
On-Line Planning of Flexible Assembly Systems:
An Agent-Based Approach

Cheng-Hua Wang Christiaan J.J. Paredis

Institute for Complex Engineered Systems
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890
^cwwang, cjp̀@ices.cmu.edu

Abstract

 This paper presents an agent-based approach to
online assembly task allocation and scheduling for
flexible assembly systems. We propose an anytime-
scheduling algorithm to handle dynamic changes
during planning. This algorithm is the center of an
agent-based architecture in which agents for
scheduling, collision avoidance, task execution, and
task monitoring collaborate to overcome unexpected
execution errors. A prototype planning system has
been implemented for the RobotWorld flexible
assembly system. Preliminary simulation results
show that our approach is capable of dynamically
rescheduling assembly operations after system faults
occur. We are currently integrating the planning
system with the assembly test bed in our laboratory.

Keywords: on-line planning, assembly planning,

anytime algorithm, agent-based systems, flexible
assembly systems.

1 Introduction and Related Work

 To stay competitive in the current marketplace,
companies must be able to react quickly to changing
demands and environments. Traditional fixed
automation systems can only handle specific types of
products with high demand volumes. To
manufacture small-batch and high-variety products
effectively, we need flexible automation systems that
can be easily reconfigured and programmed [9].

 Because of its computational complexity, process
planning is usually performed off-line. However, on-
line programming is important for flexible assembly
systems that need to be able to adapt quickly to new
products or product mixes, and overcome unexpected
system faults to avoid costly down-time.

To address the on-line planning issue, Boddy and
Dean [3] propose the term “Anytime Algorithm” in
their work on time-dependent planning to indicate
algorithms that can return the best solution so far at
any given time. The nature of on-line planning
approaches is appropriate and practical for flexible
manufacturing and assembly environments, because

it enables load balancing between planning and
execution. Anytime algorithms have been used in
other complex and time-critical planning and
decision-making problems such as robot control
(sensor interpretation and path planning) [19] and
database query [16].

Agent-based approaches have been widely used in
manufacturing because they have the advantage to be
modular, scalable, reconfigurable, distributed, easy
to implement and maintain, and fault-tolerant. In
particular, several researchers have addressed the use
of multiple agent system for the control of robotic
assembly systems. Basran [2] proposes a contract-net
protocol for negotiation and dynamic task allocation
in flexible assembly cells. Oliveira [12] presents a
cooperative multi-agent system for robotic assembly
cells using a blackboard architecture as an inter-
agent communication mechanism. Rizzi et al [14]
propose an architecture for a highly flexible,
modular, and distributed precision assembly system.
Other approaches in which agents are associated
either with robots or with the parts the robots
manipulate have been proposed in [10], [11] and
[13].

Assembly planning can be divided into task
decomposition, task allocation, and task execution.
In the task decomposition stage, a preliminary plan
is generated that consists of a sequence of assembly
operations and precedence relationships among
them. Various researchers have studied assembly
sequence generation [7][17] based on accessibility,
stability, and design for assembly (DFA) rules. At
this stage, only high-level task commands are
considered. During the task allocation stage, this
high level assembly plan is then converted into low-
level robot commands that can be executed by the
assembly hardware. The necessary resources are
assigned to every assembly operation after which
they are scheduled for execution, during the task
execution stage.

In practice, there is always a discrepancy between
planning and execution results. At the planning
stage, one has to rely on models describing the
system behavior. These models are only
approximations of the physical reality. Especially in

cparedis
C.-H. Wang, C.J.J. Paredis, "On-Line Planning of Flexible Assembly Systems: An Agent-Based Approach," in Proceedings of the 15th ISPE/IEE International Conference on CAD/CAM, Robotics and Factories of the Future, Águas de Lindóia, SP, Brazil, August 18 - 20, 1999.

multi-robot systems, it is often prohibitively
expensive to model all the interdependencies
between the system components. For instance,
predicting the time required to move from point A to
point B may already prove challenging in multi-
robot systems in which one of the robots may have to
slow down to avoid a collision with another robot. In
our approach, sensors monitor the task execution and
provide feedback, so that the planner can adjust its
schedule dynamically.

