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SUMMARY

Raman spectroscopy provides a powerful means of chemical identification in a variety of

fields, partly because of its non-contact nature and the speed at which measurements can be

taken. The development of powerful, inexpensive lasers and sensitive charge-coupled device

(CCD) detectors has led to widespread use of commercial and scientific Raman systems.

However, relatively little work has been done developing physics-based probabilistic models

for Raman measurement systems and crafting inference algorithms within the framework

of statistical estimation and detection theory.

The objective of this thesis is to develop algorithms and performance bounds for the

identification of chemicals from their Raman spectra. This involves the following thrusts:

• Measurement Model: A Poisson measurement model based on the physics of a disper-

sive Raman device is presented. Placing a statistical model on parameters and data

allows one to draw on information theory to quantify how much information needed

for the required task is available in the data provided by the sensor.

• Parameter Estimation: The problem is expressed as one of deterministic parameter

estimation, and several methods are analyzed for computing the maximum-likelihood

(ML) estimates of the mixing coefficients under our data model. The performance of

these algorithms is compared against the Cramér-Rao lower bound (CRLB). The non-

negative iteratively reweighted least squares (NNIRLS) algorithm is seen to give per-

formance that is nearly identical to the more computationally demanding expectation-

maximization approach.

• Target Detection: The Raman detection problem is formulated as one of multiple hy-

pothesis detection (MHD), and an approximation to the optimal decision rule is pre-

sented. The resulting approximations are related to the minimum description length

xii



(MDL) approach to inference. In our simulations, this method is seen to outperform

two common general detection approaches, the spectral unmixing approach and the

generalized likelihood ratio test (GLRT). The MHD framework is applied naturally

to both the detection of individual target chemicals and to the detection of chemicals

from a given class.

• Accounting for Unknown Chemicals: The common, yet vexing, scenario is considered

in which chemicals are present that are not in the known reference library. A novel

variation of nonnegative matrix factorization (NMF) is developed to address this prob-

lem. Our simulations indicate that this algorithm gives better estimation performance

than the standard two-stage NMF approach and the fully supervised approach when

there are chemicals present that are not in the library.

• Dealing with Library Error: Estimation algorithms are developed that take into ac-

count errors that may be present in the reference library. In particular, an algorithm

is presented for ML estimation under a Poisson errors-in-variables (EIV) model. It

is shown that this same basic approach can also be applied to the nonnegative total

least squares (NNTLS) problem.

Most of the techniques developed in this thesis are applicable to other problems in which

an object is to be identified by comparing some measurement of it to a library of known

constituent signatures.

xiii



CHAPTER I

INTRODUCTION

1.1 The Raman Effect

Raman spectroscopy is the study of the inelastic scattering of photons by molecules. Quan-

tum mechanics requires that only certain vibrational modes are allowed in a molecule.

When a photon hits a molecule, it can interact with the bonds in the molecule, causing it to

change vibrational modes. Consider the simplified example of Figure 1. The frequency of

the incident light is ν0 and its energy is hν0 (where h is Planck’s constant). Upon striking

the chemical sample, some of the photons induce changes in the vibrations of the molecules,

causing a jump to a higher, excited energy state. The light loses energy in the process,

and the scattered light thus has a lower frequency than the incident light. This is known

as Stokes scattering.1 The intensity of the scattered light is plotted vs. Raman (Stokes)

shift in Figure 2. The measured Raman spectrum can be used as a “fingerprint” by which

to identify the chemical. The spectrum of andradite, obtained from [14], is shown as an

example in Figure 3.

νvib

hν0

hν0

h(ν0-νvib)

Rayleigh (elastic) scattering

Raman (inelastic) scattering

Figure 1: The Raman effect.

1Some photons cause the molecules to fall to a lower vibrational state, in which case the scattered light
has a higher frequency than the incident light. This is known as Anti-Stokes scattering. Since there are
initially many more molecules in the ground state than in the excited state, the intensity of the Anti-Stokes
scattering is much lower than the intensity of the Stokes scattering. For this reason, the Anti-Stokes bands
are rarely used in the interpretation of Raman spectra, and we will ignore the Anti-Stokes effect in this
thesis.
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Figure 2: Raman spectrum for the diatomic molecule of Figure 1.
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Figure 3: Raman spectrum of andradite.

1.2 History and Development of Raman Instrumentation

The first experimental verification of the effect was performed by Sir C. V. Raman [72] in

1928.2 Raman let “white” sunlight pass through a narrowband photographic filter, and

the resulting near-monochromatic light then passed through a liquid sample. The inelastic

(Raman) scattering is extremely weak compared to the elastic (Rayleigh) scattering (see

Table 1, from [57]), making it difficult to detect. Thus, to reduce the Rayleigh light, a

second optical filter was placed before the detector. In his first experiments, the “detector”

was his eyes; this was soon replaced with photographic plates. While this initial setup was

quite simple, it demonstrates several key components of any Raman measurement system:

1. Monochromatic light source.

2. Filter to reduce strong Rayleigh-scattered light.

3. Photodetector.

Over the years, these three components have undergone many stages of advancement in an

effort to overcome the serious problem of detecting the Raman photons in the presence of the

2In 1930, Raman was awarded the Nobel Prize in Physics for this discovery.
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strong Rayleigh light (see [18, 69]). In particular, the development of powerful, inexpensive

lasers and sensitive charge-coupled device (CCD) detectors has led to widespread use of

commercial and scientific Raman systems. In addition, advances in computing technology

and the availability of inexpensive, powerful personal computers have enabled automatic

data processing of the Raman spectra.

Table 1: Relative intensities (approximate).

Incident light Rayleigh Scattering Raman Scattering

1 10−6 10−10

While the excitation source is typically in the visible or UV range, the Raman shifts

are in the IR region and correspond to the same vibrational shifts that are studied in IR

spectroscopy. The spectra generated from these two methods arise from different physical

phenomena, however: IR spectroscopy relies on an absorption process while Raman spec-

troscopy uses a scattering process, and the two effects are governed by different selection

rules. Because of this, a noticeable peak in one type of spectrum may be weak or missing

in the other. Thus, Raman and IR spectra are complementary and often used together in

chemical classification.

1.3 Application: Detecting Surface Contamination with the
Joint Contaminated Surface Detector

Current US military reconnaissance systems use a double-wheel sampling system and

a mass spectrometer to detect surface contamination. This system is rather sensitive and

can detect small quantities of chemical and biological agents, but it is also slow (walking

speed) and disrupts operational tempo. It also requires substantial user interaction. The

Joint Contaminated Surface Detector (JCSD) has recently been developed in an effort to

make the reconnaissance systems faster, safer, and more automated [85].

The JCSD is a small Raman sensor that is mounted in a traditional reconnaissance

vehicle.3 In the typical configuration, it sits about a meter above the ground and points

3Unmanned robots are also being developed to bring the JCSD into rough terrain such as buildings,
tunnels, or caves.
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downward, shooting laser pulses 25 times per second as the vehicle moves along. It has been

shown to be successful at speeds of up to 45 miles per hour. An analysis computer performs

the detection/classification by comparing the measured Raman spectra with a “reference

library” of known signatures [28, 70].

There are several challenges inherent in this detection problem. First, each measured

spectrum contains noise introduced by the sensor. The signal-to-noise ratio (SNR) is typ-

ically low, due partly to the fact that the laser can destroy the target chemical if it is too

powerful. Also, multiple chemicals may be present, in varying quantities, in a single shot

of data. The spectra in the reference library are often highly correlated, and there may be

substances present that are not in the library. These are some of the fundamental problems

that we have addressed in our research.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, a physics-based probabilistic model for

a dispersive Raman device is presented. Several approaches to estimating the mixing co-

efficients of the target spectra are discussed, and the results of the various algorithms are

compared with the Cramér-Rao Lower Bound (CRLB). Chapter 3 addresses the detec-

tion problem and outlines several of the challenges and drawbacks of two of the common

general detection approaches. The Raman detection problem is formulated as one of mul-

tiple hypothesis detection, and an approximation to the optimal decision rule is presented.

Chapter 4 considers the scenario in which chemicals are present that are not in the known

reference library, and presents a novel variation of nonnegative matrix factorization to ad-

dress this problem. Chapter 5 expands on the work of Chapter 2 by taking into account the

error present in the reference library. The contributions and conclusions of our research, as

well as several potential avenues for future work, are summarized in Chapter 6.

To understand individual chapters of this thesis, it is not essential to read them in order.

Figure 4 shows the conceptual dependencies of Chapters 2 through 5 and the appendices.
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Figure 4: Conceptual dependencies of the chapters and appendices.

5



CHAPTER II

CHEMICAL MIXTURE ESTIMATION UNDER A

POISSON RAMAN SPECTROSCOPY MODEL

2.1 Introduction

Given an N ×M reference library A of known spectra {a1, · · · ,aM} and a measured spec-

trum y ∈ <N , perhaps the simplest way to estimate the relative quantities of each of the

M components is to use the least-squares (LS) approach:

x̂LS = arg min
x

||Ax− y||2 , (1)

where x = (x1, · · · , xM ) is the unknown vector of mixing coefficients. The solution to (1)

is well known [89]:

x̂LS = (ATA)−1ATy . (2)

However, the LS approach does not take into account the fact that none of the mixing

coefficients can be negative. Therefore, a nonnegativity constraint is usually applied to the

minimization problem, yielding

x̂NNLS = arg min
x

||Ax− y||2 subject to xj ≥ 0 for 1 ≤ j ≤M . (3)

Note that the solution to (3) is typically not the same as the ad hoc approach of simply

solving (1) and setting the negative results to zero. The standard nonnegative least squares

(NNLS) algorithm is due to Lawson and Hanson [44], but other algorithms have also been

employed on Raman data [54, 85] for faster computational performance.

The estimated mixing coefficients are typically each compared to an ad hoc threshold

to decide if the corresponding chemical is present [85]. More details about this and other

detection approaches are the subject of Chapter 3.

Note that these least-squares approaches assume linear mixing of the spectra. The

assumption of linearity is made in most of the literature, and in this thesis.
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2.1.1 Noise Model

If a statistical estimation viewpoint is taken, the least-squares methods of Section 2.1 im-

plicitly assume an additive white Gaussian noise (AWGN) model. If the data is generated

by

y = Ax + v, (4)

where v is white Gaussian noise, then the least-squares approach is justified because it yields

the maximum-likelihood estimate for this particular model [35]. Many popular processing

algorithms, such as the subspace version of the Generalized Likelihood Ratio Test [84, 55],

make this Gaussian noise assumption.

Visual inspection of real Raman spectra indicates that the noise, if thought of as ad-

ditive, tends to be more positive than negative and that the Gaussian distribution, being

symmetric, is not appropriate. Based on this observation, asymmetric distributions such as

the Gumbel and Chi-square distributions have been proposed [82, 93, 34]. However, rela-

tively little work has been done on developing probabilistic models based on the underlying

physics of the instrumentation.

2.1.2 Organization of this Chapter

This chapter is organized as follows. Section 2.2 discusses several key components of a dis-

persive Raman device and presents a new mathematical model. The modified Richardson-

Lucy algorithm, which computes maximum-likelihood estimates under the model, is pre-

sented in Section 2.3. Section 2.4 derives the Cramér-Rao lower bound (CRLB) for our

model. The weighted least-squares (WLS) approach is presented in Section 2.5, and its

properties (under the assumption of known variances) are explored. Section 2.6 discusses

several methods to estimate the weights from the data and presents simulation results for

the algorithms.
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2.2 Measurement Model

The two basic classes of Raman measurement systems are interferometer-based Fourier

transform systems and traditional dispersive devices. This section models a basic dispersive

instrument. In particular, as explained in Section 1.2, this work is motivated by the Joint

Contaminated Surface Detector (JCSD), a portable Raman instrument used for standoff

detection and identification of surface-deposited chemical agents [84].

2.2.1 Key Components of a Dispersive Raman System

Several key components of the measurement system are shown in Figure 5. The Raman-

scattered light is collected with a telescope and directed to a diffraction grating spectro-

graph. The spectrograph is similar to a prism, separating the light by wavelength. The

different frequencies of light land on different columns of the charge-coupled device (CCD)

detector.

Spectrograph
CCD detector

A/D

Figure 5: Key components of a dispersive Raman measurement system.

The CCD [33, 90] is an array of photodetectors. During the collection time interval of

the device, the photons hitting each element of the array are converted to electrons. After

the collection time is over, the charge is transferred down to a shift register, which in turn

transfers the charge to an on-chip output amplifier. The resulting output is then digitized

by an analog-to-digital converter. In this thesis, the A/D converter quantization effects are

ignored, and the characteristics of the A/D converter are assumed to be known such that

the photoelectron count may be extracted from the digitized data.
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2.2.2 Snyder’s Model

Much work has previously been done by the astronomical image restoration community to

model the data obtained by CCD cameras. Similar to the dispersive Raman instrument of

Figure 5, these imaging systems feature an optical system preceding a CCD detector. We

adapt the mathematical model of Snyder et al. [88] to describe the data collected by each

frequency bin in our Raman device:

yi = nsi + nbi + gi, i = 1, . . . , N, (5)

where nsi is the number of photoelectrons generated on the ith bin due to the signal, nbi is

the number of photoelectrons generated on the ith bin due to the background counts, and

gi is Gaussian readout noise from the amplifier. These three random variables are assumed

to be statistically independent of one another and of their values in other bins. The mean

m and standard deviation σ of the readout noise are assumed to be known. Note that gi is

characterized by a continuous random variable, whereas nsi and nbi are described by discrete

random variables. The number of photoconversions that occur during the collection time

interval is Poisson-distributed:

nsi ∼Pois(µsi ) (6a)

nbi ∼Pois(µbi), (6b)

where µsi and µbi are the mean values corresponding to the “ideal noiseless signals.” The

background counts nbi are primarily thermoelectrons generated because of heat (“dark

noise”), but also arise from other noise sources such as internal background radiation and

bias. Each of these individual components of the background noise is Poisson-distributed

and each is independent of each other. Thus, their sum, the “total background counts,” is

also Poisson-distributed as indicated by (6b). The values of µbi are assumed to be known

through a calibration measurement.

If the spectrograph were perfect and the CCD had 100% efficiency, then (6a) would

become

nsi ∼ Pois(si), (7)
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where s = (s1, . . . , sN ) is the “true” underlying spectrum. Even if no extra noise is intro-

duced by the instrumentation, the measurements will vary because of the Poisson nature

of the photoconversions. This “shot noise” is one of the most fundamental noise sources of

the measurement system.

If we still assume that the CCD is perfectly efficient but now allow the “true” signal to

be distorted by the diffraction grating, then µsi in (6a) is given by

µsi =

N∑
τ=1

pi|τsτ , (8)

where p is the point-spread function (PSF) of the diffraction grating, which we assume is

normalized such that it sums to one. The PSF can be thought of as a conditional probability

density, or as a “blurring” function. For the special case in which it is shift invariant, (8)

becomes a convolution sum, and p is then the impulse response of the spectrograph. In

matrix form, (8) is given by

µs = Ps. (9)

The PSF is assumed to be known, either through theoretical prediction or through mea-

surements of it [86].

In reality, the CCD is not perfectly efficient; not all of the photons that hit the CCD

are converted to electrons. The detector efficiency, commonly known as the “quantum

efficiency” or “flat-field response,” is represented by the term βi:

µsi = βi[Ps]i. (10)

The flat-field response generally varies along the array. It is also assumed to be known

through calibration measurements.

The fact that βi and P appear in the mean of the Poisson distribution is a consequence

of the “binomial selection theorem” as described in [41]. To illustrate this, we here consider

only the quantum efficiency; the derivation for the PSF is quite similar and is omitted here

for brevity. Once the PSF has been accounted for via (9), the number of photons incident

on the ith bin of the detector is distributed by

npi ∼ Pois([Ps]i). (11)
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Suppose that for a given detector, each photon incident on the ith bin has a probability βi

of producing an electron. Then the conditional distribution of nsi (the number of photoelec-

trons) given npi (the number of incident photons) is binomial. The marginal distribution of

nsi is then given by

p(nsi ) =
∞∑

npi=nsi

p(nsi |n
p
i )p(n

p
i ) (12a)

=
∞∑

npi=nsi

(
npi
nsi

)
β
nsi
i (1− βi)n

p
i−n

s
i
([Ps]i)

npi e−[Ps]i

npi !
. (12b)

This can be manipulated to obtain

p(nsi ) =
(βi[Ps]i)

nsi e−βi[Ps]i

nsi !
, (13)

so that

nsi ∼ Pois(βi[Ps]i), (14)

which verifies (10). A similar derivation can be performed for (9).

Finally, s is given by

s = Ax, (15)

where, as in Section 2.1, A is the reference library of known spectra and x is the unknown

vector of mixing coefficients.1 Thus, we have

µsi = βi(PAx)i = βi(Bx)i, (16)

where

B , PA. (17)

Our objective is to estimate the mixing coefficients x given the measured spectrum y and

given the parameters B, β, µb, m, and σ.

To illustrate our sensor model, Figure 6 shows the clean spectrum of andradite (obtained

from [14]) and Figure 7 shows a simulated noisy spectrum that was generated by passing

the clean spectrum through our model.

1In general, mapping values of the elements of x to physical units can be difficult. Although the normal-
ization conventions of the library A can be easily addressed, issues such as the exposure time, inclination
angle of the sensor relative to the tested material, atmospheric transmission losses, and pulse-to-pulse varia-
tions in laser strength—all of which combine to define a potentially time-dependent scalar mapping for each
chemical—can become complicated. These issues lie outside the scope of this thesis.
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Figure 6: “True” spectrum of andradite, obtained from [14].
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Figure 7: Simulated noisy spectrum of andradite for case of m = 0, σ = 15, βi = 1 for all i, and µbi = 300
for all i.

We note that the randomness in our measurements is not all modeled as additive noise.

A consequence of this is that the signal and noise are coupled—it is impossible to increase

the signal without also increasing the noise. Consider the shot noise described in (6a): if

the mean of nsi is increased, its variance is also increased, since the mean and variance are

equal. However, the signal-to-noise ratio (SNR) of nsi still increases with µsi :

SNRnsi
,

E[nsi ]√
Var(nsi )

=
µsi√
µsi

=
√
µsi . (18)

Similarly, the SNR for the data yi is given by

SNRyi ,
E[signal component of yi]√

Var(yi)
=

µsi√
µsi + µbi + σ2

. (19)

Figure 8 plots the SNR vs. the signal level (µsi ) for two different cases. The top red line

represents the ideal case in which no noise is introduced by the detector. In this shot noise

limited case, µbi = 0 and σ2 = 0, and the SNR increases with the square root of the signal.

The bottom blue curve represents the case in which µbi = 50 and σ2 = 4. Because the signal

shot noise increases with µbi while the other noise sources remain constant, the shot noise

is the dominant noise effect when the signal is powerful.
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Figure 8: SNR for a CCD pixel.

We note that the SNR does not by itself characterize the difficulty in our estimation

problem. Roughly speaking, there are two main sources of difficulty in estimating x under

our model: there is noise, and there is confusion between library elements. Even if the SNR

is high, deciding which chemicals are present may still be difficult if the library elements are

highly correlated with each other. On the other hand, even if there is only one chemical in

our library (and thus no confusion between library elements), detection may still be difficult

if the SNR is sufficiently low. The Cramér-Rao lower bound (CRLB) derived in Section 2.4

is a preferable metric to gauge the difficulty of the problem, as it takes both of these sources

of difficulty into account from within the information space formed by the sensor model.

To keep the notation simple, this discussion treated the CCD as a 1×N linear array. In

reality, it is generally an R ×N rectangular array. However, in spectroscopy applications,

the R rows of the CCD are typically moved down simultaneously and summed together into

the shift register. This “full vertical binning” results in a 1 × N vector, so not much has

changed with our model. The main difference is that while the signal, the shot noise, and

the background counts all increase with R, the Gaussian readout noise remains the same as

if no binning were performed. This is one of the main differences between our spectroscopy

application and the image restoration problem: the binning makes the Gaussian readout

noise smaller in comparison with the other noise sources, and the readout noise is thus often

neglected. We will likewise neglect the readout noise for the rest of this thesis.

Since the signal nsi and the background nbi are assumed to be statistically independent,
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the sum ni = nsi + nbi is Poisson-distributed: ni ∼ Pois(µsi + µbi). Neglecting the readout

noise, our model is then given by

yi ∼ Pois(µi), (20)

where

µi , µsi + µbi = βi (Bx)i + µbi . (21)

Since the yi are assumed to be independent, the distribution of y is given by

p(y; x) =
∏
i

µyii e
−µi

yi!
. (22)

2.2.3 Related Work

Similar Poisson models have been employed in other applications such as shifted excitation

Raman spectroscopy (SERS) and quantum-limited hyperspectral imaging (HSI). In [99]

and [58], a SERS observation model is given as

y ∼ Pois(Hs), (23)

where s = [sTF sTR]T is a concatenation of the Raman spectrum sR and the fluorescence

background sF , and H describes the linear relationship between these and the observed data.

This SERS model differs from our Poisson model of Section 2.2.2 in several ways. First, the

SERS approach of [99] and [58] directly estimates the entire Raman spectrum, whereas in

our approach we estimate the mixing coefficients corresponding to a known reference library.

Second, the SERS model explicitly accounts for the fluorescence background, which is not

currently included in our measurement model; this is left as a topic for future work. Third,

our model includes several additional sources of noise and distortion that are present in a

realistic dispersive measurement system.

In [21], a similar Poisson model is used to describe the interferogram data obtained from

a quantum-limited HSI system:

y ∼ Pois(H′s′). (24)

The main difference between (24) and the model of Section 2.2.2 is that H′ encapsulates

the linear model for the interferometer-based device, whereas our model is for a dispersive
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device. Also, as in the SERS approach of [99] and [58], the entire spectrum s′ is to be

reconstructed; there is no reference library. (However, nothing inherent in the formulations

in [99], [58], and [21] would prevent them from being adapted to include a reference library.)

2.3 The Modified Richardson-Lucy Algorithm

Given the measured spectrum y, one approach to estimating the mixing coefficients x is to

seek the maximum-likelihood (ML) estimate

x̂ML = arg max
x≥0

p(y; x)

= arg max
x≥0

ln p(y; x). (25)

For notational simplicity, we will drop the superscript and refer to the ML estimate simply

as x̂. Plugging (22) into (25) and dropping the terms that do not depend on x,

x̂ = arg max
x≥0

∑
i

yiln (µi)− µi (26a)

= arg max
x≥0

∑
i

yiln [βi (Bx)i + µbi ]− βi (Bx)i . (26b)

It is straightforward to show that this objective function is concave in x. This means that

any local maximum of the loglikelihood function is also a global maximum.

