
PREDICTING BEHAVIOR OF FLEXIBLE PAVEMENTS WITH 
GRANULAR BASES 

A Thesis 
Presented to 

The Academic Faculty 

by 

Erol Tutumluer 

In Partial Fulfillment 
of the Requirement for the Degree 

Doctor of Philosophy in Civil Engineering 

Georgia Institute of Technology 
September 1995 



GRANULAR BASES 

Approved: 

r? /) A.. - A /i /) 
J 1 t W* * - r vr «_-£ 1. A.Or I^V^ir 

Dr. Richard D. Barksdale 

n 

\J ~ 
Dr. Paul W. Mayne 

//tn 

Dr. Glenn J. 'kJ / 

* J A ~-r—L 

Dr. Gary R.Q&hmertmann 

/) /? H /) y? S 

Dr. Charles E7udng *"£f 

Date Approved By Chairperson / $ V x / 9 * T 



ACKNOWLEDGMENTS 

I am deeply grateful to my advisor Professor Richard D. Barksdale for his constant 

support, valuable guidance and inspiration during the course of this research. I am 

fortunate to have had the opportunity of learning from him during my studies at Georgia 

Tech. I greatly appreciate his advice, encouragement, and guidance which made possible 

the completion of this dissertation. My very special thanks go to him for also the 

personal support his family gave me during the last four years. 

I would like to thank the members of my graduate thesis committee, Dr. Paul W. 

Mayne, Dr. Glenn J. Rix, Dr. Charles E. Ueng, and Dr. Gary Schmertmann, for their 

contribution and helpful advice. The constant professional support on finite elements 

provided by Dr. Kenneth (Mac) Will is greatly appreciated. My special thanks go to Dr. 

Paul H. Wright who served in my advisory committee. I am also thankful to Dr. J. David 

Frost and Dr. Emir Macari for their help and valuable suggestions during the last two 

years at Geosystems Department. 

It would have been impossible to even come this far without the friendship of the 

fellow graduate students: Dr. Barry S. Chen, Dr. Jorge L. Alba, Dr. Kevin Sutterer, Dr. 

Dayakar Penumadu, Dr. Roger Meier, Dr. Ronaldo Luna, Dr. Chun-Yi Kuo, Doug 

Brown, Pedro Arduino, Haroon Shami, Susan Burns, Wesley Spang, Carlo Lai, Gilberto 



(Genco) D'Andria, my officemate Jie Han, and many others who I could not name here. 

They will always be remembered for the good time spent together. My special thanks go 

to the professional staff of the geotechnical group: Ken Thomas, Larry Westbrooks, Vicki 

Clopton, and Seph Scott for their assistance and friendship. 

I am very thankful to my Turkish friends who made me feel Atlanta as my home 

town during the last four years. Among them Selcuk Cimtalay, Ozgur Misman, Ismail 

and Sinan Lazoglu, Namik and Meral Ciplak, Ekrem and Eda Sabuncuoglu, and many 

others provided me with personal support and friendly advice. I will always appreciate 

the sincere support of my girlfriend Gunes Erdogan during the writing stages of this 

thesis. 

Finally, and the most importantly, I would like to thank my parents Kemal and 

Sabahat Tutumluer for their consistent love and support. I am deeply indebted to them 

and my sister for all that they have done for me during my life. 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS iii 

TABLE OF CONTENTS v 

LIST OF TABLES viii 

LIST OF ILLUSTRATIONS ix 

SUMMARY xiv 

CHAPTER 

I. INTRODUCTION 1 
Statement of the Problem 1 
Resilient Behavior 4 
Outline of Thesis 5 

II. REVIEW OF THE LITERATURE 9 
Introduction 9 
Theoretical Background 11 

One-Layer Approach 13 
Elastic Multi-Layered Theory 15 
Linear Elastic Computer Programs 17 

Resilient Material Characterization Models 19 
Granular Materials 22 
Subgrade Soils 41 

Nonlinear Analysis 45 
Summary 54 

III. MODELING OF GRANULAR BASES 56 
Introduction 56 
Residual Stresses 59 
Continuum Approach 66 

Micromechanics Based Continuum Solutions 



No Tension Analysis 72 
Cross-Anisotropy Under Axial Symmetry 79 
Summary 84 

IV. NEURAL NETWORK MODELING OF RESILIENT MODULUS 85 
Introduction 85 
Background on Neural Networks 87 

Literature Review: Material Modeling Using Neural Networks 95 
Modeling Resilient Modulus of Granular Materials 97 

Repeated Load Triaxial Tests 97 
ANN Model 99 
Validation Analysis 105 

Summary 109 

V. FINITE ELEMENT FORMULATIONS ] 11 
Introduction 111 
Isoparametric Eight Node Quadrilateral Element 113 

Loading 125 
Stress Computations 128 

Six Node Interface Element 129 
Stiffness Formulation 133 

Summary 141 

VI. COMPUTER CODE ORGANIZATION AND CAPABILITIES 142 
General Description 142 
Overview 143 
GT-PAVE Program Organization 147 
Nonlinear Analysis 153 

Nonlinear Solution Technique 154 
No Tension Modifications 165 
Limitations of the Computer Code 175 
Summary 177 

VII. APPLICATIONS OF THE COMPUTER CODE 179 
Introduction 179 
Verification of the Computer Code 180 

Example 1: Stress Distribution Boussinesq Type Problem 181 
Example 2: Isotropic Three Layer System 184 
Example 3: Cross-Anisotropic Three Layer System 189 
Example 4: Modeling of Repeated Load Triaxial Tests 191 

Effects of Compaction Induced Residual Stresses 196 
Full-Scale Pavement Resilient Response Predictions 200 



vii 

Georgia Tech Full-Scale Pavement Test Study 200 
Modeling of the Pavement Test Sections 206 
Test Section Resilient Response Predictions 211 
Practical Design Considerations of Inverted Sections 217 
Cost Comparison Analysis 221 

Summary 227 

VIII. NO TENSION ANALYSIS USING THE BLOCK MODEL 229 
Introduction 229 
Literature Review: Discrete Particle Approach 230 
Load Transfer in Granular Materials 234 
Block Model 238 
Organization of Interface Elements in the Computer Code 243 
Interface Behavior and Iterative Procedure for Equilibrium 249 

The Block Model Iterative Equilibrium Procedure 257 
Verification of Interface Elements 259 

Example 1: Boussinesq Type Problem 259 
Applications of the Block Model 263 

Interface Properties 264 
Example 2: Sliding Block Example 265 
Example 3: Georgia Tech Conventional Test Sections 271 

Summary 284 

IX. CONCLUSIONS AND RECOMMENDATIONS 286 
Conclusions 286 

Practical Findings 291 
Recommendations for Future Work 293 

APPENDICES 

A. RESILIENT MODULUS DATA FOR POTENTIAL ARTIFICIAL 
NEURAL NETWORK VARIABLES 295 

B. GT-PAVE NONLINEAR FINITE ELEMENT PROGRAM 303 
Input and Output Capabilities 303 

REFERENCES 308 

VITA 



Vlll 

LIST OF TABLES 

Table 

,4.1 Mean Squared Errors Calculated Using Different Network Architectures 
After 10,000 Training Epochs 101 

5.1 Shape Functions and Their Derivatives for the Eight Node Element 119 

7.1 The Geometry and Performance Summary of Georgia Tech Pavement 
Test Sections (after Barksdale and Todres, 1983) 201 

7.2 Aggregate Gradations and Material Properties Used in Flexible Pavement 
Test Sections 203 

7.3 Detailed Summary of Resilient Test Section Response 205 

7.4 Material Properties and Model Parameters Used in Modeling Pavement 
Test Section Response 209 

7.5 Comparison of Predicted and Measured Response Variables 219 

A. 1 Georgia Tech Resilient Modulus Data For Potential ANN Variables 296 

A.2 SHRP Resilient Modulus Data For Potential ANN Variables 298 

A.3 North Carolina Resilient Modulus Data For Potential ANN Variables 301 



IX 

LIST OF ILLUSTRATIONS 

Figure 

2.1 Generalized Multilayered Elastic System in Cylindrical Coordinates 
Under Axial Symmetry 12 

2.2 Average Stress States in Aggregate Base for Use in Cyclic Testing for 
Light, Medium, and Heavy Pavements (after Barksdale and Itani, 1989) 20 

2.3 Test Results and Predicted Behavior Using K-6 Model for A Dense 
Graded Aggregate (after Uzan, 1985) 24 

2.4 Contour Model Cambridge q-p Stress Space (after Brown and Pappin, 1981) 27 

2.5 Comparison of Contour Model with the K-0 Model (after Sweere et al., 1987) 29 

2.6 Comparison of Test Results and Predicted Behavior Using Uzan Model 
for A Dense Graded Aggregate (after, Uzan, 1985) 31 

2.7 Comparison of Predicted Resilient Modulus Behavior of Crushed Stone 
Using Brown's Model and Uzan's Model (after Uzan, 1985) 32 

2.8 General Relationship Between Resilient Modulus and Deviator Stress 
for Fine-Grained Soils 43 

3.1 Typical Granular Material Behavior Under Repeated Applications of 
Axial Deviator Load (after Jouve et al., 1987) 58 

3.2 Schematic Representation of Stress Path During Compaction 
(after Uzan, 1985) 62 

3.3 Distribution with Depth of Base and Subbase Moduli Under A Wheel 
Load (after Uzan, 1985) 64 

3.4 The Three-Dimensional Continuum Model 68 



X 

3.5 Radial Tensile Stress and Vertical Pressure at the Bottom of Base As 
A Function of Modular Ratio (after Heukelom and Klomp, 1962) 74 

3.6 Mohr-Coulomb Stress Modification for A No Tension Failure 
Condition (Zeevaert, 1980) 76 

3.7 Stratified Anisotropic Material Under Axial Symmetry 81 

4.1 A Typical Back-Propagation Neural Network 89 

4.2 Summation and Transfer Functions of A Typical Artificial Neuron 90 

4.3 Training Progress and Predicted Results for 6-5-5-1 Network 103 

4.4 ANN Predictions of Resilient Modulus for Materials with Varying 
Stress Levels 104 

4.5 Comparison of ANN Model Predictions with Uzan and UT- Austin Models 106 

4.6 Computed Moduli Compared with Measured Values for A Sample 
Having Newly Introduced Material Property Set to the ANN Model 108 

5.1 Finite Elements Used in the Model in Global Coordinates 114 

5.2 Eight Node Isoparametric Quadrilateral Ring Element with Quadratic 
Displacements of Boundaries 116 

5.3 Third Order Gauss Integration Point Locations in the Eight Node 
Quadrilateral Element 124 

5.4 Six Node Interface Element 131 

5.5 Uniform Load k Applied at the Boundary of An Eight Node 
Isoparametric Element with Unit Displacement Shown at Node 1 134 

6.1 Flow Diagram of GT-PAVE Finite Element Program 148 

6.2 Flow Diagram of QUADSTF Element Stiffness Subroutine 150 

6.3 Flow Diagrams of SHAPE and EDGE Subroutines 151 



XI 

6.4 Secant Modulus Approach for Newton-Raphson Scheme 156 

6.5 Secant Newton-Raphson Scheme for the Hardening Granular Material 
Behavior 159 

6.6 Resilient Modulus Search Technique Using Secant Stiffnesses for 
Flexible Pavements 160 

6.7 Flow Diagram of NONLIN Nonlinear Analysis Subroutine 164 

6.8 Effect of Principal Stress Rotation on the Computed Vertical Modulus 166 

6.9 Horizontal Tension Zone in the Base As Predicted by Isotropic Linear 
Elastic Solution 168 

6.10 Horizontal Tension Zone in the Base As Predicted by Cross-Anisotropic 
Linear Elastic Solution 169 

6.11 Flow Diagram of Tension Modification Subroutine 172 

7.1 Finite Element Mesh for the Boussinesq Type Problem 182 

7.2 GT-PAVE FEM Stress Predictions for the Boussinesq Type Problem 183 

7.3 Three-Layer Isotropic System Problem on Semi-Infinite Halfspace 185 

7.4 GT-PAVE FEM Stress Predictions at Centerline for the Isotropic 
Three-Layer Problem 187 

7.5 GT-PAVE Stress Predictions at 5 in. Radial Distance for the Isotropic 
Three-Layer Problem 188 

7.6 GT-PAVE FEM Stress Predictions at Centerline for the Cross-
Anisotropic Three-Layer Problem 190 

7.7 Axisymmetric Finite Element Mesh Used to Model Repeated Load 
Triaxial Tests on Granular Materials 192 

7.8 Comparisons of the GT-PAVE Nonlinear Resilient Response 
Predictions with the Measured Experimental Results 195 



7.9 The Effect of Compaction Induced Residual Stresses on the Predicted 
Centerline Radial Stresses 199 

7.10 Typical Cross Sections of Pavement Test Sections 207 

7.11 Vertical Stiffnesses Predicted for the Conventional Sections 214 

7.12 Predicted Vertical Stress Distribution on the Centerline of Loading 216 

7.13 The Variation of Radial Tensile Stresses Throughout the Unstabilized 
Aggregate Base and Cement Stabilized Subbase in Section 12 218 

7.14 The Variations of Horizontal Tensile Strain in AC and Vertical Stress 
on Subgrade with Base Thickness in Section 11 220 

7.15 The Variation of Horizontal Tensile Strain at the Bottom of AC 
with AC Thickness 222 

7.16 The Variation of Horizontal Tensile Stress Beneath the Centerline 
at the Bottom of Cement Stabilized Subbase with Subbase Thickness 222 

7.17 Equal Cost Inverted and Conventional Field Section Constructions 224 

7.18 Predicted Performance of the Equal Cost Inverted and Conventional 
Field Sections 225 

7.19 Predicted Fatigue Performance of the Equal Cost Inverted and 
Conventional Field Sections 225 

8.1 Contact Forces for Two-Dimensional Numerical Simulation -
Anisotropic Loading (after Dobry et al., 1989) 236 

8.2 Deformation of the Base Layer 237 

8.3 Load Transfer in the Base Layer 237 

8.4 Base Layer As A Set of Coupled Springs (after Allaart, 1992) 238 

8.5 Granular Base Consisting of Blocks of Granular Particles Interacting 
Through Normal and Shear Springs 240 



8.6 The Block Model Representation of the Granular Layers in the Finite 
Element Mesh: Example 2 244 

8.7 Flow diagram of INTSTIF Element Stiffness Subroutine 245 

8.8 Flow Diagram of INTSTRES Interface Element Stress Subroutine 248 

8.9 Interface Behavior with Relative Displacements and Stresses 250 

8.10 Algorithm for the Selection of Interface Behavior Mode and 
Computation of Balancing Forces 253 

8.11 Finite Element Mesh with Interface Elements Used in the Middle 
8.0 in. (203 mm) Zone: [Examples 1 and 3] 261 

8.12 Interface Element Stress Predictions for the Boussinesq Type Problem 262 

8.13 Interpretation of Element Normal and Shear Stresses in r-z Plane 268 

8.14 Example 2: Deformed Mesh and the Variation of Interface Shear 
Stresses Throughout the Middle (Base) Layer for Loading Condition 1 270 

8.15 Example 2: Deformed Mesh and the Variation of Interface Shear 
Stresses Throughout the Middle (Base) Layer for Loading Condition 2 272 

8.16 Example 3: The Variation of Radial Stresses In the Crushed Stone Base 
- Nonlinear Analysis Using Elastic Continuum Approach 274 

8.17 Example 3: The Variation of Radial Stresses Obtained from the Vertical 
Interface Elements in the Crushed Stone Base 276 

8.18 Example 3: The Variation of Vertical Stresses Obtained from the 
Horizontal Interface Elements in the Crushed Stone Base 277 

8.19 Example 3: The Variation of Interface Shear Stresses Obtained from 
Interface Elements in the Crushed Stone Base 279 

8.20 Frictional Shear Resistance Under Normal Stress in A Three-Grain Assembly 280 

8.21 Example 3: Comparison of Radial Tension Forces in the Base from 
Elastic Continuum and Block Models 282 



SUMMARY 

A theoretical and analytical study has been undertaken in this thesis to develop an 

improved analysis method for calculating the performance of flexible pavements with 

granular bases. A finite element program named GT-PAVE has been developed to 

predict the resilient response of flexible pavements. The program accounts for: 1) 

material nonlinearity due to the stress dependent nature of pavement materials, 2) cross-

anisotropic behavior observed in granular bases, 3) horizontal residual stresses due to 

initial compaction, and 4) correction of tensile stresses at the bottom of the base layer 

obtained in elastic analyses. Finite element predictions of eight different response 

variables such as stress, strain, and deformation at different locations in die pavement are 

compared to the results obtained from experiments with instrumented full-scale test 

sections. The comparisons show very good agreement when a nonlinear elastic analysis 

is performed with cross-anisotropic material behavior assumed in the base layer. A new 

method of modeling the resilient response behavior of granular materials is proposed 

using artificial neural networks. A new block model approach of modeling unstabilized 

granular bases is also introduced to analyze the particulate media as blocks of aggregates 

enabling the particulate material behavior such as translation, sliding and separation. The 

so-called "no tension" problem is investigated using the block model to explain the 

deficiency of classical continuum solutions which predict inadmissible radial tension in 

the granular base. 



1 

CHAPTER I 

INTRODUCTION 

Statement of the Problem 

Today, more than 2.2 million miles (3.5 million km.) of paved roads exist in the 

United States of which 94% consist of flexible pavements (FHWA, 1990). Flexible 

pavements are multilayered systems comprised of an asphalt concrete (AC) surfacing, 

base, and sometimes subbase layers. These layers are supported by a subgrade. The 

structural design principle of conventional flexible pavements is usually based on using 

higher quality materials at the top, where the intensity of stress from the wheel load is 

high, and materials of decreasing quality with increasing depth. To achieve maximum 

economy in a pavement section, each material should be located to take full advantage of 

its best engineering properties. When compacted properly, a granular base shows 

excellent compressive characteristics in spreading the wheel load over the weaker 

subgrade soils. The primary objective of this thesis is to study the factors affecting the 

engineering behavior of granular bases and to develop analytical models to define the 

stress distribution and load deformation characteristics in flexible pavements. 
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Since the development of microcomputers, mechanistic analysis has become 

widely used in flexible pavement design due to its ability to predict fatigue and rutting 

distress. Most of the currently used mechanistic design methods, however, still employ 

classical linear elastic analysis to predict the deflections, stresses and strains developed 

within a pavement due to a wheel load. In conflict with the assumptions of classical 

linear elasticity, neither the unstabilized aggregate base nor the subgrade soil is 

homogeneous and isotropic. The nonlinear behavior of both layers are well documented 

(Brown and Pappin, 1981, Thompson and Elliot, 1985). Recent research (Barksdale et 

al., 1989) also showed that granular bases with assigned cross-anisotropic material 

properties result in better predictions of general pavement response than those obtained 

from the isotropic solutions. 

Unstabilized granular bases, which are composed of a discrete assembly of 

unbound aggregates, can not take any significant levels of tensile stress. The usually 

employed classical elastic continuum solutions of the pavement system problem, on the 

other hand, predict large horizontal tensile stresses in the bottom of the base which 

implies the base is in a state of failure. However, pavements generally do not fail in the 

field under the traffic load. Selig (1987) proposed that these predicted tensile stresses are 

actually offset by compressive compaction induced residual stresses which are locked in 

the granular layer and usually not included in the analysis. These residual stresses, as 

measured by several researchers (Uzan, 1985; Barksdale and Alba, 1993), must 

undoubtfully be considered in a proper analytical model for the base. Nevertheless, 
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whether or not this "no tension" problem can be fully explained with residual stresses is 

questionable since the predicted horizontal tensile stresses are usually higher than the 

compressive residual stresses. 

Due to the apparent need for improved pavement modeling using proper geometry 

and material description for the unbound materials, a theoretical and analytical study has 

been undertaken in this thesis to develop an analysis method for correctly calculating the 

performance of flexible pavements. The finite element method is used in this study to 

predict the state of stresses and deformations of the axisymmetric multilayered pavement 

system when subjected to vehicle wheel load on the surface. A finite element program 

named GT-PAVE is developed to incorporate the analytical solution which includes the 

following essential considerations: (1) nonlinear behavior of granular bases and subgrade 

soils through realistic elastic constitutive behavior laws, (2) cross-anisotropic 

representation of the granular materials, (3) incremental loading, (4) the compaction 

induced residual stresses, and (5) "no tension" modifications. The response predictions 

for full-scale test sections obtained using the GT-PAVE program are found to be in good 

agreement with the observed results. 

A new block model approach for modeling unstabilized granular bases is also 

proposed in this thesis to analyze in a practical way the particulate media as blocks of 

aggregates. The new model incorporates both the constitutive relations of the continuum 

and at the same time, handles the particulate material characteristics such as translation, 

sliding and separation. The "no tension" problem is investigated using the block model in 
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an attempt to explain the deficiencies of the classical continuum solutions which predict 

the inadmissible radial tension in the granular. 

Resilient Behavior 

The resilient behavior of flexible pavements is the elastic behavior which occurs in 

the pavement after a large number of repeated wheel load applications. Although most 

pavements experience permanent (irrecoverable) deformations after each load 

application, when the loads are small and repeated for a large number of applications, the 

deformations become almost completely recoverable. As these recoverable deformations 

become proportional to the load, as an engineering approximation, they can be considered 

elastic. It is, therefore, possible to select a reasonable elastic modulus commensurate 

with the speed of moving loads (Huang, 1993). 

Repeated load triaxial tests are commonly performed in the laboratory to obtain the 

resilient properties of unstabilized granular and cohesive materials (Barksdale and Itani, 

1990). The resilient modulus (MR), generally obtained from repeated load triaxial tests, 

is the elastic modulus calculated based on the axial recoverable strain under repeated 

axial loads and is defined by 

M R = ^ L ( U ) 

^rec 
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in which a d = the applied repeated deviator stress = Gj-C^, and 8rec is the axial 

recoverable strain. The resilient modulus is an essential input variable for design of 

flexible pavements using mechanistic concepts. Throughout this thesis, the elastic 

behavior of pavement materials is referred to as the resilient behavior, and the elastic 

analyses are performed using the resilient modulus. 

Outline of Thesis 

In Chapter 2, a detailed historical review of the classical elastic layered theories are 

presented. First, the one layer Boussinesq elastic half space problem is considered. 

