of the model itself from infrastructural concerns such as multi-processing,

domain decomposition and data parallelism, inter-component communication and

transformations, grid interpolations, etc. An important part of this is identification of

suitable modularization techniques that promote cohesive scientific implementations and

12

 http://climate.lanl.gov/Software/SCRIP/

http://climate.lanl.gov/Software/SCRIP/

108

enable modular reasoning such as automated composition with correctness guarantees.

Interface specification languages like SIDL and the Basic Model Interface are promising

first steps, although a community-wide standard for describing the scientific interface to

models has yet to emerge.

In the short to medium term, bottom-up approaches that enable flexible

integration of coupling infrastructure with existing constituent model implementations

will continue to dominate. However, we believe that the top-down DSL approach has

promise in the long term, and the steps outlined above are key enablers to that future.

109

CHAPTER V

CC-OPS: COMPONENT-BASED COUPLING OPERATORS

Effective reuse of coupling infrastructure means increasing the number of

coupling functions reused, reducing duplicated code, reducing the development time

required to couple models, and enabling flexible composition of coupling infrastructure

with existing constituent model implementations. Despite the availability of myriad

software packages that provide coupling functions, effective reuse of coupling

technologies remains an elusive goal: Coupling models is effort-intensive, often requiring

weeks or months of developer time to work through implementation details, even when

starting from a set of existing software components. Coupling technologies must be

integrated with multiple existing constituent models and other supporting infrastructure to

provide their primary services, such as model-to-model data communication and

transformation. These infrastructure pieces may be embedded in existing software

components, such as a legacy atmosphere or ocean model, or may be provided by other

coupling technologies or infrastructure components in the form of subroutine libraries or

application frameworks. As stated in the introduction, lack of a community-accepted

reference architecture for ESMs has resulted in architectural mismatch which hinders

integration of constituent models. This includes problems associated with duplicated

infrastructure, incompatible modular structures, and complex dependency management.

Many integration difficulties can be traced to the cohesive nature of coupling

technologies and differences in domain-independent behaviors and representations.

Cohesive behavior means that domain structures (e.g., classes and abstract data types)

within a coupling technology have built-in interactions for communicating with each

other to ensure that internal structures within the coupling technology are self-consistent.

For example, a function within a coupling technology that assigns data parallel blocks of

110

the decomposed domain to processing resources may implicitly rely on other structures

within the coupling technology to provide the list of available processes. Basically,

domain concepts implemented within a single coupling technology are designed to work

together at a technical level, for example, by sharing a set of abstract data types. Cohesive

behavior is also present within constituent models that define their own customized

infrastructure.

One example of cohesive behavior can be seen in ESMF through interactions

between the ESMF_Grid class and the ESMF_GridComp class. Specifically, the framework

assumes that an ESMF_Grid will be created within a method registered as an initialize,

run, or finalize method associated with an ESMF gridded component. ESMF uses

contextual information within the ESMF_GridComp class to determine the set of

processors associated with the created grid. Practically speaking, this limits the use of the

ESMF_Grid class to contexts that define an ESMF_GridComp.

Another example of cohesive behavior is the choice of MCT to represent model

field data as one dimensional attribute vectors and to define all its communication and

transformation operations (e.g., MxN data transfer and sparse matrix multiply) in terms

of these serialized data structures. Integrating MCT with existing models, therefore,

requires that the model‘s data be provided in this serialized form. Models that use higher-

dimensional decomposition descriptors, such as a two-dimensional block decomposition,

must be converted in order to take advantage of MCT‘s coupling functions.

A mismatch between domain-independent behaviors makes it difficult to integrate

infrastructure pieces between a constituent model and a coupling technology or across

coupling technologies. The underlying issue is that domain concepts implemented by

different coupling technologies exhibit different domain-independent behaviors and their

integration would likely break the cohesive behavior of the coupling technologies

involved in the integration. In general, cohesive behavior has been recognized as an

obstacle to framework integration: software components that should be able to

111

interoperate from a domain-level perspective will nonetheless resist integration due to

technical incompatibilities [105].

To address integration issues related to architectural mismatch and cohesive

behavior of coupling technologies, we introduce a modular approach to coupling based

on self-contained software entities called Component-based Coupling Operators (CC-

Ops) and describe the role of metadata schemata as interface descriptors for CC-Ops. CC-

Ops provide data communication and transformation services identified in the coupling

technologies feature model. We use the term coupling operator to refer to

communication or transformation functions that provide a complete, well-defined service.

CC-Ops are implemented as components within the Common Component Architecture

(CCA) [47] and can be deployed into a high-performance component framework.

Examples of CC-Ops include a Redistributor for communicating distributed data

structures among cohorts (sets of processors), a Regridder for grid-to-grid interpolation, a

Domain Decomposition CC-Op for decomposing and distributing data structures for

parallel processing, a Halo Exchange CC-Op for communicating halo cells between

neighboring processes, and a Reader/Writer for handling parallel I/O. Compared with

state-of-the-art coupling technologies, this approach differs in several ways:

 CC-Ops offer fine-grained reuse of coupling infrastructure. Existing coupling

technologies tend to offer a complete solution and adoption often entails making

sweeping changes throughout existing model implementations. The domain-independent

behavior of coupling technologies limits the ability to ―pick and mix‖ features from

multiple coupling technologies without the maintenance and runtime overhead of data

type conversions. Additionally, coupling technologies that offer many features tend to

introduce additional dependencies that must be incorporated into the build process of the

coupled model.

Although coarse-grained reuse of coupling infrastructure (i.e., in which the

coupling technology tries to address all major coupling concerns) has significant merits,

112

such as providing architectural consistency and maximizing code reuse, modeling centers

incur a risk when adopting a comprehensive infrastructure package: If development

support for the coupling technology ceases, perhaps due to an inability to acquire

adequate funding, a modeling center that has adopted a large coupling infrastructure

package may be forced to either (1) abandon the coupling technology and incur the

maintenance cost of switching to another technology, or (2) decide to support the

coupling technology itself in house. Both options require significant developer resources.

The fact that future requirements are unknown or unclear introduces additional

risks in adopting a comprehensive coupling infrastructure package. For example,

coupling a global climate model with different kinds of regional ―impacts‖ models often

requires interoperability between software frameworks developed by different

communities. Bridging between frameworks may introduce new technical requirements

making flexible and agile development processes preferable. Forms of reuse that support

flexible, bottom-up composition help manage risks by making it easy to add, remove, or

substitute infrastructure in a coupled model.

 CC-Ops interact with clients and other components only via explicit interfaces.

Clients are components that instantiate and make calls to a CC-Op. An advantage of

component-based reuse is the black box nature of components—implementations are

reused without relying on anything except interface specifications [48]. This eliminates

the possibility of implicit behaviors between CC-Ops.

 CC-Ops explicitly separate data and metadata interfaces. Most coupling

technologies unify data and metadata into library- and framework-specific types. These

types are instantiated in user code and are intended for use only within the context of a

single library or framework—i.e, they contribute to the cohesive behavior of the coupling

technology. CC-Ops, on the other hand, accept declarative metadata packaged in

messages which are open for interpretation by a wide range of software components.

Data interfaces are defined using the Scientific Interface Description Language (SIDL)

113

and metadata interfaces are constrained with XML Schema and the Schematron [106]

constraint language. The metadata interface improves modularity between coupling-

related code and a model‘s scientific code by reducing the number of library- and

framework-specific types that must be instantiated in model code. Using data types

provided by SIDL, CC-Ops access model field data with minimal overhead. For many

coupling operations, the relevant metadata changes less frequently than the data itself.

Therefore, more expensive metadata message parsing operations are only required

periodically, and in many cases only during initialization.

 Component-based development in general shifts the software integration task

away from traditional programming towards simpler programming models that

emphasize composition and configuration over the full power of general purpose

programming languages [48]. If both constituent models and coupling operators are

implemented as components, building a coupled model becomes primarily a task of

identifying and composing components by ―wiring up‖ matching interfaces. Visual

application builders and high-level scripting languages replace the procedural

programming typically used to assemble coupled models.

 A final advantage is that component environments such as those associated with

CCA are programming-language neutral. This enables CC-Ops implemented in one

language to be used by client software implemented in another language.

Figure 35 shows a component-based implementation of the Coupled Flow

demonstration application presented previously on page 92. In the diagram, components

are shown as boxes. An interface provided by a component (available to clients) is

depicted as a line with a filled circle at the end. An interface required by a component is

depicted as a line ending with a half circle. These interfaces are called provides and

requires interfaces, respectively. The FlowSolver component provides an interface

―Model‖ and requires interfaces ―Halo‖ and ―DomainDecomp.‖ Components are

composed by connecting matching interfaces. For example, the ―Redist‖ required by

114

CoupledFlow is connected to the ―Redist‖ interface provided by the Redistribution

component. In the figure, all interfaces are connected except for the ―Model‖ interface

provided by the CoupledFlow component.

Figure 35: A component-based implementation of the Coupled Flow application

The set of components in Figure 35 have been divided into two categories. The

three components at the top are model components. The FlowSolver and Injector

components are the fluid dynamics solvers. The CoupledFlow component is a driver for

the FlowSolver and Injector, invoking the components through their ―Model‖ interfaces.

Unlike the original version of this coupled model, which used a framework-based

coupling technology, the model components each identify needed infrastructure services

through their requires interfaces. These services are provided by other components,

unknown to the model components. This has the effect of decoupling the models from the

 cmp Mod...

FlowSolv er

Model

DomainDecompHalo

Injector

Model

DomainDecomp

CoupledFlow

Model

Model Model Redist

DomainDecomp

(ESMF)

DomainDecompHalo

Redistribution

(MCT)

Redist
Component-based

Coupling Operators

(CC-Ops)

Models

Component

Provided Interface

Required Interface

Key

115

underlying infrastructure. The bottom two components are CC-Ops—specific kinds of

components that provide infrastructure services. The DomainDecomp and Redistribution

CC-Ops have been labeled with ―ESMF‖ and ―MCT‖ respectively to indicate their

underlying implementations. These are shown for informational purposes only; the model

components need not be aware of the underlying implementations.

In general, CC-Ops require access to not only the field data that is to be

transformed or communicated but also metadata describing properties of the data. For

example, an operator that redistributes data partitioned on M processors to N processors

(i.e., an MxN data transfer [17]) requires metadata about the parallel distribution of data

on each of the cohorts. An operator that performs a parallel grid interpolation from a

source grid to a target grid requires metadata about the geographic coordinates of data

points on each grid or an explicit set of interpolation weights and addresses that can be

used to compute the interpolation. Finally, if data needs to be written to a file for

consumption by a downstream model, an I/O operator requires metadata to correctly

interpret the data‘s parallel decomposition.

 Most current generation coupling technologies define framework- or library-

specific data types that wrap model data and encapsulate descriptive metadata [107]. This

is true of MCT; it includes library-specific types such as the AttrVect, which stores

bundles of integer and real data arrays with their respective field names, GlobalSegMap,

which describes how a one-dimensional array is decomposed among multiple processors

with each process owning multiple, non-adjacent segments, and the GlobalGrid, which

stores coordinate information and lengths, areas, and volumes of grid cells [108]. ESMF

defines similar framework-specific types, including the ESMF_DistGrid type, which

maintains information about the parallel distribution of a multidimensional index space,

ESMF_Grid, which describes the geographic coordinates of an index space, and

ESMF_Field, which describes, among other things, the stagger location of data points on

an underlying grid [46]. Both MCT and ESMF define API methods for instantiating these

116

data types in user code. The OASIS3 and OASIS-MCT couplers also require API calls to

provide metadata for the coupler, although instead of requiring the user to instantiate

library-specific types, metadata is stored internally and referenced using integer

identifiers. For example, model components, partition (decomposition) information, and

coupling fields are all identified by integers stored as variables in user code [16].

 Figure 36 shows sample ESMF code that instantiates two framework data types,

ESMF_Grid and ESMF_Field. To instantiate a grid object (lines 9-11) some metadata is

provided via API parameters such as the minimum and maximum grid indices in all

dimensions (minIndex and maxIndex) and information about the decomposition in cases

where the grid is distributed across multiple address spaces (regDecomp). In the example

code, the grid is two-dimensional with lower corner at indices (1, 1) and upper corner

at indices (100, 100). The regDecomp parameter of (/2, 2/) on line 9 indicates that

the grid will be decomposed into two blocks in each dimension for a total of four

decomposition blocks. When executed in the default mode, ESMF assumes that each of

the decomposition blocks is distributed to a single process. The ESMF field object is

instantiated on lines 13-14 by providing a reference to the grid object, the name of the

field, a local data pointer, and the stagger location (staggerloc) of the field on the grid

(i.e., where the data value is located on each grid cell such as at the center or on one of

the edges). The sample code does not show that the API calls are embedded inside an

ESMF Gridded Component which provides further contextual information such as the

subset of processors owned by the constituent model that contains the grid and field

objects.

 Given two field objects, ESMF can compute the inter-process communication pattern

required to redistribute field data between two decompositions. Figure 37 shows sample

code invoking the ESMF redistribution operation from a source field (fieldOut) to a

destination field (fieldIn). This operation is typically used to transfer field data

distributed across one model‘s cohort to another model‘s cohort and is useful in cases

117

when cohort sizes do not match (e.g., for load balancing purposes) or field

decompositions differ between the models. Some operations require additional metadata.

The ESMF regridding capability, for example, requires that the user provide geographic

coordinates for both source and destination grids so that the framework can compute

interpolation weights and addresses, or the user must provide the interpolation weights

and addresses explicitly. In either case, additional API calls are required to provide the

metadata.

01 ! elided ...

02

03 type(ESMF_Grid) :: grid

04 type(ESMF_Field) :: srcField

05 real, allocatable :: myDataPtr(:,:)

06

07 ! allocation of myDataPtr

08

09 grid = ESMF_GridCreateNoPeriDim(regDecomp=(/2,2/),

10 minIndex=(/1,1/), maxIndex=(/100,100/), &

11 indexflag=ESMF_INDEX_GLOBAL, rc=rc)

12

13 srcField = ESMF_FieldCreate(grid, name="Field1", &

14 farrayPtr=myDataPtr, staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

15

16 ! elided ...

Figure 36: Sample ESMF code showing instantiation of ESMF_Grid and ESMF_Field datatypes. Metadata

such as the grid bounds, parallel decomposition, and field stagger location are provided as API parameters.

01 type(ESMF_Field) :: fieldOut, fieldIn

02 type(ESMF_RouteHandle) :: rh

03

04 ! compute the redistribution operation

05 call ESMF_FieldRedistStore(srcField=fieldOut, dstField=fieldIn, &

06 routehandle=rh, rc=rc)

07

08 ! ...

09

10 ! perform the redistribution, reusing cached communication pattern

11 call ESMF_FieldRedist(srcField=fieldOut, dstField=fieldIn, &

12 routehandle=rh, rc=rc)

Figure 37: Sample code showing the ESMF redistribution operation. The call the ESMF_FieldRedistStore

precomputes and caches the communication pattern. Subsequent calls to ESMF_FieldRedist reuse the

cached pattern for efficiency.

118

CC-Op Interface Specifications

Interface specifications are contracts between clients of an interface and

components that implement the interface. Commerical component technologies such as

CORBA [109] and COM [110] uniformly define an interface as a collection of named

methods with their signatures and return types [48]. An Interface Definition Language

(IDL) is a language for specifying component interfaces outside the context of any

particular programming language. The Scientific Interface Description Language (SIDL)

is an IDL with specialized support for high-performance applications [61]. Interfaces are

defined separately from any specific component. Applications are assembled by

connecting provides interfaces to requires interfaces. Type checking ensures correct

connections—i.e., a requires interface must be connected to a provides interface of the

same type, or a subtype if polymorphism is supported. The CCA tool chain, of which

SIDL is a part, supports polymorphic type checking.

 Figure 38 depicts a CC-Op that provides an interface named Redistribution.

The interface contains two methods redistSend and redistRecv. These methods imply

an asymmetrical point-to-point style of communication analogous to the MPI functions

MPI_Send and MPI_Recv. The redistSend method has a single parameter src of type

Field. The Field type definition is shown on the upper right. It serves as a container for

multi-dimensional array-based data (using the SIDL generic array type) and

accompanying metadata (which may be set using the setXML() method). The Field type

definition itself is parameterized by a schema file. The schema is used to validate the

metadata provided via the setXML() method.

Each CC-Op has a SIDL interface definition which is primarily responsible for

describing and constraining the data interfaces and a set of schemata which are

responsible for describing and constraining accompanying metadata interfaces. This

119

results in a two-phase type checking: Data interfaces are type checked by the compiler

when a constituent model is linked against a CC-Op implementation. Metadata interfaces

are type checked either before model execution (if the metadata is available a priori) or

dynamically when the coupling operator is invoked.

The SIDL specification for the Redistribution interface is shown in Figure 39.

Note the use of the raw (un-parameterized) type Field instead of the parameterized type

Field<schema=”redist.xsd”>. Because SIDL does not support static parameterized

typing, the user is currently required to manually extend the Field class with a new

subclass for each metadata schema file. In the future, this process could be automated

using type parameters and a custom preprocessor.

