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SUMMARY

Environmental sound and acoustic scene classification are crucial tasks in audio signal

processing and audio pattern recognition. In recent years, deep learning methods such as

convolutional neural networks (CNN), recurrent neural networks (RNN), and their com-

binations, have achieved great success in such tasks. However, there are still numerous

challenges left to be addressed in this domain. For example, in most cases, the sound

events of interest will be present through only a portion of the entire audio clip, and the clip

can also suffer from the background noise. Furthermore, in many application scenarios

where the amount of labelled training data can be very limited, the application of few-

shot learning methods especially prototypical networks have achieved great success. But

metric learning methods such as prototypical networks often suffer from bad feature em-

beddings of support samples or outliers, or may not perform well on noisy data. Therefore,

the proposed work seeks to overcome the above limitations by introducing a multi-channel

temporal attention-based CNN model and then introduce a hybrid attention module into the

framework of prototypical networks. Additionally, a Π-model is integrated into our model

to improve performance on noisy data, and a new time-frequency feature is explored. Var-

ious experiments have shown that our proposed framework is capable of dealing with the

above mentioned issues and providing promising results.

xiii



CHAPTER 1

INTRODUCTION

1.1 Overview

Environmental sound classification (ESC) recognizes an audio clip as primarily containing

a particular type of environment sound. It is an important area of sound event detection

and classification with applications in many areas including audio surveillance systems

[1], hearing aids [2], smart rooms [3], smart cars, etc. Environmental sounds are a very

diverse group of everyday audio events that can neither be described as speech nor as music

[4]. Because of their non-stationary characteristic and complex patterns, the performance

of conventional music or speech recognition techniques such as K-nearest neighbors [5],

support vector machines [6], Gaussian mixture models [7], and hidden Markov models [8],

in environmental sound classification is limited.

As an extension of ESC, acoustic scene classification (ASC) is an essential part of audi-

tory scene analysis and involves labeling an entire recorded audio signal using a pre-defined

semantic description such as “office” or “airport” [9]. The nature of an acoustic scene con-

taining multiple different sound events simultaneously makes this task more complex and

challenging. ASC has become an increasingly important research topic in recent years

thanks to the Detection and Classification of Acoustic Scenes and Events (DCASE) chal-

lenge [10]. Figure 1.1 shows the overview of an acoustic scene classification system.

In general, audio classification systems consist of two major parts, data preparation

and data modelling [9]. In the data preparation phase, audio signals are converted into

different representations by feature extraction and one or more pre-processing techniques

are applied, and sometimes data augmentation is applied if the amount of data is limited.

When the inputs are prepared, a model combined with a learning paradigm is designed for a

1



Figure 1.1: Overview of an acoustic scene classification system, provided by DCASE 2016
challenge [11]

particular classification task. Figure 1.2 shows the overall flowchart of how a typical audio

classification problem is addressed.

Since digital audio signals are essentially 1-dimensional temporal sequences, unlike

images which have 2 dimensions, the information provided is limited. Therefore, for most

audio classification tasks, features of the audio signals are extracted. Such features usually

add frequency or spatial information and serve dimension reduction purposes. Furthermore,

the extracted features will go through several types of pre-processing steps so that they

become more proper inputs for various classification models. Some of the most commonly

used audio features and pre-processing methods are introduced in the following section.

1.2 Data Preparation

1.2.1 Audio features

Some of the most basic features for audio classification, especially for speech/music recog-

nition, include zero-crossing rate (ZCR), pitch, short-time energy (STE), sub-band energy

2



Figure 1.2: The typical processing flow of an audio classification system [9]

3



radio, etc [12]. These features can provide general temporal and spectral information of au-

dio signals [12]. One of the most widely used features is the set of cepstral features, includ-

ing Mel-frequency cepstral coefficients (MFCCs), log Mel-spectrograms and so on. These

features are designed to mimic the behavior of how human perceives sound. Therefore, they

provide a more compact temporal-spectral representation than a plain short-time-fourier-

transform [9]. To compute these features from a raw audio signal, the frequency axis of

the short-time-fourier-tranform needs to be firstly mapped to the Mel scale. Mel scale is a

scale of pitches perceived by listeners that neighboring pitches have equal distances, and

was proposed by Stevens et al. in 1937 [13]. This scale is designed to relate to the fact

the humans can better differentiate low frequencies than high frequencies. Mel scale is

logarithmic and the conversion from Hz to Mel can be described as:

Melf = 2595× log10(1 +
fHz

700
) (1.1)

MFCCs were introduced by Davis and Mermelstein in the 1980’s [14] and have been state-

of-the-art especially in speech recognition since then. The steps of computing MFCCs

include: 1) Firstly compute the short-time-fourier-transform (STFT) of the audio signal; 2)

Apply the Mel filterbank (Figure 1.3) to the power spectra of each time frame, and then

compute the sum of energy within each filter; 3) Compute the logarithm of all filterbank

energies; 4) Apply DCT to the results of the previous step, and take the pre-defined number

of coefficients. Log Mel-spectrogram is the outcome of step 3) and it is commonly used

in sound classification tasks, and it was also used in this work as the primary feature.

Moreover, since digital audio signals are time series, it is beneficial to gain information

of the dynamics of the power-based features. Therefore, deltas and delta-deltas, which

stand for the first and second temporal derivatives were introduced as dynamic features for

this purpose. It has been shown that combining original features with their corresponding

dynamic features can improve classification performance [15].

4



Figure 1.3: The Mel-scale filterbank [16].

In addition, some autoregression based features such as Linear Prdiction Coefficients

(LPC) [17] and its alternative representation, Linear Prediction Cepstrum Coefficients (LPCC)

[18] are also commonly used, especially for speech processing [12]. Some features are ex-

tracted based on signal decomposition methods such as Empirical Mode Decomposition

(EMD) [19], which decomposes a signal into simple components called Intrinsic Mode

Functions (IMFs), and its more stable version Ensemble Empirical Mode Decomposition

(EEMD) [20] along with Iterative Filtering (IF) [21]. Other features that are also used by

audio classification systems include wavelets [22, 23], scalogram [24], sub-band power

distribution [25], and gammatone frequency cepstral coefficients (GFCCs) [26] etc. Occa-

sionally, to avoid fixed pre-defined signal transformations, features can be directly learned

from the raw sound waves. For example, Jaitly and Hinton [27] used Restricted Boltzmann

Machines (RBMs) [28] to learn higher dimensional representations of audio signals to im-

prove classification performance. Additionally, some end-to-end learning systems which

directly take raw audio signals as inputs and combine feature extraction and classification

together are used. These systems include AclNet [29] and AclSincNet [30], EnvNet [31],

and SoundNet [32] etc. As opposed to time-frequency representation based features, raw

audio signals contain the most original information and the phases are not discarded. But

due to their one-dimension characteristic, extracting features becomes more challenging

and they are usually outperformed by spectrogram-like representations such as Log Mel-

spectrograms.

5



1.2.2 Standardization and Denoising

Machine learning techniques, especially those gradient-decent based algorithms, usually

require feature standardization to facilitate the training process. It changes the feature

distributions to have zero mean and unit standard deviation. Alternatively, logarithmic

scaling is commonly applied on spectrogram-based features to compensate for the large

dynamic range in environmental sound recordings [9]. In addition, dereverberation and

low-pass filtering, which are most commonly applied to speech, can also become potential

pre-processing methods for environmental audio scenes.

Audio pattern recognition always suffers from the contamination of the foreground in-

formation by background noise. One of the most basic methods is spectral subtraction

proposed by Steven in 1979, where the noise spectrum level calculated during noise signal

segments is subtracted from the whole spectrum [33]. Per-channel energy normalization

(PCEN) [34] was used by Lostanlen et al. [35] to suppress stationary noise and enhance

transient sound events in environmental audio clips. Wu et al. made the sound texture more

salient by applying the Difference of Gaussian (DoG) and Sober filtering from image pro-

cessing on feature maps and enhanced the edge information [36]. Han et al. [37] removed

unwanted background noises by using background subtraction and applying median filter-

ing. Additionally, several filtering approaches such as repeating pattern extraction tech-

nique (REPET) algorithm [38] and harmonic-percussive source separation (HPSS) [37, 39,

40] have also been used as pre-processing for ASC. So far, while most of the methods men-

tioned above have been proposed very recently, logarithmic magnitude scaling has been the

only well-established method which is widely used among the best performing ESC and

ASC algorithms [9].
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Figure 1.4: Log Mel-spectrogram of a 5-second-long frog sound.

1.3 Challenges

There are mainly three challenges faced in environmental sound and acoustic scene classifi-

cation. First, for environmental sound recordings, the training samples are typically weakly

labelled, meaning that the sound events of interest may have short duration and the loca-

tion information of them is usually missing. As is shown in Figure 1.4, in a 5-second-long

frog sound recording, the total duration of the sound events is less than 1.5 seconds. And

between those sound events are long eventless intervals. Similarly in Figure 1.5, the ac-

tual sneezing event only occurs within the beginning 1.3 seconds, For both cases, the only

information available are the clip level annotations “frog” and “sneezing”. Likewise for

acoustic scenes, weakly labeled audio recordings are dealt with in almost every case. Since

an acoustic scene contains different sets of sound events but is described by only a sin-

gle pre-defined clip-level label, finding those that can better summarize the whole acoustic

scene is key to the success of classification.
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Figure 1.5: Log Mel-spectrogram of a 5-second-long sneezing sound.

The second challenge is irrelevant or unrelated information. Firstly, background noise

will significantly affect the final classification performance and its impact should be sup-

pressed. An example is shown in Figure 1.6, where the log Mel-spectrogram of a 5-second-

long rain sound is plotted. Even though the rain event is present throughout the clip, it is

heavily affected by noise, preventing classification models from correctly recognizing it.

Some methods introduced in the previous section can be applied to suppress background

noise, but in many cases these methods may also corrupt foreground sound events as well.

Moreover, irrelevant sound events are also considered noise for weakly labeled data, es-

pecially for acoustic scenes. For example, the acoustic environment of an office should

include sound events such as keyboard typing, mouse clicking, and air conditioning, etc.

Whereas bird singing or train engine should be considered irrelevant.

Another challenge is data scarcity. The success of deep learning methods is built on

the availability of large supervised training datasets, but in many applications the amount

of training data can be very lacking. In some cases, labeling unsupervised data can cost
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Figure 1.6: Log Mel-spectrogram of a 5-second-long rain sound.

too much human effort and be too time consuming; therefore, the available training data is

extremely limited. Or some categories have no or very little amount of data, resulting in a

overly unbalanced dataset. In these circumstances, the application of deep neural networks

is basically impractical. Also, many neural network structures are built to be deep and

heavy in accordance with big datasets, but their performance is not as good with smaller

ones.

In the next section, the main contributions of this work are introduced and the outline

of this thesis is presented.

1.4 Contributions and Thesis Outline

This thesis explores methods of classifying environmental sound events and acoustic scenes

under the limitations mentioned above including, weak labels, noise and irrelevant infor-

mation, and only a small amount of labeled data for the classes of interest.

