Automatic Generation of Multimedia
Help in UIDE: The User Interface
Design Environment

by

Piyvawadee "Noi" Sukaviriya.
Jeyakumar Muthukumarasamy
Anton Spaans
and
Hans J.J. de Graaff

GIT-GVU-93-36
September 1993

Graphics, Visualization & Usability
Center

Georgia Institute of Technology
Atlanta GA  30332-0280



Automatic Generation of
Textual, Audio, and Animated Help in
UIDE: The User Interface Design Environment

Piyawadee "Noi" Sukaviriya
Jeyakumar Muthukumarasamy

Graphics, Visualization, and Usability Center
Georgia Institute of Technology
Atlanta, GA
E-mail: {noi, jk} @cc.gatech.edu

ABSTRACT

Research on automatic help generation fails to match the
advance in user interface technology. With users and
interfaces becoming increasingly sophisticated, generating
help information must be presented with a close tie to the
current work context. Help research also needs to utilize
the media technology to become effective in conveying
information to users. Our work on automatic generation of
help from user interface specifications attempts to bridge
the gaps, both between help and user interface making help
truly sensitive to the interface context, and between the help
media and the interface media making communication more
direct and more effective. Our work previously reported
emphasized a shared knowledge representation for both user
interface and help, and an architecture for automatic
generation of context-sensitive animated help in Smalltalk-
80. This paper presents a new integrated architecture in
C++ which not only generates animation, but also audio as
procedural help. The architecture also uses the knowledge
representation to automatically provide textual help of why
an object in an interface is disabled.

KEYWORDS: Automatic Help Generation, Animated
Help, Multimedia Help, User Interface Representations

1. INTRODUCTION

Automatic generation of help unfortunately has not been a
major issue in user interface software research. While
research in user interface technology has advanced rapidly,
few researchers in this area have paid attention to advancing
help technology. Nevertheless, help needs to catch up with
the user interface technology. It needs to utilize the current
media technology to be effective in conveying information
to users. With users and interfaces becoming increasingly

Anton Spaans
Hans J.J. de Graaff

Delft University of Technology
Delft, the Netherlands
E-mail: {winfasp,j.j.deGraaff}
@IS.TWLTUDelft.NL

sophisticated, and eventually adaptive, traditional canned
help may not suffice to help users with their specific
problems at hand. The task of creating appropriate help for
all possible contexts is, however, impractical.

There are many interdisciplinary research issues related to
using multimedia to convey help. Human factor issues of
when to use which media and how effectively do people
learn from these media must be understood; far more
research is still needed in this respect. Previous
experiments on multimedia help such as [2,12] and a
multimedia help experiment being concluded by our group
begin to explore the effectiveness of multimedia on-line
help. As for the user interface software research, we are
interested in how a user interface environment can use high-
level specifications acquired from the interface designer as a
means to bootstrap the generation of help information.
Our objective is also to preserve the consistency between
the current design of an application interface and the help
information delivered to end-users.

The help research presented in this paper is part of a broader
research project called UIDE, the User Interface Design
Environment [6,8,16]. The overall objective of UIDE is to
empower user interface development environments with
knowledge about application semantics. The knowledge is
captured through a task-oriented, high-level specification.
Once captured, the knowledge is used to partially automate
the user interface design process and to provide automatic
runtime support such as generation of help and user task
event logging. This paper only presents HelpTalk, the help
generation part of the project.

Text, audio, and animation are used as media to deliver
automatically generated help. The representation of the
user's current context is used to construct animation
sequence and the animation is played on the user's current
screen. Currently, the automatic help generation algorithm
works well but the quality of the help generated is still
rough and machine-like, especially the sound bites. We
have not yet provided means for designers to author or add



information to improve the quality of the help the machine
generates.