Figure 38: A component that provides a single interface (Redistribution) and requires a single interface

(CommContext). The Redistribution interface definition is shown to the right. Methods identify a schema

(redist.xsd) for type checking incoming metadata. Cross-interface constraints are validated using a separate

schema (redist.sch).

 cmp Components

Redistribution

CommContext

Redistribution

«interface»

Redistribution

+ redistRecv(dst :Field<schema="redist.xsd">) : void

+ redistSend(src :Field<schema="redist.xsd">) : void

Cross-interface constraints :

redist.sch

Field<Schema>

+ newField(fi lename :string, fieldid :string) : void

+ getID() : string

+ getFilename() : string

+ setData(data :array<>) : void

+ getData() : array<>

+ setXML(fieldid :string, fi lename :string) : void

+ validateXML() : boolean

Field type is parameterized

by a metadata schema.

120

01 /**

02 * Interface for redistribution operation.

03 */

04 interface Redistribution {

05

06 void redistSend(in Field srcField)

07 throws

08 ComponentException, sidl.PreViolation;

09 require

10 not_null_fieldIn : srcField != null;

11

12 void redistRecv(inout Field dstField)

13 throws

14 ComponentException, sidl.PreViolation;

15 require

16 not_null_fieldOut : dstField != null;

17

18 }

19

20 /**

21 * Metadata wrapper for array-based data.

22 */

23 class Field {

24

25 static Field newField(in string filename, in string fieldid)

26 throws MetadataException;

27

28 void setXML(in string filename, in string fieldid)

29 throws MetadataException;

30

31 bool validateXML(in string schemafile)

32 throws MetadataException;

33

34 string getID();

35

36 string getFilename();

37

38 void setData(in array<> data);

39

40 array<> getData();

41

42 array<int,1> getIntArray1D(in string xpath, out XPathReturnCode rc)

43 throws MetadataException;

44

45 /* ... additional XPath accessors elided ... */

46

47 }

Figure 39: SIDL interface specifications

 The Redistribution interface currently supports only blocking calls on both the

send and receive sides. This simplifies the interface definition at the cost of lost

121

flexibility of clients to control the behavior of the CC-Op. While there are no

fundamental limitations preventing an implementation of a non-blocking version, formal

definition of an interface to ensure correct usage of the component goes beyond the

expressivity of SIDL. Specifically, a non-blocking version would require clients to make

multiple successive calls—at least one to post send/receives and another to verify that the

data has been tranferred. An interface specification, therefore, should provide valid

sequences of calls from clients to the CC-Op. This would require extension of SIDL to

include a behavioral model such as a those afforded by a state machine or workflow

language. There is a large body of research on extending component interfaces with

behavioral specifications (e.g., [111-113]).

 In lieu of library- or framework-specific types, CC-Ops rely on structured

messages to provide metadata required for coupling operators. Szyperski et al. point out

the differences between component parameters embedded in programming language

objects and messages conveyed as entities in their own right, independent of any

programming language [48]. Key differences are that (1) objects encapsulate both

behavior and state, (2) objects may refer to other objects, (3) messages do not encapsulate

but package data, (4) messages do not have any attached behavior, and (5) messages do

not refer to other messages. Because messages do not encapsulate (hide) their state, they

are open to interpretation by multiple components. Furthermore, because messages do not

have attached behavior, there are no implicit dependencies on an execution environment.

This makes them robust to changes in the underlying execution environment. When

applied here, these properties effectively decouple a constituent model from library- or

framework-specific objects used by current coupling technologies. Our experiments

confirm that framework-agnostic messages can be used to convey metadata to existing

coupling technologies to perform coupling operations. Because messages are framework-

agnostic, coupling operators can be substituted with minimal or no code changes

(depending on whether coupling-operator references are handled dynamically in model

122

code). The use of messages reduces the number of library- or framework-specific types

instantiated in user code, thereby reducing code-level dependencies.

 The eXtensible Markup Language (XML) has gained almost universal acceptance

as a syntax for message exchange among software components [48] and XML is used as

the metadata format for CC-Ops. Figure 40 shows an XML document containing the

same metadata passed as parameters to the object constructors shown in Figure 36 and

Figure 37, plus some additional metadata. For example, the maximum grid indices are

included as attributes of the cim:gridTile XML element on lines 27-30 and

decomposition properties are shown in the cplgen:decomposition element on lines 47-

49. The structure of the XML can be constrained using a schema language such as W3C

XML Schema. In the next section we show how CC-Ops leverage emerging metadata

standards defined by the climate modeling community to define the structure of metadata

passed to CC-Ops.

123

01 <cplgen:modelComponent
02 xmlns:cplgen="http://www.earthsystemcurator.org/field"
03 xmlns:cim="http://www.purl.org/org/esmetadata/cim/1.5/schemas"
04 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
05
06 <cim:shortName>ModelA</cim:shortName>
07 <cim:longName>Model A</cim:longName>
08
09 <cim:componentProperties>
10 <cim:componentProperty intent="inout" represented="true">
11 <cim:shortName>Field1</cim:shortName>
12 <cim:longName>ModelA_Field1</cim:longName>
13 <cim:units open="true" value="W m-2" />
14 </cim:componentProperty>
15 </cim:componentProperties>
16
17 <cim:grid>
18 <cim:grid gml:id="grid1" xsi:type="cim:GridSpec">
19 <cim:esmModelGrid congruentTiles="true" gridType="regular_lat_lon"
20 id="grid1" isLeaf="true" numMosaics="0" numTiles="1"
21 refinementScheme="none">
22
23 <cim:shortName>BasicGrid</cim:shortName>
24 <cim:longName>2D Cartesian grid</cim:longName>
25 <cim:description>A basic 2D Cartesian grid</cim:description>
26
27 <cim:gridTile discretizationType="logically_rectangular"
28 geometryType="plane" id="tile1" isConformal="true" isRegular="true"
29 isTerrainFollowing="false" isUniform="true" nx="100" ny="100"
30 refinementScheme="none">
31
32 <cim:shortName>gridTile1</cim:shortName>
33
34 </cim:gridTile>
35 </cim:esmModelGrid>
36 </cim:grid>
37 </cim:grid>
38
39 <cim:deployment xsi:type="cplgen:Deployment">
40 <cim:parallelisation>
41 <cim:processes>10</cim:processes>
42 <cim:rank>
43 <cim:rankMin>0</cim:rankMin>
44 <cim:rankMax>9</cim:rankMax>
45 </cim:rank>
46 </cim:parallelisation>
47 <cplgen:decomposition xsi:type="cplgen:BlockRegularDecomposition">
48 <cplgen:regDecomp>2 2</cplgen:regDecomp>
49 </cplgen:decomposition>
50 </cim:deployment>
51
52 </cplgen:modelComponent>

Figure 40: An XML representation of metadata required for the ESMF Redistribution operation

Metadata Standards for Earth System Models

 The trend in the climate modeling community toward large-scale international

modeling campaigns has prompted the community to invest substantially in the

development of standardized metadata to help scientists effectively analyze output data

from multiple climate models. In general, scientific metadata may be placed into two

124

categories: retrospective and prospective [69]. Retrospective metadata is an historical

account—e.g., a provenance record of a numerical model run that has already taken

place. Prospective metadata is as a blueprint or configuration specification that can be

machine processed—e.g., to configure a model run or generate code.

Recent efforts by the Earth System Curator [114] and METAFOR [115] projects

to develop a Common Information Model (CIM) have been primarily focused on

retrospective metadata—i.e., descriptors that can be used to facilitate analysis of data

submitted to the fifth Climate Model Intercomparison Project (CMIP5) and other model-

generated data stored in large digital repositories [116]. The metadata can be used to

answer questions about the coupled model configuration that generated the output data,

including which constituent models participated in the simulation, the specific version of

the code that was executed, initial conditions used, parameter values, grid resolutions,

and whether a certain geophysical process was included in the simulation. Sharing

retrospective metadata, therefore, is a mechanism for scientists to effectively share their

―lab notebooks,‖ giving relevant details of their experimental designs.

 The METAFOR CIM represents the state of the art in climate model metadata and

is still in active development. An online questionnaire has been developed to collect

metadata about climate models participating in CMIP5, detailing how the models

conform to the CMIP5 experiment scenarios [117]. Once the collected metadata has been

validated, it is made available via a standard protocol (atom feed) so that data portals can

harvest and display the metadata alongside the output data itself.

 The CIM itself is a ―formal model of the climate modelling process‖ [115]. It is

divided into several packages that deal with different aspects of the climate modeling

process. The CIM packages include: (1) a data package that describes properties of

simulation input and output data, such as its format and how it is accessed, (2) a software

package that describes the climate models themselves and post processing components,

including details about the configuration of components involved in a coupled simulation

125

and how the software was deployed to computing resources, (3) an activity package that

describes experiments and how simulations conform to them, (4) a grids package that

describes the geographic grids used both for computation within models and in data files,

and (5) a shared package of reusable elements referenced in other packages [118].

 The normative artifact produced by METAFOR is the Conceptual CIM (ConCIM)

which is described as a Unified Modeling Language (UML) class model. The ConCIM is

a description of the domain that is independent of any particular serialization. The

ConCIM is serialized into an Application CIM (ApCIM) represented by the XML

Schema (XSD) formalism. Instances of CIM metadata, therefore, are XML documents

that conform to the CIM XSD.

 Metadata Validation with the Common Information Model (CIM)

 A validator can help to ensure correct usage of a coupling operator by verifying

that (1) all the required metadata is present for the operation, (2) operator-specific

constraints are satisfied at each interface, and (3) cross-interface constraints, which

indicate the relationship among multiple metadata instances at the coupling operator‘s

interfaces, are satisfied. The single- and cross-interface constraints are dependent on the

semantics of the coupling operator and, in general, must be provided by the developer of

the operator.

As an example, consider a componentized version of the ESMF redistribution

operator discussed in the previous section and shown above in Figure 41. The field data

at both the send and receive sides must be accompanied by metadata in order for the

operator to compute the MPI communication pattern required for the redistribution (i.e.,

to determine which processes on the source side communicate with which processes on

the destination side). The grey arrows indicate the direction of data and metadata flows.

Data flows both into and out of the operator, while metadata always flows inward, even

at the destination interface. The figure shows three attached metadata schemata: one

126

interface schema each for both the source and destination interfaces and a cross-interface

schema which contains constraints relating metadata at both interfaces. An interface

schema describes the structure of metadata that flows into an interface and optionally

constrains the values that can appear in metadata instances arriving at the interface. If

runtime validation is selected, when a client invokes the send or receive interface, the

attached interface schemata are used to validate the metadata flowing into each interface.

When both interfaces have been invoked, the cross-interface constraints are also

validated.

Redistribution
(ESMF)

redistSend redistRecv
input field data

input field
metadata

output field data

output field
metadata

Interface
Metadata
Schema

Interface
Metadata
Schema

Cross-
Interface
Metadata
Schema

Figure 41: A self-contained redistribution operator with two interfaces, source and destination. Data flows

into the source interface and out of the destination interface. Metadata flows into the component at both

interfaces and is used to compute the operation. Single- and cross-interface schemata constrain the allowed

metadata.

 The metadata required for the ESMF Redistribution operator can be determined

by analysis of the ESMF API and user documentation. In particular, the operator requires

knowledge of the index space of the source and destination (e.g., the minIndex and

maxIndex parameters passed to the ESMF_Grid constructor in Figure 36) and how the

global index space has been decomposed at both the source and destination (e.g., the

regDecomp parameter). More subtly, the operator also requires knowledge about which

processor ranks will invoke the source interface and which processor ranks will invoke

127

the destination interface. When used the conventional manner, ESMF would have

knowledge of this implicitly because the ESMF_Grid object would be instantiated within

the context of a Gridded Component (ESMF_GridComp object).

 Having identified the set of required metadata for the source and destination

interfaces, we now consider if there are any cross-interface metadata constraints.

According to the ESMF reference manual [46]:

―Both srcField and dstField are interpreted as sequentialized vectors. The

sequence is defined by the order of DistGrid dimensions and the order of tiles

within the DistGrid or by user-supplied arbitrary sequence indices... Further,

source and destination Fields may differ in shape, however, the number of

elements must match.‖

The reference manual indicates a constraint—namely, that a linearization of the source

and destination index spaces must contain equal numbers of elements. This requirement

can be specified as a cross-interface constraint on the pair of metadata instances provided

at the source and destination interfaces.

 We now show how these constraints can be implemented using existing metadata

constraint languages. Our implementation is based on XML: metadata arrives at a

coupling operator in XML documents and single- and cross-interface constraints are

specified using the W3C XML Schema [119] and Schematron [106] constraint languages.

The choice of these particular technologies is based on the fact that they are international

standards and have mature tool support available on most computing platforms as well as

API support for most popular programming languages.

 Although our implementation of CC-Ops provides support for specifying

interface schemata using any valid XML Schema and/or Schematron schema, the current

implementation leverages the METAFOR ApCIM [118] as the primary source of type

definitions used in CC-Op interface schemata. (Recall that the ApCIM is an XML-based

implementation of the normative Conceptual CIM.) This choice was made for several

128

reasons. First, the climate modeling community has already invested significantly in the

development of the CIM with the goal of standardizing metadata representations

throughout the community. The CIM development has involved both technology experts

and domain experts, including interviews with climate scientists. Therefore, starting from

scratch to develop new metadata schemata does not take advantage of the significant

resources already expended. Secondly, if the CIM experiences widespread adoption, then

metadata required as input to coupling operators will likely already exist and will not

need to be created from scratch. Thirdly, CIM tools are emerging that will help modelers

write out compliant metadata instances. Fourthly, many coupling operators share similar

sets of metadata requirements, and they should therefore reference a common set of type

definitions.

 Even with these potential advantages to using the CIM, some questions remain to

be addressed. First, to what degree can CIM instances serve as prospective metadata

since their primary use is currently for retrospective purposes (e.g., analysis of output

data)? Does the CIM provide all the metadata needed to drive coupling operators? If

not, how can it be extended? Can CIM instances be sufficiently constrained to describe

individual coupling operators instead of entire coupled model configurations?

 As detailed in the Related Work section, some initial progress has been made in

using the CIM to control software [118]. The most significant example of this is use of

the ApCIM to configure the OASIS4 coupler [120]. While successful, the authors note

that due to the broader scope of the CIM, the structure of the ApCIM is larger and more

complex than the original configuration files used by OASIS. Our results indicate that the

ApCIM is a viable source of prospective metadata and the types defined in the ApCIM

schemata [118] can be used to define interfaces to coupling operators. Therefore, instead

of requiring full ApCIM instances, we view the ApCIM as a kind of type library from

which we extract the structural definitions required for specific coupling operators.

129

 Returning to the ESMF-based Redistribution CC-Op described above, we show

how the single- and cross-interface schemata can be defined using types from the

ApCIM. In this section we describe portions of the CIM that are immediately relevant to

the Redistribution operator. An exhaustive explanation of the CIM is out of scope and the

reader is referred to the METAFOR website
13

 for a more detailed description of the CIM

metadata structures. In what follows, we reference version 1.5 of the CIM, which is the

current recommended stable version.

Figure 42: The ApCIM SoftwareComponent and ModelComponent complex types defined in the software

package XML schema.

13

 http://metaforclimate.eu/

130

 The ApCIM is divided into several XML Schema documents reflecting the top-level

packages of the Conceptual CIM. To describe the ESMF Redistribution operator

interfaces, we have referenced types defined in the software package (software.xsd)

and the grids package (grids.xsd) schemata. The software schema provides XML

complex types for two kinds of software components: processor components, which

describe software entities responsible for data transformations, and model components,

which describe software entities that represent scientific models. The ModelComponent

XML complex type contains most of the metadata required for the ESMF Redistribution

operator, including information about the fields defined in the model—encoded using the

ComponentProperty type, the deployment of the model—how the compiled executable

is deployed onto computing resources for a particular run, and information about the

index space used by the model fields, which is defined by types in the grid schema. The

structure of the ModelComponent and its parent abstract type SoftwareComponent are

shown in Figure 42. In the figure and those that follow, an XML complex type is shown

in a box with the name of the type at the top. Abstract types have an italicized name.

XML attributes, including their names and types, are shown below the type name in a

separate compartment and start with the @ character. XML elements, including their

names, types, and cardinality constraints, are shown in the lower compartment and begin

with an e.

131

Figure 43: The GridSpec complex type. An element of type GridSpec may contain multiple XML elements

of type GridMosaic, each of which may contain multiple XML elements of type GridTile.

Figure 43 shows the GridSpec complex type, which derives from the

AbstractGeometryType defined in a separate Geography Markup Language (GML)

schema
14

, and the GridMosaic type. These types are based on the information model of

the Gridspec, a standardized grid representation designed to promote interoperability of

gridded datasets across institutional boundaries [37]. The Gridspec allows grid

descriptions composed of multiple independently discretized tiles. The composite

structure is called a mosaic and it is defined recursively—a mosaic contains other

mosaics or, at the leaf level, grid tiles. This composite structure is modeled directly in the

ApCIM grids XML schema. The GridTile type is shown in Figure 44. It contains

elements and attributes that describe the discretization of a single tile.