Building on the approach developed by Shepp and Vardi [80], Snyder et al. [88] derived

the following expectation-maximization (EM) iteration:

x̂newj =
1∑

i βi[B]ij

∑
i

βi[B]ij x̂
old
j∑

j′ βi[B]ij′ x̂
old
j′ + µbi

yi . (27)

This iterative formula turns out to be a variation of the Richardson-Lucy algorithm [73,

52], modified to include the various noise effects in the CCD. The sequence of estimates

will converge toward a ML estimate. Also, the estimates at any iteration will clearly be

nonnegative, provided that the initial estimate is nonnegative. Since a parameter initialized

to zero will stay at zero, it is important to initialize with a positive estimate. Algorithm 1

sketches the main steps of the modified Richardson-Lucy (MRL) algorithm.
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Algorithm 1 Modified Richardson-Lucy Algorithm

Input: y,B,β,µb

Output: x̂MRL

1: Initialize with some positive x̂old

2: while not converged do
3: Compute x̂new using Equation (27)
4: x̂old ← x̂new

5: end while
6: x̂MRL ← x̂new

2.3.1 Intuition behind the Richardson-Lucy Algorithm

The MRL algorithm becomes more intuitive if we first view the trivial case in which B is an

N×1 matrix, and then consider how to expand to the N×2 problem. In this discussion, we

let βi = 1 and µbi = 0 for all i (i.e., we consider the original Richardson-Lucy algorithm). Let

α be the single vector in the reference library, so that yi ∼ Pois(αix). It is straightforward

to show that the ML estimate of x is given by

x̂ML =

∑
yi∑
αi
. (28)

When there are two vectors in the reference library, i.e., when yi ∼ Pois(αix1 + γix2),

it is impossible to solve for the ML estimates of x1 and x2 directly. The EM approach

considers the “complete” data {n1
i , n

2
i }, where n1

i ∼ Pois(αix1) and n2
i ∼ Pois(γix1). We

have knowledge of only the sum yi = n1
i + n2

i , or the “incomplete data.” However, if we

somehow magically knew the values of n1
i and n2

i , then the ML estimates would simply be

given by (28):

x̂ML
1 =

∑
i n

1
i∑

i αi
x̂ML

2 =

∑
i n

2
i∑

i γi
. (29)

The EM algorithm iterates as follows:

1. Make an initial guess x̂old.

2. Since we do not know n1
i , we find its expected value given y and x̂old:

En1
i |yi;x̂old

[
n1
i

]
=

αix̂
old
1

αix̂old1 + γix̂old2

yi , (30)
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where we have used the fact (see [87],[80]) that if A ∼ Pois(λA) and B ∼ Pois(λB),

then E(A|(A+B)) = λA
λA+λB

(A+B). We then update x̂new1 using (29), but with the

expectation:

x̂new1 =

∑
iEn1

i |yi;x̂old
[
n1
i

]∑
i αi

=

∑
i

αix̂
old
1

αix̂old1 +γix̂old2
yi∑

i αi
. (31)

Similarly,

x̂new2 =

∑
i

γix̂
old
2

αix̂old1 +γix̂old2
yi∑

i γi
. (32)

3. Repeat (31) and (32) until convergence has been reached.

Algorithm 1 is a generalization of these three steps, and (27) is a generalization of (31) and

(32), to allow for arbitrary values of β, µb, and M .

2.3.2 Relationship to Minimum I-divergence Methods

Csiszár’s I-divergence is a generalization of the Kullback-Leibler divergence to functions

that do not sum to unity. Csiszár showed that if the functions involved are nonnegative,

then the I-divergence is the only discrepancy measure that satisfies a desired set of intuitive

postulates [10, 8]. The I-divergence from the vector p to the vector q is defined by

I(p||q) =
∑

pi ln
pi
qi
− pi + qi . (33)

Suppose we are given the data y, and are seeking the nonnegative mixing vector x that

minimizes the I-divergence from y to Bx:

x̂I−div = arg min
x≥0

I(y||Bx) (34a)

= arg min
x≥0

∑
i

yi ln yi − yi ln
∑
j

Bijxj − yi +
∑
j

Bijxj

 (34b)

= arg max
x≥0

∑
i

yi ln
∑
j

Bijxj −
∑
j

Bijxj

 . (34c)
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By comparing (34c) with (26a), we see that for the special case in which βi = 1 and

µbi = 0 for all i, the ML approach under the Poisson model is equivalent to the minimum

I-divergence approach.

2.4 Cramér-Rao Lower Bound (CRLB)

The Cramér-Rao lower bound (CRLB) is a lower bound on the variance of any unbiased

estimator. This performance bound gives algorithm developers an idea of the fundamental

limits of the sensor. If acceptable performance is not obtained, it is tempting to assign fault

to the algorithm and hope that a better algorithm is all that is needed to coax the desired

result out of the same data. However, this may be a hopeless quest. If better performance

is needed than the bounds indicate is possible, then the amount of needed information is

not available in the data, regardless of how smart the algorithm is. In this case, a more

informative sensor will be needed.

2.4.1 Derivation of the CRLB

The Fisher Information Matrix (FIM) for a vector parameter is defined as

[I(x)]kl = Ey;x

[
− ∂2

∂xk∂xl
ln p(y; x)

]
. (35)

For any unbiased estimator x̂ with covariance matrix Cx̂, the matrix
[
Cx̂ − I−1(x)

]
is

nonnegative definite. Since the diagonal elements of a nonnegative definite matrix are

nonnegative, this implies that

Var(x̂j) ≥ [I−1(x)]jj . (36)

The diagonal elements of the inverse FIM are the Cramér-Rao lower bounds on the indi-

vidual parameters [92].
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Taking the logarithm of (22) and differentiating with respect to xl, we have

∂

∂xl
ln p(y; x) =

∂

∂xl

∑
i

yilnµi − µi − ln(yi!)

=
∑
i

yi
µi

∂

∂xl
µi −

∂

∂xl
µi

=
∑
i

yiβi[B]il
µi

− βi[B]il. (37)

Differentiating with respect to xk yields

∂2

∂xk∂xl
ln p(y; x) = −

∑
i

yiβ
2
i [B]il[B]ik
µ2
i

. (38)

The FIM is then given by

[I(x)]kl =
∑
i

β2
i [B]il[B]ik(

βi
∑

j [B]ijxj + µbi

)2Eyi;x[yi]

=
∑
i

β2
i [B]il[B]ik

βi
∑

j [B]ijxj + µbi
, (39)

where we have used the fact that Ey;x (
∑

i αiyi) =
∑

i αiEyi;x(yi).

For the Cramér-Rao inequality to hold, the FIM must exist for all valid x. This condition

will be satisfied if the denominator in (39) is nonzero for all i. Since β, B, and x are all

nonnegative, the expression βi
∑

j [B]ijxj + µbi will be positive for all i if µbi is positive for

all i. Thus, if µb > 0, the FIM will exist and be finite. The FIM might also exist and be

finite for µb = 0, if the β, B and xj are set appropriately.

A second “regularity condition” that must be satisfied for the CRLB to be valid [35] is

that

Ey;x

[
∂

∂xl
ln p(y; x)

]
= 0. (40)

We verify this by taking the expected value of the expression in (37):

Ey;x

[
∂

∂xl
ln p(y; x)

]
=
∑
i

Eyi;x[yi]βi[B]il
µi

− βi[B]il

= 0. (41)

19



2.4.2 CRLB Examples

2.4.2.1 Special Cases of One and Two Estimated Mixture Coefficients

Some intuition concerning this CRLB may be be gained by considering the degenerate case

in which there is a single spectrum b = (b1, . . . bN ) in the reference library.2 If we simplify

further by letting βi = 1 and µbi = 0 for all i, then yi ∼ Pois(bix), and plugging (39)

into (36) yields the scalar CRLB

Var(x̂) ≥ x∑
i bi

. (42)

In this case, the minimum achievable variance of any unbiased estimator x̂ increases with the

true parameter x. This is a reflection of the fundamental property of shot noise discussed

in Section 2.2.2: the signal cannot be increased without the variance also being increased.

We note that while the absolute variance of x̂ increases with x, the relative accuracy of the

estimate improves with stronger chemical concentration:

SNRx̂ =
E[x̂]√
Var(x̂)

∝ x√
x

=
√
x. (43)

In contrast with this single-vector Poisson example, consider the single-vector AWGN

model y = bx+ v, where v ∼ N (0, σ2I). The CRLB for x under this model is given by

Var(x̂) ≥ σ2

||b||2
. (44)

Here the variance decreases as the L2 norm of b increases, whereas under the Poisson model,

it decreased with the sum, or L1 norm, of b. This suggests that for the shot noise dominated

case, if normalization of the spectra is to be performed as a preprocessing step, it may be

more natural to use the L1 norm rather than the L2 norm. Another difference between (42)

and (44) is that the CRLB for the AWGN model does not depend on the true parameter x.

These two differences are illustrated in Table 2, which shows the CRLBs under each model

for different values of b and x.

2Here we have followed the notation of (17): b = Pa, where a is the reference library vector for a single
chemical.
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Table 2: CRLB for the M = 1 case.

AWGN model Poisson model
b x CRLB(x) CRLB(x)

(0, 4, 0, 0, 0)T 1 σ2/16 1/4
(0, 4, 0, 0, 0)T 10 σ2/16 10/4
(1, 1, 1, 1, 0)T 1 σ2/4 1/4
(1, 1, 1, 1, 0)T 10 σ2/4 10/4

If we again consider the single-parameter case but now relax the requirement that βi = 1

and µbi = 0, then the CRLB is given by

Var(x̂) ≥ 1∑
i

β2
i b

2
i

βibix+µbi

. (45)

It is clear that the CRLB increases as the detector efficiency β decreases and as the mean

of the background counts µb increases.

The bounds will typically be higher if the parameters are to be jointly estimated. This

is illustrated in Table 3. The “uncoupled” bounds are the scalar CRLBs found in Table 2.

The “coupled” CRLBs are given by (36) and (39). We used the tiny value of µbi = 0.01

for all i to be sure that the FIM could be computed. The CRLB (nonstrictly) increases

as we estimate more parameters, because [I−1(x)]jj ≥ 1/[I(x)]jj . We see that the bounds

are highly dependent on the specific combination of true mixing coefficients; having a lot of

the first chemical present does not greatly undermine our ability to estimate the second (an

increase from 0.25 to 0.33), but a large presence of the second chemical will have a more

significant effect on the bound for the first (an increase from 0.25 to 1.08).

Table 3: CRLB for the M = 2 case.

CRLB CRLB
b x (uncoupled) (coupled)

(0, 4, 0, 0, 0)T 1 0.25 1.08
(1, 1, 1, 1, 0)T 10 2.5 3.33

(0, 4, 0, 0, 0)T 10 2.5 2.58
(1, 1, 1, 1, 0)T 1 0.25 0.33

21



2.4.2.2 CRLB for a Real Reference Library

This section explores a reference library provided by Darren Emge of the Edgewood Chem-

ical Biological Center. We consider the detection of a target chemical characterized by the

Raman spectrum shown in Figure 9. We let this spectrum be the first column of our refer-

ence library (with corresponding mixing coefficient x1), and we examine how our estimate

x̂1 is degraded as the library is expanded to include more chemicals. For this simulation,

we normalize each spectrum in the library to sum to 10,000, and we let µbi = 5 and βi = 1

for all i. Each spectrum in the reference library has 1024 frequency samples (N = 1024).
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Figure 9: Raman spectrum of Chem. 1.

The standard deviation bound is plotted vs. M (the number of chemicals in the reference

library) in Figure 10. The two curves are for two different true mixing vectors: for the top

curve, xj = 1 for all j, while for the bottom curve, x1 = 1 and xj = 0 for all j 6= 1. The

sharp jump at M = 13 reflects the fact that the 13th element of the reference library is

one of the elements most correlated with the first. From the bottom curve we see that the

additional spectra in the reference library make it more difficult to estimate x1, even if no

other chemicals are actually present in the measurement sample. Note that there was no

particular logic to the ordering of the spectra—if the 50 spectra in the reference library

were rearranged, the plot would look different, although the overall trends would stay the

same.

2.5 Weighted Least Squares (WLS) with Known Weights

This section begins by revisiting the simple Gaussian model,

y = Hx + v, (46)

22



0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

M
S

td
 D

e
v
 B

o
u
n
d
 o

n
 x

0

CRLB(x
0
)

 

 

x = (1,1,...,1)
T

x = (1,0,...,0)
T

Figure 10: Standard deviation bound on x1 as a function of M .

but we now consider the case in which the variance depends on the bin number:

y ∼ N (Hx,C) , (47)

where C is a diagonal matrix defined by [C]ii = σ2
i . It is well known that the maximum-

likelihood estimate is given by

x̂ = arg max
x

ln p(y; x)

= arg min
x

(y −Hx)TC−1(y −Hx)

= arg min
x

‖Wy −WHx‖2, (48)

where W is the diagonal matrix defined by [W]ii = wi , 1/σi, i.e., W2 , C−1. Equa-

tion (48) formalizes the intuitive notion that the measurements with lower variance should

have more influence on our estimate than the measurements in which we have less confi-

dence. Assuming the true weights (inverses of the variances) are known, the ML estimate

is thus given by the weighted least-squares (WLS) estimator

x̂ =
(
HTW2H

)−1
HTW2y. (49)

This estimator is easily shown to be unbiased and is also shown to achieve the CRLB [35].

Since it is the minimum variance unbiased (MVU) estimator, no other unbiased estimator

can achieve a lower mean-squared error.
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2.5.1 WLS for Poisson Data

The WLS approach has also been applied to Poisson data. The next four subsections discuss

four justifications for its use.

2.5.1.1 Large-Signal Approximation

For strong signals, the Poisson-distributed measurement yi is approximated well by a normal

distribution:

yi ∼ Pois ((Hx)i) (50)

can be approximated by

yi ∼ N ((Hx)i , (Hx)i) , (51)

or, in vector form,

y ∼ N (Hx,C). (52)

Thus, under this “large-signal approximation,” the WLS approach is “approximately” MVU

[54].

2.5.1.2 Best Linear Unbiased Estimator Property

If we relax the assumption of Gaussianity but still assume that E[y] = Hx and Cov(y) = C

(as is the case for the Poisson model), then by the Gauss-Markov theorem [35], the WLS

estimator defined by (49) is the best linear unbiased estimator (BLUE). Therefore, if the

signal intensity is too low for the large-signal approximation to be valid, the WLS estimator

still has the lowest variance out of the restricted class of linear unbiased estimators.

2.5.1.3 Minimum Variance Unbiased Estimator Property

The above properties are common justifications for applying the WLS approach to Poisson

data. We now present a more powerful, lesser-known property: if the “true” weights cor-

responding to the “true” parameters are precisely known, the WLS method yields the MVU

estimator for our Poisson data model. We recognize that this is an artificial formulation
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(since the true weights will not be known in practice), but following this path will provide

insights into algorithm behavior.

We begin by defining

[H]ij , βi[B]ij (53)

and

y′ , y − µb. (54)

Then the WLS method, applied to the calibrated data y′, is unbiased:

E(x̂WLS) =
(
HTW2H

)−1
HTW2E(y′) (55a)

= x. (55b)

Furthermore, if we let

P ,
(
HTW2H

)−1
HTW2, (56)

then the covariance matrix of x̂WLS is given by

Cov(x̂WLS) = Cov(Py′)

= PCov(y′)PT

= PCov(y)PT

=
(
HTW2H

)−1
HTW2(W2)−1W2H

(
HTW2H

)−1

=
(
HTW2H

)−1
. (57)

The Fisher information matrix given by (39) can be rewritten as

[I(x)]kl =
∑
i

[H]il[H]ik∑
j [H]ijxj + µbi

. (58)

This is expressed in matrix form as

I(x) = HTW2H, (59)

where W2 is the diagonal matrix defined by [W2]ii , 1/(
∑

j [H]ijxj +µbi), i.e., W2 , C−1.

Since Cov(x̂WLS) = I−1, x̂WLS is an MVU estimator. This is stronger than the BLUE

property guaranteed (for any distribution of yi) by the Gauss-Markov theorem.
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This subsection assumed the variances of the data points are known exactly. In reality,

they will never be known exactly, since they depend on the unknown true mixing vector

x.3 In practice, it is necessary to estimate the weights from the data, and the optimality

properties of WLS are lost. However, this section provides an important piece of insight:

the failings of WLS are not caused by the Gaussian distribution failing to approximate the

Poisson data per se; rather, they are caused by our lack of knowledge of the true weights.

2.5.1.4 Relationship between ML and WLS

Lastly, we will show that the ML approach can lead to a WLS formulation. Section 2.3

showed that the ML estimate under our Poisson model is found by maximizing the concave

objective function

ψ(x) =
∑
i

yi lnui − ui, (60)

where µi , βi (Bx)i + µbi = (Hx)i + µbi . Since (∂/∂xj)µi = [H]ij , we have

∂

∂xj
ψ(x) =

∑
i

yi[H]ij
µi

− [H]ij (61)

if µi > 0 for all i. The objective function ψ is not defined for negative µi; the mean

parameter for a Poisson distribution cannot be negative. Therefore, the point x̃ satisfying(∑
i

yi[H]ij
µi

− [H]ij

)∣∣∣∣∣
x=x̃

= 0 for all j (62)

will be the ML estimate only if the resulting µ̃ = Hx̃ + µb happens to contain no negative

values. In addition to the nonnegativity of µ required by the Poisson model, we have a

stricter requirement that the mixing coefficients themselves be nonnegative (“stricter” in

the sense that x̃ ≥ 0 implies that µ̃ ≥ 0). Thus, the x̃ satisfying (62) will be the solution

to the constrained ML problem (26a) if x̃ ≥ 0.

Even if we momentarily ignore the nonnegativity constraint, (62) is a nonlinear system

of M equations and M unknowns that cannot be solved directly (analytically). However,

we may gain insight into the problem by following the approach of Wheaton et al. [95] and

3Furthermore, if the weights were somehow perfectly known, then x could be directly recovered from
them exactly; y would not be needed.
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Dixon et al. [13] and rewriting (62) as∑
i

yi[H]ij
µ̃i

=
∑
i

[H]ijµ̃i
µ̃i

(63a)

=
∑
i

[H]ij

(∑
j′ [H]ij′ x̃j′ + µbi

)
µ̃i

. (63b)

Equivalently, ∑
i

[H]ij(yi − µbi)
µ̃i

=
∑
i

[H]ij
∑

j′ [H]ij′ x̃j′

µ̃i
(64a)

=
∑
j′

∑
i

[H]ij [H]ij′

µ̃i
x̃j′ . (64b)

Equation (64) can be expressed in matrix form as[
HTW̃2

(
y − µb

)]
j

=
[
HTW̃2Hx̃

]
j
, (65)

where W̃2 is the diagonal matrix defined by

[W̃2]ii ,
1

µ̃i
. (66)

If we again let y′ , y − µb, then

HTW̃2y′ = HTW̃2Hx̃. (67)

Thus, x̃ may be viewed as the solution to a WLS problem, but one in which the “optimal”

weights are unknown:

x̃ =
(
HTW̃2H

)−1
HTW̃2y′. (68)

We again emphasize that the x̃ given by (68) is the ML estimate only if it happens to

satisfy x̃ ≥ 0. We also note that the “optimal” weighting matrix W̃2, which is a function

of the estimate x̃, will generally be different from the “true” weighting matrix W2 (which

is a function of the “true” x) used in the previous section. The “true WLS” nonetheless

provides a useful reference point in our simulations.

2.6 WLS with Estimated Weights

In Section 2.5, we saw that if the “true” weighting matrix, defined by

[W]ii = wi ,
1
√
µi

=
1√

βi
∑

j′ [B]ij′xj′ + µbi

, (69)
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is assumed to be known, then the resulting WLS estimator is the MVU estimator for

our Poisson model. In practice, however, the true weights depend on x and are therefore

unknown, making the “true WLS” method unrealizable. One approach is to estimate the

weights from the data and then apply WLS with the estimated weights:

x̂ =
(
HTŴ2(y)H

)−1
HTŴ2(y)y′. (70)

We will use the nomenclature of [5] and refer to this approach as generalized least squares

(GLS). The estimated weights, being a function of y, are now random and are generally

correlated with the data. Thus, unlike the “true” WLS or the LS or any other method in

which the weights are fixed, the GLS approach is generally biased (because (55a) no longer

holds). Similarly, the covariance matrix of x̂ is no longer given by (57).

2.6.1 A Simple Generalized Least Squares Algorithm

Perhaps the simplest and most common GLS method is to estimate the variances µi directly

from the data: µ̂i = yi. If we neglect the structure on µ created by (21) and assume that

each value is uncorrelated with the next, this method can be shown to give the ML estimate

of µi given yi:

µ̂ML
i = arg max

µi
p(yi;µi) = yi. (71)

Furthermore, it is unbiased: E(µ̂i) = E(yi) = µi. It follows from the invariance property of

ML estimation that the resulting estimated weights are also ML estimates:

ŵML
i =

1√
µ̂ML
i

=
1
√
yi
. (72)

These estimates of the weights, however, are biased: E(ŵi) = E(1/
√
yi) 6= 1/

√
µi in general.

They are also unstable; the variances of the estimated weights can be quite large. This is

especially true for small measurement values; for example, if yi = 0, this method will give

infinite weight to the ith measurement.

We now illustrate this simple GLS method by revisiting the M = 1, µb = 0 case of

Section 2.4.2.1, in which yi ∼ Pois(hix). For this case,

x̂WLS =
hTW2y

hTW2h
=

∑
i yi∑
i hi

(73)
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and

x̂GLS =
hTŴ2y

hTŴ2h
=

∑
i hi∑

i h
2
i /yi

, (74)

where we have used the fact that [W2]ii = 1/(hix) and [Ŵ2]ii = 1/yi. It is straightforward

to show that

x̂ML = arg max
x

p(y;x) =

∑
i yi∑
i hi

. (75)

In this specific case, the “true WLS” and ML are equivalent, but as discussed in Sec-

tion 2.5.1.4, this is not true in general.

We let h = [4 6]T and x = 1, and computed 1 million Monte Carlo runs of the above

algorithms. We also computed the unweighted least-squares estimate x̂LS = hTy/hTh.

The sample biases of the LS and WLS estimators were approximately zero, as expected,

while the sample bias of GLS was approximately −0.1. The GLS method underestimates

x because the weights are negatively correlated with the data; the small measurements are

given more weight because they are thought to have smaller variance. Table 4 contains the

mean square error of each method relative to the MSE of WLS with known weights. Because

h1 and h2 are similar in magnitude, weighting does not have much influence, and WLS is not

much better than unweighted least squares. This somewhat contrived example emphasizes

that GLS can theoretically perform worse than LS; here, the benefit from weighting is not

as great as the harm introduced by needing to estimate the weights. However, in practice,

we have yet to see this effect with typical Raman spectra.