Later, Burmister's elastic multilayered approach is applied to the axisymmetric flexible 

pavement analysis. Within the scope of elastic layered theory, capabilities of some of the 

commonly used linear elastic computer programs are summarized. Several existing 

nonlinear material characterization models for unstabilized aggregate bases and the 

cohesive subgrade soils are also given in detail and compared for consistency and 

performance. The development of the nonlinear elastic flexible pavement analysis 

procedures are summarized, and their implementations in the current state-of-the-art 

nonlinear finite element programs are described. 

The resilient response of granular bases is studied in Chapter 3. Some of the 

essential geometrical and material modeling aspects of unbound granular materials are 

explained within the framework of the elastic continuum approach. These modeling 
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aspects include: (1) compaction induced residual stresses, (2) cross-anisotropic 

representation of granular material behavior, and (3) several analyses aimed to solve the 

so-called "no tension" problem. 

Artificial neural network modeling of the resilient modulus of unstabilized 

granular bases from laboratory test results is attempted in Chapter 4. After giving a brief 

background on artificial neural networks, neural network models are trained using 

experimental data and then used for predicting the resilient modulus given the appropriate 

stress state and granular material properties. The performance of a neural network model 

is evaluated for the following two categories: (1) the feasibility of using neural 

computations as an alternative to conventional stress state dependent resilient response 

modeling, and (2) how the model works for different material types with different 

granular material properties such as gradation, dry density, aggregate size, percent fines 

content, moisture content, etc. 

Chapter 5 presents formulations for two types of elements used in the 

axisymmetric finite element program developed for predicting the behavior of flexible 

pavements with granular bases. The nonlinear finite element program, named GT-PAVE, 

employs both the eight-node quadrilateral element and also a six-node interface element 

which is compatible with the eight-node element. The complete derivations for the 

stiffness and load matrices are given for both elements, and the interface element 

parameters used in the new block model in Chapter 8 are summarized. 
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In Chapter 6, the organization of the GT-PAVE main program and its subroutines 

are described using flow diagrams. The important features of the program are discussed 

for the classical continuum representation of the granular base layer. These features 

include the nonlinear analysis procedure, incremental loading, no tension modification 

procedures, pre-and post-processing capabilities and the limitations of the finite element 

model. 

The GT-PAVE nonlinear finite element program is verified in Chapter 7 using 

several example problems involving both linear and nonlinear analyses. The effects of 

the compaction induced residual stresses on the horizontal tension zone in granular bases 

is demonstrated through one example problem. The resilient response of five well 

instrumented full-scale pavement test sections are calculated using GT-PAVE program. 

The predictions obtained using the nonlinear analysis with the cross-anisotropic granular 

base representation are shown to be in good agreement in the test sections with up to 8 

measured response variables. The GT-PAVE program is also used to predict the potential 

performance of different pavement section types and geometries. 

The new block model analysis for unstabilized granular bases is proposed in 

Chapter 8. Granular bases are modeled as particulate media composed of blocks of 

aggregates. Granular particle characteristics including translation, sliding and even 

separation, are permitted in the new block model. The model and organizations of the 

related subroutines in the GT-PAVE program are first described using flow diagrams. 

The iterative block model equilibrium procedure is outlined and how the model works is 
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demonstrated in a simple three-layered sliding block example. The block model is later 

applied to the granular bases of the pavement test sections. Important findings are 

presented related to the shear resistance of the granular bases represented as particulate 

media. 

In Chapter 9, conclusions are drawn and recommendations are given for future 

research in modeling flexible pavement behavior. Finally, Appendix A gives the 

experimental resilient modulus data used in Chapter 4 for the neural network modeling of 

resilient modulus in granular bases, and Appendix B presents a short summary of the 

input and output capabilities of the GT-PAVE nonlinear finite element program. 



CHAPTER II 

REVIEW OF THE LITERATURE 

Introduction 

Over the past three decades, there has been an increasing tendency toward 

designing flexible pavements using mechanistic-empirical methods. Mechanistic design 

methods calculate the pavement response variables such as the deformations, stresses and 

strains due to wheel loads. The pavement distresses are then predicted empirically based 

on laboratory tests and field performance data. The mechanistic-empirical method is 

realistic since the theory is combined with observed performance in the design procedure. 

With the availability of today's high-speed microcomputers and sophisticated test 

methods, the trend towards mechanistic methods is both natural and beneficial. 

Dormon and Metcalf (1965) suggested first the use of design curves for flexible 

pavements based on the elastic layered theory in the United States. Since then, two main 

failure criteria have often been used in design of flexible pavements: (1) a limiting 

vertical compressive strain on the surface of subgrade to reduce permanent deformation 

and (2) a limiting horizontal tensile strain at the bottom of the asphalt concrete layer to 
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minimize fatigue cracking. Some of the mechanistic design methods currently in use 

such as the Asphalt Institute method (Shook et. al., 1982) and Shell Petroleum method 

(Claussen et. al., 1977) have defined failure, for example, by limiting the rutting to a 

tolerable amount of 0.5 in. or setting an allowable number of load repetitions for the 

horizontal tensile strain based on laboratory fatigue testing. Most methods, however, still 

use isotropic linear elastic theory to predict the pavement response variables. 

The behavior of the pavement materials has been well documented to be dependent 

upon the stress and strain states to which each small element of material is subjected. To 

properly characterize especially the unstabilized aggregate base and the subgrade layers, 

it is essential that variations in resilient modulus both vertically and radially within a 

layer should be considered in the analysis. Additionally, the asphalt concrete surfacing is 

viscoelastic undergoing time and temperature dependent creep deformations under 

sustained loading. Therefore, the ultimate goal should be to design a flexible pavement 

using mechanistic based methods which incorporate nonlinear elastic and viscoelastic 

material properties. 

This chapter presents a historical review of elastic layered theories which currently 

constitute the backbone of the presently used mechanistic flexible pavement design 

procedures. Within the scope of elastic layered theory, some commonly used linear 

elastic computer programs are given. Nonlinear material characterization models are 

reviewed, and current state of the art nonlinear elastic flexible pavement analysis 

procedures and finite element programs are also summarized. 



Theoretical Background 

Flexible pavements are usually represented as elastic layered systems resting on a 

homogeneous semi-infinite halfspace (Figure 2.1). The wheel load applied on the surface 

is considered as a uniform load distributed over a circular area where the contact pressure 

is usually taken as the pressure in the vehicle tire. Due to the special nature of this 

axisymmetric problem, a cylindrical coordinate system with coordinates r, 6, and z is 

used to represent radial, tangential, and vertical stress conditions respectively (Figure 

2.1). 

Boussinesq (1885) solved the problem of a point load P acting on the surface of a 

semi-infinite linear elastic homogeneous halfspace (i.e., a single deep layer) by 

combining equilibrium equations together with the constitutive and kinematic equations 

to obtain: 

V V f = 0 (2.1) 

where <|> = (P/2n)*(r + z ) 2 is the Airy stress function and V2 is the Laplace operator. 

The stress, strain and displacement components at any depth z and radial distance r away 

from the point load P were obtained by solving Equation 2.1. 



P = Loading 

U 7 7 7 7^7 

WIJf.Yf / / 
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Figure 2.1. Generalized Multilayered Elastic System In Cylindrical 
Coordinates Under Axial Symmetry. 
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Foster and Ahlvin (1958) integrated the point load Boussinesq solution over a 

uniformly loaded circular area for use in flexible pavement analysis. Charts were 

prepared to give horizontal stress, vertical stress and elastic strains in the semi-infinite 

halfspace for an incompressible solid (v = 0.5). Ahlvin and Ulery (1962) later tabulated 

the complete pattern of stress, strain, and deflection results at a large number of points for 

different values of Poisson's ratios v in the homogeneous halfspace. 

One-Layer Approach 

When the load is applied over a circular area, the most critical stress, strain, and 

deflection components occur under the centerline on the axis of symmetry. The shear 

stress Trz becomes zero under the centerline, and the principal stresses are equal those 

stresses in r,6, and z directions. Considering the tire pressure on the pavement as a 

flexible plate of uniform load q having radius a, the stresses ( a r , and a j strains (8 r , and 

8Z ) and the surface deflection (8) can be determined beneath the center of the load from 

the following: 

r 2 
1 . 2(l + v)z z 
1 + 2 v ^ ^ 7 7 ^ + , 2 2.1/2 , 2 2x3/2 

(a +z ) (a +z ) 

(2.2) 



tfz = q l - , 2 2 .3/2 

(a +z ) 

(2.3) 

er = 
(l + v)q 

2E 

, „ 2(1-v)z z 
1-2V ^ ^ r + , 2 2.1/2 , 2 2.3/2 

(a +z ) (a +z ) 

(2.4) 

Zz = 
0 + v)q l - 2 v + 

2vz 
, 2 2.1/2 , 2 2.3/2 

(a +z ) (a +z ) 

(2.5) 

5 = 
(1 + v)qa a 

. 2 2.1/2 

[(a +z ) 

l - 2 v r / 2 2.1/2 .. 
+ [(a +z ) - z ] 

a 

(2.6) 

where a = radius of loading, z = depth of interest, q = magnitude of uniform loading, E = 

modulus of elasticity, and v = Poisson's ratio. 

The Boussinesq equations for the circular loading over a homogeneous halfspace 

summarized above can not be applied directly to a flexible pavement structure. A 

flexible pavement usually consists of two or more layers with asphalt concrete (AC) 

surfacing on the top, an unstabilized aggregate base or base and subbase in the middle, 

and a subgrade layer at the bottom. These layers have different elastic moduli which are 

changing with depth and different Poisson's ratios. Early applications of Boussinesq's 
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theory to pavement analysis, therefore, involved an approximation known as the method 

of equivalent layer thickness (Odemark,1949). To model a layered system, Odemark 

method simply changes the thicknesses of different layers to make possible the use of one 

elastic modulus E and one Poisson's ratio v. Several transformations were needed to 

calculate the stresses, strains, and deflections in the lower subgrade layer. 

Elastic Multi-Layered Theory 

True elastic layered theory was first developed by Burmister (1943) for the 

solution of a two-layer system, and then extended two years later for three layer systems 

more suitable for modeling pavements (Burmister, 1945). Based on the three-

dimensional continuum, the elastic layered theory gives stresses, strains and 

displacements in multilayer systems upon making the following basic assumptions: 

1. All layers are weightless and infinite in horizontal directions. 

2. All layers are homogeneous, isotropic and linearly elastic. 

3. All layers have a finite thickness except the bottom layer which is infinite. 

4. Between any two layers, perfect bonding exists. 

5. The upper layer is subjected to a single uniformly distributed circular load. 

6. At infinite depth, all stresses and displacements are zero. 

The fourth-order governing differential equation given by Equation 2.1 is satisfied 

for each layer using a stress function with four constants. Since this stress function must 

vanish at infinite depth, two constants become zero for the bottom most layer which as a 



result has only two constants. For the n-layer system shown in Figure 2.1, the total 

number of constants or unknowns is (4n - 2), which is evaluated by two boundary 

conditions and (4n -1) continuity conditions. The other two conditions are the vertical 

stress under the circular loaded area q and the surface is free of shear stress. The four 

conditions at each of the (n - 1) interfaces are the continuity of vertical stress, vertical 

displacement, shear stress and radial displacement. 

The multilayer system equations are first solved for the stress components in r,G, 

and z directions including the shear stress Trz for the axisymmetric problem. Solutions 

for linear elastic multilayer systems under a single load then can be extended to cases 

involving multiple loads by applying the superposition principle. The principal stresses 

(Qj , a 2 , and a 3 ) are obtained by using the following equation where the intermediate 

principal stress is equal to the tangential stress (a2 = C7t) : 

a u = (ar + a z ) / 2 + V ( a r - a z ) 2 / 4 + T^ (2.7) 

The principal strains (8j , 82 , and 83) are then determined by 

^i = —[< î - v(cr2 + CJ3)] (2.8) 
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8 2 = - [ a 2 - V ( a l + a 3 ) ] (2-9) 

E 

e3 = ^ [ ° 3 " V ( a 1 + a 2 ) ] (2.10) 
E 

where E and v are the elasticity modulus and Poisson's ratio, respectively. 

The weightlessness and vastness of the layers are assumptions made in the linear 

elasticity and do not much affect the solutions as predicted by the elastic layered theory. 

The material properties assigned to the layers, however, have dramatic effect on response. 

The material properties can be represented by the ratio of the moduli of adjacent layers 

(Ej /E2 , E2 /E3 , etc.) and Poisson's ratio of each layer. The effect on response of stiff 

reinforcing layers is pronounced. In the early development of elastic layered theory, a 

Poisson's ratio of 0.5 was chosen to simplify the solution and resulting equations. A 

change of Poisson's ratio from 0.35 to 0.5 can, however, create a 25% change in vertical 

strain as noted by Burmister (1945). When compared to the measured response in 

pavements, elastic layered theory has been observed to predict stresses more accurately 

than the Boussinesq equations. 

Linear Elastic Computer Programs 

Several linear elastic layered computer programs have been developed over the 

years for the solution of the pavement problem. One of the earliest ones was the 
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CHEVRON program developed by the Chevron Research company (Warren and 

Dieckman, 1963). Hwang and Witczak (1979) later modified the program to 

approximately account for the nonlinear elastic granular base behavior and incorporated it 

into the DAM A pavement design program for use by the Asphalt Institute. 

Also using Burmister's theory, Shell researchers developed the computer program, 

BISAR, for calculating the response of multi-layer structures with linearly elastic material 

behavior (De Jong et al., 1973). BISAR analyzes multiple loading conditions where 

more than one distributed circular load can be applied on the pavement. Different elastic 

moduli, Poisson's ratios, and thicknesses can be assigned to each layer where either slip 

or perfect bonding can be specified in the interface. 

Another well-publicized linear elastic layered system program was developed at 

the University of California, Berkeley (Kopperman et al., 1986). Named ELSYM5, the 

program runs on a microcomputer and can analyze up to a maximum of 5 layers as elastic 

systems under multiple wheel loads. The program superimposes various loads and can 

compute the principal stresses, strains, and displacements at locations specified by user 

which is common to all linear elastic programs. ELSYM5 has become very popular in 

the US especially among the state transportation agencies for its easy use in routine 

flexible pavement design. 

Recently, Huang (1993) presented the computer program KENLAYER for the 

analysis of elastic and viscoelastic layered systems. Named after University of Kentucky, 

the program is applied to flexible pavements as layered systems. The superposition of 
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multiple wheel loading is considered for single, dual, dual-tandem, and dual-tridem 

wheels with each layer in the system behaving differently, either linear elastic, nonlinear 

elastic, or viscoelastic (Huang, 1993). Damage is also included in the analysis by 

dividing one year into different periods, each assigned with a different set of material 

properties. 

Resilient Material Characterization Models 

The engineering behavior of the materials used in flexible pavements is usually 

characterized by using mathematical models. For selecting these models, several steps 

have to be followed. First a good theoretical background is a prerequisite for the total 

understanding of the idealizations and assumptions made in developing the models. 

Secondly, a laboratory testing program must be undertaken to represent the material 

behavior under similar service conditions which exist on the roadways. These are the 

conditions such as (1) loading, (2) environmental conditions, and (3) construction effects 

under which the material is expected to perfom in service. The next step is to study the 

collected laboratory data sets to investigate a possible correlation between the data and 

response variables for the selection of a model. The model predictions should be verified 

using measured pavement response to determine the acceptibility of the model. 

Among the service conditions discussed above, the correct field stress states (see 

Figure 2.2), repeated application of moving traffic loads, field temperature and moisture, 
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Figure 2.2. Average Stress States in Aggregate Base For Use in Cyclic Testing For 
Light, Medium, and Heavy Pavements (after Barksdale and Itani, 1989). 



and induced pavement compaction stresses (Uzan, 1985; Selig, 1987) are the most 

important to be simulated in the analysis. Under the repeated application of moving 

traffic loads, most of the deformations are recoverable and thus considered elastic. 

Therefore, it has been customary to use resilient modulus (MR ) for the elastic stiffness of 

the pavement materials. Repeated load triaxial tests are commonly employed to evaluate 

the resilient properties of granular and cohesive materials (Barksdale and Itani, 1989). 

For asphalt concrete surfacing, the repeated load diametral test is popular for 

evaluating the resilient characteristics. The resilient modulus of asphalt mixtures can also 

be determined by the repeated load indirect tension test (Huang, 1993). The resilient 

modulus is then empirically computed by 

P(v + 0.2734) 
M R = . (2.11) 

o t 

in which P is the magnitude of the dynamic load (lbs.), v is Poisson's ratio, 5 is the total 

recoverable deformation (in.), and t is the specimen thickness (in.). 

The resilient material characterization models reviewed in this section include 

granular materials used in base, subbase and granular subgrade as well as mostly cohesive 

fine-grained soils used in subgrade. The nonlinearity observed in both material types is 

usually presented in the form of stress dependent moduli which is reviewed in the 
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following section in chronological order of the development of these resilient response 

models. 

Granular Materials 

K-8 Model. Usually referenced back to Hicks and Monismith (1971), the K-G 

model has been the most common one for characterizing the resilient response of the 

unbound aggregate in granular bases. The resilient modulus (MR) is given as follows: 

M R = K , a e
K 2 (2.12) 

where <JQ = G\ + G2 + C73 = bulk stress and Kl5 and K2 are material regression constants 

obtained from repeated load triaxial tests performed on granular materials. 

The K-0 model has become the cardinal mathematical relation between the 

modulus and the stress states in most laboratory and full-scale research work related to 

unbound aggregates since late 1960's. The characteristic plot of the modulus varying 

with bulk stress is generally drawn on a log-log scale and represented by a straight line. 

Although it is simple, the K-0 model can give inaccurate results since it neglects the 

important effect of shear stress on the resilient modulus (May and Witczak, 1981; Uzan, 

1985). Similarly, Brown and Pappin (1981) also observed that the K-9 model can only 



represent a very limited range of stress paths and thus is likely to lead to erroneous 

results. Figure 2.3 compares measured resilient moduli with those predicted using the 

model for a dense-graded aggregate (Uzan, 1985). The discrepancy between the 

measured and predicted values of moduli is mainly due to neglecting the effect of shear 

stress and shear strain effects when calculating the response using the K-6 model. The K-

0 model does not describe the descending behavior of the resilient modulus with axial 

strain. 

Bulk-Shear Modulus Models. Boyce (1976) performed a series of repeated load 

triaxial tests on samples of well-graded crushed limestone. The resilient strain was found 

to be influenced by (1) mean normal stress p, and also (2) ratio of deviator stress to 

normal stress. A model of resilient behavior was developed in terms of the secant bulk 

modulus (K) and the secant shear modulus (G), which are functions of stress level. The 

origin of the non-linearity in the model was traced to the particulate nature of the 

materials by using the theory of contacting elastic spheres. Boyce (1980) developed the 

following equations for the incremental stress-strain behavior with a power dependence 

of both moduli on the isotropic mean stress: 

K.ii 
. - < 
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G = G i P 
(i-n) (2.14) 

where Kj and G, are initial values of bulk and shear moduli respectively, u. is a model 

constant less than 1, P = (1-u) Kj/(6 Gj), and q is the deviator stress. 

Equations 2.13 and 2.14, also known as the K-G model, satisfy Maxwell's 

reciprocity theorem. The theorem implies that the second order partial derivatives of a 

stress potential function are independent of the order of differentiation with respect to 

volumetric and deviatoric stress components. Alternatively, the strain invariants 

(volumetric and deviatoric strains) are related to mean normal stress p and the deviator 

stress q by the following expressions: 

Bv=i&y ' - P M (2.15) 

^-{/3G.yv' (2.16) 

where all terms have been previously defined. 

Using only the three parameters, i.e., \i, Ki5 and Gj, the K-G model (Boyce, 1980) 

was found to give reasonably good agreement with measured strains when predicting the 



resilient modulus of granular materials. The exponent "u" is a measure of nonlinearity of 

the elasticity including the phenomenon of "elastic dilation" via the coupling terms (p and 

q) in the tangential description of the model. 

Contour Model. Brown and Pappin (1981) extended the three parameter model of 

Boyce (1980) to the five parameter contour model in which a stress path dependency was 

added in the formulation. The volumetric and shear strains were found to be influenced 

by the length of the stress path followed. Using a special triaxial apparatus, granular 

materials were tested for different realistic stress paths varying independently the axial 

and confining pressures. Figure 2.4 shows the normalized volumetric and shear strain 

contours plotted in Cambridge q-p stress space in which p = ((7] +a2+cy3)/3 and q = (CTj -

a 3 ) . The contour model predicts the volumetric and shear strains by the following 

equations: 

1 r \ 
sv = K i Vp0J 

M 

' < % ) 
(2.17) 

Eq 3G; 

r \ 
P 

VP0V 

K-l 

(2.18) 



Figure 2.4. Contour Model Cambridge q-p Stress Space (after Brown and Pappin, 
1981). 
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As, 
( r, V 

P2 
q2 ( v 

Pi 
qi 

3G; ^PO^ P2 W Pi 
(2.19) 

where K and r are statistical material constants, p0 is the reference pressure, and I = 

9 9 1/9 

(Ap +Aq ) is the path length between stress state 1 and stress state 2. Equations 2.18 

and 2.19, therefore, incorporate in the formulation the new parameters K and r which 

establish improvement of the contour model over Boyce's K-G model. The path 

dependency of the shear strain 8q is calculated from Equation 2.19 between the two stress 
and strain states: Aeq = eq2 -

 eqi-

The contour model is capable of predicting resilient test results (MR) very well. 

However, the required resilient modulus testing is complicated and material constant 

evaluation is cumbersome when compared to other simpler approaches. Figure 2.5 gives 

a comparison of the volumetric and shear strain predictions using both the K-6 model and 

the more sophisticated contour model. The contour model predictions agree quite well 

with the measured values whereas the volumetric strains predicted by K-6 model deviate 

drastically from reality. On the other hand, due to the addition of two extra constants, the 

five parameter contour model no longer satisfies the reciprocal theorem and hence the 

model is not truly elastic. 
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Uzan Model. Uzan (1985) proposed an improvement to the well-known K-6 

model by including shear stress effects. An additional deviator stress term was included 

in the formulation of the K-0 model requiring a new constant parameter to be evaluated 

from laboratory tests. The Uzan model is expressed as follows: 

M R = K 3 C T 6
K 4 a d

K 5 (2.20) 

where GQ - G\ + G2 + CT3 = C^ + 2a 3 = bulk stress, <Jd = CTj - a 3 = deviator stress, and 

K3, K4, and K5 are multiple regression constants obtained from repeated load triaxial test 

data on granular materials. 

The resilient moduli predicted by the Uzan model are plotted in Figure 2.6 together 

with the experimental results obtained from repeated load triaxial tests for a dense graded 

aggregate. The Uzan model, when compared to the more complicated shear and 

volumetric strain contour model, also gives reasonably good agreement (Figure 2.7). 

