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BRIEF OUTLINE OF RESEARCH FINDINGS 

Dielectric planar waveguides are essential components in integrated 

optical devices, circuits, and systems. Thc.P.- waveguides are typically 

fabricated in anisotropic materials such as lithium niobate. FUrthermore, 

the anisotropic nature of the waveguides is usually ignored due to the 

complexity of the analysis required to include these effects. During the 

present work period, the allowed hybrid guided modes in anisotropic planar 

waveguides were calculated electromagnetically rigorously (without 

approximations). Three types of modes are identified: (1) homogeneous pure 

guided modes, (2) inhomogeneous pure guided modes, and (3) leaky guided 

modes. Furthermore, within these three types, there can be unconditionally 

stable and critically stable modes. Cutoff can occur starting from either 

of these latter two types through a transition to either a leaky guided mode 

or a leaky unguided wave. The cutoff conditions for these transitions are 

quantified. Active and passive cutoff anisotropy-based devices can be 

constructed simply by changing the direction of propagation on the 

anisotropic substrate. Polarizers, filters, and temperature sensors 

(performing an absolute rather than a differential measurement) are 

described that can be constructed in very simple configurations using the 

anisotropic propagation characteristics. 
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BRIEF OUTLINE OF RESEARCH FINDINGS 

The diffraction of a pure guided mode in a uniaxial slab waveguide by a 

phse grating which is induced by a voltage applied to interdigitated 

electrodes over the waveguide was analyzed. A pure guided mode can be 

decomposed into four plane wave components (two ordinary and two 

extraordinary), which are not phase matched on the boundary between the 

waveguide and the grating. Thus the diffraction of a pure guided mode may 

be decomposed into the diffraction of four plane waves. Three-dimensional 

vector rigorous coupled -wave diffraction analysis of anisotropic gratings 

with anisotropic external regions [1] was used to treat the diffraction of 

each plane wave component of the pure guided mode. Geometrical and 

phase/amplitude requirements were identified for the diffracted waves to 

constitute a guided mode. Diffracted mode efficiencies and Bragg conditions 

were calculated. Optic axis orientations for efficient diffraction were 

identified. Example calculations were presented for lithium niobate 

waveguide Givens rotation devices, and herringbone multiplier structures 

including a favorable comparison with experimental results. 

[1] Glytsis, E. N. and Gaylord, T. K., "Rigorous three-dimensional 
coupled-wave diffraction analysis of single and cascaded anisotropic 
gratings," Journal of the Optical Society of America A,  vol. 4, pp. 
2061-2080, November 1987. 
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BRIEF OUTLINE OF RESEARCH FINDINGS 

The diffraction by one or an arbitrary number of cascaded anisotropic 

planar gratings with slanted fringes, is analyzed in this Applied Optics 

paper using rigorous three-dimensional vector coupled-wave theory. 

Arbitrary angle of incidence and polarization are treated. The existence of 

uniaxial external regions and the treatment of both phase and amplitude 

anisotropic slanted gratings are included in the analysis. The anisotropy as 

well as the three-dimensionality of the problem cause coupling between 

orthogonally polarized waves. The Bragg conditions for various combinations 

of ordinary (0) and extraordinary (E) polarized waves are quantified. 

Example calculations are presented for single anisotropic gratings (a 

lithium niobate hologram in air and an interdigitated-electrode-induced 

electro-optic grating in an optical waveguide), for two cascaded anisotropic 

gratings (a pair of interdigitated-electrode-induced gratings satisfying the 

000 forward Bragg condition, the EEE forward Bragg condition, and the 000 

backward Bragg condition), and for multiple cascaded gratings (a lithium 

niobate hologram with depth modulation). The same analysis applies in the 

limiting cases of: isotropic materials, grating vector lying in the plane 

of incidence, etc. Applications for this analysis include optical storage, 

switching, modulation, deflection, and data processing. 
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I. Introduction 

In a recent publication,' a straightforward, numerically stable method 

for performing electro-optic effect calculations was presented. Simple 

analytic procedures were developed for calculating the principal dielectric 

axes and refractive indices of an electro-optic crystal of any crystal class 

subject to an external electric field applied in a general direction. Simple 

formulas were also developed for obtaining the two allowed eigen-

polarizations and their corresponding refractive indices for a general 

direction of phase propagation. However, in addition to an external 

electric field, the optical properties of a crystal may be affected by other 

influences, internal or external, such as natural optical activity, an 

internal or applied magnetic field, stress, and others. The optical 

properties and the induced changes in them may be described by the relative 

permittivity tensor [E] or its inverse, the impermeability tensor [n], where 

[j] . [E] -1  . [1/n2 ] and n is the index of refraction. 

The linear and quadratic electro-optic effects induce changes in the 

linear birefringence of a crystal. 	These effects may be represented as 

symmetric perturbations to the impermeability tensor. 	The allowed 

polarizations 	remain linear, regardless of the direction of propagation. 

However, some electro-optic crystals such as bismuth silicon oxide are also 

optically active, 	thereby exhibiting natural reciprocal circular 

birefringence. 	This physical effect is manifested as a rotation of the 

linear polarization of the light upon transmission through the crystal. 

Correspondingly, the eigen-polarizations are no longer linear but are, in 

general, elliptical. 	Rotation of linearly polarized light may also be 

induced by an external field. 	For example, an applied magnetic field may 

induce 	nonreciprocal 	circular birefringence 	(Faraday 	rotation). 



Furthermore, an external electric field may induce reciprocal circular 

birefringence (electrogyration effect). Media exhibiting circular 

birefringence, whether natural or induced, are referred to as gyrotropic. 

The mechanisms giving rise to gyrotropy may be represented as imaginary 

antisymmetric (Hermitian) perturbations to the impermeability tensor. 

The two general questions to be addressed here are as follows: 1) Given 

a crystal that is linear birefringent (natural or induced) and/or gyrotropic 

(natural or induced), what are the principal refractive indices and 

principal dielectric axes of the crystal? 2) What are the two eigenstates 

(i.e., phase velocity indices and corresponding eigen-polarizations) for a 

given direction of light propagation? The other given conditions are that 

the crystal is lossless, linear, and homogeneous. The answers to the above 

questions can be obtained by first determining the eigenvalues and 

eigenvectors of the perturbed impermeability tensor. In addition, since the 

eigen-polarizations are now elliptical in general, three pieces of 

information are required to describe each state of polarization: 	azimuth 

angle, ellipticity, and handedness. 