Table 4: Relative MSE for the simple M = 1, N = 2 case.

method relative MSE

WLS 1
LS 1.035

GLS 1.318
GLS2 1.230

Part of the error in GLS comes from the infinite weight given to any zero measurements.

One ad hoc way to address this problem is to change those values from zero to some constant

for the calculation of the weights. We force the zero measurements to 1, which is the smallest

nonzero value that the measurements can take under our Poisson model. The effect of this
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tweak, and the choice of which constant to use, are topics of future research outside of the

scope of this thesis. This method is called “GLS2” in Table 4, and is seen to offer some

improvement. We will use this approach in all of the remaining GLS simulations in this

thesis.

2.6.2 Iteratively Reweighted Least Squares

The simple GLS method of the previous section, given by (72), suffers because it does

not take into account the known structure of the variance function. It is known that

µ = Hx + µb, yet (71) might yield a µ̂ that cannot be formed by µ̂ = Hx̂ + µb. A

preferable approach, iteratively reweighted least squares (IRLS), views the estimation of

the variances as a form of regression [5]. Algorithm 2 sketches the main steps of the IRLS

algorithm.

Algorithm 2 Iteratively Reweighted Least Squares Algorithm

Input: y,H,µb,K
Output: x̂IRLS

1: Initialize with LS estimate x̂
2: for K iterations do
3: µ̂← Hx̂ + µb

4: ŵi ← 1/
√
µ̂i for all i

5: Compute WLS estimate x̂ using updated weights
6: end for
7: x̂IRLS ← x̂

The IRLS algorithm is typically initialized with the unweighted least-squares estimate.4

At each iteration, the algorithm estimates the weights based on the estimated mixing vector

from the previous iteration. These estimated weights are then used to compute a new x̂ for

the next iteration.

In our simulations, we found the algorithm to typically give good results (and more or

less converge) after just two iterations.

4An alternative approach, not considered here, is to initialize with a generalized least-squares estimate
such as that defined by (72).
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2.6.2.1 Fisher’s Method of Scoring

For our measurement model, the IRLS algorithm is equivalent to Fisher’s method of scor-

ing, which is a common modification [35] of the Newton-Raphson approach to maximizing

likelihoods. In the method of scoring, the Hessian matrix in the Newton-Raphson update

is replaced by its expected value, resulting in the iterative formula

x̂(k+1) = x̂(k) + I−1(x)
∂

∂x
ψ(x)

∣∣∣∣
x=x̂(k)

. (76)

Sections 2.4 and 2.5.1.3 showed that the Fisher information matrix for our measurement

model is given by

I(x) = HTW2(x)H (77)

and that the gradient of the loglikelihood objective function is given by

∂

∂x
ψ(x) = HTW2(x)y′ −HTW2(x)Hx, (78)

where we have now made explicit the dependence of W2 on x. The method of scoring then

becomes

x̂(k+1) = x̂(k) +
(
HTW2(x)H

)−1 (
HTW2(x)y′ −HTW2(x)Hx

)∣∣∣
x=x̂(k)

(79a)

=
(
HTŴ2

(k)H
)−1

HTŴ2
(k)y

′, (79b)

where
[
Ŵ2

(k)

]
ii
, 1/(Hx̂(k) + µb)i. The update equation (79b) is equivalent to the update

equation for the IRLS algorithm.

Since the objective function is concave, the method of scoring, at first glance, seems

appropriate for our problem. However, as in Section 2.5.1.4, the resulting estimate will be

the solution to the constrained ML problem (26a) only if it happens to satisfy x̂IRLS ≥ 0.

In fact, if any of the µ̂i are negative on a given iteration, then the derivatives required by

the scoring method do not exist, and IRLS ceases to be equivalent to the scoring algorithm.

2.6.2.2 Ensuring nonnegativity

We would like to modify the IRLS approach to ensure that x̂ ≥ 0. The simplest way to

force nonnegativity on each iteration is to simply truncate any negative values to zero.
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This “clipping” method does not generally converge to the constrained maximizer [19]. A

preferred approach is to replace the WLS estimate

x̂(k+1) =
(
HTŴ2

(k)H
)−1

HTŴ2
(k)y

′ (80a)

= arg min
x

‖Ŵ(k)y
′ − Ŵ(k)Hx‖2 (80b)

with the nonnegative weighted least-squares estimate

x̂(k+1) = arg min
x≥0

‖Ŵ(k)y
′ − Ŵ(k)Hx‖2, (81)

which can be solved for using any standard NNLS algorithm. This nonnegative iteratively

reweighted least-squares (NNIRLS) algorithm appears to converge to the constrained ML

estimate in our simulations, although we do not have an explicit mathematical proof of

convergence.

Our physics-based model differs from the “standard” Poisson regression model described

in [60, 59], in that the “link function” inherently built into it is the identity link, whereas the

standard Poisson regression model features a log link function to ensure nonnegativity of the

means of the Poisson distribution. The Poisson regression model with the log link function

is a special case of the family of generalized linear models, for which the equivalence between

IRLS and Fisher’s method of scoring (summarized in the previous section) is well-known.

However, in Raman spectroscopy, there is no physical justification for applying the mixture

model in a logarithmic domain, so additional care must be taken to ensure nonnegativity.

In our case, it does not appear that NNIRLS and Fisher’s method of scoring are equivalent.

We note that while the nonnegativity constraint reduces the estimation error, it also

introduces bias. This is seen, for example, in the common case in which xj = 0: x̂j will be

either zero or positive but never negative; thus, on average, it will be positive and therefore

biased.

2.6.3 Simulation Results

We now compare the experimental performance of all of these algorithms to each other

and to the CRLB. We again use the reference library of Section 2.4.2.2, but now consider
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the detection of the 27th chemical (with corresponding mixing coefficient x27). The Raman

spectrum of Chem. 27 is shown in Figure 11. We consider the case in which this is the

only substance present, i.e., xj = 0 for all j 6= 27. We vary the signal energy by sweeping

the mixing coefficient from x27 = 0.1 to x27 = 10.0, and examine the performance of the

algorithms under the different energy levels. For this simulation, we again normalize each

spectrum in the library to sum to 10,000, and we let µbi = 5 and βi = 1 for all i. Each

spectrum in the reference library has 1024 frequency samples (N = 1024).
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Figure 11: Raman spectrum of Chem. 27.

In this discussion, we will refer to the simple generalized least-squares method of Sec-

tion 2.6.1 as “GLS.” We will use “WLS” to refer to the unrealizable estimator that assumes

knowledge of the “true” weights. We used two iterations (in addition to the initial un-

weighted least-squares estimate) in the IRLS and NNIRLS algorithms. We initialized the

NNIRLS and modified Richardson-Lucy (MRL) algorithms with the NNLS estimate. Any

zero values in the MRL initial estimate, however, were changed to a small constant; oth-

erwise, they would remain at zero after each MRL iteration. The MRL algorithm was

terminated when ‖x̂new − x̂old‖2 < 1e-5. The algorithms are summarized in Table 5.

The sample root mean square error (RMSE) and sample bias of the algorithms are

plotted in Figures 12 and 13, respectively, where

RMSE(x̂27) ,
√
E [(x̂27 − x27)2]

=
√

Var(x̂27) + [Bias(x̂27)]2.

We used 1,000 Monte Carlo runs.

The WLS approach, which is unrealizable in practice but provides a useful reference

point, is seen to have approximately zero bias, and its RMSE matches up almost exactly
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Table 5: Summary of algorithms.

Acronym Full name
Nonnegativity Constrained Weighting

(Y/N) (None/True/Estimated/Implicit)

LS Least squares N None

NNLS Nonnegative least squares Y None

WLS Weighted least squares N True

GLS Generalized least squares N Estimated

IRLS Iteratively reweighted least squares N Estimated

NNIRLS
Nonnegative iteratively reweighted

Y Estimated
least squares

MRL Modified Richardson-Lucy Y Implicit
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with the CRLB. This is to be expected, since it was shown in Section 2.5 to be an efficient

estimator for our model.

The GLS method has noticeably higher RMSE than WLS for all of the energy levels.

This is not surprising; as we saw in Section 2.6.1, this simple GLS approach often yields

estimates that are biased and that have increased variance. However, in this case, this error

is not as large as that introduced by using uniform weights; LS has the largest RMSE of

any of the algorithms. For all of the signal levels considered, weighting leads to improved

performance over unweighted least squares; this is true even if the weights are simply

estimated using (72). Furthermore, the IRLS algorithm matches WLS (and the CRLB)

almost exactly, even after just two iterations; this shows that if the weights are estimated

appropriately, little is lost by not knowing the true weights.

The NNIRLS results match up almost exactly with the MRL results; this suggests that

NNIRLS is indeed converging to the constrained ML estimate. We note that the MRL and

NNIRLS algorithms beat the standard deviation bound. This is possible because the CRLB

is defined for unbiased estimators.5 The unbiased estimators (LS, WLS, and IRLS) are

less accurate because they sometimes estimate negative values. While the nonnegativity

constraint introduces bias, this is more than made up for by the reduction in variance that

the extra information brings.

2.7 Conclusions

This chapter presented a probabilistic model, based on previous work in astronomical im-

age restoration [88], for a basic dispersive Raman measurement system. We considered the

supervised unmixing framework for chemical identification, in which the problem is formu-

lated as one of deterministic parameter estimation. The maximum-likelihood estimates for

the mixing coefficients can be found using the modified Richardson-Lucy algorithm [88].

If the variances of the measurements are assumed to be known, the weighted least-

squares method is the minimum variance unbiased estimator for our Poisson model. In

5There also exists a biased version of the CRLB, which we do not consider here, since it requires an
analytic expression for the bias, which we do not have.
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practice, however, the true weights are unknown and must be estimated from the data.

Our simulations suggest that the resulting generalized least-squares techniques can give

performance that is comparable to the Richardson-Lucy algorithm. In particular, in our

simulations, the NNIRLS algorithm achieved nearly identical accuracy to the MRL algo-

rithm but was computationally less demanding.

One possible avenue for future research is to apply this work more generally to the

simple passive reflectance EO spectral detection of gasses and materials [78].
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CHAPTER III

DETECTING CONSTITUENT CHEMICALS USING

MINIMUM DESCRIPTION LENGTH

3.1 Introduction

Most detection algorithms for Raman spectroscopy compare the measured Raman spectrum

to a given library of known signatures. One common general approach is to first estimate

the relative amount of each chemical present, and then compare each of the estimated

mixing coefficients to a threshold. We will call this technique the “spectral unmixing”

approach. As discussed in Chapter 2, the method of estimating the mixing coefficients

depends on the probabilistic measurement model for the Raman instrument. Chapter 2

considered two such models, Gaussian and Poisson, along with corresponding estimation

algorithms. While parameter estimation under this approach may be optimal in some sense,

the resulting detection algorithm will not generally possess any particular optimality.

An alternative method that has been employed on Raman data is the subspace version

of the generalized likelihood ratio test (GLRT). Section 3.2.2 reviews the common subspace

GLRT that assumes an additive Gaussian noise model. We will also derive the GLRT for

the Poisson measurement model. It is generally challenging to set an appropriate threshold

for the GLRT; because of the nonnegativity of the parameters, the GLRT does not generally

attain its nominal asymptotic performance.

Section 3.3 will frame the problem as one of multiple hypothesis detection (MHD). We

will apply Schwarz’s approximation [79] to the maximum a posteriori (MAP) decision rule,

which minimizes the probability of classification error. The MHD framework is also applied

naturally to the detection of individual target chemicals. Our simulations indicate that

this method gives better detection performance than the spectral unmixing and GLRT ap-

proaches. For large libraries, brute force enumeration of the hypotheses becomes infeasible,
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and it becomes necessary to either apply prior knowledge or seek approximations to the

multiple hypothesis detection approach [66, 64].

3.2 Two General Detection Approaches for Raman Spec-
troscopy

This section will explore two general detection methods for Raman spectroscopy, the

“spectral unmixing” approach and the generalized likelihood ratio test.

3.2.1 Spectral Unmixing Approach

One common general approach is to first estimate the relative amount of each chemical

present, and then compare the estimated mixing coefficients to a threshold. The parameter

estimation step, which was the subject of Chapter 2, is briefly reviewed in Section 3.2.1.1;

the thresholding step is addressed in Section 3.2.1.2.

3.2.1.1 Estimating the Mixing Coefficients

Given an N ×M reference library A of known spectra {a1, · · · ,aM} and a measured spec-

trum y ∈ <N , one approach to estimating the relative quantities of each of the M compo-

nents is the maximum-likelihood (ML) technique:

x̂ = arg max
x

p(y; x), (83)

where x = (x1, · · · , xM ) is the unknown vector of mixing coefficients. If the data are

generated by

y = Ax + w, (84)

where w is Gaussian noise, then the ML approach coincides with the least-squares method.

If the inherent nonnegativity of the mixing coefficients is taken into account, then the

ML estimate under the Gaussian model is found by solving the nonnegative least squares

(NNLS) problem

x̂NNLS = arg min
x≥0

||Ax− y||2. (85)

Many common processing algorithms either explicitly or implicitly assume an additive Gaus-

sian noise (AGN) model.
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Visual inspection of real Raman spectra indicates that the noise, if thought of as ad-

ditive, tends to be more positive than negative and that the Gaussian distribution, being

symmetric, is not appropriate. In Section 2.2, a model was presented for a dispersive

Raman instrument, based on the physics of several key components of the measurement

system [62, 63, 88]. A simplified form of the model is given by

yi ∼ Pois(µi), (86)

where µi , (Ax)i + µbi and µbi is the mean of the “background counts” (primarily due to

dark current) on the ith frequency bin of the charge-coupled device (CCD) detector.1 The

values of the µbi are assumed to be known through a calibration measurement. The yi are

assumed to be statistically independent of each other, so the PDF of y is given by

p(y; x) =
∏
i

µyii e
−µi

yi!
. (87)

Sections 2.3 and 2.6 discussed several iterative methods for computing the ML estimate

under this Poisson model. The spectral unmixing simulations in this chapter will use the

modified Richardson-Lucy (MRL) algorithm described in Section 2.3. We initialize the

MRL algorithm with the NNLS estimate (any zero values in this initial estimate, however,

are replaced with a small constant). The MRL algorithm is terminated when ‖x̂new −

x̂old‖2/‖x̂new‖2 < 1e-5.

3.2.1.2 Determining the Threshold

After the estimates of the mixing coefficients are obtained, each may be compared to a

threshold to decide if the corresponding chemical is present. Choosing an appropriate

threshold is a vital, and often challenging, task. The usual tradeoff applies: lowering the

threshold will increase the probability of detection (PD), but also increase the probability

of false alarm (PFA).

1In this simplified model, µb is the only parameter that varies from one device to another. The more
detailed model of Section 2.2 includes other parameters that are specific to the sensor, such as the point-
spread function of the spectrograph (which affects the measured linewidth) and the nonuniform quantum
efficiency of the CCD detector (which affects the relative peak intensities). Those parameters are easily
incorporated into the work presented in this chapter but are omitted here for clarity.
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For a system to be operational in the field, it must run automatically (i.e., without

user intervention), and a typical practical requirement is that it be able to maintain a

reasonable false alarm rate. Thus, one common aim is to set the threshold to obtain a given

permissable PFA. To find the threshold that achieves a specified PFA, the distribution of the

test statistic under the null hypothesis must be known. Detectors that have this property

are referred to as constant false alarm rate (CFAR) detectors.

As discussed in Section 3.2.1.1, the ML estimate under the AGN model is simply the

LS estimate (assuming no nonnegativity constraint is applied). In this case, x̂ is a linear

transformation of the Gaussian vector y, so x̂ is itself normally distributed. Thus, under

the AGN model without a nonnegativity constraint, it is trivial to find the threshold that

corresponds to a desired PFA. This threshold will generally be different for each mixing

coefficient.

Under the Poisson model (86), on the other hand, x̂ is a nonlinear function of the Poisson

data, and the distribution of x̂ under the null hypothesis is not known. Most non-Gaussian

models have this same limitation, as do most algorithms that constrain x̂ to be nonnegative;

while the spectral unmixing approach has the CFAR property for the special case of the

AGN model, it does not have the CFAR property in general.

Detection algorithms having the CFAR property do not necessarily have detection per-

formance that is optimal in any way. For example, consider the detector that generates a

uniform random number u ∼ U(0, 1) and then declares a target chemical to be present if

u < α. For this contrived detector, the probability of false alarm is equal to the threshold

α, so this trivial approach has the CFAR property. However, this is clearly a poor detection

method because u is not even a function of the data y. In this case, the probability of

detection (PD) is equal to the probability of false alarm. While the CFAR property allows

us to set the threshold to achieve a desired PFA, it says nothing about the PD achieved for

that PFA.

Thus, the spectral unmixing approach has two basic shortcomings. First, for most noise

models (including the Poisson model), it does not have the CFAR property, so determining

a suitable threshold becomes difficult. Second, even if the parameter estimation is optimal
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in some sense, the resulting detection algorithm will not necessarily have any particular

optimality.

3.2.2 Generalized Likelihood Ratio Test

Another detection method that has been successfully employed on Raman data [85, 84]

is the subspace version of the generalized likelihood ratio test (GLRT). Applied to a single

target chemical, the subspace GLRT computes how much worse you can fit the data if you

remove the target from the reference library. For the case of additive Gaussian noise, it

considers the following two competing hypotheses:

H0 : y = A∗x∗ + w (target absent) (88a)

H1 : y = Ax + w (target present) , (88b)

where A is the full N ×M reference library, A∗ is the N × (M − 1) “reduced” library, x

(M×1) and x∗ ((M−1)×1) are the corresponding mixing vectors, and w is white Gaussian

noise with (unknown) variance σ2. The GLRT [36] test statistic is then given by

T (y) =
p(y; x̂, σ̂2

1,H1)

p(y; x̂∗, σ̂2
0,H0)

≷ η , (89)

where x̂ and σ̂2
1 are the ML estimates under H1, and x̂∗ and σ̂2

0 are the ML estimates under

H0. Under the linear Gaussian model, the ML approach yields the LS estimate [35]. Thus,

if a detection decision is being made for a single target chemical, the subspace GLRT (for

Gaussian w) essentially does the following:

1. Find the LS estimate of x, and compute the resulting squared error e1.

2. Remove the target of interest from the reference library.

3. Again find the LS estimate for the mixing coefficients (but now there are only M − 1

of them), and the corresponding squared error e0.

4. Compare the ratio e0/e1 to a threshold to decide if the target of interest is present.

Under the Gaussian model, the GLRT is the uniformly most powerful invariant (UMPI)

detector for a somewhat general set of transformations [77].
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GLRT for the Poisson Model The GLRT for the Poisson measurement model (86)

compares the following two competing hypotheses:

H0 : y = (y1, . . . , yN ) (target subset absent)

yi ∼ Pois((A∗x∗)i + µbi) (90a)

H1 : y = (y1, . . . , yN ) (target subset present)

yi ∼ Pois((Ax)i + µbi) . (90b)

The GLRT test statistic is then given by

T (y) =
p(y; x̂,H1)

p(y; x̂∗,H0)
≷ η , (91)

where x̂ and x̂∗ are the ML estimates under H1 and H0, respectively. These estimates may

be found using the MRL algorithm of Section 2.3. The likelihood under each hypothesis is

given, as in (87), by

p(y; x̂∗,H0) =
∏
i

(µ̂∗i )
yie−(µ̂∗i )

yi!
(92a)

p(y; x̂,H1) =
∏
i

µ̂yii e
−µ̂i

yi!
, (92b)

where

µ̂i , (Ax̂)i + µbi (93a)

µ̂∗i , (A∗x̂∗)i + µbi . (93b)

The test statistic is then given as

T (y) =
∏
i

(
µ̂i
µ̂∗i

)yi
eµ̂
∗
i−µ̂i (94)

or as

T ′(y) = lnT (y) =
∑
i

yi [ln µ̂i − ln µ̂∗i ] + µ̂∗i − µ̂i. (95)

The GLRT for the Poisson model, applied to a single target chemical,2 is summarized in

Algorithm 3.

2The GLRT can also be used to detect a set of K chemicals; in that case, A∗ would be formed by
removing the corresponding K columns of A. In this thesis, we will apply the GLRT to a single chemical
at a time.
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Algorithm 3 Subspace GLRT for Poisson Model

1: x̂ = MRL(y,A,µb)
2: Form reduced library A∗ by removing the column of A corresponding to the spectrum

of interest.
3: x̂∗ = MRL(y,A∗,µb)
4: Compute test statistic using Equation (95). If greater than threshold, declare the target

to be present.

One reason the GLRT is popular is that under the Gaussian model, a monotonic function

of (89) yields a detection statistic whose distribution under H0 is known. This means that

for Gaussian data, the threshold can be set to obtain the CFAR property [77, 55, 17].

Unfortunately, this property does not hold in general for other noise models, and the GLRT

under the Poisson model is not CFAR for finite data records.

In theory, the GLRT is “asymptotically CFAR;” as N → ∞, the distribution of the

GLRT test statistic under H0 approaches a chi-squared PDF [97, 7]. However, this asymp-

totic property holds only to the extent that the ML estimate attains its asymptotic dis-

tribution x̂ ∼ N (x, I−1(x)) [36]. This requirement is not met under the Poisson model or

under any other model for which the parameters are constrained to be nonnegative [71]. To

see why, note that under H0, some of the mixing coefficients are zero, while the correspond-

ing estimates, which will be either zero or positive but never negative, will on average be

positive and therefore biased. Because some of the parameters lie on the boundary of the

parameter space, the distribution of the estimates will be asymmetric and non-Gaussian.

As a result, the test statistic does not attain its asymptotic chi-squared distribution.

To illustrate this, we consider a simple scenario, described in more detail in Section 3.3.3,

in which the target chemical is not present. We simulated the data according to the Pois-

son model, and computed the GLRT test statistic for 10,000 different Monte Carlo runs.

A histogram of the test statistic values is shown in Figure 14(a) along with the nominal

asymptotic chi-squared distribution. For this example, the distribution of the test statis-

tic appears to have much lighter tails than the chi-squared distribution. If the detection

threshold is set to obtain a particular PFA assuming the nominal asymptotic distribution,

then the actual PFA will be much smaller. The resulting PD will then be much smaller than
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what is actually possible for the nominal PFA.