To tackle the first two challenges, weakly labeled data and unrelated information, our
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first contribution is the development of an multi-channel temporal attention CNN model

for environmental sound classification. We believe that temporal attention in audio signals

is helpful to emphasize key temporal features that are relative to the clip-level labels. We

proposed an effective convolutional neural network structure with a multi-channel tempo-

ral attention (MCTA) block, which applies a temporal attention mechanism within each

channel of the embedded features to extract channel-wise relevant temporal information.

This multi-channel temporal attention structure will result in a distinct attention vector for

each channel, which enables the network to fully exploit the relevant temporal information

in different channels. The model was tested on some moderate sized datasets such as ESC-

50, its subset ESC-10, and UrbanSound8K, along with development sets of DCASE 2018

and 2019. In our experiments, MCTA performed better than the single-channel temporal

attention model and the non-attention model with the same number of parameters. Further-

more, we compared our model with some successful attention-based models and obtained

competitive results with a relatively lighter network.

Lack of training data is often the reason that prevents a deep learning model from

achieving satisfactory performance, and few-shot learning is commonly used to deal with

such data scarcity. Therefore, the second contribution of this thesis is the exploration of

prototypical networks, one of the most successful few-shot learning methods, with hybrid

attention for few-shot audio classification. We introduced a hybrid attention module and

combined it with the prototypical networks framework. This hybrid attention module con-

sists of two blocks: a feature-level attention block, and an instance-level attention block.

The feature-level attention block makes use of the previous MCTA model, which can high-

light key embedded features to locate important information in weakly labeled data. And

the instance-level attention block can emphasize crucial support instances to diminish the

effect of bad support samples or outliers that contain irrelevant sound events. The perfor-

mance of our model was also evaluated using the ESC-50 dataset and the noiseESC-50

dataset. The model was trained in a 10-way 5-shot scenario and tested in four few-shot
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cases, namely 5-way 1-shot, 5-way 5-shot, 10-way 1-shot, and 10-way 5-shot. The re-

sults demonstrate that by adding the hybrid attention module, our model outperforms the

baseline prototypical networks in all four scenarios. Also, our models were tested on a

blended ESC-50 dataset where during 5-shot training, 2 of the 5 clean support samples of

each class were randomly picked to be replaced by their noisy counterparts. And it was

proved that with this training scenario, the performance gain by adding the instance-level

block was amplified. In addition, we created a dataset which contains 108 environmental

sound classes drawn from the FSD50K dataset. We tested our models on it and obtained

promising results as well.

Additionally, to further improve the classification results on the noiseESC-50 dataset.

We borrowed the idea of Π-model and incorporated it into our proposed hybrid attention

prototypical network framework. Π-model is a self-ensembling method which was ini-

tially designed for semi-supervised learning problems. We made a few modifications to

the original model, penalizing prediction difference between clean and noisy inputs in the

loss function, attempting to enhance the robustness of our models over noise. We named

our final model HAPPi, which stands for Hybrid Attentional Prototypical Networks with

Π-model, and the results show that with Π-model, the performance on noiseESC-50 was

indeed boosted.

Finally, we explored an innovative time-frequency representation named IMFogram and

compared its performance on environmental sound classification with log Mel-spectrograms.

We obtained similar results and the outcome laid foundation for an interesting future direc-

tion.

The thesis is organized as follows: Chapter 2 describes the multi-channel temporal at-

tention CNN model; Chapter 3 provides a closer look at the hybrid attentional prototypical

networks for few-shot audio classification; Chapter 4 introduces Π-model and the details of

HAPPi; Chapter 5 explores IMFogram as a new feature; Chapter 6 presents the conclusion

of this work and discuss the potential future research directions and plans.
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CHAPTER 2

MULTI-CHANNEL TEMPORAL ATTENTION CONVOLUTIONAL NEURAL

NETWORK MODEL

In this chapter, the details of the multi-channel temporal attention (MCTA) convolutional

neural network model are presented. We start with a brief survey of and conventional deep

learning approaches for audio classification, followed by an introduction of the attention

mechanism and its application in image classification and audio classification models. Then

the actual structure of our MCTA CNN model is showed. Afterwards, experiments on

ESC, UrbanSound8K and DCASE datasets are presented and their results are discussed

and analysed afterwards.

2.1 Deep Learning Approaches for Sound Classification

Traditional algorithms for audio classification include K-nearest neighbors [41, 42], sup-

port vector machines [43, 44], Gaussian mixture models [45, 46], and hidden Markov mod-

els [47, 48], etc. But with the support of more available labelled datasets, deep learning

methods have become the most popular method that can achieve superior performance over

the traditional approaches. Some popular datasets for environmental sound classification

include ESC-50 [4], UrbanSound8k [49], and Google Audioset [50]. And for acoustic

scene classification, many datasets were proposed by the challenges of Detection and Clas-

sification of Acoustic Scenes and Events (DCASE) [51, 52]. However, comparing with

image datasets in Computer Vision community, the amount of audio datasets is still not

enough and in many application cases, collecting a large amount of audio data is impracti-

cal and requires too much human labor.

Piczak [53] is one of the earliest researchers who applied CNN to environmental sound

classification (ESC) and also developed the widely used ESC-50 dataset. By extracting
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time-frequency representation based audio features such as log Mel-spectrograms and treat-

ing them as images, this deep CNN-based model outperformed the traditional baseline

methods via mimicking the training process of image classification, and therefore laid the

foundation for the following deep learning based audio classification models. Tokozume

et al. [31] proposed an end-to-end model called EnvNet, which can perform feature ex-

traction and classification together. It offered an alternative way of utilizing CNN to learn

features directly from raw audio waves instead of creating handcrafted features. Similarly,

Sailor et al. [54] also used a convolutional Restricted Boltzmann Machine (ConvRBM) as

a front-end to extract features directly from raw audio waveforms, and used a supervised

CNN as a back-end classifier. To overcome the shortage of labelled audio data, Salamon

[55] explored the influence of different data augmentation techniques on deep CNN clas-

sification performance. After the release of the Google Audioset, Kumar [56] proposed a

deep CNN structure that can effectively transfer knowledge from Audioset and be used for

solving other target tasks such as environmental sound classification.

Similar as ESC, most state-of-the-art ASC neural network models use CNN based struc-

tures [9]. Traditionally, input features go through a series of convolutional layers for fur-

ther feature extraction and pooling layers for dimension reduction. Alternatively, Ren et al.

proposed an atrous CNN structure based on dilated convolutional kernels [57], where the

receptive field is large and local pooling layers are removed. Koutine et al. stated that re-

stricting the size of the receptive field helps improve ASC performance [58], and the same

authors further proposed a Frequency-aware Convolution layer which concatenates a new

channel containing pixel-wise frequency information [59]. In addition, Basbug and Sert

[60] proposed a cascaded CNN architecture using spatial pyramid pooling method to pool

features on multiple spatial resolutions.
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2.2 Attention Models

In most cases, we are provided with audio datasets that only have clip-level labels, or

weakly labeled. One of the common clip-level sound classification processing schemes is

segment based processing [61], where an audio clip is split into shorter segments and each

of them shares the same label as the clip-level label. Each segment is then considered as one

input instance and a classifier is trained on these instances. Afterwards, during inference,

the final clip-level prediction decision is made based on the aggregation of segment-level

predictions by majority voting or probability voting [62, 53]. This type of method is simple

and can be efficient [61], however, it is often incorrect to assume that every segment bears

the same label as the whole recording. Furthermore, if the sound events of interest have

short durations, it can be easy for long sections of background noise to “outvote” them,

resulting in wrong predictions. Considering the frog sound (Figure 1.4) in CHAPTER

1 again as an example, since the frog sound events are very short, most segments can be

labeled “noise” instead of “frog”. In addition, another major drawback of this type of

method is that it is hard to determine the optimal length of each frame or segment [12].

If the length is too small, the long-term variations of the sound events may not be well

captured, and if it is too big, then irrelevant information will be included which can result

in bad predictions [12]. Sailor et al. [54] applied silence removal algorithm before training

to alleviate this issue, but it would take extra processing time and the algorithm itself may

not be highly reliable. Some of the models described in the previous section take each audio

clip as a whole, but they are still based on an underlying assumption that every frame or

segment of an audio clip carries relevant information corresponding to the clip-level label.

To solve this problem, the attention mechanism is then introduced. The concept of

attention was originally inspired by the cognitive process of attention in organisms. For

example, when we are looking at an image, our visual attention system will allow us to

focus on certain regions to help us perceive key features. Figure 2.1 [63] shows a Shiba
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Inu wearing a men’s outfit. We can recognize that this is a dog by focusing on the pointy

ears, the watery doggy eyes, and a dog’s nose. However, if the face of the dog is removed,

we would not be able to know what this photo is about only based on the sweater and the

blanket [63]. Similarly, as is shown in Figure 2.2 [63], in a sentence we would expect a

food word after the appearance of “eating”, while the color word is more likely to describe

the food than “eating” [63]. In this case, we would say that “green” tends to “attend” to

“apple” rather than “eating”.

When it comes to implementing attention in deep learning models, the main goal of the

many proposed models is to discover the best approach for identifying the salient regions

or features. In other words, the essence is assigning contribution weights on different parts

of features, namely channels, spectral or spatial contents, and temporal frames. The imple-

mentation of attention in deep learning was first introduced in [64] for machine translation,

as is shown in Figure 2.3. This model inserted an attention layer between a bidirectional

RNN encoder and an RNN decoder, by creating a context vector as a weighted sum of a

sequence of annotations hi. And the weights are based on the RNN hidden states and the

annotations [64]. Since then, attention-based neural networks have been widely used in

computer vision [65], natural language processing [66] and speech recognition [67]. Some

architectures that are very successful in computer vision systems, such as squeeze-and-

excitation networks (SENet) [68], convolutional block attention module (CBAM) [69], and

dual attention network (DANet) [70], also have significant impact on audio. In SENet [68],

an attention vector is formed where each element is a weight that is assigned to a respective

channel, which is referred to as channel attention. This model laid the foundation for many

following attention models and its structure is shown in Figure 2.5. CBAM [69] extended

the idea of SENet, by concatenating the channel attention and the spatial attention to form

a sequential model. DANet [70] is a variant of CBAM, where deep embedded feature maps

go through spatial attention and channel attention in parallel, instead of sequentially.

Just like images and texts, attention mechanisms can also be applied to audio signals.
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Figure 2.1: A Shiba Inu in a men’s outfit. Source: Instagram @menseardog [63]

Figure 2.2: One word ”attends” to other words in the same sentence differently [63].

Figure 2.3: Attention implementation by Bahdanau et al. [64].

Figure 2.4: Structure of squeeze-and-excitation networks [68].
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Figure 2.5: The overview of convolutional block attention module (CBAM) [69].