14

 http://www.opengeospatial.org/standards/gml

132

Figure 44: The GridTile type defines properties of a single tile in a grid mosaic.

 Figure 45 shows the Deployment complex type defined in the software schema.

The type contains elements which describe how a software component is deployed to

computing resources, including the name of the executable, the arguments passed, the

number of processes used, and the specific processor ranks (sequential identifier)

assigned to the executable.

133

Figure 45: The Deployment type describes details of how a software component is deployed to computing

resources.

 To determine if CIM instances provide sufficient metadata to drive the ESMF-

based Redistribution operator, we mapped XML elements and attributes to ESMF API

parameters. The mapping is summarized in . The columns of the table describe the

ESMF class involved, the name and Fortran type of the parameter passed to the

constructor function to instantiate the class, the purpose of the parameter, and the XML

node(s) from the ApCIM that can use be used to provide the parameter value. The

relevant XML nodes are shown in XPath notation, a language for concisely addressing

parts of an XML document [121]. Briefly, the forward slash is used to navigate to an

XML element‘s children, guard conditions are given in square brackets, and attributes are

referenced with the @ character.

In many cases, the XML value in an ApCIM instance can be used directly as the

API parameter value. In other cases, some manipulations are involved to transform the

ApCIM XML representation into the parameter type expected by ESMF. For example,

the petList parameter to ESMF_GridCompCreate() requires an array of integers. The

ApCIM, on the other hand, contains rankMin, rankMax, and rankIncrement elements.

These must be converted to an explicit listing of processor ranks.

134

Table 6: A mapping of ApCIM elements to ESMF API parameters. Element names listed in bold are

extensions to the existing ApCIM schemata.

ESMF Class Constructor

Parameter
and Type

Purpose of
Parameter

ApCIM XML Mapping

ESMF_GridComp petList
integer(:)

The list of
processor ranks on
which the model
component
executes

 modelComponent/deployment/
parallelisation/rank/rankMin

 modelComponent/deployment/
parallelisation/rank/rankMax

 modelComponent/deployment/
parallelisation/rank/rankIncrement

ESMF_Grid minIndex
integer(:)

The minimum
index in each
dimension

(no mapping – using framework default of 1
for every dimension)

ESMF_Grid maxIndex
integer(:)

The maximum
index in each
dimension

 modelComponent/grid/grid/
esmModelGrid/gridTile/@nx

 modelComponent/grid/grid/
esmModelGrid/gridTile/@ny

 modelComponent/grid/grid/
esmModelGrid/gridTile/@nz

ESMF_Grid regDecomp
integer(:)

For regular
decompositions,
the number of
decomposition
blocks in each
dimension

 modelComponent/deployment/
decomposition
[@type=’BlockRegularDecomposition]/
regDecomp

ESMF_Grid decompDim1
integer(:)

For irregular
decompositions,
the number of grid
cells in each
decomposition
block in the first
dimension

 modelComponent/deployment/
decomposition
[@type=’BlockIrregularDecomposition]
/dim1

ESMF_Grid decompDim2
integer(:)

Same as above, but
for second
dimension

 modelComponent/deployment/
decomposition
[@type=’BlockIrregularDecomposition]
/dim2

ESMF_Grid decompDim3
integer(:)

Same as above, but
for third dimension

 modelComponent/deployment/
decomposition
[@type=’BlockIrregularDecomposition]
/dim3

Some required parameters did not have mappings to the ApCIM. In particular, the

ApCIM does not contain metadata describing the decomposition of the grid‘s index space

among the processors assigned to the model component. To mitigate, our solution is to

135

extend the ApCIM Deployment complex type with new elements describing the

decomposition. This is possible using XML Schema‘s type extension capability. The

existing ApCIM Deployment element type definition is shown in Figure 46.

01 <xs:complexType xmlns:xs="http://www.w3.org/2001/XMLSchema" name="Deployment">

02 <xs:sequence>

03 <xs:element name="deploymentDate" minOccurs="0" maxOccurs="1"

04 type="dateTime"/>

05 <xs:element name="description" minOccurs="0" maxOccurs="1"

06 type="xs:string"/>

07 <xs:element name="parallelisation" minOccurs="0" maxOccurs="1"

08 type="Parallelisation"/>

09 <xs:element name="platform" minOccurs="0" maxOccurs="1">

10 <xs:complexType>

11 <xs:choice>

12 <xs:element name="reference">

13 <xs:complexType>

14 <!-- type definition elided -->

15 </xs:complexType>

16 </xs:element>

17 <xs:element ref="platform"/>

18 </xs:choice>

19 </xs:complexType>

20 </xs:element>

21 <xs:element name="executableName" minOccurs="0" maxOccurs="1"

22 type="xs:string"/>

23 <xs:element name="executableArgument" minOccurs="0"

24 maxOccurs="unbounded" type="xs:string"/>

25 </xs:sequence>

26 </xs:complexType>

Figure 46: The ApCIM Deployment XML Schema complex type definition.

 The XML Schema definition shown in Figure 47 imports the ApCIM software

schema and extends the Deployment complex type with a new type named Deployment

but in a different namespace (lines 40-49). Namespace prefixes are used to differentiate

the type definitions: cim:Deployment is the original type and cplgen:Deployment is the

extended type. The extended type includes a new element of type

cplgen:Decomposition (lines 44-45) containing the decomposition metadata.

cplgen:Decomposition is an abstract type (lines 14-16) with two concrete extensions:

cplgen:BlockRegularDecomposition (lines 18-26) and

136

cplgen:BlockIrregularDecomposition (lines 28-38). Instances must use one of these

types depending on the particular decomposition used in the numerical model.

The ApCIM extended with the new cplgen:Decomposition and

cplgen:Deployment types now includes sufficient XML types to parameterize the

ESMF Redistribution operator. We now define the single- and cross-interface schemata.

Both the source and destination interfaces require the same metadata so a single metadata

schema can be defined for both interfaces. The ApCIM type ModelComponent is the most

specific type containing all of the required metadata for the ESMF Redistribution

operator, so we chose that type as the top-level element for metadata instances coming

into the component.

 Very few ApCIM elements have a minimum cardinality of one (i.e., must be

provided in order to pass schema validation). For example, the SoftwareComponent

complex type allows a minimum of zero deployment elements so that the element is

useful in contexts when deployment metadata is not relevant or not available. Because

deployment metadata is required for the ESMF Redistribution operator, the schemata

attached to the source and destination interfaces must be more restrictive than the ApCIM

types. There are at least two approaches to defining the more restricted types. One option

is to use the XML Schema derived type mechanism to restrict the existing types.

Unfortunately, this leads to a large amount of schema duplication because restricted type

definitions in XML Schema must repeat all element declarations of the restricted type.

An alternative approach is to define a set of constraints that further restrict the ApCIM

type definitions by requiring some elements that are optional in the ApCIM. Such

constraints can be defined using the Schematron rule-based constraint language [106].

137

01 <xs:schema xmlns:cim="http://www.purl.org/org/esmetadata/cim/1.5/schemas"
02 xmlns:cplgen="http://www.earthsystemcurator.org/field"
03 xmlns:xs="http://www.w3.org/2001/XMLSchema"
04 elementFormDefault="qualified"
05 targetNamespace="http://www.earthsystemcurator.org/field">
06

07 <xs:import namespace="http://www.purl.org/org/esmetadata/cim/1.5/schemas"
08 schemaLocation="../cim/dev1.5/software.xsd"/>
09

10 <xs:simpleType name="IntList">
11 <xs:list itemType="xs:int"/>
12 </xs:simpleType>
13

14 <xs:complexType abstract="true" name="Decomposition">
15 <xs:attribute name="id" type="xs:NCName"/>
16 </xs:complexType>
17

18 <xs:complexType name="BlockRegularDecomposition">
19 <xs:complexContent>
20 <xs:extension base="cplgen:Decomposition">
21 <xs:sequence>
22 <xs:element minOccurs="1" name="regDecomp" type="cplgen:IntList"/>
23 </xs:sequence>
24 </xs:extension>
25 </xs:complexContent>
26 </xs:complexType>
27

28 <xs:complexType name="BlockIrregularDecomposition">
29 <xs:complexContent>
30 <xs:extension base="cplgen:Decomposition">
31 <xs:sequence>
32 <xs:element minOccurs="1" name="dim1" type="cplgen:IntList"/>
33 <xs:element minOccurs="0" name="dim2" type="cplgen:IntList"/>
34 <xs:element minOccurs="0" name="dim3" type="cplgen:IntList"/>
35 </xs:sequence>
36 </xs:extension>
37 </xs:complexContent>
38 </xs:complexType>
39

40 <xs:complexType name="Deployment">
41 <xs:complexContent>
42 <xs:extension base="cim:Deployment">
43 <xs:sequence>
44 <xs:element maxOccurs="1" minOccurs="1" name="decomposition"
45 type="cplgen:Decomposition"/>
46 </xs:sequence>
47 </xs:extension>
48 </xs:complexContent>
49 </xs:complexType>
50

51 <xs:element name="modelComponent" type="cim:ModelComponent"/>
52

53 </xs:schema>

Figure 47: An XML Schema document showing an abstract Decomposition type (lines 14-16) with two

concrete types, BlockRegularDecomposition (lines 18-26) and BlockIrregularDecomposition (lines 28-38).

The ApCIM type Deployment is extended to include an element of type Decomposition (lines 40-49).

Figure 48 shows a partial Schematron schema. The pattern element (line 2) is

used to encapsulate and name a set of rules. There is one rule defined in this schema (line

3). The rule element has a context attribute specifying the set of XML nodes in

138

instance documents where the rule should be applied. The context ―/*‖ indicates that the

rule applies to the root element of the XML document, which, as stated above, is an

element of type ModelComponent for the ESMF Redistribution operator.

The Schematron rule defined in lines 3-49 contains four let elements (lines 5-12)

and eight assert elements (lines 14-47). The let elements declare variables and assign

values to simplify the assertions expressions appearing below. Variables are referenced

later using a dollar sign before the variable name (e.g., $petCount). Each assert

element includes a test attribute which defines an XPath expression that should evaluate

to true for all valid instance documents. A user-friendly error message can be included

(e.g., line 15) in case an assertion fails.

 The first six assertions on lines 14-25 verify that required metadata is present. The

assertion on line 17 ensures that the deployment XML element is an instance of the new

extended type cplgen:Deployment (recall that the new type contains the required

deployment metadata). The assertion on lines 27-37 checks for internal consistency

between the number of processors specified for the model component ($petCount) and

the specification of the processor ranks ($rankMin, $rankMax, and $rankIncrement)

assigned to the model component. The assertion on lines 39-47 ensures that if an element

of type cplgen:BlockRegularDecomposition appears, then the maximum grid indices

are also provided (@nx and @ny). The maximum grid indices are not required for irregular

decompositions because they can be derived automatically from the irregular

decomposition metadata.

139

01 <!-- schema header elided -->
02 <sch:pattern id="ValidateMetadata">
03 <sch:rule context="/*">
04

05 <sch:let name="petCount"
06 value="cim:deployment/cim:parallelisation/cim:processes"/>
07 <sch:let name="rankMin"
08 value="cim:deployment/cim:parallelisation/cim:rank/cim:rankMin"/>
09 <sch:let name="rankMax"
10 value="cim:deployment/cim:parallelisation/cim:rank/cim:rankMax"/>
11 <sch:let name="rankIncrement"
12 value="cim:deployment/cim:parallelisation/cim:rank/cim:rankIncrement"/>
13

14 <sch:assert test="cim:deployment">
15 Missing deployment metadata

16 </sch:assert>
17 <sch:assert test="cim:deployment/@xsi:type='cplgen:Deployment'">
18 Incorrect deployment type

19 </sch:assert>
20 <sch:assert test="cim:deployment/cim:parallelisation">
21 Missing parallelisation metadata

22 </sch:assert>
23 <sch:assert test="$petCount">Missing number of processes</sch:assert>
24 <sch:assert test="$rankMin">Missing minimum rank</sch:assert>
25 <sch:assert test="$rankMax">Missing maximum rank</sch:assert>
26

27 <sch:assert test="(not($rankIncrement)
28 and $petCount = $rankMax - $rankMin + 1)

29 or

30 ($petCount = ceiling($rankMax - $rankMin + 1)

31 div $rankIncrement)">
32 Total processor count does not agree with rank specification:

33 petCount = <sch:value-of select="$petCount"/>
34 rank specification implies petCount =

35 <sch:value-of select="ceiling($rankMax - $rankMin + 1)
36 div $rankIncrement"/>
37 </sch:assert>
38

39 <sch:assert test="not(cim:deployment/cplgen:decomposition/
40 @xsi:type='cplgen:BlockRegularDecomposition')

41 or

42 (cim:grid/cim:grid/cim:esmModelGrid/cim:gridTile/@nx

43 and

44 cim:grid/cim:grid/cim:esmModelGrid/cim:gridTile/@ny)">
45 For BlockRegularDecompositions,

46 max grid indices nx and ny are required.

47 </sch:assert>
48

49 </sch:rule>
50 </sch:pattern>

Figure 48: A set of Schematron assertions ensure that all required metadata elements are present at an

interface and ensure internal consistency of the metadata. For example, the assertion on lines 27-37 verifies

consistency between the number of processors specified for the model component and the specification of

the processor ranks.

 We previously identified a cross-interface constraint for the ESMF Redistribution

operator: a linearization of the source and destination index spaces must contain the same

140

number of indices. Because cross-interface constraints reference multiple XML

documents, a composite XML document is first constructed as shown in Figure 49. To

form the composite document, a new root element is created (lines 1 and 13) with a child

element for each of the operator‘s interfaces (lines 3-5 and 7-9). The XML documents

provided at each interface are copied into the corresponding child element in the

composite document.

01 <root>
02

03 <redistSend>
04 <!-- XML from send interface inserted here -->
05 </redistSend>
06

07 <redistRecv>
08 <!-- XML from receive interface inserted here -->
09 </redistRecv>
10

11 <!-- other interfaces, if present, would appear here -->
12

13 </root>

Figure 49: A composite XML document is constructed by the ESMF Redistribution CC-Op in order to

check cross-interface constraints.

 Given the composite XML document, a Schematron rule can be used to verify the

cross-interface constraint as shown Figure 50. Lines 9-11 and 13-15 define variables that

reference the gridTile elements for the source and destination grids. The single

assertion on lines 17-24 verifies that the total number of cells in each grid is equal and

supplies an error message that can be displayed to the user in the event that the constraint

fails. As shown, the Schematron rule makes the simplifying assumption that both grids

are two-dimensional. However, similar rules can be written to compare grids of differing

dimensions.

141

01 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt">

02

03 <sch:ns prefix="cplgen" uri="http://www.earthsystemcurator.org/field" />

04 <sch:ns prefix="cim" uri="http://www.purl.org/org/esmetadata/cim/1.5/schemas" />

05

06 <sch:pattern id="ESMFRedistCrossInterfaceConstraints">

07 <sch:rule context="/*">

08

09 <sch:let name="inportTile"

10 value="redistFieldIn/cplgen:modelComponent/cim:grid/cim:grid/

11 cim:esmModelGrid/cim:gridTile"/>

12

13 <sch:let name="outportTile"

14 value="redistFieldOut/cplgen:modelComponent/cim:grid/cim:grid/

15 cim:esmModelGrid/cim:gridTile"/>

16

17 <sch:assert test="($inportTile/@nx * $inportTile/@ny) =

18 ($outportTile/@nx * $outportTile/@ny)">

19 Input and output grid tiles do not have the same number of cells.

20 Sequentialized input tile has

21 <sch:value-of select="$inportTile/@nx * $inportTile/@ny"/> indices.

22 Sequentialized output tile has

23 <sch:value-of select="$outportTile/@nx * $outportTile/@ny"/> indices.

24 </sch:assert>

25

26 </sch:rule>

27 </sch:pattern>

28

29 </sch:schema>

Figure 50: A Schematron schema enforces cross-interface constraints.

Implementation

 To validate the feasibility of CC-Ops, we have developed several CC-Op

prototypes using the CCA tool chain. Performance is assessed by measuring the strong

scaling characteristics of coupling operators for several basic coupling scenarios. We also

measure the overhead in terms of time spent marshalling and unmarshalling data at

component interfaces and execution time for metadata validation.

 A prominent coupling operator supported by most existing library- and framework-

based coupling technologies is the parallel redistribution operator described earlier in this

chapter. To emphasize the implementation substitutability afforded by CC-Op SIDL

interfaces and metadata schemata, two redistribution CC-Ops are presented, one

142

implemented with MCT and the other implemented with ESMF. This situation is

depicted in Figure 51.

Figure 51: Two implementations of the redistribution coupling operator. Because they share a common

interface, one implementation may be substituted for another.