To demonstrate this, we also ran 10,000 runs in which the target chemical is present, and

generated the resulting receiver operating characteristic (ROC) curve. A section of the ROC

curve is shown in Figure 14(b). If the user wishes to obtain a PFA of 0.1, and assumes the

chi-squared PDF in the calculation of the threshold, then the resulting threshold (η = 2.71)

will yield an actual PFA of 6e-4. Instead of obtaining the desired (PFA, PD) point of (0.1,

0.67), this threshold will correspond to the point (6e-4, 0.18). These two points are marked

in Figure 14(b).

A more fundamental limitation of the GLRT is that it addresses the binary hypothesis

testing problem, while in many applications—such as the detection of chemicals from a

known reference library—the problem may be more naturally expressed as one of multiple

hypothesis detection. The next section will discuss this in more detail.
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Figure 14: The distribution of the GLRT test statistic under H0 is quite different from the nominal asymp-
totic chi-squared distribution. If the threshold is chosen based on the chi-squared distribution, the resulting
detection performance will be much different than anticipated.

3.3 Multiple Hypothesis Detection Framework

This section seeks a more rigorous detection scheme by formulating the problem as one

of multiple hypothesis detection (MHD). For example, if there are only two chemicals in

the reference library, then there are four possible hypotheses: neither is present, only the

first is present, only the second is present, or both are present. In general, for a library
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of M spectra, there are
∑M

k=0

(
M
k

)
= 2M hypotheses. This is illustrated in Table 6, which

lists the 8 hypotheses for the M = 3 case. Our problem is to choose between these 2M

hypotheses.

Table 6: Hypotheses for the M = 3 case.

H1: 0 0 0

H2: 0 0 +

H3: 0 + 0

H4: 0 + +

H5: + 0 0

H6: + 0 +

H7: + + 0

H8: + + +

3.3.1 MAP Decision Rule and Schwarz’s Approximation

One approach to the multiple hypothesis testing problem is to use the Bayesian paradigm

and seek to minimize the probability of classification error Pe, defined as

Pe =

Nh∑
k=1

p(error|Hk)p(Hk), (96)

where Nh , 2M is the number of hypotheses. It is well known that Pe is minimized by using

the maximum a posteriori (MAP) decision rule [36]: choose the hypothesis Hk for which

p(Hk|y) =
p(y|Hk)p(Hk)∑Nh
k=1 p(y|Hk)p(Hk)

(97)

is maximized (i.e., decide Hk if p(Hk|y) > p(Hi|y) for all i 6= k). If the priors on the

hypotheses are equal, this becomes the ML decision rule. Since x is unknown, the likelihood

is given by

p(y|Hk) =

∫
p(y|x,Hk)p(x|Hk)dx, (98)

assuming a prior on x is available. This integral is difficult to evaluate in practice, and

an approximation is needed. We will use Schwarz’s general approach [79], which employs

Laplace’s method (the “saddle-point approximation”) to approximate (98). While we do

not have actual priors p(x|Hk), we can reasonably assume the prior to be “sufficiently

flat” in the regions where the likelihood function p(y|x,Hk) is significant [42]. Under this
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assumption, the prior term p(x|Hk) ≈ p(x̂ML|Hk) can be moved outside of the integral,

yielding

p(y|Hk) ≈ p(x̂ML|Hk)
∫
p(y|x,Hk)dx. (99)

With the prior removed from the integrand, the remaining integral may now be approxi-

mated using Laplace’s method [53]:∫
p(y|x,Hk)dx ≈ p(y|x̂ML,Hk)

√
(2π)nk

det G
, (100)

where nk is the number of chemicals (i.e., the number of nonzero mixing coefficients) in

hypothesis Hk, and

[G]γl = − ∂2

∂xγ∂xl
ln p(y|x,Hk)

∣∣∣∣
x=x̂ML

. (101)

Combining (99) and (100) and taking the logarithm, we have

ln p(y|Hk) ≈ ln p(x̂ML|Hk) + ln p(y|x̂ML,Hk) +
nk
2

ln 2π − 1

2
ln det G . (102)

The magnitudes of the second and fourth terms grow with N (the number of data points,

not to be confused with nk) and begin to dominate the expression for large N , yielding

ln p(y|Hk) ≈ ln p(y|x̂ML,Hk)−
1

2
ln det G . (103)

If the priors on the hypotheses are equal, the MAP decision rule selects the hypothesis that

maximizes (103).

The first term in (103) is the likelihood assuming the maximum-likelihood estimate is

plugged in for the unknown parameter. The second term penalizes higher-order models

to avoid overfitting the data. In the spectral unmixing approaches of Section 3.2.1, only

the first term was used; however, a threshold is then generally applied to the estimated

parameters to eliminate the small ones. This is done because it is intuitively presumed

that small mixing coefficients are most likely just fitting the noise; thus, this thresholding is

essentially an ad hoc way of penalizing higher-order models. Our proposed technique hopes

to provide a more rigorous way to achieve the same effect.
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The matrix G is sometimes known as the “observed” or “empirical” Fisher information

matrix. For the Poisson model, plugging (87) into (101) gives [62]

[G]γl = −
∑
i

yi[A]il[A]iγ(∑
j [A]ij x̂ML

j + µbi

)2 , (104)

where x̂ML is the ML estimate of x under hypothesis k.

A major drawback to this method is its computational complexity. While the spectral

unmixing approach requires the computation of a single ML estimate, and the GLRT com-

putes two ML estimates per detection decision, the multiple hypothesis detection approach

computes 2M ML estimates. Thus, whereas the spectral unmixing and GLRT methods are

suitable for real-time implementation [85], the full MHD method is clearly infeasible for

most reference libraries of interest. We will address this in more detail in Section 3.3.5.

3.3.2 Minimum Description Length Interpretation

We must be careful about how we interpret the result of (97). Since we most likely do

not have any reasonable priors p(Hk) (in particular, it is difficult to imagine a scenario in

which each hypothesis is equally likely), the final result may not be properly thought of as

a typical posterior “probability.” An alternative approach is to interpret the result as an

abstract score corresponding to a description length, as described below.

In the same year that Schwarz proposed his Bayesian model order criterion discussed

above, Rissanen developed a similar formula using a completely different approach, the

“Minimum Description Length” (MDL) philosophy [74]. The basic idea behind the MDL

principle is that the more we are able to compress the data, the more we have learned about

the data and its regularities [26]. Rissanen suggested that the best hypothesis for the data

is the one that minimizes the number of bits (or equivalently, nats, the base-e equivalent

of base-2 bits) needed to describe the data. He showed that under certain conditions, the

minimum number of nats needed to encode the data in a two-part code is given by an

equation similar to (103). While the formulas appear to be similar for these two methods,

the mindset is completely different: rather than seek the “true” hypothesis that generated

the data (an approach that requires specification of the priors), the MDL method merely
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evaluates the candidate hypotheses and scores each one based on how efficiently it encodes

the data. The resulting description length can then be interpreted as an abstract score for

the hypothesis. If desired, a ranked list of the m best hypotheses can be returned as the

output.

3.3.3 Example

To illustrate this approach, we consider a simple scenario in which there are five spectra in

the reference library. The library spectra were provided by Darren Emge of the Edgewood

Chemical Biological Center. Using such a small library (which is necessary to keep the

MHD method computationally feasible), an unrealistically high noise level was required to

“push” the algorithms. We simulated the data according to the Poisson model (86) and let

µbi = 5, 000 for all i. Each spectrum in the library was normalized to sum to 10,000.3 We

used 20,000 Monte Carlo runs; on half of the runs, only asphalt (the fourth spectrum of the

library) was present, while on the other half, asphalt plus a hazardous chemical (the third

column of the library) were both present.

In this test, we assumed uniform priors on the hypotheses and used (103) to approximate

the likelihood term. We used the modified Richardson-Lucy (MRL) algorithm to compute

the ML estimate required by (103) for each hypothesis. Table 7 lists some of the ranked

hypotheses for a particular run in which both substances are present. The two terms of

(103) are listed for each hypothesis, along with the total score. The “unpenalized likelihood”

and total score are quite large and vary from one hypothesis to another only in the least

few significant digits, which are displayed in Table 7. For this particular run, the correct

hypothesis has the highest score. The hypothesis containing all five chemicals has the

highest unpenalized likelihood, but is penalized enough that it has a lower total score. The

MHD approach chose the correct hypothesis on 82% of the runs.

3The choice of 10,000 is somewhat arbitrary; making another choice would simply scale the mixing
coefficients. In general, mapping the coefficient values to precise physical units is difficult, involving such
properties as the exposure time, laser power, atmospheric attenuation, the incident angle of the beam, and
other factors, many of which may require careful calibration measurements. Following the pattern of many
papers addressing signal processing algorithms for spectral data analysis, we consider these issues to be
outside the scope of this thesis.
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Table 7: Ranked hypotheses for one particular run.

Ranking Hypothesis
“Unpenalized

Penalty
Total

Likelihood” Score

1 {3,4} . . . 97.20 4.52 . . . 92.68
2 {2,4} . . . 96.42 4.78 . . . 91.64
3 {2,3,4} . . . 97.21 5.70 . . . 91.51
...

12 {1,2,3,4,5} . . . 97.39 10.61 . . . 86.79
...

31 { } . . . 58.43 0 . . . 58.43
32 {5} . . . 59.17 2.95 . . . 56.21

Table 8 contains the probability of correct classification (PC) for the MHD method as

well as for the exact MAP decision rule and the GLRT. The exact MAP rule compares the

posterior probabilities of (97) using the true mixing vector under each hypothesis and the

“true” priors p(Hk) that were used in the simulation. For this example, the “true” priors are

p({4}) = 1/2, p({3, 4}) = 1/2, and zero probability for each of the remaining hypotheses.

Although the exact MAP rule clearly cannot be implemented in practice (since the true

priors and mixing coefficients are unknown), it provides an instructive upper bound on PC .

Table 8: Probabilities of correct classification.

Method PC

Exact MAP 0.95
MHD 0.82
GLRT 0.57

For the GLRT, we computed the Poisson test statistic (95) for each chemical in the

library, one by one, and compared the resulting set of M values to a threshold to decide

which chemicals are present. As we saw in Section 3.2.2, choosing an appropriate detection

threshold for the GLRT is typically a difficult task. Table 8 shows the GLRT at its best; we

swept the entire reasonable range of thresholds and used the threshold that resulted in the

maximum PC . Because this optimal threshold will not be known in practice, the actual PC

for the GLRT will generally be lower than the value shown in Table 8.

The MHD method gives worse performance than the exact MAP rule for two reasons:

it must make some (generally incorrect) assumption about the hypothesis priors, and it
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must estimate the mixing vector under each hypothesis. To analyze how much each of these

factors contributes to the classification error, we ran the MHD algorithm using the true

priors instead of uniform priors, but still made it deal with the unknown x. This resulted

in a PC of 0.94, which is almost identical to that of the exact MAP rule. This suggests

that the classification error is mostly a result of the hypothesis priors being unknown rather

than the mixing coefficients being unknown.

This observation offers some insight into the poor performance of the GLRT. The GLRT

makes a detection decision for each chemical by framing the problem as one of binary detec-

tion. For example, to decide whether or not the third chemical is present, the GLRT tests

the hypothesis {1, 2, 3, 4, 5} versus the hypothesis {1, 2, 4, 5}. If some complex combination

of the other four spectra is highly correlated with the spectrum of the third chemical, then

the GLRT will find that including the third spectrum does not help us to obtain a much

better fit of the data than what could be obtained using the other four spectra alone. Un-

like the MHD approach, the GLRT does not penalize the alternative that requires a large

number of spectra to do what the single spectrum #3 could do on its own.

We note that our MHD method was derived using several approximations and assump-

tions that may or may not be accurate for a given scenario; the important basic point is that

it views the problem as one of multiple hypothesis detection. Other model order estimation

techniques may also be applicable here; for example, the multifamily likelihood ratio test

(MFLRT) of Kay [37] yields a PC of 0.76, which is comparable to our MHD method.

3.3.4 Detection of an Individual Target Chemical

Usually, one of two basic goals is sought after by a Raman detection algorithm:

1. Output the best global hypothesis (or a list of the m best hypotheses), where a

hypothesis describes which chemicals are present and which are not.

2. Output the detection decision for a given chemical of interest.

As explained in Section 3.3.1, the spectral unmixing approach, when applied to the detection

problem, can be viewed as an approximate method to find the best hypothesis. The MAP
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decision rule is a statistical-theoretic optimal method to find the best hypothesis. These

methods directly seek to solve #1, and use the result to indirectly solve #2 (by assuming

the best hypothesis to be true and declaring a given chemical to be present if it is found in

the best hypothesis). One drawback to this indirect strategy to solving #2 is that a given

chemical may be present in the best hypothesis but absent in the next 10 best hypotheses;

even if the target is found in the best hypothesis, it might be improbable that it is present.

Likewise, even if a target is absent from the best hypothesis, it might be probable that it

is present, if it is found in many of the other good hypotheses. Thus, rather than using

only the best hypothesis to decide if a given target is present, we might instead take the

Bayesian view and estimate the probability that it is present by summing the probabilities

of all the hypotheses that contain the target of interest:

Pr(Chem. j present) =
∑
k∈Sj

p(Hk|y), (105)

where Sj is the set of indices corresponding to the hypotheses that contain Chem. j, and

p(Hk|y) is given by (97). We can then compare the estimated probability to a threshold to

make a hard detection decision on the chemical of interest. The detection rule would then

be to decide that Chem. j is present if

∑
k∈Sj

p(Hk|y) > η. (106)

This detection scheme may be developed more thoroughly as follows. First, we generalize

the Pe metric (96) to include different costs for the different classification errors. The

expected cost or Bayes risk R is defined as

R =

Nh∑
l=1

Nh∑
k=1

Clkp(Hl|Hk)p(Hk), (107)

where Clk is the cost assigned to the error in which we choose Hl but Hk is true. It is well

known [36] that R is minimized by choosing the hypothesis that minimizes

Cl(y) =

Nh∑
k=1

Clkp(Hk|y) (108)
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over l = 1, 2, . . . , Nh. For example, if we wished to assign an equal penalty to any misclas-

sification, then the costs would be

Clk =


0 l = k

1 l 6= k ,

(109)

in which case R = Pe. In this case, it is straightforward to show that minimizing (108) is

accomplished by maximizing (97). However, if we are only concerned about the detection

of a specific target chemical, and do not care about detection errors on other chemicals (i.e.,

if we wish to solve goal #2 above), then the costs are

Clk =


0 l, k ∈ Sj or l, k /∈ Sj

1 l ∈ Sj , k /∈ Sj or l /∈ Sj , k ∈ Sj .
(110)

In general, missed detections may be more or less severe than false alarms, so the two could

be assigned different penalties. The costs are then

Clk =


0 l, k ∈ Sj or l, k /∈ Sj

CFA l ∈ Sj , k /∈ Sj

CMD l /∈ Sj , k ∈ Sj .

(111)

For any hypothesis Hl containing Chem. j (i.e., l ∈ Sj), (108) becomes

Cl(y) =
∑
k/∈Sj

CFAp(Hk|y). (112)

Likewise, for any hypothesis Hl not containing Chem. j (i.e., l /∈ Sj), (108) becomes

Cl(y) =
∑
k∈Sj

CMDp(Hk|y). (113)

In this case, there is no unique hypothesis that minimizes (108); half of the hypotheses

result in (112) while the other half result in (113). We will choose any of the hypotheses

containing Chem. j if ∑
k/∈Sj

CFAp(Hk|y) <
∑
k∈Sj

CMDp(Hk|y). (114)

In other words, Chem. j is declared to be present if

CMD

∑
k∈Sj

p(Hk|y) > CFA

1−
∑
k∈Sj

p(Hk|y)

 , (115)
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or equivalently, if ∑
k∈Sj

p(Hk|y) >
CFA

CFA + CMD
. (116)

This is the decision rule given by (106), with the threshold determined by the relative costs

assigned to the Type I and Type II errors. Changing the hypothesis priors will similarly

change the threshold.

Up to this point, our general approach has been to make a detection decision on each

individual chemical. However, in many applications, the end user may only care if one of

a given class of chemicals is present. For example, for the detection of hazardous chemical

agents, the user might prefer there to be only two possible outputs from the detection

algorithm: either one or more hazardous chemicals is present, or no hazardous chemicals

are present.

Typically, this problem is solved by first making a detection decision on each individual

target chemical, and then declaring a hazardous chemical to be present if any of the haz-

ardous chemicals in the reference library were detected. However, the intermediate step of

detection on each individual chemical is unnecessary. One of the advantages of the MHD

approach is that it is easily extended to the problem of detecting a chemical from a given

set. In this case, we decide that a hazardous chemical is present if

∑
k∈SH

p(Hk|y) >
CFA

CFA + CMD
, (117)

where SH is the set of indices corresponding to the hypotheses that contain any hazardous

chemicals.

Unfortunately, as explained in Section 3.3, we will generally not have actual priors

p(Hk). In this case, the results of the model order selection rule are not really hypothesis

probabilities; they may be better interpreted as abstract scores corresponding to description

lengths. This method is then perhaps more accurately described as an intuitive way to mix

models, where the weight of each model is chosen by the description length score.
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3.3.4.1 Detection Performance Evaluation

We now revisit the simple example of Section 3.3.3, in which there are five spectra in the

reference library. In this test, we assume uniform priors on the hypotheses and compute

the “posterior score” for each of the 2M = 32 hypotheses:

p(Hk|y) =
p(y|Hk)∑Nh
k=1 p(y|Hk)

(118)

=
eln p(y|Hk)∑Nh
k=1 e

ln p(y|Hk)
(119)

where the loglikelihoods are found (approximately) by (103). To avoid numerical problems,

we found it necessary to shift the loglikelihoods:

p(Hk|y) =
e−L0eln p(y|Hk)

e−L0
∑Nh

k=1 e
ln p(y|Hk)

(120)

=
eln p(y|Hk)−L0∑Nh
k=1 e

ln p(y|Hk)−L0
. (121)

We used the largest of the 32 loglikelihoods for L0.

The ranked hypothesis posteriors for the single MC run of Table 7 are shown in Fig-

ure 15(a). The score of the best hypothesis is 55% of the total (summed) scores from all

of the hypotheses. A similar plot can be created for each run, and the average ranked

posterior scores are shown in Figure 15(b). Note that a particular library entry may be as-

signed different ranks on different MC runs, so points on the horizontal axis of Figure 15(b)

should not be interpreted as corresponding with specific library members, as one could with

Figure 15(a). On average, the best hypothesis accounts for over half of the total score, and

the best five hypotheses account for over 90% of the total score.

We now analyze the detection performance of the different algorithms by evaluating how

well they detect the hazardous chemical in the M = 5 scenario discussed above. Figure 16

contains the receiver operating characteristic (ROC) curves for the third chemical in the

library, which is present in half of the 20,000 MC runs. The top curve of the ROC plot

is for the Neyman-Pearson (NP) detector, which “cheats”: we tell it that only one of two

hypotheses are possible, and we also tell it the true mixing vector under each hypothesis,

so it just has to decide which of the two is correct. The NP detector is an upper bound on

the ROC curve for any algorithm.
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the runs.

Figure 15: Ranked posterior hypothesis scores, p(Hk|y).
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Figure 16: Probability of detection versus probability of false alarm for the five detectors and the Neyman-
Pearson bound.

Spectral unmixing using the modified Richardson-Lucy (MRL) algorithm performs only

slightly better in these tests than spectral unmixing using NNLS, but both outperform

the GLRTs (both the AGN and Poisson versions). It appears that choosing an appropriate

general detection philosophy (for example, spectral unmixing versus GLRT) makes a greater

difference than using the correct noise model.

The “Multiple Hypothesis Detection” (MHD) method, whose detection rule is given

by (106), shows the best performance of any of the algorithms and comes the closest to

reaching the NP bound.

The bottom curve, representing the conventional subspace GLRT (89), shows by far the
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worst performance in this test. This is largely because the data was simulated using the

Poisson measurement model, while the conventional GLRT assumes an additive Gaussian

noise model with no nonnegativity constraint on the mixing coefficients. This merely il-

lustrates that the conventional GLRT is not appropriate when the model for which it was

derived is not accurate. The GLRT for the Poisson model, represented by the second-to-

bottom curve, shows significant improvement.

We note that, regardless of the performance shown in Figure 16, these methods may not

be useful in practice without an appropriate strategy for choosing the detection threshold.

As discussed in Section 3.1, threshold selection is generally a difficult task for the spectral

unmixing (MRL and NNLS) and GLRT approaches.

The GLRT performs relatively poorly here because it is deciding between the wrong

two hypotheses. The true hypothesis on any run is either {3, 4} (if the target chemical

is present) or {4} (if the target chemical is absent), but the GLRT tests the hypothesis

{1, 2, 3, 4, 5} versus the hypothesis {1, 2, 4, 5}. If we knew a priori that only the third and

fourth chemicals would ever be present, we could run the GLRT using the smaller library

consisting of only these two elements. In this case, the GLRT would be deciding between

the correct two hypotheses, so the error would be entirely caused by not knowing x under

each hypothesis. The resulting ROC curve, labeled “GLRTM=2” in Figure 16, matches

up almost exactly with the NP bound, suggesting that most of the error from the GLRT

is a result of the wrong hypotheses being tested rather than the mixing coefficients being

unknown. Of course, reference libraries used in practice will typically include more than

just these two spectra. Other chemicals are included in the library precisely because they

have some nonzero prior probability of being present; if a chemical has no chance of being

present, then there would be no reason to include it in the library as it would only increase

the confusion. If we are detecting chemicals from a reference library, then we are inherently

dealing with a multiple hypothesis detection problem.
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3.3.5 Applying Prior Knowledge

Since the number of hypotheses grows exponentially with the number of spectra in the

library, this multiple hypothesis detection method clearly becomes infeasible for most ref-

erence libraries of interest. However, the hypothesis space can be reduced by applying

realistic prior information. For example, in the detection of surface contaminants, it might

be reasonable to assume that two hazardous chemicals will not both be present in a given

measurement. In the Bayesian framework, this prior knowledge will be taken into account

by setting p(Hk) = 0 for any hypothesis containing multiple hazardous chemicals. Al-

ternatively, in the MDL framework, this prior knowledge limits the number of candidate

models that we try. By reducing the hypothesis space, this prior information will lead to

improvements in both detection performance and computational feasibility. In particular,

if T is the number of target chemicals in the library and M is the total number of chemicals

in the library, then this prior knowledge reduces the number of hypotheses from 2M to

(T + 1)2M−T = 2M−(T−log2(T+1)). For example, if M = 40 and T = 28, this reduces the

number of hypotheses from approximately 1e12 to approximately 1e6. We note that this is

still optimal; no approximations have been made while incorporating this prior knowledge.

Even with this reduction, however, the number of hypotheses still grows exponentially with

(M − T ), and the problem will still become infeasible for larger libraries.