This is mainly due to the Uzan model's ability to incorporate shear stress and strain 

effects in a realistic representation of the granular material behavior. Considering that 

horizontal residual stress levels are not well documented, the Uzan model also handles 

very nicely the behavior of granular bases used in the layered system analysis. Due to its 

simplicity and ease in material constant evaluation, the Uzan model can be used routinely 

as an improved nonlinear model in flexible pavement design procedures. 
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Modified K-G Model. Jouve at al. (1987) presents a modified version of Boyce's 

(1980) equations for the bulk stress and shear stress of granular material. The modified 

K-G model follows the stress paths chosen in the triaxial tests (Brown and Pappin, 1981), 

but ignores the dilatancy phenomenon (K < 0) which is incompatible with the elastic 

model and the reciprocal theorem. For the modified K-G model, the bulk and shear 

moduli are defined by relationships: 

K = K i P 
(i-n) 1 + Y 

f \ 2 

q 

IpJ 
(2.21) 

G = Gjp 
(1-K) 

(2.22) 

where p = mean normal stress, q = deviator stress, and Kj, Gj, y, K, and fj, are constants 

evaluated from test data. The experimental results also showed that shear strain could be 

represented by: 

8 q = 
3Gi Vp J 

(2.23) 



( \C— I ) \C 

where c = pi qj / (p2 ) is a parameter < 1 with p b q, being initial stresses at stress 

state 1 and p2, q2 being the final stresses at stress state 2. The above interpretation takes 

into account the self weight of the sample, weight of the measurement equipment which 

is applied on the sample, and the residual lateral pressure in the triaxial cell. 

Jouve et al. (1987) used the modified K-G model to verify the Boyce's relationship 

(1980) concluding that \i = K is statistically true. The aggregate particle shapes used in 

the tests were also found to influence the elastic behavior of completely crushed unbound 

granular material. 

Thorn Model. Thorn (1988) proposed a new elastic stress strain model for dry 

granular material for the range of stress paths which can be applied using triaxial and 

hollow cylinder testing apparatus. Based on the original work by Brown and Pappin 

(1981), Thorn considered the resilient response separately for volumetric and shear strain 

components. The proposed model accounted also for microtexture, and particle shape 

and size of the unbound aggregates. As a result, the model required more material 

constants to relate the volumetric and shear strains to the principal stresses and shear 

stresses: 

8 v = A A ( l n p ) B ( A p ) C - D 
"in, 

A In (2.24) 



sq=FA[lnV'G 1 ^H 

Ax + - A S 
3 

(2.25) 

where Gj, a 3 are principal stresses, p is mean normal stress, S is in-plane mean stress, 1 

is shear stress, A means change in, and A, B, C, D, E, F, G, and H are the statistically 

evaluated material constants determined experimentally. Comparing the model with 

laboratory data, quite good agreement was obtained. Later, Thorn concluded that 

specimens comprised of aggregates containing large particles had greater elastic stiffness 

and shear strength compared to those having smaller particles. The elastic stiffness of a 

dry granular materials were also largely dependent on microtexture at particle contacts 

which determined interparticle friction. 

Octahedral Shear Stress Model. Witczak and Uzan (1988) proposed a 

modification to the Uzan model by replacing the deviator stress term in Equation 2.20 by 

an octahedral shear stress term. This octahedral shear stress model also considers the 

dilation effect that takes place when a pavement element is subjected to a large principal 

stress ratio {GX / a 3 ) . The model involves normalized values of the bulk and octahedral 

shear stress and is given as follows: 



MR = K6Pj 

f \ K 7 / ^K s 
<3i 

^pay 

Toct 

V P a ^ 
(2.26) 

where a e = C7] + CT2
 + a3 = al + 2cr3 = bulk stress, Toct = octahedral shear stress, pa = 

atmospheric pressure, and K6, K7, and K8 are multiple regression constants evaluated 

from resilient modulus test data. 

Itani Model. Itani (1990) performed an extensive multiple regression analysis 

using many models relating the resilient modulus by different combinations of deviator 

stress, mean stress, confining stress, and axial strain. Laboratory test data for different 

aggregate gradations were used in this study to find better models to characterize the 

resilient modulus. Itani's best model fit the laboratory test data very nicely with a high 

determination coefficient (R2 =0.96) and was given as follows: 

MR = K9(^f) ' V " ° 3 K ' 2 (2-27) 

where G0 = Q! + a 2 + a 3 = Qj + 2a 3 = bulk stress, od = Gl - a 3 = deviator stress, G3 = 

confining stress and K9 , K10 , K n , and K12 are multiple regression constants obtained 

from repeated load triaxial tests performed on granular materials. Equation 2.27 is 



basically a modification to the Uzan Model (Equation 2.20) with the addition of the 

confining stress term. Itani concluded that although there was a slight multi-collinearity 

problem in this model (a3 , a0 , and a d are related), it was still useful in predicting the 

resilient modulus. 

Crockford et al. Model. Crockford et al. (1990) studied the elastic constitutive 

ralationships that best model the actual stress or recoverable strain states in pavement 

structures incorporating thick granular layers. The elastic response was taken primarily 

because previous research showed that falling weight deflectometer (FWD) equipment 

excited pavements elastically. A new resilient response was developed in which the 

modulus was expressed as a function of volumetric water content (Vw/Vt), suction stress 

Q¥), octahedral shear stress (Toct), unit weight of material normalized by the unit weight 

of water (y/yw), and the bulk stress (GQ). The final form of the model was given by 

M R = p 0 ( a e + 3 T V w / V t ) P ' ( T o c t ) p 2 ( Y / Y w ) ' 3 3 (2.28) 

where Po > Pi» P2 > and P3 are material constants. The moisture term 3X¥VV/Vt was found 

to affect only the bulk stress GQ. Very few experimental studies have been reported about 

suction which influence the moisture term. If a model is developed with laboratory data 

obtained only at one moisture content, Crockford et al. suggests eliminating this moisture 
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term. Moreover, if only one unit weight is again considered, the further elimination of 

the normalized unit weight term was suggested which simplifies the equation to the 

octahedral shear stress model of Witczak and Uzan (1988). 

UTEP Model. An overparametrized resilient response model was proposed 

recently at University of Texas, El Paso (Feliberti, 1991) for unbound aggregate behavior. 

The model, called herein the UTEP model, predicts the resilient modulus using bulk 

stress and the induced resilient axial strain from the repeated load triaxial tests and is as 

follows: 

M R = K 1 3 G 9
K ' < ( s a ) K l 5 (2.29) 

where G0 = <7] + <J2 + CJ3 = (<Jd + 3 G 3 ) = bulk stress, 6a = induced resilient axial strain, 

and K13, K]4 , and K15 are multiple regression constants. In the UTEP model, both Gd 

(in GQ term) and s a are the predictor variables (on the right hand side of the equation) 

whereas in the Uzan model, only the deviator stress a d is a predictor variable. The UTEP 

model is then overparametrized since the resilient modulus MR is by definition calculated 

by dividing the applied deviator stress Gd by the measured axial strain Sa. Alba (1993) 

reported that the UTEP model, compared to the other models studied, gave the best 

statistical curve fitting results to an extensive experimental data set. This is probably due 
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to the fact that the UTEP model has enough number of redundant constants to smoothly 

fit the measured data using the two predictor variables included in the model. 

UT-Austin Model. Pezo (1993) presented a new general method of reporting 

resilient modulus tests on the pavement materials. The resilient modulus was suggested 

to be plotted with the measured axial strain as the main response variable. First, a 

multiple regression analysis was performed to express the axial strain in terms of the 

applied confining and deviator stresses from the laboratory tests. The UT-Austin model 

then incorporated the deviator stress and the confining stress terms for predicting the 

resilient modulus of granular materials as follows: 

M R = K 1 6 a d
K " a 3

K ' 8 (2.30) 

where Gj = Gj - G3 = deviator stress, G3 = confining stress and K16, K17, and K]8 are 

multiple regression constants obtained from repeated load triaxial tests. Alba (1993) 

obtained a very good statistical fit of resilient moduli from dynamic testing on granular 

materials (R2 = 0.96). 

Because the multiple regression constants are obtained mainly from the measured 

axial strain, the model is not overparametrized as it is in the case of the UTEP model. 

The model is also statistically sound, since the prediction variables are independent from 
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the response variables. Pezo (1993) has pointed out that bulk stress dependent models 

such as the K-0 model can not distinguish between two different test conditions with (1) 

a d = small and a 3 = large and (2) a d = large and a 3 = small, even if a 0 = <5\ + a 2 + a 3 

= (a d + 3a3) is the same for both tests. In such circumstances, the resilient moduli are 

not expected to be the same (using the same CJQ) simply because cohesionless materials 

subjected to higher G3 also show higher moduli than if subjected to lower G3. 

Summary. All the resilient response models reviewed in this section except the K-

9 model can be categorized into two main groups: (1) Simplified shear stress related 

models, and (2) more sophisticated volumetric and shear strain related models. The K-6 

model can be considered as a simplified but inadequate model since it neglects the shear 

stress effects and is not capable of describing the resilient modulus decrease when the 

vertical strain is increased. 

Among the simplified shear stress related models, the Uzan model and its modified 

versions (i.e., Witczak-Uzan and Itani models), and the UT-Austin model (Pezo, 1993) 

consider both the confining and the deviator stress effects and handle very well the 

stiffness reduction with the increase in strain. In the second category, the K-G, contour, 

modified K-G, and Thorn models originate from the same concept of defining the 

resilient response based on the volumetric and shear strain behavior. Although these 



models are more complicated and not well suited for routine design use, they are 

admittedly more sophisticated and very promising for theory related future research. 

Due to the simplicity of the first group of models, the regression constants used in 

these models can be readily determined from routine resilient modulus tests. Even 

though the simplified models are not as fundamentally sound as the contour model, they 

do give reasonably good results. Therefore, for a practical, accurate approach, the Uzan 

model or the UT-Austin model, as a minimum should be employed when characterizing 

resilient behavior of granular materials. Such models can also be easily incorporated into 

a finite element code and used by state transportation agencies in mechanistic flexible 

pavement design procedures. 

Subgrade Soils 

The resilient modulus of fine-grained cohesive subgrade soils is dependent upon 

the stress state. The most important factor affecting the resilient modulus is the deviator 

stress. There is also some influence from confining pressure and the number of stress 

applications but this influence is less significant on resilient modulus MR compared to the 

effect of deviator stress. Therefore, constitutive relationships are primarily established 

between the resilient modulus and the deviator stress for fine-grained subgrade soils. 

Some of the more commonly used resilient modulus models are as follows: 
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Empirical Relations. Charts for estimating the resilient modulus of subgrade soils 

from empirical strength test results have been frequently used in practice. These charts 

are often based on simple equations which empirically relate the resilient modulus of 

specific soil types to the soil strength parameters such as California Bearing Ratio (CBR) 

or stabilometer resistance value (R). Some of the commonly used relations are: 

• MR (psi) = 1500 CBR, or MR (MPa) = 10 CBR (Heukelom and Klomp, 1962) 

• MR (psi) = 1155 + 555 R (The Asphalt Institute, 1982) 

• MR (MPa) = 17.6 (CBR)0 64 (Lister and Powell, 1987) 

Bilinear Approximation. For many slightly cohesive and cohesive fine

grained soils, the resilient moduli obtained from the repeated load triaxial tests can be 

described by a bilinear function of the applied deviator stress ad . The bilinear behavior 

is usually expressed as follows (refer to Figure 2.8): 

M R = K 1 9 + K 2 1 ( K 2 0 - a d ) when a d < K20 (2.31a) 

M R = K 1 9 - K 2 2 ( a d - K 2 0 ) w h e n a d > K 2 0 (2.31b) 

where K19, K20, K2i, and K22 are material constants obtained from laboratory repeated 

load tests. As indicated by Thompson and Elliot (1985), the value of the resilient 



43 

modulus at the breakpoint in the bilinear curve, K19 , (see Figure 2.8) can be used to 

classify fine-grained soils as being either soft, medium or stiff. 

Xfl 

j2 

O 

c 

Deviator Stress, ad 

Figure 2.8. General Relationship Between Resilient Modulus and Deviator Stress 

For Fine-Grained Soils. 

Brown and Loach Models. Brown (1979) proposed a nonlinear resilient 

response model for the subgrade developed from repeated load triaxial testing. The 

model realistically takes into account the effect of mean normal stress caused by 

overburden in the pavement subgrade layers. Moreover, the deviator stress calculated 

within the subgrade was considered to be caused only by the wheel loading. This 
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minimized the problem of increasing deviator stress, c d = dj - G3, in deep subgrade 

layers due to the increase in overburden stresses. The model was expressed by: 

M R = A 
fw ^ Po. 

UJ 
(2.32) 

where p'0 is effective mean normal stress caused by overburden, qR is deviatoric stress 

caused by wheel loading, and A and B are material constants. Typical ranges of A and B 

are 2.9 to 29.0 ksi (20 to 200 MPa), and 0 to 0.5, respectively for subgrade soils. 

Later, in 1987, Loach proposed a modified version of Brown's model (Loach, 

1987; Brown et al., 1987) in which an additional deviatoric stress term qR was included in 

Equation 2.32 as follows: 

MR =C qR 
Po 

URJ 
(2.33) 

where C and D are material constants in the range of 10 to 100, and 1 to 2, respectively. 

The soil used in triaxial testing was a silty clay, known as Keuper Marl, which had been 

used extensively as the subgrade in the Pavement Test Facility at University of 

Nottingham. During testing, the effect of mean normal stress due to overburden p'0 in the 



model was simulated by the cell pressure and soil suction. Loach's model was believed 

to constitute an improvement to Brown's model since it was formulated after completing 

a comprehensive set of cyclic triaxial tests on samples more representative of soil in the 

ground than tests reported by Brown (1979). 

Nonlinear Analysis 

Modifications to the linear elastic layered theory to incorporate nonlinear elastic 

material properties into the solutions for unstabilized aggregate bases and subgrades 

started as early as late 1960's. Initial attempts were made to account for a nonlinear 

modulus changing with stress levels at different depths in the layers, and the assumption 

of using constant Poisson's ratio was also investigated. In this section, the development 

will be reviewed of some of the nonlinear solution techniques including finite element 

methods currently used in pavement analysis. 

Early work in nonlinear analysis concentrated on making use of the classical 

elastic layered solutions in which the modulus was varied with depth only (Kasianchuk, 

1968; Huang, 1968). Kasianchuk divided each pavement layer into thinner sublayers to 

model the variation in moduli with discrete changes. Initial estimates of moduli were 

input in the first iteration to solve for the stresses due to the circular wheel loading. 

These stresses were then added to the gravity stresses and new moduli were calculated 

using laboratory determined material characterizations for base and subgrade. Resilient 
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moduli were functions of bulk stress [GQ = <3{ + <72
 + a 3 ] an(^ deviator stress [<7d = O^ -

a3 ], respectively. The iterative process continued until the moduli used were compatible 

with the stress distribution. The major approximation used in this method is that the 

modulus of each sublayer is assumed constant in the horizontal direction. 

Huang (1968) divided a half-space into seven layers to show the effect of 

nonlinearity of granular materials on vertical stresses and deflections. The lowest layer 

was taken as a rigid base with a very large modulus. Using a similar method of 

successive approximations, the modulus of each layer was first estimated and the stresses 

calculated by layered theory. Using the sum of the computed stresses and geostatic 

stresses, a new set of moduli were estimated from a nonlinear, bulk stress dependent 

material model. New stresses were then calculated for the next iteration. The process 

was repeated until the moduli between two consecutive iterations converged to a 

specified tolerance. 

Shifley (1967) and Duncan et al. (1968) were among the first researchers who 

applied finite element procedures to pavements thus incorporating nonlinear material 

behavior in the analysis. The finite element method discretizes the elastic layered system 

so that the resilient modulus can vary not only with depth but also in the radial direction. 

Both Shifley and Duncan et al. used iterative techniques to account for the nonlinearity of 

the granular materials as characterized by the bulk stress and confining stress dependent 

models. The asphalt concrete and the clayey sand subgrade were considered as linear 



elastic. Duncan et al. analyzed the pavements for winter and summer conditions. They 

found that, especially for the summer condition, tensile stresses were developed beneath 

the wheel load in the granular base. Shifley applied similar techniques to predict the 

response on several sections of a full-scale test road. 

Dehlen (1969) applied finite element techniques in evaluation of pavements in 

which an incremental loading procedure was used to account for the variations in both 

modulus and Poisson's ratio with stress level. For the first increment, the material 

properties were determined from gravity stresses and the tire pressure was loaded in five 

equal increments. The elements were checked at each increment with Poisson's ratio not 

being allowed to be greater than 0.5. The next load increment was then added and the 

process continued until the full load was applied. The results indicated that the surface 

deflection pattern was more concentrated and peak deflections were 3 to 13% higher than 

for a simple linear analysis. Little difference existed between the computed horizontal 

strains in the asphalt layer using the linear and nonlinear analyses. Also, the maximum 

vertical stress on the subgrade was 15 to 20% greater for the nonlinear compared to the 

linear analysis. Dehlen also showed that accurate estimates of the stresses and 

displacements could be obtained with a depth to the lower boundary of 50 radii and a 

radial distance of 12 radii to the cylindrical boundary. 

Hicks (1970) considered a three layer system consisting of 4 inches (102 mm) of 

asphalt concrete, 12 inches (305 mm) of granular base over a clay subgrade subjected to a 

tire pressure uniformly distributed over a circular area. The finite element method was 
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employed to illustrate the potential differences in the behavior of the total system for two 

material models used in characterization of granular bases. These models related (1) 

resilient modulus to bulk stress, and (2) resilient modulus to the confining pressure. 

Using each model, the problem was solved with the wheel load applied in four equal load 

increments. The initial moduli were due to the gravity stresses alone, and the moduli for 

successive increments were computed from the stresses obtained after application of the 

previous increment. 

The surface displacement basin was found by Hicks to be linearly varying for both 

models with lower displacements predicted by the confining pressure dependent model 

due to the differences in the states of stress. Similarly, the horizontal stresses predicted 

by confining pressure dependent model were also lower compared to the bulk stress 

dependent model, even though the vertical stresses obtained by using each model were 

nearly the same. In all instances, the principal stress ratios (c^ /a3 ) given by the 

confining pressure model was considerably greater than those obtained given by the bulk 

stress model. The calculations performed for 3 different Poisson's ratios of the base 

indicated that a change in Poisson's ratio from 0.35 to 0.5 reduced the principal stress 

ratio near the surface from about 10 to less than 4. 

Later, in 1971, Hicks and Monismith used a similar nonlinear finite element 

program which applied the wheel load in five increments. At each increment, a tangent 

modulus and Poisson's ratio were calculated and the values of the resulting incremental 

strains were determined. This technique was used to predict the resilient response of a 
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test pavement. The results were consistently better than linear solutions but, in some 

cases, deviated significantly from measured stresses and strains. 

Kirwan and Glynn (1969) first used a finite element program that added horizontal 

compressive stresses to elements under the load for handling any tensile stresses 

developed in the granular base. This program was later modified to incorporate nonlinear 

material behavior by Kirwan and Snaith (1975). The material characterization consisted 

of a stress dependent modulus and a set of properties for the elements within the granular 

layer. The load was applied and the new values were calculated for each element using 

the recently computed stresses. The program, however, had some convergence problems 

since it used one-step loading rather than an incremental loading scheme. 

Stock et al. (1979) followed a similar approach for investigating nonlinear 

behavior of granular bases using finite element analysis. The granular layer was divided 

into four sublayers with the wheel load applied in one increment. In each sublayer, the 

modulus was computed using the stress states existing in the center of each sublayer 

underneath the load. Granular materials were characterized by using the bulk stress 

dependent K-9 model (Hicks and Monismith, 1971) with a stress state failure criterion 

superimposed. Stock et al. concluded that the characteristics of the granular material did 

not have a significant effect upon the vertical subgrade strain but considerably influenced 

the lateral tensile strain at the bottom of the asphalt concrete layer. 

One of the most comprehensive finite element programs developed to date for the 

analysis of flexible pavements was the GAPPS7 program which also considered the 
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analysis of soil-fabric systems (Zeevaert, 1980; Barksdale et al., 1982). Included in the 

mathematical formulation were such features as: nonlinear soil and fabric materials, 

friction parameters of the fabric interface, tension stiffness of the fabric, ability to handle 

large displacements, "no tension" conditions of the granular materials, and the yielding of 

plastic materials. The nonlinear material stiffness behavior was described by a uniaxial 

stress strain curve. Resilient response of granular and cohesive layers were represented 

by using the K-6 model and subgrade bilinear approximations, respectively. The 

program was also capable of handling geometric nonlinearities which are due to large 

displacements caused by the change in geometry. The nonlinear analysis of the system 

was performed using an incremental and iterative procedure. The piecewise incremental 

solutions were verified after each load increment and iterations were performed to insure 

equilibrium. The program was verified with several theoretical studies and laboratory 

mesurements especially for the complex soil-fabric behavior at interfaces. 

Brown and Pappin (1981) designed the finite element program SENOL to 

specifically apply the contour model of Pappin (1979) for granular materials to flexible 

pavement analysis. SENOL uses nonlinear bulk and shear moduli in the granular 

material. Initial values of these moduli due to overburden stresses are first assigned in the 

elements. The effects of the wheel load are then computed by applying the load in 10 

increments and iterating until satisfactory convergence is reached. A secant modulus 

approach was followed in the program where the moduli were calculated after each 

iteration from the total accumulated response until the present load increment. The 
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SENOL program was also developed to compute an equivalent Young's modulus and 

Poisson's ratio for calibrating simpler linear elastic layered system programs. The results 

obtained from the program showed good agreement between the measured and computed 

stresses and strains. The main advantage of using the contour model for the nonlinear 

characterization of granular bases is that the horizontal tensile stresses usually 

encountered in the lower part of the base using linear elastic solutions are no longer 

predicted. 

Another finite element program similar to SENOL is DIANA developed at Delft 

Technical University in Netherlands (Sweere et al., 1987). The stress dependent resilient 

behavior of both granular materials and subgrades are modeled in the program by using 

the contour model with the simplifications applied to the model suggested by Mayhew 

(1983). The nonlinear iterative and incremental procedures adopted in DIANA were in 

essence also similar to SENOL program where a secant modulus was calculated using the 

response due to both overburden stresses and the wheel loading. As compared to the 

mesaured stresses and strains in a full-scale test pavement, DIANA predictions, however, 

were not satisfactory. The measured values for the asphalt tensile strain were typically 

about half the values calculated with DIANA, while the measured values for the vertical 

stresses in the base and the subgrade layers were higher than the predicted ones (Sweere 

etal., 1987). 