Similar problems with the electromagnetic description of gyrotropy have 

been addressed in the literature in terms of macroscopic theory 2-9  and 

quantum mechanics.9- 11  As an example of the former, a method to calculate 

the eigenstates of a naturally optically active, electro-optic crystal by 

diagonalizing the coupled-wave equations was presented by Yariv and 

Lotspeich. 3  As an example of the latter, a method using quantum 

electrodynamics to determine the eigenstates in optically active, linear 

birefringent crystals was presented by Eimer1. 1°  The approach presented in 

this paper is based on the macroscopic properties of the crystal. The 

procedure introduced here employs an extension of the general Jacobi method, 

a known, very accurate, stable, and simple numerical routine. Also, to 



obtain a full description of the eigen-polarizations, a complex polarization 

variable is used that maps the eigenvectors of the transverse impermeability 

tensor into a complex polarization plane. The advantages of this method 

over the others are that (1) no assumptions are required; (2) it applies to 

any crystal class; (3) it applies to any field direction; (4) it applies to 

any direction of light propagation; and (5) it is numerically stable, 

accurate, and straightforward. 

The constitutive equation will first be used to describe the optical 

properties of a crystal. To provide a geometric interpretation of linear 

and circular birefringence, the index ellipsoid and gyration surface will be 

reviewed. Next, the procedure to address the given problem will be 

introduced, which includes a brief overview of the eigenvalue/eigenvector 

problem for Hermitian matrices, followed by a description of the extended 

Jacobi method introduced in the present work and of the complex polarization 

variable used to obtain the eigenstates for a given direction of phase 

propagation. Finally, bismuth silicon oxide, an optically active, electro-

optic, electrogyratory material is analyzed to illustrate the simplicity and 

accuracy of the method. Throughout this paper boldface will be used to 

denote a vector and [•] to denote a matrix. 

II. Constitutive Equation 

The material properties (principal permittivities or refractive 

indices) of the crystal are represented by the constitutive relation D = 

[E]E, where [e] is the permittivity tensor of the medium. Disturbances to 

the optical properties, which are typically very small in magnitude, may be 

described by this tensor. They are commonly expressed in terms of the 

inverse of the permittivity tensor, [e]
-1 = 1/E0[E]  1 = 1/c o [1/n2 ], where 

e is the permittivity of free space. 



For a homogeneous, lossless, and nongyrotropic medium the permittivity 

(impermeability) tensor has only real components. Moreover, it is symmetric 

- for all crystal classes and for any selection of the dielectric axes. 12 14 
 

Therefore, it may be diagonalized, and in principal coordinates, the 

constitutive equation is 

D [ 
D x 

= 
[ E x 

0 
0 

0 
E 
if 

0 
0 
E z  

E x 
E 
E'  

(1) 

with the principal permittivities on the diagonal. The symmetry of [E] 

guarantees that a diagonal form exists given a correct choice of three 

perpendicular principal axes (x,y,z) with respect to the crystallographic 

axes. 

If the medium is gyrotropic, the constitutive equation may be written 

as
13-15 

D = [E]E + /E 0 G x E = [WE, 	 (2) 

where [e] is the symmetric unperturbed permittivity tensor, i is 	 , and 

G is the gyration vector which is uniquely defined for the mechanism 

producing the circular birefringence. 	The vector cross product G x E in 

Eq. (2) may be represented as the product of an antisymmetric tensor [G] 

with the vector E. Thus, 

D = HE] + ie.[G])E 	[WE. 	 ( 3 ) 

Therefore, the permittivity tensor [E]' is now clearly Hermitian as indeed 

it must be due to thermodynamic arguments. 13-14  

The constitutive equation may also be written as 

E = [E]' - 'D = [n]'D = (1/c o ){[ n ] — i[n][G][n])D. 	 (4) 



From Eq. (4), the antisymmetric (imaginary) part of [n]' is 

[o 

	 nx n z Gy  

Im[nr — —Nl[G][n] = — nx ny  Gz 

—nx 
0nyGz —n_nzGx 

— nx n z Gy 	nynzGx 	'o 	. 
( 5 ) 

An important point is that the imaginary part of [ n ]' has no effect on the 

principal dielectric axes and indices of the crystal. The real part of [n]' 

is real and symmetric. 

A number of the various types of influences, both natural and induced, 

on the optical properties are now described. 

A. Dielectric Properties with No Fields Applied 

1. Natural Linear Birefringence 

The optical symmetry of a crystal is represented by the permittivity 

(impermeability) tensor. 12-14  If all diagonal elements are equal, then the 

crystal is isotropic. If E x  = Ey  0 E x , then the crystal is uniaxial. If e x 

 ey 	the crystal is biaxial. 	Therefore, both uniaxial and biaxial 

crystals exhibit natural linear birefringence; e.g., e z  — cy  0 O. 

2. Natural Optical Activity 

In general, the macroscopic properties of a medium depend on the 

temporal and/or spatial variation of the electromagnetic field. For the 

case of natural optical activity, the properties are influenced by spatial 

dispersion, the dependence of [c] on the magnitude and direction of k at 

fixed frequency. 4,13-19 The macroscopic dipole moment per unit volume of the 

medium at a given point depends on the field at and near that point. In the 

optical frequency range, the effects of spatial dispersion, in general, are 

small and are characterized by the first power of a/A (<<1), where a is on 

the order of the lattice constant and A is the wavelength of the light in 



the medium. Therefore, to first order, the constitutive equation is14- 15,17-18 

D i  = E ij Ej  + /i.02 (ayax ,e ) = E' ij Ej 	 (6) 

and 

e' ij  = e' ij (w,k) = e ij (w) + 	 kj2 , 	 ( 7 ) 

where J E I..(w) is the permittivity tensor without optical activity and / ij,e (w) 

is a third-rank real antisymmetric tensor in the indices i and j, resulting 

in E'
1
. .
J 
 being Hermitian. The second term can also be represented by G x E, 

where G is the gyration (axial) vector. 13-15 
 

The displacement vector D rotates in a helical fashion about the 

wavevector k, so G is parallel to k and the components of G are 

functions of the direction cosines of k. 	The sense of rotation bears a 

fixed relation to the direction of propagation as shown in Fig. la. If a 

linearly polarized input light wave is transmitted through an optically 

active crystal and then is reflected back through the crystal, the net 

rotation of the polarization is zero. 	Therefore, natural optical activity 

is a reciprocal effect. 4 ' 13  

By defining the direction of k in spherical coordinates (0 k ,8k ), the 

1 components and magnitude of G are 13  ' 7 

G = GsinB k  cos0k' 	G = GsinBk  sing!)k' 	G = Gcos0k 
( 8 ) 