One way to address this issue is to further reduce the number of candidate hypotheses

by assuming that all non-hazardous chemicals may be present. For example, if there are two

hazardous chemicals in our 5-element library (i.e., M = 5 and T = 2), then this approach

would evaluate only the T + 1 = 3 hypotheses illustrated in Table 9.

Table 9: Candidate hypotheses after prior knowledge has been applied.

H1: + + + 0 0

H2: + + + + 0

H3: + + + 0 +

An alternative general approach to address this issue is to apply approximate methods

that do not rely on exhaustive enumeration of all the hypotheses. For example, if the ML
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estimate in our M = 5 example is x̂ = (0.3, 0, 0.1, 0.6, 0)T , then we could begin searching

the hypothesis space by “sweeping the threshold” and evaluating the resulting candidate

hypotheses {}, {4}, {1, 4}, and {1, 3, 4}. The highest-scoring of these hypotheses could then

be used as an initial point from which the hypothesis space is searched; other hypotheses

that are “close” to it in some sense could be evaluated, and so on.

We leave a full analysis of these approaches to reduce the number of candidate hypotheses

(by applying prior knowledge and/or using approximate methods) as a major topic for future

research.

3.4 Conclusions

This chapter presented a multiple hypothesis detection framework for identifying chemi-

cals present in a measured Raman spectrum. We applied Schwarz’s approximation to the

MAP decision rule for a Poisson Raman spectroscopy model. For a small reference library,

this method gave better detection performance than the spectral unmixing and GLRT ap-

proaches.

A fundamental limitation of the GLRT is that it addresses the binary hypothesis testing

problem, while in many applications—such as the detection of chemicals from a known ref-

erence library—the problem may be more naturally expressed as one of multiple hypothesis

detection. Our simulation results suggest that most of the error in the GLRT arises from

the wrong hypotheses being tested rather than the mixing coefficients being unknown. It

is thus unsurprising that the simple spectral unmixing approach performed better in our

simulations than the GLRT. Furthermore, because of the nonnegativity of the parameters,

the GLRT does not generally attain its nominal asymptotic performance; it does not gener-

ally have the CFAR property. The GLRT is not recommended for the problem of detecting

chemicals from a known reference library.

Because the number of hypotheses grows exponentially with the size of the library, the

exhaustive enumeration of hypotheses is infeasible for the large libraries typically used in

practice. However, we can significantly reduce the hypothesis space by applying realistic

58



prior knowledge. Furthermore, even when it cannot be employed directly as a real-time

algorithm, the MHD framework provides basic insight about the Raman detection problem;

for example, the spectral unmixing approaches can be viewed as an approximate method

to seek the best hypothesis. Future work could focus on developing other approximations

that do not rely on brute force enumeration of the hypotheses.

59



CHAPTER IV

ACCOUNTING FOR UNKNOWN CHEMICALS

The previous chapters examined the supervised detection framework, in which the mea-

sured Raman spectrum is compared to a reference library of known spectra. A well-known

shortcoming of the supervised approach is that no comprehensive library exists, and when

chemicals are present that are not in the library, the supervised algorithms may confuse

those chemicals with library members.

One way to deal with this problem is to use an unsupervised method such as nonnegative

matrix factorization (NMF) to estimate both the constituent spectra and their relative

quantities directly from a block of measured spectra. Chemical identification may then be

performed by associating the extracted spectra with the reference library spectra. This

two-stage NMF approach often fails because knowledge of the reference library was not

used in extracting the spectra.

To address these issues, this chapter presents an alternative partially-supervised frame-

work. Because this framework is applicable to a variety of signal processing problems, we

present it here as a general new approach, and consider Raman spectroscopy as a specific

example application. We begin by briefly discussing the general field of unsupervised data

analysis.

4.1 Introduction

For many signal processing applications, the amount of available data has steadily grown

in recent years because of various technological advances. Data analysis methods have

increasingly employed low-rank approximations to reduce the number of variables and de-

tect structure in the data. Many of these methods are unsupervised, or data-adaptive, in

that the representations are learned directly from the particular data being analyzed (as
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opposed to, for example, Fourier analysis or linear regression, whose bases are not tai-

lored to the observed data) [30]. Principal component analysis (PCA) [81], independent

component analysis (ICA) [32], and nonnegative matrix factorization (NMF) [61, 45] are

common techniques belonging to this class of unsupervised subspace approximations. Non-

negative matrix factorization differs from the other methods in that all of the elements in

the factorization are constrained to be nonnegative; because it does not allow subtractive

combinations, NMF is a natural approach for many problems involving physical quantities

that mix only additively. We will briefly review NMF and its properties in Section 4.2; for

a more thorough overview, see [1].

For many machine learning problems, the extracted basis vectors in these subspace ap-

proximations do not correspond to known physical quantities. For example, the principal

components in PCA are chosen to best capture the variation in the data; while this makes

PCA an effective tool for dimensionality reduction, the resulting principal components

(e.g., eigenfaces for face images) do not necessarily correspond to physically meaningful

constituent components of the data.

However, for other problems, we may seek basis vectors that do have physical signifi-

cance. In spectral data analysis, for instance, the extracted basis vectors may correspond

to the spectral signatures of the constituent materials [68, 75, 1]. For these cases, one often

desires to detect whether any signatures from a known library are present, and/or estimate

the relative quantities of each. This chapter addresses this problem. One straightforward

approach to perform detection for a given target in the library is to compare its known

signature with the extracted bases estimated by an NMF algorithm. Section 4.3 will show

that this two-stage NMF approach often performs poorly because knowledge of the reference

library was not used in extracting the basis vectors.

Section 4.4 presents a novel version of NMF in which a subset of the extracted spectra

are constrained to be equal to the known reference library. This algorithm is applicable to

any problem in which an object is identified by comparing a block of measured data to a

library of known constituent signatures; the example simulations in this chapter consider the

spectral unmixing of Raman spectroscopy data. In our simulations, this method performs
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better than the two-stage NMF approach and the fully supervised approach when there are

chemicals present that are not in the library.

4.2 Nonnegative Matrix Factorization (NMF)

The goal of nonnegative matrix factorization [61, 45] is to approximate an (elementwise)

nonnegative data matrix Y with a lower-rank factorization

Y ≈WX, (122)

where all of the elements of W and X are constrained to be nonnegative. Each column

of Y typically represents an object, and NMF approximates each as a nonnegative linear

combination of the columns of W. The columns of W can thus be interpreted as basis

vectors for Y, and each column of X is the mixing vector, or encoding, for the corresponding

column in Y. The number of basis vectors is specified by the user in advance. The general

NMF problem is given by

(Ŵ, X̂) = arg min
W,X

Ψ(W,X) s.t. [W]ij ≥ 0, [X]jγ ≥ 0, ∀i, j, γ , (123)

where the objective function Ψ(W,X) measures the discrepancy between the data Y and

the product WX. The most common choice of objective function is the squared error1

Ψ(W,X) = ‖Y −WX‖2F , (124)

although other cost functions such as Csiszár’s I-divergence (a generalized form of the

Kullback-Leibler divergence) are also common [45, 9]. Along with the data mismatch term,

the objective function often contains regularization terms, usually to impose prior knowledge

about the particular application. For example, auxiliary constraints such as sparseness [30]

and smoothness [1] have been incorporated into the NMF cost function, with improved

results when applied in appropriate cases.

1It is well known that the singular value decomposition finds the factorization of a given rank that
minimizes the squared error; however, the resulting factorization will generally contain negative values,
which in many applications contradicts physical realities.
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There are a number of methods to minimize the objective function. One common

approach is the gradient descent technique, for which each iteration is defined by

[Ŵ(n+1)]ij ← [Ŵ(n)]ij − α(n)
ij

∂

∂[W]ij
Ψ(W,X)

∣∣∣∣
W=Ŵ

(n)
,X=X̂

(n)
(125a)

[X̂(n+1)]jγ ← [X̂(n)]jγ − δ(n)
jγ

∂

∂[X]jγ
Ψ(W,X)

∣∣∣∣
W=Ŵ

(n)
,X=X̂

(n)
. (125b)

The step sizes α
(n)
ij and δ

(n)
jγ are chosen differently for different gradient descent algorithms.

In general, little can be said about convergence [1]. Also, special care must be taken

to ensure that the updated matrices remain nonnegative. However, for certain objective

functions (such as the squared error and the I-divergence), α
(n)
ij and δ

(n)
jγ can be chosen such

that (125) becomes a multiplicative update rule [46, 45, 75]:

[Ŵ(n+1)]ij ← [Ŵ(n)]ij [f(Ŵ(n), X̂(n))]ij (126a)

[X̂(n+1)]jγ ← [X̂(n)]jγ [g(Ŵ(n), X̂(n))]jγ (126b)

for some functions f and g that depend on the objective function. This is expressed in

matrix form (using MATLAB notation, in which .∗ represents elementwise multiplication)

as

Ŵ(n+1) ← Ŵ(n).∗f(Ŵ(n), X̂(n)) (127a)

X̂(n+1) ← X̂(n).∗g(Ŵ(n), X̂(n)) . (127b)

Because of the multiplicative form of the update rules, the estimates at any iteration will

now clearly be nonnegative, provided that the initial estimates are positive. A parameter

initialized to zero will stay at zero, so it is important to initialize with positive estimates.

The general form of the multiplicative update algorithms is presented in Algorithm 4. The

multiplicative update approach is quite common due to its ease of implementation.

Example: Maximum-likelihood estimation under a Poisson data model If there

is a probabilistic model for the data, then NMF can be used to seek the maximum-likelihood

(ML) estimates of W and X:

(Ŵ, X̂) = arg max
W,X

p(Y; W,X). (128)
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Algorithm 4 General form of multiplicative update NMF algorithms. MW is the number
of columns of W, and f and g are the update equations (derived to minimize the objective
function).

Input: Y,MW

Output: Ŵ, X̂
1: Initialize with some positive Ŵ(0), X̂(0)

2: n← 0
3: while not converged do
4: Ŵ(n+1) ← Ŵ(n).∗f(Ŵ(n), X̂(n))
5: X̂(n+1) ← X̂(n).∗g(Ŵ(n), X̂(n))
6: n← n+ 1
7: end while
8: Ŵ← Ŵ(n+1); X̂← X̂(n+1)

For example, consider the Poisson noise model

[Y]iγ ∼ Pois([WX]iγ). (129)

If the data [Y]iγ are assumed to be statistically independent of each other, the PDF of the

data is given by

p(Y; W,X) =
∏
i,γ

([WX]iγ)[Y]iγ e−[WX]iγ

[Y]iγ !
. (130)

The ML estimate is then given by

(Ŵ, X̂) = arg max
W,X

ln p(Y; W,X) s.t. [W]ij ≥ 0, [X]jγ ≥ 0, ∀i, j, γ (131a)

= arg max
W,X

∑
i,γ

[Y]iγ ln ([WX]iγ)− [WX]iγ − ln[Y]iγ !

s.t. [W]ij ≥ 0, [X]jγ ≥ 0, ∀i, j, γ (131b)

= arg min
W,X

Ψ(W,X) s.t. [W]ij ≥ 0, [X]jγ ≥ 0, ∀i, j, γ , (131c)

which is the NMF problem with the objective function

Ψ(W,X) =
∑
i,γ

[WX]iγ − [Y]iγ ln ([WX]iγ) . (132)

This is the same objective function used to minimize the I-divergence from Y to WX. The

resulting multiplicative update rule is given by [75, 45, 46]

[Ŵ(n+1)]ij ← [Ŵ(n)]ij

∑
γ′

[Y]iγ′

[Ŵ(n)X̂(n)]iγ′
[X̂(n)]jγ′∑

γ′ [X̂
(n)]jγ′

(133a)

[X̂(n+1)]jγ ← [X̂(n)]jγ

∑
i′

[Y]i′γ
[Ŵ(n)X̂(n)]i′γ

[Ŵ(n)]i′j∑
i′ [Ŵ

(n)]i′j
. (133b)
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This is expressed in matrix form as

Ŵ(n+1) ← Ŵ(n).∗
[(

Y./(Ŵ(n)X̂(n))
)

(X̂(n))T
]
./
(
1N×K(X̂(n))T

)
(134a)

X̂(n+1) ← X̂(n).∗
[
(Ŵ(n))T

(
Y./(Ŵ(n)X̂(n))

)]
./
(

(Ŵ(n))T1N×K

)
, (134b)

where 1N×K is an all-one matrix with the same dimensions as Y. A small positive constant

(e.g., 10−9) may be added to the denominators to avoid division by zero [68, 1].

Like the squared-error objective function, the I-divergence is convex in either W or

X separately, but non-convex in both W and X together [46]. This means there may be

multiple local minima and/or saddle points, making it difficult to find a global minimum.

The multiplicative update algorithm for the I-divergence cost function has been shown to

globally converge to a stationary point, which is a necessary condition for a local mini-

mum [20, 50]. In contrast, this property has not been shown for the multiplicative update

algorithm for the squared-error cost function [1, 51, 50].

The next section will present the spectral unmixing problem, which is an example ap-

plication of NMF.

4.3 Spectral Unmixing of Raman data

In many signal processing applications, the linear mixing model is assumed for each data

vector y:

y = Ax + n, (135)

where A is the component matrix, x is a vector of mixing coefficients, and n represents the

measurement noise. For example, this general model is often used in spectral data analysis,

in which case y ∈ <N is the measured spectrum of a sample, A is an N×M reference library

of constituent spectra {a1, . . . ,aM}, or endmembers, and x ∈ <M is a vector of fractional

abundances describing how much of each endmember is present in the sample mixture [38].

This thesis considers the analysis of Raman spectra, but the basic principles and techniques

described here also apply more generally to other problems that use the linear mixing

model. In Section 2.2, a model was presented for a dispersive Raman instrument, based on
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the physics of several key components of the measurement system [62, 63, 88]. A simplified

form of the model2 is given by

yi ∼ Pois([Ax]i), (136)

where the yi are assumed to be statistically independent of each other. To illustrate the

Poisson sensor model, Figures 17(a) and 17(b) show the clean spectra of two different

substances, and Figure 17(c) shows the simulated noisy spectrum corresponding to the

mixture of the two chemicals. The Raman spectra of both chemicals belong to a known

reference library of 26 spectra, which was provided to us by Darren Emge of the Edgewood

Chemical Biological Center.
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(a) “True” spectrum of Chem. 7.
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(b) “True” spectrum of Chem. 26.
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(c) Simulated noisy spectrum of mixture.

Figure 17: Clean spectra of constituent materials and a simulated noisy spectrum of their mixture.

4.3.1 Supervised Approach

If the reference library A is assumed to be completely known, then the ML estimate

x̂ = arg max
x

p(y; x) (137)

2The other parameters in the model are easily incorporated into the work presented in this chapter, but
are omitted here for simplicity.
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can be found using the Richardson-Lucy (RL) algorithm3 [73, 52], a well-known iterative

method equivalent to the expectation-maximization (EM) technique [80, 88]. Each iteration

of the RL algorithm is defined by

x̂
(n+1)
j ← x̂

(n)
j

[∑
i

yi

[Ax̂(n)]i
[A]ij

]
/
∑
i

[A]ij . (138)

The likelihood function is concave in x, and the sequence of estimates will converge toward

the ML estimate. Also, as with the NMF algorithms of the previous section, the estimates

at any iteration will clearly be nonnegative if the initial estimates are positive. In fact, the

EM iteration (138) is equivalent to (133b); like the multiplicative update NMF algorithm,

the RL algorithm can be viewed as a gradient descent method (with a particular choice of

step size) to maximize the likelihood of the Poisson data. The only difference is that for the

supervised problem, the constituent spectra are assumed to be known and only the mixing

coefficients need to be estimated.

To illustrate this approach, we consider an example in which the two chemicals from

Figure 17 are present in a given shot. We simulated the data according to the Poisson

model (136), and each spectrum in the library was normalized to sum to 10,000.4 Each of

the 26 spectra in the reference library has 1024 frequency samples (N = 1024). The RL

algorithm was terminated when ‖x̂(n+1)−x̂(n)‖2/‖x̂(n+1)‖2 < 1e-5 (Similarly, the NMF algo-

rithms presented later in this chapter are terminated when ‖X̂(n+1)− X̂(n)‖F /‖X̂(n+1)‖F <

1e-5).

The “true” mixing vector x is shown in Figure 18(a), and the estimate given by the RL

algorithm is shown in Figure 18(b). The estimated mixing coefficients are seen to be almost

identical to the true values. To show that this result holds for other noise instantiations

and not just for this particular run, we computed the RL estimate for 100 different Monte

Carlo runs. The resulting sample standard deviation, sample bias, and sample root mean

3An alternative approach, which often requires fewer iterations, is the nonnegative iteratively reweighted
least-squares (NNIRLS) algorithm discussed in Section 2.6.

4The choice of 10,000 is somewhat arbitrary; making another choice would simply scale the mixing
coefficients. In general, mapping the coefficient values to precise physical units is difficult, involving such
properties as the exposure time, laser power, atmospheric attenuation, the incident angle of the beam, and
other factors, many of which may require careful calibration measurements. Following the pattern of many
papers addressing signal processing algorithms for spectral unmixing, we consider these issues to be outside
the scope of this thesis.

67



square error (RMSE) are plotted in Figure 19, where

RMSE(x̂j) ,
√
E [(x̂j − xj)2]

=
√

Var(x̂j) + [Bias(x̂j)]2.
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(a) “True” mixing coefficients.
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(b) Values estimated by the RL algorithm.

Figure 18: Estimates given by the RL algorithm when the library is comprehensive.
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Figure 19: Sample standard deviation, bias, and RMSE of the RL algorithm when the library is comprehen-
sive.

As shown in Figure 19(c), the RMSE is practically zero for all the mixing coefficients;

this approach typically gives good performance when the reference library contains all of the

constituent chemicals. The scale in Figure 19 was chosen to match that used in Figure 20

to permit easy comparison.
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We now consider a case in which the reference library used by the RL algorithm is

incomplete. For this example, the same two chemicals are present in the measurement

sample as before, and the relative quantities of each are again shown in Figure 18(a).

However, the library A used by the RL algorithm now contains only the first 25 spectra; one

of the two chemicals present is not in the library. The estimate given by the RL algorithm

on one particular run is shown in Figure 20(a). The algorithm confuses the “unknown”

chemical with Chem. 21 because their spectra are highly correlated, as shown in Figure 21.

Figures 20(b) and 20(c) contain the sample bias and sample RMSE computed using 100

Monte Carlo runs (all remaining Monte Carlo simulations in this chapter likewise use 100

runs); the variance was negligible compared to the bias and is omitted here for brevity.

There is a positive bias on several mixing coefficients, particularly the 21st, because the

algorithm must attribute the energy from the unknown chemical to library elements.
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(a) Estimates for one particular run.
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Figure 20: Estimation performance of the RL algorithm when the library is incomplete.

4.3.2 Two-Stage NMF Approach

The major problem with the supervised approach is that it requires complete knowledge of

all possible constituent spectra. Such a comprehensive library does not exist, and even if

it did, the supervised algorithms would then become infeasible because of the size of the
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(b) Chem. 21.

Figure 21: RL algorithm confuses the “unknown” chemical with Chem. 21 because the corresponding spectra
are similar.

library. As we saw in the previous section, when there are chemicals present that are not

contained in the reference library, the supervised algorithms may confuse those chemicals

with library members.

One way to deal with this problem is to use an unsupervised algorithm such as NMF as

the first step in a two-stage scheme:

1. Given an N ×K block of spectra Y = [y1, . . . ,yK ] collected over K pulses, estimate

both the constituent spectra (W) and the mixing matrix (X). For this to be possible,

the chemical composition must vary from pulse to pulse, as may be the case, for

example, if the sensor is moving along the ground. For the Poisson model (129),

the ML estimates for W and X may be found using the multiplicative update NMF

algorithm given by (133). In a language like MATLAB, the function call would have

a form like [Ŵ, X̂] = NMF(Y,MW ), where MW is the number of columns in W.

2. If a column of Ŵ is highly correlated with a column from the reference library, use the

corresponding estimated mixing coefficients (from X̂) as the estimates for the mixing

coefficients for that library chemical.

This basic approach is not new; the nonnegative nature of spectral mixing has inspired

the application of various NMF-based approaches for spectral data analysis (e.g., [68, 75,

48]), and more sophisticated versions of this 2-stage NMF method have been presented in

the literature (e.g., [68, 1]).

Even if one of the extracted spectra has a large estimated mixing coefficient, it will
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still not lead to a target detection unless it correlates well with one of the spectra in the

reference library. Thus, it would seem that this NMF-based approach should have fewer

false alarms than the supervised unmixing methods when chemicals are present that are

not in the library. However, there are several challenges in implementing this method.

Deciding whether a column of Ŵ is “similar enough” to a column of A (step 2) is typically

accomplished by comparing some measure of similarity (such as the correlation or the

symmetrized Kullback-Leibler divergence [68]) to a threshold. The choice of threshold is

critical because it will determine the number of false alarms and missed detections. Another

critical issue, which appears to be often overlooked in the literature, is how to determine

an appropriate value for MW .

Even if these parameters are chosen optimally for a given problem, we have found

that this approach often performs poorly. To illustrate the shortcomings of this method,

consider the example scenario represented in Figure 22. In this scenario, 40 shots of data

are collected, and the two chemicals from Figure 17 are present in each shot. These pulses

correspond to different physical locations; we imagine a scenario in which a truck with

a Raman sensor is driving along a road. The first chemical, marked by the triangle, is

the 7th element of the known library; its spectrum is shown in Figure 17(a). The second

chemical, marked by the square, is not found in the library used here; its spectrum is shown

in Figure 17(b). The true mixing coefficients on the 25th shot are the same as the previous

example shown in Figure 18(a).
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Figure 22: Scenario in which 40 shots of data are collected, and two chemicals are present in each shot. The
first chemical, marked by the triangle, is the 7th element of the known library, while the second chemical,
marked by the square, is the unknown chemical (the 26th element of the complete library, which is left out
of the known library in this experiment).
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We ran the 2-stage NMF method on this scenario, and let the algorithm “cheat” by

choosing MW = 2 and by choosing the correlation threshold on each shot to be the max-

imum threshold for which Chem. 7 passes the test of step 2. For the similarity test, we

used the correlation. A more sophisticated measure such as the symmetrized Kullback-

Leibler divergence may result in improved performance [68]; however, the basic limitations

of the two-stage approach, described in the next few paragraphs, would still apply. After

determining which components pass the similarity test, we simply used the corresponding

estimated mixing coefficients (from X̂) as the estimates for the mixing coefficients for that

library chemical. An alternative approach, used in [68], is to recompute the estimates for

the mixing coefficients using only the components that passed the similarity test. The esti-

mated mixing coefficients for the 25th shot (for one particular Monte Carlo run) are shown

in Figure 23(a). The algorithm correctly detected Chem. 7 because one of the extracted

basis vectors was highly correlated with the spectrum of Chem. 7. However, Chem. 16 was

also highly correlated with the same column of Ŵ, which led to a false alarm. This result

is consistent over the Monte Carlo runs, as shown in Figures 23(b) and 23(c).
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(a) Estimates for one particular run.
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Figure 23: Performance of the 2-stage NMF approach with MW = 2.