Help systems such as one presented in this paper are a
beginning step towards automatically generating on-line
help which is useful and is truly context-sensitive. In our
case, the design knowledge of procedural tasks in an
application, and their semantic constraints captured as pre-
and post-conditions, is synthesized by HelpTalk to produce
on-line assistance. It is important to realize that, not all
help responses needed by users could be automated from
procedural knowledge. For example, abstract definitions of
tasks or objects do not exist in any form in the design
specification, hence help regarding abstract information
cannot be automatically generated. Lastly, making sure the
appropriate kind of help is provided to end-users at the right
time is very important. We have not yet addressed this
issue in depth in our research.

In the following sections, a brief overview of precursor help
research in UIDE and other related work will be given. A
small set of examples showing the kind of help HelpTalk
can generate will be shown, followed by explanations of
how the help information is generated.

2. BACKGROUND ON UIDE'S HELP RESEARCH

Our work in the past [3,15] pioneered the automatic
generation of help from user interface specifications. One
of our earlier prototypes [3] utilized pre- and post-conditions
attached to interface widgets to produce help information.
An interface mechanism was built using pre-conditions to
determine when a widget should be visible and/or enabled.
In this system, a widget was enabled only when its pre-
conditions were satisfied. The help system based on this
mechanism [15] used unsatisfied preconditions of a widget
as a basis to explain why the widget was disabled. Also,
the system performed backward reasoning on widget
definitions to derive a series of commands which must be
performed to make the widget of interest enabled (i.e. this
button and that button must be clicked to make this bution
enabled). The result of the backward reasoning process
actually yielded a series of widgets, since it was performed
on widget definitions. The series of widgets was translated
into procedurally-oriented (commands) response such as "To
make Object A enabled, 1) button B must be pressed, 2)
button C must be pressed.”

Our previous approach has a number of limitations, one of
which is the restricted assumption that there is only one
way to interact with an object or a widget, i.e., a button is
pressed, a menu item is selected. This approach will not
scale up to application-specific objects upon which
multiple interactions may apply, i.e. an object can be
dragged, clicked, or double-clicked on. Furthermore,
stringing objects together to derive at a procedural
description of a task does not always guaraniee a
meaningful explanation of a high-level procedure, as a high-
level procedure may require interacting with multiple
objects to complete a task. Lastly, from a software

engineering point of view, attaching semantic conditions
directly to interface objects makes changing interfaces to an
application cumbersome. Changes an interface means
transferring semantic descriptions to new interface
components. This is especially hard when there is a
paradigm shift in the new interface. This drawback is
similar to that in the current interface programming practice
where semantic conditions are embedded in caliback routines
of widgets.

Though pre-dated by automatic generation of animated [10]
and graphical and textual [4] procedural demonstrations,
Cartoonist [15] was the first system which generated
animated help within the user interface runtime context.
Cartoonist was implemented in Smalltalk-80; its emphasis
was automatic generation of animated help from procedural
knowledge. Cartoonist distinguished application and
interface representations and kept the help generation
mechanism independent of application-specific procedures.
Cartoonist consisted of a planner which was used to fill
action context with appropriate parameters, and to derive a
series of action which would satisfy the pre-conditions of an
action on which help is requested. Cartoonist demonstrated
how to perform an action by showing a mouse icon
moving on the screen onto objects with which the user
must interact with, gesturing what needed to be done with
the object such as which button must be pressed, and
simulating the action by generating events to the
underlying user interface handler. Typing was also
displayed by using a keyboard icon showing characters
typed in while actual character codes are simulated to the
underlying interface handler. An animated help scenario
consisted of a series of mouse movements and keyboard
animation to demonstrate how an action must be performed.
Cartoonist only silently animated. The animation
algorithm has been re-implemented in C++ for HelpTalk.

3. OTHER RELATED WORK

Previous work on automatic generation of help has been
primarily in the context of semantic inference from program
code [7,13]. These help systems relied on rule-based code
which was at a higher level than syntax-oriented languages
such as C or C++. Work reported in [20] coupled
executable code generated from the C language with
sophisticated semantic structures which could produce
context-sensitive runtime help directly related to the
runtime context. This approach is rather expensive
requiring duplicate effort in addition to creating the
application. Natural language help [19] used
representations designed to capture discourse structures, and
worked well when the language of discourse was in the
same medium as the interaction style to achieve tasks.
The limitation becomes clear when interactions involve
direct manipulation objects and the discourse structure does
not lend itself to the nature of the interaction styles. All
systems cited in this paragraph only produced textual help.