 The MCT- and ESMF-based component interfaces are described as SIDL classes.

The class definition for the ESMF-based component is shown in Figure 52. The MCT

class definition is identical except the package name on line 3 is changed to MCT.

SIDL class specifications are processed with the Babel compiler to produce

client-server language interoperability source code. Babel generates four layers of code:

stub, intermediate object representation (IOR), skeleton, and implementation [61]. The

flow of control through the layers is shown in Figure 53 (recreated from [61]). Stubs are

called by clients and are responsible for converting native arguments to their IOR

representation, calling the appropriate method in via the entry point vector (EPV), and

converting return values from IOR form back to native representations. Skeletons receive

calls from stubs and are responsible for converting arguments from the IOR form to their

native representation before dispatching the user-provided implementation. Upon return,

 cmp Redists

ESMFRedistribution

Redistribution

CommContext

MCTRedistribution

Redistribution

CommContext

ESMF Library MCT Library

«use»«use»

143

arguments are converted back to IOR representation. Of the Babel-generated files, users

are only expected to change the native implementation files. The implementation may be

provided in any language supported by Babel.

01 import CplGen;

02

03 package ESMF version 1.0 {

04

05 class Redistribution extends CplGen.AbstractComponent

06 implements CplGen.Basic.Redistribution {

07

08 void redistSend(in CplGen.Field srcField)

09 throws

10 ComponentException, sidl.PreViolation;

11 require

12 not_null_fieldIn : srcField != null;

13

14 void redistRecv(inout CplGen.Field dstField)

15 throws

16 ComponentException, sidl.PreViolation;

17 require

18 not_null_fieldOut : dstField != null;

19

20 }

21 }

Figure 52: SIDL class definition of the ESMF Redistribution operator.

convert arguments
native à IOR

call via EPV

convert return value
IOR à native

convert arguments
IOR à native

call native
implementation

convert return value
native à IOR

Stub (Client) Skeleton (Server)

Figure 53: Control flow through Babel's intermediate object representation. Image recreated from [61].

144

01 !

02 ! Method: redistSend[]

03 !

04

05 recursive subroutine Redistr_redistSendisvacnp1yj_mi(self, srcField, &

06 exception)

07 use sidl

08 use sidl_BaseInterface

09 use sidl_RuntimeException

10 use CplGen_Field

11 use CplGen_ComponentException

12 use ESMF_Redistribution

13 use sidl_PreViolation

14 use ESMF_Redistribution_impl

15

16 ! DO-NOT-DELETE splicer.begin(ESMF.Redistribution.redistSend.use)

17

18 ! DO-NOT-DELETE splicer.end(ESMF.Redistribution.redistSend.use)

19

20 implicit none

21 type(ESMF_Redistribution_t) :: self

22 ! in

23 type(CplGen_Field_t) :: srcField

24 ! in

25 type(sidl_BaseInterface_t) :: exception

26 ! out

27

28 ! DO-NOT-DELETE splicer.begin(ESMF.Redistribution.redistSend)

29

30 ! DO-NOT-DELETE splicer.end(ESMF.Redistribution.redistSend)

31

32 end subroutine Redistr_redistSendisvacnp1yj_mi

Figure 54: Fortran language method implementation template generated by the Babel compiler

 Because ESMF and MCT have Fortran APIs, implementation files were generated

in Fortran for both components. An example of a generated implementation template is

shown in Figure 54. Structured comments called splicer blocks are used to identify areas

where the user provides code. The splicer blocks enable the user to re-invoke the Babel

compiler without losing changes.

For space considerations, we do not show the full implementation of the

redistSend() or redistRecv() methods for either component. However, the basic

structure of the redistSend() method for both components is shown in Figure 55. In

both components, an internal cache is created on the first call to improve execution speed

of subsequent invocations. Metadata is validated—both single interface and cross

145

interface constraints—during the first invocation, but only on the root node. The existing

implementations assume that metadata is static and is therefore only validated and read

during the first invocation of the method.

01 redistSend:

02

03 if (cache does not exists) then

04

05 if (i am the root process calling this method) then

06

07 validate my metadata

08 receive filename of metadata from corresponding redistRecv call

09 validate cross interface constraints

10

11 end if

12

13 read metadata

14 calculate and cache inter-cohort communication pattern

15

16 end if

17

18 use cache to perform redistribution

Figure 55: High level outline of redistSend method implementation

 Performance of the MCT- and ESMF-based redistribution CC-Ops was measured

using a test program that executes 101 redistributions of a 1024x1024 Cartesian grid

using several different processor counts. In all cases, the sending cohort‘s data is

decomposed only on the second dimension and the receiving cohort‘s data is decomposed

only on the first dimension. Half of the available processes are used for sending and the

other half for receiving. For example, in the case of 4 processes, 2 processes are used for

sending, each with a 1024x512 chunk, and 2 processes are used for receiving, each with a

512x1024 chunk. Because the relative decompositions are orthogonal, all sending

processes must communicate with all receiving processes. Performance measurements

146

were collected on the Amazon Elastic Compute Cloud
15

 (EC2) using c1.xlarge instances

each with 8 cores and 7 GB memory. Three trials were executed for each process count

and average times are shown.

 Figure 56 shows the mean execution time for a single invocation of the

redistSend() method for redistributions 2-101 (i.e., after the internal cache has been

established). For both components, the results indicate approximately ideal scaling from

8 to 32 processes and superlinear speedup from 32 to 64 processes, likely due to

improved caching in the memory hierarchy with the smaller memory footprints per

process.

Compared to the library- and framework-based coupling technologies which

provide APIs in the same programming language as constituent models, the CC-Op

approach introduces some small additional overhead due to time spent inside the stubs

and skeletons converting arguments between the IOR and native representations. The

following plots compare the total execution time for the test program (101 redistribution

operations) to the total amount of time spent inside stub, IOR, and skeleton subroutines.

Figure 57 shows component overhead for the ESMF case, and Figure 58 shows

component overhead for the MCT case. Overhead less than .03% of total execution time

in all cases and the absolute overhead tends to decrease with increasing process counts.

15

 www.amazon.com/ec2

147

Figure 56: Mean execution time (per process) for a single invocation of the redistSend method for a

1024x1024 Cartesian grid. Timings for MCT and ESMF-based components are shown. Data labels are

shown for the MCT-based component

Figure 57: Total execution time compared to total time spent inside stubs and skeletons for a test program

invoking 101 redistributions of a 1024x1024 Cartesian grid. Overhead is less than .015% in all cases. The

inverse scaling is due to the high initialization cost versus the relatively small number of redistributions

performed.

148

Figure 58: Component overhead for the MCT-based redistribution CC-Op

 Figure 59 and Figure 60 indicate the effect of a component‘s internal caching by

comparing the first invocation of the redistribution CC-Ops in which the cache is

established against subsequent invocations. For the ESMF-based CC-Op with 32 sending

processors and 32 receiving processors, the first invocation required ~66 seconds

execution time and the subsequent 100 invocations that utilized cached intermediate

objects required a total of ~3 seconds execution time. As indicated by the figure, the first

invocation of the component is dominated by XML validation (on the root node of the

sending cohort) and preparing for the redistribution which involves calculating the inter-

cohort communication pattern (via a call to ESMF_RedistStore()). The cost of the XML

validation is nearly constant across all processor counts since it is performed only on the

root node.

In the current design, caching must be managed explicitly by the component

developer—i.e., there is no built-in machinery to automatically cache intermediate

results. The current component implementations assume static metadata that does not

change during execution. Therefore, the metadata is only consulted during the first

invocation of the component and intermediate data structures are created based on the

first reading of the metadata. In the face of dynamic metadata, more sophisticated

149

caching schemes should be devised. For example, intermediate objects can be tied to a

subset of metadata elements. Upon invocation, a component compares incoming

metadata with its cache. If parts of the metadata instance match previously seen metadata,

then pre-stored intermediate objects can be used instead of initializing them from scratch.

Such caching may be useful in ESMs with highly dynamic metadata, such as models that

employ grid structures that change dynamically at runtime.

Figure 59: Execution time for a redistribution operation of a 1024x1024 Cartesian grid for 2, 4, 8, 16, and

32 sending processes using an ESMF-based CC-Op. The first column for each pair shows the execution

time for the first invocation of the component. The second column in each pair shows execution time for

the next 100 invocations of the same operator.

150

Figure 60: Cache effect for MCT-based redistribution CC-Op.

Discussion

Uses of Prospective Metadata

While the CIM development is primarily focused on retrospective metadata

uses—describing the scientific properties of existing models [118]—prospective

metadata has made some inroads into the climate modeling community. A prominent

example is extensive use of XML to configure model execution within the Flexible

Modeling System Runtime Environment (FRE) used at the Geophysical Fluid Dynamics

Laboratory (GFDL). FRE allows complete model configurations (source code,

compilation, model run sequences of many-month compute duration, post-processing,

and analysis) to be maintained in a single comprehensive XML file. This file is processed

by a set of Perl metascripts that generate the appropriate scripts for executing the model.

Scripts are automatically scheduled for execution by the batch system.

151

 The fields in the XML configuration file serve as a complete description of a

model run from source code checkout to post-processing of output data. Because FRE is

intended to run at a single lab, many of the workflow details are hard coded into the

metascripts instead of being supplied as part of the XML configuration. For example, the

logic for acquiring initialization datasets is hard coded into the metascripts based on the

computational environment at GFDL. For this reason, a significant effort is required to

make use of a FRE configuration file outside of GFDL.

 The OASIS coupler and the Bespoke Framework Generator version 2 (BFG2)

both make use of XML-based metadata for configuration purposes—the former uses

XML for dynamic configuration, and the latter uses it for static configuration (i.e., code

generation).

We do not argue that all prospective metadata should necessarily adhere to a

community-wide standard. Clearly, the climate modeling community has determined that

retrospective metadata should adhere to a common model as evidenced by use of

resources to develop the CIM. It is expected that presence of the CIM will greatly

facilitate intercomparison of model output, e.g., by identifying differences in the

scientific and numerical formulations of participating models. It is an open question as to

whether prospective metadata that adheres to a community-wide standard will provide a

similar level of scientific benefit. However, with respect to CC-Ops, where possible we

have tried to leverage existing standards instead of adding yet another configuration

format to the mix.

Compared to current prospective uses of metadata, the CC-Op approach is distinct

with respect to the granularity of the metadata descriptors. Whereas existing metadata

instances are used to configure an entire coupling technology, CC-Ops explicitly identify

the metadata required for particular coupling operations. In other words, existing

coupling technologies that support metadata-based configuration rely on a single logical

schema to define metadata for all of the coupling operations supported by the coupling

152

technology, instead of for any particular coupling operation. This schema, therefore,

cannot be used to validate metadata instances for specific coupling operations as it is

designed to describe use of the coupling technology in general. This reduces the ability of

developers to manipulate coupling operators independently. In most cases, a developer

must adopt an entire coupling technology if only to access a single coupling operator.

 Another drawback to current usage of prospective metadata for configuring

coupled models is the lack of a standardized representation that can be used across

multiple coupling technologies. By and large, each coupling technology that supports

metadata input uses a custom metadata format. This implies that users of multiple

coupling technologies will be required to learn multiple metadata formats.

 Some initial progress has been made in using the METAFOR CIM to configure

exchanges of coupling data using the OASIS4 coupler [118, 120]. OASIS developers

adapted the software to accept CIM XML instances instead of the original Specific

Coupling Configuration (SCC) and Specific Model Input and Output Configuration

(SMIOC) XML files. The process involved mapping elements of the CIM to elements of

the SCC and SMIOC. In some instances, the CIM itself was extended with new elements

when no suitable place could be found in the CIM for metadata required to configure

OASIS. Additions were made in as general a way as possible to ensure that the CIM

would remain agnostic to any particular coupling technology. The CIM-enabled OASIS

was validated by using a CIM instance to configure two example applications and

verifying that the output data and various statistics about the coupling exchanges were

identical to previous runs of the applications configured using the SCC and SMIOC XML

files. In discussing the adaptation of OASIS to accept CIM documents, the authors note:

(1) The CIM is larger and has a more complex structure than the original XML

configuration files. This is due to the larger scope of the CIM and its requirement to

describe coupling metadata agnostic of any particular software package.

153

(2) The CIM is more flexible than the original XML configuration files because CIM

metadata could appear in a single XML file or could be broken up into one file per

constituent model with inter-document references.

(3) The CIM‘s description of coupling exchanges prevents some inconsistencies that

were possible using the original SMIOC configuration. This is because each

constituent‘s SMIOC file described both source and target fields for a coupling

exchange, a redundancy that could allow an inconsistent specification.

 ESMF has also added support for the CIM using its generic attribute package

mechanism [46]. However, ESMF‘s current focus is to output CIM instances that

describe an ESMF application‘s current configuration—a retrospective use of the CIM. It

is likely that the CIM structure will require further modification and extension as more

rigorous configurations are attempted and additional coupling technologies adopt the

CIM as an input to configuration.

Independent Distribution and Deployment of CC-Ops

 Current generation coupling technologies are packaged into libraries and typically

only a single distribution including all features is available for download. While

subroutine libraries do offer fine-grained reuse at the implementation level (e.g., by

calling only selected subroutines), it is typically not possible to incorporate only a portion

of a library into the build process of a coupled model. Why does this matter? If a library

does not require external dependencies, then there may be little difference except for the

increased size of binaries. However, coupling technology libraries that offer many

features may also add multiple dependencies to the build process of the coupled model.

Adding a constituent model to an existing coupled model also entails folding a new set of

dependencies into the coupled model‘s build process. In this regard, dependency

management can become a significant source of complexity.

154

 Ideally, the use of component technologies should help with dependency

management, although this does not happen automatically. One consideration is how

many of a component‘s functions are outsourced to other software and how many

functions are provided natively by the component [48]. A component designer may

decide to leverage existing libraries and other components in order reuse existing

functions. This provides an economic advantage and allows the component developer to

rely on mature software that is more stable and better tested compared with

implementations written from scratch. However, leveraging existing software adds

context dependencies to the component making it less self-contained and adding a burden

to the component user to ensure that all dependencies are satisfied. As dependencies

increase, the number of environments that support the component shrinks. Szyperski puts

is succinctly: ―Maximizing reuse minimizes use‖ [48]. With respect to CCA, context

dependencies may come in at least two forms: external libraries and other components

(identified via requires interfaces). Between the two, we argue that the requires interface

dependencies are preferable because they are managed within the component framework

itself—i.e., meeting the dependency involves finding a component that implements the

required interface and deploying it into the component framework. Library-based

dependencies, on the other hand, are managed external to the component framework

requiring the component user to ensure that compatible libraries are available on the

system.

The prototype CC-Ops presented in this chapter are dependent on the full

distributions of the backing coupling technologies, MCT and ESMF. To save time, we

did not attempt to isolate individual functions and compile them into separate

distributions or to natively embed implementations directly into components, although

that is the preferable approach. Instead, we wrapped existing libraries with components to

show the feasibility of component-based coupling infrastructure. Ideally, CC-Ops would

have native implementations of coupling operators instead of relying on external

155

libraries. However, the problem is not rooted in CCA or component technologies—given

adequate developer resources, it should be possible to port existing implementations into

components in order to minimize external library dependencies.

Component- versus Framework-based Infrastructure

The ESM community has settled on some shared infrastructure such as use of

Fortran and the MPI standard. However, these are too low-level to provide services for

automated composition of model implementations. Some coupling technologies have

gained widespread acceptance, although fragmentation still exists in the community. For

example, many US-based models have adopted or are adopting ESMF; in Europe,

however, OASIS dominates [80]. Compared with generic component technologies,

domain-specific computational frameworks, such as ESMF, provide functions ―out of the

box‖ that directly solve specific computational problems for a community. We posit that

lack of adoption of component technologies by the ESM community is due at least

partially to scarcity of components addressing domain-specific, infrastructure-level

concerns. In other words, the community has focused on componentizing models and

very little work has been done in offering infrastructural components. Instead, these

kinds of services are typically provided by a coupling library or framework with a

customized interface. Once adopted, it is difficult to separate a model from its dependent

libraries. This issue is one of the key motivators for the design of CCA: ―by casting the

computational infrastructure as well as the high-level physics of the applications as

components, [component technologies] also provide easier extension to new areas, easier

coupling of applications to create multi-scale and multi-physics simulations, and

significantly more opportunities to reuse elements of the software infrastructure‖

(emphasis added) [122].

An important question is whether infrastructure services provided by components

should instead be incorporated into the component framework itself. For example,

156

Damesvski and Parker extended CCA to support MxN data redistribution natively [123].

They added a new SIDL type to represent distributed arrays and modified the SIDL

compiler to generate stubs and skeletons with code to perform the redistribution operation

on method invocation. There are convincing arguments for including MxN redistribution

as a framework-provided function: it is required in many domains, it reduces the amount

of code written by the user, and it reduces the number of functions that must be provided

by components. However, there are tradeoffs in deciding what should be included within

the framework and what should be provided by components. Adding more functions to

the component framework adds complexity to the framework and increases its size. As it

stands now, CCA is agnostic to a component‘s parallel properties—i.e., if parallelism is

desired, the component designer manages it herself using external tools such as MPI.