This problem might be avoided by employing a more sophisticated assignment algo-

rithm [2] (for step 2) that incorporates one-to-one constraints between the extracted spectra
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and library spectra. However, there may not be a one-to-one correspondence between the

columns of Ŵ and the columns of A, especially if there is insufficient variation in the data.5

For example, if we consider the scenario represented in Figure 24(a) in which the chemical

composition is the same on every shot, the NMF algorithm in step 1 has no way of knowing

that there are two chemicals present. For this example, it is impossible to predict how the

NMF algorithm will choose the two basis vectors, since a single basis vector is all that is

needed to obtain a good approximation of the data. In our simulation, the two extracted

basis vectors are each roughly equal to the sum of the two constituent spectra, as seen in

Figures 24(b) and 24(c). In general, even if we use the correct value for MW , the basis

vectors estimated by NMF will not be similar to the constituent spectra unless there is a

significant amount of variation in the data. Note that the unsupervised approach depends

critically on having multiple shots and processing those shots as a block; in a supervised

approach, it would be sufficient to run an algorithm such as Richardson-Lucy on each shot

separately.
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(a) Scenario with no variation in the data.
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(b) First basis vector estimated by NMF.
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(c) Second basis vector estimated by NMF.

Figure 24: If there is insufficient variation in the data, NMF fails to separate the two constituent spectra.

5For this reason, it may be more natural to perform step 2 using canonical correlation analysis; a variation
of this approach appears in [94].
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The 2-stage NMF algorithm will similarly fail if the constituent chemicals are not present

in enough pulses. To demonstrate this, we now consider the scenario represented in Fig-

ure 25(a), in which the library chemical (Chem. 7) is present in only the 25th shot. As

opposed to the previous example, the data matrix Y is no longer approximated well by a

single basis vector. Thus, the two NMF basis vectors in this case will be linearly indepen-

dent. However, because Chem. 7 is present on only one shot, the algorithm has no way of

knowing how much of the energy from that shot should be attributed to the second basis

vector vs. the first basis vector. In our simulation, almost all the energy from the 25th

shot was attributed to the second basis vector, as shown in Figure 25(c) (compare with

Figure 17(c)). In this case, neither of the extracted basis vectors is similar enough to the

spectrum of Chem. 7 to pass the similarity test (step 2) of the 2-stage NMF algorithm. In

many applications, such as the detection of hazardous chemical agents, the resulting missed

detection may be unacceptable.
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(a) Scenario in which the library chemical is
present in only a single shot.
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(b) First basis vector estimated by NMF.
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(c) Second basis vector estimated by NMF.

Figure 25: If the constituent chemicals are not present in enough pulses, NMF fails to separate the two
constituent spectra.
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4.4 Partially-Supervised NMF (PS-NMF) Algorithm for De-

tection

Section 4.3.1 examined the supervised approach to spectral unmixing. In the supervised

framework, the reference library is assumed to be comprehensive and only the mixing coeffi-

cients are unknown. These coefficients can be estimated using a gradient descent algorithm;

in this case, the library A is fixed and only the mixing matrix X is updated on each iteration.

We demonstrated a well-known shortcoming of the supervised approach: no comprehensive

library exists, and when chemicals are present that are not contained in the reference library,

the supervised algorithms may confuse those chemicals with library members.

Section 4.3.2 applied an unsupervised algorithm, NMF, to the Raman data and then

compared the resulting estimated constituent spectra to the known library spectra. In the

first step of this 2-stage scheme, both the constituent spectra W and mixing coefficients X

are assumed to be unknown. The two matrices can be jointly estimated using the gradient

descent technique; a certain choice of step size results in a well-known multiplicative update

NMF algorithm. This 2-stage method performed poorly because knowledge of the reference

library was not used in extracting the spectra. If there is a known library of elements that

we are trying to detect, this knowledge should be incorporated into the NMF problem.

For these reasons, rather than assume the reference library is completely known (as

in the supervised framework) or completely unknown (as in the unsupervised framework),

we find it more natural to assume the library is partially known [67]. As in the NMF

problem, we once again seek to approximate the nonnegative data matrix Y with a lower-

rank nonnegative factorization Y ≈WX, but we now assume that the first M columns of

W are known and only the last m = MW −M columns need to be estimated. We will

call this approach “partially-supervised nonnegative matrix factorization” (PS-NMF). The

number of “extra” columns, m, is specified by the user. Each iteration of the gradient
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descent technique for our partially-supervised approach is given by

[Ŵ(n+1)]ij ← [Ŵ(n)]ij + α
(n)
ij

∂

∂[W]ij
Ψ(W,X)

∣∣∣∣
W=Ŵ

(n)
,X=X̂

(n)
for j > M only (140a)

[X̂(n+1)]jγ ← [X̂(n)]jγ + δ
(n)
jγ

∂

∂[X]jγ
Ψ(W,X)

∣∣∣∣
W=Ŵ

(n)
,X=X̂

(n)
. (140b)

This differs from (125) in that (140a) is computed only for j > M ; the first M columns of W

are known to be equal to the reference library and do not need to be estimated. Although

this idea is quite simple, we have not seen it presented elsewhere in the literature. Table 10

summarizes the differences between the supervised approach, the unsupervised approach,

and the partially-supervised approach.

Table 10: Comparison of unsupervised, supervised, and partially-supervised approaches.

• Unsupervised approach (NMF)

1. Update [Ŵ]ij for all i, j (constituent objects are unknown)

2. Update [X̂]jγ for all j, γ

• Supervised approach (RL)

1. Update [Ŵ]ij for no i, j (constituent objects are known; W = A)

2. Update [X̂]jγ for all j, γ

• Partially-supervised approach (PS-NMF)

1. Update [Ŵ]ij for j > M (some constituent objects known, some unknown)

2. Update [X̂]jγ for all j, γ

As in Section 4.2, for certain objective functions, the step sizes α
(n)
ij and δ

(n)
jγ can be

chosen such that (140) becomes a multiplicative update rule:

[Ŵ(n+1)]ij ← [Ŵ(n)]ij [f(Ŵ(n), X̂(n))]ij for j > M only (141a)

[X̂(n+1)]jγ ← [X̂(n)]jγ [g(Ŵ(n), X̂(n))]jγ (141b)
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for some functions f and g. This can be implemented in matrix form as

Ŵ(n+1) ← Ŵ(n).∗f(Ŵ(n), X̂(n)) (142a)

Replace first M columns of Ŵ(n+1) with the known library A (142b)

X̂(n+1) ← X̂(n).∗g(Ŵ(n), X̂(n)) . (142c)

Of course, in implementation, there is no particular reason to take the time to compute the

first M columns of Ŵ(n+1); the formulation given in (142) is intended to illustrate how an

existing NMF implementation may be quickly and easily “retrofitted” to use a PS-NMF

approach.

Uses of the term “Semi-Supervised NMF” In recent years, there has been a sig-

nificant amount of progress on applying nonnegative matrix factorization to the clustering

problem. [12, 49, 39, 6, 47] Ding, et al. [12] showed that a symmetric form of NMF is equiv-

alent to kernel K-means clustering. One advantage of the NMF framework for clustering

is that “must-link” and “cannot-link” constraints (specifying pairs of objects that must

belong in the same group or pairs that cannot belong in the same group6) are readily incor-

porated into the framework [49, 6]. When these kinds of pairwise constraints are added to

the clustering problem, it is often known as “semi-supervised clustering,” and when NMF-

based algorithms are applied to this problem, they are sometimes called “semi-supervised

NMF.” [6, 47]

We would have preferred to call our unmixing approach “semi-supervised NMF” as

well, because it seems like the most natural name, and we used this name in some of our

preliminary work [65]. However, our algorithm addresses a fundamentally different problem

than the “SS-NMF” algorithms discussed above and should not be confused with the NMF

methods used for clustering. To try to avoid such confusion, we now choose the name

“partially-supervised NMF” instead of “semi-supervised NMF.”

6A similar problem is clustering with partially labeled data, as discussed in [47].
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4.4.1 Algorithm Enhancements

Our PS-NMF algorithm generally performs well if the user guesses the correct number for

m. For instance, if there is one unknown chemical present in a scenario, then PS-NMF with

m = 1 generally gives good results. Unfortunately, the number of unknown substances will

not be known in practice. If we assume too few unknown chemicals, then PS-NMF tends

to attribute energy from the unknown chemicals to the reference spectra. In this case, it

overestimates the abundances of the library chemicals, leading to false alarms. We saw an

example of this in Figure 20, in which we assumed m = 0 (i.e., we used the RL algorithm),

but there was actually one unknown substance present.

On the other hand, if we assume too many unknown chemicals, then PS-NMF has no

reason not to attribute energy from the library chemicals to the “extra” columns of Ŵ.

For instance, if there are actually no unknown chemicals present but we use m = 3, then

PS-NMF may obtain a nearly perfect fit of the data using only the three extra columns.

In this case, it underestimates the abundances of the library chemicals, leading to missed

detections.

One way to address these issues is to choose a large number for m and to introduce a

penalty term in the objective function. For example, one possible penalized form of the

Poisson loglikelihood objective function (132) is

Ψ(W,X) =
∑
i,γ

[[WX]iγ − [Y]iγ ln ([WX]iγ)] +
∑
j,γ

[Λ]jγ [X]jγ , (143)

where [Λ]jγ = λ (for some λ > 0) if j > M and [Λ]jγ = 0 otherwise. The purpose of

the penalty is to encourage the algorithm to use the library spectra instead of the extra

columns of Ŵ. It prevents data overfitting for the case where the value chosen for m is

larger than the true number of unknown chemicals present. Appendix A shows that the

PS-NMF update rule for the penalized cost function (143) is

[Ŵ(n+1)]ij ← [Ŵ(n)]ij

∑
γ′

[Y]iγ′

[Ŵ(n)X̂(n)]iγ′
[X̂(n)]jγ′∑

γ′ [X̂
(n)]jγ′

for j > M (144a)

[X̂(n+1)]jγ ← [X̂(n)]jγ

∑
i′

[Y]i′γ
[Ŵ(n)X̂(n)]i′γ

[Ŵ(n)]i′j∑
i′ [Ŵ

(n)]i′j + [Λ]jγ
. (144b)
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Because λ > 0, nonnegativity is clearly preserved on each iteration.

Unfortunately, the update function (144) yields the same results as the unpenalized

update function (133). This problem was noted by Hoyer in his similar work on nonnegative

sparse coding [30] and is explained as follows. If the last m columns of W are scaled up and

and the last m rows of X are scaled down by the same amount, then the main term of (143)

will remain unchanged while the penalty term decreases. Thus, the optimization of (143)

will result in the elements from the last m rows of X approaching zero while the elements

in the corresponding columns of W blow up. The penalty term then becomes negligible

and has no effect on the solution.

One possible remedy for this quandary is to add a penalty term to Ψ that constrains

each column of W to sum to a given constant c. This would hopefully prevent the columns

of W from growing unbounded. For example, if the extended cost function is

Ψ(W,X) =
∑
i,γ

[[WX]iγ − [Y]iγ ln ([WX]iγ)] +
∑
j,γ

[Λ]jγ [X]jγ + β
1

2
‖11×NW − c11×M‖2

(145)

for some regularization parameter β, then it is straightforward to show that the resulting

PS-NMF iteration is

[Ŵ(n+1)]ij ← [Ŵ(n)]ij

∑
γ′

[Y]iγ′

[Ŵ(n)X̂(n)]iγ′
[X̂(n)]jγ′∑

γ′ [X̂
(n)]jγ′ + β

(∑
i′ [W]i′j − c

) for j > M (146a)

[X̂(n+1)]jγ ← [X̂(n)]jγ

∑
i′

[Y]i′γ
[Ŵ(n)X̂(n)]i′γ

[Ŵ(n)]i′j∑
i′ [Ŵ

(n)]i′j + [Λ]jγ
. (146b)

Unfortunately, the denominator of (146a) may now be negative, so nonnegativity is not

ensured for this algorithm. Thus, instead of incorporating this normalization constraint

into the objective function, we simply normalize the columns of W after updating them

via (144a). The resulting PS-NMF algorithm is summarized in Algorithm 5.

While the convergence properties discussed in Section 4.2 may no longer hold after the

inclusion of the normalization step, the PS-NMF estimates converged in all of our simula-

tions. Other, more sophisticated, approaches to incorporate the normalization constraint

on the columns of W may result in improved convergence properties or faster convergence.
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Algorithm 5 General form of the PS-NMF algorithm. MW is the number of columns of
W, λ is the penalty parameter, and f and g are the update equations derived to minimize
the objective function. For example, for the ML approach and Poisson data, f is given
by (174a) and g is given by (174c).

Input: Y,A,MW , λ
Output: Ŵ, X̂

1: Initialize with some positive Ŵ(0), X̂(0)

2: n← 0
3: while not converged do
4: Ŵ(n+1) ← Ŵ(n).∗f(Ŵ(n), X̂(n), λ)
5: Replace first M columns of Ŵ(n+1) with the known library A
6: Normalize each of the last m columns of W
7: X̂(n+1) ← X̂(n).∗g(Ŵ(n), X̂(n), λ)
8: n← n+ 1
9: end while

10: Ŵ← Ŵ(n+1); X̂← X̂(n+1)

We leave this as a topic for future research.

4.4.2 PS-NMF Simulation Results

This section analyzes the estimation performance of the PS-NMF algorithm for the spectral

unmixing problem discussed in Section 4.3. We begin by revisiting the scenario represented

by Figure 22, in which there are two chemicals present (in varying quantities) in every shot.

Because one of these chemicals is not in the reference library, both the RL algorithm and

the 2-stage NMF method performed poorly for this scenario, as seen in Section 4.3.

We ran the PS-NMF algorithm with m = 8, or equivalently, MW = 33. We used λ = 50

for all the PS-NMF simulations in this chapter. Figures 26(a) and 26(b) show the first two

“extra” columns of Ŵ; the other six estimated basis vectors are similar and are omitted

here for brevity. The estimated mixture of the eight columns, shown in Figure 26(c), is quite

similar to the actual unknown spectrum shown in Figure 17(b). In general, each “extra”

column of Ŵ will not necessarily correspond to a different chemical; thus, these should not

be referred to as “extracted spectra” or “estimated spectra.” For the purpose of detecting

the library chemicals, however, the algorithm will perform well as long as some combination

of the extra columns of Ŵ is able to properly account for the energy from the unknown

spectrum.
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(a) First extra column of Ŵ.
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(b) Second extra column of Ŵ.
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(c) Estimated mixture of extra columns of Ŵ.

Figure 26: First two “extra” columns of Ŵ estimated by the PS-NMF algorithm, and the estimated mixture
of all 8 extracted basis vectors. Compare (c) with Figure 17(b).

The estimated mixing coefficients for the 25th shot (for one particular Monte Carlo

run) are shown in Figure 27(a); these estimates are quite close to the true values shown

in Figure 18(a). The algorithm correctly detected Chem. 7 and correctly attributed the

energy from the unknown chemical to the “extra” columns of Ŵ. This result is consistent

over the Monte Carlo runs, as shown in Figures 27(b) and 27(c).

There is a small negative bias for Chem. 7; even with the penalty term, some of the

energy from Chem. 7 is incorrectly attributed to the extra columns. This indicates that λ

may be too small; increasing the penalty would lead to less error for Chem. 7. On the other

hand, there is a small positive bias for the other chemicals in the library; because of the

penalty term, some of the energy from the unknown chemical is incorrectly attributed to

library members. This indicates that λ may be too large; decreasing λ would lead to less

error for the other library chemicals. Thus, there is a tradeoff in the choice of the penalty

parameter. Investigating how to select a suitable value for λ is a potential topic for future

research.

Some additional insight may be gained by revisiting the case in which the complete
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(a) Estimates for one particular run.
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(c) RMSE.

Figure 27: Performance of the PS-NMF algorithm (m = 8). Compare with Figures 20 and 23.

library is known. Since all the constituent spectra are known and only the mixing coeffi-

cients need to be estimated, the RL algorithm yields relatively small errors, as shown in

Figure 28(a) (a rescaled version of Figure 19(c)). If we instead have an incomplete library,

but we know that the number of unknown chemicals is m = 1, the estimates have more

error because the algorithm needs to co-estimate the values in the unknown spectrum along

with the parameters of interest (the mixing coefficients corresponding to the library). The

RMSE for this case is shown in Figure 28(b). The performance degrades further if we do

not know the number of unknown chemicals and if we let m = 8; see Figure 28(c) (rescaled

version of Figure 27(c)). However, even with m = 8, the algorithm has relatively low error

and typically results in no missed detections or false alarms for this scenario.

Section 4.3.2 illustrated that one of the shortcomings of NMF, when applied to the

detection of objects from a known library, is that its success is highly dependent on the

amount of variation in the data. For the scenario of Figure 24(a), in which the chemical

composition is the same on every shot, NMF could not successfully extract the constituent

spectra.

If no penalty term is applied, the PS-NMF algorithm may similarly break down if there

is insufficient variation in the data. This occurs even if the number of unknown chemicals
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(a) RL with complete library.
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(b) PS-NMF (m = 1).
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(c) PS-NMF (m = 8).

Figure 28: RMSE for the case in which the library is complete, for the case in which the library is incomplete
but the number of unknown objects is known, and for the case in which the library is incomplete and the
number of unknown objects is unknown.

is known. For example, for the scenario of Figure 24(a), even if we correctly use m = 1,

the PS-NMF algorithm without the penalty term has no reason not to attribute all the

measured energy to the unknown column. To illustrate this, Figure 29(a) shows the extra

column estimated by PS-NMF; this is roughly equal to the sum of the two constituent

spectra (see Figure 17). In this case, the algorithm drastically underestimates the quantity

of Chem. 7 because it attributes most of the energy from Chem. 7 to the unknown column.
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(a) PS-NMF without the penalty term.
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(b) PS-NMF with the penalty term.

Figure 29: The extra column estimated by PS-NMF (m = 1) with and without the penalty term

If we use the penalized PS-NMF objective function, however, then this ambiguity is

mostly resolved. The purpose of the penalty term in (143) is to encourage the algorithm
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to prefer the library spectra over the extra columns of Ŵ. With the penalty, PS-NMF

will attribute to the extra columns only the energy that cannot be explained almost as

well by the library components. As seen in Figure 29(b), the extra column estimated by

the PS-NMF algorithm with the penalty term is almost identical to the actual unknown

spectrum shown in Figure 17(b). The resulting estimation performance of the algorithm is

shown in Figure 31. The PS-NMF method is seen to perform quite well even when there is

no variation in the data.
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(a) Estimates for one particular run.
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Figure 30: Performance of the PS-NMF algorithm (m = 1) with the penalty term, for the scenario in which
there is no variation in the data.

We now return to the scenario represented by Figure 25(a), in which the library chemical

is present in only a single pulse. Section 4.3.2 indicated that NMF may not successfully

extract the constituent spectra for cases like this; the constituent chemicals are not present

in enough shots for NMF to learn their signatures accurately. The PS-NMF algorithm, on

the other hand, has the constituent library spectra built into Ŵ and does not need to learn

them from the data. Thus, as shown in Figure 31, the PS-NMF method performs quite well

for this scenario.

Finally, we push the algorithms harder by letting there be three chemicals present that
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(a) Estimates for one particular run.
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Figure 31: PS-NMF performance (for the 25th shot) for the scenario in which Chem. 7 is present in only
the 25th shot.

are not in the library. Specifically, we consider the example scenario represented by Fig-

ure 32(a), where the upside-down triangle once again marks the quantity of Chem. 7 and

the other three markers represent the quantities of the three unknown chemicals. The true

mixing coefficients (for the 25th shot) for the reference library are shown in Figure 32(b).

The estimation results for the RL algorithm are shown in Figure 33. Once again, the RL

algorithm confuses the unknown chemicals for library spectra, as evidenced by the large

positive bias on a number of the coefficients. The results for the PS-NMF algorithm (with

m = 8) are plotted in Figure 34. The PS-NMF algorithm performs much worse than when

only one unknown chemical was present (compare with Figure 27). It still outperforms the

fully supervised method of Figure 33, however.

One disadvantage of the PS-NMF algorithm is that it is typically quite slow; each

iteration of the update equation (174) requires O(NMWK) operations. The traditional

multiplicative update NMF algorithm (which itself is known to be slow) also has computa-

tional complexity of O(NMWK), but the MW for PS-NMF is typically much larger than

for NMF because it includes the library; MW = M + m. A more thorough analysis of

comparative complexity would involve not only the cost per iteration but also the number
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(a) Scenario with four chemicals present.
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(b) True mixing coefficients on 25th shot.

Figure 32: Scenario in which 40 shots of data are collected, and four chemicals are present in each shot.
The first chemical, marked by the upside-down triangle, is the 7th element of the known library, while the
other three chemicals are not in the library. The true mixing coefficients for the library chemicals on the
25th shot are shown in (b).

5 10 15 20 25
0

0.5

1

Estimated coefficients for one particular run

Index of mixing coefficient

E
s
ti
m

a
te

d
 v

a
lu

e

(a) Estimates for one particular run.
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Figure 33: Performance of the RL algorithm (for the 25th shot) when there are three unknown chemicals.
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(a) Estimates for one particular run.
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Figure 34: PS-NMF (m = 8) performance (for the 25th shot) when there are three unknown chemicals.

of iterations typically required. This topic, as well as methods to speed up PS-NMF, are

left as areas for future research.

4.5 Conclusions

This chapter presented a novel partially-supervised nonnegative matrix factorization (PS-

NMF) method for the detection of objects from a known, but possibly incomplete, library.

Under certain likelihood models (such as Poisson or Gaussian), this method can be viewed

as a gradient descent algorithm to maximize the likelihood of the data for the case in which

some, but not all, of the constituent objects are known. As an example application, we

considered the spectral unmixing of Raman spectroscopy data. In our simulations, the

PS-NMF algorithm gave better estimation performance than the two-stage NMF approach

and the fully supervised approach when there were chemicals present that were not in the

library.
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CHAPTER V

ACCOUNTING FOR ERROR IN THE REFERENCE

LIBRARY

5.1 Introduction

To account for the noise introduced by the measurement system, Chapter 2 presented a

probabilistic model based on previous work done in the scientific imaging community. That

chapter analyzed several methods for estimating the mixing coefficients under this model,

and the results were compared to the Cramér-Rao lower bound. All that work assumed

that the reference library spectra themselves were error-free. In reality, any measured

library spectra, even if taken in a pristine laboratory environment, will be subject to noise

introduced by the measurement system. This chapter expands on the work of Chapter 2 by

incorporating uncertainty in the reference spectra. We begin by briefly reviewing the total

least squares (TLS) problem.

