Continuous Time Quantum Walk on finite dimensions

Shanshan Li
Joint work with Stefan Boettcher
Emory University

QMath13, 10/11/2016

Grover Algorithm: Unstructured Search

$$f(x) = \begin{cases} 1 & x = w \\ 0 & otherwise \end{cases}$$

Initialize the system to the state

$$|s\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$

Apply Grover Iteration

$$(U_s U_w)^{\sqrt{N}} |s\rangle$$

$$U_s = 2 |s\rangle \langle s| - I$$
$$U_w = I - 2 |w\rangle \langle w|$$

$$\theta = 2\arcsin\frac{1}{\sqrt{N}}$$

Quantum Walk Basics for Spatial Search

Random Walk

$$\frac{d}{dt}p_x = \sum_{y=0}^{N-1} L_{xy}p_y$$

Continuous time quantum walk

$$\frac{d\Psi_{x}\left(t\right)}{dt} = \sum_{y} H_{xy}\Psi_{y}\left(t\right)$$

$$H = \gamma L - |\omega\rangle \langle \omega|$$

initial state $|s\rangle = \frac{1}{N} \sum_{x} |x\rangle$

marked state $|w\rangle$

Unstructured search:

f(x) is a computable function

Spatial Search:

N items stored in a d-dimensional physical space

Laplacian = Degree Matrix - Adjacency Matrix

$$L = D - A$$

Critical Point in the Hamiltonian

$$\gamma = 0$$

$$H = -|w\rangle \langle w|$$

$$0^{th}, 1^{st} = |w\rangle, |s\rangle$$

$$\gamma = \infty$$

$$H = \gamma L$$

$$0^{th}, 1^{st} = |s\rangle, |w\rangle$$

$$\gamma = \gamma_c$$

$$0^{th}, 1^{st} = (|w\rangle \pm |s\rangle) / \sqrt{2}$$

$$T = \frac{\pi}{2} \sqrt{N}$$

CTQW: optimal performance

Quadratic Speedup $O(\sqrt{N})$ Grover efficiency

- complete graph, hypercube, strongly regular graph (E. Farhi and S. Gutmann 1998, A. M. Childs et al 2002, J. Janmark et al, 2014)
- Erdös Renyi graph $p \geq log^{\frac{3}{2}}N/N$ (SS. Chakraborty et al, 2016)
- lattices d > 4(A. M. Childs et al 2004)
- We extend CTQW to fractal graphs with real fractal dimension
- Spectral dimension of graph Laplacian determines the computational complexity

Finite Dimensional Fractals

we generalize to arbitrary real (fractal) dimension

- Hierarchical networks
- * Sierpinski Gasket, Migdal-Kadanoff network with regular degree 3
- Diamond fractals based on the Migdal-Kadanoff renormalization group scheme

Dimensions in fractal networks

Fractal dimensions

$$N \sim l^{d_f}$$

Spectral dimension

$$\lambda_i \sim N^{-2/d_s}$$

Hierarchical Network with regular degree 3

Migdal-Kadanoff renormalization group (MKRG)

Model regular lattices closely $\,d_s=d_f=d\,$ arbitrary real dimension

Bond-moving scheme on square lattices with rescaling length l=2, branching factor b=2

Procedure to build the Diamond Fractals

$$d_f = d_s = d = 1 + \frac{\ln b}{\ln 2}$$

Measure Critical Point

The spectral Zeta function

$$I_{j} = \frac{1}{N} \sum_{i=1}^{N-1} (\frac{1}{\lambda_{i}})^{j}$$

When the CTQW is optimal for search, the critical point takes place (numerically true for almost all sites in fractals we consider)

$$\gamma_c = I_1$$

The transition probability

$$\Pi_{s,\omega} = \frac{I_1^2}{4I_2} \sin^2(\frac{2I_1}{\sqrt{I_2}} \frac{t}{\sqrt{N}})$$

Assumption on fractal Laplacian eigenvector

MK renormalization group with b=2

$$I_j = \sum_{i=1}^{N-1} \frac{|\langle \omega | \phi_i \rangle|^2}{\lambda_i^j}$$

$$|\langle \omega | \phi_i \rangle|^2 \sim \frac{1}{N}$$

Renormalization Group Argument

The spectral Zeta function

$$I_{j} \sim \left(\frac{\partial}{\partial \epsilon}\right)^{j} \ln \left[\frac{1}{\epsilon} \det (L + \epsilon)\right] |_{\epsilon \to 0}$$

$$\sim \begin{cases} N^{\frac{2j}{d_{s}} - 1} & d_{s} < 2j \\ const & d_{s} > 2j \end{cases}$$

Computational Complexity of CTQW

$$\gamma_c \sim \left\{ \begin{array}{ll} N^{\frac{2}{d_s}-1}, & d_s < 2 \\ const, & d_s > 2 \end{array} \right. \qquad T \sim \left\{ \begin{array}{ll} N^{\frac{1}{2}}, & d_s > 4 \\ N^{\frac{1}{2}} \ln^{\frac{3}{2}} N, & d_s > 2 \\ \gtrsim N^{\frac{2}{d_s}}, & 2 < d_s < 4 \end{array} \right.$$

- * spectral dimension of network Laplacian determines the computational complexity
- complement the discussions on regular lattices and mean-field networks

References:

- * Shanshan Li and Stefan Boettcher, arXiv preprint arXiv: 1607.05317, 2016
- Stefan Boettcher and Shanshan Li, arXiv preprint arXiv: 1607.05168, 2016

Thank you!

RG calculation for spectral determinant

$$\frac{1}{\sqrt{\det L}} = \int \cdots \int_{-\infty}^{\infty} \prod_{i=1}^{N} \frac{dx_i}{\sqrt{\pi}} \exp\left\{-\sum_{n=1}^{N} \sum_{m=1}^{N} x_n L_{n,m} x_m\right\}$$

$$B_{i}(x,y) = C_{i} \exp\left\{-\frac{q_{i}}{2}x^{2} - \frac{q_{0}}{2}y^{2} + 2pxy\right\} \Rightarrow$$

$$B'_{i-1}(x,z) = \int \cdots \int_{-\infty}^{\infty} \prod_{j=1}^{b} \frac{dy_{i}}{\sqrt{\pi}} B_{i}(x,y_{j}) B_{1}(y_{j},z) \Rightarrow$$

$$B'_{i-1}(x,z) = C'_{i-1} \exp\left\{-\frac{q'_{i-1}}{2}x^{2} - \frac{q'_{0}}{2}y^{2} + 2p'xz\right\}$$

$$\det(L+\epsilon)|_{\epsilon\to 0} = C_k^{-2}b^{2k}(q_k^2/4 - p_k^2)$$