This approach has the advantage of allowing components to easily adapt to the

parallelism strategy of legacy codes. Moreover, each scientific community has

specialized parallelization and decomposition schemes requiring domain-specific

functionality. Therefore, from our perspective, it is preferable to require domain experts

to provide these specialized functions as components. Compared with framework-

provided infrastructure, the component approach provides much greater flexibility in

substituting implementations of infrastructure-level concerns.

CC-Op Composition

 Multiple CC-Ops may be composed to provide more sophisticated services. For

example, Accumulator and Regridding CC-Ops could be chained to form a composite

operator that accumulates field data for a period of time and then regrids the data to a

destination model. Or, Merge and Redistribute CC-Ops could be composed into a new

operator that accepts multiple field data streams, combines them in some way (e.g., by

taking an average), and redistributes the results to a different processor layout for

consumption by a third model. Specifying the behavior of composite CC-Ops could

157

become a source of complexity. Orchestration languages similar as those used by the web

services community could potentially be leveraged to specify control and data flows

through multiple interacting CC-Ops. Guarantees on compositional correctness could be

provided by ensuring type compatibility of data and metadata interfaces of connected

CC-Ops. While type checking of typical data types (e.g., SIDL primitive types and

classes) is a solved problem, it is less clear how to check compatibility of connected

metadata interfaces where each interface is defined by a separate XML schema.

Conclusions

 In this chapter, we have shown how fine-grained reuse of coupling infrastructure

can be achieved by identifying individual coupling operators and implementing them as

components with explicit interfaces deployed in a high-performance component

framework. CC-Op interface specifications are decomposed into separate data and

metadata parts. Data interfaces are specified using SIDL types. Metadata interfaces give

meaning to data accessed through the data interface and are typed using a combination of

XML Schema and the rule-based Schematron language. CC-Ops leverage the Common

Information Model (CIM) to provide XML types and we showed how this metadata

standard can be extended when necessary. Compared to existing approaches which

encapsulate metadata in library- and framework-specific types, the declarative XML-

based approach promotes interoperability through the use of a shared metadata model.

 Previously, we identified several problems impeding effective reuse of coupling

infrastructure, especially duplication of infrastructure, the cohesive behaviors of domain

structures implemented in libraries and frameworks, and complex dependency

management. In this section we describe how CC-Ops address these problems.

 Duplication of coupling infrastructure arises when constituent models that need to

be coupled either contain their own custom infrastructure code or use different coupling

technologies. A common work around for duplicate infrastructure is to follow the path of

158

least resistance: simply leave existing infrastructure in place and write customized glue

code to handle architectural adaptation. While this approach saves time in the short term,

it can lead to excessively large code bases, one-off glue code implementations, and

performance overheads during data type conversions. Moreover, it directly opposes the

goals of software reuse by allowing competing implementations of the same domain-

specific functionality to co-exist. CC-Ops provide an alternative approach: constituent

models and infrastructure services are implemented as separate components and their

interactions are specified by interface contracts. Models identify required infrastructure

services but do not specify any particular implementation. This encourages developers to

keep model implementations lean (i.e., with minimal embedded infrastructure) and

leverage infrastructure services provided by other components.

 The cohesive behavior of framework-based coupling technologies impedes

integration of domain objects across coupling technologies. Similar domain structures

defined in different constituent models and coupling technologies cannot be integrated

due to differences in domain-independent behaviors and representations. CC-Ops‘ use of

declarative, community-developed metadata definitions helps to address this issue by

reducing the number of framework-specific types that appear in model code.

 Complexity in managing software dependencies arises because integration of two

or more constituent models requires not only composition of model code, but also

designing a build process that handles the union of all dependent libraries. As stated in

the discussion session, the use of component-based infrastructure does not automatically

resolve all dependency issues. CC-Ops that derive their services primarily from libraries

require the component user to ensure availability of those libraries on systems where the

CC-Op is deployed. However, if CC-Ops are designed such that all or most functionality

is implemented natively, instead of outsourced to traditional libraries, then dependency

management is handled primarily by the component framework.

159

Looking forward, we believe that this work is a small step toward the formation

of an ecosystem of fine-grained coupling infrastructure components. An online repository

of CC-Ops could offer query services to help users discover and acquire CC-Ops based

on their interface specifications. Developers search the index for coupling operators

based on their needs. A developer who implements a new coupling operator can package

it as a CC-Op and upload it to the repository for others to use. Use of explicit interfaces

allows developers to exchange one CC-Op for an improved version with minimal effort if

one comes available in the repository.

160

CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

Thesis Revisited

 This dissertation has argued the following thesis:

A feature-oriented view of coupling infrastructure enables effective reuse of

coupling technologies by:

1. decomposing coupling technologies into a salient set of implementation-

independent features required for coupling high-performance models,

2. increasing the level of abstraction at which model developers work by

encoding features in a domain-specific language, and

3. facilitating integration of coupling infrastructure with constituent

models via component-based modularization of features.

 In chapter III, we presented a feature analysis of several coupling technologies

resulting in a comprehensive feature model of the domain. A feature-oriented view of the

domain decomposes the complexities of coupler implementations into distinct increments

in functionality, opening the door to over twenty years of research in feature-oriented

software development (FOSD) [124], a proven paradigm for synthesizing large-scale

software systems from reusable assets. In FOSD, features are the unifying concept

through all stages of software development—they identify user requirements and

configuration options, they structure design and implementation artifacts, and they are the

primary unit of reuse. Initially, feature models were used to structure only the problem

space [90] and little effort was made to ensure a one-to-one mapping between features

and their implementation. Later, it was determined that features should be made explicit

161

at the programming language level [125]. We used our feature model to structure both the

problem space and the solution space. With respect to the problem space, it is a tool for

domain understanding and configuration and was used to inform the Cupid domain-

specific language. With respect to the solution space, features are candidates for

modularization as separate Component-based Coupling Operators (CC-Ops). In the next

section, we discuss the ramifications of our choice of component technologies against the

spectrum of modularization mechanisms available.

 In chapter IV, we presented the Cupid domain-specific language and compiler. We

showed how Cupid raises the level of abstraction at which model developers work by

automatically generating implementations from structural specifications. The generated

code included both superstructure and infrastructure aspects of a coupled model.

Integration of a model‘s science into the generated code still required some manual

coding by the developer. We proposed isolating a model‘s science implementation and

defining a formal interface as future work which would reduce or eliminate the amount of

manual coding required.

 In chapter V, we showed how a high-performance component framework could be

used to build coupled models compositionally from independent infrastructure pieces

called CC-Ops. CC-Ops are component-based implementations of features from the

coupling technologies feature model. CC-Op interfaces explicitly identify all

dependencies so they can be composed flexibly—i.e., CC-Ops eliminate implicit

dependencies normally present between domain structures in existing coupling libraries

and frameworks. We showed how existing metadata standards for retrospective

descriptions of climate models could be extended and used as prospective metadata to

type CC-Op interfaces. Finally, we showed how CC-Ops do not incur significant

performance penalties when used with static metadata.

162

Feature Modularity

 There has been a lot of research on feature modularity. The idea of representing

feature implementations in separate code structures originated in [125] and an overview

of approaches is given in [124]. Recently, researchers in the product line community have

identified competing notions of what feature modularity actually means [126]. One

school of thought is that feature modularity means locality and cohesion—i.e., the idea is

to put everything related to the same feature into the same code structure. In this way, the

implementation of a single feature is located in one place and not scattered throughout a

code base. This should ease maintenance because developers can be quickly directed to

the code for a particular feature. The other notion of modularity is that of information

hiding. Under this notion, a module has two parts, a hidden part, called the

implementation, and an external, visible part called the interface. This kind of

modularization enables modular reasoning because the interface is a contract

guaranteeing certain behavior. Other advantages include modular type checking, separate

compilation, and allowing an open-world view—i.e., we can reason about a module

without knowing the other modules in the system.

 The choice of CCA components as the feature modularization mechanism for CC-

Ops falls squarely into the information hiding camp, although information hiding is

somewhat of a consequence, not necessarily our initial motivation for choosing CCA. We

chose CCA as the modularization mechanism in order to support high-performance

environments, to leverage SIDL, and to take advantage of existing tools that work with

languages popular in the ESM domain such as Fortran and C. While we found SIDL

specifications sufficient for specifying interfaces to feature implementations, component-

based modularization is heavyweight compared to other feature modularization

mechanisms. This is evidenced by the large amount of intermediate code generated by the

Babel compiler. Some researchers have already shown that as feature granularity

increases, the size and complexity of interfaces increases such that there is little

163

implementation left to hide and interface overheads become significant [127]. We suspect

that a complete feature-oriented ESM modularized using a component-based approach

may indeed suffer from code bloat and unacceptable performance overheads due to the

large number of component interfaces. Although our analysis shows minimal overhead

for CC-Ops used in isolation, it is not sufficient to guarantee low overheads of a large

number of interacting CC-Ops. This limitation should be explored in future work. If it is

determined that interface overheads become significant, alternative mechanisms for

feature modularization should be considered, such as mechanisms that ensure code

locality but do not incur significant runtime overhead.

 While the black-box nature of components simplifies their independent

development and deployment, the inability to access component implementations limits

the possibility of modularizing and applying cross-cutting features—i.e., features that,

when applied, affect the implementations of multiple other features. Indeed, we did not

implement any cross-cutting features with CC-Ops. As an example of a cross-cutting

feature, consider whether a coupler supports parallel execution. If several CC-Ops are

used in the construction of a serial coupled model, we may wish to ensure that all CC-

Ops support only a serial mode. Currently, this aspect must be configured independently

for each CC-Op. However, because support for parallelism has been identified as a

separate feature, its implementation should ideally be represented in its own module and

its inclusion should impact the behavior of all CC-Ops in the selected context.

Difficulties in applying cross-cutting features to components have already been

recognized in existing work at the intersection of feature-oriented programming and

service-oriented architectures [128].

Variability Management for Earth System Models

Feature models are used for describing software product lines which are

traditionally planned and developed centrally [129]. This results in a closed-world view

164

of feature models. In a closed-world view of feature models, it is assumed that the entire

software application is described by the feature model. In other words, all of the features

are known up front and therefore the structure of the application and interactions of

features can be planned centrally before the application is configured, built, and

deployed. Under this paradigm there is little consideration of how features might be used

outside the product line or how to bring external features into the product line. The

alternative, an open-world view, recognizes that there may be some features required of

the software application that are unknown during the initial design. Under the open-world

view, a software product is designed with explicit extension points in mind to ease

composition with initially unknown features.

A promising future direction is to consider how existing platforms designed

explicitly for extension by third parties can influence ESMs towards more systematic

management of variability. One platform that should be considered is the plug-in

architecture of the Eclipse Integrated Development Environment (IDE), which provides

an extension point mechanism allowing third parties to extend the behavior of the IDE at

well-defined points. An advantage of the extension point mechanism is its support for late

binding: pre-compiled features can be downloaded and installed at runtime. ESMs could

define extension points for parts of the model that are likely to change, or that should be

changeable by third parties. For example, an ESM could allow a user to plug in a new

domain decomposition algorithm or grid interpolation scheme using an extension point

mechanism. Linux-based package managers should also be considered due to their ability

to automatically install separately developed software packages and manage complex

dependencies among software components built in a distributed manner with minimal

central coordination [130].

While the coupling technologies feature model indicates what varies in coupling

infrastructure, it does not indicate how the variation is implemented. A first step toward

systematic variability management is to catalog and characterize existing variation

165

mechanisms in ESMs. For example, CESM uses the linker to support multiple versions of

component models by coding to common interfaces (i.e., subroutine names and argument

lists) and selectively compiling only certain directories. The WRF model uses a custom

registry and code generator for managing variability in field definitions. Because each

modeling group has developed in-house solutions for managing variability, there is little

chance of compatibility among them. Understanding the different technical approaches

currently in use is the first step to defining a community-wide approach to variability

management.

Why should resources be expended to analyze variability mechanisms used in

different modeling centers? Recently, the Committee on a National Strategy for

Advancing Climate Modeling has recommended that ―U.S. climate modeling community

should work together to establish a common software infrastructure designed to facilitate

componentwise interoperability and data exchange across the full hierarchy of global and

regional models and model types in the United States‖ [131]. In the report, common

infrastructure is identified as a technological approach to improving our ability to

attribute differences in output of similar models back to specific differences in the

models‘ physical formulations. In other words, by systematically eliminating differences

in models, it becomes easier to isolate the cause of variations in model output. If the

climate modeling community is headed towards a common software infrastructure, then

is there value in understanding the range of technical, often highly specialized,

mechanisms for implementing variability in ESMs? We argue ―yes‖ for at least two

reasons: First, existing technologies such as the Earth System Modeling Framework

mentioned in the report cited above tend to focus on coarse-grained reuse—i.e.,

interoperability of entire geophysical components (e.g., substituting one atmosphere for

another). However, the report recognizes the need for interoperability of fine-grained

scientific units, such as individual physics kernels. We argue that ESMF-based

components are too heavyweight (in terms of code size and how field data is

166

encapsulated into abstract types) to serve as containers for individual physics

parameterizations. Fine-grained variation mechanisms could allow different bits of

physics to be injected into a model‘s implementation, for example, by generating a

physics suite from a set of individual subroutines. Secondly, understanding existing

variation mechanisms should be a source of input into the formulation of a common

modeling infrastructure. ESMF (like all frameworks) is an encoding of what is shared

among a set of related applications. However, even if ESMF experiences widespread

adoption, each modeling group will likely make their own decisions for how to

implement different configurations of their own models. The way to do this is not

prescribed by ESMF. One group might use compile-time directives such as #ifdefs

while another group creates separate source files and writes a custom configuration script

for conditional compilation based on an XML configuration file. These differences in use

of the framework create a learning curve for scientists wishing to exchange

implementations. Moreover, they introduce complexity into the configuration process

when attempting to integrate the components even though they share infrastructure. By

cataloging and evaluating existing ways to implement variability (configurability) in

ESMs, the highest quality variation mechanisms can be adopted into the common

modeling infrastructure.

Round-trip Engineering with Framework Specific Modeling Languages

The Cupid DSL and compiler support forward engineering of coupled model

implementations by generating code from a DSL instance. Our experience with the Cupid

DSL indicates that the DSL would have to be extended to support full code generation

because specification of the science—i.e., the code that handles the discrete form

equations—is not currently supported by the DSL. Because in the near to medium term

model developers will still continue to do a considerable amount of open-ended

167

programming, future research should address ways to provide assistance in that task, such

as through the use of advanced integrated development environments that guide

developers in understanding and modifying existing coupled model code. With respect to

writing code against coupling frameworks, a promising approach is to use Framework-

Specific Modeling Languages (FSMLs) to support round-trip engineering between source

code and a higher-level model of the framework concepts that the user needs to

implement [132, 133]. A FSML is ―an explicit representation of the domain-specific

concepts provided by a framework API‖ and they are used to express Framework-

Specific Models (FSMs) describing the current state of application code. FSMLs direct

the user in the implementation steps required to correctly complete a framework—i.e., to

write all of the necessary application code while satisfying the constraints of the

framework. Mappings are established between the user‘s code and a FSM.

Synchronization between the two is handled by a combination of code queries (for

reverse engineering the FSM) and code manipulations (to forward engineer application

code). We have recently begun work designing a FSML for ESMF and building an

Eclipse-based plug-in that uses the FSML to assist developers in writing ESMF code.

168

APPENDIX A

 This section contains the issues list table developed during the coupling technologies feature analysis. Status of ―U‖ means

unchanged, ―I‖ means in-place change (the name or description of a feature changed), and ―F‖ means fixed, indicating that the change

was approved and the issue closed.

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

1 U Execution Model The execution model may differ for different parts of

the entire coupled application. For example, the

physics and dynamics components may use shared
memory and the atmosphere and ocean interface

might use distributed memory. Or, the atm and land

might run sequentially, while the ocean model runs
concurrently. The execution model, therefore, is a

property of both the physical system AND how the

model itself is set up. Sometimes this is hard coded
into the model and sometime it can be configured

dynamically.

Separate the physical machine

versus how the model itself is

implemented.

I am not sure what the issue is. What the feature

means is that the coupling technology supports the

particular type of execution model. It may support
more than one.

2 I Programming Language Is the programming language that of the coupling

code or the modules that are to be coupled?

Clarify and choose a more

precise name.

Description improved

3 U Primitives, ANSI Standard Aren‘t the primitives tied to the programming
language? If so, is there a need for both? The same

applies for ANSI standard. By and large, all models

are going to be using ANSI standard types because
they want to use standard compilers. We might

consider dropping this feature.

Assume standard datatypes
will be available (since

common compilers are used)

and drop the feature from the
model.