' G I 	G 	gli sin28k cos20kg22sin214k sin2 0k  + g33 cos 2 O k  

+ 2g12 sin2 Ok  sink cosOk  + 2g13 sin9k  cosOk  cosOk  

+ 2g23 sinOk  cosOk  sink, 

where gij  are the components of the gyration tensor. Only noncentrosymmetric 

crystals can have natural optical activity. Table I provides a summary of 

the gyration tensors for all crystal classes that exhibit optical activity.13 



B. Dielectric Properties with External Fields Applied 

1. Linear Electro-Optic Effect 

An electric field applied in an arbitrary direction to a crystal 

lacking a center of symmetry produces a change in the coefficients (1/n 2 ) 1  due 

to the linear electro-optic effect according to 

A(1/n2 ). = Er,.E. 	i = 1,...,6 	 (9) 
j = x,y,z = 1,2,3 

where r. is the ii th  element of the linear electro-optic tensor in reduced- 

subscript notation. 13,20 

For 	a 	noncentrosymmetric 

In matrix 

A(1/n2 ) 1 - 
 A(1/n2 ) 2 

 A(1/n2 ) 3 
 A(1/n2 ) 4 

 A(1/n2 ) 5 
 A(1/n2 ) 6  

crystal, 

form Eq. 	(9) 	is 

r11 	r12 	r13 
r21 	r22 	r23 
r31 	r32 	r33 
r41 	r42 	r43 
r51 	r52 	r53 
r61 	r62 	r63- 

the new impermeability 

[E
x 

(1 0) 

tensor 	in 	the 

presence of an applied electric field is, in general, no longer diagonal in 

the original axes system. The perturbed impermeability tensor is 

[1/n2 ] ' 

1/n1 2  + A(l/n2 ) 1 	A(1/n2 ) 6 	 A(1/n2 ) 5  

A(1/n2 ) 6 	1/n2 2  + A(1/n2 ) 2 	A(1/n2 ) 4 	(11) 

A(1/n2 ) 5 	 A(1/n2 ) 4 	1/n3 2  + A(1/n2 ) 3  . 

 

However, the field-induced perturbations are real and symmetric, so the 

symmetry of the tensor is not disturbed. These changes to [1/n 2 ] have the 

effect of changing the principal axes and indices of the crystal. The 

electro-optic tensor for all crystal classes is summarized in numerous 

texts. 13 15 All optically active crystals are also electro-optic, but the 

converse is not true. 



2. Electrogyration Effect 

An applied electric field may not only induce linear birefringence, but 

in many cases, 21  it may also induce circular birefringence through the 

electrogyration (EG) effect. Considering only first-order spatial 

dispersion, the gyration tensor 1821-23  

gij = gij 
	 (12) 

where gij  is the gyration tensor with no applied field and pijk  is the third-

rank electrogyration tensor, which has the same symmetry as the electro-

optic tensor. The second-rank tensor y ijk Ek  alters gij  in the same manner as 

Eq. (9) alters the impermeability tensor in Eq. (11). The net result is a 

change in the magnitude of the gyration vector G as found by Eq. (8) and 

therefore, a change in the specific rotation (polarization rotation per unit 

thickness) of the medium. The EG effect may be viewed as induced optical 

activity, a reciprocal effect. This perturbation changes the impermeability 

tensor in the same manner as optical activity, that is, producing Hermitian 

off-diagonal elements as in Eq. (4) rather than the real symmetric off-

diagonal elements of Eq. (11). 

3. Faraday Rotation 

In a Faraday active medium, the macroscopic properties are influenced 

- by frequency dispersion caused by an applied magnetic field. 4,8,13 14,24-27 
 

The field creates a relative shift between the phase velocity indices of 

refraction of the two allowed eigen-polarizations, inducing circular 

birefringence. The constitutive equation is 

D = [e]E + ie.013 x E, 	 (13) 

where 	[e] 	is 	the unperturbed permittivity tensor and 0 is the 



magnetogyration constant of the medium. The real part of the impermeability 

tensor is symmetric in B, and the imaginary part is antisymmetric in B. 14  

Since only first-order effects are considered, the real part of the tensor 

remains unchanged. 	In this case, the imaginary part is represented by the 

gyration vector that is proportional to B; i.e., G = OB. 	Thus, the 

components of G are functions of the direction cosines of B (0B4 O B ), rather 

than those of k. That is, 

Gx  = OBsin0B COSO
B' 	

G = OBsine B sin013, 	G = 013cose 13' 
	(14) 

The magnitude of G is merely the product of 0 and the magnitude of B. For 

Faraday rotation, the sense of rotation bears a fixed relation to B, as 

shown in Fig. lb. The eigen-polarizations are preserved upon reflection so 

that the net rotation is doubled. Thus, Faraday rotation is a nonreciprocal 

effect. 4 ' 11,13  

C. Combined Effects 

If, for example, a lossless, biaxial, and optically active crystal is 

subject to an applied electric field, then the impermeability tensor is 

- altered by Hermitian perturbations and is - 5,13 14,24 

[ 1/n2 ]' = [n]' _n 	 (15)  nyy 	nyz 	 (15) 
nxx 	nxy 	nxz 

nxz 	qyz 	qzz 2  

where qij , i 	j, are complex and qii  are real. As stated previously, the 

imaginary parts of the off-diagonal elements do not affect the principal 

axes or indices of the crystal. They affect only the state of the allowed 

polarizations and the phase velocity indices. The eigen-polarizations are 

now elliptical, in general, rather than linear as with the electro-optic 

effect. An Hermitian matrix may be represented by a quadratic surface in 



complex space. 	In real Cartesian space, however, only the real part of 

NP, which is symmetric, contributes to a quadratic surface (ellipsoid). 

Geometric surfaces which represent optical properties of the crystal are 

discussed in the next section. 

III. Geometric Approach 

A. Index Ellipsoid 

The index ellipsoid is a construct whose geometric characteristics 

represent the phase velocities and the directions of electric displacement 

vibration of the two allowed plane waves corresponding to a given optical 

wavevector direction in a crystal. The general index ellipsoid for an 

optically biaxial crystal is expressed in Cartesian coordinates as 12-13 

(x2 in  2 N  + (y2 in  2\ + (z 2 /1.1  2 ,1 = 1 
/ 	/ 	 / 	/ 	 / z / 

(16) 

where nx  , ny
, , and nz  are the principal refractive indices of the crystal. 

Since the permittivity (impermeability) tensor is positive definite, the 

surface is always an ellipsoid. If n.  = ny , the surface becomes an ellipsoid 

of revolution, representing a uniaxial crystal. An isotropic crystal is 

represented by a sphere (degenerate ellipsoid) with the principal axes 

having equal length. These surfaces are shown in Fig. 1 of Ref. 1. Also, 

shown are the optic axes for each crystal symmetry. 

The eigenstates for an arbitrary direction of propagation in a crystal 

are found in the elliptical cross-section perpendicular to k which passes 

through the origin of the index ellipsoid, as shown in Fig. 2. If the 

optical properties are not disturbed, the major and minor axes of the cross-

section ellipse represent the two allowed orthogonal linear vibration 

directions of D (eigen-polarizations) for that particular direction of 

propagation. The lengths of these axes correspond to the the respective 



phase velocity indices of the allowed polarizations. They are, therefore, 

referred to as the "fast" and "slow" axes. As with the principal axes and 

indices of the crystal, these eigenstates, in general, are affected by real 

symmetric perturbations, (for example, the electro-optic effect), to the 

impermeability tensor. However, the antisymmetric perturbations affect only 

the eigenstates (the eigen-polarizations and phase velocity indices). The 

major axes of the cross-section ellipse correspond to the major axes of the 

allowed polarizations in this case. 