Crockford (1990) developed an unusual type of nonlinear resilient response model 

for characterization of granular layers and pavement evaluation in conjunction with the 



use of a falling weight deflectometer (FWD). The model included the first stress 

invariant, octahedral shear stress, unit weight of aggregates and moisture content in the 

formulation. He incorporated the model and some of the other commonly used ones such 

as the K-6 and Uzan (1985) models into an user-friendly finite element program named 

TTIPAVE. The program can handle residual stresses, cross-anisotropic material, and slip 

condition at layer boundaries using interface elements. Pavements are analyzed as 

axisymmetric or plane strain layered systems using linear and nonlinear constitutive 

material models. The program was verified by comparing predicted response with known 

exact solutions and also with measured response from a full-scale test section. The 

nonlinear iterations used in TTIPAVE for the material characterizations are usually 

terminated without convergence due to some limiting values of modulus encountered in 

the analysis. Another shortcoming of the program a simple, coarse finite element mesh 

is used for all layered systems. The use of one grid creates geometric limitations and 

also causes important errors even for a linear elastic problem. 

ILLI-PAVE is a commonly used finite element program developed at the 

University of Illinois (Raad and Figueroa, 1980). The MICH-PAVE program was 

developed at the Michigan State University (Harichandran et al., 1989) for the analysis of 

flexible pavements. Both programs consider the pavement as an axisymmetric solid of 

revolution and use the following resilient response models; K-0 model (Hicks and 

Monismith, 1971) for granular materials, and a deviator stress dependent bilinear 

approximation for fine-grained subgrade soils. The principal stresses in the granular and 
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subgrade layers, following the method of Raad and Figueroa (1980), are modified at the 

end of each iteration so they do not exceed the strength of material as defined by the 

Mohr-Coulomb theory of failure. MICH-PAVE uses a flexible bounday at a limited 

depth beneath the surface of the subgrade, instead of a rigid boundary placed deeper in 

the subgrade. As a result, MICH-PAVE has a reduced run time and storage requirements 

compared to most programs. 

Huang (1993) has compared the performance of the KENLAYER program which 

considers nonlinear elastic and viscoelastic multilayer systems with both ILLI-PAVE and 

MICH-PAVE programs. The KENLAYER program is essentially a layered system 

program (not a finite element one) where the materials can be modeled as nonlinear and 

the layers are divided into sublayers. The comparisons are as follows: 

• The results of MICH-PAVE appear to be more reasonable than those of ILLI-

PAVE when the same material models are used to characterize nonlinear 

behavior. 

• A comparison of deflection basins calculated using the same nonlinear model 

parameters show that MICH-PAVE and KENLAYER give good aggrement 

whereas ILLI-PAVE results do not match with the field data. 

• A linear elastic analysis indicates that MICH-PAVE gives significantly 

different results than KENLAYER and ELSYM5 programs. 

For linear elastic systems, the correctly developed finite element and layer system 

programs should yield the same results. Therefore, Huang (1993) concludes that this 



failure of MICH-PAVE and ILLI-PAVE to obtain linear elastic solutions should be 

resolved before using them in practice. 

To simulate the resilient behavior of fine grained soils, Brunton and De Almeida 

(1992) developed a new finite element code named FENLAP for structural analysis of 

pavements. The program incorporates various nonlinear stress-strain models such as 

Brown's (1979) model and Loach's model (Brown et al., 1987) for subgrades but only the 

popular K-0 model for granular materials. An incremental and iterative procedure very 

similar to the one used in SENOL program was employed for nonlinear analysis. Chord 

moduli were obtained for the elastic stiffnesses which provided estimations of the average 

resilient moduli in the linear elastic layers to be used with FWD backcalculation 

procedures. Although the K-B model was inadequate for characterization of the granular 

layers, the model gave reasonable results in terms of vertical displacements for the 

backanalysis of pavements from the FWD results. 

Summary 

A historical review of elastic layered theories was presented in this chapter. The 

one layer Boussinesq semi-infinite halfspace and Burmister's layered theory can give 

closed form solutions for pavement system problems assuming isotropic homogeneous 

material properties. The closed form solutions can be readily obtained using several 

commonly used linear elastic computer programs. Several material characterization 



models used for predicting resilient response behavior of unbound granular materials and 

cohesive subgrades were described in detail. The models which consider both 

confinement and shear effects in characterization were recommended for practical 

pavement design use. A complete survey of the existing computer programs, which 

consider nonlinear material behavior in the analysis, were reviewed in chronological 

order. The deficiencies of most of the commonly used finite element programs, such as 

ILLI-PAVE and MICH-PAVE, were discussed to emphasize the apparent need for an 

improved method of pavement analysis. 
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CHAPTER III 

MODELING OF GRANULAR BASES 

Introduction 

To better understand the behavior of flexible pavements with granular bases, it is 

essential to correctly represent both the material response and geometry of unbound 

granular materials. Nonlinear material modeling can be achieved through the use of the 

resilient response models discussed in Chapter 2. Very few studies, however, have 

considered the material anisotropy which will be shown later to be necessary for 

predicting the unstabilized aggregate behavior in granular bases (Barksdale et al., 1989; 

Zeevaert, 1980; Crockford et al., 1990). The modeling of geometry and initial 

conditions, on the other hand, involve the consideration of several elements such as the: 

(1) correct representation of pavement geometry (including the allowance of any 

permanent deformations), (2) compaction and preloading induced residual stresses, (3) 

horizontal tensile stresses in the granular materials, (4) thermally induced stresses, and (5) 

ability of granular particles or groups of aggregates to freely move and transfer shear 

within the base. All of the above items can be considered when the finite element method 



with an incremental loading scheme is applied using a nonlinear anisotropic material to 

model the behavior in the granular base. 

The mechanical behavior of granular materials studied in this Chapter is limited to 

elastic response. Elastic response is realized in flexible pavements after a reasonably 

large number of the repeated applications of the moving traffic loads. Figure 3.1 shows a 

typical stress-strain diagram of a granular material tested over a number of load 

applications in a triaxial apparatus. The slopes of the loading-unloading curves (i.e., the 

resilient moduli) stay almost the same from 19,191 to 48,250 load cycles as shown in 

Figure 3.1. Furthermore, the permanent or plastic strain accumulation takes place at a 

decreasing rate as the number of load applications increases. After about several million 

repetitive wheel loads (not shown in Figure 3.1), most of the permanent deformation has 

already taken place in a representative flexible pavement. The remaining deformations 

are then almost all recoverable and can be considered elastic. 

Throughout this chapter, some of the geometrical and material modeling aspects of 

flexible pavements with granular bases are explained. The importance of compaction-

induced residual stresses, cross-anisotropic representation of granular material behavior 

are discussed. The "no tension" condition of granular bases is described and several 

analyses performed for correcting tensile stresses in the granular layers are summarized 

within the framework of axisymmetric continuum theory. 
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Figure 3.1. Typical Granular Material Behavior Under Repeated Applications 

of Axial Deviator Load (after Jouve et al., 1987). 



Residual Stresses 

During the initial construction stages of flexible pavements, large stresses are 

applied to granular layers by heavy compaction equipment. These layers are subjected to 

larger stresses during construction than they may ever experience during the service life 

of the pavement structure. The largest vertical and lateral stresses are caused in the 

uppermost lift as compaction progresses. After the compaction is completed, field 

measurements indicate compressive residual lateral stresses become locked in the 

granular bases (Barksdale and Alba, 1993). These residual stresses developed as a result 

of compaction of unbound aggregates must be included in determining the initial stress 

state of granular bases. 

Thorough compaction of granular materials in pavements is required to provide 

increased strength and stability of the layer. The particles, when subjected to compaction, 

rearrange themselves by translating and rotating to become locked in a final position. 

After the externally applied compaction stress is removed, this final stage is not a stress 

free state, but rather a residual stress state. The residual stress state then involves both 

confinement and particle interlock affected by the highly nonlinear granular material 

behavior. 

The initial stress state used in the analysis of pavements is usually determined only 

by geostatic stresses due to body weight and are ignored in most linear elastic pavement 

analyses. A correct modeling of granular bases, however, must include not only these 

overburden stresses, but also the horizontal residual stresses. Several researchers in the 



past have experimentally analyzed the residual stresses produced in granular bases 

(Stewart et al., 1985; Uzan, 1985; Selig, 1987; Zeilmaker and Henny, 1989; Barksdale 

and Alba, 1993). According to the research performed by Uzan (1985) and Stewart et al. 

(1985) these horizontal residual stresses were found to be as high as 2 to 4 psi (14 to 28 

kPa) in cohesionless granular materials. Barksdale and Alba (1993) also reported 3 psi 

(21 kPa) horizontal residual stresses in the upper 6 in. (152 mm) portion of a 12 in. (305 

mm) thick granular base obtained from field measurements. 

Based on experiments, Broms (1971), Ingold (1979) and Uzan (1985) employed a 

limit equilibrium approach to predict compaction induced lateral stresses. The vertical 

stress under the compaction equipment was determined assuming a line loading (Holl, 

1941) and a semi-infinite homogeneous elastic halfspace (Boussinesq, 1885). The lateral 

stresses developed were limited to the maximum compaction loading and unloading 

conditions applied to a pavement in accordance with the classical earth pressure theory 

for frictional materials: 

(1) Under the loading of compaction equipment, horizontal stresses start to 

increase according to the active state when the limit equilibrium is reached and horizontal 

compression develops in the granular layer: 

°h = V v (3.1) 
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where a v and a h are the vertical and horizontal stresses, and Ka is the coefficient of 

active lateral earth pressure which is usually expressed in terms of the friction angle <|> as: 

Ka = tan2 (45 - $ 12). 

(2) After the compaction is completed, during unloading, the vertical stresses 

decrease. When the limit equilibrium is reached, horizontal stresses also decrease 

according to the passive state and vertical stresses finally reduce down to the overburden 

stresses: 

<7h=KpCTv (3.2) 

where Kp is the coefficient of passive lateral earth pressure which is usually expressed in 

terms of the friction angle § as: Kp = tan (45 + <|> / 2). 

Figure 3.2 shows typical stress paths obtained by Uzan (1985) using the above 

described method of analysis for compacting a well-graded base material with a friction 

angle <[> = 45 degrees. The base was compacted by a vibratory compactor applying a 3 

ton/ft (100 kN/m) line load to the granular layer. A maximum vertical stress of 61 psi 

(420 kPa) reached during compaction yields a horizontal residual stress of about 6 psi (40 

kPa) (see Figure 3.2). Depending on the friction angle <j> and load intensity (5 ton/ft., 7 

ton/ft., etc.), a higher residual stress could be computed. 
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Figure 3.2. Schematic Representation of Stress Path During Compaction (after 

Uzan, 1985). 



63 

Uzan (1985) also investigated the effects of the in-situ compaction residual stresses 

on the performance of layered systems and granular material behavior. The nonlinear 

Uzan model was employed for characterization of the granular materials used in the 

analysis. For lateral residual stresses varying between 0 to 5 psi (0 to 34 kPa), the 

resilient modulus distribution under the load was plotted through the depth of granular 

bases and subbases (see Figure 3.3). The moduli, in all cases, were observed to increase 

with increasing residual stresses. 

Duncan and Seed (1986) proposed a hysteretic model for the stresses generated by 

multiple cycles of loading and unloading. The model used incremental analytical methods 

for the evaluation of peak and residual earth pressures resulting from the placement and 

compaction of the soil. The predictions obtained using the model were in excellent 

agreement with observed laboratory test results. However, the model was complex and 

required 5 material property parameters including the coefficient of lateral earth pressure 

at rest K0. A simplified version of the model was later incorporated into the SSCOMPPC 

finite element program for evaluation of soil-structure interaction and compaction effects 

(Boulanger et al., 1991). 

Selig (1987) studied in the laboratory the development of residual stresses in 

granular materials placed in soil tanks. In a two layer system consisting of sands and 

clays, horizontal plastic strains were developed in the bottom of the sand layer after the 

first loading cycle. Initially, horizontal stresses were bigger in the loaded state than in 

unloaded state. The lateral stresses in the bottom of the layer gradually increased in both 
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Figure 3.3. Distribution with Depth of Base and Subbase Moduli Under A Wheel 

Load (after Uzan, 1985). 



the loading and unloading condition. After about 50 load cycles, the horizontal stress in 

the unloaded condition was observed to be larger than the stress existing in the loaded 

condition. 

The existence of high horizontal compressive residual stresses in a base or subbase 

layer were proposed to offset the predicted incremental tensile strength at the bottom of 

the layer (Selig, 1987). These compressive stresses, if sufficiently large and properly 

accounted for in the pavement analysis, would reduce or eliminate the so-called "tensile 

zone" in the granular layers. Based on the results of a series of experiments using a 

compressometer, Zeilmaker and Henny (1989) found that the residual stresses are time-

dependent. As time passes, relaxation of lateral compaction stresses primarily starts far 

away from the load and progresses towards the uppermost layer. The measured stresses 

were also found to be lower than predicted with the difference being mainly attributed to 

neglecting the elastic deformation in the unloading path. 

Therefore, proper consideration of compaction-induced residual stresses in 

granular materials is required to correctly model the behavior of flexible pavements with 

granular bases. The stress path approach discussed above (Uzan, 1985) and experiments 

performed by Selig (1987) are useful to approximately estimate the magnitudes of 

residual stresses existing in the granular layers due to compaction or preloading of the 

pavement layers. Knowing these locked-in horizontal stresses are essential for 

determining the appropriate initial stress state to evaluate correctly the resilient modulus 

values used in the analysis. 



Continuum Approach 

The analysis of flexible pavements with granular bases commonly requires the 

solution of stress and strain distributions and load deformation characteristics in elastic 

layered continua. Although the pavement consists of both bound material such as asphalt 

concrete and unbound particulate media such as the granular base layers, it has been 

customary to model all layers including the granular bases using the continuum (see Figure 

3.4). A special elastic solid continuum problem applicable to pavements under a circular 

uniform tire pressure is described under the axisymmetric stress conditions discussed in this 

section. 

In a general three-dimensional continuum, the equilibrium equations of an 

elementary volume (see Figure 3.4) can be written as follows (Timoshenko and Goodier, 

1970): 
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The six constitutive equations for an isotropic continuum are also given as: 

a = D c with a = 

a XX 

a yy 

a zz 

xy 

xz 

L yzJ 

and 

e x x 

s y y 

E = 
e zz 

Yxy 

7xz 1 

.YyzJ 

(3.4) 

in which the constitutive relation matrix D is written in terms of elastic modulus E and 

Poisson's ratio v as: 
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An equivalent formulation of the D matrix can be obtained in terms of the secant 

shear modulus G and the bulk modulus K once the following substitutions are made in 

the general matrix above: 

G = 
2(1 + v) 

and K = 
3(1 - 2 v) 

(3.5) 

Figure 3.4. The Three-Dimensional Continuum Model. 



The stress strain relation therefore can be expressed through the volumetric and deviatoric 

components using Equation 3.5 as follows: 

p = K e v and Sii = 2Ge i i (3.6) 

where p is the mean stress, 8V is the volumetric strain, and Sy and ey are the deviatoric 

stress and strain components, respectively. Equation 3.6, therefore, enables solution of 

the continuum problem expressed in terms of isotropic volume change and pure shear 

deformations. The material models such as the K-G or the contour models discussed 

previously in Chapter 2 both employ such solutions in which constitutive material 

behavior is defined through the secant shear and bulk moduli. 

In an elastic process, no strain energy disappears. Then, Maxwell's reciprocity 

theorem for the second order mixed partial derivatives requires that the following 

relationship must be satisfied at all states of stress (Love, 1944; Allaart, 1992) 

Op SSy 
(3.7) 

^eij d£v 

where all terms are as defined in Equation 3.6. For triaxial stress conditions, the above 

equation takes the form: 



It-*- (3.8) 

where q = G} - <73 is the shear stress, 8V = 8j + 2e3 is the volumetric strain, and 8q = 2/3 

(8] - 83 ) is the shear strain. 

In addition to the constitutive equations, a three-dimensional continuum solution 

also requires the following six compatibility equations (Timoshenko and Goodier, 1970): 

du _dv dw 
Exx = 5? Eyy = a ? 8 z z = ^ 

du dv _du dw _dv dw 
' <9y dx dz ox fe oy 

(3.9) 

in which u, v, and w are the displacement components in x, y, and z directions, 

respectively. Boundary conditions with regard to geometry and loading on the pavement 

complete the continuum model. 

A common assumption of the continuum approach of modeling flexible pavements 

is that the interfaces between the asphalt concrete and the granular base layer and between 

the base layer and the subgrade have full bonding. The interlocking grains in the lower 

and upper boundaries of the base layer and the immovable asphalt concrete usually 



prevent any slip at the interfaces. It is generally more likely to exceed the shear strength 

between the grains within the base before slip can occur in any horizontal or inclined 

grain to grain load transfer direction. Nevertheless, the assumed perfect bonding may be 

unrealistic in some cases although in practice slip between layers has not been identified 

as a widespread problem. 

Micromechanics Based Continuum Solutions 

In the micromechanics approach, the deformation behavior of a granular assembly 

is described by the above summarized concepts of stresses and strains. The constitutive 

relationships are derived considering particle interaction and structure of the material. A 

number of studies have been attempted to model the granular material behavior from 

micromechanical particle interactions for regular packings (Duffy and Mindlin, 1957; 

Deresiewicz, 1958; and Makhlouf and Stewart, 1967) and for random packings (Digby, 

1981; Walton, 1987; Jenkins, 1987; Chang, 1988; and Chang et al. 1992). Recently, with 

the help of the knowledge gained in heterogeneous and composite materials, the 

micromechanics approach has been advancing rapidly. However, most of the problems 

which can be solved by using the approach still do not go beyond idealized materials 

represented by several thousands of randomly generated microelements. Therefore, it is 

currently not practical to predict the full response of flexible pavements with granular 

bases using micromechanics based constitutive stress-strain models. 
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No Tension Analysis 

Burmister's linear elastic layered theory (1945) has been the primary basis of most 

of the analysis methods commonly used in mechanistic flexible pavement design. When 

analyzing the case of a stiff layer (i.e., the AC layer) overlying less stiff granular layers, 

the linear elastic methods indicate a high horizontal tensile stress zone in the unbound 

granular layer. Even though the granular layer behaves elastically under repeated surface 

loading from vehicle traffic, a failure would be caused by this large horizontal stress. 

These horizontal tensile stresses usually occur in the lower portion of the granular base or 

subbase which is called a "tension zone". Moreover, since the granular materials are not, 

in general, capable of taking any tension (due to separation), a correcting type of analysis 

which deals with the reduction or elimination of these tensile stresses is sometimes 

undertaken. This type of analysis is described as a "no tension" analysis. 

Several researchers in the past have investigated the tensile stresses predicted in 

the granular layers starting from late 1960's when the finite element method first emerged 

as a powerful tool to be used in pavement analysis. Duncan et al. (1968) indicated the 

potential for tensile stresses to develop in a granular base layer. Hicks (1970) later 

concluded from a finite element analysis that the occurrence of tensile stresses in a 

granular layer is a function of the moduli ratio of the AC to base and also base to 

subgrade. This finding was in good agreement with what Heukelom and Klomp (1962) 

found from field vibratory tests. 
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Using the layered theory, Heukelom and Klomp (1962) studied experimental 

evidence which indicated that the ratio of the modulus of an untreated granular base to 

that of the subgrade was not much higher than 2.5 (see Figure 3.5). The tensile stresses 

were hypothesized to give way to a tendency for decompaction, causing the modulus of 

the base layer to stabilize at the state where the radial stresses equaled zero (at a modular 

ratio of 1). Their design criterion for unbound bases was set not to permit horizontal 

stresses exceeding 0.5 times the vertical stresses plus the horizontal overburden pressure. 

Heukelom and Klomp (1962) concluded that unbound granular materials were capable of 

taking limited tensile stresses due to interlocking of the granules caused by forces 

perpendicular to the radial bending stresses. 

Zienkiewicz et al. (1968) were among the first to offer a solution to the problem of 

rock and unbound aggregate not being able to take the tension predicted by the finite 

element method. They proposed an iterative tension correction procedure called the 

"stress transfer method". The horizontal tensile stresses predicted in the granular layer 

after a linear elastic analysis were counteracted by applying compressive forces equal in 

magnitude but opposite in direction in the base to maintain equilibrium. If the 

counteracting force was incremented such that the tensile straining was monotonically 

increasing, then a unique solution is obtained. In the final iteration, no tension is present 

and the statics are satisfied. 

Using the SENOL nonlinear finite element program, Brown and Pappin (1981) 

predicted horizontal stress response of granular layers from instrumented pavement test 
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Figure 3.5. Radial Tensile Stress and Vertical Pressure at the Bottom of Base As 

A Function of Modular Ratio (after Heukelom and Klomp, 1962). 
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sections. As discussed in Chapter 2, the SENOL program uses for granular materials the 

contour model which consists of families of experimentally determined resilient strain 

contours on a q-p stress plot. These contours are used to obtain elastic constants for any 

calculated stress state changes. During the computation procedure if a tensile value of 

mean normal stress p was obtained, then a very low vertical modulus was assigned to that 

element. The use of the contour model and the computation procedure seemed to 

eliminate the tension zone in the base since SENOL did not predict any tensile stresses at 

the bottom of the granular layer. However, the approach is not realistic and large 

discrepancies were reported between the predicted and measured stresses and strains. In 

one instance, the measured radial and tangential strains were lower than the predicted 

ones by a factor of two. 

Raad and Figueroa (1980) presented a method of analysis for granular materials 

based on incorporating Mohr-Coulomb theory into the finite element method. Principal 

stresses calculated in the granular base were not allowed to exceed the strength of the 

material as defined by the Mohr-Coulomb envelope. Using this very approximate 

method, the horizontal tensile stresses predicted in the granular layer by linear elastic or 

nonlinear, incremental methods were completely pulled into the compressive zone under 

the Mohr-Coulomb envelope (see Figure 3.6). This method is currently used by several 

nonlinear finite element programs routinely used in design, such as Illi-Pave and Mich-

Pave, to eliminate horizontal tensile stresses in the unbound base layer. However, 
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Figure 3.6. Mohr-Coulomb Stress Modification For A No Tension Failure 

Condition (after Zeevaert, 1980). 



arbitrarily changing the stresses in each element without considering overall equilibrium 

does not appear to be theoretically correct. 