Primitives describe the kinds of data (in the sense
of conceptual data modeling) that can be

communicated. ANSI has to do with whether at the

physical level the data types are implemented
using ANSI standards

169

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

4 U Data Types, TDT Most of the subfeatures here come from the TDT

library. That technology, it seems to me, is

fundamentally of a different nature than the others.
Namely, it is a low level abstraction layer on top of

several data transfer mechanisms (e.g., MPI, files, or

sockets). Frankly, I‘m not sure why it should qualify
as a coupling technology for ESMs. If we were to

include it, then we might also include MPI, for

example. I think it is included in the book chapter
because some of the other technologies (e.g., BFG)

rely on it for a low-level communication mechanism.

It should definitely appear in the parts of the feature
model where we talk about low-level communication

mechanisms (e.g., architectural connectors).

 I am not sure what you are recommending. I am

leaving it in for two reasons: 1) It is in the book

chapter; 2) I suspect that the other technologies, if
asked, would be able to fill in values for the

features

5 F Sparse Matrix I think sparse matrix is out of place here. These are
primarily used to store weights for interpolation

functions. However, it seems that the purpose of the

data type feature is to define the kinds of data types
that couplings fields can assume. It is hard to

construct a common use-case in which a sparse

matrix would be used to store a field.

Remove sparse matrix from
data types feature. Consider if

it should appear under the

interpolation feature. It might
be too specific, however, as it

is just part of the way to

implement interpolation.

Agreed

6 F Serialization I could not find serialization in the book chapter,

except with respect to barriers to parallel I/O, which
is out of scope for the feature model.

Remove from the diagram. Agreed

7 F Diagnostics I spoke with Sergey about what diagnostics means for

the community. He says that it is any variable output

from the model (e.g., in ―history‖ files) so it can be
analyzed. Therefore, a diagnostics component is the

same as a gridded / scientific / active component.

Rename feature to "active" and

include in the definition the

alternative terms "gridded",
"scientific", and "diagnostic"

Agreed

8 I Nesting If the nesting feature is selected, what does it mean?
That nesting of components is supported or that

nesting of components is required?

Change feature name to
"Support for nesting."

Alternative might be "Support

for Subcomponents" or
"Support for Child

Components"

I changed the description

9 U Run-time reconfiguration Run-time reconfiguration is orthogonal to the

architectural style. It is also not clear what is being
reconfigured? The schedule? The connectivity?

Clarify definition. Move

feature up in the diagram or
add "reconfigurable"

subfeature to all features that

are reconfigurable. (Meta

The definition already says connectivity. Also, I

don't agree that reconfiguration is not an
architectural style

170

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

comment: We need an

aspectual feature…)

10 U Transfer of data Transfer of data seems out of place here as the other
features seem more to do with the architectural /

structural properties of the coupler (which may or

may not be a separate module). If we included
transfer of data here, which is a function that a

coupler performs, we will likely also have to include

the numerical functions and a slew of other functions.

Move out of the architecture
feature and closer to the other

capabilities such as regridding

and reparitioning.

Already done

11 C Direct coupling Direct coupling is a structural feature, not a

subfeature of data transfer.

Feature should remain in

architectural section, but not
under data transfer.

I removed it from Coupler and subsumed it into

Connector as another form of shared memory)

12 I Connector It seems there are many places where architectural

connectors come into play and multiple connectors

(obviously) will be used in the same model. When I

make a choice under Type for example, what am I

choosing? The connector between a source model

and the coupler? The connector between the coupler
and a target model? The internal connector used

within a coupler component to handle the data

transfer? What if multiple kinds of connectors are
used (this is probably the typical case)?

Clarify which connector we

mean. If we mean multiple

places, then perhaps create

multiple features.

Kinds of connectors supported by coupling

technology

13 U Parallel data transfer Parallel data transfer refers to the transfer of what
data?

This may be subsummed by
whether or not the coupler as a

whole is parallel. If so, then

we know that data transfer is in
parallel and we can remove

this feature.

My sense from the reading is that these are
separate. A given coupling technology might

support the transfer of two fields in parallel

between the same pair of models.

14 C Location of Driving Code What is the relationship between Location of Driving

Code and Locus of Control? Master control seems to
be equivalent to Coupler or Driver and Independent

models is equivalent to model.

Remove the Locus of Control

feature.

Agreed. Good catch.

171

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

15 C Staging Under the Staging feature, certain subfeatures have

been pre-assigned under certain stages. For example,

Coupling Establishment, Grid Definition, and Local
Partition of Index Space are under Initialize. But

these things might still happen in a non-staged

coupling implementation.

Don't preassign functions to

stages, keep them orthogonal.

The subfeatures under
initialize might be covered

under Setup already.

Agreed. They were already in Setup. I also did the

same thing for Field Data Transfer.

16 U Mismatched request-reply

frequencies

Mismatched request-supply frequencies is probably

not a feature. No one would ask for that. The feature

has to do with interpolating, accumulating, or

averaging (in time) to make up for mismatched
frequencies. The same kind of thing is true for

different calendars.

Rename feature to "Field

Accumulation and Averaging"

and make note in definition

that it can support different
request/supply frequencies

I disagree. This feature indicates that the coupling

technology supports the coupling of models with

different frequencies. We already have time

averaging in the Numerics tab. There is no doubt a
constraint between the two

17 U Setup / Mechanisms Most models will require multiple kinds of

configuration mechanisms. What does fixing one of
these features mean? Does this refer to configuration

of the coupler or the model as a whole? It is not clear

how the configuration of the coupler relates to the

configuration of the model as a whole.

Clarify what is meant by

"Configuration" and rename
the feature. Needs to be

specific to configuring the

coupler, not the model as a

whole.

Fixing means that the coupling technology makes

use of the marked configuration medium

18 C Component sequence Component sequence seems more closely related to

the schedule than the topology.

Add a schedule feature under

setup?

Moved, for the time being, to Other

19 C Setup / Data Is the Data configuration feature (which includes
things like Physical constants and boundary

conditions) out of scope for coupling technologies?

Same for Variable priming, which is clearly part of a
model implementation, but may or may not be part of

couplers.

Remove the Data feature and
the variable priming feature.

Agreed.

20 U Capabilities This appears to be a general category for features that

do not have a home.

Refactor subfeatures of

capabilities into different parts
of the diagram. It seems to me

that "capability" is just a

synonym for "feature."

Agreed, but let's do it on a step by step basis.

172

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

21 C Neighborhood search The neighborhood search might be smaller grained

than a feature. It is part of an interpolation

algorithm—i.e., choosing the points that you need
from the source grid in order to calculate the new

value on the target grid.

Include the types of

interpolation available, but not

the details of how they are
implemented.

O.K.

22 U Value Mapping The meaning of the Value Mapping feature is

unclear.

Refactor and/or rename This is an example of where we need a domain

expert to help suggest a lable.

23 C Subgrid scale variability Subgrid scale variability has to do with phenomena

that occur on scales much smaller than the grid

resolution (e.g., individual clouds) so they have to be
parameterized instead of resolved explicitly. I do not

think it is a feature.

Remove from diagram O.K.

24 U Data Transfer Should we add a new tab that is concerned with data

transfer between
components?

 - Yes: this is, after all, the essense of coupling.
Moreover, doing it will get some stuff out of

"Capabilities"

 - No: we still want to leave some data transfer stuff

in "Numerics"

 Its all in under Coupler now

25 U Physical Machine Do we want to have a separate tab related to physical

machines?
 - Yes: this will simplify Capabilities

 - No: it will be confusing wrt Environment

One idea is to separate those

things which are static (non-
changeable) from those that

could be configured. Some of

both appear in the Target
Environment. Physical

machine is obviously static.

Its in Envrionment now.

26 U Connector / Type What is the difference between call/return (argument

passing) and function call?

 Already fixed.

27 I Invocation Ordering

Mechanism / Varying

schedule

What is the difference between a "varying" and

"constraint-based" schedule. It seems that they are

really the same thing (i.e., variation would have to be
based on some kind of constraints).

Drop "constraints" from the

Invocation Ordering

Mechanism and keep
"Varying"

They are different. Constraints has to do with how

the schedule is specified. Varying has to do with

whether the schedule can be changed at runtime.

173

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

28 U Component / Generic Changed Generic to "Mode"

because specific kinds of

components (atm, ocn) can be
active, passive, stub, etc.

Can't find "generic"

28.1 F Software Architecture /
Coupled Models / Type

Subsets of features listed under Type are orthogonal
to each other.

Change "Type" to "Mode"
because "type" is typically

interpreted as atm, ocn, etc.

The term "Mode" is more
appropriate because each type

of component may take on

several modes (they are
orthogonal). The term "Mode"

is used in the CESM

documentation. This means
that "Input-Output" will need

to be moved, as it is not really
a mode. It is not clear if there

is important distinction

between I/O and other kinds of
components from the couplers

perspective. Also, I don't think

"Exchange Grid" should
appear here. I reviewed the

chapter and I don't think it is

considered a separate
component type. Instead, it

should be moved to Numerics /

Iterpolation / Spatial.

29 U Component / Specific Changed to "Pre-defined
interface"

Can't find "specific"

29.1 C There is currently nowhere to specify whether or not

the coupling technology has pre-defined scientific

interfaces (e.g., FMS defines lists of fields for an
atmosphere component).

Add an optional "Pre-defined

Scientific Interface" feature

under coupled models

Placed under Other

30 U Connector / Type In part split into two categories
that describe a module that is

being coupled: control

interface and data interface.

Obviated by #60

174

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

31 C Data Types Are at too high a level. They really are a property of

models

Data types have been moved

under "What's being coupled" /

Data Interface and renamed
"Data Types and Packaging."

The "packaging" part takes

into account that lower-level
data types are often packaged

into technology-specific

containers for import and
export.

Moved tab contents under Coupled Models

32 I Target Environment Renamed to "Supported

Computational Environment"
because multiple environments

might be targetted by a single

coupling technology.

Changed to Environment

33 U Memory / Concurrency /
Threading

 These have been removed from
the Target Environment as they

are properties of the

application itself--not the
computational environment.

Concurrency renamed

"Module Concurrency" and
placed under Architecture.

Obviated by #61

34 U Web service Removed "Web service" from

platform. This is not a
platform, but an

implementation decision. A

web service may run in
multiple platforms. It implies

a certain kind of protocol and

architectural layout.

From the point of view of the user, it is a different

kind of computing resource

35 U Variable Priming Changed name to "Field
Initialization." "Priming" is a

term that seems to be specific

to BFG.

No longer relevant

36 C Filtering, Subsets,
Intersections

 These appear in the I/O section
of the book and I believe are

out of scope for coupling.

They have been removed for
now.

Agreed. Deleted

175

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

37 U Weight calculation Renamed to "Acquire

Interpolation Weights" because

they may or may not be
calculated (could be read from

a file). Moved under Coupling

Processes / Pre-run

Having weights (regardless of where obtained) is

listed separately as a feature. This feature is that

the numerics are capable of computing them.

38 C Progamming Language Changed to "Language

Bindings" and moved as a

subfeature of "What's being

coupled." Removed "multi-
lingual" because this can be

represented as an "Or-Feature"

MultiLingual removed; rest unchanged

39 C Multi-Phased Added "Multi-Phased" feature

under staging as some stages
may have multiple phases.

Added.

40 U Memory Moved "Memory" feature

under coupling archiecture as

each coupling context might
implement a different memory

model (e.g., shared vs.

distributed).

Subsumed under #61

41 U Data Transfer Moved the "Data Tranfser"
feature under "coupling

processes" including the data

transfer optimizations.

Subsumed under #62

42 U Direct Coupling Removed "Direct Coupling"
feature because it is already

covered under architectural
style.

Could not find this problem

43 C Field Granularity I cannot find this in the chapter

and none of the boxes have a

check in Spencer's final

checklist. I'm not sure how to

interpret it or where it fits.

Also, I'm not sure if I have
ever run into a single-field

coupler. Of course it is

conceptually feasible, but is
such as outlier, it might tend to

confuse the diagram. Leaving

off for now...

Agreed. Deleted

176

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

44 U Coupler / Generality /

Component-specific

 Changed "Component-

specific" to "Coupling context-

specific"

I disagree. The first term is more informative.

45 C Coupler / Component
Cardinality

 Changed "Component
cardinality" to "Endpoint

cardinality"

Agreed. Replace by optional field (more than
binary endpoint cardinality)

46 C Protocol Extensibility "Protocol Extensibility" was

folded in under Software
Interface / Non-Functional

Characteristic

Change made locally in Connector modulo any

larger change to the tabs

47 U Setup The whole "Setup" feature has

been moved under "Coupling
Processes" and renamed to

"Configuration"

Subsumed under #62

48 I Component sequence "Component Sequence" under

Topology renamed
"Component Schedule" to be

consistent with the other
"Schedule" feature

Agreed.

49 U Field-level metadata Field-level metadata folded in

under "Coupling Processes" /

"Pre-run" / "Field
Initialization"

Subsumed under #62

50 I Topology / Point-to-point

connections

 Changed "Point-to-point

connections" to "Coupling

field connections" as "point-to-
point" implies a certain

software architecture (OASIS).

Agreed, but see #63

177

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

51 F Setup / Configuration / Other The "Other" feature is vague. Many of the

subfeatures are related to the configuration of the

"Run." The "Labels" feature is vague. It is not clear
what labels are being configured.

Distribute these into either

"Topology" or "Run" as

appropriate. "Grid Definition"
should be divided into two

feature "Grid Type" and "Grid

Resolution" and placed under
the "Run" feature. Also move

"Component Schedule" under

"Run." Rename "Exchange" to
"Exchange Protocol" and move

under "Run." Remove the

"Labels" feature. Upgrade
"Domain Decomposition" to its

own subfeature under
"Configuration." Also moved

"Components" to the top level

of Setup

Too vague

52 C Setup / Configuration / Data /
Transfer Protocol

 Moved "Transfer Protocol"
under Configuration / Run and

renamed to "Exchange

protocols" (Exchange period

and other properties were

already there.)

Agreed.

53 C Initial Conditions Added "Initial conditions" to

Configuration / Data to
coincide with "Boundary

Conditions" which was already

present.

Agreed.

54 U Free memory Added a "Free memory"
required feature under

Coupling Processes / Post-run

so that the feature is not empty

Subsumed under #62

55 C Executability, Manifestation Combined the "Executability"

and "Manifestation" features
into one as they were getting at

the same concept--how the

coupler itself is structured.
Changed "direct" to

"embedded in model code"

because it seems to be a more
clear description.

Agreed. This means getting rid of manifestation in

capabilities. Also, elimated combination.

178

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

56 U Compiler Added a "Compiler" feature

under Computational

Environment

Actually, this was a rename, with which I don't

agree.

57 U Coupling process rename to avoid ambiguity with use of "process" in
operating systems

Coupling task Subsumed under #62

58 F Rename "what's being

coupled"

Shouldn't be a question. (Also see #66). "What's

Being Coupled" does not have to be interpreted as a

question. It could be a noun phrase.

Coupling target Change Coupled Models to Constituent Models

59 C Architecture Elevate the importance of the models being coupled;

separate software architecture from coupling
architecture

 Added new top-level tab labeled Coupled Model

60 U Architecture Move connector information
out of Architecture and into

Component

Leave "Connector" and "Component" as Software
Architecture terms

61 F Environment / Execution

Model

Need a major feature category that encompasses a

technology's ability to take advantage of available
physical computing capabilities. All of the

"Execution Model" features are related to the model

components themselves. Furthermore, they may

differ across components. For example, you might

couple a parallel, multi-threaded atmopshere to a

sequential land running on a single processor. Also,
the coupler itself might be sequential or parallel. For

example, in OASIS3, the coupler was sequential

while the models themselves were parallel. (Also see
#1).

Need to decide on scope of the

"Execution Model" feature and
the scope of the "Environment"

feauture. We might be better

suited adding the "Execution

Model" subfeatures under all

places where they are relevant

in order to make the
distinctions clear. For

example, the model

components and coupler
features could both have

Execution Model as a

subfeature.

Add multiple data streams as a top level child

62 I Coupler The "Capabilities" top-level feature needs to be
renamed into something more descriptive (see issue

#20).

Rename top level feature
"Capabilities" to "Coupling

Tasks." This will deal

primarily with the behavioral
side of things while the

Architecture feature deals with

the structural. Then, the top
level feature "Setup" can be

made into a subfeature of

"Coupling Tasks."

179

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

63 U Setup / Topology There are two kinds of topologies listed here: one has

to do with the configuration of machines, the other

has to do with coupling architecture. These should
not be lumped together

 Correct, but the fix would be to replace "topology"

by two boxes. It doesn't seem worth the trouble

64 F Grid "Grid" is a top-level feature. However, grids are
properties of individual model components, not the

coupling technology itself.

Move top level "Grid" feature
under "Constituent Model."

65 C Numerics The subfeatures in "Numerics" are all coupling tasks. Move top level "Numerics"

feature under new "Coupling
Tasks" feature.

Agreed

66 I Coupled Models The name "Coupled Models" might be interpreted as

a set of components + coupler(s). (also see #58)

Rename to "Models to be

Coupled" or "Models" or

"Components" or maybe
"Constituents"

67 U Environment / Programming

Language

Programming language is a property of a model

component. For example, some couplers might

bridge the gap between a C component and a Fortran

component.