Because of the unique temporal structure of audio signals, similar to the previous channel

or spatial attention, temporal attention has been very widely used for audio classification

in recent years. Figure 2.6 shows an example of three feature maps of a 5-second-long

sneezing sound, namely log Mel-spectrogram, deltas and delta-deltas. From this figure it

can be seen that the sneezing sound event only occurs within a small part of the whole

signal duration, and the relevant information presented in these three feature maps are

temporally different. Therefore, it is plausible to focus on these time regions and pay

less attention to the remaining areas. For sound classification tasks, numerous research

projects have explored different attentional deep learning architectures over the past few

years. Yu et al. [71] proposed a multi-level attention model for weakly audio classification

with one-channel inputs where multiple attention modules are applied after intermediate

layers as well as the final fully connected layer. Li et al. [24] proposed a multi-stream

network with temporal attention of which the structure has three streams with a single

temporal attention vector on all of them. Zhang et al. [72] integrated temporal attention

into its CRNN architecture and performed well on the ESC-50 dataset. Figure 2.7 shows

the structure of a temporal attention vector generation for CNN layers [72]. Zhang et al.

[73] also borrowed the idea of CBAM and replaced the spatial attention part with temporal

attention.

For audio scene classification, locating the salient regions or features are particularly

appropriate since salient characteristics of an acoustic scene may be only briefly present or
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Figure 2.6: Three feature maps of a sneezing sound. From top to bottom: Log Mel-
spectrogram, deltas, and delta-deltas.

may reside only in certain features. Li et al. introduced a multi-level attention architecture

which combines convolutional layers with gated linear units (GLUs) and attaches one layer

of bi-directional gated recurrent units at the end of the CNN [74]. Zhao et al. introduced a

spatial attention pooling model for DCASE 2018 [75], and then further combined the idea

with Atrous CNN [57].

2.3 Revisiting Audio Attention

One goal of the many proposed attention mechanisms is to discover the best approach for

identifying the salient regions or features. As described in the previous section, because

of the unique temporal structure of audio signals, temporal attention has been very widely

used in audio classification models [24, 71, 72, 73]. As is shown in Figure 2.6, for different

feature maps, the locations of key feature regions can be very different. Hypothetically,

if temporal attention vectors are learned based on these three feature maps, their shapes

should also be different, as can be seen in Figure 2.9. However, most audio classification

models with temporal attention apply only one single temporal attention vector on feature
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Figure 2.7: Temporal Attention for CNN Layers [72].

Figure 2.8: Channel Temporal Attention Mechanism [73].
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Figure 2.9: Three feature maps of a sneezing sound with respective attention vectors. From
top to bottom: Log Mel-spectrogram, deltas, and delta-deltas.

maps of all channels. Therefore, these models fail to take advantage of the fact that feature

maps in different channels actually have different temporal structures. To overcome this

limitation, we propose a CNN model with a multi-channel temporal attention (MCTA)

block that extracts different temporal attention vectors for different channels to more fully

exploit channel-wise temporal information.

2.4 Multi-Channel Temporal Attention (MCTA) CNN Model

Typically, a CNN will apply convolution on the input with multiple filters to extract more

high-level channel-wise features. These channels contain information from different as-

pects of the input, all of which will contribute to the final classification. Our proposed

MCTA model provides each channel with a unique attention vector, better exploiting the

different structures of channel-wise feature maps and different information associated with

them.
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Figure 2.10: The block diagram of our proposed multi-channel temporal attention model.
The ⊗ sign stands for Hadamard product and the ⊕ sign represents summing over the time
dimension and squeezing the frequency dimension.

2.4.1 Model Architecture

The architecture of our proposed model is shown in Figure 2.10. The model takes multi-

channel feature maps X ∈ RC×T×F as input where C is the number of channels, T is

number of time frames and F is number of Mel-frequency bins, and passes them through

an embedding block that consists of several convolutional and max-pooling layers. For

example, the feature map extracted from ESC-50 dataset has a size of 3× 431× 128. The

embedding block will embed the input to a hidden number of channels and aggregate it

along the frequency dimension, yielding a set of embedded feature vectors X′ ∈ RC′×T ′×1,

where C ′ = 512 and T ′ = 52 in the ESC-50 case. These embedded vectors then enter

the attention block where the network starts to bifurcate to generate the further embedded

vectors X′
L and the attention vectors A respectively, and then the attended vectors X′

A

are obtained by performing element-wise multiplication. Finally the time and frequency

dimensions of X′
A are both squeezed to form a hidden vector H ∈ RC′×1, which is then

passed through a fully connected layer for the final classification.

2.4.2 The Embedding Block

Figure 2.11 presents the details of the embedding block. Because of the size of the datasets

used in our work, a relatively shallow CNN structure is used, having a total of 5 convo-
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Figure 2.11: Details of the embedding block.

lutional layers and 2 max-pooling layers. Inspired by the work of Kumar [56], our em-

bedding block is designed to eventually aggregate the 128 Mel bins to 1 and reduce the

time dimension by max pooling to extract useful segment-level temporal information. Af-

ter each convolutional layer, batch normalization (BN in the figure) is performed and ELU

(Exponential Linear Unit) is used as activation. The numbers in the brackets after “Conv.

block” indicate the numbers of filters of the two convolutional layers in them. The numbers

after “Max-pooling” and “Padding” stand for kernel sizes. The numbers after “Conv.” are

the numbers of filters and the kernel size.

2.4.3 The Attention Block

There are two branches in the attention block and the details are described below. In the

attention branch, a 1-by-1 convolutional layer and sigmoid activation is firstly applied to

the output of the embedding block X′ ∈ RC′×T ′×1:

X′
S = Sigmoid(Conv1×1(X′)) (2.1)
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where X′
S has the same dimensions as X′ and Conv stands for a convolutional layer. Then,

the attention vectors A ∈ RC′×T ′×1 are obtained by performing normalization along the T ′

dimension to make sure the weights sum up to 1, therefore acting like probabilities:

A(c, t, 1) =
X′

S(c, t, 1)∑T ′

t=1 X
′
S(c, t, 1)

(2.2)

where c ∈ [1, C ′] and t ∈ [1, T ′] are indices of the channel and time dimension. This

step guarantees that the attention is applied temporally and different across channels. In

the other branch, X′ goes through the same convolutional layer but without activation to

become X′
L with the same size:

X′
L = Conv1×1(X′) (2.3)

Afterwards, the attention weighted feature vectors X′
A ∈ RC′×T ′×1 are obtained by element-

wise multiplication between A and X′
L:

X′
A = X′

L ◦A (2.4)

where ◦ stands for Hadamard product. In the end, a single hidden vector H ∈ RC′×1 is ob-

tained by summing up X′
A along the time dimension and squeeze the frequency dimension

before it is fed into a final fully connected layer for final classification:

H = Squeezef (
T ′∑
t=1

X′
A(:, t, 1)) (2.5)

where t ∈ [1, T ′] is again the time index and Squeezef () stands for the dimension squeeze

operation that removes the frequency dimension. Batch normalization and ReLU activation

are applied at the end of the attention block. In addition, a dropout with rate 0.3 is applied

before entering the final fully connected layer.
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2.5 Experiments

2.5.1 Datasets

ESC-50 and ESC-10

ESC-50 [4] is a benchmark environmental sound dataset that has 2000 5-second-long audio

clips with a sample rate of 44.1kHz, which are organized into 5 major categories: Ani-

mals; Natural soundscapes & water sounds; Human, non-speech sounds; Interior/domestic

sounds; and Exterior/urban noises. These 5 categories are further divided into 50 balanced

classes, with 10 classes coming from each category. ESC-10 serves as a small proof-of-

concept subset of 10 classes selected from the main dataset [4]. Both datasets are pre-

arranged into 5 folds and the final classification performance is measured by taking the

average of all 5-fold cross-validation accuracies.

DCASE 2018 task1A and 2019 task1A

The development sets from the DCASE 2018 task1A [76] and the DCASE 2019 task1A

[76] are used. Both of them contain 10-second-long audio clips with a 48kHz sampling

rate from 10 classes: Airport, indoor shopping mall, metro station, pedestrian street, public

square, street with medium level of traffic, travelling by a tram, travelling by a bus, trav-

elling by an underground metro, and urban park. The DCASE 2018 task1A development

set has 6122 clips for training and 2518 clips for validation, and the DCASE 2019 task1A

development set has 9185 clips for training and 4185 for validation. No data augmentation

was performed on these two datasets.

UrbanSound8K

This dataset contains 8732 labeled environmental urban sound recordings from 10 classes:

Air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot,

jackhammer, siren, and street music [77]. These audio clips have various durations up to 4
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seconds and different sample rates, and are pre-sorted into 10 folds for cross-validation.

2.5.2 Data Preparation

Feature Extraction

The log Mel-spectrograms of all audio samples from the above datasets were extracted

with the number of Mel-bands is 128. For ESC and DCASE datasets, their original sample

rates were kept, and for UrbanSound8K, all data samples were resampled at 44.1kHz. In

addition, the deltas and delta-deltas of these log Mel-spectrograms were also computed to

obtain time-dependent information. For ESC and DCASE datasets, the frame length and

hop size for short-time-Fourier-transform are 1024 and 512, and for UrbanSound8K, they

are 1764 and 882. Furthermore, for Urbansound8K, if an audio sample is shorter than 4

seconds, it was zero padded equally to the left and right until its duration became 4 seconds.

All the features were extracted using the librosa implementation. Instead of concatenating

them together, these three feature maps were appended as three different channels to be the

convolutional neural network inputs.

Data Augmentation

In many classification models, especially deep learning models, the amount of training

data is usually required to be sufficiently large, but in many cases it is impractical to have

large datasets. Additionally, a small number of training samples can also cause overfitting.

In our case, the ESC datasets (ESC-50 and ESC-10) are relatively small since each class

only consists of 40 samples, while the DCASE datasets are mid-sized datasets for audio

classification. Data augmentation is one way that can address this issue. It is a strategy

that effectively increases the amount of training data without actually collecting new data.

The first kind of augmentation techniques involve applying various transformations on cur-

rent available data samples. Some traditional transformations operate directly on the audio

signals themselves, including time stretching and shifting, pitch changing, dynamic range
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Figure 2.12: Time scale modification using the WSOLA algorithm [87]

compression, and adding random noise [78, 55, 79]. Figure 2.12 shows an illustration of

time-stretching an audio signal using the WSOLA algorithm [80, 81]. Some other meth-

ods make modifications on feature maps such as spectrograms or log Mel-spectrograms.

Koutini et al. used spectrogram rolling by shifting the spectrograms randomly over the

time dimension [59]. Another approach is called SpecAugment, the idea of which is bor-

rowed from computer vision, applies time-warping and random masking on time-frequency

feature maps [82]. In addition, a method named Mixup augmentation mixes two random

training samples and their corresponding labels with a given ratio sampled from beta dis-

tribution [83]. Some alternative kinds of augmentation techniques generate new data from

scratch. Among them the most common methods are based on generative adversarial net-

works (GAN) [84]. Mun et al. synthesized intermediate embedding vectors instead of

audio signals using GAN [85], and Kong et al. used SampleRNN to generate new acoustic

scenes [86]. In this work, SpecAugment, Mix-up, and traditional augmentation methods

such as time shifting, pitch changing, and adding background noise were explored as de-

scribed later.
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Figure 2.13: SpecAugment data augmentation by masking a spectrogram [88]

2.5.3 Single-channel Attention and Non-attention Models

To demonstrate the effectiveness of the proposed multi-channel temporal attention model,

we also tested the performance of both the single-channel temporal attention model and the

non-attention model using the same embedding block. Figure 2.14 shows the architectures

of the upper branch in the attention block corresponding to these two models, respectively.