When user interface specifications were used to generate
help as reported in [14,15,18], more interface knowledge



was used which allowed help to take advantage of graphics
on the screen. Palangue and his colleagues [11] used Petri
Nets with objects as their underlying interface specifications
and were able to produce help similar to our precursor
system reported in [3]. However, they did not take
advantage of the interface context and only used text in their
help responses.

A number of plan-based explanation systems have been
reported [5,17]. Feiner and McKeown [5] emphasized the
use of synthesized graphics and complimentary natural
language in help systems for off-line applications. Thies
[17] used animated demonstrations in the actual interface
context, and favored a two-tiered knowledge base of
application model and interaction knowledge similar to
Cartoonist's approach. A common thread among all these
systems is the need for application tasks and object
definitions to dynamically create procedural help. Systems
as reported in [19,20,17] favored the approach which called
for specifications of interactive applications solely for on-
line help purposes. Palangue's [11] and our work are a step
further; we used the same representation to drive both the
interface and help. While the semantic information of the
applications is declaratively captured and the user interface
programming task is brought up to a much higher-level,
help can be automatically generated.

3. WHAT CAN HelpTalk GENERATE?

Currently, HelpTalk generates answers to only two types of
questions: "Why is this widget disabled?" and "How can
one invoke this widget?" Through the representation, a
widget is associated with actions represented in the UIDE's
knowledge base of the application interface. Responses to
the first type of questions are currently presented as text
strings, while responses to the second type of questions are
presented as audio and animation.

As you will see from examples shown later in this section,
these questions may not necessarily be typed in by the
users. They could be embedded as part of an application
interface. The way in which these questions are embedded
depends solely on the designer's preference. To give readers
an idea of the help invocation mechanism and the kind of
help HelpTalk generates, the following screens are shown
and explained as examples.

Textual WHY Help

Figure 1 shows an interface created in UIDE using the
OPEN LOOK Intrinsic Toolkits (OLIT). In this figure, the
menu items "Delete” and "Rotate” are grayed out. Located
below is the help dialog box where help questions can be
typed in. A question "why Delete" (equivalence of "why is
the Delete widget disabled?") has been typed in. HelpTalk's
response is displayed in the help dialog box. As you may
notice, in addition to explaining why Delete is disabled, it
also explains what needs to be done in order to make the
Delete menu item enabled. In this example, HelpTalk
looks at the pre-conditions of the action associated with the

Delete menu item, the DeleteGate action. Its pre-conditions
state that there must be a gate in the system for the
DeleteGate action to be enabled. Since the user has not
created any gate so far, the condition "exist (x,GATE)" is
used as a basis to provide an explanation. As you may see,
the explanation in Figure 1 states that "an object of type
GATE doesn't exist.” In addition to this explanation, it
also states "To perform the DeleteGate action, the action
CreateNOTGate should be invoked."

Readers may notice a couple of glitches in this help
interface. First, unique labels are assumed for interface
objects on the screen. Otherwise, HelpTalk will not be
able to match the object from help questions .to correct
objects on the screen. Another glitch is, HelpTalk
currently presents only one action out of multiple choices
of actions which can satisfy conditions. In this example,
the planner detects a number of actions which can produce a
gate in the context (createNOTGate, createNANDGate,
createNORGate, etc.). HelpTalk picks the first option and
uses it to explain to the user ("To perform the DeleteGate
action, the action CreateNOTGate should be invoked.").
This problem can be solved by modeling create-gate as a
generic create action, of which creating each type of gate is
an alternative means to achieve the action. This requires a
hierarchical representation of action structure currently not
supported by UIDE.