2 Problem Definition

Traditional assembly planning systems produce
assembly plans prior to execution, in an off-line
fashion. They assume that the assembly environment
is static and predictable. However, as illustrated
above, these assumptions are inappropriate for
flexible assembly systems. Therefore, we are
developing an on-line planning system for flexible
robotic assembly that addresses planning,
scheduling, and control in real-time.

In our assembly planner we consider the task
execution stage in addition to task decomposition
and task allocation. However, the focus of this paper
is on on-line assembly task allocation and
scheduling.

In our previous work on Intelligent Assembly
Modeling and Simulation (IAMS) [4], we have
developed a software environment for modeling and
simulating the complete assembly process: design
and editing of assemblies, assembly-sequence
generation, assembly tool selection, and assembly
process simulation. The focus of IAMS was on
assembly task decomposition, modeling, and
simulation. To extend the capability of the IAMS
framework, we have now developed an on-line
assembly planning system for assembly task

allocation and scheduling. The planning system is
capable of allocating resources and generating
operation schedules according to dynamic changes
such as manipulator breakdowns. It also adjusts its
planning strategies based on feedback from a task
execution monitor.

Our current system uses an agent-based approach
based on the architecture developed in our previous
work [8]. Agent-based approaches have been used
widely in flexible manufacturing and assembly
environments. Due to their distributed nature, they
are better suited than centralized approaches for
dealing with dynamic and unexpected changes.

As is illustrated in Figure 1, the inputs to our
planning system are the geometric models of the
product and a precedence graph defining the set of
possible assembly sequences. The output is a
dynamic schedule for a flexible assembly cell, that is,
low-level motion commands for each of the robot
manipulators in the system. This schedule depends
on the task execution and is dynamically updated
when there are discrepancies between the system
execution and the internal model.

3 Anytime Scheduling Algorithm

Solving a scheduling problem requires allocating
resources and determining a task sequence [1].
Scheduling problems are often viewed as constrained
optimization problems. One can optimize the
schedule with respect to several possible
performance criteria, such as flow time or total cost.
The constraints include, for instance, precedence
constraints and resource utilization constraints.

Static scheduling algorithms produce schedules
ahead of time with the assumption that every activity
is known in advance. Although these algorithms
may be able to compute an “optimal” schedule, in

Product Model

Assembly Plan with
Precedence Relationship

High Level
Task Commands

Low Level
Robot Commands

Manipulator 1 Manipulator 3Manipulator 2

Task
Decomposition

Task
Allocation

Task
Execution

Scheduling

Trajectory Planning and Robot Control
Error Recovery
Monitoring

Figure 1: Assembly System Overview

practice they rarely achieve optimality due to the
computational complexity of the scheduling problem.
Another pitfall of static scheduling is that it does not
work well in dynamically changing environments
such as flexible assembly systems. Any time the
environment changes, the schedule has to be
recomputed from scratch.

On-line scheduling approaches (for instance,
[18]), can solve dynamic scheduling problems much
more gracefully. One example of such an on-line
scheduling approach is based on Anytime
Algorithms. Anytime scheduling algorithms are
algorithms that can provide a feasible schedule at
any time, while improving this solution over time.

We propose an anytime scheduling algorithm
based on the A* search algorithm [6]. A* is a best
first heuristic search algorithm that explores the
nodes with minimal cost f(n) = g(n) + h(n) first; n is
the current node, g(n) is the cost from the initial
node to current node, and h(n) is the estimated cost
from current node to the goal node. It guarantees to
return a minimum cost solution as long as the
heuristic, h(n), does not overestimate the remaining
cost.

The objective of our scheduling algorithm is to
minimize total operation time. The operation time is
estimated based on the characteristics of the
operation and the robot, e.g. the distance to be
traveled, and the maximum velocity and
acceleration. The algorithm also tries to schedule as
many different resources as possible to achieve load
balancing. It contains the following three steps:
1. The search starts without any scheduled

assembly tasks.
2. Subject to the precedence constraints,

unscheduled tasks are added to the search path,
one at a time.