5.1.1 Total Least Squares

The least-squares problem (1) of Section 2.1 can be expressed as follows:

LS: Find the mixing vector x and error vector e that minimize ‖e‖2 s.t. Hx = y + e.

This problem accounts for the error in y but assumes that the mixing matrix H is exactly

known. Perhaps the simplest and most well-known formulation that incorporates error in

the model matrix is the total least squares (TLS) problem [24, 25], which in its most basic

form is expressed as follows:

TLS: Find the x, e, and E that minimize ‖[E e]‖2F s.t. (H + E)x = y + e.

To illustrate the difference between TLS and LS, Figure 35 compares the two for the

M = 1 case. The LS method fits the line to the data points by minimizing the error in
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the second coordinate only; this error is represented by the vertical non-dashed lines in

Figure 35(a). The TLS method corrects both coordinates; the approximation error for the

same candidate line fit is represented by the diagonal non-dashed lines in Figure 35(b). For

a more thorough overview of TLS, see [56, 91].

(a) Least squares (LS). (b) Total least squares (TLS).

Figure 35: Approximation errors minimized by LS and TLS.

5.1.2 Organization of this Chapter

This chapter is organized as follows. Section 5.2 reviews the errors-in-variables model

and the well-known property that the TLS approach coincides with maximum-likelihood

estimation under a Gaussian errors-in-variables (EIV) model. Section 5.2.1 presents a novel

nonnegative total least squares (NNTLS) algorithm, which uses a variation of the partially-

supervised nonnegative matrix factorization algorithm of Chapter 4. This same approach

is then applied to a Poisson errors-in-variables model in Section 5.3. We compare the

estimation results of the Poisson EIV method to the algorithms of Chapter 2 to determine

how much harm is caused by ignoring the error in the reference library.

5.2 ML Estimation under an EIV Gaussian Model

There are a number of ways to model the uncertainty in the reference library. We consider

the standard errors-in-variables (EIV) model [96, 22], in which H is considered to be a noisy

observation of the deterministic unknown matrix G. The goal is then to estimate both the

mixing vector x and the “true” underlying library G from the measured spectrum y and
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the given measured library H. This may be accomplished using the maximum-likelihood

technique:

(Ĝ, x̂) = arg max
G,x

p(y,H; G,x) (147a)

= arg max
G,x

p(y; G,x)p(H; G) (147b)

= arg max
G,x

[ln p(y; G,x) + ln p(H; G)] . (147c)

To illustrate this approach, we consider the classical Gaussian EIV model

y = Gx + e, (148a)

H = G + E, (148b)

where the elements of e and E are independent, zero-mean, and normally distributed. If we

keep things simple by assuming that the elements also have equal variance σ2, then (147c)

becomes

(Ĝ, x̂) = arg max
G,x

[
−N

2
ln(2πσ2)− 1

2σ2
‖y −Gx‖2 − MN

2
ln(2πσ2)− 1

2σ2
‖H−G‖2F

]
(149a)

= arg min
G,x

[
‖H−G‖2F + ‖y −Gx‖2F

]
(149b)

= arg min
G,x

‖[(H−G) (y −Gx)]‖2F , (149c)

which is just the TLS problem. Equation (149c) can be rearranged as

(Ĝ, x̂) = arg min
G,x

‖[H y]− [G Gx]‖2F . (150)

Because Gx is in the range of G, the matrix [G Gx] has a rank of M , or equivalently, a

nullity of 1 (assuming that G is full rank). Thus, the ML estimate for the EIV Gaussian

model may be found by first seeking the rank-M matrix FM that minimizes ‖[H y] −

FM‖2F . By the Eckart-Young Theorem [16], this low-rank approximation is found using

the singular value decomposition (SVD). This property leads to the classical SVD-based

approach [24, 25] for computing the TLS estimate.
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5.2.1 Nonnegative Total Least Squares

For our application, a limitation of the TLS approach described above is that it does

not enforce nonnegativity. If we again consider the Gaussian EIV model (148) but now

apply nonnegativity constraints, the ML approach coincides with the nonnegative total

least squares (NNTLS) problem:

(Ĝ, x̂) = arg max
G≥0,x≥0

p(y,H; G,x) (151a)

= arg min
G≥0,x≥0

‖[(H−G) (y −Gx)]‖2F . (151b)

The NNTLS problem has received scant attention in the literature; the only previous work

of which we are aware [11, 83] has placed the nonnegativity constraint on just the mixing

coefficients and not on the values of G. Our approach in this section is to view the problem

as one of low-rank approximation with nonnegativity constraints. From this perspective,

the NNTLS problem is naturally addressed using a variation of the partially-supervised

nonnegative matrix factorization (PS-NMF) method of Chapter 4.

As in the TLS case, (151b) may be expressed as

(Ĝ, x̂) = arg min
G≥0,x≥0

‖[H y]− [G Gx]‖2F (152a)

= arg min
G≥0,x≥0

‖[H y]− FM‖2F ; (152b)

the problem is once again to find the rank-M matrix FM that best approximates the rank-

(M + 1) matrix [H y] in the Frobenius norm sense. However, for the NNTLS problem, FM

must satisfy two additional criteria:

1. All of the elements of FM must be nonnegative.

2. The last column of FM must be equal to some nonnegative linear combination of the

first M columns.

If only the first of these two criteria needed to be satisfied, then FM could be found via non-

negative matrix factorization (see Section 4.2). The problem would then be to find the (ele-

mentwise) nonnegative matrices Ŵ ∈ <N×M and V̂ ∈ <M×(M+1) for which ‖[H y]−WV‖2F
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is minimized; we will refer to such minimizing (W,V) as (Ŵ, V̂). The product FM = ŴV̂

would clearly be nonnegative, satisfying the first condition above.1 Furthermore, since FM

has rank M , the last column of FM could be expressed as some linear combination of the

first M columns. However, it would not necessarily be equal to a nonnegative linear com-

bination of the first M columns. Thus, while this NMF method would ensure that Ĝ is

nonnegative, it would not enforce the nonnegativity of x̂.

To ensure that the second condition is satisfied, we constrain the first M columns of V

to be equal to the identity matrix:

(Ŵ, V̂) = arg min
W≥0,V≥0

‖[H y]−WV‖2F s.t. [V]jγ =


1 j = γ

0 j 6= γ, γ < M .

(153)

With this additional constraint, the last column of FM is now clearly a nonnegative linear

combination of the first M columns. Furthermore, because ŴV̂ = [Ĝ Ĝx̂], it follows

that Ĝ = Ŵ and that x̂ is given by the last column of V̂. Our approach for NNTLS is

summarized in Algorithm 6.

Algorithm 6 Overview of our nonnegative total least squares (NNTLS) method.

Input: H ∈ <N×M ,y ∈ <N×1

Output: x̂ ∈ <M×1

1: Find the Ŵ ∈ <N×M and V̂ ∈ <M×(M+1) that minimize the objective function of (153).
2: x̂← last column of V̂.

We now discuss step 1 of Algorithm 6 in more detail. If we view the constraint in (153)

as partial knowledge on V, then (153) closely resembles the partially-supervised nonneg-

ative matrix factorization (PS-NMF) problem of Chapter 4. We seek to approximate the

nonnegative matrix [H y] with a lower-rank nonnegative factorization [H y] ≈WV, but

the first M columns of V are known and only the last column needs to be estimated. If we

1Note that, unlike in Chapter 4, we are here only concerned with the product of the two NMF factors,
and not the factors themselves.
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employ the gradient descent technique as in Chapter 4, then each iteration is given by

[Ŵ(n+1)]ij ← [Ŵ(n)]ij + α
(n)
ij

∂

∂[W]ij
Ψ(W,V)

∣∣∣∣
W=Ŵ

(n)
,V=V̂

(n)
, (154a)

[V̂(n+1)]jγ ← [V̂(n)]jγ + δ
(n)
jγ

∂

∂[V]jγ
Ψ(W,V)

∣∣∣∣
W=Ŵ

(n)
,V=V̂

(n)
for γ > M only, (154b)

where Ψ(W,V) is the squared-error objective function. This differs from the conventional

NMF approach (125) in that (154b) is computed only for γ > M ; the first M columns of V

are collectively known to be equal to the identity matrix and do not need to be estimated.

The corresponding multiplicative update rule is given by

[Ŵ(n+1)]ij ← [Ŵ(n)]ij [f(Ŵ(n), V̂(n))]ij , (155a)

[V̂(n+1)]jγ ← [V̂(n)]jγ [g(Ŵ(n), V̂(n))]jγ for γ > M only, (155b)

where f and g are the standard NMF update equations for the squared-error cost func-

tion [46, 1]:

f(Ŵ(n), V̂(n)) , [H y](V̂(n))T ./ (Ŵ(n)V̂(n)(V̂(n))T ) , (156a)

g(Ŵ(n), V̂(n)) , (Ŵ(n))T [H y] ./ ((Ŵ(n))TŴ(n)V̂(n)) . (156b)

A small positive constant (e.g., 10−9) may be added to the denominators to avoid division

by zero [68, 1]. Equation (155) can be implemented in matrix form as

Ŵ(n+1) ← Ŵ(n).∗f(Ŵ(n), V̂(n)), (157a)

V̂(n+1) ← V̂(n).∗g(Ŵ(n), V̂(n)), (157b)

Replace first M columns of V̂(n+1) with the identity matrix IM . (157c)

In (156) and (157), the MATLAB-style notations .∗ and ./ represent elementwise multipli-

cation and division.

Of course, in implementation, there is no particular reason to take the time to compute

the first M columns of V̂(n+1); the formulation given in (157) is intended to illustrate how

an existing NMF implementation may be quickly and easily “retrofitted” for NNTLS.

Like TLS, this NNTLS method is easily generalized to handle multiple data vectors

simultaneously; if Y has K columns, then V will have M +K columns, and X̂ will be given

by the last K columns of V̂. This thesis considers only the single-column case.
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As discussed in Chapter 2, the Gaussian model is not generally appropriate for Raman

spectroscopy data. This section considered the Gaussian EIV model merely to illustrate a

connection between NNTLS and NMF that, to our knowledge, has not been noted elsewhere

in the literature. The next section applies the same basic approach to the more relevant

Poisson EIV model.

5.3 ML Estimation under an EIV Poisson model

This section considers the Poisson EIV model

yi ∼ Pois([Gx]i) , (158a)

[H]ij ∼ Pois([G]ij) . (158b)

Our goal is once again to estimate the mixing vector x and the “true” library G from

the measured spectrum y and the given measured library H. This may once again be

accomplished using the ML technique:

(Ĝ, x̂) = arg max
G≥0,x≥0

p(y,H; G,x) (159a)

= arg max
G≥0,x≥0

[ln p(H; G) + ln p(y; G,x)] . (159b)

For the Poisson model (158), we have

ln p(H; G) =
∑
i,j

[H]ij ln[G]ij − [G]ij − ln([H]ij !) , (160a)

ln p(y; G,x) =
∑
i

yi ln([Gx]i)− [Gx]i − ln(yi!) , (160b)

so (159) becomes

(Ĝ, x̂) = arg max
G≥0,x≥0

M∑
j=1

N∑
i=1

[H]ij ln[G]ij − [G]ij +

N∑
i′=1

yi′ ln([Gx]i′)− [Gx]i′ (161a)

= arg max
G≥0,x≥0

M+1∑
j=1

N∑
i=1

[H y]ij ln[G Gx]ij − [G Gx]ij (161b)

= arg min
G≥0,x≥0

∑
i,j

[G Gx]ij − [H y]ij ln[G Gx]ij . (161c)
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As with the Gaussian EIV model of the previous section, (161c) seeks the nonnegative

rank-M matrix FM that “best” approximates [H y], subject to the constraint that the

last column of FM is a nonnegative linear combination of the first M columns. However,

while the Gaussian EIV model chooses the “best” approximation by minimizing the squared

error, the Poisson EIV model uses the cost function of (161c), which is the same objective

function used to minimize the I-divergence from [H y] to FM (see Section 2.3.2). Thus, ML

estimation under a Poisson EIV model can be thought of as a “total minimum I-divergence”

problem. We have not seen this problem addressed in the literature.

We proceed with the same basic approach as the previous section, and rewrite (161c)

as a constrained NMF problem:

(Ŵ, V̂) = arg min
W≥0,V≥0

I ([H y]‖WV) s.t. [V]jγ =


1 j = γ

0 j 6= γ, γ < M .

(162)

The resulting multiplicative update rule again has the form

[Ŵ(n+1)]ij ← [Ŵ(n)]ij [f(Ŵ(n), V̂(n))]ij , (163a)

[V̂(n+1)]jγ ← [V̂(n)]jγ [g(Ŵ(n), V̂(n))]jγ for γ > M only , (163b)

but now f and g are the standard NMF update equations for the I-divergence cost func-

tion [45, 46, 75]:

f(Ŵ(n), V̂(n)) ,
[(

[H y]./(Ŵ(n)V̂(n))
)

(V̂(n))T
]
./
(
1N×(M+1)(V̂

(n))T
)
, (164a)

g(Ŵ(n), V̂(n)) ,
[
(Ŵ(n))T

(
[H y]./(Ŵ(n)V̂(n))

)]
./
(

(Ŵ(n))T1N×(M+1)

)
, (164b)

where 1N×(M+1) is an all-one matrix with the same dimensions as [H y]. A small positive

constant (e.g., 10−9) may be added to the denominators to avoid division by zero [68, 1].

Equation (163) can once again be implemented in the matrix form of (157). We again

note that there is no particular reason to compute the first M columns of V̂(n+1); the

formulation given in (157) is intended to illustrate the connection between the EIV problem

and NMF. Our approach for ML estimation under the Poisson EIV model is summarized

in Algorithm 7.
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Algorithm 7 Total minimum I-divergence algorithm. The update equations f and g are
given by (164).

Input: H ∈ <N×M ,y ∈ <N×1

Output: x̂ ∈ <M×1

1: Initialize with some positive Ŵ(0), V̂(0)

2: n← 0
3: while not converged do
4: Ŵ(n+1) ← Ŵ(n).∗f(Ŵ(n), V̂(n))
5: V̂(n+1) ← V̂(n).∗g(Ŵ(n), V̂(n))
6: Replace first M columns of V̂(n+1) with the identity matrix IM .
7: n← n+ 1
8: end while
9: x̂← last column of V̂.

As discussed in Section 4.2, the I-divergence cost function is convex in either W or

V separately, but non-convex in both W and V together [46]. This means there may be

multiple local minima and/or saddle points, making it difficult to find a global minimum.

The advantage of our NMF-based approach to parameter estimation under the EIV Poisson

model is that it allows us to draw from the extensive NMF literature. For example, the mul-

tiplicative update algorithm for the I-divergence cost function has been shown to globally

converge to a stationary point, which is a necessary condition for a local minimum [20, 50].

It is straightforward to incorporate the “background counts” parameter (see Section 2.2.2)

into the Poisson EIV model. If

yi ∼ Pois([Gx]i + [µb−field]i) , (165a)

[H]ij ∼ Pois([G]ij + [Mb−lab]ij) , (165b)

where µb−field and Mb−lab are the (known) parameters for the field sensor and the laboratory

instrument, respectively, then the update equations are

f(Ŵ(n), V̂(n)) ,
[(

[H y]./(Ŵ(n)V̂(n) + Mb)
)

(V̂(n))T
]
./
(
1N×(M+1)(V̂

(n))T
)
, (166a)

g(Ŵ(n), V̂(n)) ,
[
(Ŵ(n))T

(
[H y]./(Ŵ(n)V̂(n) + Mb)

)]
./
(

(Ŵ(n))T1N×(M+1)

)
, (166b)

where Mb , [Mb−lab µb−field]. The derivation directly follows the derivation found in [75]

and is omitted here for brevity.
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5.3.1 Simulation Results

We now revisit the simulated scenario of Section 2.6.3, but this time we consider the case

in which the algorithms have access to only a noisy observation of the reference library. For

this simulation we let [Mb−lab]ij = 0, so that

yi ∼ Pois([Gx]i + [µb−field]i) (167a)

[H]ij ∼ Pois([G]ij) . (167b)

We once again let [µb−field]i = 5 for all i, and the true library G is the same library that was

used in Section 2.6.3. We again analyze the estimation performance for the mixing coefficient

of the 27th chemical of the library (with the Raman spectrum shown in Figure 11) when it

is the only substance present. As in Section 2.6.3, we vary the signal energy by sweeping

the mixing coefficient from x27 = 0.1 to x27 = 10.0, and examine the performance of the

algorithms under the different energy levels. The sample RMSE and sample bias of the

algorithms are plotted in Figures 36 and 37, respectively. We used 250 Monte Carlo runs.

Note that for the EIV model, each run computes a new Poisson-distributed dataset for both

the sensor data and the library.
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Figure 36: Sample RMSE of the algorithms. The baseline case MRL-G artificially uses the true library G.
The EIV curve uses the Poisson/I-divergence formulation.

As discussed in Chapter 2, the modified Richardson-Lucy (MRL) algorithm computes
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Figure 37: Sample bias of the algorithms. The baseline case MRL-G artificially uses the true library G. The
EIV curve uses the Poisson/I-divergence formulation.

the ML estimate for the mixing vector under the Poisson model when it is assumed that

the reference library is error-free. In this simulation, both the MRL and EIV algorithms

were initialized with the NNLS estimate (any zero values in this initial estimate, however,

were replaced with a small constant). The algorithms were terminated when ‖x̂(n+1) −

x̂(n)‖2/‖x̂(n+1)‖2 < 1e-6. As shown in Figures 36 and 37, the MRL algorithm has much

higher error (most of which is due to bias) than the EIV algorithm. This is unsurprising,

as the MRL algorithm does not account for uncertainty in the reference library.

The nonnegative least squares (NNLS) and MRL approaches both have large negative

bias for this particular example. This bias is partially due to the nonnegativity constraint,

as explained in Section 2.6.3. However, by comparing Figure 37 with Figure 13, we see

that the bias is much greater in this case; this suggests that most of the bias arises from

assuming that the noisy library is noise-free.

The NNLS algorithm, which implicity assumes a Gaussian model, actually gives lower

error than the MRL algorithm in this test. There is no particular reason to expect otherwise;

the model used to simulate the data is different than the model for which the MRL algorithm

is designed. Similarly, the TLS method, which corresponds to the EIV Gaussian model

without any nonnegativity constraint, is seen to perform considerably worse than the EIV
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Poisson method. However, the TLS approach still outperforms the methods that neglect

the library error.

We note that Figure 36 is plotted on a different scale than Figure 12; the estimation

error is much higher when H is used by the algorithms instead of G. To illustrate this,

we also plotted the results for the “clairvoyant” MRL algorithm, which “cheats” by using

the true library G. We call this method “MRL-G,” and its performance is seen to match

the corresponding curve in Figure 12, as expected. While this method obviously cannot be

implemented in practice, it provides a useful baseline. The EIV method is seen to have only

slightly more error than this clairvoyant baseline; even when there is a significant amount

of error in the library, acceptable performance may be obtained under the EIV framework.

Many of the energy levels in the scenario analyzed above are not likely to arise in a

practical setting. For example, a value of x27 = 10 means that the measured spectrum y

has ten times as much energy as the 27th spectrum in the reference library. As discussed

in Section 2.2.2 (see Equation (18)), the signal-to-noise ratio (SNR) of the spectral data

increases with the square root of the mean of the data. Thus, a value of x27 = 10 implies

that the field data y is cleaner than the laboratory data—the ratio of the SNRs in this case

would roughly be
√

10. This kind of situation will rarely occur in practice; the reference

spectra will typically be much cleaner and stronger than the spectra measured in the field.

The simulation results above indicated that the EIV approach offers drastic improvement

over MRL if the library spectra are noisier than the field data. To see if this conclusion

holds for the more realistic case in which the field data is noisier than the library spectra,

we next analyzed the estimation performance of the algorithms as a function of the ratio

of the SNRs of the field and library spectra. These results are plotted in Figure 38. The

x-axis in Figure 38 is the sum of each spectrum in the reference library (i.e., we normalize

each individual spectrum such that it sums to the value shown on the x-axis; each of the

library spectra sums to this same value); we consider 13 energy levels ranging from 1e4 to

1e7. In constrast, for the simulation of Figure 36, each spectrum in the library had a sum

of 1e4. The value of x27 decreases from left to right, to maintain a constant energy level

of 1e5 for y. Thus, the left-most point in Figure 38 corresponds to the right-most point of

99



Figures 36 and 37. The y-axis of Figure 38 contains the normalized RMSE on x27, which

is defined as

normalized RMSE(x̂27) , RMSE(x̂27)/x27 . (168)

As shown in the figure, when the library spectrum has a sum of 1e5—i.e., when it has

the same SNR as y—the EIV method performs somewhat better than MRL, though the

difference is not nearly as great as before. If the library spectrum has ten times as much

energy as the field spectrum (i.e., if it sums to 1e6), then the benefit of EIV is practically

nonexistent. It appears that the EIV approach will usually be unnecessary for this particular

scenario.
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Figure 38: Normalized RMSE of the algorithms plotted vs. the energy (sum) of each spectrum in the
reference library.

5.4 Conclusions

This chapter addressed the problem of spectral unmixing under an errors-in-variables (EIV)

model. We showed that maximum-likelihood estimation under this model can be viewed as

a problem of low-rank approximation with nonnegativity constraints. From this perspective,

the problem is naturally addressed using a variation of the partially-supervised nonnegative

matrix factorization (PS-NMF) method of Chapter 4. This same basic approach can be

applied to the nonnegative total least squares (NNTLS) problem.

100



Our simulation results indicate that even when there is a significant amount of error in

the reference library, acceptable performance may be obtained under the EIV framework.

However, if the SNR of the library data is much greater than the SNR of the field data y, as

will typically be the case in practice, the EIV approach appears to offer little improvement

over the methods that do not account for library error.

In some situations, differences between the laboratory and field instruments may be

encountered that are not well understood or easily modeled. Even if the laboratory SNR

is high enough that Poisson noise in the lab data is not a problem, the EIV algorithm

presented in this chapter may still be reasonable if there are other discrepancies between

the lab and field data that are difficult to track down. In such cases, the “total minimum

I-divergence” interpretation of the EIV algorithm becomes attractive; even without a well-

defined statistical model for those lab-to-field variations, the I-divergence provides a natural

discrepancy measure for nonnegative quantities [10, 8].
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CHAPTER VI

SUMMARY AND FUTURE RESEARCH

The objective of this dissertation was to develop models, algorithms, and performance

bounds for the identification of chemicals from their Raman spectra.