Figure 2 shows an interface to a computerized reservation
system for the German InterCity Express train (ICE) for
German audience. This interface is created in UIDE using
SX/tools, a rather sophisticated graphical interface builder
[9], as the interface front-end. At this point in the interface,
the user has not chosen a city for an origin or a destination
yet. Attempting to select the button labeled "Weg OK”
(confirm the route selection) which is currently disabled
causes the help dialog box to pop up. HelpTalk detects two
unsatisfied pre-conditions for the corresponding action,
AcceptRoute, which state that cities must be chosen for
origin and destination of the route. From these two pre-
conditions, the explanation "A station has not been selected
for ORIGIN and A station has not been selected for
DESTINATION" is generated. Since the model of the
interface is in English and the explanation of predicates is
given in English, help messages are presented in English
though the labels of button are in German. We chose to be
inconsistent to make it easier for readers to distinguish
which parts are automatically generated from the
representation and which parts are independent of the
internal representation.

In the two examples above, the same help generation
mechanism is used for two different help access
mechanisms. Help is requested explicitly in the first
example while the information is voluntary in the second
example when the user attempts to select a disabled button.
Here is a good point to emphasize the flexibility of
separating the help access and help generation as two
mechanisms. Though the two issues tie closely together
and help systems will not succeed without good interfaces



Figure 2. HelpTalk's
response to the user's
attempt to select the
disabled "Weg OK" button
in an InterCity Express (ICE) train
reservation system.
In this application, user can
repeatedly select cities of
origin and destination until
the route is satisfactory.
The "Weg OK" button
becomes enabled when both
origin and destination cities
have been selected.

Figure 1. HelpTalk's
explanation of why
the action Delete is
disabled in a digital
circuit layout
application.

Figure 3. An illustration

of animated sequences
created by HelpTalk.

The animated mouse first
selects an originating city

for a travel route with the left
mouse button, then selects a
destination city with the right
mouse button. The animated
mouse then proceeds to
select the "Weg OK" button
which is currently enabled in
this figure.



on both sides, they can be thought of separately. Though
the importance of the help access is always realized, our
research work so far has concentrated on the generation side
and not in depth on the interface side.

Audio/Animated HOW Help

In Figure 3, a composition of 3 different snapshots of an
animated help scenario is shown. Prior to this snapshot,
the screen looks like what is shown in Figure 2 where the
"Weg OK" button is disabled. In this figure, the user
presses the right mouse button on the disabled "Weg OK"
button to invoke the animated help. Currently, we use
clicking on the right mouse button as a signal to HelpTalk
to animate what needs to be done to make the object
enabled. Since the "Weg OK" button is disabled for the
reason mentioned in the explanation of Figure 2, the
planner is invoked to come up with a series of actions
which must be done to make the "Weg OK" button enabled.
In other words, the planner must look for actions which
will create conditions satisfying the pre-conditions of the
AcceptRoute action. Once the planner is done, HelpTalk
animates the plan by selecting Frankfurt for the origin with
the left mouse button, selecting Munich for the destination
with the right mouse button, and selecting the "Weg OK"
button with the left mouse button. Figure 3 shows the
mouse after selecting Frankfurt, the mouse after selecting
Munich, and the mouse before selecting the "Weg OK"
button.

What cannot be shown in Figure 3 is the audio narration,
which is played during the animation. The audio is
generated by extracting information from the knowledge
base which corresponds to different parts of the animation.
In Figure 3, the audio states "The AcceptRoute cannot be
done in this context. To perform the AcceptRoute action,
you must perform SelectOrigin, SelectDestination first. To
SelectOrigin, select this object using the left mouse button.
To SelectDestination, select this object using the right
mouse button. To perform AcceptRoute, select the Weg
OK button using the left mouse button."

Readers may also notice that the messages generated have
too strong of an implication that these two specific cities
must be selected for the route. The message should indicate
flexibility by stating that these two cities are chosen as
examples of an originating and a destination cities.
Currently, HelpTalk cannot distinguish between objects
which must be chosen, for example only the "Weg OK"
button can be selected to invoke AcceptRoute action, and
objects which can be selected such as any city for an origin
or a destination.