3. For each newly added task in the path, all
available resources (robots) are queried for an
estimated operation time. This estimate is used

to compute the heuristic cost function, h(n).
4. The search continues until an optimal solution

(with minimum total operation time) is found; if
no feasible solution exists, a failure is reported.

The algorithm is similar to typical A* search
except for the following differences:

x The search interacts with resource agents in a
dynamic fashion.

x The search can be interrupted :
1. If there are idle resources. A partial

schedule (which is called a committed
schedule) is returned and sent to each
manipulator agent. The schedule that has
been executed is called the executed
schedule. The search continues from the
committed scheduled.

2. If one of the resources fails. It checks if the
committed schedule can be executed. If so,
it backtracks to the most promising
schedule in which no failed resources have
been assigned; it resumes searching from
that point. All the executed tasks are
excluded from further search.

x Because there will be differences between the
planned schedule and the execution results, an
execution strategy that maintains the precedence
relationships of the planned schedule is used.

 The discussion of using of a non-admissible
evaluation function to convert the A* search
algorithm into an anytime algorithm can be found in
[5].

4 Agent-Based Assembly Planning
System

We have integrated the anytime scheduling
algorithm described in the previous section into an
agent-based planning system. In this section, we
describe the agent architecture and communication
mechanism of our planning system.

Manipulator Agents

1 32

Scheduler Agent

Communication Agent

World State Agent Trajectory Planning
Agent

Monitoring Agent

Graphic Simulator
Agent

User Interface User

Resource Allocation

Task Commands

State Update/Query

Agent Communication Support

Visual Verification

Execution Feedback

Failure Notification

Resource Utilization

Planning Interruption and Re-planning

Trajectory Planning

State Query

Task Translator Agent

Manager Agent

Agent Management
and GUI Handling

Robot Commands

Resource Controller
Agent

Command Execution

All Agents

All Agents

Figure 2: Agent System Architecture

4.1 Agent System Architecture

 The performance of an agent-based system
depends significantly on how the problem is
decomposed into individual agents. As illustrated in
Figure 2, we have adopted an agent-architecture
based on our previous work [8]. The operation flow
of the system is described as follows:
1. The user specifies an assembly task file (with

known assembly sequence and precedence
constraints) through the user interface.

2. The scheduler agent starts allocating resource
and generates a schedule. For each task, the
scheduler queries each of the resources for and
estimated time of operation (based on the
capability, current position, and availability).
The scheduler agent returns the best schedule so
far whenever it is asked for one by the
monitoring agent. It can also re-schedule or
abort in case of execution errors or other
exceptions.

3. The monitoring agent keeps track of the
utilization of the manipulators and interrupts the
scheduler agent if there are idle resources. It
also reports the results of the execution back to
the scheduler.

4. When a resource (manipulator) agent receives a
task to be executed, a translation agent converts
the high-level task into robot-level commands.

5. Before the resources execute the robot-
commands, the trajectory planner generates
collision-free trajectories for each resource.

6. Once the trajectory for each resource is
available, the user can either send all robot
commands to the simulation agent to obtain
visualization feedback, or to the controller agent
to execute robot commands in our assembly test
bed.

7. Each resource agent reports execution errors and
exceptions to the monitoring agent.

4.2 Communication Mechanism

 For the implementation of our planning system,
we use the Task Control architecture (TCA)
developed at Carnegie Mellon University [15]. TCA
provides a high-level machine independent method
for passing messages between agents. TCA is
capable of conducting peer-to-peer and broadcast
communication. Every agent communicates first
with a central server after which the server
dispatches the requests to target agents. The agents
in the planning system exchange information
through messages and requests. The different types
of messages are illustrated in Figure 2.