In the single-channel case, an average pool is applied on the channel dimension of X′
S

before the normalization. The final attention vector AS ∈ RT ′×1 will be element-wisely

multiplied with each T ′×1 feature vector in X′
L ∈ RC′×T ′×1. In the non-attention case, X′

S

is simply divided by itself element-wisely to form a bunch of identity vectors and the effect

of attention will be removed in this way. These two models also have the same number of

parameters as the multi-channel model so that these three models are comparable.

2.5.4 Training the Network

We trained the network using the Adam optimizer with cross-entropy loss. The learning

rate was chosen to begin with 0.001 and decayed by a factor of 0.5 if the training losses

of two consecutive epochs did not decrease. The mini-batch size is 50 with the number of

epochs as 50 for each of the 5-fold cross validation. The network was implemented with

PyTorch and trained on NVIDIA RTX2080Ti. To get more reliable results, each model was

trained 5 times and the average classification accuracies and their standard deviations were

reported.
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Figure 2.14: (a) The architecture of single-channel temporal attention. (b) Non-attention
architecture by setting all attention weights to 1.

2.5.5 Comparison of Three Augmentation Methods

Since in the ESC datasets (ESC-50 and ESC-10), each class only has 40 samples, to reduce

overfitting, data augmentation was performed on ESC datasets. To compare the perfor-

mance of different augmentation methods, three popular techniques were evaluated: tradi-

tional, SpecAugment, and Mix-up. The details of these approaches are described below.

Traditional

For traditional methods, to each training sample we applied random time shifting, pitch

shifting and adding Gaussian noise, resulting in 3 variants for each sample. For random

time shifting, the maximum duration to be shifted was 2.5 seconds, which is half the length

of an audio sample. The time shifts are only delays so that the information of some samples

that only contain transient sound events at the beginning will not be eliminated. For pitch

changing, the function pitch shift of librosa was used and the n step parameter was set

to be randomly chosen between -4 and 4. Finally, Gaussian noise values sampled from a

standard normal distribution were added to clean audio samples after multiplying a noise
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factor of 0.01. After augmentation, the number of samples in total was increased to 8000.

SpecAugment

For SpecAugment method, time warping, time masking, and frequency masking were used.

For time warping, when given a feature map such as a log Mel-spectrogram with τ time

steps, a random point along the time axis that goes through the center of the feature map

within the time steps (W, τ−W ) will be warped either to the left or to the right by a distance

w, which is chosen from a uniform distribution from 0 to W [82]. For time masking, t ∈

[t0, t0 + t) consecutive time steps are masked, and t is chosen from a uniform distribution

from 0 to T , where T is a pre-defined time mask parameter. And t0 is also randomly chosen

from [0, τ − t) [82]. For frequency masking, f ∈ [f0, f0 + f) consecutive Mel frequency

bins are masked, and f is again chosen from a uniform distribution from 0 to the pre-

defined frequency mask parameter F . And f0 is randomly chosen from [0, µ− f), where µ

is the number of Mel frequency bins [82]. In our experiments, the parameter W was chosen

to be 8. The mask parameter T for time masking was 40, and the mask parameter F for

frequency masking was 30, and 2 masks were applied for both masking types respectively.

The masked parts of the feature maps were replaced by the mean of the whole masked

areas.

Mixup

The mixup method is a data-agnostic augmentation technique, and according [83], it is

implemented as follows:

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj

(2.6)

where xi, xj are input data samples randomly drawn from the training set, and yi, yj are

their corresponding one-hot labels. The value of λ is within the range of [0, 1], and it is

sampled from a beta distribution with parameter α: λ ∼ Beta(α, α). The obtained x̃ and
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Table 2.1: Performance of three augmentation methods: traditional, SpecAugment [82],
and Mixup [83].

Augmentation Methods ESC-50 ESC-10
Traditional 87.05±0.18% 94.45±0.24%
SpecAugment [82] 86.45±0.39% 94.5±0.22%
Mixup [83] 85.35±0.32% 92.65±0.30%

ỹ will be the new augmented data sample and label, and will be fed into the model and the

loss function. In our experiments, α was chosen to be 0.2.

Results

Table 2.1 shows the performance of these three methods with 512 hidden channels. It can

be observed that the traditional method has the best results as it performed better than the

other two on ESC-50 and performed as well as SpecAugment on ESC-10. The Mixup

method yields the lowest scores—the reason could be that, even though it has achieved

some success in computer vision and natural language processing domains, environmental

sound classification might not be a good fit.

2.5.6 Exploration of the Effects of Hidden Channel Number, Dropout, and Data Augmentation

To evaluate the performance of our proposed model, 5-fold cross validation was performed

on the ESC-50 and ESC-10 datasets. Each model was trained 5 times and the average

classification accuracies and their standard deviations were reported. Firstly, the effects

of different combinations of some model design parameters, the number of hidden chan-

nels, dropout, and data augmentation, were explored. The results were shown in Table 2.2.

It was observed that augmentation did help to improve the performance in most cases.

Dropout also helped with the classification but only when combined with augmentation.

In addition, 512 hidden channels outperformed 1024 hidden channels, indicating that more

hidden channels is not necessarily beneficial. The best result was obtained with data aug-

mentation, 512 hidden channels, and a dropout rate of 0.3.
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Table 2.2: Classification accuracy and standard deviation of our model with different con-
ditions. Aug means augmentation and hc stands for the number of hidden channels

Dropout Aug hc ESC-50 ESC-10
0 No 512 84.83±0.15% 91.70±0.10%
0 Yes 512 86.31±0.31% 94.05±0.43%

0.3 No 512 84.84±0.29% 91.75±0.27%
0.3 Yes 512 87.05±0.18% 94.45±0.24%
0.3 Yes 1024 85.38±0.24% 94.05±0.43%
0.3 No 1024 84.76±0.18% 92.65±0.34%
0 Yes 1024 85.11±0.23% 93.70±0.29%
0 No 1024 84.33±0.23% 92.95±0.29%

2.5.7 Comparison of Classification Performance of Different Models

To illustrate the effect of multi-channel temporal attention, in this part, experiments were

performed using MCTA, a single-channel attention model, and a non-attention model.

When compared with other work, some results were reproduced by us by adapting the code

available from the authors in our own experimental settings and the results were marked

by “*”. Table 2.3 shows the performance of our proposed model and other state-of-the-art

methods including some recent attention models on the ESC datasets (ESC-50 and ESC-

10) and the UrbanSound8K dataset. It was observed that for the ESC dataset, temporal

attention did improve the classification results by a noticeable margin and multi-channel

temporal attention performed better than single-channel attention only. For the Urban-

Sound8K dataset, the performance gain of the multi-channel model over the single-channel

model is limited, which is probably due to less temporal feature variations across chan-

nels. When comparing with other work, our MCTA-CNN model outperformed the CNN

baseline [53] by a very large margin, and outperformed the pretrained model on Audioset

[50] by Kumar [56]. The FBE-ConvRBM [54] model uses filter-bank learning to extract

features and applies system fusion to obtain the final results, and our model outperforms it

with just a single model. Also, our model performed better than SENet [68] and CBAM

[69], which have been successful in computer vision. More importantly, our model per-

forms better on the ESC datasets than multi-stream temporal attention [24], ACRNN [72],
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Table 2.3: Comparison of classification accuracy of ESC datasets (ESC-50 and ESC-10),
and UrbanSound8K with other work. The ⊕ sign means system combination. The * de-
notes that the results were reproduced by us. The original results reported in [89] were
88.6%, 95.8%, and 88.5% for ESC-50, ESC-10, and UrbanSound8K respectively.

Methods/feature sets ESC-50 ESC-10 UrbanSound8K
Piczak CNN [53] 64.50% 80.50% 73.00%
EnvNet-v2 [90] 84.90% 91.30% 78.30%

CNN pretrained on Audioset [56] 83.50% - -
FBEs⊕ConvRBM-BANK [54] 86.50% - -

Multi-stream temporal attention [24] 84.00% 94.20% -
ACRNN [72] 86.10% 93.70% -

Channel-temporal attention [73] 85.80% 94.00% -
SENet [68]* 81.68±0.35% 91.20±0.37% 78.80±0.28%
CBAM [69]* 85.10±0.46% 92.40±0.12% 79.63±0.32%

TS-CNN10 [89]* 85.78±0.40% 94.25±0.28% 80.71±0.20%
Non-attention (ours) 81.74±0.56% 90.95±0.40% 78.64±0.12%
Single-channel (ours) 85.24±0.12% 93.15±0.20% 79.44±0.24%
MCTA-CNN (ours) 87.05±0.18% 94.45±0.24% 79.78±0.27%

channel-temporal attention network [72], and TS-CNN10 [89], which all represent tempo-

ral attention using only one single vector. It is worth mentioning that for the UrbanSound8K

dataset, our model was slightly outperformed by TS-CNN10 [89]. This model consists of 4

convolutional blocks with 4 separate parallel temporal-spectral attention modules, making

the number of parameters significantly bigger (4.98M) than our model (1.47M). While our

model still has a close performance.

Table 2.4: Comparison of classification accuracy of DCASE 2018 task1A and DCASE
2019 task1A datasets with other work. The * denotes that the results were reproduced
by us. In [89] the original results were 68.7% and 70.6% for DCASE 2018 and 2019
respectively. In [57], the original result for DCASE 2018 was 72.7% and no DCASE 2019
result was given.

Methods DCASE2018 1A DCASE2019 1A
Self-attention [91] 70.81% -
Atrous-CNN [57]* 69.07±0.59% 69.24±0.99%
TS-CNN10 [89]* 69.68±0.60% 69.59±0.68%

Non-attention(ours) 70.98±0.66% 74.60±0.32%
Single-channel(ours) 71.92±0.75% 74.88±0.40%
MCTA-CNN (ours) 72.40±0.38% 75.71±0.28%
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Figure 2.15: 5 random attention vectors for rooster and rain.

Our model was also tested on the two DCASE acoustic scene classification (ASC)

datasets described above, and the results are shown in Table 2.4. It is shown that MCTA can

also improve the performance of ASC as well. Our model outperformed several popular

attention-based CNN models including the self-attention model [91] and the Atrous-CNN

model [57], which were both initially designed for acoustic scene classification. Again, as

mentioned above, the number of parameters of our model is 1.47M, which is much smaller

than TS-CNN10 [89] (4.98M) and Atrous-CNN [57] (4.36M).