4. HELP KNOWLEDGE SOURCE

The help messages shown in the above 3 examples are
possible because procedural knowledge is captured in
UIDE's knowledge base. We often refer to this procedural
knowledge also as "design decisions” which make up an
interface. As mentioned before, UIDE uses this knowledge

as a way to control the execution of an interface [16]. In
this section, a brief description of the knowledge base is
given. Due to space limitation and to keep the paper in
focus, we will not elaborate in detail.

UIDE Knowledge Model

Operation Model Data Model

Application Actions
Model
Interface
Model .
Interaction

techniques

Figure 4 UIDE's Knowledge Base Diagram

UIDE separates its specification, or its knowledge, of an
application as two separate models — the application and the
interface. An application may have multiple interfaces
designed for it, one of which is used in an instance of an
application interface. The application model contains
action and object descriptions specific to an application
domain for which an interface is designed. The interface
model contains interface actions and objects which are
generic and can be used in various application domains. An
interface model of a particular application consists of those
interface actions and interface objects which are chosen for
the interface of this application.

Actions and objects are related to each other through action-
parameter relationships. For example, to "rotate a gate”
requires a "gate” and an "angle of rotation” as parameters.
Figure 4 graphically depicts UIDE's knowledge components
and their relationships.

Action Rotate
{
Parameters: (gate : GATE),
(angle : INTEGER)
Pre-conditions:  exist(x, GATE)
Post-conditions:  angle(gate, angle)
)

Figure 5 Example of an Action Representation

Since UIDE is a model-based user interface environment, a
designer specifies an application by defining objects and
listing actions which users can perform within an
application. Figure 5 shows the representation of the
"Rotate” action in a digital circuit layout program. Please
notice that pre- and post-conditions are expressed in the



predicate notation. Readers may refer to [16] for a full
description of the representation.

The designer then specifies how actions in the application
model maps to actions at the interface level. For example,
the Rotate action can be invoked by 1) do Select-Command-
from-a-Pulldown-Menu, which has a menu and a menu item
as its parameters, 2) do Select-Object, which has a graphical
object as its parameter, and 3) Enter-Integer, which has a
dialog box, a text-entry widget, and an integer as
parameters. When specific objects such as buttons, menus,
and menu items are used in actions, the designer specifies
object names in the specifications (not shown in this
paper). HelpTalk uses this information of which specific
objects are associated with which actions for a
demonstration. HelpTalk acquires positions of related
objects at runtime to create accurate animation scenarios.
In case of non-specific objects such as the example shown
in Figure 3 where any city can be selected, HelpTalk
randomly selects an object of a correct type from the current
context.

Actions at the interface level such as Select-Object are
mapped to interaction techniques which specify input
devices required for the interactions. For example, Select-
Object can be performed by using the Mouse-Click-Object
technique. Interaction techniques contain specific device and
input event information about the techniques. For
example, Mouse-Click-Object consists of pressing the
mouse button on a graphical object, and releasing the
button while the cursor position is still within the same
object. Interaction techniques are part of the interface
model.

UIDE is capable of handling multiple mappings between
different levels. This accommodates representing multiple
ways to perform an action, and multiple interaction
techniques to perform an interface action.

...................

: UIDE KB -

C Application ProgranD

5. ARCHITECTURE

Figure 6 illustrates the logical components of the UIDE's
runtime architecture. At the heart of the architecture is the
knowledge base which is created from parsing designer
inputs of application actions and how they connect to
interface tasks and objects; the former is stored in the
application model, the latter in the interface model. At
runtime, the blackboards associated with the application and
the interface models hold declarative status of the
application and its interface, respectively.

The User Interface Controller (UIC) uses the application
knowledge and the interface specification in the knowledge
base as its source to drive the dialog sequencing. When the
user interacts with the screen interface, UIC determines
which application action is invoked, processes the
information, and sequences the dialog accordingly. More
details of how UIC controls interfaces are described in [16).