Doddihal and Pandey (1984) modified for pavements the originally proposed no 

tension stress transfer approach by Zienkiewicz et al. (1968). A modification was 

required since the original version was not intended for granular bases in roadways and 

had serious convergence problems. In this modified approach, the tensile stresses are 

also counteracted by compressive nodal loads with the overall equilibrium insured after 

each iteration. Iterations are continued until tension is eliminated. The modified no 

tension analysis method achieves much faster convergence (typically in 3 to 4 iterations) 

than the original method (Zienkiewicz et al., 1968) for the elimination of the mainly 

horizontal tensile stresses encountered in the lower portion of the granular base. 

To investigate the effects of residual stresses on the horizontal stresses in granular 

bases, Selig (1987) performed tank model experiments where an upper stiff layer was 

overlying a less stiff layer. Large horizontal compressive residual stresses were shown to 

develop after compaction in the granular layer. The residual stresses were believed to be 

the key factor limiting permanent deformation by offsetting the incremental horizontal 

tensile stresses associated with the loading. The explanation of how pavements with 

granular bases can carry many load cycles without failure was therefore attributed to the 

horizontal compressive residual stresses due to initial compaction counteracting the 

effects of horizontal tensile stresses caused by the wheel loading. 
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The no tension condition in granular bases is one of the main areas of interest in 

this study to be investigated in the light of theoretical and analytical work. The question 

raised by Selig (1987) and given below is a good starting point to initiate further research 

in the subject which has been almost abandoned since the late 1960's: "How can 

pavements carry many load cycles without failure under the high horizontal tensile 

stresses predicted in the granular layer?" Some possible explanations are given as 

follows: 

• The mathematical models and layered theory incorrectly predict horizontal 

tensile stress. If this is true, improvement in both material and geometrical 

modeling will be able to offer satisfactory solution. 

• Unbound granular materials are indeed capable of taking limited tensile 

stresses due to confinement, friction forces between granules and interlocking 

of aggregates (Heukelom and Klomp, 1962). 

• The initial state before wheel loading corresponds to a state of both horizontal 

compressive overburden and residual compaction stresses. Any incremental 

tensile stresses are counteracted at least partly by the initial residual 

compressive stresses and hence local failure is prevented. 

Probably all the explanations offered above are at least partly valid. No doubt that 

a better modeling of granular bases is needed especially in the areas of the cross-
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anisotropic and particulate nature of the granular material behavior. Emphasis must be 

given to the load transfer mechanisms in shear and the effects of overburden and residual 

compaction stresses must also be included in the analysis. And finally, unlike the general 

assumption that granular materials not take any tension, both Heukelom and Klomp 

(1962) and Brown and Pell (1967) observed from pavement tests that some magnitude of 

radial tensile stresses existed in granular bases. 

The horizontal stress measurements in soil and also stress measurements in the 

major principal stress directions are very difficult to make. Additionally, most stress 

gages are generally unsuitable and not accurate enough to measure tensile stresses. 

Therefore, experimental stress measurements have considerable uncertainty associated 

with them. This thesis has been undertaken to investigate the existence of horizontal 

tensile stresses in the unbound granular layer. In the next sections, some of the essential 

ingredients for better modeling granular bases are discussed including the cross-

anisotropic and block movement approaches of the particulate media. 

Cross-Anisotropy Under Axial Symmetry 

A cross-anisotropic material representation has different resilient material 

properties (i.e., resilient modulus and resilient Poisson's ratio) in the horizontal and 

vertical directions. The usually used isotropic model has the same resilient properties in 

all directions. Figure 3.7 shows the stratified cross-anisotropic material properties needed 
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to define an anisotropic material under conditions of axial symmetry. In this case, a t is 

the hoop stress. From symmetry, movements in the 0 direction are zero, thus making the 

shearing strains J^ and yz0 also zero. The general axisymmetric elasticity strain-stress 

relations for an anisotropic stratified layered system in terms of the in plane and normal 

to the strata resilient moduli (MR) and Poisson's ratio (v) have been given by 

Zienkiewicz and Taylor (1989) as follows: 

<7r <7t <77 

6 r = — - V r — - V7 — — 
i j- i f Z 2 

MR MR MR 

ar at a7 
6Q = - V r — + — - V r r r ^ z 

MR MR MR 

ar at a7 
8 , = - V , — - V„ — + 

(3.10) 

MR MR MR 

7rz = 
^rz 

G R 

where M R , Vr = Resilient modulus and Poisson's ratio that correspond to the 

in-plane behavior in r - direction. 

M R , v z , GR = Resilient modulus, Poisson's ratio, and shear modulus 

respectively, that correspond to the behavior normal to the 

strata in z - direction. 
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Figure 3.7. Stratified Anisotropic Material Under Axial Symmetry. 

The constitutive axisymmetric anisotropic stress-strain relation matrix D for 

Equation 3.4 then also takes the form: 

D = A 

n ( l - n v z ) n (v r + nv z) nvz(l + v r) 

n(v r + nvz) n ( l - n v z ) n v z ( l + v r ) 

n v z ( l + v r ) nvz(l + v r) ( 1 - v J ) 

0 0 0 m(l + v r ) ( l - v r - 2 n v z ) 

(3.11) 

where A = MR
Z / [(1 + v r) (1 - vr - 2n vz

2 )] 

n = M R
r /M R

5 
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m = GR
z /MR

z 

The variables n and m represent the ratios of horizontal modulus to vertical 

modulus and vertical shear modulus to vertical resilient modulus, respectively. They are 

commonly used in the formulation replacing horizontal modulus (MR ) and vertical shear 

modulus (GR 2 ) . AS observed in this study, the use of anisotropic material properties 

usually results in more accurate modeling and faster convergence when the initial stresses 

and wheel load are applied incrementally. 

The elasticity Equations 3.4 to 3.6 previously summarized in the continuum 

approach section are valid for an isotropic material behavior. The behavior of a granular 

medium, however, depends at any point on the particle orientation which is usually 

determined by the loading conditions in vertical direction. In the case of granular bases 

in flexible pavements, an apparent anisotropy is induced in the fabric during construction 

by aggregate placement and then loading from the compaction equipment. The granular 

layer, therefore, becomes stiffer in the vertical direction than in the horizontal direction 

even before the wheel load on the pavement imposes further anisotropic loading. 

The effects of anisotropic behavior of cohesionless soils have been reported by 

several researchers to influence the computed stress-strain response. Borowicka (1943) 

indicated an increase in the calculated vertical stresses near the load when overburden 

stresses were considered to cause an initial anisotropic material behavior. Similar results 

were obtained by Barden (1963), and Gerrard and Mulholland (1966) when anisotropy 



was taken into account. Zienkiewicz et al. (1966) incorporated anisotropic material 

formulation into the finite element method to compute stresses particularly in rock 

mechanics problems. He found that an anisotropic representation was capable of giving 

good modeling accuracy. 

Recently, Barksdale et al. (1989) observed from instrumented test sections that a 

linear cross-anisotropic model of an unstabilized aggregate base is at least equal to, and 

perhaps better for predicting general pavement response than the simplified contour 

model (Brown and Pappin, 1981). In this study, a cross-anisotropic model of the base 

was used along with an isotropic, homogeneous subgrade. The 8 measured response 

variables were predicted within a 20% accuracy and gave a better estimate of the vertical 

subgrade stress and the vertical surface deflection than did the nonlinear isotropic model. 

The anisotropic characterization was also found to more accurately model the tension 

effect in unbound granular bases. 

Cross-anisotropy or transverse isotropy is often suitable for the special type of 

anisotropy observed in geomaterials which have been stratified as a result of one-

dimensional vertical loading. By assuming different stiffnesses in vertical and horizontal 

directions, a better estimate can be obtained of the stress state in the system where no 

tension develops in the granular layer. For example, consider a conventional flexible 

pavement consisting of unbound base placed over a soil subgrade. The resilient modulus 

assigned to the elements in the horizontal direction can be easily set equal to zero or a 



small value in areas of horizontal tension. The computed lateral stresses using the 

anisotropic idealization then more correctly depict the "no tension" condition. 

Summary 

Some of the most important modeling considerations of flexible pavements with 

granular bases were discussed in this chapter. Among these are the compaction-induced 

residual stresses, cross-anisotropic granular material properties, and horizontal tension 

predicted in granular bases. The effects of both residual stresses and cross-anisotropic 

formulation on the final stress state were described in the unstabilized aggregate base. 

The classical continuum approach was summarized for the analysis of pavement systems. 

Several methods proposed for the solution of the "no tension" problem were also 

presented. 
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CHAPTER IV 

NEURAL NETWORK MODELING OF RESILIENT MODULUS 

Introduction 

The resilient behavior of granular materials has been well documented over the 

years to depend primarily on the applied stress state. The nonlinear material models 

presented in Chapter 2 all use the stress and strain levels as the main response predictors. 

Several other factors, however, also influence the resilient modulus of aggregates 

typically obtained from repeated load triaxial tests (Barksdale and Itani, 1989). The 

following secondary variables have been found to influence resilient modulus: gradation, 

dry density, degree of saturation, moisture content, compaction level, aggregate size, 

fines content, and load duration and frequency. A direct inclusion of these variables will 

not be considered herein. Instead, a new method of modeling resilient response behavior 

using artificial neural networks will be presented that uses these aggregate properties. 

Computation by artificial neural networks (ANNs) has emerged in the last decade 

as a powerful paradigm which has found applications in almost all engineering branches. 

Neural networks were inspired by the mechanisms by which real biological neurons work 



in the human brain. A neural network model, composed of highly interconnected 

processing units called artificial neurons (or nodes), manipulates the given input data and 

reaches decisions. The main advantage of using neural computations is in the area of 

intuitive types of problems. Such problems require the integration of experience to make 

decisions which cannot be clearly defined in mathematical terms. The process of learning 

by a neural network, using the existing available information, is achieved through 

training in a similar manner as the human brain processes data. A trained network can 

then predict output response to a high degree of accuracy much faster than sophisticated 

conventional models. 

A new approach of modeling the resilient response behavior of granular materials 

is given in this Chapter through the use of artificial neural networks. The relative 

contribution is investigated of aggregate properties on the influence of the resilient 

modulus (MR). The experimental resilient moduli obtained from a series of laboratory 

repeated load triaxial tests on different types of aggregates are used to train an artificial 

neural network (ANN) material model. The model captures the knowledge of the 

material behavior within the connections of a self organizing ANN. The ultimate goals 

in this study are: (1) to show the feasibility of using neural computations as an alternative 

to conventional stress state dependent resilient response modeling, and (2) to more 

correctly model the resilient modulus behavior incorporating granular material properties 

including gradation, dry density, degree of saturation, moisture content, compaction level, 

aggregate size, fines content. 



Background on Neural Networks 

A neural network, although being a novel form of artificial intelligence (AI), takes 

a different approach to AI by not using traditional techniques such as expert systems. 

Instead, a network of artificial neurons or nodes comprise the ANN geometry which 

closely resembles the arrangement of biological neurons in the human brain. The 

decision making process of the brain is simulated by an artificial network of neurons 

manipulating data among the many nonlinear nodes operating in parallel. Rumelhart et 

al. (1986) states that the multitasking ability of the human brain to simultaneously 

consider a large number of pieces of information and constraints is actually due to this 

powerful neuronal architecture of connectionism or parallel distributed processing. 

Biological neurons are the basic computing units in the human brain. Each neuron 

is capable of receiving a number of analog input signals at once and output an analog 

signal. The strength of this output is determined by the input signals and the processing 

logic of the neuron. The biological neuron is replaced in artificial neural networks by the 

processing element called the artificial neuron or node. The artificial neuron also has 

many input paths and can output a signal, usually binary, to a single or several other 

processing elements. 

The main type of ANN used in this Chapter is referred to as a multilayer, feed

forward neural network which was also called a perceptron by Rosenblatt (1958). The 



following are essential to perceptrons: (1) A feed-forward propagation rule, (2) a network 

topology (i.e., the number of nodes, layers, and their connectivity), and (3) a learning 

rule. The error back-propagation algorithm (also known as the generalized delta rule) is 

the most commonly used learning rule (Rumelhart et al., 1986). The feed-forward neural 

networks which use the error back-propagation learning rule is generally referred to as 

back-propagation neural networks. A typical back-propagation neural network used in 

this study is sketched in Figure 4.1. 

The multilayered back-propagation ANN has usually one input layer, one output 

layer, and the constructed processing elements (artificial neurons) named as hidden 

layers. The hidden layers are sandwiched between the input and output layers. The 

network operation consists of a highly nonlinear functional mapping of the neurons in 

hidden layers between the input and output variables. 

In perceptrons, each artificial neuron or processing element receives several input 

signals Xj originating from previous nodes and then processes each signal considering its 

connection weight Wy (see Figure 4.2). The relationship between the input signals and 

the level of internal activity of the processing element is given by: 

neti = X(W i jX j)-6 i (4.1) 
j=i 

where netj = Net input signal (level of internal activity), 
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Figure 4.1. A Typical Back-Propagation Neural Network. 
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Processing Element i 
(Artificial Neuron i) 

Yi 

Output 
(0 to 1) 

Xj 2 .. N : Set of Inputs, 

Wy : Connection Weights (Strength of a Single Biological 
Synaptic Connection), 

0j : Bias Term (Corresponds to an Activation Threshold), 

netj: Net Input Signal (Level of Internal Activity), 

Transfer Function : f(x) = l/(l+e"x), Sigmoidal Function. 

Figure 4.2. Summation and Transfer Functions of a Typical Artificial Neuron. 



Wjj = Connection weight between artificial neurons i and j , 

X; = Value of signal coming from previous node j , 

0j = Bias term of node i (corresponds to an activation threshold), 

N = Number of input signals from previous nodes. 

When the weighted sum of the input signals exceeds the activation threshold 0j, the 

artificial neuron outputs a signal yj dictated by a transfer function f(x). The output signal 

is then expressed as a function of the net input signal by: 

yi = f(netj) (4.2) 

where f(x) = 1 / (1 + e" ), is a sigmoidal function which gives a value between 0 or 1 

for the output yj. 

The neural network modifies the connection weights between the layers and the 

node biases in ensuing iterations to allow a type of learning for the network. The weights 

and node biases are shifted until the error between the desired output and the actual 

output is minimized. Wasserman (1989) describes the learning process as follows: 

"Learning (or training) is the process whose objective is to adjust the link weights and 

node biases so that when presented with a set of inputs, ANN produces the desired 

outputs." 



After each feed-forward sweep of the ANN is completed in the direction of 

activation, the squared error terms E between the outputs y{ and the target values tj 

(actual values in the output layer) are computed from the following: 

Ek4ltf-yh2 (4-3) 

where i denotes the individual neurons, and superscript k represents the individual data 

values from the training data set. Note that the output y, in the above equation is actually 

a function of the sigmoidal function given in Equation 4.2. 

The change in the connection weights (AWy) between the nodes to be adjusted 

during the learning process is related to the minimization of the average squared error E. 

To minimize the squared error E , the derivative of the error with respect to the 

connection weight WJ; between nodes i and j is required as follows: 

AWn = - r | ^ — = -r | V 
f dE y 

(4.4) 
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where r\ is a learning coefficient > 0. Using the chain rule of differentiation, the 

derivative term <3E /<3WJ: can now be written as: 

k k 
dE dE dy{ dnetj k Snetj k 

— — Oj - — — O; X. aw, dy{ dnetj dW, dW, • J 

u 

(4.5) 

in which 5, = (dy-x /5netj)*( 5net; /^Wy) is defined as "delta" term of the generalized 

delta rule and is given by: 

5,k = 
(t^-yf)f'(neth 

£5* Wim f(netf) 
m 

for output layers 

for hidden layers 

(4.6) 

where the letter "m" represents the nodes in the network below the current i'th layer in 

towards the output layer (see Figure 4.1). Since the back-propagation algorithm starts 

from the output layer, the calculations progress implicitly in the direction towards the 

input layer. The derivative of the sigmoidal function f '(x) to be used in the above 

equation can be given in terms of the function: 
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f'(x) = f(x) (l-f(x)} (4.7) 

now substitute Equation 4.7 in Equation 4.6 for easy computation of deltas. 

During each iteration (it), the connection weights from node j to i are updated as 

follows: 

Wy(it +1) = Wjj(it) + il 1 5 - X- + a [Wij(it) - Wy(it - 1)] (4.8) 
k 

where a is called the momentum (or acceleration) term added to stabilize the training 

process. The summation is done over all individual data in the training set. The inputs to 

the nodes in the back-propagation direction are taken from the outputs of the nodes in the 

preceding layer, i.e., Xj = Vj = Oj (for the first hidden layer). Similarly, the bias term 9 ; 

is also updated at each iteration by an equation of the form: 

ei(it + i) = ei(it) + Ti £ 5 * + a [BiCi^-eiCit-i)] (4.9) 
k 

As the iterations progress, the network repeatedly cycles through the training set. 

The parameters a and r\ in Equations 4.8 and 4.9 help provide an accurate approximation 

of the unknown mean squared error (MSE) minimum. Iterations must be continued until 

an apparent decrease in the maximum MSE to an acceptable level is observed. By using 
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the momentum term a in the search, settling into a local minimum or oscillating 

endlessly about the global minimum can be prevented (Hertz et al., 1991; Meier, 1995). 

In this study, a constant value of 0.5 has been used for both the training rate and the 

momentum term. Both parameters have also been kept constant throughout the training 

process. 

Literature Review: Material Modeling Using Neural Networks 

Very little material modeling has been carried out using neural networks since the 

pioneering work of Ghaboussi et al. (1991). Ghaboussi used back-propagation neural 

networks to model the behavior of plain concrete under monotonic biaxial loading and 

compressive uniaxial cyclic loading. He concluded that neural networks to model 

materials is very promising. 

Ellis et al. (1992) trained an ANN which accurately modeled the mechanical 

behavior of medium to fine sand from a set of triaxial test data. The trained network was 

able to predict the results of other experiments. The influences of relative density and 

confining pressure on mechanical behavior were successfully simulated including the 

effects of strain softening and dilatancy. Pidaparti and Palakal (1993) described the 

behavior of composites using two different back-propagation ANNs. Experimentally 

determined nonlinear stress-strain curves for graphite-epoxy laminates were accurately 

modeled under monotonic and cyclic loadings. The networks developed in this study 



96 

helped identify important engineering behavior aspects of composites, such as breaking 

and fracture stress. 

Penumadu (1993) employed neural networks for modeling the anisotropic rate 

dependent behavior of clays. The training set consisted of stress-strain data obtained for 

a kaolin-silica mix under a pressuremeter stress path. The measured strains in the testing 

set were accurately predicted using stress level and strain rate as the input variables. 

Okuda et al. (1994) reported the results of a viscoplastic material modeling study using 

the ANNs. Two three layer, back-propagation neural networks were trained with the 

input data calculated from existing constitutive equations. The neural networks were 

successfully trained to describe the fatigue-creep interactions, especially the transient 

behavior. 

Little work in this area, therefore, has been done up to now in the development of 

neural network-based models to define the constitutive behavior of engineering materials. 

The approach in most of these studies has been to incorporate the results obtained from a 

series of experiments on selected materials to train a back-propagation neural network. 

The prediction capability of such a network is then limited to how comprehensive the 

information used in the training set is. With a relatively large set of available input data 

over wide ranges of values, a well-trained network not only can reproduce the 

experimental results, but also predict the results of other experiments yet to be performed. 

In a way, the neural-network based solutions approximates the laws of classical 
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mechanics to define the material behavior using vast knowledge gained through 

experience. 

Modeling Resilient Modulus of Granular Materials 

The current use of neural networks in this study has been focused on modeling the 

resilient modulus of granular materials as obtained from laboratory repeated load triaxial 

tests. The different stress levels used during testing together with the aggregate 

properties of the triaxial specimens constitute the input information needed in an ANN 

model for predicting the resilient modulus as the output. The measured moduli are then 

used to train the ANN with the error back-propagation algorithm. A well trained network 

can hopefully predict not only the resilient response for different stress states but also 

consider the effect of the physical characteristics of the material. The comprehensive 

resilient modulus tests performed on granular base materials at Georgia Tech (Alba, 

1993) were used for training the back-propagation neural network. 

Repeated Load Triaxial Tests 

Alba (1993) performed a series of repeated load triaxial tests on granular base 

materials to develop a prototype resilient modulus test and to evaluate testing details that 

influence resilient modulus. Different materials were tested ranging from clean crushed 

stone to gravels with high fine contents. The tests were performed on 6.0 in. (152 mm) 



diameter by 12 in. (305 mm) height triaxial specimens. The same specimen preparation 

and testing procedure were used for each material tested. Several experiments were 

conducted taking into account the effects of preconditioning, loading pulse shapes and 

different gradations. The extensive database obtained were used in statistical analyses to 

evaluate reliability, variability, and repeatability of the experimental procedures. Various 

resilient modulus models, such as those of Uzan (1985) and UT-Austin (Pezo, 1993), 

were fitted with the experimental data using multiple regression analysis. 

Three sets of granular materials were tested following the Strategic Highway 

Research Program P-46 testing procedure (SHRP P-46) for Type I materials. These 

material sets comprised materials described as: (1) Georgia Tech (GT) bases, (2) SHRP 

bases, and (3) North Carolina (NC) bases. Each set of material consisted of specimens 

with different aggregate properties: gradation, dry unit weight, water content, percent 

fines content, percent compaction of AASHTO T-180 (1990), and plasticity index. 

Tables A.l through A.3 in Appendix A summarize the detailed input data used in 

the ANN study obtained from the laboratory testing of the three sets of materials, i.e. GT, 

SHRP, and NC bases. The aggregate properties for each specimen are given together 

with the measured resilient moduli obtained from testing at 15 different stress states (i.e., 

different cyclic axial stress and confining pressure). A total of 540 individual tests 

performed on 36 materials. Different aggregate properties comprise the data set used in 

the present study for both training and testing of the back-propagation ANN model. 



ANN Model 

Before training a back-propagation ANN, the network architecture must be 

established (see Figure 4.1). The input and output variables define the number of neurons 

needed in the first (input) and the last (output) layers of the network. The number of 

hidden layers and the number of neurons used in each hidden layer can not, however, be 

easily determined since well-established rules do not exist (Hertz et al., 1991; Meier and 

Rix, 1994). Therefore, in most ANN applications, a trial and error method must be 

employed among different network architectures to find the optimum network 

architecture which results in the lowest mean squared error (MSE). 