B. Gyration Surface 

The geometry of the index ellipsoid provides only partial information 

about the eigenstates if the allowed polarizations are not linear. In this 

case the ellipsoid can be used to determine only the orientation of the 

allowed elliptical polarizations but nothing on the properties of optical 

rotation for a given wavevector direction. The gyration surface, however, 

may be used to illustrate the directional dependence of optical rotation in 

a gyrotropic crystal. For optically active crystals the surface is 

constructed from the gyration tensor [g] in the same way that the index 

ellipsoid is constructed from the impermeability tensor. 17  That is, the 

distance from the origin to any point on the surface is given by 

G = gij  ki  ki , 	 (17) 

where lc and k. are the direction cosines of the wavevector k. Equation (17) 

is the directional magnitude of the gyration vector, G = I G I , as given by 

Eq. (8). Since the gyration tensor is not necessarily positive definite, 

the surface may have a variety of forms. Shubnikov 17  provides a complete set 

of all possible surfaces for isotropic, uniaxial, and biaxial crystal 

classes which exhibit optical activity. For example, Fig. 3 is the gyration 



surface for right-handed quartz (class 32) which is positive uniaxial and 

optically active. The first two diagonal elements, g ,, = g22 ,  are negative, —  

and g33  is positive. The surface is given by G = -1gillsin2ek 0  + g33cos2 eko' 

where 0ko is the angle between the optic axis and k. Therefore, optical 

rotation along the optic axis is right-handed and is denoted by the white 

surface. However, propagation perpendicular to the optic axis gives optical 

rotation in the opposite direction and is denoted by the dark surface. 

There is no optical rotation (G = 0) for propagation directed -56° from the 

optic axis, as determined by the measured quantity g 11,/—g33 - 0.45, and the 

eigen-polarizations are linear. 

For Faraday active crystals a gyration surface may also be constructed. 

As stated before, the sense of optical rotation bears a fixed relation to 

the direction of the applied magnetic field B. Maximum rotation is 

achieved for propagation parallel and antiparallel to the applied magnetic 

field. If propagation is in a direction inclined to B, the degree of 

optical rotation will decrease as cosOkB , where OkB  is the angle between k 

and B. 14  Therefore, Fig. 4 is a representation of the gyration surface for 

this type of crystal. 

IV. Analysis 

The problem is to determine the principal axes and indices of the 

crystal and the two allowed orthogonal eigenstates of polarization (D, and 

D2 ) and the corresponding phase velocity indices (n, and n2 ) for a general 

wavevector direction and a general external field. The solution to the 

problem lies in determining the eigenvalues and eigenvectors of Eq. (15). 

The method chosen to address this problem involves diagonalizing the matrix 

using an extension of the general Jacobi method. For Hermitian matrices, 

the eigenvalues are real. The eigenvectors, on the other hand, are complex 



in general. 	Thus, additional information is required to describe the 

general state of the eigen-polarizations (the complex eigenvectors). 	For 

linear polarization, only the orientation (azimuth angle) in the plane 

transverse to k is required. For elliptical polarization, the ellipticity 

and handedness as well as the azimuth angle must be determined. 

Furthermore, for linear polarization, D oscillates in a plane in one fixed 

direction perpendicular to k. If D is elliptically polarized, then it no 

longer oscillates in a plane but rather propagates in a flattened helix 

about k, as shown in Fig. 5. A full description of the eigen-polarizations 

is obtained by using a complex polarization variable. 

A. Principal Axes and Principal Refractive Indices 

A detailed description of a procedure to determine the new principal 

axes and indices of a crystal subject to real symmetric perturbations is 

given in Ref. 1. That approach employs the general Jacobi method, and it is 

known to be an accurate, numerically stable, and simple routine for 

diagonalizing real symmetric matrices. The routine is iterative, and it 

involves the calculation of an elementary plane rotation angle at each step 

to zero the largest off-diagonal element. Also, the method allows for 

consistent labeling of the new axes; a global rotation axis and a global 

rotation angle are calculated from the resulting cumulative orthogonal 

transformation matrix. To find the principal axes and indices of a crystal 

with Hermitian perturbations to its optical properties, as given by Eq. 

(15), the same procedure is performed but only on the real part of the 

matrix. The authors refer the reader to Ref. 1 for this part of the 

analysis. 

B. Eigenstates of Polarization and Phase Velocity Indices 

The eigenvalue problem for Hermitian matrices is addressed by a unitary 



transformation, [a][n]'[a] H 	[A], where [a] is the unitary transformation 

matrix ([a] H  — [a] -1  ), [ n ]' is an Hermitian matrix, [A] is the resulting 

diagonal matrix of real eigenvalues, and H denotes complex conjugate 

transpose. 	As suggested by Wilkinson, 28  a form of the unitary matrix that 

can be used is 

- [a] 	cos 	eiB  suit.] 
-iB si —e 	n4 	cos J. (18) 

This matrix has the effect of transforming a system from Cartesian 

coordinates to a complex (helical) coordinate system. 29  There are two 

parameters, 4 and B, to determine. For real symmetric matrices B = 0, and 4 

represents the elementary Cartesian plane rotation angle. Using the 

expression for a unitary transformation, a set of relationships was derived 

(with the unitary matrix of Eq. (18)), which results in a version of the 

general Jacobi method extended to Hermitian matrices. The two unknowns 4 and 

B are calculated at each iteration step. With additional algebra, the 

simple expressions in the Appendix were obtained for updating the elements 

of [ n ]' as the diagonalization process proceeds. The parameter B was 

determined to be the argument of the off-diagonal element n ib , i j, and is 

the required value for zeroing that element with a rotation in the (i,j) 

complex plane. These formulas reduce to those of the general Jacobi method 

for real symmetric matrices. 1 	The Jacobi method using these modified 

formulas was programmed and tested. 	The results for several test matrices 

were found with virtually zero error. 	These results were often more 

accurate than those obtained with the commercial IMS12 8  routine, EIGCH. 

To find the eigenstates for a specific direction of propagation k, 

a real orthogonal transformation must first be performed on the Hermitian 

matrix [ n ]' to place the problem in a coordinate system of k. The 



wavevector direction is specified by the spherical coordinates (0 k ,0k ) in the 

original (x,y,z) coordinate system. 	A new coordinate system (x",y",z") 

is defined with z" parallel to k and x" lying in the (z,z") plane. The 

transformation to the (x",y",z") system is produced first by a rotation 

0k about the z-axis followed by a rotation 0k about y" as shown in Fig. 6. 