Add a "Language Bindings"

subfeature under "Coupled

Models." Consider removing

"Programming Language"

from Environment.

Unchanged

68 F Software Architecture /

Control

I think this is the same as "Driving." Furthermore

there is no tab for "Control."

Remove the "Control"

subfeature under "Software
Architecture."

Agreed

69 U Constituent models The components to be coupled have both control and

data interfaces and they may differ. For example, the

control interface might be a subroutine call but the
data interface a shared memory location. This is

related to the kinds of connectors supported. (also

see #60)

Add "Control Interface" and

"Data Interface" as subfeatures

of "Constituent Models." If we
leave this out, then we need to

clarify in the definition of

Connector which kind of
interface we are referring to.

70 F Coupler / Transfer of Data "Transfer of Data" is a coupling task/requirement but

is not a structural feature of a coupler. The other

features under Coupler appear to be architectural in
nature.

If we add a Coupling Tasks

top-level feature, then

"Transfer of Data" can be
moved out of the "Coupler"

and into the "Coupling Tasks."

Already handled

180

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

71 I Coupler / Executability The distinction between Subroutine and Embedded in

Model is not clear. Also, the term "Executability"

seems to imply a "yes" or "no."

Remove one or the other or

clarify the distinction in the

definition. Rename to
"Manifestation." This was a

previous term.

Manifestation; get rid of embedded

72 F Connector Move parallel data streams to coupler

73 F Environment Get rid of multi threading

74 F coupler add a capabilities child; move capabilities tab under
it; move data transfer under it

75 U Architecture / Connector Connectors are used in the context of software

architecture components. However, most of our

audience will be thinking of "component" as a
constituent model in a coupled simulation. It is not

clear whether a "connector" applies at that level,
since constituent models are at a different level of

abstraction than architectural components. Should

the feature model support both levels of abstraction
or should we choose one?

Move connector information

out of Architecture and into

Component

Leave "Connector" and "Component" as Software

Architecture terms

76 I Driving / Startup The features "Just driver" and "Driver and
components" are abiguous. "Just driver" could mean

"The user needs to only start the driver (b/c it starts

the models)" or "The driver just starts itself and the
user must start the models."

Rename to "Driver Starts
Models" and "Models Started

Independently"

Changed to startup extent

77 U Connector / Socket, HTTP HTTP is a specific protocol implemented over a

socket.

Make HTTP a subfeature of

socket.

They are at different levels of abstraction

78 I Connector / Type /

Asynchronous

A Synchronous subfeature already exists under

Connector / Non-functional property

Remove Asyncronous from

Type.

Nope. They are separate things. Asynchronous

applies to event notifcation. Synchronization
applies to data transfers. I have changed the entry

names to indicate this

79 C Coupler/Other Distribute these items Done

181

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

80 U Coupler Clean up this whole area It looks okay now

81 I Architecture / Connnector What is the difference between these two connectors:
"General put/get routines" and "asynchronous

notifications"?

Determine if there are
differences and note them in

the definitions of each feature.

If not, combine into one
feature.

One is synchronous one is asynchronous

82 C Architecture / Coupler /

Capabilities

We now have a lot of behavioral stuff underneath

Architecture. This is because we moved Capabilities

underneath Coupler which appears underneath
Architecture. However, the capabilities/tasks

associated with coupling are (largely) independent of

the architecture (or should be). A result of this is that
features like grid interpolation and redistribution are

now subfeatures of architecture. For this reason, I

had a separate top-level feature in version 9 of the
diagram called "Coupling Tasks."

Consider adding a new top

level feature where coupling

tasks that are independent from
architecture will live. Only

features that are specific to the

architecture (structure and
organization of component)

should remain. Possible names

include "Coupling Tasks" /
"Behaviors" / "Actions". This

could furthermore be divided

into "Setup" , "Pre-run",
"Run", and "Post-run" tasks.

Moved coupler all the way up to the top

83 C Environment / Multiple Data
Streams

This feature is too vague at this level. All modern
machines support multiple data streams and there is

very little context here to help the reader understand

what kinds of data streams we mean. Furthermore,
the "Parallel Data Transfer" feature under coupler

covers this already.

Remove "Multiple Data
Streams" from under

Environment.

Agreed

84 C Capabilities / Wrapping The term "Wrapping" is easily misinterpreted as an

architectural wrapper or other kind of software layer.
Furthermore, it seems that the subfeatures are more

about the level of abstraction at which the technology

recognizes the underlying physical domain (e.g., as
indices or physical coordinates).

Rename to "Domain

Coordinates." Consider
moving out of "Capabilities"

into "Grid" or "Numerics."

Renamed and moved to grid

182

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

86 C Capabilities / Other Redistribute these items. "Predefined scientific fields

required" is likely not a capability but is more closely

related to the architecture of the constituent models
and the coupler.

Move under Constituent

Models.

Cleaned up the Generality feature, combining

several others

Moved intergrid to grid
Moved dynamic compaction to connector

Removed on-processor sums

Renamed other to intermodel time coordination

87 C Connectors / Type / Dynamic
Compaction

My reading of the chapter shows that "Dynamic
Compaction" is not a type of connector. It is a space-

saving mechanism of reducing a sparse multi-

dimensional array to a 1D array for "tiles" within a
single grid cell. This is specific to the GFDL grids.

This is a low-level feature. I
see two options: drop it

completely because it does not

really deal with an essential
aspect of coupling; or, if we

keep it, move it to the Grids

feature.

Agreed; removed

88 I Driving The children of "Location of Driving Code" and
"Staging" should be Or-features (i.e., select one or

more) because multiple options might be true…

 Fixed

89 U Coupler / Generality "More than Binary Endpoint Cardinality" is
orthogonal to the "Generality" of a coupler.

Move "More than Binary
Endpoint Cardinality" back up

a level underneath Coupler.

I disagree. A coupler can be general wrt the
components it connects, the fields it transmitts, and

its cardinality

90 I Coupler / Generality The new terms and definition of "Client components"

and "Scientific fields" are confusing. I prefer the
previous terms. (See notes by definitions on the

Coupler tab.)

 Reworded the definitions

91 I Coupler / Capabilities / Data

Assimilation

The subfeatures under "Data Assimilation" currently

do not have any definitions. Data Assimilation is a
whole area in itself that we probably do not have time

to learn. Furthermore, it is not an essential aspect of

coupling, but on the periphery.

Keep "Data Assimilation" but

remove the subfeatures. We
do not understand what they

mean or if they should really

be classified as features.

Agreed

92 C Coupler / Capabilities "Intermodel Time Coordination" does not have a
definition. Also, it seems closely related to Driving

and Schedule.

Move under Driving.
Determine if the feature is

already subsumed by the

features in Driving. If so,
remove it.

Agreed

183

Issue # Status Regarding Features Issue Description Possible Resolutions Actual Resolution

93 I Coupler / Capabilities /

Numerics

"Multiple Transformers" probably refers to the ability

to run several copies of the coupler in parallel (what

OASIS calls "psuedo-parallelism"). I do not think it
should go under Numerics.

Move it under Coupler or even

under Coupler / Parallel Data

Transfer. Consider renaming it
to "Psuedo-parallel". Also, we

need to add a definition to

clarify what it really means,
epecially if we use the term

"Psuedo-parallel."

No. It means that there might be two numerical

transformations applied when moving field data;

Definition added

94 U Constituent Model / Type /

Exchange grid

I am hesitant to say that an Exchange grid is a

"Constituent model." It might be a separate software
component, but it seems harder to make the case that

it is a type of model.

We already have an exchange

grid concept under "Grid."
That should be sufficient to

cover the entire concept.

The point here is that FMS thinks of it as a

component model to be coupled to

184

REFERENCES

[1] L. F. Richardson, Weather Prediction by Numerical Process. Cambridge:

Cambridge University Press, 1922.

[2] J. G. Charney, R. Fjortoft, and J. von Neumann, "Numerical integration of the

barotropic vorticity equation," Tellus, vol. 2, pp. 237-254, 1950.

[3] N. A. Phillips, "The general circulation of the atmosphere: A numerical

experiment.," Quartery Journal of the Royal Meteorological Society, vol. 82, pp.

184-185, 1956.

[4] S. Manabe, J. Smagorinsky, and R. F. Strickler, "Simulated climatology of a

general circulation model with a hydrological cycle," Monthly Weather Review,

vol. 93, pp. 769-798, 1965.

[5] J. Smagorinsky, "General circulation experiments with the primitive equations. 1.

The basic experiment," Monthly Weather Review, vol. 93, pp. 98-164, 1963.

[6] K. Bryan and M. D. Cox, "A numerical investigation of the oceanic general

circulation," Tellus, vol. 19, pp. 54-80, 1967.

[7] H. Grassl, "Status and Improvement of Coupled General Circulation Models,"

Science, vol. 288, pp. 1991-1997, 2000.

[8] S. Manabe, "Climate and the ocean circulation: 2. The atmopsheric circulation

and the effect of heat transfer by ocean currents," Monthly Weather Review, vol.

97, pp. 775-805, 1969.

[9] K. Bryan, "Climate and the ocean circulation: III. The ocean model," Monthly

Weather Review, vol. 97, pp. 806-827, 1969.

[10] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor,

and H. L. Miller, "Contribution of Working Group I to the Forth Assessment

Report of the Intergovernmental Panel on Climate Change," ed Cambridge:

Cambridge University Press, 2007.

[11] S. M. Easterbrook, "Climate Change: A Software Grand Challenge," in FSE/SDP

Workshop on the Future of Software Engineering Research, Santa Fe, 2010.

[12] D. Randall, "The Evolution of Complexity in General Circulation Models," in The

Development of Atmopsheric General Circulation Models, L. Donner, et al., Eds.,

ed: Cambridge University Press, 2011, p. 272.

[13] C. Hill, C. DeLuca, V. Balaji, M. Suarez, and A. da Silva, "The Architecture of

the Earth System Modeling Framework," Computing in Science and Engineering,

vol. 6, pp. 18-28, 2004.

[14] R. Redler, S. Valcke, and H. Ritzdorf, "OASIS4--A Coupling Software for Next

Generation Earth System Modelling," Geoscientific Model Development, vol. 3,

pp. 87-104, 2010.

185

[15] S. Valcke, "The OASIS3 coupler: a European climate modelling community

software," Geoscientific Model Development Discussion: Special Issue:

Community Software to Support the Delivery of CMIP5, 2012.

[16] S. Valcke, T. Craig, and L. Coquart, "OASIS3-MCT User Guide (OASIS3-

MCT_1.0)," CERFACS, Technical Report TR/CMGC/12/49, Toulouse, 2012.

[17] R. Jacob, J. Larson, and E. Ong, "MxN Communication and Parallel Interpolation

in CCSM3 Using the Model Coupling Toolkit," International Journal for High

Performance Computing Applications, vol. 19, pp. 293-307, 2005.

[18] J. Larson, R. Jacob, and E. Ong, "The Model Coupling Toolkit: A New Fortran90

Toolkit for Building Multiphysics Parallel Coupled Models," International

Journal for High Performance Computing Applications, vol. 19, pp. 277-292,

2005.

[19] J. Sametinger, Software Engineering with Reusable Components. Berlin:

Springer, 2001.

[20] D. Garlan, R. Allen, and J. Ockerbloom, "Architectural Mismatch: Why Reuse is

so Hard," IEEE Software, vol. 12, pp. 17-26, 1995.

[21] J. W. Larson, "Ten organising principles for coupling in multiphysics and

multiscale models," Australia and New Zealand Industrial and Applied

Mathematics Journal, vol. 48, pp. C1090-C1111, 2009.

[22] J. W. Larson, "A Proposed Checklist for Building Complex Coupled Models," in

18th World IMACS Congress (ModSim 2009), Cairns, Australia, 2009, pp. 831-

837.

[23] J. W. Larson, "Graphical Notation for Diagramming Coupled Systems," in Ninth

International Conference on Computational Science (ICCS 2009), 2009, pp. 745-

754.

[24] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools,

and Applications: Addison-Wesley, 2000.

[25] J. C. Cleaveland, "Building Application Generators," IEEE Software, vol. 54, pp.

25-33, 1988.

[26] D. L. Parnas, "On the Criteria to be Used in Decomposing Systems Into

Modules," Communications of the ACM, vol. 15, pp. 1053-1058, 1972.

[27] N. Wilde, "Understanding Program Dependencies," University of West Florida,

1990.

[28] O. David, J. C. Ascough II, W. Lloyd, T. R. Green, K. W. Rojas, G. H. Leavesley,

and L. R. Ahuja, "A Software Engineering Perspective on Environmental

Modeling Framework Design: The Object Modeling System," Environmental

Modelling & Software, 2012.

[29] E. Kalnay, M. Kanamitsu, J. Pfaendtner, J. Sela, M. Suarez, J. Stackpole, J.

Tuccillo, L. Umscheid, and D. Williamson, "Rules for Interchange of Physical

186

Parameterizations," Bulletin of the American Meteorological Society, vol. 70,

1989.

[30] C. Y. Baldwin and K. B. Clark, Design rules: The Power of Modularity.

Cambridge: The MIT Press, 2000.

[31] J. P. Peixoto and A. H. Oort, Physics of Climate. New York: Springer-Verlag

New York, Inc., 1992.

[32] D. L. Hartmann, Global Physical Climatology. San Diego: Academic Press, 1994.

[33] W. M. Washington and C. L. Parkinson, An Introduction to Three-Dimensional

Climate Modeling, Second ed. Sausalito: University Science Books, 2005.

[34] Advancing the Science of Climate Change. Washington, D.C.: National Research

Council, 2010.

[35] J. J. Hack, "Climate System Simulation: Basic Numerical and Computational

Concepts," in Climate System Modeling, K. E. Trenberth, Ed., ed New York:

Cambridge University Press, 1992, pp. 283-318.

[36] D. A. Randall, R. A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov,

A. Pitman, J. Shukla, J. Srinivasan, R. J. Stouffer, A. Sumi, and K. E. Taylor,

"Climate Models and Their Evaluation," in Climate Change 2007: The Physical

Science Basis. Contribution of Working Group I to the Fourth Assessment Report

of the Intergovernmental Panel on Climate Change, S. Solomon, et al., Eds., ed

Cambridge, United Kingdom and New York, NY, USA: Cambridge University

Press, 2007.

[37] V. Balaji, A. Adcroft, and Z. Liang. (2007, 25 January 2011). Gridspec: A

standard for the description of grids used in Earth System models. Available:

http://www.gfdl.noaa.gov/~vb/gridstd/gridstd.html

[38] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering. Reading, Massachusetts: Addison-Wesley

Publishing Company, 1995.

[39] T. Craig. (2010, February 14, 2010). CPL7 User's Guide. Available:

http://www.cesm.ucar.edu/models/cesm1.0/cpl7/cpl7_doc/ug.pdf

[40] K. Hasselmann, "Some Problems in the Numerical Simulation of Climate

Variability Using High-Resolution Coupled Models," in Physically-Based

Modelling and Simulation of Climate and Climatic Change: Part 1, M. E.

Schlesinger, Ed., ed Dordrecht: Kluwer Academic Publishers, 1988, pp. 583-614.

[41] G. A. Meehl, "Global Couple Models: Atmosphere, Ocean, Sea Ice," in Climate

System Modeling, K. E. Trenberth, Ed., ed New York: Cambridge University

Press, 1992, pp. 555-581.

[42] R. Sausen, R. K. Barthels, and K. Hasselmann, "Coupled Ocean-Atmosphere

Models with Flux Correction," Climate Dynamics, vol. 2, pp. 154-163, 1988.

[43] T. Bulatewicz, "Support for model coupling: An interface-based approach," Ph.D.

Dissertation, University of Oregon, Eugene, OR, 2006.

187

[44] S. Valcke and S. Redler, "OASIS 4," in OASIS 4 User Guide, ed. Toulouse,

France, 2006, p. 60.

[45] S. Buis, A. Piacentini, and D. Declat, "PALM: A Computational Framework for

Assembling High-Performance Computing Applications," Concurrency and

Computation: Practice and Experience, vol. 18, pp. 231-245, 2006.

[46] V. Balaji, B. Boville, S. Cheung, N. Collins, T. Craig, C. Cruz, A. d. Silva, C.

DeLuca, R. d. Fainchtein, B. Eaton, B. Hallberg, T. Henderson, C. Hill, M.

Iredell, R. Jacob, P. Jones, E. Kluzek, B. Kauffman, J. Larson, P. Li, F. Liu, J.

Michalakes, S. Murphy, D. Neckels, R. O. Kuinghttons, B. Oehmke, C.

Panaccione, J. Rosinski, W. Sawyer, E. Schwab, S. Smithline, W. Spector, D.

Stark, M. Suarez, S. Swift, G. Theurich, A. Trayanov, S. Vasquez, J. Wolfe, W.