Stress state is known to be the primary variable (Barksdale and Itani, 1989) that is 

used in all training. A preliminary study was undertaken to determine the relative 

contributions of the secondary input variables (i.e., the aggregate properties shown in 

Tables A.l to A.3) to resilient response modeling. A commercially available software 

program called "AIM" (AbTech Corporation, 1992) was used as a first step to fit several 

input data sets with polynomial networks for predicting the resilient modulus. The AIM 

program automatically discovers the best polynomial network architecture to approximate 

the output response. The program also provides a complete environment to synthesize, 

analyze, and encode polynomial networks. 

A thorough research using the AIM program found different combinations of the 

secondary variables (aggregate properties) with stress levels had relatively different 

influence in obtaining better fits of the resilient moduli. Some of the aggregate properties 
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which have more variation among different material types were observed to have greater 

influence on the resilient response predictions than the others. These properties were the 

coefficient of uniformity (Cu), average aggregate size (D50), dry unit weight (yd), and 

percent fines content which were then chosen for use in the ANN model as secondary 

input variables. The six input variables to the model then consisted of the deviator stress 

(Gj) and the confining pressure (a3) as the primary variables, and Cu, D5 0 , Yd, and the 

percent fines content of the aggregates as the secondary ones. 

With the number of neurons required for the input and output layers determined, 

the optimum network architecture was investigated by trial and error for a two-hidden 

layer network. Any functional mapping between the input and the output can be 

approximated with a neural network consisting of one hidden layer (Hornik et al., 1989). 

However, the use of two hidden layers drastically reduce the number of neurons in each 

layer. The prediction capacity of the network is also directly proportional to the number 

of hidden layers and the number of processing elements in each layer. 

Six two-hidden layer network architectures were trained with 6 input nodes and 1 

output node. The back-propagation ANN program developed by Meier (1995) was used 

for the training process which consisted of iteratively presenting training examples to the 

network. The 540 individual examples used were first normalized between the values 0 

and 1, completely shuffled, and then split into 405 training sets and 135 testing sets. One 

training epoch was completed after each pass over the 405 training examples. The 135 
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testing examples were then used to monitor the training progress. Table 4.1 presents a 

summary of the training and testing mean squared errors (MSEs) obtained after 10,000 

training epochs for different network architectures. A 6-4-4-1 architecture, for example, 

stands for 6 input nodes, 4 processing nodes in both hidden layers, and one output node. 

Table 4.1. Mean Squared Errors Calculated Using Different Network 

Architectures after 10,000 Training Epochs. 

Trial No. Network Architecture MSE (Training) MSE (Testing) 

TJ-3-T ~ O J 0 0 2 7 ~ ~~0XXJ28" 

6-4-4-1 0.0020 0.0018 

6-5-5-1 0.0018 0.0017 

6-6-6-1 0.0019 0.0020 

6-7-7-1 0.0017 0.0019 

6-8-8-1 0.0013 0.0020 

The optimum network architecture for resilient modulus modeling was found to be 

the 6-5-5-1 network (see Table 4.1). Several factors considered in reaching this decision 

are summarized as follows: (a) The lower capacity networks (6-3-3-1 and 6-4-4-1) gave 

higher MSEs after 10,000 epochs than the 6-5-5-1 network, (b) The higher capacity 
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networks (6-7-7-1 and 6-8-8-1), on the other hand, resulted in considerably greater testing 

MSEs than the training ones. This is a clear indication of overtraining caused by the 

excessive capacity, (c) The 6-5-5-1 network architecture gave the lowest average MSEs 

after 10,000 epochs with no overtraining observed. 

Figure 4.3 shows, for the optimum 6-5-5-1 network, the training progress and 

comparisons of the predicted with the measured moduli using the testing data. The MSEs 

of both the training and testing sets rapidly drop as the training epochs are completed. 

Both curves asymptotically approach a similar minimum level. Some high variations of 

the MSE (bumps) are observed at several epochs in the testing data compared to the 

smoother curve of the training progress. These variations, however, also decrease to 

negligible amounts as 10,000 epochs are reached. A plot of predicted resilient modulus 

as a function of the measured value is given in Figure 4.3b. The nonlinear function 

mapping ability of the neural networks is demonstrated by the reasonably good agreement 

of the predicted with the measured. 

Figure 4.4 presents for two materials the ANN model resilient modulus predictions 

as a function of stress levels and measured vertical strains. For both materials, plotted 

randomly among the 36 aggregate types, predicted resilient moduli match very closely 

with the measured data points. The increase in deviator stress at a constant confining 

pressure generally results in an increased modulus which is correctly predicted by the 

ANN model. The good agreement observed between the measured and computed 

moduli, shown for two materials in Figure 4.4, is actually observed for all the materials 
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tested. Therefore, the secondary input variables which are not shown on the figure but 

were used in the analysis, have definitely contributed to the accuracy of the 6-5-5-1 ANN 

model. 

Further comparisons of the ANN model predictions with the popular Uzan and 

UT-Austin models are shown in Figure 4.5 for the NC Base designated as 10F3S2B. For 

all different confining pressures considered, the ANN model gives good agreement with 

the measured values and similar results to the Uzan and UT-Austin models. For the 

lowest confining pressure G3 = 3 psi (20.7 kPa) and highest G3 = 20 psi (137.9 kPa), 

neural network gives even better results than the two conventional models. 

Several other attempts were also made to train different networks with various 

combinations of deviator stress Gj, confining pressure G3, vertical stress G1? and bulk 

stress GQ used for the primary stress variables. Different ANN models were developed 

using all two variable combinations of these stresses together with the 4 aggregate 

properties. Similar results, however, were obtained in terms of training progress and 

model predictions, and hence only the 6-5-5-1 ANN model with G^ and G3 was studied 

further. 

Validation Analysis 

A validation study was undertaken for investigating the functional relations 

captured within the connections of the trained 6-5-5-1 neural network. It was hoped that 
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using this ANN model, resilient modulus predictions could be obtained for material types 

that were not considered among the 540 data sets used in the training and testing of the 

model. The nonlinear functional mapping adapted by the ANN model would then be 

used to compute moduli from any input variables given within the ranges of the training 

input data. 

Figure 4.6 shows poor agreement between the measured and computed moduli for 

a sample having newly introduced material properties. The ANN model, in this case, 

predicted resilient moduli much higher than the actual values at high confining pressures. 

Only two of the aggregate properties, percent fines content and dry unit weight, were 

entered as numbers different than used in the training data set (see Figure 4.6). The 

combination, however, constituted a new aggregate property set unfamiliar to the 6-5-5-1 

ANN model. 

Two special neural network architectures were then constructed to conceive the 

influence of aggregate properties in the 6-5-5-1 ANN model. The first network 

considered only the two stress state variables in the input layer, whereas the second one 

had only the 4 aggregate properties as the input variables. Using the same 540 training 

and testing data sets, no training at all was achieved this time for either of the two neural 

network architectures. The discrepancy between the measured and predicted results 

observed in Figure 4.6 was then explained by the 6-5-5-1 ANN model's not finding any 

functional mapping between the aggregate properties and the computed resilient moduli. 
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Having Newly Introduced Material Property Set to the ANN Model. 

The 6-5-5-1 ANN model had in essence memorized the 36 material types used to 

train the back-propagation neural network as a result of its excessive learning capacity. 

For each material type (represented by the 4 aggregate properties), the network had 

correlated the resilient moduli to the applied stress states similar to performing a multiple 

regression analysis to obtain the material constants for the Uzan or UT-Austin models. 

When tested with the new material properties, the 6-5-5-1 ANN model was then 

incapable of accomplishing mappings for material types that it did not memorize. 
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Summary 

The 6-5-5-1 ANN model indeed proved itself for individual material types to 

accurately model the resilient modulus variation with stress state as shown by the good 

agreement in Figures 4.4 and 4.5. The developed back-propagation neural network was 

able to distinguish between 36 material types and perform different nonlinear functional 

mappings to define the resilient behavior of each material at the same time. The increase 

in deviator stresses at one constant confining pressure was correctly predicted by the 

ANN model to cause increase in the resilient modulus. 

No functional relations were, however, discovered between the aggregate 

properties (as the secondary input variables) and resilient moduli by the 6-5-5-1 ANN 

model. The learning achieved by training of the model can be evaluated more in the area 

of pattern recognition and classification use of neural networks than actually the material 

modeling of the resilient response for various aggregate types. The model simply 

memorized the material types using the 4 aggregate properties and performed a functional 

mapping of the stress state to predict the resilient modulus for each material. 

The future use of neural networks in the area of resilient response modeling can 

best be achieved by training the network with large and accurate experimental databases. 

The limited number of examples in the training data set provided in this study could have 

made it difficult for the ANN model to find any functional relations between the 

aggregate properties and the moduli. Accuracy and the repeatability of the laboratory 

data may have also influenced the model performance since the variation between the 



moduli obtained from two experiments could be up to 7-8% (Alba, 1993). It is the 

author's opinion that the development of a general ANN model for directly predicting the 

resilient response of any granular material is quite feasible provided that an extensive and 

comprehensive training data set exist. 



CHAPTER V 

FINITE ELEMENT FORMULATIONS 

Introduction 

The finite element method has proved to be a very versatile and reliable method for 

modeling flexible pavements since late 1960's (Duncan et al., 1968; Hicks, 1970; Brown 

and Pappin, 1981; Harichandran et al., 1989). The finite element method simply 

approximates the behavior of a continuum (i.e., the flexible pavement geometry) by a 

model composed of an assemblage of a finite number of elements. These individual 

elements are interconnected at nodal points where force and displacement compatibility is 

maintained. In displacement-based finite element formulations, the displacements at the 

nodal points are treated as the primary unknowns solved using the elasticity equations. 

Stresses and strains in the elements are then calculated from these known displacements. 

The versatility of the method comes from discretization of the pavement structure into 

smaller elements which makes possible the realistic variation of material properties in the 

elements as determined by constitutive material laws. Any discontinuity or irregularity in 



pavement geometry can also be accounted for through the utilization of different types of 

elements in the geometric model. 

The finite element model developed in this study investigates the behavior of 

flexible pavements with granular bases subjected to static, monotonically increasing 

vertical loads. Dynamic loading and inertia effects are neglected. Special considerations 

are given in the model to incorporate: (1) residual compaction stresses, (2) material 

nonlinearity through the use of proper characterization models, (3) cross-anisotropic 

material behavior, (4) reduction and elimination of the tensile stresses encountered in the 

unbound base layer. A new concept is introduced to model the granular base as blocks 

separated by interface elements. 

The pavement problem is approximated as one of axial symmetry of load, 

geometry and stiffness. A cylindrical coordinate system represented by r, 0 , and z will 

be used throughout the analysis (see Figure 2.1). The positive displacements u, v, and w 

are in positive r, 0, and z directions, respectively. The wheel load is also taken as circular 

and uniformly distributed with the intensity q. The continuum elements needed to 

discretize the pavement structure are then circular solid rings with initially rectangular 

cross-sections in the r-z plane. 

The axisymmetric pavement system problem is represented in the finite element 

model developed by two types of elements: (1) isoparametric eight node, and (2) 

interface elements. An isoparametric eight node quadrilateral element is used for 



modeling the continuum in all layers of the flexible pavement (see Figure 5.1a). The 

node numbering of the element is as shown in Figure 5.1a. 

The interface elements consist of six node spring elements placed between the 

eight node isoparametric continuum elements in the granular base for the block model 

representation of the particulate medium introduced in Chapter 8. To be compatible with 

the neighboring eight node elements, the interface elements, which have negligible 

thickness, can deform quadratically since they have three nodes on each side (see Figure 

5.1b). Three normal and three shear springs are present in each interface element 

permitting the computation of normal and shear stresses between the continuous blocks. 

Isoparametric Eight Node Quadrilateral Element 

The axisymmetric, isoparametric eight node quadrilateral element is used in the 

finite element model for the continuum representation of the pavement. This element has 

quadratic interpolation functions which allow for a quadratic variation of displacements 

within the element. The quadrilateral can easily model curved boundaries and deformed 

geometry of the pavement. The stresses and strains between the neighboring elements 

also vary smoothly even in a high stress gradient area with fewer number of elements 

than the linear quadrilateral or linear strain triangle elements. 

Under axial symmetry, the quadrilateral cross section of the element is rotated 

about the z -axis thus forming a solid circular ring (solid of revolution) in the r - 0 plane. 
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Figure 5.2 shows an eight node isoparametric quadrilateral element represented as an 

axisymmetric solid in cylindrical coordinates. The wheel loading is applied as a 

uniformly distributed line load in global coordinates in the r-z plane, and both the 

material properties and the boundary conditions are considered as independent of the 

rotation angle 0. The pavement problem then becomes essentially a two-dimensional one 

that can be analyzed in the r-z plane with the corresponding u and w degrees of freedom 

at nodal points. 

For any point on the cross-section of an axisymmetrically loaded ring element, the 

generic displacements u in the r-z plane are (Zienkiewicz and Taylor, 1989): 

u = {u, w) (5.1) 

Translations u and w occur in the r and z directions, respectively. Since the translation v 

in the 0 direction is zero, the shearing strains y^ and yzQ are also zero. Then, the strain 

displacement (compatibility) relation is given by: 

6 = 

o r 

ez 

Trz 

3 / 
/dv 

0 

1/ 
/r 

0 M 
0 9 / l w J 

3 / Zdz /dv 

(5.2) 
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where the nonzero term 1/r in the second row of the above matrix is a multiplier of u, not 

a derivative. 

For the axisymmetric stress problem, the stress-strain constitutive relation for an 

isotropic material is given as follows (Zienkiewicz and Taylor, 1989): 
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(5.3) 

in which MR is the resilient modulus, V is the Poisson's ratio, a t is the hoop stress in the 

6 direction, and Trz is the only shear stress. In case of a cross-anisotropic material, the 

constitutive relation matrix D in the above equation is replaced by Equation 3.11. 

The isoparametric formulation makes it possible to generate elements that have 

curved sides. Both displacements and coordinates of a point in the element are defined 

through the same interpolation or shape functions. The relations between the nodal 

coordinates and coordinates of a point and nodal displacements and displacements of a 

point are then given by the following equations, respectively: 

r = Z N i r i a n d z = Z N i z i 
i = l i = l 

(5.4) 



n n 
u = ^ N j U i and w = ^ N i w i (5.5) 

i = l i = l 

where r and z = global coordinates of the axisymmetric system, 

rj and Zj = the coordinates of the nodes of the element, 

u and w = global displacements of the axisymmetric system, 

Uj and Wj = the displacements of the nodes of the element, 

Nj = the interpolation or shape function. 

n = number of nodes in the element (which equals 8). 

Using Equations 5.4 and 5.5, the coordinates or displacements of a point within the 

element can be calculated from the known nodal coordinates fa and z-,) or the known 

nodal displacements (Uj and w}) of the element. 

The shape functions Nj and their partial derivatives in natural curvilinear 

coordinates with respect to § and n are tabulated in Table 5.1 for the eight node 

axisymmetric isoparametric element. Figure 5.2 shows the local coordinates £ and *n 

varying from -1 to +1 within the element boundaries. At each node, the corresponding 

shape function takes a zero value to satisfy the compatibility conditions. 

For any point within the element, strain is related to the nodal displacements 

through the strain-displacement transformation matrix B as follows: 



6 = B U (5.6) 

where B is a 4x16 matrix having the shape functions and their derivatives with respect to 

global coordinates as follows (Cook et al., 1989): 

B = 

N; 0 

N,-/r 0 

0 

N: ,Z 

N i , z 

N i , r 

(i=l,2,...,8) 

4x16 

(5.7) 

Table 5.1. Shape Functions and Their Derivatives For The Eight Node Element. 

Node Ni Ni,, N,,, 

1 l/4(l-§) (l-il) (-S-l-l) 1/4(24+TI)(1-TI) 1/4 (1-4) (2ii+4) 

2 1/4(1-H5)(1-TI)(5-TI-1) 1/4 (2^-1!) (l-i!) 1/4 (1+4) (2ii-4) 

3 lAKi-^Ki-htfG+n-i) 1/4 (2^+1!) (1-H,) 1/4 (1+4) (2ii+4) 

4 lMd^d+nx^+n-i) 1/4 (2^-11) (l+i!) 1/4 (1-4) (2ii-4) 

5 1/2 (1-42) (i-n) -4 0-Ti) -1/2 (1-42) 

6 1/2(1+5)(1-TI2) 1/2 (1-T!2) -1 (1+4) 

7 1/2 (I-42) (1-H,) -4 (1+11) 1/2 (1-42) 

8 1/2 (1-4) (l-^2) -l/2(l-ii2) -ii d-4) 
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The problem encountered here is that the shape functions for the eight node 

isoparametric quadrilateral element presented in Table 5.2 are explicit functions of the 

natural coordinates £, and r\. Therefore, to perform the differentiation with respect to r 

and z, the chain rule must be used. The derivatives of the shape functions with respect to 

£, and r) can be written in terms of r and z using the Jacobian matrix J as follows: 

m dN ' 

J 35 
< 

dN 

> = J < 3r 
dN 

> = 

. dr| . dz , 

dr dz 

~&> ~&> 

dr dz 

dr\ dr\ 

dN 

"dr" 
dN 

dz . 

(5.8) 

where the components of J are computed from shape functions and nodal coordinates as, 

dr 8 
Jn = gpZN w r , 

dz 8 

12 ^ Z . i£ i 

dr 8 

J 2 1 = T - = Z N i , r 1 *i 
^ 1 i = l 

dz 8 

J 2 2 = ^ - = I ! N i Zj 

^ 1 i = l 



The strain displacement matrix B of Equation 5.7 then can be formed explicitly in 

terms of natural coordinates with the following substitutions made into Equation 5.7: 

N ^ j i j ^ N ^ - J ^ N , . , ] 

Ni>z = ^ [ - J 2 1 N ^ + J n N i ; t l ] (i = l,2,...,8) (5.9) 

N j ^ N; 
r 8 

SNjrj 

where |J| = J u J22 - J12 J21 is m e determinant of the Jacobian matrix and r is the 

average radius. 

The stiffness matrix (S) of the element relates the applied nodal forces (P) and 

displacements (u) in global coordinates as follows: 

P = S u (5.10) 

To calculate coefficients of the stiffness matrix, the expression is used for the internal 

potential energy U (strain energy due to deformation of the element). The strain energy is 

given by 



U = - \a 8 dV (5.11) 
2 Vol 

in which dV = r dr d0 dz is the volume element. Now, substituting the constitutive 

stress strain relation of Equation 5.3 and the strain displacement relation of Equation 5.6 

into the above integral equation, one obtains: 

U = - Je D e dV = - Ju B T D B u dV 
L Vol ^ Vol 

(5.12) 

The second derivative of the strain energy with respect to the displacement field u then 

results in the 16x16 element stiffness matrix S: 

S = | B T D B dV (5.13) 
Vol 

where B and D are the strain displacement and the constitutive relation matrices, 

respectively. 

For the axisymmetric problem, the eight node quadrilateral element makes a 2TC 

revolution around the z axis which makes the matrices B and D independent of 0. 

Equation 5.13 then takes the following form: 



S = 2TT J j B T D B rdrdz (5.14) 

where dr dz = d£, dr) | J | , and in local coordinates, the stiffness matrix is expressed as 

follows: 

S = 2TT J j B T ( ^ i ! ) D 8(^,1!) r f e r i ) | j f e n ) | d^ dr, (5.15) 
- l - l 

8 

in which r(^ , r | ) = X - ^ j r j -
j=i 

The stiffness matrix S can be evaluated by numerical integration using two-

dimensional Gaussian quadrature. A Gaussian quadrature of order 3, which was used in 

this study, exactly integrates the stiffness matrices of 8 node rectangular elements. The 

axisymmetric eight node isoparametric quadrilateral element derived here can be 

sufficiently approximated by the 3th order quadrature with 9 integration points within the 

element located as shown in Figure 5.3. Instead of having a large number of low 

accuracy elements, this study uses a small number of high accuracy eight node elements 

with a higher order Gaussian quadrature rule. 



Figure 5.3. Third Order Gauss Integration Point Locations In the Eight Node 

Quadrilateral Element. 

The integrals of the stiffness matrix S (Equation 5.15) can then be approximated as 

the weighted summation of the values at the 9 Gauss sampling points within the element 

by: 



3 3 

S = 2TI S £ B ($i,Tij) D B(4i,Tij) Jtti,Tij) rC^,Tij) w. Wj (5.16) 
i=i j=i 

where ^ and T|j are the local coordinates of the sampling points, and Wj and w- are the 

weight factors given as: 

For i = 1, 3 and j = 1,3: w, = Wj = 5/9 (Gauss points 1, 3, 7, 9). 

For i = 2, and j = 2: w{ = w- = 8/9 (Gauss points 2, 4, 5, 6, and 8). 

Loading: 

The shape factors N and and the strain displacement matrix B derived in the 

stiffness formulation are used to evaluate the loads acting on the eight node quadrilateral 

element. The types of loads considered in this study are body (gravity) forces, initial 

residual stresses, nodal concentrated loads, temperature loads, and uniformly distributed 

edge loads. All loadings are axisymmetrical and applied with 6 varying from 0 (r-z 

plane) to 2n. 

For body forces, the gravity loading is considered through the unit weight y in the 

load matrix FB = {0, y} only in the z direction. The nodal loads due to body forces qB 

are computed from: 

qB = 27t J JNT(^T!) F B |J(S,TI)| r($,T,) d̂  dr, (5.17) 
- l - l 



where NT is the transpose of the shape function, |J| is the determinant of Jacobian, and r is 

the average radius defined in Equation 5.15. 

The horizontal residual stresses locked in the pavements are considered as initial 

stresses, and can be included in the formulation as follows: 

1 1 

qi=2n J JB (§,ii) a0 \J£,i\)\ v(^r\) d§ dr\ (5.18) 
- l - l 

where qj is the nodal loads due to the initial stresses in the element, and a 0 is the initial 

stress matrix. 