This transformation is described by 

X" = X COSO
k 
 COSl

k 
+ y cos0k sin0k - Z sin8k 

y" = —x sink + y cos4 k  

z" = x sinOk  cosOk  + y sinO k  sink + z cosOk . 

The transformed tensor [n]" in the (x",y") plane is 

[n]" — rxx" nx y l 
xy 	nzz-J2 

where 

n xx " — (nxx  COS
2 0k + n YY  sin

2
Ok ) COS

2 O lt  -I-  n zz sin
2
O k  + 

2n xyr  cos
2 0k COSO

k 
sins/.k - 2cos0k  sin0k (nxzr COSOk A-  n yzr  sink )

, 

nYY
I I — n xx  sin

2
0
k 
 + n COS

2
0
k 

- 2n xyrcosOk  sink, 
YY  

nxy " — (n
YY 
 — nxx  )COSOk COSO

k 
sinOk  + cosO k  (n

xY  cos
2 Ok  - n* 

xy 
sin2 Ok) 

+ sinOk (n
* 
 xz sink — n

* 	
COSO

k ) = n
* I I 

yz 	 yx 

andnijx denotestherealpartof 17,j_ 	Therefore, the Hermitian property is 

preserved. 	The third row and column can be neglected, since the vibration 

direction of the eigen-polarizations is transverse to k. Next, the phase 

velocity indices of refraction are easily determined using the relationships 

in the Appendix (with a slight modification) to diagonalize the 2 x 2 matrix 

of Eq. (20). The required rotation in the complex (x",y") plane is 

(19) 

(20) 

(21) 

, 

cl) = 1/2Tan-1 (2 sgn(nxyr ")In. y "1/(7. x " — nyy ")), 	 (22) 



where 1•1 denotes magnitude and sgn(n .y. ") is the sign of n 
XY If .r 	. 

The phase 

velocity indices are 

nl  = Oix. "cos 2 1. + nyy "sin2 1. + 2 sgn(n. yr ")1,7. y "lcoscD sincD} 
i, 	(23) 

n2  = ( n.x "sin2 4,  + nyy "cos 2 4. – 2 sgn(n.yr ")In.y "lcost. sint.) -2 . 

The corresponding states of polarization are just the rows of the 2 x 2 

unitary transformation matrix of Eq. (18): 

D 1  = [ cos(1) e iB sinfl H  
(24) 

D2 = [–e-iB  sin(1. cosfl H  , 

where B = Arg(nxy "). 	These states are the left eigenvectors of [ n ]"; the 

right eigenvectors are the complex conjugate transpose of Eq. (24) and are 

D 1  = 	cos.T. 

[ , 	

D2  = –e iB sincD 

e -iB sin(I) 	 cosl. 	. 
(25) 

The orthogonality relation, D 1 •D2
* 
 = 0, is satisfied. From Eq. (23) if n l  < 

n2 , as shown in Fig. 7, then D 1  is the "fast" wave and D2  is the "slow" wave. 

If n 1  > n2, then the "fast" and "slow" waves are reversed. 

Now the full description of these eigen-polarizations must be 

determined; i.e., azimuth angle, ellipticity, and handedness. They have the 

same ellipticity but opposite senses of rotation with orthogonal major axes. 

First, the azimuth angle or direction of the major axes for D 1  and D2  is 

easily obtained from Eq. (22) as follows. 	The orthogonal transformation 

performed on [n]' can be visualized in terms of the index ellipsoid. 	The 

cross-section ellipse transverse to k is found by taking only the real part 

of the transformed tensor [n]", giving X" T Re([77]")X" = 1, or 



nxx le x II 2 	nyy fl y ps 2 	217xyr If x tl y Il = 1 , 	 (26) 

where Re([n]") is the real part of [n]" and X" = [x" y"] T . The azimuth 

angle 	for D 1  is the angle in the real Cartesian (x",y") plane required 

to diagonalize Re(W"). It is 

fl i  = 1/2Tan 1 [2nxyr "/(nx ." — nyy ")]. 	 (27) 

This expression is the same as Eq. (22) if the numerator 2sgn(q 	 PI  I fi ) Inxy xyr 

is replaced by 2nxyr ". 	The azimuth angle for D2  is just /32  = P i  + w/2. 	The 

angles 	and 132  define the orthogonal semi-axes directions (x"' and y"' in 

Fig. 7) of the cross-section ellipse of the index ellipsoid. If Im(n xy ") 

were zero, the lengths of the semi-axes would correspond to the phase 

velocity indices for the two linear polarizations. These indices would be 

calculated from Eq. (23) with Q 1 rather than 

The ellipticity and handedness of D i  and D2  can be found through the 

use of a complex polarization variable (CPV) X. 31  These eigen-polarizations 

are in the form of a two-component Cartesian Jones vector orthogonal to k: 

Di  — [Dx  = 
D
Y i 	

LIDY  leiSY] 
	

(28) 

The form of the CPV is then x = rexp(iLS), where r = IDy /Dx 1 and AS =- 

6 y  —(5 x . It performs a bilinear transformation from the complex (x",y") plane 

to polarization space, shown in Fig. 8, where points in the complex x plane 

represent polarization states. 	This plane, in fact, maps directly onto the 

Poincare' sphere. 	The equator of the sphere is the horizontal real axis of 

linear polarizations, and the north and south poles are the points R and L 

of the right- and left-circular polarizations, respectively. From D 1 , the 

CPV is 



xl  = e-iB tand), 	 (29) 

and from the orthogonal state D2 , 

X2  = —1/X1 * = —e-i3 cot(1). 	 (30) 

Relationships between the CPV x i  and the azimuth angle pi  and ellipticity 

angle e l  are given by Azzam and Bashara 31  as 

tan2fi1  — 2Re(X1 )/( 1  — 1x1 1 2 ) 

sin2e 1  = 2Im(X 1 )/(1 + lx112). 
	 (31) 

In terms of the impermeability tensor elements and the rotation angle 13, the 

azimuth angle p i  was given in Eq. (27), and the ellipticity angle e l  was 

derived to be sin2e 1  = —(Im(n.y")/In.y1) sin2c1) = —sinB sin2c or 

1 = -1/2 sin-1 (sinB sin2c1)). 	 (32) 

The ellipticity is given by tane l . Furthermore, the relative amplitude of 

the orthogonal components of D i  is defined as r 1  = tan ', and the relative 

phase is A6 1  = —Arg(n.y ") — —B. 

The handedness of the polarization is determined by the sign of the 

relative phase. If AS is > 0, then the elliptical polarization is left-

handed. If AS < 0, then the polarization is right-handed. And if AS = 0 or 

mr, m = 1,2,3..., then the polarization is linear. 