4.3 Agents

We have designed the following agents in our
planning system:

x Communication Agent: handles agent
communication based on the Task Control
Architecture (TCA) message-passing
mechanism.

x Manager Agent: manages the agent society. It
is also in charge of the interaction with the user.

x Scheduler Agent: generates dynamic schedules.
x Resource Agent: provides manipulator

information (current position, current state, and
capacity). Currently, the only resource agents
are the manipulator agents.

x World State Agent: provides the geometric
information of the manipulators, workspace, and
parts. It also contains connectivity relationships
between parts and manipulators.

x Monitoring Agent: keeps track of task
execution results and coordinates scheduling
and execution. It also handles exceptions such as
manipulator failures.

x Task Translator Agent converts high-level task
commands into lower-level robot commands.
We use motion scripts that contain motion
strategies to map high-level task commands into
robot commands, for example:

Motion Script for a Pick-and-Place task

MoveRobot $RobotName $PartInitConfig

RobotOpenGripper $RobotName

RobotCloseGripper $RobotName

MoveRobot $RobotName $PartFinalConfig

RobotOpenGripper $RobotName

MoveRobot $RobotName $RobotInitConfig

x Trajectory Planing Agent: generates collision
free trajectories for the manipulators. An online
hill-climbing algorithm considering multiple
moving objects has been developed. Our current
implementation performs the collision detection
in 2D. As illustrated in Figure 3, bounding

Figure 3: Trajectory Planning

cylinders are used to model the manipulators.
x Resource Controller Agent: controls the actual

resources in the assembly cell. Ideally there will
be one controller for every resource. In our case
(RobotWorld), only one controller controls all
manipulators.

x Graphical Simulation Agent: renders the
assembly system using OpenInventor as is
shown in Figure 4. Its main purpose is to
facilitate debugging and algorithm development.

4.4 Assembly Test Bed

We are currently developing the agent-based
planning system for Robot World, a flexible robotic
assembly cell developed by Automatix, Inc. As
shown in Figure 5, RobotWorld consists of four
manipulators, three of which can used to perform
assembly tasks (each with 4DOFs). The fourth
manipulator is equipped with a camera for
calibration and visual feedback. A single controller
controls all four manipulators; the other agents
running on an SGI communicate with the controller
through a serial connection.

5 Simulation Results

We have tested our on-line planning system using
simulated execution results. The actual execution
time of an assembly task is simulated by the
estimated operation time plus or minus some
perturbation. The simulated robots have a 5% failure
rate. The results show that our planning system can
handle these dynamic changes well.

Figure 6 shows the planned and simulated
execution schedules for an assembly job with twenty
assembly tasks. Three manipulators are used in this
experiment. The precedence relations of the
planning result are maintained to handle the
discrepancy between planning and execution in
simulated execution schedule.

Figure 7 shows the recomputed schedule when
one of the manipulators (robot 3) failed.

Figure 5: RobotWorld Assembly Cell

Figure 4: Graphic Simulator

planned schedule

simulated execution schedule
Figure 6: Planned and Simulated Execution

Schedules

6 Conclusion and Future Work

In this paper, we presented an agent-based on-line
planning approach for flexible assembly systems. We
focused on assembly task allocation. An anytime
algorithm based on A* search has been implemented
as part of an agent-based system architecture. We
have tested our planning system on several assembly
tasks in which unexpected delays and system faults
have been introduced. The experimental results show
that our approach is adequate for flexible robotic
assembly.

Currently we are working on integrating our
planning system with assembly sequence generation
(IAMS) and our assembly test bed (RobotWorld).
The approach is general enough to be applied and
extended to other flexible manufacturing systems.

7 Acknowledgements

This research has been funded in part by DARPA
under contract ONR #N00014-96-1-0854 and by the
Institute for Complex Engineered Systems at
Carnegie Mellon University.

8 References

[1] K.R. Baker, Introduction to sequencing and
scheduling, Weily, New York, 1974.

[2] J.S. Basran, E.M. Petriu, and D.C. Petriu. “Flexible
agent-based robotic assembly cell,” Proceedings of
the 1997 IEEE International Conference on Robotics
and Automation, pp. 3461-3466, 1997.