Temperature changes, which were not considered in this study, can also impose 

loading in the pavements. Temperature changes are especially important in cold climates 

and in milder regions when an excessively hard asphalt is used. The initial thermal strain 

matrix c0 can be written in terms of the coefficient of thermal expansion a and the 

constant change in temperature AT as: 

h°~ ictATl 
se„ aAT 

J. " >• = < > 

K aAT 

l Y r z o . 0 J 



where AT = Tf - Tj with Tj being a starting temperature at which the body is free of stress 

and Tf is the final temperature. The nodal loads due to the thermal strains then are given 

by 

1 1 T 

qT = 2iz J JB ( £ , T 0 D e 0 | J ( £ , T I ) | r ( ^ r ! ) d£ dr\ (5.20) 
- l - l 

For edge loads, a uniformly distributed line load is considered in the r-z plane with 

the load intensity vector O = {(|)p (j)z}. The nodal load vector due to the edge loads qs 

is written as a surface integral: 

q s = 271 jN s
T(!j,T,) O | J S ( 5 , T I ) | r (4, i l ) <Hj (5.21) 

-1 

where Ns and J s are the surface shape function and surface Jacobian matrix modified in 

the above equation for the lower or upper edges of the element (see Figure 5.2) where T] 

= -1 orT| =+1. 
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Stress Computations 

The stresses CJ are calculated from the computed strains 8, the initial thermal 

strains S0, and the initial residual stresses G0 in the general form as follows: 

G = D {8 - 8 0 } + a 0 (5.22) 

The strains are first produced by the displacements of the nodes, and then the stresses are 

calculated in the above equation from the strains. Therefore, the stresses are less accurate 

than the displacements. However, higher order elements, such as the one formulated 

here, usually display good accuracy for stresses computed at the Gaussian integration 

points. The axisymmetric eight node quadrilateral element performs very well in overall 

efficiency and accuracy as compared with simpler elements (Bathe and Wilson, 1976). 

Due to the formulation of the axisymmetric problem, it is unavoidable to obtain a 

division by zero error when r = 0 because of the u/r term in the strain displacement 

relation of Equation 5.2. This difficulty, however, is easily solved in the computer 

program by substituting the tangential strain 8Q with the radial strain 8r at the centerline (r 

= 0) where the radial and tangential components of the strains are equal. 



Six Node Interface Element 

Conventional finite element analyses employ the continuum requirement of nodal 

point displacement compatibility without considering any relative movements between 

neighboring elements. To model a particulate medium, interface elements are needed on 

each face of the element to provide for sliding and separation of blocks of aggregates. 

The block model, to be introduced in Chapter 8 for modeling granular base behavior, will 

be implemented in the finite element analysis using interface elements surrounding the 

continuum elements. 

To allow for relative shear movements and separation between the adjacent two-

dimensional elements, Goodman et al. (1968) developed a one-dimensional linear elastic 

interface element. This zero-thickness element was later modified by Clough and 

Duncan (1969) for the nonlinear hyperbolic shear stress - shear displacement behavior. 

Ghaboussi et al. (1973) and Desai (1974) formulated and applied the interface element for 

the axisymmetric stress problems. Several researchers have used an isoparametric 

formulation of the interface element (Zienkiewicz, 1970; Katona, 1983; Beer, 1985) to 

model contact problems in soil and rock mechanics. 

Desai et al. (1984) proposed a thin layer, solid element to be used in the interfaces 

which involves a small but finite thinness rather than a zero thickness. Satisfactory 

simulation of the interface was obtained when the thickness was 0.1 to 0.01 times the 

length of the interface element. More recently, Snyman and Martin (1992) developed an 
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element to model the dilatant behavior of discontinuities with rough contact surfaces. 

The element was successfully implemented into a standard nonlinear finite element code 

to realistically account for dilatancy. 

The six node interface element selected in this study is compatible with the eight 

node isoparametric element previously described (see Figure 5.4). The element 

essentially has zero thickness and consists of three parallel nodal links (Zeevaert, 1980). 

Each nodal link is composed of a normal and a shear spring placed between nodes on 

each side. Similar to the eight node element, the element deforms quadratically thus 

creating shear and normal displacements in the springs. The spring coefficients (normal 

kn and shear ks) are calculated as a modulus of subgrade reaction (Force / Length ) from 

the normal a n and shear stresses Ts by: 

a n = kn A n 
(5.23) 

^s = k s A s 

where An is the average relative normal displacement across the element, and As is the 

average relative shear displacement along the element. 

The subgrade reaction type moduli ks and kn assigned to the element control the 

opening (separation) and relative movement of the interface (slip) between the adjacent 

two-dimensional elements. Computer analyses using interface elements have indicated 

that high values of the modulus of subgrade reaction k in the order of 10 to 10 pci 



t = negligible thickness 

(a) Three nodal links with concentrated normal and shear spring 
constants, and nodal forces acting on the interface element 
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(b) Compatibility of interface elements 

Figure 5.4. Six Node Interface Element. 
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(2.7*10 to 2.7 *10 kN/m ) provide accurate results when modeling a continuum. 

Similar values were also obtained for kn and ks by Clough and Duncan (1969) and 

Zeevaert (1980). For a normal stiffness kn of 106 pci (2.7* 108 kN/m3), it would take a 

relative compressive displacement of 10" in. (2.54*10" m) across the element to develop 

a 100 psi (690 kPa) compressive stress which is usually higher than stresses generally 

encountered in pavement bases. In the normal direction, a high resistance to compression 

is achieved using these stiffnesses and the overlapping of the continuum elements are 

minimized. When tension is observed in the interface, both the normal stiffness kn and 

the shear stiffness ks is set to zero allowing separation to occur. 

In the direction of shear, the shear stresses computed agree reasonably well with 

the stresses obtained in the continuum elements for the above given range of ks values. 

The shear behavior at the interface is modeled at failure by the frictional shear strength 

using the Mohr-Coulomb failure envelope as follows: 

T m a x = c + a n t a n ( t > (5-24) 

where Tmax is the shear strength, c is the cohesion intercept (usually taken as zero for the 

granular bases), and (j) is the friction angle of the granular materials. When the interface 

shear is larger than the shear strength Tmax, slip occurs, and only the maximum shear that 



can be developed (Tmax) is applied at the interface. Also, the shear stiffness ks is reduced 

to a small residual value. For the current application of interface elements, a more 

sophisticated hyperbolic modeling of shear behavior is not used to avoid having to 

determine the additional model parameters needed in the analysis. 

Stiffness Formulation 

The interface is assumed to have a uniformly distributed modulus of subgrade 

reaction k [F/L3] along its boundary (see Figure 5.5). The displacement function of the 

interface is quadratic between the nodes on each side and hence it is compatible with the 

adjacent eight node isoparametric elements. The concentrated springs Kn and Ks [F/L] 

shown in Figure 5.4a replace the foundation modulus k in the nodal links of the six node 

interface element. 

The nodal load vector q s due to a uniformly distributed line load was given in 

local coordinates in Equation 5.21 for the axisymmetric eight node isoparametric 

element. Considering the compatibility requirements, the external loads Fn i and F s i (see 

Figure 5.4a) in the interface element are therefore equivalent to the computed nodal loads 

given a uniform load distribution on a boundary of the eight node isoparametric element. 

This uniform edge loading can be written as O = {0, k}, where k is the magnitude of 

the uniformly distributed line load acting in local coordinates perpendicular to the 

boundary of the element. 



quadratic 
displacement 
function 

uniform 
loading k 

Figure 5.5. Uniform Load k Applied at the Boundary of An Eight Node 

Isoparametric Element with Unit Displacement Shown at Node 1. 

Assuming the nodes of the element boundary are 1, 3, and 5 (see Figure 5.5) and 

the interface is at angle a with the horizontal, the concentrated loads are then obtained by 

equating the work done on both systems as follows: 

Fj x 1 = 2TC {k NJ r dr (5.25) 
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where Fj = equivalent concentrated nodal forces at 1, 3, or 5 (see Figure 5.5), 

k = uniform load acting normal to the member, 

Nj = shape functions of nodes for the eight node isoparametric element, 

r = horizontal coordinate. 

In local coordinates, Equation 5.25 can be expressed as: 

( L 
Fj x 1 = 271 Jk Nj ( r a v g + £ — cosotj — d£ (5.26) 

- l ^ 
J 2 

where ravg = (r, +r 3 + r 5 ) / 3 , 

L = Length of the boundary 1-3-5, and 

a = initial angle between global horizontal r axis and the 1-3-5 side. 

Considering node 1 in Figure 5.5 to coincide with the top left corner of the eight 

node quadrilateral, N 4 = 1/2 (£, - £) is obtained from Table 4.1 for r| = +1. With 

substitution of N 4 into Equation 5.26, the integral is then solved for Fj to give: 

F l = ^ k - ( r a v g - - coscc) (5.27) 
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Similar shape function substitutions are made into Equation 5.26 for nodes 3 and 5 to 

obtain the concentrated forces F 3 and F 5 by: 

F3 = -n k L ravg (5.28) 

and 

i L / L 

F5 = n k - ( r a v g +- cosa) (5.29) 

Using the above equations, it is then possible to relate the nodal forces to the 

uniform edge loading k through the axisymmetric load factors, ALj, as follows: 

F1=AL1xk = J7i - ( r a v g - - cosa)Uk 

F3=AL3xk = j-7i L ra v g lxk (5.30) 

F 5 = A L 5 x k = J7r - (ravg + - c o s o t U x k 

The axisymmetric load factors given above are used in the derivation of the interface 

element stiffness matrix. 
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Considering that the strain energy of the distributed foundation modulus k is equal 

to the strain energy of the concentrated spring stiffness K at nodes 1,3, and 5 (see Figure 

5.4a), k can be related to K in the energy equation by the following: 

1 r5 2 j 2 
- 2 7 c | k A u r d r = - K AUJ (5.31) 
2 J 2 
L ri 

where Au = is the relative displacement between the two sides of the interface at 

any point along the 1-3-5 element boundary, and 

Aiij = is the displacement at nodes 1, 3, or 5 relative to the nodes 2, 4, or 6 

(see Figure 5.1b). 

Using the definition of isoparametric element formulation (Equation 5.6), Au can be 

written in terms of Au; as follows: 

Au = £ N . AUJ (5.32) 
i = l ' 

Now, with the substitution of Equation 5.32 into Equation 5.31, the strain energies 

of both systems are differentiated and equated to zero to obtain the stiffnesses: 



r5 

k 2TT JNJ AUJ r dr = K AUJ = 0 (5.33) 

ij 

in which the concentrated spring stiffness K is equivalent to: 

rs 
K = 27c{Ni r d r x k (5.34) 

Equation 5.34 is similar to Equation 5.25 with the force term in Equation 5.25 

replaced by the spring constant K. Then, the integral of Equation 5.34 results in the 

axisymmetric load factors ALj as summarized in Equation 5.30. It is, therefore, possible 

to relate the concentrated spring stiffnesses to the foundation modulus (or subgrade 

modulus) in the normal and shear direction in the interface as follows: 

i\.cj — / \ J_ / : Is.,, 

(5.35) 
Kni = ALj kn 

where subscript i represents nodes 1,3, and 5, as shown in Figure 5.1a. 

The displacements of the nodes were previously denoted by u and w (Equation 

5.1) in the r and z directions, respectively. A total of twelve degrees of freedom exist in 
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the six node interface element, as shown in Figure 5.4b. The transpose of the 

T 
displacement vector u for the interface element is then given by: 

u = {iij W! u2 w 2 u3 w 3 u4 w 4 u5 w 5 u6 w 6 } (5.36) 

Using the above displacements, one can calculate the relative displacements (All's) by 

the following equations: 

A u 1 = u 2 - u 1 , A w 1 = w 2 - w ] 

Au3 = u4 - u 3 , Aw3 = w 4 - w 3 (5.37) 

Au5 = u6 - u5 , Aw5 = w 6 - w 5 

The local stiffness matrix Sjer of the six node interface element is then assembled 

in terms of the above summarized relative displacements between the nodal links as 

follows: 

Sier -

AL k, 
I -

AL k, 0 

AL k. 

AL k. 

0 AL k. 

AL k. 

(5.38) 

6x6 



The element stiffness matrix S ie (12x12) can now be formulated directly in terms 

of nodal displacements from the matrix multiplication: 

S i e = Bi S i e r 8 ; (5.39) 

in which Bj is a transformation matrix relating relative displacements to nodal 

displacements in the following form: 

Au = B u (5.40) 

where Au = {Aiij Awj Au3 Aw3 Au5 Aw5} and 

-1 0 1 0 0 0 0 0 0 0 0 0 
0 -1 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 -1 0 1 0 0 0 0 0 

0 0 0 0 0 -1 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 -1 0 1 0 

0 0 0 0 0 0 0 0 0 -1 0 1 



Since the complete derivation of the six node interface element can be achieved in 

closed form, numerical integration is not necessary. As shown in Equation 5.38, the two 

parameters needed to form the global stiffness matrix of an interface element are the 

subgrade reaction type moduli ks and kn in the shear and normal directions, respectively. 

The shear strength Tmax that controls the slip condition in the interface is also determined 

by the cohesion intercept c, and friction angle (|) of the granular material. 

Summary 

The formulations of the axisymmetric stiffness and load matrices were given in 

this chapter for two types of elements used in the finite element model developed for the 

analysis of the pavement system problem. The elements used consisted of an 

isoparametric eight node quadrilateral and a six node interface element. The formulation 

of the eight node quadrilateral element required a third order numerical integration. The 

eight node element is used in the model for the continuum representation of the 

pavement. The six node interface elements were formulated for the axisymmetric 

uniform loading conditions. The stiffness matrix for the six node interface element was 

obtained in closed form. The interface elements will be used in Chapter 8, in the block 

model representation of granular bases between the eight node isoparametric continuum 

elements. 
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CHAPTER VI 

COMPUTER CODE ORGANIZATION AND CAPABILITIES 

General Description 

The theoretical development of the finite element formulation given in Chapter 5 is 

implemented into a nonlinear finite element computer code named GT-PAVE. To more 

correctly model the flexible pavement behavior, GT-PAVE program incorporates both 

the continuum model described in Chapter 3 and a new block model approach introduced 

in Chapter 8. Flexible pavements are modeled as axisymmetric solids consisting of either 

linear or nonlinear elastic layers. A dynamic analysis is not considered and hence inertia 

forces are neglected. The wheel load is then approximated by a circular uniform static 

load. The program employs the small-displacement theory and considers the cross-

anisotropic behavior exhibited by unbound aggregates when used in a base. The program 

also permits incremental loading in the nonlinear analysis, handles residual compaction 

stresses, and eliminates, if necessary, horizontal tensile stresses developed in the lower 

part of the base. 
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The GT-PAVE computer program organization is summarized in this chapter. The 

important features of the program such as the pre- and post-processing, nonlinear 

analysis, incremental loading and no tension considerations for the continuum 

representation of the granular base are discussed in detail. The limitations of the program 

are also given. Analyses using the block model approach are presented in Chapter 8. 

Overview 

Written in Fortran 77, the GT-PAVE nonlinear finite element program runs on a 

personal computer with the requirements of a minimum 8 megabyte RAM and a DOS 

memory extender. Watcom Fortran 77 compiler and tools (Waterloo, Ontario, Canada) 

were used in creating the executable program. Pre-processing capabilities include 

automatic rectangular mesh generation and simple data input. Post-processing uses 

Tecplot software (Amtec Engineering Inc., Bellewue, WA, 1993) for full output data 

visualization capability. The program uses up to 400 axisymmetric 8-node isoparametric 

quadrilateral elements and 200 6-node interface elements to discretize the pavement 

structure. Approximate run times on a 66 MHz, 486DX2 computer with 16 megabyte 

RAM is less than 30 minutes for a nonlinear analysis using about 400 8-node elements, 

with the wheel load applied in 10 increments and tension correction modifications. 

Gravity loading due to self weight and initial lateral stresses locked in the granular base 
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due to compaction are also considered initially for a more realistic representation of the 

pavement problem. 

As presently dimensioned, the GT-PAVE program solves problems up to 1400 

nodal points, 400 8-node quadrilateral elements, and 200 6-node interface elements in the 

granular base. Ten different material types can be used with material properties entered 

for either isotropic (MR, v) or cross-anisotropic ( M R , vr, M R , vz, GR ) analysis. 

Loading types consist of nodal point loads, uniform pressure (edge) loads, gravity loads, 

and temperature loads. Maximum half-bandwith of the banded global stiffness matrix is 

set at 200 for 1400 nodal points. 

Emphasis in program development has been given to realistic nonlinear material 

modeling using routine laboratory tests. Simplified resilient modulus models (i.e., Uzan, 

1985; Pezo, 1993), which consider both confinement and shear stress effects for the 

nonlinear behavior of base and subgrade layers were carefully chosen to be suitable for 

practical design use. The inclusion of the neural network model developed in Chapter 4 

was considered although not implemented in the program due to modulus modeling of 

just the data points for the different aggregate types (refer to Chapter 4). Material 

nonlinearity is handled by using a secant chord modulus which was found to be the most 

effective method of analysis when used with the simplified material models described in 

Chapter 2. In addition to the material models presently employed, the program is 

designed for the easy insertion of new material models for both the base and subgrade. 
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The unbound granular base in flexible pavements can be modeled by using GT-

PAVE program either as a continuum or as blocks of aggregates capable of undergoing 

sliding and reorientation under the applied wheel load. The continuum representation is 

realized by using the 8-node quadrilateral elements. In the block movement approach, 

the 6-node interface elements are added in between the continuum elements. When the 

granular base goes into horizontal tension, GT-PAVE program employs the following 

"no tension" or equilibrium analyses depending on the type of model used in the base: 

(1) Continuum Model. The continuum model incorporates the "no 

tension" stress transfer approach which was originally proposed by Zienkiewicz et 

al. (1968) and later modified for flexible pavements following the 

recommendations of Doddihal and Pandey (1984). In this approach, the tensile 

stresses are counteracted by compressive nodal loads always maintaining the 

overall equilibrium after each iteration until tension is eliminated. 

(2) Block Model. The block model employs an iterative procedure, 

different than the stress transfer algorithm, to maintain equilibrium in the granular 

base. The aggregate blocks separate and the horizontal tension is balanced by the 

counteracting friction forces in the horizontal interfaces between continuum 

elements permitting the blocks to rearrange until equilibrium is achieved. 



The overall nonlinear analysis performed for both the continuum and block models 

consists of two major parts: (1) first the computation of initial stresses due to overburden 

including the effects of horizontal residual compaction stresses and then (2) the 

application of the uniform circular wheel loading at the centerline in the axisymmetric 

mesh. The gravity and the wheel loadings are, unless specified otherwise, applied in 5 

and 10 increments, respectively, until the full load for each is applied in the last 

increment. The first load increment of the gravity loading is solved assuming linear 

elastic response. To obtain convergence for nonlinear problems, the number of load 

increments can be varied to suit the requirements of the problem. The gravity loading 

including the effects of initial compaction stresses provides a correct starting point with 

appropriate stress state determined before superposition of the wheel loading. 

During each load increment, GT-PAVE computes the resilient response through 

two sets of iterations: (1) first correct nonlinear material modeling is achieved and then 

(2) corrections are made for horizontal tension. New values of resilient moduli are 

calculated from the previously computed principal stresses using the simplified models 

(i.e., Uzan, 1985; or Pezo, 1993). The new and the old moduli are compared for 

convergence of the nonlinear iterations using both a cumulative and an individual error 

criterion. Then, the horizontal tension predicted in the granular base at the end of each 

nonlinear iteration is reduced or eliminated (only in the continuum representation of the 

base) by performing no tension modifications in which the overall equilibrium of the 

pavement system is always maintained. 
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GT-PAVE Program Organization 

GT-PAVE finite element program consists basically of a main program which 

controls the flow by handling the input data, calling the several subroutines, and 

outputting the results for the visualization option. A total of 16 subroutines are used for 

the required computations. Figure 6.1 shows the general flow diagram of the GT-PAVE 

program which employs incremental loading with iterations performed for nonlinear 

analysis and tension or equilibrium modifications. 

The input of the program consists of geometry (i.e., mesh layout and element 

connectivities), initial material properties, residual compaction stresses, boundary 

conditions and the loading. Nonlinear material model parameters and tension 

modification parameters must also be specified together with the number of load 

increments to be used for both gravity and surface wheel loads. The basic input and 

output of these properties are processed in the INOUT subroutine. This routine also calls 

the mesh generator subroutine MESHGR and the residual stress computation subroutine 

RESIDUE. 

The pre-processing abilities of the program include a rectangular mesh generator 

using 8-node quadrilateral elements. Six-node interface elements can also be used in the 

granular base layer when block movements are considered. After the general mesh 

generation is completed, any irregular zone in the mesh can be assigned different material 

types by modifying the element properties. The horizontal stresses due to self weight are 
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Figure 6.1. Flow Diagram of GT-PAVE Finite Element Program. 
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computed in the granular layer in the RESIDUE subroutine which shares the geometry 

and the material property information with INOUT and MESHGR subroutines. 

The formulations given in Chapter 5 for the element stiffnesses of the 8-node 

quadrilateral and the 6-node interface elements are implemented in QUADSTF and 

INTSTIF subroutines, respectively. QUADSTF calls SHAPE and EDGE subroutines. 

The SHAPE subroutine forms the strain-displacement matrix and calculates the initial 

strain values. The EDGE subroutine modifies the shape functions for 4 edges of the 8-

node quadrilateral element, computes the arc lengths on those 4 sides, and forms 

uniformly distributed edge load vectors. Residual stress, body force, and temperature 

load vectors are formed in the QUADSTF subroutine. The flowcharts of QUADSTF, 

SHAPE, and EDGE subroutines are presented in Figures 6.2 and 6.3. 

The element stiffness matrices are assembled into proper locations of the global 

banded stiffness matrix in the ADSTIF subroutine. The BC subroutine imposes boundary 

conditions relevant to the problem geometry on the banded stiffness matrix and the load 

vector for the specified displacements. The symmetric system stiffness matrix then takes 

the form: 

'Global 

maximum 
half-bandwidth 

i 1 

S l l S12 o 

symmetric 

22 °23 

\ c "X, 

0 

0 

»33 °34 
\ * , 

>44 4x4 
(6.1) 
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Figure 6.2. Flow Diagram of QUADSTF Element Stiffness Subroutine. 
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Figure 6.3. Flow Diagrams of SHAPE and EDGE Subroutines. 
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where the maximum half-bandwidth is shown for a 4x4 symmetric matrix and the 

stiffness terms in the half-bandwidth can be stored in one array in the direction of the 

arrows. The maximum half-bandwidth of the global stiffness matrix is determined by die 

maximum difference between node numbers of the element (max. diff.) as follows: 

Maximum half-bandwidth = 2*(max. diff. + 1) (6.2) 

Two subroutines, BANEL and BANSOL, are employed to solve the system of 

simultaneous equations using the global banded stiffness matrix and the load vectors. 

BANEL triangularizes the banded and symmetric coefficient matrix by storing only the 

upper portion in a rectangular array as shown in Equation 6.1. BANSOL multiplies the 

inverse of left triangular form with the right hand side vector and then using double 

precision solves for the unknown displacements by the back substitution process (Golub 

and Van Loan, 1989). 