For the orthogonal polarization state, the parameters ' 2'  e 2'  r2, and A6 2 

for x2  are31  

)3 2  = p i  + r/2, 	2  = - 1 , 	r2  = cots, 	A62 = —W + A6 l' 	(33) 

* 
The orthogonality condition for x i  and x2  is xl  x2  — —1. Therefore, in the 



process of diagonalizing a Hermitian matrix, the relative phase AS and 

ellipticity angle e are changing iteratively. In the case of a real 

symmetric matrix, the process is interpreted as a rigid body rotation.' 

The advantages of this method include the following: (1) It is accurate 

and stable for all crystal classes; (2) Stable orthonormal eigenvectors are 

found simultaneously with the eigenvalues; (3) The unitary transformation 

matrix is easily determined by elements of the perturbed impermeability 

tensor; (4) All descriptive information about the eigen-polarizations of a 

crystal for a given k is obtained from the unitary transformation matrix 

with simple formulas; and (5) The combined effects of real and Hermitian 

perturbations to the impermeability tensor can be straightforwardly handled. 

V. Example: The Sillenite Crystal Class 

A cubic sillenite crystal of class 23 is examined to illustrate the 

ease and accuracy of the method just described. This crystal class is being 

widely investigated for applications in dynamic real-time holographic 

interferometry and spatial light modulation. 23 * 32  The class includes bismuth 

silicon oxide (BSO), bismuth germanium oxide (BGO), and bismuth titanium 

oxide (BTO). These crystals are electro-optic, optically active, 

electrogyratory, piezoelectric, and elastooptic. The electro-optic effect, 

optical activity, and electrogyration effect combined may strongly affect 

the polarization in these crystals. BSO is examined to illustrate these 

influences on the eigen-polarizations. 

Two principal configurations of BSO, both transverse, are used for 

volume holography. 	One of them is shown in Fig. 9. 32  An external electric 

bias is applied in the [1 1 0] direction, and the direction of light 

propagation is [1 1 0] or (0 1, ,O k ) — (135°,90°). 	In the (x,y,z) coordinate 

system, the unperturbed impermeability tensor for this cubic isotropic 



crystal is 

1/n0 2 	0 	0 
[1/n2 ] 	= 0 	1/n0 2 	0 

0 	0 	1/n0 2 1, 
(34) 

where n0  is the principal refractive index 	of the crystal. The index 

ellipsoid is a sphere. 	The gyration tensor for natural optical activity is 

a function of the given applied electric field and wavevector directions and 

is 

[g]' 

	g61 [0 

C ill Ey 	C41 Ex 	g11 	' 

gll 	C41 Ex 

r4l Ey 	
(35) 

where c41 is the electrogyratory coefficient. 	The gyration surface changes 

from a sphere to the surface (from Eqs. (8) and (17)), 

G'  = 811 — 2 c 41  E sinO k  cosOk  (sinq5k  + cos0k ), 	(36) 

where Ex  = Ey  = —1/j2 E, and E is the magnitude of applied field. If E = 0, 

then G'G 	811' which is a sphere. 	The perturbed gyration surface is 

shown in Fig. 10. Note by Eq. (36) that for the given field ([1 I 0]) and 

wavevector ([1 1 0]) directions, the effect of electrogyration is not 

present. 	Therefore, with the electro-optic effect, optical activity, and 

the given direction of propagation k taken into account, the tensor becomes 

1/n0 2 	 0 

[n] ' = [ 0 1/n 2  
. 

1/.1(—rill E -1- i gli/n0 4) 1/JY{—r4l E -1-  igli/n04) 

14/ (—r41 E  — igli/n0 4)-  

14/ (—rill E  — -1811/n0 4)  

l/n 2  0 

(37) 

where G = —Gy  = —1/j2 g11 . The new orientation of the index ellipsoid is 

obtained by applying the general Jacobi method as described in Ref. 1 to the 



real part of Eq. (37). 	The crystal is now biaxial, and the principal 

indices and axes are 

n., = 2.52996 	x' = [1/2 1/2 -1/4] T  

n
Y' 

= 2.53 	 y' - [--1/4 1/4 OF 	(y'll k) 	(38) 

n., = 2.53004 	z' = [1/2 1/2 1/4] T . 

To determine the eigenstates of the crystal for the given k, the entire 

[q]' tensor of Eq. (37) must be transformed to the (x",y",z") coordinate 

system by Eqs. (19). The resulting 2 x 2 matrix in the (x",y") plane is 

given by 

1/n0 2  
[n]" = 

(-r41 E 	igli/n0 4)  

(-r41 E + ig11 /n
4

)

I 

1/n02 	

, 

 
(39) 

and x" 	-z ([0 0 1]), y" 	-1/4 x - 1// y ([1 1 0]), and z" = 

-1/jf x + 1/j2 y ([1 1 0] 	k). The cross-section ellipse is, by Eq. (26), 

1/n0 2  (x" 2  + y" 2 ) - 2r41 E x"y"= 1. 	 (40) 

The azimuth angle is found by placing this cross-section in principal 

coordinates, i.e., by diagonalizing the real part of Eq. (39). This angle 

is fli = 'Tan 1 (-2r41 E/(1/no t  - 1/n0 2 )) - -45°. Therefore, the axes of the 

cross-section ellipse are along x'" 	[1/2 1/2 -1/4] T  and y'" - 

[-1/2 -1/2 -1/4] T . Numerical values32  for the various parameters are n0  = 

2.53 and r41 = 4.41x10-12 m/V at a freespace wavelength of A = 0.6328 pm. From 0 

these numbers the lengths of the principal axes are n.„, = n0  - 1/2/10 3 	E r41 -  

2.52996 and ny ,„ = no  + 1/21103r41E = 2.53004 for a field magnitude of 10 6  V/m. 

The phase velocity indices are found by diagonalizing the entire matrix 

[in" of Eq. (39). The required rotation angle is 



= xiTan-1{2 s gn( n.ydlqxy" 1 1(1/no 2  - 1/n0 2)1  - -45°, 	
(41) 

and 1,1 xy "1 = ((r 41 E) 2 	(g11 /n0
4 ) 2 ). The constant g11 is calculated from the 

measured specific rotation of p = 21.4°/mm (Ref. 32) which is equal to 

ngil/Ano' Therefore,  g11/no4 = Ap/7rno 3  = 2.6618 x 10 -4 , giving In.y "I = 

2.6621x10 -4 . Optical activity dominates the magnitude of the off-diagonal 

element q.y ". The phase velocity indices are found from Eqs. (23) to be, 

nl  - (1/n. 2  + Irixy "1) 	= 2.52785 	(fast wave) 

n2  = (1/n. 2  - In.y "1) -1/2  = 2.53216. (slow wave) 
(42) 

The circular (elliptical) birefringence is then An = n 2 - n1  = 0.0043111. 