Figure 2.15 shows the attention vectors from 5 random channels (out of the 512 total

in A ∈ R512×52×1) for two classes in ESC-50, namely rooster and rain. It can be seen that

within each class, the attention vectors from different channels can be very different, both

in shape and magnitude, which further supports our proposition that a unique attention

vector for each channel is beneficial. Furthermore, some confusion matrix examples for

fold 3 of ESC-50, ESC-10, UrbanSound8K datasets, along with DCASE 2018 and DCASE

2019 datasets on our multi-channel temporal attention (MCTA) CNN model are shown in

APPENDIX A. This work was submitted to and published by ICASSP 2021 [92].
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CHAPTER 3

PROTOTYPICAL NETWORKS WITH HYBRID ATTENTION FOR FEW-SHOT

AUDIO CLASSIFICATION

This chapter introduces the details of the hybrid-attentional prototypical networks model.

Firstly, some background and motivations of few-shot learning are described, including

some related work and the learning strategy. Then, our proposed model is presented and

its performance was evaluated on ESC-50, noiseESC-50, and a subset of FSD50K dataset

containing environmental sound classes.

3.1 Few-Shot Learning

3.1.1 Introduction

Deep learning techniques are usually highly data dependent. When the data set is small

or labeled training samples are lacking, it usually leads to overfitting and results in poor

generalization performance. To tackle this problem, many new techniques have been pro-

posed, such as weakly supervised learning, transfer learning, meta-learning, and few-shot

learning (FSL). FSL is a type of machine learning scenario where the prediction is made

based on a very small amount of data samples [93]. The motivations of the development

of few-shot learning include: 1) In many cases, the amount of supervised training data

is lacking, therefore causing many deep learning techniques to fail; 2) Sometimes a large

but unlabelled dataset is available, but labelling these data can cost too much human ef-

fort and computational resource; 3) Human can learn with only a few examples, and some

FSL algorithms are developed to imitate how human learns new things. Specifically, when

there is only one supervised training sample within each class, few-shot learning then be-

comes one-shot learning [94, 95, 96]. Sometimes there is even no example with supervised

34



information, then FSL becomes zero-shot learning [97, 98].

According to [99], a few-shot learning problem can be approached from three different

perspectives: data, model, and algorithm. Data methods increase the amount of train-

ing data through data augmentation or generative adversarial network (GAN) [84]. Model

methods seek to constrain the hypothesis space using prior knowledge, including strategies

such as multitask learning [100, 101], embedding learning [102, 103], learning with exter-

nal memory [104, 105], and generative modeling [95, 106]. Algorithm methods [107, 108]

make use of prior information to find better searching strategies for parameters by starting

with a good initialization or guiding the search steps [99]. Among all kinds of methods

mentioned above, embedding learning strategies from Model methods have become the

most widely used in audio recognition and classification. Embedding learning algorithms

[102, 109] embed data samples to a feature space equipped with a distance metric such as

cosine or euclidean distance so that samples that belong to the same class are closer to each

other, while samples from different classes can be more easily distinguished [99]. Some

popular metric-based embedding learning include convolutional siamese neural network

[110], relation network [111], matching nets [112], and prototypical networks [113]. The

key idea of these methods is to learn a function or a network that can decently measure

the similarity between samples. For example, matching nets (shown in Figure 3.1) embed

support samples and query samples using different functions, and then compute the cosine

similarities between the query embedding with each support embedding [114]. It also in-

troduced a new type of training unit called “episode”, within which training is performed

in the same way as testing. Prototypical networks model also made use of episodic training

and its performance has been superior over other related models so far. Therefore, in this

work, the prototypical networks model is used and its details are described below.
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Figure 3.1: Matching Networks architecture [112].

3.1.2 Prototypical Networks

In prototypical networks, the training process is consisted of numerous episodes. We are

given a training dataset D = {(xi, yi)|i = 1, ..., N} with N total samples, xi, each with an

associated label, yi ∈ {1, ..., C}, where C is the total number of classes in the set. In each

episode, a subset S = {Sk|k = 1, ..., K} that contains K randomly selected classes without

replacement is formed, where Sk is consisted of samples that belong to class k. This subset

is called a support set and for each chosen class k, Nk samples are picked randomly without

replacement as well, making the total number of samples in the support set K ×Nk. After

that, a disjoint set called query set Q with K × Nq samples is then selected, where each

class contains Nq samples. Therefore, in each training episode, a K-way Nk-shot problem

is set up to be solved. The testing process acts in the same manner as training, but with

a different dataset with unseen classes. The goal is to classify query samples to unknown

labels given a small support set within the testing dataset.

The key idea of prototypical networks is the computation of an M-dimensional proto-
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Figure 3.2: Prototype Networks for few-shot learning.

type feature vector ck ∈ RM as the mean of embedded feature vectors of support samples

within a class.

ck =
1

Nk

Nk∑
i=1

fθ(x
k
i ), k ∈ {1, ..., K} (3.1)

where fθ denotes the embedding function with learnable parameters θ which is typically a

neural network. Given a distance metric d : RM×RM → [0,+∞), the posterior probability

that a query sample x ∈ Q belongs to a class k is based on a softmax over the inverse of

distances between the query sample embedding and the prototype vector of class k.

Pθ(y = k|x) = exp(−d(fθ(x), ck))∑
k′ exp(−d(fθ(x), ck′))

(3.2)

In the original paper [113], the squared euclidean distance was used and the loss function

is the negative log-likelihood: L(θ) = −logPθ(y = k|x). Figure 3.2 shows the illustration

of the prototypical networks for a 3-way 5-shot few-shot learning scenario.

3.1.3 Learning Strategy

Few-shot learning methods such as prototypical networks belong to a broader learning

concept called meta-learning. Instead of training on the training set and generalizing on

37



the test set, which is the main objective in traditional supervised learning scenarios, the

core idea is ”Learning to learn”. Figure 3.3 illustrates how a 2-way 4-shot few-shot image

classification model is learned. Just like normal supervised learning process, there is also a

training phase and testing phase. However, the main difference is that in normal supervised

learning, the training set and the testing set usually contain the same list of classes, while

in few-shot learning the classes in the testing set typically have never been seen during the

training phase. In this example, for each training episode or minibatch, 2 classes, namely

cats and birds are randomly chosen (2-way) and 4 samples within each class are randomly

picked (4-shot), which forms a small sample set called support set. In addition, one or

several query samples (the query set) are drawn from the remaining samples in these 2

classes. In this example, one query sample, a bird image, is drawn in the first episode,

and during the training the model learns to assign the correct label ”bird” to this query

sample image. Then in the next episode, another 2 classes, flowers and bikes are chosen

(choosing overlapping classes with the previous episode is allowed), and another support

set is formed. Similarly, a query sample with the ground truth label ”flowers” is picked,

and the models again learns to assign the correct label to it.

After numerous episodes of training, the trained model is the evaluated on a separate

testing dataset. As mentioned previously, the testing set contains a completely different set

of classes. As is shown in Figure 3.3, during testing, the exact same process happens as in

the training, where a support set (containing 4 dog samples and 4 otter samples) is formed

and a query sample with an unknown label is fed into the model to compute the prediction.

This learning strategy is called ”training in the same way as testing” [115], one of the basic

ideas of meta-learning, which few-shot classification belongs to.

3.2 Few-Shot Learning with Hybrid Attention

As described in CHAPTER 2, few-shot learning models are used to classify unseen labels

with few training samples. And metric-learning or meta-learning approaches are becom-
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Figure 3.3: An example of 2-way 4-shot classification [115]

ing increasingly popular in recent years. To our knowledge, most of the research done

using few-shot learning models focuses mainly on computer vision and natural language

processing, whereas little work has been done for audio classification. In this work, the

prototypical networks model is chosen among all metric-learning models. This model is

simple yet effective, and has achieved the state-of-art results on several few-shot learning

benchmarks [116]. However, as a metric-based method, the performance often degrades in

the presence of bad or noisy embedded features, and outliers in support instances. To solve

this problem, a hybrid attention module is introduced in this work and Figure 3.4 shows

the overall architecture of the whole model. The architecture consists of three major parts:

a backbone CNN network as a feature encoder, a feature-level attention block to empha-

size key feature regions, and an instance-level attention block to focus on crucial support

instances and diminish the effect of outliers. These three parts are combined together and

integrated into the prototypical networks few-shot learning framework.
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Figure 3.4: The architecture of our proposed model.

3.3 Backbone Network

Our backbone CNN network has a similar structure as the embedding block in our MCTA

model. It contains 3 basic blocks and each block consists of a 3 × 3 convolutional layer,

batch normalization, ReLU activation, and a max pooling layer consecutively. The kernel

sizes for these 3 max pooling layers are 8× 2, 8× 2, and 2× 1, respectively. The numbers

of channels for these 3 convolutional layers are 128, 256, and 384. Figure 3.5 shows the

details of the backbone network structure. Similarly as in subsection 2.4.2, the numbers

in the brackets after ”Conv. block” indicate the input and output numbers of filters of the

convolutional layer. And the numbers after ”Max-pooling” and ”Padding” stand for kernel

sizes. The numbers after ”Conv.” are the numbers of filters and the kernel size. Again BN

stands for batch normalization and ReLU stands for Rectified Linear Units as the activation

function.

3.4 Feature-level Attention

Since each class in the support set only has a few samples and the prototypes are solely

determined by the features extracted from these samples, the performance of prototypical
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Figure 3.5: Details of the backbone network.

networks is highly dependent on the discriminative power of the encoded feature vectors.

There are certain parts of the features that contain more relevant information than others,

and the feature-level attention block is introduced to focus on those parts. As described

in the previous chapter, the attention block from the proposed MCTA model is introduced

into the embedding function fθ with a small modification by changing the standard normal-

ization in the attention branch to softmax normalization (Figure 3.6). By focusing on more

informative features using attention, this feature-level attention block can help the model

to better determine prototype vectors.

3.5 Instance-level Attention

In the original prototypical networks, the prototypes are computed by averaging all support

instance embeddings within each class, which means it is assumed that the contribution of

each support instance is equal. However, as shown in Figure 3.8(a), if one of the support

instances is an outlier or is much farther away from the query sample than the other in-

stances, it can cause a deviation on the resultant prototype and thereby causing incorrect
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Figure 3.6: (a) Block diagram the feature-level attention block. (b) Structure of the multi-
channel attention.

Figure 3.7: A support set of dog sound log Mel-spectrograms with 5 samples.

classification. For example, Figure 3.7 shows a potential support set that contains 5 log

Mel-spectrograms of dog sound. It can be clearly seen that the first sample is very differ-

ent from the other four, and it can then be considered as an outlier. By simply averaging

embeddings of these 5 samples, we might end up getting a deviated prototype for class

“dog”.