HelpTalk has full access to UIDE's knowledge base
including the blackboards. Much of the information to
answer how-questions is constructed from the application
and the interface models combined. It is the blackboards
which allow HelpTalk's responses to be closely tied to the
current context. The blackboard contents are facts which
altogether represent the current context, allowing HelpTalk
to complete context-sensitive help messages or scenarios.
(The blackboard contents also allow UIC to determine
whether an action is enabled.) For example, to rotate a
gate, a gate must be used to demonstrate the procedure. The
blackboard has references to all gates which have been
created in the application .

Once HelpTalk is ready to show the user how to perform an
action, it animates by first figuring out the animation
scenario such as which objects to interact with and in which

()

Q

User Interface EE
Controller &‘] -

P,z &5

- o

34

o

o4

QO

[75]

\_/

HelpTalk

—-P-C Animation Server

Figure 6 UIDE's Runtime Architecture with HelpTalk



nature should the interactions be. It then sends out low-
level scripts to the Animation Server [1] which plays out
the scripts. The Animation Server runs as a separate
process. It responses to low-level commands in scripts
such as "move the mouse to position (20,20)" or play-audio
"Select this object using the left mouse button." The
Animation Server draws the mouse on the screen, moves it
around, and sends X events to the application interface
which is controlled by UIC. It also sends audio
information to its partner, the Audio Server. UIC responds
to events generated by the Animation Server as if the user
were interacting with the system; it then updates the
interface context accordingly. Blackboards get updated and
HelpTalk continues its procedural demonstration until the
help request is completed.

6. GENERATION ALGORITHMS

Currently, HelpTalk uses two strategies for generating help
responses. A response to a why question is generated
based on unsatisfied pre-conditions associated with an
action. A response to a how question is generated based on
traversing the UIDE knowledge model to derive at
procedural descriptions. A planner is used in both strategies
to furnish the responses according to the actual context.

Textual WHY Help

For each predicate symbol used in action representations,
UIDE requires the designer to give a sentence which will be
used to explain when the predicate is true, and a sentence for
when the predicate is false. HelpTalk depends on the latter
to generate WHY explanations. The designer can specify in
the sentence where runtime substitutions for predicate
variables must be used. An example of a predicate
sentence-specification is shown in Figure 7.

exist ({a}, {b})
True: "Object {a) of type {b} exists.”
False: "There is no object of type {b}."

Figure 7 A Predicate Description for WHY Explanations

The predicate exist(a,GATE) evaluates to true when the
blackboard contains a statement such as exist(myObject,
GATE), which means there is an object called myObject in
the system. In this case a is unified to {myQbject}. When
it is evaluated to false, HelpTalk would generate the
sentence "There is no object of type GATE" for a WHY
explanation, since b is unified with {GATE}. The sentence
is then displayed in a dialog box as a text string. The text
string could be sent to a speech synthesizer should we
decide to present it using audio.

A WHY explanation is generated in two parts. The first
part is the reason part as described above. The second part
is the generation of what needs to be done. For the second
part, HelpTalk invokes the planner to derive an action path
which will satisfy the false pre-conditions. (Currently, the

planner only searches in the application model.) HelpTalk
then uses the actions in the derived path to generate the text
which states that such and such actions must be performed
before invoking the action for which help is requested.
This process is rather straightforward. The actions derived
by the planner are listed out as steps. It is possible to use
animation as part of showing the steps. However, we feel
that users may not want to see demonstrations at this point,
and animation should be left as an option.

Audio/Animated HOW Help

Once the planner is invoked and a list of actions which
must be performed is derived, procedural steps for
completing each application action can be constructed by
first traversing the mapping from the application model to
the interface model. For example, rotating an object can be
done by first selecting the rorate action, then selecting an
object to be rotated, and then entering an angle of rotation.
To animate this action, HelpTalk randomly chooses an
object of type GATE from the current context, and picks an
integer between 0 to 360 for the "angle” parameter. The
selection is possible using UIDE's parameter type
definitions.