Without the electric field applied, the indices are n 1 , = 2.52785 (= n1 ) and 

n2 , = 2.532158 (< n 2 ), giving a circular birefringence of An. , = n2 , - n1 , -- 

0.0043080. 	Therefore, the electro-optic effect only slightly enhances 

circular birefringence. 	The corresponding eigenvectors are found from Eq. 

(25) to be 

D, 	
-(0.01656 + 10.99986)1/ 

= r 	1/./Y 
LA , 	

[ 	
1/ 

D2 = (0.01656 - /0.99986)1/VT 
./Y 

and B = Arg(q.y ") = -89.0508°. 

The CPV xl  is -exp(-1B). From Eq. (31), the azimuth angle is pi  = -45°, 

which agrees with the angle obtained before. 	Also from Eq. (31), the 

ellipticity angle is sin2e 1  = Im(X1 ) = sinB, 	which is 	equal to 

-Im(n.y ")/In. y "I 	 -sinB sin2(1,  = sinB from Eq. (32) for (I) = -45°. 

Therefore, Eqs. (31) and (32) are consistent. The ellipticity angle is 

then -44.52541° and the ellipticity of the polarization is tan i  = -0.98357° 

(almost circular polarization). The relative amplitude is r 1  = 1, and the 

relative phase between D.1  and Dy1  is AS 1  = +89.05°. The corresponding point 

(43) 



on the complex x plane in Fig. 8 is on the unit circle at the phase angle of 

+89.05°. 	Since A6 1  > 0, then D 1  is left-handed polarization, and n 1  = nL 	is 

the corresponding index. Therefore, D 1  corresponds to the fast wave. 

For the orthogonal polarization D2 , the CPV is x2  = exp(—IB). The 

azimuth angle is +45°, and the ellipticity angle is —e l  or +44.52541° for an 

ellipticity of 0.98357. The relative amplitude is r 2  — 1, and the relative 

phase between Dx2 and Dy2 is —90.95°. The corresponding point on the complex x 

plane in Fig. 8 is on the unit circle at the phase angle of —90.95°. Since 

the A6 2  < 0, D2  is right-handed polarization, and n2  = nR . Therefore, D2  

corresponds to the slow wave. 

Finally, an additional note is that the phase retardation, F, between 

D1  and D2 for a given crystal thickness d may be calculated from the 

circular (elliptical) birefringence An c . It is given by r = 2w/A Anc d and in 

general, includes the effects of both the natural optical activity and the 

external electric field (e.g., electro-optic and electrogyration effects). 

VI. Conclusion 

A straightforward systematic procedure for performing electro-optic 

effect calculations was developed and presented in Ref. 1. That approach, 

which employs the general Jacobi method, can be used to analyze propagation 

in electro-optic materials in any crystal class for an arbitrary electric 

field direction and arbitrary wavevector direction. The properties of the 

impermeability tensor were exploited to arrive at simple, stable, and 

accurate expressions for determining the principal axes and indices of a 

crystal and the eigenstates (phase velocity indices and eigen-polarizations) 

for a given direction of propagation k. 

In this paper that procedure has been extended to gyrotropic crystals. 

External (or internal) influences, such as optical activity, electrogyration 



effect, and Faraday rotation may now be included, singly or together. 

These circular birefringence effects are more complicated and, in general, 

produce elliptical eigen-polarizations. The extended method requires a 

unitary transformation from a Cartesian coordinate system to a complex 

helical coordinate system to determine the eigenstates for a given direction 

of propagation. Using a unitary matrix suggested by Wilkinson, 28  a set of 

formulas has been derived which results in an extended version of the 

general Jacobi method applicable to Hermitian matrices. These relationships 

are given in the Appendix. Furthermore, a complex polarization variable was 

introduced to quantify the connection between the elements of the perturbed 

impermeability tensor and the eigen-polarizations. This new procedure 

reduces easily to the less complicated case where the electro-optic effect 

alone is present. 

More specifically, two questions were posed and answered in the present 

work: 

1) Given a crystal that is linear birefringent (natural or induced) 

and/or gyrotropic (natural or induced), what are the principal 

refractive indices and principal dielectric axes of the crystal? 

2) What are the eigenstates for an arbitrary direction of light 

propagation? 

The step-by-step procedure introduced in this paper is summarized as 

follows: 

1) The general Jacobi method as described in Ref. 1 is applied to the 

real part of the perturbed impermeability tensor [n]' to determine 

the principal indices and axes of the crystal. 

2) A real orthogonal transformation is performed on [n]' to place the 

tensor in the coordinate system of k (x",y",z"), giving [n]". 

3) Using formulas from the Appendix, the eigenstates for the given k 



are obtained. 

4) 	From the eigenvectors of [ n ]" a complex polarization variable 

(CPV) is defined. 	Using the CPV, the descriptive properties of 

the eigen-polarizations, i.e., azimuth angle, ellipticity 	and 

handedness, are determined in terms of the elements of [n]". 

To provide a geometric interpretation of linear and circular birefringence, 

the index ellipsoid and gyration surface were used. 

Finally, the sillenite crystal class was examined to illustrate the 

ease and accuracy of the extended method. Specifically, bismuth silicon 

oxide (BSO) was analyzed in a principal configuration to show the effects of 

its natural optical activity together with the simultaneous influences of an 

applied electric field (through the electrogyration and electro-optic 

effects) on the eigenstates of the crystal for a given k. Example 

numerical results were presented. 



Appendix: Complex Plane Rotations 

The general Jacobi method is modified here for diagonalizing a 3 x 3 

Hermitian matrix. 	This iterative procedure involves a unitary 

transformation from a Cartesian to a helical coordinate system. 	As a quick 

reference the following relationships for the rotation angle, the unitary 

transformation matrix, and the updated impermeability elements are provided 

for rotation in each of the three complex planes. These expressions are 

derived from the coordinate transformation law for second-rank tensors. The 

rotation angle in the complex (x,y) principal plane is denoted by 0, in the 

complex (x,z) principal plane by 0, and in the complex (y,z) principal plane 

by 0. The impermeability tensor is represented as the Hermitian matrix H. 