Therefore, inspired by [116], we propose to introduce an instance-level attention block

to alleviate this problem. The core idea is to generate an attention score for each support

instance based on its relationship with the query sample and replace Equation 3.1 with a
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weighted average:

ck =

Nk∑
i=1

βk
i fθ(x

k
i ) (3.3)

where βk
i is the score assigned to a support instance in class k, and it is modelled as follows:

βk
i =

eki∑Nk

n=1 e
k
n (3.4)

eki = sum{σ(fϕ(fθ(xk
i )) ◦ fϕ(fθ(x)))} (3.5)

where fϕ(·) is a fully connected layer, σ(·) is sigmoid function, and sum{·} is the summa-

tion over all elements of a vector. The purpose of Equation 3.5 is to compute the similarity

between a support sample and the query sample, therefore it can be seen from Equation 3.4

and Equation 3.5 that the weight of a support sample is query-dependent, meaning that

the contribution of each support sample depends on the incoming query sample instead of

having an independent “quality.” Moreover, the reason why we choose standard normal-

ization over softmax in this case is that softmax will dramatically enlarge the difference

between the weights of the support samples and may result in overly biased prototypes.

As an illustration shown in Figure 3.8 (b), by assigning lower scores to bad instances, the

model can become more capable of assigning the correct label to the query sample.

3.6 Experiments

3.6.1 Datasets

Our model was evaluated on two datasets: ESC-50 dataset and noiseESC-50 dataset. The

details of ESC-50 dataset were described in CHAPTER 2 and the noiseESC-50 dataset

was created in [117] by mixing the clean ESC-50 samples with random recordings from 15

acoustic scenes of DCASE2016 dataset [118] as additive background noise. The mixture

generation procedure followed the one described in [52], where the event-to-background
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Figure 3.8: (a) Prototypical networks without instance-level attention. (b) Prototypical
networks with instance-level attention.
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Figure 3.9: Log Mel-spectrograms of a “crackling fire” sound and its corresponding noisy
counterpart.

ratios (EBR) were randomly selected from -6, 0, and 6 dB. The EBR was defined as a

ratio of average RMSE values between a foreground clean audio signal and a background

segment with the same duration [52]. As a result, each clean data sample in ESC-50 has

a corresponding noisy counterpart in noiseESC-50, and the noisy signals can better rep-

resent everyday sound environment [117]. Figure 3.9, Figure 3.10, and Figure 3.11 show

examples of clean and noisy “crackling fire”, “pouring water”, and “crickets” sounds. The

relatively small size of ESC-50 makes it a good candidate for few-shot sound classification.

3.6.2 Initial Experimental Setup

By using the same splitting strategy as in [117], we randomly selected 35 classes for 10-

way 5-shot training, 5 classes for 5-way 5-shot validation, and the remaining 10 classes

for testing. During testing, the results for 5-way 1-shot, 5-way 5-shot, 10-way 1-shot,

and 10-way 5-shot scenarios were obtained. Also according to [117], for both ESC-50 and

noiseESC-50, to speed up the training process and save memory, the audio clips were firstly

downsampled from 44.1kHz to 16kHz, and then log Mel-spectrograms with 128 Mel bins
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Figure 3.10: Log Mel-spectrograms of a “pouring water” sound and its corresponding
noisy counterpart.

Figure 3.11: Log Mel-spectrograms of a “crickets” sound and its corresponding noisy coun-
terpart.
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were extracted. The window size is 2048 and the hopsize is 497, resulting in a 128 × 160

feature map for each data sample. The input features were then z-score normalized using

the mean and standard deviation of the training set before being fed into the model. We

trained the network using Adam with cross-entropy loss and a starting learning rate as

0.001. The total number of epoch is 60, and the learning rate is decayed by a factor of 10

after every 20 epochs. We also used a 1e-4 weight decay as in [117]. All experiments were

run on an NVIDIA RTX 2080Ti GPU.

3.6.3 Results

The few-shot audio classification accuracies for the validation and test sets of ESC-50 and

noiseESC-50 are shown in Table 3.1 and Table 3.2 respectively. For each dataset, our

model was run 10 times and the average accuracy is reported along with the 95% confidence

intervals. For each run, the best model was selected based on the 5-way 5-shot accuracies of

the 5 validation classes, and it was then applied to the test set. Proto-Net means the original

model of prototypical networks. Proto-IA denotes prototypical networks with the instance-

level block only. Proto-FA stands for prototypical networks with the feature-level attention

block only, and Proto-HA stands for prototypical networks with the hybrid attention module

including both the feature-level and the instance-level blocks. Since the instance-level

attention assigns weights to multiple support samples, we only focus on the 5-shot cases

when comparing the performances involving instance-level and hybrid attention.

Table 3.1 compares the performance of prototypical networks with or without attention

on ESC-50. It can be seen that by adding the feature-level attention block, there is a signifi-

cant improvement in all scenarios for both the validation set and the test set. Especially for

10-way 1-shot and 10-way 5-shot cases in the test set, where the performance gain is 9.25%

and 7.48% respectively, which indicates that our multi-channel temporal attention block is

capable of highlighting key features to make data samples more distinguishable. How-

ever, it is worth noticing that with only the instance-level attention block, the validation
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performance is similar to the original model while the test results are even a little worse.

This could be due to the fact that without any feature-level attention, the embedded feature

vectors are not very food representations of the data samples. Therefore, only applying

instance-level attention won’t be advantageous as expected. Moreover, the hybrid atten-

tional prototypical networks perform similarly as Proto-FA in validation, and perform best

in 5-shot test scenarios, showing that when applied to the embedded representations with

feature-level attention, the instance-level attention block is able to focus on crucial support

samples when computing the prototypes. Note, that in the 1-shot case, the instance-level

attention block performs no function since there is only a single support sample and its

weight will always be 1. Therefore 1-shot results for Proto-HA are not reported.

The results for noiseESC-50 are shown in Table 3.2. For noiseESC-50, the Proto-FA

model enhances the performance and the improvement is even greater than the performance

gain of Proto-FA with ESC-50. This suggests that emphasizing relevant features can largely

diminish the effect of noise. Also, as discussed above, for the same reason, worse test

results are observed with instance-level attention only compared to Proto-Net. Similarly,

when using the Proto-HA model, the performance is further enhanced for the 5-shot cases,

showing that in the noisy setting, the instance-level attention module is still able to lessen

the contribution of those bad support instances. It should be noted that the improvement

provided by the Proto-HA model for the test 10-way 5-shot case on noiseESC-50 is less

than the the improvement seen on ESC-50. The reason for this might be that when there are

good and bad support instances, the instance-level attention can assign higher weights to

those good ones, but when all the support and query samples are degraded, the advantage

might not be as big. This work was submitted and published by ICASSP 2022 [119].
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3.7 Modify the Instance-level Attention

3.7.1 Model Modification and Experimental Setup

In the previous experiments, it was observed that by adding only the instance-level at-

tention, there was no classification performance improvement comparing to the original

prototypical networks model. Therefore, we tried to make a slight modification on how eki ,

the similarity between a support sample and the query smaple, is calculated (Equation 3.5).

This time, the sigmoid activation is applied to the embeddings fϕ(fθ(xk
i )) and fϕ(fθ(x))

respectively instead of just applying it to their product. We felt that in this way the similar-

ities could be more properly obtained. The modified Equation 3.5 is shown below:

eki = sum{σ(fϕ(fθ(xk
i ))) ◦ σ(fϕ(fθ(x)))} (3.6)

In addition, to acquire more reliable results, 10 classes were chosen as validation set

instead of 5 in order to match the 10-way 5-shot training, resulting in the number of training

classes down to 30 from 35. Moreover, each model was run 20 times instead of 10 to

get more stable results, and the experiments were run on the PACE cluster of Georgia

Tech using a Quadro RTX 6000 GPU with other hyperparameters the same as previous

experiments.

3.7.2 Results

The results for ESC-50 and noiseESC-50 with the modified model are shown in Table 3.3

and Table 3.4, respectively. It can be observed that with the modified model and the new

experimental setups, the Proto-HA model still had the highest overall classification accu-

racies. Despite the similar 5-way 5-shot performance between Proto-HA and Proto-FA,

noticeable improvement can be seen in all 10-way 5-shot cases. Most notably, the modified

Proto-IA model outperformed the original prototypical networks this time, especially on

the validation set. This demonstrates that this modification (Equation 3.6) can better cal-
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culate the similarity between support and query samples, and therefore resulting in better

instance weights.

Furthermore, as described in Section 3.5, similar as outliers, noisy samples among

clean ones can also affect the computation of prototypes. Therefore, to further demonstrate

that the instance-level attention module is capable of diminishing the effect of bad or noisy

support samples, it is tempting to try our models on mixed support samples where a few of

them are noisy and the others are clean.

3.8 Training with Mixed Support Samples

3.8.1 Experimental Setup

A new set of experiments was run on the clean ESC-50 dataset, but within every 5 clean

support samples of a class, 2 of them were randomly picked and replaced by their noisy

counterparts from noiseESC-50. In this setting, unlike using all noisy data samples, the 2

noisy support samples are clearly considered bad ones or outliers against the other 3. The

trained models were then tested on the validation and test sets from noiseESC-50 dataset. It

was expected that with this training strategy, the performance gain by adding the instance-

level attention module would increase comparing to previous experiments.

3.8.2 Results

The results of this mixed training experiment are shown in Table 3.5. Again, each model

was run 20 times and the average classification accuracy and the corresponding 95% con-

fidence intervals are reported. It can be clearly observed that when comparing Proto-IA

with Proto-Net, and Proto-HA with Proto-FA, the performance gain on all 5-shot cases are

much bigger than Table 3.4. And all 10-way 5-shot results for the validation and test sets

increased by over 1%, and the test 5-way 5-shot results increased by over 0.5%. These re-

sults further prove that the instance-level attention is able to assign higher weights to good

support samples and lower weights to bad ones.
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3.9 Testing the model on a subset of FSD50K

In addition to the ESC-50 and noiseESC-50 datasets, in order to evaluate how our models

would perform on other datasets. We created a larger environmental sound dataset drawn

from the FSD50K dataset, and the details are described in this section.

3.9.1 Dataset

FSD50K [120] is an open human-labeled sound event dataset containing 51,197 Freesound

clips drawn from the Audioset Ontology [50]. These mono audio clips have a total dura-

tion of 108.3 hours and are unequally distributed in 200 hierarchically organized classes,

which consist of 144 leaf nodes and 56 intermediate nodes. The sound events are primar-

ily produced by physical sound sources and production mechanisms [120], and the main

categories include human sounds, sounds of things, animals, natural sounds, musical in-

struments and so on. Clips have various length between 0.3s and 30s, and all of them have

a sample rate of 44.1kHz.

The dataset we used is a subset of FSD50K, where we extracted all environmental

sound classes which are not human or musical instrument sounds from the 144 leaf nodes,

resulting in a total of 108 classes. Afterwards, we further removed all clips that contain

multiple leaf node labels, and ended up with totally 16,923 single-label recordings, and

we call this new subset Env-FSD50K. Figure 3.12 to Figure 3.15 show some statistics and

distributions of the created dataset.

Then, to generate training samples, we further downsampled the data to 16kHz and

processed them into 5-second segments. If the original duration of a clip is shorter than 5

seconds, it was zero padded to 5 seconds long. And if originally an audio is longer than 5

seconds, it was split into 5-second segments and if the length of the remaining segment is

shorter than 2 seconds, it was discarded, otherwise it was zero padded to become another

5-second segment. For example, if an audio clip is 21 seconds long, it will be split into 4
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Figure 3.12: The number of files for different durations in seconds. The second row is a
zoom-in version of the duration range from 0s to 20s.