For each interaction technique mapped to an interface
action, there is a corresponding script which can be sent to
the Animation Server. The script is parameterized such that
variables, such as positions and which keys to type on the
keyboard, can be substituted. HelpTalk resolves these
substitutions based on objects and values it has chosen for
each animation scenario. Normally, when an object is
chosen for a selection, HelpTalk has to request its position
and uses the position for substitution in a script. An
integer value chosen or a character string usually can be
used as is for substitution. HelpTalk then sends scripts
with all parameters resolved to the Animation Server, one
interaction technique at a time. When the Animation
Server completes animating each interaction technique, UIC
reacts to the generated events and modifies the context
accordingly. HelpTalk then makes sure that following
actions can be performed. If the following actions have pre-
conditions unsatisfied in the now modified context, it will
invoke the planner again to remedy the situation.

The audio source comes directly from action and object
names in the application and the interface models. For
example, when animating the rotate action, the audio is
played as follow:

To rotate ..pause...
(first)  you must select a Rotate item
in the Gates menu ...animate...
select an object
(to be rotated)
(and then) enter an integer
(for an angle of rotation).

(then)
...animate...

where boldfaces indicate substitutions at runtime, italics
represents non-verbal actions, and (parentheses) represents



what should be said to smoothen up the audio message.
HelpTalk does not add those phrases in parentheses in its
messages.

7. IMPLEMENTATION

Both UIDE and HelpTalk are implemented in C++ running
on Sun SPARC stations. UIDE's knowledge representation
is implemented as C++ classes. An application designer
can choose to use OLIT widgets or SX/Tools as her
interface front-end. Both toolkits use the same high-level
application representation. HelpTalk only deals with high-
level representation, therefore it is toolkit independent. At
runtime, UIDE, HelpTalk, and the Animation Server run as
separate processes.

8. CONCLUSIONS

Human factor issues must be realized for automatically
generated help to be acceptable: generated text must be
readable; audio and animation must synchronize properly;
the generation process must not take too long, etc. Our
generated text becomes too tedious to read, especially when
multiple conditions are false. Narrations of animations
must contain words which maintains continuity and precise
references to the actual context. Refinements are needed in
these respects. The response time of our help generation
has been acceptable.

In this paper, we have demonstrated how some of help
questions often asked by users can be answered
automatically by a knowledgeable help system. Sharing
knowledge representations with user interface control
mechanisms guarantees consistency between help and actual
interfaces. HelpTalk takes advantage of its tightly coupled
architecture with the underlying interface controller, and
access to runtime context, to construct truly context-
sensitive help explanations. As mentioned earlier, these
two types of help generated by HelpTalk by no means
complete the genre of help which users need at runtime.
However, we do not see this work as an end, but as an
exciting beginning of automatic help generation research
from user interface perspectives.

ACKNOWLEDGEMENTS

This work has been supported by the Siemens Corporate
R&D System Ergonomics and Interaction group of
Siemens Corporate Research Laboratory, Munich,
Germany; the Human Interface Technology Group of
SunSoft, Inc.; Digital Equipment Corporation;
Schlumberger; and US West. The work builds on earlier
UIDE research supported by the National Science
Foundation grants IR1-88-131-79 and DMC-84-205-29, and
by the Software Productivity Consortium. We thank the
members of the Graphics, Visualization, and Usability
Center for their contributions to various aspects of the
UIDE project: Jim Foley, Martin Frank, Mark Gray,
Krishna Bharat, and Hernan Astudillo. We also thank our
former colleagues who contributed to UIDE: Thomas

Kiihme, Srdjan Kovacevic, Won Chul Kim, Daniel
Gieskens, Dennis de Baar, Ray Johnson, Hikmet Senay,
Christina Gibbs, Lucy Moran, and Kevin Murray.

REFERENCES

1. Bharat, K; and P. Sukaviriya. Animating User
Interfaces Using Animation Servers. To appear in
Proceedings of the ACM SIGGRAPH Symposium on
User Interface Software and Technology. November
1993.

2. Booher, H.R. Relative Comprehensibility of Pictorial
and Printed Words in Proceduralized Instructions.
Human Factors 17,3 (1975): 266-277.