Yang, M. Young, and L. Zaslavsky, "ESMF Reference Manual for Fortran

Version 6.1," 2012.

[47] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L. Dahlgren,

K. Damevski, W. R. Elwasif, T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A.

Kohl, M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J. Lewis, A. D.

Malony, L. C. McInnes, J. Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende,

T. L. Windus, and S. Zhou, "A component architecture for high-performance

scientific computing," International Journal of High Performance Computing

Applications, vol. 20, pp. 163-202, 2006.

[48] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond Object-

Oriented Programming, 2nd ed. New York: Addison-Wesley, 2002.

[49] M. E. Fayad and D. C. Schmidt, "Object-Oriented Application Frameworks,"

Communications of the ACM, vol. 40, pp. 32-38, 1997.

[50] D. Roberts and R. Johnson, "Evolve Frameworks into Domain-Specific

Languages," presented at the 3rd International Conference on Pattern Languages,

Allerton Park, Illinois, 1996.

[51] H. Hueni, R. Johnson, and R. Engel, "A Framework for Network Protocol

Software," presented at the OOPSLA '95, Austin, Texas, 1995.

[52] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:

Foundations, Theory, and Practice: John Wiley & Sons, Inc., 2010.

[53] D. Kirk, M. Roper, and M. Wood, "Identifying and addressing problems in

object-oriented framework reuse," Empirical Softare Engineering, vol. 12, pp.

243-274, 2007.

[54] W. B. Frakes and K. Kang, "Software Reuse Research: Status and Future," IEEE

Transactions on Software Engineering, vol. 31, pp. 529-536, 2005.

[55] M. Mernik, J. Heering, and A. Sloane, "When and How to Develop Domain-

Specific Languages," ACM Computing Surveys, vol. 37, pp. 316-344, 2005.

[56] A. van Deursen, P. Klint, and J. Visser, "Domain-Specific Languages: An

Annotated Bibliography," ACM SIGPLAN Notices, vol. 35, pp. 26-36, 2000.

188

[57] X. Amatriain and P. Arumi, "Frameworks Generate Domain-Specific Languages:

A Case Study in the Multimedia Domain," IEEE Transactions on Software

Engineering, vol. 37, pp. 544-558, 2011.

[58] T. Bulatewicz and J. Cuny, "A Domain-Specific Language for Model Coupling,"

presented at the 2006 Winter Simulation Conference, 2006.

[59] T. Bulatewicz, J. Cuny, and M. Warman, "The potential coupling interface:

metadata for model coupling," in 2004 Winter Simulation Conference,

Washington, D.C., 2004, pp. 175-182.

[60] B. A. Allan and R. Armstrong, "Ccaffeine Framework: Composing and

Debugging Applications Interactively and Running Them Statically," in

CompFrame '05, 2005.

[61] T. G. Epperly, G. Kumfert, T. L. Dahlgren, D. Ebner, J. Leek, A. Prantl, and S.

Kohn, "High-performance Language Interoperability for Scientific Computing

through Babel," International Journal for High Performance Computing

Applications, vol. 26, pp. 260-274, 2012.

[62] T. Dahlgren, D. Ebner, T. Epperly, G. Kumfert, J. Leek, and A. Prantl, "Babel

Users' Guide," 2012.

[63] W. R. Elwasif, B. R. Norris, B. A. Allan, and R. C. Armstrong, "Bocca: A

Development Environment for HPC Components," in HPC-GECO/CompFrame

'07, 2007.

[64] G. C. Hulette, M. J. Sottile, R. Armstrong, and B. Allan, "OnRamp: Enabling a

New Component-Based Development Paradigm," in Component-Based High

Performance Computing, Portland, OR, 2009.

[65] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software: Addison-Wesley Professional, 1994.

[66] C. DeLuca, "Strategies for the Simplification of Software Mediators," National

Center for Atmospheric Research, Boulder, 2006.

[67] V. Balaji, "Flexible Modeling System," in The FMS Manual: A developer's guide

to the GFDL Flexible Modeling System, ed. Princeton, NJ, 2002, p. 32.

[68] C. W. Armstrong, R. W. Ford, and G. D. Riley, "Coupling integrated Earth

System Model components with BFG2," Concurrency and Computation: Practice

and Experience, vol. 21, pp. 767-791, 2009.

[69] B. Clifford, I. Foster, J.-S. Voeckler, M. Wilde, and Y. Zhao, "Tracking

Provenance in a Virtual Data Grid," Concurrency and Computation: Practice and

Experience, vol. 20, pp. 565-575, April 2008 2008.

[70] D. L. Parnas, "Designing Software for Ease of Extension and Contraction,"

presented at the 3rd International Conference on Software Engineering,

Piscataway, 1978.

189

[71] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of a

Discipline of Computer Program and Systems Design. Englewood Cliffs:

Prentice-Hall, 1979.

[72] G. Myers, Reliable Software Through Composite Design. New York: Mason and

Lipscomb Publishers, 1974.

[73] M. Page-Jones, The Practical Guide to Structured Systems Design, 2nd ed. New

York: Yourdon Press, 1988.

[74] A. J. Offutt, M. J. Harrold, and P. Kolte, "A Software Metric System for Module

Coupling," Journal of Systems and Software, vol. 20, pp. 259-308, 1993.

[75] H. Dhama, "Quantitative Models of Cohesion and Coupling in Software," Journal

of Systems Software, vol. 29, pp. 65-74, 1995.

[76] D. A. Troy and S. H. Zweben, "Measuring the Quality of Structured Designs,"

Journal of Systems and Software, vol. 2, pp. 112-120, 1981.

[77] R. A. Pielke and R. W. Arritt, "A Proposal to Standardize Models," Bulletin of the

American Meteorological Society, vol. 65, 1984.

[78] D. A. Randall, "A University Perspective on Global Climate Modeling," Bulletin

of the American Meteorological Society, vol. 77, pp. 2685–2690, 1996.

[79] W. Lloyd, O. David, J. C. Ascough II, K. W. Rojas, J. Carlson, G. H. Leavesley,

P. Krause, T. R. Green, and L. R. Ahuja, "Environmental Modeling Framework

Invasiveness: Analysis and Implications," Environmental Modelling & Software,

vol. 26, pp. 1240-1250, 2011.

[80] S. Valcke and R. Dunlap, "Workshop Proceedings: Coupling Technologies for

Earth System Modelling: Today and Tomorrow," CERFACS, Technical Report

TR-CMGC-11-39, Toulouse, France, 2011.

[81] C. Linstead, "Typed Data Transfer," in Typed Data Transfer (TDT) User's Guide,

ed. Potsdam: Potsdam Institute for Climate Impact Research, 2004, p. 21.

[82] R. Dunlap, S. Rugaber, and L. Mark, "A Feature Model of Coupling Technologies

for Earth System Models," Georgia Institute of Technology, GT-10-18, 2010.

[83] R. Dunlap, S. Rugaber, and L. Mark, "A Feature Model of Coupling Technologies

for Earth System Models," Computers & Geosciences, vol. 53, pp. 13-20, 2013.

[84] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging

Discipline. Upper Saddle River, New Jersey: Prentice-Hall, Inc., 1996.

[85] D. Batory, D. Benavides, and D. Ruiz-Cortes, "Automated Analysis of Feature

Models: Challenges Ahead," Communications of the ACM, vol. 49, pp. 45-47,

2006.

[86] M. O. Reiser and M. Weber, "Multi-level Feature Trees: A Pragmatic Approach

to Managing Highly Complex Product Families," Requirements Engineering, vol.

12, pp. 57-75, 2007.

190

[87] K. Czarnecki, S. Helsen, and U. Eisenecker, "Staged Configuration through

Specialization and Multilevel Configuration of Feature Models," Software

Process: Improvement and Practice, vol. 10, pp. 143-169, 2005.

[88] H. Hartmann and T. Trew, "Using feature diagrams with context variability to

model multiple product lines for software supply chains," in 12th International

Software Product Line Conference, 2008, pp. 12-21.

[89] M. Acher, P. Collet, P. Lahire, and R. France, "Composing feature models,"

Software Language Engineering, pp. 62-81, 2010.

[90] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, "Feature-Oriented

Domain Analysis (FODA) Feasibility Study," Software Engineering Institute,

Carnegie Mellon University, Technical Report CMU/SEI-90-TR-21, Pittsburgh,

PA, 1990.

[91] B. Rockel, A. Will, and A. Hense, "The Regional Climate Model COSMO-CLM

(CCLM)," Meteorologische Zeitschrift, vol. 17, pp. 347-248, 2008.

[92] E. L. Davin, R. Stöckli, E. B. Jaeger, S. Levis, and S. I. Seneviratne, "COSMO-

CLM2: A New Version of the COSMO-CLM Model Coupled to the Community

Land Model," Climate Dynamics, vol. 37, pp. 1889-1907, 2011.

[93] P. H. Worley, A. P. Craig, J. M. Dennis, A. A. Mirin, M. A. Taylor, and M.

Vertenstein, "Performance of the Community Earth System Model," presented at

the Supercomputing 2011, Seattle, 2011.

[94] R. Dunlap. Personal Communication. Interview with Eric Maisonnave and

Edouard Davin. December 21, 2011

[95] E. Maisonnave, "A Simple OASIS Interface for CESM," CERFACS, Technical

Report TR/CMGC/11-59, Toulouse, 2011.

[96] S. Kelly and J.-P. Tolvanen, "Visual Domain-specific Modeling: Benefits and

Experiences of Using metaCASE Tools," in International workshop on Model

Engineering, European Conference on Object-Oriented Programming (ECOOP),

2000.

[97] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis, D. P.

Oliva, T. Sheard, I. Smith, and L. Walton, "A software engineering experiment in

software component generation," in 18th International Conference on Software

Engineering, 1996, pp. 542-552.

[98] D. Weiss and C. T. R. Lai, Software Product-line Engineering. Longman:

Addison Wesley, 1999.

[99] J. Michalakes and D. Schaffer, "WRF," in WRF Tiger Team Documentation: The

Registry, ed, 2004.

[100] A. Piacentini, T. Morel, A. Thévenin, and F. Duchaine, "O-PALM : An Open

Source Dynamic Parallel Coupler," presented at the Fourth International

Conference on Computational Methods for Coupled Problems in Science and

Engineering, Kos Island, Greece, 2011.

191

[101] T. Ringler, L. Ju, and M. Gunzburger, "A multiresolution method for climate

system modeling: application of spherical centroidal Voronoi tessellations,"

Ocean Dynamics, vol. 58, pp. 475-498, 2008.

[102] OMG, "MOF Model To Text Transformation Language (MOFM2T), 1.0," ed,

2008.

[103] S. Rugaber, R. Dunlap, L. Mark, and S. Ansari, "Managing Software Complexity

and Variability in Coupled Climate Models," IEEE Software, vol. 28, pp. 43-48,

2011.

[104] S. Peckham, E. Hutton, and B. N. (2012). "A component-based approach to

integrated modeling in the geosciences: The design of CSDMS," Computers &

Geosciences, vol. 53, pp. 3-12, 2012.

[105] M. Mattsson, J. Bosch, and M. E. Fayed, "Framework Integration: Problems,

Causes, Solutions," Communications of the ACM, vol. 42, pp. 81-87, 1999.

[106] ISO/IEC, "Part 3: Rule-based Validation -- Schematron," in Information

Technology -- Document Schema Definition Languages (DSDL), ed. Switzerland:

ISO/IEC, 2006, p. 30.

[107] S. Valcke, V. Balaji, A. Craig, C. Deluca, R. Dunlap, R. Ford, R. Jacob, J. Larson,

R. O'Kuinghttons, G. Riley, and M. Vertenstein, "Coupling Technologies for

Earth System Modelling," Geoscientific Model Development, vol. 5, 2012.

[108] J. W. Larson, R. L. Jacob, E. Ong, and R. Loy, "The Model Coupling Toolkit," in

The Model Coupling Toolkit API Reference Manual: MCT v. 2.8, ed, 2012.

[109] OMG. (2011). Common Object Request Broker Architecture (CORBA)

Specification, Version 3.2. Available: http://www.omg.org/spec/CORBA/3.2/

[110] Microsoft. (April 13, 2013). COM: Component Object Model Technologies.

Available: http://www.microsoft.com/com/

[111] R. Allen and D. Garlin, "A Formal Basis for Architectural Connection," ACM

Transactions on Software Engineering and Methodology, vol. 6, pp. 213-249,

1997.

[112] D. M. Yellin and R. E. Strom, "Protocol Specifications and Components

Adaptors," ACM Transactions on Programming Languages and Systems, vol. 19,

pp. 292-333, 1997.

[113] F. Plasil and S. Visnovsky, "Behavior Protocols for Software Components," IEEE

Transactions on Software Engineering, vol. 28, pp. 1056-1076, 2002.

[114] R. Dunlap, L. Mark, S. Rugaber, V. Balaji, J. Chastang, L. Cinquini, C. DeLuca,

D. Middleton, and S. Murphy, "Earth System Curator: Metadata Infrastructure for

Climate Modeling," Earth Science Informatics, vol. 1, pp. 131-149, 2008.

[115] E. Guilyardi, V. Balaji, S. Callaghan, C. DeLuca, G. Devine, S. Denvil, R. Ford,

C. Pascoe, M. Lautenschlager, B. Lawrence, L. Steenman-Clark, and S. Valcke,

"The CMIP5 Model and Simulation Documentation: A New Standard for Climate

Modelling Metadata," CLIVAR Exchanges, vol. 16, pp. 42-46, 2011.

192

[116] J. T. Overpeck, G. A. Meehl, S. Bony, and D. R. Easterling, "Climate Data

Challenges in the 21st Century," Science, vol. 331, pp. 700-702, 2011.

[117] K. E. Taylor, R. J. Stouffer, and G. A. Meehl, "A Summary of the CMIP5

Experimental Design," 2009.

[118] B. N. Lawrence, V. Balaji, P. Bentley, S. Callaghan, C. DeLuca, S. Denvil, G.

Devine, M. Elkington, R. W. Ford, E. Guilyardi, M. Lautenschlager, M. Morgan,

M.-P. Moine, S. Murphy, C. Pascoe, H. Ramthun, P. Slavin, L. Steenman-Clark,

F. Toussaint, A. Treshansky, and S. Valcke, "Describing Earth System

Simulations with the Metafor CIM," Geoscientific Model Development

Discussion, vol. 5, pp. 1669-1689, 2012.

[119] W3C, "XML Schema Parts 0-2," ed, 2004.

[120] S. Valcke, J. M. Epitalon, and M. P. Moine, "CIM-enabled OASIS," CERFACS,

TR/CMGC/11/59, 2011.

[121] W3C, "XML Path Language (XPath) Version 1.0," ed: W3C, 1999.

[122] B. A. Allan, R. Armstrong, D. E. Bernholdt, F. Bertrand, K. Chiu, T. L. Dahlgren,

K. Damevski, W. R. Elwasif, M. Govindaraju, D. S. Katz, J. A. Kohl, M.

Krishnan, J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony, L. C. Mcinnes, J.

Nieplocha, B. Norris, J. Ray, T. L. Windus, and S. Zhou, "A Component

Architecture for High-Performance Scientific Computing," International Journal

for High Performance Computing Applications, vol. 20, pp. 163-202, 2006.

[123] K. Damevski and S. Parker, "Parallel Remote Method Invocation and M-by-N

Data Redistribution," presented at the 4th Los Alamos Computer Science Institute

Symposium, Los Alamos, 2003.

[124] S. Apel and C. Kastner, "An Overview of Feature-Oriented Software

Development," Journal of Object Technology, vol. 8, pp. 49-84, 2009.

[125] C. Prehofer, "Feature-oriented Programming: A Fresh Look at Objects," in

European Conference on Object-Oriented Programming (ECOOP), 1997, pp.

419-443.

[126] C. Kastner, S. Apel, and K. Ostermann, "The Road to Feature Modularity?,"

presented at the Software Product Line Conference, Munich, 2011.

[127] C. Kastner, S. Apel, and M. Kuhlemann, "Granularity in Software Product Lines,"

in International Conference on Software Engineering, 2008, pp. 311-320.

[128] S. Apel, C. Kaestner, and C. Lengauer, "Research Challenges in the Tension

Between Features and Services," presented at the ICSE Workshop on Systems

Development in SOA Environments (SDSOA), Leipzig, Germany, 2008.

[129] K. Pohl, G. Bockle, and F. V. D. Linden, Software Product Line Engineering vol.

10: Springer, 2005.

[130] K. Schmid, "Variability Modeling for Distributed Development: A Comparison

with Established Practices," in Software Product Line Conference, 2010, pp. 151-

165.

193

[131] "A National Strategy for Advancing Climate Modeling," National Research

Council, Washington, D.C., 2012.

[132] M. Antkiewicz and K. Czarnecki, "Framework-specific modeling languages with

round-trip engineering," MoDELS, ser. LNCS, vol. 4199, pp. 692-706, 2006.

[133] M. Antkiewicz, "Framework-specific modeling languages," PhD, University of

Waterloo, 2008.