Figure 3.13: The distribution of durations of files per class.
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Figure 3.14: Statistics of the number of files within each class.

Figure 3.15: Statistics of the total duration for each class.
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5-second segments and the remaining 1 second will be discarded. On the contrary, if an

audio clip is 23 seconds long, it will firstly be zero padded to 25 seconds, and then split

into five 5-second segments. With this strategy, we ended up obtaining 32,522 segments,

and 78 classes were randomly selected as the training set, 10 classes as the validation set

and the remaining 20 classes as the test set.

3.9.2 Results

The results for the Env-FSD50K dataset are shown in Table 3.6. Similarly, the table shows

significant improvement from the Proto-FA model over the Proto-Net model. And it is

worth noting that the performance of Proto-HA and Proto-FA is generally similar for this

dataset, which could be due to the fact that with the feature refinement of the feature-level

attention module, the similarity between a query sample and support samples in the same

class is already relatively high. In the meantime, we can still see a noticeable performance

gain from Proto-Net to Proto-IA, suggesting that without the feature-level attention, the

instance-level attention can still emphasize relevant support samples in this dataset.
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CHAPTER 4

HYBRID ATTENTIONAL PROTOTYPICAL NETWORKS WITH Π-MODEL

From previous results it can be seen that, as expected, the classification accuracy on noiseESC-

50 dataset is in general lower than that on the clean ESC-50 dataset. To improve the overall

performance on noisy data, we thought that it would be beneficial to train a model that is

robust to noise. We found that it could be helpful if we made use of the idea of ensemble

learning and tried to bring the noisy data closer to their clean counterparts during train-

ing. Therefore, we propose to introduce Π-model into the training phase of our framework,

which was firstly proposed by Laine et al. [121] as one of the self-ensembling methods.

4.1 Ensemble Learning

Ensemble learning is a machine learning strategy that combines two or more models in

order to obtain the optimal predictions. It is usually able to improve the predictive per-

formance because: 1) By averaging or combining different hypothesis or models, the risk

of overfitting can be reduced; 2) With only a single model, the training process may get

stuck in local optima, whereas combining models can help jump out of them; 3) It may not

be possible to reach the best model within the space of any single model, while the com-

bination of different models is more likely to get closer to the optimal hypothesis [122].

With the success of deep neural networks (DNNs) in various machine learning tasks, there

have been a considerable number of attempts to combine ensemble learning with DNNs

[122]. Deep neural decision forests [123] unifies classification trees with representation

learning from deep convolutional networks by introducing a stochastic, differentiable, and

backpropagation compatible decision tree model. Wen et al. [124] proposed an ensemble

of CNN models for facial expression recognition using probability-based fusion. For deep-

learning based audio classification problems, the usage of ensemble learning has also been
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frequently explored. For example, Huang et al. [30] created an ensemble of 4 pre-trained

neural networks which outperformed individual models on an acoustic scene classification

task. And Nanni et al. [125] used an ensemble of multiple CNNs along with handcrafted

texture descriptors to improve the performance of animal audio classification.

4.2 Π-model

The concept behind Π-model is also ensemble learning, and it is called self-ensembling

by the authors [121], since only one classifier is involved and the consensus prediction

is obtained from the outputs of the same classifier but under different regularization and

input augmentation conditions. The original structure of Π-model is shown in Figure 4.1

and the pseudocode in Algorithm 1. The model was initially designed for semi-supervised

learning problems, where the majority of dataset is unlabeled. In Algorithm 1, the overall

setting is that the training dataset is consisted of totally N samples, of which M are labeled.

The input data sample is denoted as xi, where i ∈ {1...N}. L is the set of labeled input

indices and |L| = M . The ground truth label for xi is denoted as yi if i ∈ L, and yi ∈

{1...C}, where C is the number of classes [121]. From Algorithm 1 it can be seen that

every input sample xi is evaluated twice by the network after some stochastic augmentation.

Afterwards, two prediction vectors zi and z̃i are obtained as the outputs. The loss function is

consisted of two parts, one is the cross-entropy loss for all the labeled data samples between

zi and their corresponding ground truth labels yi, and the second part is a mean squared

error for all input samples which penalizes the difference between zi and z̃i. These two

components are then combined by a time-dependent function w(t), which is described as a

Gaussian ramp-up curve exp[−5(1− T )2], where T ranges from 0 to 1 linearly within the

ramp-up period (80 epochs in the original paper) [121]. The core purpose of this particular

loss function is to try to bring these predictions zi and z̃i close together. It is pointed

out in the original paper that the dropout regularization and Gaussian noise along with

augmentations are the reasons causing zi and z̃i to be different. Therefore minimizing the
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Figure 4.1: The original structure of Π-model [121].

difference between them can be considered as encouraging consistent output between two

realizations of the same input sample [121].

4.3 Introducing Π-model into Our Framework

To improve the performance on noisy data, we introduced the idea of Π-model into our

hybrid attentional prototypical networks framework, and the system overview is shown in

Figure 4.2. We name the model HAPPi, which stands for Hybrid Attentional Prototypical

Networks with Pi-model. We made several modifications to the original Π-model. First,

instead of applying stochastic augmentation on the input stimuli, we used the noisy input

sample x̃i and its corresponding clean counterpart xi as the inputs. Second, since dropout

regularization is typically used with larger datasets and deeper networks, and the few-shot

learning setting might not be a good fit for it. Therefore we did not use any dropout in our

network layers. In addition, according to our experiments, we set the ramp-up period to

90 instead of 80 for the weighting function w(t), and the total number of epochs is 100.

After the training, the validation and test sets used to evaluate the model were all from

noiseESC-50 to assess its capability to handle noisy data. Again as previous experiments,

each model was run 20 times on a Quadro RTX 6000 GPU. Figure 4.3 shows the training

curves of the cross-entropy loss (upper row) and the mean squared loss (lower row). It can

be clearly observed that training with Π-model can successfully minimize the classification

error and encourage consistent predictions from clean and noisy data.
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Figure 4.2: The Π-model structure in our setting.

Figure 4.3: The Π-model training curves of the cross-entropy loss (upper row) and the
mean squared error loss (lower row).
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4.4 Results

Table 4.1 shows the comparison of all models trained with or without Π-model on noiseESC-

50. The suffix Pi attached to each model means that this model was trained with Π-model.

Again the average accuracy and 95% confidence intervals are reported. It is shown that by

adding Π-model and training with both ESC-50 and noiseESC-50, the validation and test

results are boosted in all scenarios, indicating that the whole model becomes more noise

robust with the addition of Π-model. And our final proposed model, HAPPi, performed

best among all models, proving that the combination of hybrid attention and Π-model is in-

deed beneficial to deal with bad support samples and noisy data for few-shot environmental

sound classification.

Algorithm 1 Π-model pseudocode [121]
Require: xi = training stimuli
Require: L = set of training input indices with known labels
Require: yi = labels for labeled inputs i ∈ L
Require: w(t) = unsupervised weight ramp-up function
Require: fθ(x) = stochastic neural network with trainable parameters θ
Require: g(x) = stochastic input augmentation function
for t in [1, num epochs] do

for each minibatch B do
zi∈B ← fθ(g(xi∈B)) ▷ Evaluate network outputs for augmented inputs
z̃i∈B ← fθ(g(xi∈B)) ▷ Again, with different dropout and augmentation
loss← − 1

|B|
∑

i∈(B
⋂

L) logzi[yi] ▷ Supervised loss component

+w(t) 1
C|B|

∑
i∈B ∥zi − z̃i∥2 ▷ Unsupervised loss component

update θ using, e.g., ADAM ▷ Update network parameters
end for

end for
return θ

63



Ta
bl

e
4.

1:
C

om
pa

ri
so

n
be

tw
ee

n
m

od
el

s
tr

ai
ne

d
w

ith
or

w
ith

ou
tΠ

-m
od

el
on

no
is

eE
SC

-5
0

M
od

el
V

al
id

at
io

n
Te

st
10

-w
ay

5-
sh

ot
5-

w
ay

1-
sh

ot
5-

w
ay

5-
sh

ot
10

-w
ay

1-
sh

ot
10

-w
ay

5-
sh

ot
Pr

ot
o-

N
et

69
.0

8±
0.

50
%

61
.0

6±
0.

68
%

81
.2

1±
0.

64
%

45
.2

4±
0.

62
%

65
.7

4±
0.

61
%

Pr
ot

o-
IA

(o
ur

s)
69

.9
3±

0.
53

%
–

81
.2

6±
0.

48
%

–
66

.0
5±

0.
56

%
Pr

ot
o-

FA
(o

ur
s)

78
.1

6±
0.

50
%

71
.4

0±
0.

73
%

87
.5

3±
0.

47
%

56
.4

8±
0.

80
%

77
.5

1±
0.

65
%

Pr
ot

o-
H

A
(o

ur
s)

78
.9

3±
0.

58
%

–
87

.6
5±

0.
43

%
–

78
.1

0±
0.

66
%

Pr
ot

o-
N

et
-P

i
70

.6
1±

0.
38

%
62

.2
3±

1.
00

%
82

.1
5±

0.
47

%
46

.4
3±

0.
83

%
66

.6
5±

0.
47

%
Pr

ot
o-

IA
-P

i(
ou

rs
)

71
.9

6±
0.

58
%

–
82

.0
3±

0.
54

%
–

66
.6

5±
0.

61
%

Pr
ot

o-
FA

-P
i(

ou
rs

)
78

.5
3±

0.
54

%
72

.3
0±

0.
69

%
88

.0
9±

0.
51

%
58

.9
1±

0.
64

%
78

.5
0±

0.
72

%
H

A
PP

i(
ou

rs
)

79
.5

4±
0.

69
%

–
88

.3
4±

0.
44

%
–

78
.7

1±
0.

72
%

64



CHAPTER 5

EXPLORING FEATURE EXTRACTION USING AN INNOVATIVE SIGNAL

PROCESSING TECHNIQUE

As previously mentioned, feature extraction is an essential step for audio classification

tasks, and for years cepstral features have been superior over other types of features. Fun-

damentally, cepstral features such as MFCCs and Log Mel-spectrograms are both fourier

based features, where the short-time-fourier-transform is always computed in the first step.

In this chapter, we explore an innovative signal processing based temporal-frequency repre-

sentation named IMFogram. It is based on a signal decomposition method called iterative

filtering (IF), which is an alternative version of empirical mode decomposition (EMD),

one of the first ever introduced iterative methods in the literature of signal processing.

The motivation to explore IMFogram comes from the fact that it more-compactly models

non-stationary signals. Furthermore, we found iterative filtering features to be very useful

(outperforming Fourier methods) in the analysis on machinery signals in an early project.

Given the recent development of IMFogram as a time-frequency representation method,

which relies on the signal decomposition produced by the iterative filtering method, we

tested how this new feature perform with our multi-channel-temporal-attention (MCTA)

CNN model described in CHAPTER 2.