1. Rotation in the complex (x,y) plane. 

The rotation angle 0 required to zero the H12  element is found by 

0 = 1/2Tan- 1 [ 2 1 1112 1/ (Hil — H22 )]. 	 (Al) 

This 	angle 	represents a 

	

plane. 	The transformation 

[a] o  — 

where exp(iA) — H12/I H12 I' 

H11' = H11 COS
2 0 + H22  sin 

HA22 ' = H11  sin
2 0 + H22  COSp 

	

H/ 33 ' 	= H33 p 

H12' — 	(H22 	- H11 )(11 12 / 

counterclockwise rotation in 	the 	complex 	(x,y) 

matrix is 

[ 	cos0 	eiA sin0 	0 
—e-iA sin0 	cosq 	0 	 (A2) 

0 	0 	1 	, 

The elements of H are updated as follows: 

2 0 + 21H 12 IcosOsin0 

2 
0  - 2IH 12 IcosOsin0 

(A3) 

I H 12 	 H21 '* 	= O  1)cosOsin0 + H 12 (cos 2 0 — sin2 0) = 

Hi13 ' = H13 COSO + H23 (H12 /1H12 1)sin0 = H21 i * v 

H/23 ' = —H13 (H12 */ III 12 1)sin0 + H23 cos0 = H321*. p 



2. Rotation in the complex (x,z) plane. 

The rotation angle 0 required to zero the H 13  element is found by 

0 = 1/2Tan- 1 [ 2 1 11 13 Willi — H33)] 	
(A4) 

This angle represents a clockwise rotation in the complex (x,z) plane. The 

transformation matrix is 

cos0 	0 	e iB sin01 
[a] o  = 0 	1 	0 

[ 
(A5) 

-1B
s 
 . —e 	in0 	0 	cos0 i. 

where exp(iB) = H13/IH13I• The elements of H are updated as follows: 

H011 ' = H 11  cos2 0 + H33  sin2 0 + 2IH13  IcosOsin0 

Hn 	= H B 22 	22 

11,,
v33 

' = H11  sin2 0 + H33  cos20 — 2IH13 IcosOsin0 

Hi2 cos0 + H23 * H 012 '  = 	 (H13/ 	
1 )sin0I H13 	 = H21 '*  

H013
, 	

(H33 - H11 )(H13/IH13 
 l)cosOsin0 + H13  (cos

2 0 — sin2 0) = H31  * 1 = —  

Hnv23 ' = —H 12 *  (H13 /1H13 1)sin0 + H23 cos0 — H32 '*. 

3. Rotation in the complex (y,z) plane. 

The rotation angle 0 required to zero the H23  element is found by 

0 — 1/2Tan-1 [21H23 1/(H22  — H33 )]. (A7) 

This angle represents a counterclockwise rotation in the complex (y,z) 

plane. The transformation matrix is 

	

1 	0 	0 

	

[a] = [ 0 	cos0 	eic sin0 
0 —e-ic sin0 	cos0 

(A6) 

(A8) 

where exp(iC) — H23 /IH23 I. The elements of H are updated as follows: 



IL33 ' = H22  sin
2
0 + H33  cos

2 0 - 21H23 IcosOsin0 y  

H 	' — H12  cos0 + H13(H23 */IH231)sin0 012 	 H21 '*  

ILL  ' — —H12 (H23 	23 /IH 1)sin0 + H13 cos0 = H31 '* 
tp13 

H023 '  --* (H33 - H22 )(H23 /1H23 1)cosOsin0 + H23 (cos 2 0 — sin2 0) = H32 *' = 0. 

(A9) 

H 	=H11  Oil 

ILL 
p22 

' = H22 COS2 O + H33 sin2O 	23 + 2IH IcosOsin0 
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Table I. Gyration tensors gij  for all crystal classes exhibiting natural 

optical activity. (Ref. 13) 
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gbi 

 [g13  

g02  
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g 3 
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4 	 42m (2 II x) 	 3, 32, 622 

m (m 1 y) 222 2mm 

0 0 0 gb2  g02 	g03 gb1  
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 -11 
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0 0  
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[gki 0 	0  
g 	0 

0 	61 g33 

Isotropic (without center of symmetry) 

Cubic 

432, 23 

[gip g°  

0 b l  giii 



FIGURE CAPTIONS 

Fig. 1. 	The sense of optical rotation relative to the direction of 

propagation k for (a) natural optical activity and (b) Faraday rotation. 

Fig. 2. The index ellipsoid cross-section (cross-hatched) that is normal to 

the wavevector k and passes through the origin. 	The principal axes of the 

cross-hatched ellipse represent the directions of the allowed linear 

polarizations D1  and D2 . D1 , D2 , and k form an orthogonal triad. 

Fig. 3. 	Gyration surface for right-handed quartz (class 32). 	The white 

surface depicts right-handed optical rotation with the maximum rotation 

occurring for propagation along the optic axis. 	The dark surface depicts 

left-handed rotation with maximum rotation along a direction perpendicular 

to the optic axis. 	There is no optical rotation for propagation -56° from 

the optic axis. 

Fig. 4. 	Gyration surface for Faraday active crystals. 	Maximum optical 

rotation occurs for propagation parallel and antiparallel to B. 	The white 

surface depicts rotation of one sense while the dark surface depicts 

rotation of the opposite sense. 

Fig. 5. 	The flattened helical contour of an elliptically polarized 

propagating wave at an instant of time. 	The radial vectors to the contour 

represent the displacement vector D (1 k). 

Fig. 6. 	Orthogonal transformation of the (x,y,z) dielectric axes to the 

(x",y",z") coordinate system of the wavevector k (z" 11  k) represented 

in polar coordinates (0k , Ok ). 

Fig. 7. 	The cross-section ellipse of the index ellipsoid in the (x",y") 

plane. 	The x"' and y"' axes represent the major axes of the eigen- 

polarizations oriented relative to x" and y". 	The two eigenstates have 

orthogonal major axes, opposite handedness, and the same ellipticity. The 



wavevector k and the z" axis are normal to the plane of the figure. 

Fig. 8. 	Cartesian complex plane of polarization. Each point in the plane 

represents a polarization state. The basis states are the horizontal linear 

polarization at the origin and the vertical linear polarization at infinity. 

The dashed circle represents the unit circle (unit relative amplitude). The 

radial line represents a contour of constant relative phase of 114. 

Fig. 9. 	A principal transverse crystal orientation of Bi 12 S1020  (BSO). The 

external electric field is applied in the [1 1 0] direction, and the 

direction of propagation is along [1 1 0]. 	The (x,y,z) coordinate system 

represents the unperturbed dielectric axes. 	The new coordinate system 

resulting from the electro-optic effect is represented by (x',y',z'). 	The 

coordinate system of the wavevector k is given by (x",y",z") with z" II k. 

Finally, the (x'",y'",z"') coordinate system with z"' H z" 	k 

represents the principal axis coordinate system of the eigenstates for the 

given k. 

Fig. 10. 	Gyration surface for BSO in the (x,z) or (y,z) principal plane. 

The dashed circle represents the surface projection with no applied electric 

field, and therefore, the optical rotation is invariant with the wavevector 

k direction. The solid "heart-shape" contour depicts the the surface when 

a field is applied in the [1 1 0] direction. 	The magnitude of radial 

vectors from the origin to the surface is a measure of the optical rotation 

per unit length which depends on the direction of k. 	Note that optical 

rotation is not affected by the electric field for propagation in the (x,y) 

plane. 
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