[3] M. Boddy and T.L. Dean, “Solving time-dependent
planning problems,” Proceedings of the Eleventh
International joint Conference on Artificial
Intelligence, pp. 979-984, Detroit, Michigan, 1989.

[4] S.K. Gupta, C.J.J. Paredis, R. Sinha, C.H. Wang and
P.F. Brown, "An Intelligent Environment for
Simulating Mechanical Assembly Operations,"

ASME Design for Manufacturing Conference,
Atlanta, GA, September 1998.

[5] E.A. Hansen, S. Zilberstein, and V.A. Danilchenko,
“Anytime Heuristic Search: First Results,” CMPSCI
Technical Report 97-50, Computer Science
Department, University of Massachusetts, Amherst,
September, 1997.

[6] P.E. Hart, N.J. Nilsson and B. Raphale, “A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths,” IEEE Transactions on Systems, Science,
and Cybernetics, SSC-4(2), pp.100-107, 1968.

[7] L. Homem de Mello and A. Sanderson, “A Correct
and Complete Algorithm for the Generation of
Mechanical Assembly Sequences,” IEEE
Transactions on Robotics and Automation, Vol. 7,
No. 2, pp.228-240.

[8] J.-C. Fraile, C.H. Wang, C.J.J. Paredis, and P.K.
Khosla ”Agent-Based Control and Planning of a
Multiple-Manipulator Assembly System,”
Proceedings of the 1999 IEEE International
Conference on Robotics and Automation, Detroit,
MI.1999.

[9] L.J. Krajewski and L.P. Ritzman, Operations
Management: Strategy and Analysis, Addison-
Wesley, 1993.

[10] T.C. Lueth, and T. Laengle. “Task description,
decomposition and allocation in a distributed
autonomous multi-agent robot system,” Proceedings
of the 1994 IEEE International Conference on
Robots and Autonomous System, pp 1516-1523,
1994.

[11] T. Nagata, and J. Hirai. “Distributed planning for
assembly tasks by multiple manipulators,”
Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, pp.3522-
3529. 1994.

[12] E. Oliveira. “Cooperative multi-agent system for an
assembly robotics cell,” Robotics and Computer
Integrated Manufacturing, Vol. 11, No 4, pp. 311-
317, 1994.

[13] D. Ouelhadj, C. Hanachi B. Bouzouia. “Multi-agent
system for dynamic scheduling and control in
manufacturing cell,” Proceedings of the 1998 IEEE
International Conference on Robotics and
Automation, pp. 2128-2133, 1998.

[14] A.A. Rizzi, J. Gowdy, and R.L. Hollis, “Agile
Assembly Architecture: An Agent Based Approach
to Modular Precision Assembly Systems,”
Proceedings of the 1997 IEEE International
Conference on Robots and Autonomous System,
Albuquerque, NM, April 20-25, 1997.

[15] R. Simmons, “Structured Control for Autonomous
Robots,” IEEE Transactions on Robotics and
Automation, 10:1, February 1994

[16] S.V. Vrbsky, J.W.S. Liu, and K.P. Smith, An Object-
Oriented Query Processor That Returns
Monotonically improving Approximate Answers.
Technical Report, UIUCDCS-R-90-1568, University
of Illinois at Urbana-Champaign, 1990.

[17] R.H. Wilson, on Geometric Assembly Planning.
Ph.D. Thesis, Dept. of Computer Science, Stanford
University, Technical Report STAN-CS-92-1416,
1992.

Figure 7: Planned Schedule with One Broken
Manipulator (robot 3)

[18] S.-Y. D. Wu, and R.A. Wysk, “An application of
discrete-event simulation to on-line control and
scheduling in flexible manufacturing,” International
Journal of Production Research, Vol. 27, No. 9,
pp.1603-1623., 1989.

[19] S. Zilberstein and S.J. Russel, “Anytime Sensing,
Planning and Action: A Practical Model for Robot
Control,” Proceedings of the Thirteenth International
joint Conference on Artificial Intelligence,
Chambery, France, 1993.