5.1 Empirical Mode Decomposition

The empirical mode decomposition (EMD) algorithm [19] was initially designed to solve

the problem of decomposing non-stationary signals into simpler components called Intrin-

sic Mode Functions (IMFs). Each IMF has a unique instantaneous frequency at every in-

stant of time, and it is defined to satisfy two requirements: 1) The number of extrema (local

maxima and minima) and the number of zero-crossing must be equal or differ at most by

65



one; 2) The mean value of the envelope defined by local maxima and the envelope defined

by local minima is zero at any point [21]. This method is capable of decomposing a signal

without any a priori information about it or a priori selection of a certain basis [126]. The

pseudocode of the EMD algorithm is shown in Algorithm 2 [126]. The core idea behind

it is called the sifting process, where within each iteration, the moving average M(s) is

subtracted from the signal itself. To compute M(s), it was proposed in [19] that the upper

and lower envelopes which connect the signal maxima and minima respectively to be com-

puted first through cubic splines, followed by computing the point by point mean of these

two curves [126]. The same process is applied to the remainder signal after subtraction, and

it is repeated until it converges to an IMF or the stopping criterion is satisfied. One of the

major disadvantages is that the EMD method is very vulnerable to noise, and the decompo-

sition results can be dramatically different between clean and noisy signals. Therefore, to

solve this issue, the same authors proposed the Ensemble Empirical Mode Decomposition

(EEMD) [20], of which the basic idea is to firstly add hundreds of white noise realizations

to the target signal, and then the average of all different decompositions is computed as

the final outcome [126]. However, for EMD and EEMD, there are still some fundamental

mathematical problems unresolved, such as the convergence of the sifting problem, which

was then addressed in the original work of iterative filtering (IF) method described below

[21].

5.2 Iterative Filtering

Iterative filtering (IF) is an alternative version of Empirical Mode Decomposition (EMD)

based algorithm. This algorithm was first proposed by Lin et al. [21] and it has been proved

that it has guaranteed convergence and stability [127]. The main difference between IF and

EMD based methods is that instead of computing the moving average of the upper and

lower envelopes, the local average values of the signal are computed by integrating the

signal itself weighted with an a priori chosen mask function [126]. And to guarantee the
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Algorithm 2 Empirical Mode Decomposition IMF = EMD(f )

IMF = {}
while the number of extrema of f ≥ 2 do

s1 = s
while the stopping criterion is not satisfied do

compute the moving average M(sm(x))
sm+1(x) = sm(x)−M(sm(x))
m = m+ 1

end while
IMF = IMF

⋃
{sm}

s = s− sm
end while
IMF = IMF

⋃
{s}

convergence and stability, the mask function is chosen to be a result of convolution with

itself of a function fulfilling properties such as compactly supported, non-negative, even,

and with integral equal to 1 [126]. Algorithm 3 shows the pseudo code of this algorithm

, where wm(f ) is the chosen mask function with a support in [−lm , lm ], and lm stands for

mask length which represents half of the support length [126]. As for the implementation,

Cicone et al. [127] proposed a fast fourier transform (FFT) based method called Fast

Iterative Filtering (FIF), which was used in this work. The details of this implementation

method are left out since they are out of the scope of this thesis.

Algorithm 3 Iterative Filtering IMF = IF(s)

IMF = {}
while the number of extrema of s ≥ 2 do

s1 = s
while the stopping criterion is not satisfied do

compute the filter length lm for sm(x)
sm+1(x) = sm(x)−

∫ lm
−lm

sm(x+ t)wm(t)dt
m = m+ 1

end while
IMF = IMF

⋃
{sm}

s = s− sm
end while
IMF = IMF

⋃
{s}
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5.3 IMFogram

With the resultant IMFs from iterative filtering decomposition, an innovative time-frequency

representation called IMFogram was proposed in [128]. It is a matrix that contains local

amplitudes of various IMFs which spread across rows and columns based on the corre-

sponding local frequencies and time windows respectively [129]. It is noteworthy that it

has been proved in [129] that IMFogram can converge to spectrogram in certain conditions,

and it is actually some sort of generalization of spectrogram with higher accuracy in time

and frequency representation, suggesting that it could be a good alternative to spectrogram

and other fourier based features. The pseudocode of IMFogram calculation is shown in Al-

gorithm 4 [129] and we leave out further details as well. Figure 5.1 shows the comparison

between an IMFogram and a log Mel-spectrogram of the a “hen” sound from ESC-50.

Algorithm 4 IMFogram A = IMFogram(IMFs)
M : number of IMFs
N : signal length
R : number of overlapping time windows Ij = [aj, bj]
for k = 1 to M do

Compute the local amplitudes LA(k)
Ij

Compute the local frequencies LF (k)
Ij

for j = 1 to R do

A(LF
(k)
Ij

, j) = A(LF
(k)
Ij

, j) + LA
(k)
Ij

end for
end for
return A

5.4 Comparing IMFograms with Log Mel-spectrograms

To evaluate how IMFograms perform as features for environmental sound classification,

we compared the results with IMFograms and log Mel-spectrograms as inputs using our

proposed MCTA-CNN model. No delta features were extracted and no data augmentation

was applied. The log Mel-spectrograms were created with a window length of 4096 and
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Figure 5.1: Log Mel-spectrogram vs. IMFogram for a “hen” sound.

Table 5.1: Classification results of log Mel-spectrogram and IMFogram on MCTA-CNN
model.

Model Log Mel-spectrogram IMFogram
MCTA-CNN (ours) 79.22±0.45% 79.26±0.30%

a hop size of 3700 with 128 Mel bins, as described in CHAPTER 2, and the IMFograms

were created with a window length of 2000 and a hop size of 1000 with 128 frequency

bins as well. Both features were extracted using MATLAB. The results are shown in Ta-

ble 5.1 and the average accuracy of 5 runs and its standard deviation are reported. It can

be seen that with regard to overall classification performance, these two features have very

similar performance. After breaking down the average accuracy for each class, as shown

in Figure 5.2, we can observe that IMFogram actually outperformed log Mel-spectrogram

in many classes, such as “dog”, “frog”, “cat”, “footsteps”, “helicopter”, “fireworks”, and

so on. This means that at least for certain classes, IMFogram has the potential to perform

better than log Mel-spectrogram. Since IMFogram was not a clear winner in all cases or, at

least, most cases, we used the Fourier-based features in this work. However, with further

finetuning, IMFogram may even beat log Mel-spectrograms in many other ways, which

makes it an interesting future research direction.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The proposed research focuses on deep learning based environmental sound classification

with attention and its combination with few-shot learning. This chapter concludes our work

and discusses potential future work plans.

6.1 Conclusion

In CHAPTER 2, the proposed multi-channel temporal attention (MCTA) CNN model is

presented. This model makes use of the unique temporal structure of audio signals and

therefore introduces temporal attention to focus certain parts of the extracted features that

contribute more to the final classification. Unlike other previous temporal attention deep

learning models which only generate a single attention vector, the multi-channel structure

of our model is capable of fully exploiting the temporal information from different em-

bedded channels. Experiments on various environmental sound classification datasets such

as ESC-50, ESC-10, UrbanSound8K, and acoustic scene classification datasets such as

DCASE 2018 and 2019 development sets show that our MCTA model can indeed improve

classification results.

One of the big challenges of environmental sound classification is that in many cases the

amount of training data is limited, especially when there are not enough samples in certain

classes. To overcome this issue, few-shot learning techniques are used. CHAPTER 3

introduces a prototypical network framework integrated with a hybrid attention module.

This module is consisted of two separate attention blocks, one is feature-level attention

and the other is instance-level attention. The feature-level attention block is adapted from

our MCTA model, and the instance-level block assigns different weights to samples in the

support set when computing the prototypes in order to diminish the effect of bad support
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samples. When tested on ESC-50, noiseESC-50, and Env-FSD50K datasets with different

settings, our model provides promising results on 5-way 1-shot, 5-way 5-shot, 10-way 1-

shot, and 10-way 5-shot scenarios.

To further improve few-shot performance on noiseESC-50, in CHAPTER 4 the idea

of Π-model is introduced and combined with our hybrid attention prototypical network

framework. Π-model is a type of self-ensembling method in which a mean squared error

term is added to the loss function. This helps to encourage the same predictions for clean

and noisy inputs. Experiments on noiseESC-50 show that adding the Π-model can enhance

the few-shot performance in all models and scenarios.

6.2 Future Work

Based on the work that has been done, there are many directions in which it can be ex-

tended, which are listed below.

6.2.1 Other Datasets and Model Improvement

Our proposed model can be further tested on other datasets such as the dataset from DCASE

2021 task 5. This task aims to apply few-shot learning settings to sound event detection

for animal voclalizations [130]. The sound classes are mainly from mammals and birds,

and both model development and evaluation are in 5-shot scenarios. Since this task focuses

sound event detection, it is a more complex problem than just the classification since the

onset/offset time steps are also involved. Our model can be modified to fit this challenge

and it would be interesting to see where it stands in the rankings. Audioset is another much

larger and more challenging dataset which our model can be tested on. Additionally, the

architecture of our model can be further improved, such as finetuning the architectures of

the backbone CNN encoders, and investigating better ways of computing instance-level

attention weights.
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6.2.2 Exploration of Transformers

The transformer architecture has been one of the most influential models in the past few

years. It was originally proposed by Vaswani et al. in 2017 [131] and has since achieved

state-of-the-art performance in Natural Language Processing [132, 133] and other domains

including audio classification [134, 135]. The essential idea of transformers is to obtain a

weighted average of a sequence of vectors called values, with the weights computed based

on three other core parts: query, key, and a score function [136]. Query is a feature vector

that describes the target characteristic in the sequence, i.e. what we potentially need to pay

attention to. Keys are also feature vectors, each of which contains information provided by

each input sequence element. A score function then takes the query and a key as input and

compute the score of this query-key pair as the attention weight for a corresponding value

vector [136]. Since transformers deal with sequential input elements, the whole process

is actually to compute a representation of an input sequence by evaluating the relationship

between each pair of elements within the same sequence, and hence this type of attention

is called self-attention. Inspired by the recent success of Transformers and other related

transformer-based audio classification models, we think that it is desirable to replace our

current attention implementation with transformers to further boost the performance.

6.2.3 Continual Learning

Our few-shot learning model can be combined with the continual learning framework. The

key idea of continual learning is that the class vocabulary is not fixed and can be expanded

every time a new class is seen. With a trained base classifier, the model can keep learning

to recognize new classes after being exposed to just a few instances [137]. This can largely

enhance the model’s ability to adapt to new tasks without forgetting the existing knowledge

it already possesses.
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6.2.4 IMFogram Finetuning

As introduced in CHAPTER 5, we saw potentials in IMFogram as a new type of feature

for audio classification. The parameters used to generate it can be finetuned and its math-

ematical foundation can be further investigated. It is possible that it can replace cepstral

features in some applications.
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APPENDIX A

CONFUSION MATRIX EXAMPLES FOR MCTA CNN MODEL
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