6.1 Contributions

This thesis:

• Developed a probabilistic model, based on previous work in astronomical image restora-

tion, for a basic dispersive Raman measurement system. Applied the well-known mod-

ified Richardson-Lucy algorithm (the classical expectation-maximization algorithm)

to the problem of chemical mixture estimation.

• Derived performance bounds for chemical mixture estimation (in the form of Cramér-

Rao lower bounds) and target detection (in the form of Neyman-Pearson bounds)

under our Raman measurement model.

• Investigated the properties of several weighted least-squares and generalized least-

squares methods for the case of Poisson data.

• Developed a multiple hypothesis detection (MHD) framework for the detection of

chemicals, and derived an approximation to the MAP decision rule. The resulting

approximation is related to the Minimum Description Length approach to inference.

Showed that the common spectral unmixing approach may be viewed as an approxi-

mation to the optimal method. One of the advantages of the MHD approach is that

it is naturally extended to the problem of detecting a chemical from a given set.

• Illustrated several fundamental shortcomings of the GLRT for the problem of detecting

chemicals from a known reference library (discussed in more detail below). The GLRT
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has been applied to this problem in the literature, but we have not previously seen

these shortcomings addressed.

• Illustrated several limitations of the two-stage nonnegative matrix factorization (NMF)

approach for spectral data analysis. Developed a novel partially-supervised variation

of NMF for the detection of objects from an incomplete library. This algorithm is

applicable to any problem in which a target is identified by comparing a block of

measured data to a library of known constituent signatures.

• Developed an algorithm for ML estimation under a Poisson errors-in-variables model

(which accounts for uncertainty in the reference library spectra). Showed that the

same basic approach can be applied to the nonnegative total least squares (NNTLS)

problem. We have not previously seen these problems addressed in the literature.

• Presented a novel probabilistic model for a dispersive Raman device featuring an

intensified charge-coupled device (ICCD) detector (see Appendix B).

In most of our experiments, we found that choosing an appropriate general detection

philosophy (e.g., spectral unmixing versus GLRT, whether or not to account for “unknown”

chemicals, etc.) made a greater difference than using the “correct” noise model.

A fundamental limitation of the GLRT is that it addresses the binary hypothesis testing

problem, while in many applications—such as the detection of chemicals from a known ref-

erence library—the problem may be more naturally expressed as one of multiple hypothesis

detection. Our simulation results suggest that most of the error in the GLRT arises from

the wrong hypotheses being tested rather than the mixing coefficients being unknown. It is

thus unsurprising that the simple spectral unmixing detection approach performed better

in our simulations than the GLRT. Furthermore, because of the nonnegativity of the pa-

rameters, the GLRT does not generally attain its nominal asymptotic performance; it does

not generally have the CFAR property. We do not recommend the GLRT for the problem

of detecting chemicals from a known reference library.
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6.2 Directions for Future Work

Some possible avenues for further exploration include:

• Development of ICCD data model: Some Raman devices use an intensified

charge-coupled device (ICCD) detector, which features an image intensifier coupled

to a CCD array [29, 90]. Appendix B examines one way to incorporate the intensi-

fier into our Raman measurement model. Future work could focus on improving the

ICCD model presented in this appendix and on developing algorithms and perfor-

mance bounds under that model.

• Investigation of linear mixing assumption: One of the core assumptions made

in this thesis was that the constituent spectra mix linearly. While this assumption is

ubiquitous in the literature, it may not always be completely appropriate for Raman

spectroscopy. In general, the linear mixing model (LMM) is valid for situations in

which the reflecting surface is a “checkerboard mixture” and in which a given photon

interacts with only one component in the mixture [38]. This may be the case for

many hyperspectral imaging scenarios in which the surface area consists of spatially

segregated patterns of constituent chemicals. However, the mixtures analyzed using

Raman spectroscopy are more likely to be intimately associated; the components are

likely mixed on spatial scales smaller than the path length of photons in the mixture.

In this scenario, an incident photon may experience multiple bounces, in which case

the resulting spectrum of the mixture no longer has a linear relationship with the

constituent spectra. Future work could focus on further investigating this issue.

• Fluorescence background accommodation: One of the main topics addressed in

this dissertation was how to model and deal with the noise introduced by the sensor.

Another fundamental challenge in Raman spectroscopy is the presence of background

interference that is not well modeled as coming from within the sensor itself. This

“interference” is the component of the measured spectrum that originates from effects

other than Raman scattering. The predominant source of interference is typically

fluorescence. Appendix C introduces a basic general approach for dealing with the
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fluorescence background. Applying more sophisticated versions of this approach under

our measurement model is left as an important topic of future research.

• Approximations to MHD detection approach: Because the number of hypothe-

ses grows exponentially with the size of the reference library, the multiple hypothesis

detection (MHD) approach of Chapter 3 is infeasible for the large libraries typically

used in practice. As discussed in that chapter, future work could focus on developing

approximate methods that do not rely on brute force enumeration of the hypotheses.

• Combinations of different approaches for handling complicated variations

in the data: Chapter 4 presented methods that account for the presence of chem-

icals whose signatures are not present in the reference library. Chapter 5 developed

techniques to account for errors in the reference library. Appendix C introduces a

basic approach for accommodating the fluorescence background. These three thrusts,

namely unknown chemicals, imperfect signatures, and fluorescence, were explored

separately. Future work should consider incorporating all of these issues, particularly

the tension between them. All three thrusts seek to model variability in the data.

For instance, a fluorescent background signature that might be accommodated via a

polynomial fit might also be accommodated by the “slack” in the library signatures

provided by the EIV approaches of Chapter 5, or misinterpreted as an “unknown

chemical” by the PS-NMF methods of Chapter 4, or some combination of both. All

of these methods seek to provide additional “wiggle room” in fitting the data; the

addition of variables such as polynomial coefficients and the elements of “unknown

chemical” vectors runs the risk of overfitting the data. This observation leads us to

conjecture that Minimum Description Length methods, as mentioned in Chapter 3,

might have a role in unifying many of the methods explored in this thesis. If fluo-

rescence models, PS-NMF approaches, and EIV techniques are all required to pay a

price for offering tighter fits to the data, that may provide a natural way to balance

these approaches against one another.
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APPENDIX A

PS-NMF UPDATE EQUATION FOR PENALIZED COST FUNCTION

This appendix derives the multiplicative update algorithm for the objective function

Ψ(W,X) =
∑
i,γ

[[WX]iγ − [Y]iγ ln ([WX]iγ)] +
∑
j,γ

[Λ]jγ [X]jγ . (169)

The derivative of Ψ with respect to [W]ij is given by

∂

∂[W]ij
Ψ =

∑
γ′

∑
i′

∂

∂[W]ij

(
[WX]i′γ′

)
−

[Y]i′γ′

[WX]i′γ′

∂

∂[W]ij

(
[WX]i′γ′

)
=
∑
γ′

[X]jγ′ −
[Y]iγ′

[WX]iγ′
[X]jγ′ . (170)

The derivative with respect to [X]jγ is similarly given by

∂

∂[X]jγ
Ψ =

∑
i′

(
[W]i′j −

[Y]i′γ
[WX]i′γ

[W]i′j

)
+ [Λ]jγ . (171)

The general gradient descent technique is therefore given by

[Ŵ(n+1)]ij ← [Ŵ(n)]ij − α(n)
ij

∑
γ′

[X̂(n)]jγ′ −
∑
γ′

[Y]iγ′

[Ŵ(n)X̂(n)]iγ′
[X̂(n)]jγ′

 for j > M

(172a)

[X̂(n+1)]jγ ← [X̂(n)]jγ − δ(n)
jγ

(∑
i′

[Ŵ(n)]i′j + [Λ]jγ −
∑
i′

[Y]i′γ

[Ŵ(n)X̂(n)]i′γ
[Ŵ(n)]i′j

)
.

(172b)

Here, the first M columns of W are known and do not need to be estimated in (172a).

If the step sizes are chosen by α
(n)
ij =

[Ŵ(n)]ij∑
γ′ [X̂

(n)]jγ′
and δ

(n)
jγ =

[X̂(n)]jγ∑
i′ [Ŵ

(n)]i′j+[Λ]jγ
, then (172)

becomes the multiplicative update rule

[Ŵ(n+1)]ij ← [Ŵ(n)]ij

∑
γ′

[Y]iγ′

[Ŵ(n)X̂(n)]iγ′
[X̂(n)]jγ′∑

γ′ [X̂
(n)]jγ′

for j > M (173a)

[X̂(n+1)]jγ ← [X̂(n)]jγ

∑
i′

[Y]i′γ
[Ŵ(n)X̂(n)]i′γ

[Ŵ(n)]i′j∑
i′ [Ŵ

(n)]i′j + [Λ]jγ
. (173b)
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This is expressed in matrix form as

Ŵ(n+1) ← Ŵ(n).∗
[(

Y./(Ŵ(n)X̂(n))
)

(X̂(n))T
]
./
(
1N×K(X̂(n))T

)
(174a)

Replace first M columns of Ŵ(n+1) with the known library A (174b)

X̂(n+1) ← X̂(n).∗
[
(Ŵ(n))T

(
Y./(Ŵ(n)X̂(n))

)]
./
(

(Ŵ(n))T1N×K + Λ
)
. (174c)

In (174), the MATLAB-style notations .∗ and ./ represent elementwise multiplication and

division.
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APPENDIX B

INCORPORATING THE INTENSIFIER INTO THE RAMAN DATA

MODEL

Chapter 2 presented a data model for a dispersive Raman instrument based on the physics of

two key components: the spectrometer and the charge-coupled device (CCD) detector (see

Figure 5). Some Raman devices (e.g., [28]) use an intensified charge-coupled device (ICCD)

detector, which features an image intensifier coupled to a CCD array [29, 90]. The result-

ing system is diagrammed in Figure 39. The intensifier amplifies the number of photons

internally and thus allows detection of weaker signals than is possible with a non-intensified

CCD. Perhaps more importantly, the gain of the intensifier is controlled by adjusting a volt-

age applied to the device, and temporal gating/shuttering may therefore be accomplished

by simply turning off the control voltage. On the other hand, the ICCD typically has worse

spatial resolution than its non-intensified counterpart, and at moderate-to-high light lev-

els the ICCD typically yields lower signal-to-noise ratio. This appendix examines how to

incorporate the intensifier into the model of Chapter 2. Further development and analysis

of the ICCD model and corresponding algorithms are left as an important topic for future

research.

CCD 

Intensifier

A/D

Spectrograph

Figure 39: Key components of a dispersive Raman system featuring an intensified charge-coupled device
(ICCD) detector.

The three main components of a typical intensifier are illustrated in Figure 40. The

108



photocathode converts the incident photons into electrons, and this image of electrons is

then focused onto the microchannel plate (MCP). The MCP, which is an array of thousands

of miniature parallel glass hollow tubes, multiplies the number of incoming electrons by

a gain determined by the “bias voltage” applied to it. The resulting electrons are then

converted back to photons by the phosphor screen. The output signal is typically linked to

the CCD via a fiberoptic bundle, although lens-coupled systems have also been used.

e-p e- p

Figure 40: Three main components of the intensifier.

Various authors have analyzed the signal-to-noise ratio (SNR) of the ICCD and com-

pared it with the SNR of the non-intensified CCD under different operating regimes [29,

23, 15]. However, we have seen little work on developing statistical models for ICCD data.

The model presented here is somewhat similar to that presented by Sandel and Broadfoot

in [76]; both rely on the key experimental observation [27, 100] that the MCP has roughly

an exponentially-distributed gain when a single electron is input. The main differences are

that [76] models the A/D quantization error, which we neglect, while our model includes

several terms that were not included in [76], such as the efficiency and dark current of the

photocathode, the point-spread function of the spectrograph, and the efficiency and dark

current of the CCD. Another difference is that we use the geometric distribution, and not

the exponential, to model the MCP.

For notational simplicity, we first consider the signal at just a single frequency. The

“ideal noiseless signal” (in photons) incident on the photocathode is denoted by µP−SIG.

The incident signal is subject to the usual Poisson statistics, and the photocathode has
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associated with it a quantum efficiency η and Poisson-distributed dark noise (with mean

µPC−DARK) analogous to the CCD parameters β and µb discussed in Chapter 2. The

“binomial selection theorem” described in Section 2.2.2 once again enables the quantum

efficiency parameter to be incorporated into the Poisson distribution, so that the number

of electrons generated on the photocathode is given by

nPC ∼ Pois(ηµP−SIG + µPC−DARK). (175)

These parameters appear as labels in Figure 40.

The output of the microchannel plate, nMCP , is not simply the input nPC multiplied

by the nominal gain G; the statistics of the MCP must be characterized. Both Wiza [100]

and Guest [27] experimentally observed that the MCP gain appears to be approximately

exponentially distributed when a single electron is input. However, the exponential dis-

tribution, being continuous, does not seem entirely appropriate here, so we instead use

its discrete counterpart, the geometric distribution. A geometrically-distributed random

variable n with parameter α is characterized by the probability mass function

p(n) = (1− α)nα. (176)

If a single electron is input (i.e., if nPC = 1), then the MCP output is modeled by

nMCP ∼ Geom(1/[G+ 1]). (177)

The parameter of the geometric distribution is set to 1/(G + 1) so that that the mean of

the output will match the nominal gain:

E(nMCP ) = G. (178)

The distribution of nMCP for the case in which nPC = 1 and G = 1000 is plotted in

Figure 41(a).

If nPC electrons are input, then the output is the sum of nPC geometrically-distributed

random variables, each with a mean of G (and parameter of 1/[G+1]). If these are assumed

to be independent, then the sum is characterized by the negative binomial distribution

nMCP ∼ NB(nPC , 1/[G+ 1]). (179)
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Figure 41: Negative binomial model for microchannel plate.

The distribution of nMCP for the case in which nPC = 5 and G = 1000 is plotted in

Figure 41(b). The conditional mean and variance of nMCP are given by

E(nMCP |nPC) =
nPC(1− 1/[G+ 1])

1/[G+ 1]
(180a)

= nPCG (180b)

and

V ar(nMCP |nPC) =
nPC(1− 1/[G+ 1])

1/[G+ 1]2
(181a)

= nPC [(G+ 1)2 − (G+ 1)] (181b)

= nPC(G2 +G). (181c)

By the law of total expectation, we have

E(nMCP ) = E[E(nMCP |nPC)] (182a)

= E(nPCG) (182b)

= G(ηµP−SIG + µPC−DARK). (182c)
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Similarly, by the law of total variance,

Var(nMCP ) = E[Var(nMCP |nPC)] + Var[E(nMCP |nPC)] (183a)

= E[nPC(G2 +G)] + Var[nPCG] (183b)

= (G2 +G)(ηµP−SIG + µPC−DARK) +G2(ηµP−SIG + µPC−DARK) (183c)

= (2G2 +G)(ηµP−SIG + µPC−DARK) (183d)

≈ 2G2(ηµP−SIG + µPC−DARK). (183e)

We note that the accuracy of the approximation made between (183d) and (183e) improves

as G increases, because G2 becomes more significant relative to G. Under this approxima-

tion, the variance is twice what it would be if a deterministic MCP gain of G were assumed.

Interestingly, some SNR analyses in the literature, without actually specifying a statistical

model for the MCP, include an “SNR degradation” term or “noise factor” which is usually

around 2. For example, both [29] and [23] assume an MCP noise factor of 1.8, while [15]

assumes a noise factor of 1.6.

Finally, as in Chapter 2, we account for the quantum efficiency β and dark current (with

mean µCCD−DARK) on the CCD:

y = nCCD + nCCD−DARK , (184)

where

nCCD ∼ Binom(nMCP , β) (185)

and

nCCD−DARK ∼ Pois(µCCD−DARK). (186)

Again applying the laws of total expectation and total variance, it is straightforward to

show that

E(y) = βG(ηµP−SIG + µPC−DARK) + µCCD−DARK (187)

and that

Var(y) = 2G2β2(ηµP−SIG + µPC−DARK)[1 + 1/(2βG)] + µCCD−DARK (188a)

≈ 2G2β2(ηµP−SIG + µPC−DARK) + µCCD−DARK (188b)
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if G � 1/β. Our proposed ICCD model for the ith frequency bin is then summarized as

follows:

yi = nCCDi + nCCD−DARKi (189a)

nCCD−DARKi ∼ Pois(µCCD−DARKi ) (189b)

nCCDi ∼ Binom(nMCP
i , βi) (189c)

nMCP
i ∼ NB(nPCi , 1/[G+ 1]) (189d)

nPCi ∼ Pois(ηiµP−SIGi + µPC−DARKi ) (189e)

µP−SIGi = [PAx]i, (189f)

where, as in Chapter 2, P is the point-spread function (PSF) of the diffraction grating,

A is the reference library, and x is the vector of mixing coefficients. Notice that if nMCP
i

were Poisson distributed, then nCCDi would also be Poisson distributed with mean βiµ
MCP
i

by the binomial selection theorem; unfortunately, the negative binomial nature of nMCP
i

prevents us from making such a convenient simplification.

Of course, the work presented in this appendix is far from complete; future work could

focus on improving this ICCD model. For example, the “SNR degradation” term, or “noise

factor,” is known to typically vary with the bias voltage applied to the MCP [29, 15];

this effect is not explained by our model, which predicts a constant noise factor of 2.

Perhaps more importantly, different authors include different system parameters (e.g., the

efficiency of the phosphor screen, the loss of the fiberoptic bundle, etc.) in their SNR

analyses [29, 23, 15]; future work could determine which terms are most dominant and

include only those in our model. Future work could also focus on developing algorithms

under this model. For example, for the purpose of estimation, the generalized least-squares

methods (and in particular, the nonnegative iteratively reweighted least-squares [NNIRLS]

algorithm) of Chapter 2 may be applicable.

Such approximate algorithms may be particularly attractive since merely writing the

complete equation for the probability density defined by (189a) is a cumbersome task, let

alone developing algorithms to maximize the resulting complicated likelihood functions.

Equation (189a) is a sum of a Poisson distribution with a binomial distribution, where one
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of the parameters of that binomial distribution has a negative binomial distribution, and

one of the parameters of that negative binomial distribution is Poisson distributed. The

resulting probability density of yi is likely to contain several infinite sums that do not lead

to “clean” expressions. We conjecture that techniques such as saddle-point approximation,

which have proven useful in approximating the densities of random variables that are the

sum of a Gaussian and a Poisson random variable [86], might be helpful in tackling (189a).

114



APPENDIX C

A GENERAL APPROACH FOR FLUORESCENCE BACKGROUND

ACCOMMODATION

One of the main topics addressed in this dissertation is how to model and deal with the

noise introduced by the sensor. Another fundamental challenge in Raman spectroscopy is

the presence of background interference that is not well modeled as coming from within

the sensor itself. This “interference” is the component of the measured spectrum that

originates from effects other than Raman scattering. The predominant source of interference

is typically fluorescence. This appendix describes a basic general approach for dealing with

the fluorescence background. Applying more sophisticated versions of this approach under

our measurement model is left as an important topic of future research.

The typical method to deal with background interference is to first estimate the back-

ground and then to subtract it from the measured spectrum as a preprocessing step. For

example, one common crude technique is to model the slowly-varying background with a

polynomial, typically of 5th or 6th order [40, 101, 4, 102]. Under this polynomial background

model, the preprocessing approach is illustrated in Figures 42-44. Figure 42 contains the

four spectra in the reference library (M = 4) of this example. Figure 43(a) shows the (sim-

ulated) fluorescence background f , which is a 6th order polynomial. To keep this example

simple, we use an AWGN measurement model:

y = Ax + f + w (190a)

= [A V]

 x

p

+ w , (190b)

where V is an N×7 Vandermonde matrix [89], p is a 7×1 vector of polynomial coefficients,

and w is white Gaussian noise. The measurement vector y is plotted in Figure 43(b) for

the case in which xj = 1/4 for all j.
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Figure 42: Reference library (M = 4).

The preprocessing approach estimates the fluorescence background by fitting a polyno-

mial to the data. The resulting estimated background is plotted for different polynomial

orders in Figure 44. When the wrong order is assumed, the performance is degraded. Even

when the correct polynomial order is asssumed, the estimated background still has error,

since this technique does not account for the contribution from the library spectra.

Our suggested approach is to parametrically model the background and to jointly esti-

mate the nuisance parameters corresponding to the background along with the the parame-

ters of interest (the mixing coefficients). For example, for the simple polynomial background

model of (190), we estimate the entire vector [xT pT ]T as suggested by (190b). The result-

ing estimated background is plotted for different polynomial orders in Figure 45. Since

this method co-estimates the mixing coefficients along with the background parameters,

the estimated background is much more accurate than that given by the preprocessing

approach.

The presence of nuisance parameters decreases the estimation performance for the pa-

rameters of interest—the background interference will hurt any processing algorithm, not

just algorithms that co-estimate the background. We may quantify this harmful effect by
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Figure 43: Background interference and measured spectrum.
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Figure 44: Background estimated by preprocessing approach using polynomials of 4th, 6th, and 8th order.

computing the Cramér-Rao Bound and comparing it to the case where the background pa-

rameters are not included in the model. For example, the standard deviation CRLB for the

above AWGN model is shown for both cases in Table 11. For the first row, the CRLB uses

(4) instead of (190b), leaving the fluorescence background out of the model. The bounds in

the first row are smaller than in the second, indicating that if the fluorescence is ignored, we

will be overconfident in how well we can estimate the mixing coefficients. For this particular

example, the effect is small.

Table 11: Effect of nuisance parameters on the CRLB.

x1 x2 x3 x4

CRLB without fluorescence: 0.0057 0.0049 0.0049 0.0054
CRLB with fluorescence: 0.0072 0.0050 0.0054 0.0058
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Figure 45: Background estimated by suggested method using polynomials of 4th, 6th, and 8th order.

We conjecture that examples such as this can be improved on by incorporating the

nuisance parameters into our measurement model of Section 2.2.2. One challenge is that

while the mixing coefficients are constrained to be nonnegative, the polynomial coefficients

for the background should be allowed to be negative as well as positive; the resulting

polynomial background, however, should be nonnegative [31]. This places some complicated

constraints on the coefficients. One approach would be to use polynomials involving sums

of squares [43, 3]; another might be use a real-valued polynomial model for the logarithm of

the fluorescence background. Powell-Sabin splines [98] might also be useful. We leave this

as a topic for future research.

Another, related, task for future research is to explore more sophisticated methods to

parametrically model the background.
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