3. de Graaff, J.J.; P. Sukaviriya; and C. van der Mast.
Automatic Generation of Context-sensitive Textual
Help. GVU-Technical-Report. Georgia Institute of
Technology, Atlanta, GA. 1993.

4. Feiner, Steve. APEX: An Experiment in the
Automated Creation of Pictorial Explanations. /EEE
Transactions on Computer Graphics and Applications
5 (November 1985): 29-37.

S. Feiner S.K. and K.R. McKeown. Generating
Coordinated Multimedia Explanations. Proceedings of
the 6th IEEE Conference on Artificial Intelligence
Applications, 290-303, 1990.

6. Foley, J.D.; C. Gibbs; W.C. Kim; and S. Kovacevic.
A Knowledge-based User Interface Management
System. In Proceedings of Human Factors in
Computing Systems, CHI'88. May 1988, 67-72.

7. Genesereth, M.R. The Role of Plans in Intelligent
Teaching Systems. In Intelligent Tutoring Systems.
Eds. D. Sleeman and J.S. Brown, London: Academic
Press, 1982.

8. Gieskens, D. and J.D. Foley. Controlling User
Interface Objects Through Pre- and Post-conditions. In
Proceedings of Human Factors in Computing Systems,
CHI'92. May 1992, 189-194.

9. Kihme, T. and M. Schneider-Hufschmidt. SX/Tools -
An Open Design Environment for Adaptable
Multimedia User Interfaces. In Proceedings of
EuroGraphics'92, Computer Graphics Forum. Vol.
11, No. 3. 1992. 93-105.

10. Neiman, D. Graphical Animation from Knowledge.
In Proceedings of AAAI'82. 1982, 373-376.

11. Palanque, P.A.; R. Bastide; and L. Dourte. Contextual
Help for Free with Formal Dialogue Design. In
Proceedings of the Fifth International Conference on



12.

13.

14.

15.

Human-Computer Interaction. Vol. 19B. Orlando,
Florida. August, 1993, 615-620.

Palmiter, S., and J. Elkerton. An Evaluation of
Animated Demonstrations for Learning Computer-
based Tasks. In Proceedings of Human Factors in
Computing Systems, CHI'91. May 1991, 257-263.

Rich, E. Programs as Data for their Help Systems. In
AFIPS Proceedings of the National Computer
Conference. 1982, 481-485.

Spaans, A. Integration of Automatically Generated
Context-sensitive Animated and Textual Help into
UIDE. Master Thesis. Delft University of
Technology. Delft, the Netherlands. 1993,

Sukaviriya, P., and J.D. Foley. Coupling a Ul
Framework with Automatic Generation of Context-
Sensitive Animated Help. In Proceedings of the ACM
SIGGRAPH Symposium on User Interface Software
and Technology. October 1990. 152-166.

16.

17.

18.

19.

20.

Sukaviriya, P; I.D. Foley; and T. Griffith. A Second
Generation User Interface Design Environment: The
Model and the Runtime Architecture. In Proceedings
of Human Factors in Computing Systems,
INTERCHI'93. 375-382.

Thies, M.A. Animated Help as a Sensible Extension
of a Plan-Based Help System. In Proceedings of the
Fifth International Conference on Human-Computer
Interaction. Vol. 19B. Orlando, Florida. August,
1993. 712-717.

Tuck, R., and D. Olsen. Help by Guided Tasks:
Utilizing UIMS Knowledge. In Proceedings of Human
Factors in Computing Systems, CHI'90. April 1990,
71-78.

Wilensky, R., Y. Arens, and D. Chin. Talking to
UNIX in English: An Overview of UC.
Communications ACM 27. June, 1984. 574-593.

Young, D.; C. Smith; M. Washechek; R. Wolven; S.
Haines; and W. Barge II. Dynamic Help: Automated
Online Documentation. In Proceedings of the 2nd

Internatioanl Conference on Systems Integration. June,
1992, 448-457.