The strains and stresses are calculated from nodal displacements in STRESS and 

INTSTRES subroutines. STRESS calls the SHAPE subroutine which forms the strain 

displacement matrix for the 8-node quadrilateral element to calculate first strains and then 

stresses from Equation 5.2. The normal stresses in the r, 9, z directions and the shear 

stress in r-z plane are computed directly at the integration points for the nonlinear 

analysis. The principal stresses used to determine the material properties in a nonlinear 
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analysis are then calculated using Equation 2.7. GT-PAVE also includes options to print 

the final results of the analysis at both the integration points and the nodal points. The 

nodal values calculated are averaged depending upon the number of elements neighboring 

at that node. 

INTSTRES calls for the stiffness matrix of the interface elements (INTSTIF) to 

compute interface stresses in the granular base from average relative displacements 

between the nodes of two neighboring continuum elements. Equilibrium iterations 

related to the slippage and separation of the individual blocks are also performed in 

INTSTRES. Both the INTSTIF and INTSTRES subroutines, which are used in the new 

block movement modeling of granular bases, are discussed in more detail in Chapter 8. 

Nonlinear Analysis 

The material nonlinearity observed in both the granular base and subgrade is 

considered in the GT-PAVE finite element program for both the continuum and block 

model approaches through the use of the resilient models summarized in Chapter 2. 

Specifically, the Uzan (1985) and the UT-Austin (Pezo, 1993) models given by Equations 

2.20 and 2.30, respectively, have been included in the MODEL subroutine. This 

subroutine calculates the vertical resilient modulus of granular bases from the stress state 

at each integration point in each element. For the subgrade, the resilient modulus of a 

subgrade can be obtained by using the bilinear approximation (Equation 2.31) defined by 
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the repeated load triaxial test results. The Loach model, given by Equation 2.33, has also 

been included as an alternative for representation of the subgrade resilient response. 

Both the Uzan (1985) and UT-Austin (Pezo, 1993) models consider the effects of 

confinement and shear stress in granular materials. The constants used in these models 

can be readily determined from routine resilient modulus tests. When compared, for 

example, to the more complicated, but admittedly more accurate shear and volumetric 

stress-strain contour model (Brown and Pappin, 1981), this type model gives reasonably 

good agreement (Uzan, 1985). These simplified models are therefore used in the GT-

PAVE program as a practical expedient to encourage the routine use of improved 

nonlinear models attractive to state transportation agencies. Although included in the 

MODEL subroutine, the use of the K-9 model is not recommended because of its limited 

ability to account for the shear stress effects. 

Nonlinear Solution Technique 

Several nonlinear solution techniques have been investigated for use in GT-PAVE 

finite element program. Due to the nature of the material models used, which are all 

functions of the total stresses (and not defined through incremental constitutive relations), 

an incremental tangent stiffness type of nonlinear analysis could not be successfully 

adapted of the form: 



[Soioboll (du) = ld P} (63) 

where SG|obaj is a tangent stiffness and the displacement increments du are added from 

each load increment dP to calculate the stress-strain response. 

An iterative procedure which considers a secant stiffness approach, was found to 

be necessary in the analysis with an incremental loading scheme. In each load increment, 

the nonlinear iterations are performed using the appropriate resilient modulus models to 

calculate the correct vertical resilient modulus corresponding to the total stress state. 

The two nonlinear solution techniques suitable for the above discussed material 

models were then chosen to be: (1) the direct secant method and (2) the Newton-Raphson 

scheme with the secant modulus approach (Chen and Lui, 1987). The direct secant 

method involves the solution of the nonlinear load-displacement behavior by updating the 

secant stiffness in each iteration until convergence is reached for the load increment. For 

subsequent load increments, the procedure is followed using the previously calculated 

secant stiffnesses. 

The second method involves for each iteration the solution of the updated secant 

chord stiffness matrix S with the load imbalance vector AQ until the convergence for the 

load increment is reached (see Figure 6.4). A rapid convergence was expected using this 

Newton-Raphson scheme modified for the secant stiffnesses as compared to the direct 

secant stiffness method. As shown in Figure 6.4, the Newton-Raphson method using the 
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Load, P 

U, = U°o U1 
US U" 

H »l< "I 
Au'2 Au2

2 

Displacement, u 

un-, = u°, 

P, = Load increment 1, 

F'2 = Calculated internal load after 1st iteration at load increment 2, 

u*2 = Total displacement after 1st iteration at load increment 2, 

S1
2= Secant stiffness at the beginning of load increment 2, 

AQ1
2 = P2-F12; load imbalance after 1st iteration, 

n = number of iterations for convergence. 

Figure 6.4. Secant Modulus Approach For Newton-Raphson Scheme. 
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secant stiffnesses is summarized for the second load increment through the following 

steps: 

1. Solve for incremental displacements Au2 = [S 2] AP2 

1 0 . 1 
2. Update displacements u 2 = u 2 + Au2 

Calculate stresses G2 = D e 2 where s 2 = B u2 

l 
3. Using the material model, compute D ( M R ) = f ( a 2 ) 

Compose S 2 = J B T D B dV 

v 

4. Find internal forces at nodes F> = JB a2dv 
V 

5. Calculate load imbalance AQ 2 = P2 — F2 

2 2 - 1 1 2 1 2 
6. Solve for Au2 = [S2] AQ 2 and update u 2 = u 2 + Au2 

m „ . . O n 
7. Repeat n times until convergence when u 3 = u 2 . 

Preliminary studies using the secant modulus approach with the Newton Raphson 

iteration scheme, however, indicated convergence problems to exist. The load imbalance 

AQ was observed to increase after the third or fourth iteration thus causing the nonlinear 

iterations to diverge. The reason for this is believed to be the hardening nature of the 



resilient behavior of granular materials used in the nonlinear base layer. Hardening 

behavior is shown in an example problem solved in Chapter 7. 

Unlike many other type of engineering materials such as steel or concrete, granular 

materials exhibit increased resilient stiffness at higher stress levels. The hardening shape 

of the nonlinear stress-strain relationship can be visualized, for example, when two elastic 

spheres are pressed against each other. When the applied pressure is small, the contact 

surface is also small and an increase in pressure results in a large displacement between 

the centers of the spheres. When the applied pressure is high, the contact surface 

becomes large and the same amount of increase in pressure causes relatively smaller 

displacement between the centers of the spheres but higher stiffness (Timoshenko and 

Goodier, 1970; Seridi and Dobry, 1984). 

An example of the Newton-Raphson method for the secant modulus approach is 

given in Figure 6.5 illustrating the resilient hardening behavior of granular materials. 

Following the Newton-Raphson procedure, the load imbalance obtained after the first 

iteration AQ2* becomes greater than the load increment AP2. Furthermore, the secant 

chord drawn to this last point comes down on the first load increment point on the curve 

at the P2 level thus making the second load imbalance AQ2
2 = AP2. According to this 

sample illustration, convergence is never achieved since the second iteration returns back 

to the starting point of the second load increment. Similar unsatisfactory results were 

obtained in a preliminary study using GT-PAVE and the Newton-Raphson scheme for the 

secant modulus. 



A direct secant stiffness approach was then developed for the nonlinear analysis of 

granular base and subgrade layers and included in the GT-PAVE finite element program. 

The direct secant method, in general, is less complicated than the Newton-Raphson 

scheme. Yet it is sophisticated enough to give good convergence of the iterations (see 

Figure 6.6). The nonlinear analysis is performed using both an incremental loading 

scheme and an iterative solution technique for each load increment as follows: 

A Load,P 

AQ2 > AP 2=> ? 

AP2 = AQ5 => ? 

Displacement, u 

Figure 6.5. Secant Newton-Raphson Scheme for the Hardening Granular 

Material Behavior. 

1. First the finite element mesh is generated to give the desired pavement 

geometry. Necessary material property constants, number of load increments, and 



A Load, P 

Load Increment 1 

u, 

(a) Nonlinear iterations for convergence during load increment 1 

A Load,P 

Displacement, u 

u, u2 u3 u4 

(b) Secant stiffnesses after 4 load increments. 

Figure 6.6. Resilient Modulus Search Technique Using Secant Stiffnesses 
For Flexible Pavements. 



convergence criteria are input along with initially assumed material properties and 

the wheel loading. 

2. The nonlinear analysis is begun by applying in typically five load 

increments just the gravity (body weight) loads and the initial residual compaction 

stresses. For each increment of body loading, principal stresses are calculated at 

the nine integration points in each element. New values of the secant resilient 

modulus are computed at each integration point using the material model and the 

latest principal stresses. 

3. To converge smoothly for each load increment as shown in Figure 6.6a, a 

damping factor X (which has values between 0 and 1) was developed to obtain an 

improved estimate of the resilient modulus for the next iteration in the form: 

MJ
R = ( l - ^ ) M J

R - ' + ^ M J „ (6.4) 

where M R = actual MR to be used at the end of iteration number j , 

M R = MR used at the end of iteration number (j -1), 

M R = MR computed from the model at the end of iteration number j . 

Typically, X has no major effect on the gravity loading and the residual 

compaction stress computations and is therefore taken to be 1.0. For the wheel 



load, however, the values needed for quick convergence were found to be between 

X = 0.3 and 0.4. 

4. The convergence criteria used in this study consist of (i) a maximum of a 

5% difference between the old and new values of resilient modulus at each 

integration point in each element and (ii) a 0.2% maximum cumulative error (Ec) 

criterion which is similar to the one used in the Senol program (Brown and Pappin, 

1981): 

Ec = i f M J , - MJ
R

_1V / i f MJ
R)2 (6.5) 

i = i v y / i = i v y 

where n = total number of integration points in the mesh, 

j = the last iteration number for each load increment. 

5. After the full body weight and residual stresses have been applied and 

convergence achieved, the wheel load is added in increments permitting the 

resilient modulus to gradually change as the stresses increase. Typically 10 load 

increments are used. For each load increment, new values of the secant moduli are 

computed at each integration point using the most recently calculated stresses in 

the elements. Once again the moduli for the next iteration are computed using the 

damping factor X and checked for convergence. 
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In general, the cumulative error limit of 0.2% is quite easily satisfied 

within two iterations. The 5% individual error criterion usually controls 

convergence with up to 7 or 8 iterations being necessary as the wheel loading is 

gradually increased to the full value. 

6. At the end of each increment of wheel loading, principal stresses at each 

integration point within the granular base are checked to see if tension exists. If 

tension is found, the stress transfer algorithm of Doddihal and Pandey (1984) is 

employed only in the continuum approach until the solution converges. 

Figure 6.7 presents a flow diagram of the NONLIN subroutine summarizing the 

above described steps followed in the nonlinear analysis. The convergence of the direct 

secant stiffness approach can usually be controlled by assigning low values to the 

damping factor X on the order of 0.3 to 0.4. Large changes in material properties are 

therefore avoided, and the oscillations of the resilient moduli which can cause divergence 

of the solution are prevented. The use of low X values, however, generally results in an 

increased number of iterations needed for convergence. Therefore, X should be varied to 

optimize the solution process. In case of an increase in the individual or cumulative 

errors, iterations for continuum model tension modifications or nonlinear iterations for 

the next load increment are initiated and a warning statement is printed. 

The NONLIN subroutine calls the MODEL subroutine for the computation of the 

new moduli from the previous stress state. Principal stresses computed at each 



NONLIN 

If 1st Iteration, Assign Increments 
for Body and Surface Loads 

Store the Current MR 

Values as Old Moduli 

Call MODEL To Calculate 
MR from current stresses 

Apply the Damping Factor A, To 
Obtain New MR for Next Iteration 

All Elements in Nonlinear 
Base & Subgrade Considered ? 

Yes 

Individual and Cumulative 
Error Calculations Between 

New and Old Moduli 

No 

1 t 

—< 

Assign New MR 

as Current MR 

t 

Return to MAIN for 
Stress Computations 

Error Check for Convergence 
Error Criteria Satisfied ? 

Yes 

Return to MAIN for 
Tension Modifications 
or Next Load Increment 

Figure 6.7. Flow Diagram of NONLIN Nonlinear Analysis Subroutine. 
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integration point are used to determine the material properties at that point. This 

approach eliminates the need to interpolate stresses and strains at element edges and layer 

boundaries, and therefore is more accurate than using stresses at the nodes. 

Due to the rotation of the principal stress axes, the use of principal stresses for 

calculating the vertical resilient moduli can, however, introduce error for the elements 

located away from the centerline of loading. On the other hand, using principal stresses 

also eliminates the effect of any shear stresses included in the stiffness computations. 

Figure 6.8 shows the effect of principal stress rotation on the vertical resilient modulus 

computed using the simplified models. The vertical moduli obtained at the center of 85 

elements used in the nonlinear base and subgrade layers are plotted in Figure 6.8. The 

moduli plotted on the horizontal axis were calculated using principal stresses and those 

on the vertical axis using vertical stresses. Some differences in vertical moduli were 

observed mostly at the higher stiffnesses encountered in the top portion of the granular 

base layer. In general, however, the rotation of principal stress axes was found to have 

negligible effect on the flexible pavement response predictions when compared to the 

results obtained using vertical stresses in the models. 

No Tension Modifications 

The horizontal tension in a granular base layer, as obtained from the elastic layered 

solutions, is reduced or eliminated in the GT-PAVE finite element program using the 



following approaches: (1) assignment of cross-anisotropic material properties to the 

unbound aggregates, (2) reducing the horizontal stiffness in the elements that go under 

tension, (3) applying the no tension stress transfer approach of Doddihal and Pandey 

(1984) in the continuum model, and (4) applying equilibrium iterations in the block 

model in which no tension is allowed to develop between the blocks of aggregates. The 

fourth method is described in detail in Chapter 8. 
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Figure 6.8. Effect of Principal Stress Rotation on the Computed Vertical Modulus. 

The first two approaches mentioned above are closely related and applied to both 

the continuum and block models. A realistic representation of the base is achieved when 
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cross-anisotropy enables the assignment of different stiffnesses in vertical and horizontal 

directions. Horizontal tensile stresses calculated in the nonlinear analysis are eliminated 

by applying compressive nodal loads in the granular base. Overall equilibrium after each 

iteration until the tension is eliminated. 

To demonstrate the effects of how cross-anisotropic representation alone can 

change the horizontal stress state in granular bases, a three layer flexible pavement test 

section problem was analyzed. The section consisted of: (1) a 3.5 in. (89 mm) thick 

asphalt concrete (AC) surfacing, (2) an 8 in. (203 mm) thick unbound aggregate base, and 

(3) a 50 in. (1270 mm) thick subgrade. A 100 psi (689 kPa) uniform wheel load was 

applied over a circular area of radius 4.55 in. (116 mm). Two linear elastic runs were 

performed using the GT-PAVE program with isotropic and cross-anisotropic material 

properties assigned in the base layer. 

Figures 6.9 and 6.10 show the contour plots of the radial stresses in the section as 

obtained using the linear elastic solutions for isotropic and cross-anisotropic bases, 

respectively. In both cases, the same 34,925 psi (240.8 MPa) value of the vertical 

resilient modulus was used in the base while the horizontal stiffness in the cross-

anisotropic base was decreased to 15% of the vertical. The Poisson's ratio in the 

horizontal direction was taken to be 0.15 in the cross-anisotropic representation. As a 

result, the magnitudes of the calculated horizontal tensile stresses in the cross-anisotropic 

base were only about 1/4 of the isotropic values (Figure 6.10). The assignment of 

realistic cross-anisotropic material properties to unbound bases, therefore, helps 
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Notes: 1. Isotropic Linear Elastic Properties in Base: 
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Figure 6.9. Horizontal Tension Zone in the Base As Predicted By Isotropic 
Linear Elastic Solution. 
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3. 1 in. = 25.4 mm, 1 psi = 6.895 kPa 

Figure 6.10. Horizontal Tension Zone in the Base As Predicted By Cross-
Anisotropic Linear Elastic Solution. 
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significantly reduce the horizontal tensile stresses calculated in the granular bases using 

isotropic, linear elastic theory. 

A simple method to handle tension which usually works is to set the horizontal 

resilient modulus equal to zero or a small value in the elements where horizontal tension 

is observed. To do this, a tension reduction factor n has been adapted in the GT-PAVE 

program which specifies the percent reduction of the vertical modulus to be assigned in 

the horizontal direction as follows: 

n = M R / M R (6.6) 

r z 
where M R i s the resilient modulus in horizontal direction and M R is the modulus in 

vertical direction. After the new resilient moduli are computed in the MODEL subroutine 

from the most recently calculated principal stresses, the radial and tangential stresses ( a r , 

and GQ) are checked to see if horizontal tension exists (radial tensile stresses greater than 

0.1 psi, 0.69 kPa) in the element. In case of tension, the horizontal modulus is calculated 

from Equation 6.6. The appropriate values assigned to the tension reduction factor n has 

been found from modeling of full-scale pavement tests to be in the order of 10 to 20% 

which is in agreement with the values reported by Chan et al. (1989). In contrast to 

recommendations of others (Zienkiewicz et al., 1968), a zero stiffness in the horizontal 
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direction does not result in the best agreement between the predicted and measured 

response variables in flexible pavements. 

The GT-PAVE program also employs for the continuum approach a "no tension" 

analysis to modify the calculated stresses when the granular base does go into tension. 

The "no tension" stress transfer approach, originally proposed by Zienkiewicz et al. 

(1968), has been modified following the recommendations of Doddihal and Pandey 

(1984). In this approach, the tensile stresses are counteracted by compressive nodal 

loads always maintaining the overall equilibrium after each iteration until tension is 

eliminated. The modified "no tension" analysis method achieves faster convergence than 

the original one (Zienkiewicz et al., 1968) for the elimination of mainly the horizontal 

tensile stresses encountered in the lower portion of the granular base. 

The modified "no tension" method (Doddihal and Pandey, 1984) has been 

implemented in TENSION subroutine with its flowchart also given in Figure 6.11. After 

the nonlinear iterations converge for one load increment, the horizontal stresses in the 

unbound aggregates are checked for tension. An iterative tension modification procedure 

is then applied to the granular base as follows: 

1. The total strain, total stress, and global restraining load vectors related to 

the tension analysis are initialized in the TENSION subroutine. 

2. The strains and stresses calculated at the integration points in the nonlinear 

analysis (if 2nd tension iteration, these are the stresses and strains obtained from 
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Figure 6.11. Flow Diagram of TENSION Tension Modification Subroutine. 
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the first tension iteration) are added to the total strain and stress arrays and the 

principal stresses are calculated using Equation 2.7. 

3. The principal stresses calculated at the integration points in the elements 

are separated into tensile and compressive components. A principal stress of 0.1 

psi (0.69 kPa) has been considered in the TENSION subroutine to be the limiting 

tensile strength of granular materials above which the principal tensile stresses can 

not exist. 

4. The tensile stresses necessary on the elements to cause only principal 

tensile stresses, if exist, are computed from the following equations: 

<jr = [(<?! + a3) / 2] + [(ol - a3) / 2] cos26 (6.7) 

a t = a2 (6.8) 

a z = [(aj + a3) / 2] - [(a, - a3) / 2] cos26 (6.9) 

Trz= z[(al_ a3) / 2] s i n 2 0 (6-10) 

5. The nodal restraining forces needed to counteract the tensile stresses 

obtained from Equations 6.7 to 6.10 are found for each element as follows: 

F = - j B T a d V (6.11) 
V 
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where B is the strain-displacement matrix for each element and G is the tensile 

stress vector obtained from Equations 6.7 to 6.10. 

6. The nodal forces obtained in step 5 for each element are assembled to 

obtain a global load vector. 

7. The compressive stresses which were applied to the elements to cause only 

principal compressive stresses this time are also computed using Equations 6.7 to 

6.10. 

8. Elastic analysis is then carried out using the material properties obtained 

from the previous nonlinear analysis. The response variables are computed under 

the application of the global load vector assembled in step 6. 

9. The stresses calculated in step 8 are added to the compressive stresses 

found in step 7. The strains obtained as the response variables in step 8 are added 

to the strains computed at the end of the nonlinear iterations. 

10. If the stresses in step 9 are tensile and greater than the 0.1 psi (0.69 kPa) 

limiting tensile strength, steps 2 to 9 are repeated until convergence is reached. 

Using this tension modification procedure, most of the horizontal tension is 

generally reduced down to negligible amounts after about 2 to 3 iterations. For the 

tension modifications between any two load increments (before the full wheel load is 

applied), the maximum number of iterations has been specified to be 4 in the tension 

convergence criteria. Four iterations are often required due to the small, negligible 



amounts of tension remaining in a few elements. The number of tension iterations for the 

last load increment, however, has not been restricted and usually takes about 8 to 9 

iterations until no horizontal tensile stresses greater than the assigned tensile strength of 

the granular materials exist in the base layer. 

The modified stress transfer approach used in the GT-PAVE finite element 

program, therefore, enables the complete elimination of any horizontal tensile stresses in 

the granular layer. This procedure, which uses an incremental iterative procedure, can be 

applied to either the linear or nonlinear analyses of a layered pavement system. The 

method, however, is considered to be another "band-aid" type approach, such as the ones 

given by Zienkiewicz et al. (1968) and Raad and Figueroa (1980), for the approximate 

solution of the continuum modeling of particulate media. By eliminating completely the 

horizontal tensile stresses, no consideration is given to the ability of aggregate particles to 

resist an apparent tension due to particle interlock and frictional resistance. The new 

block movement approach is described as an alternative method of handling the "no 

tension" problem in Chapter 8. 

Limitations of the Computer Code 

One potential major limitation of the GT-PAVE finite element program is that a 

static analysis is employed to model resilient response behavior of flexible pavements 

due to the moving vehicle loads. Foinquinos et al. (1994) recently showed that the 
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dynamic amplification of the computed response variables could possibly occur in the 

case of a shallow subgrade depth to bedrock where resonance exists. Other limitations of 

the program include: (1) modeling of the viscoelastic AC layer using linear elastic 

material properties; this approach should be reasonably valid since the loading time is 

relatively short and the stress levels on the pavement are small, (2) consideration for only 

axisymmetric stress analysis in the program, (3) employing small-displacement theory in 

the analytical models, and finally (4) no consideration has yet been given to elastic 

dilation of granular particles at block interfaces used in the block model described in 

Chapter 8. 

Mamlouk and Davies (1984) developed a computer program for the analysis of 

flexible pavements considering the inertial effects due to dynamic loads. A damping ratio 

was assigned for each layer and the program was limited to the analysis of linear elastic 

materials. Mamlouk (1987) later indicated that the inertia effects are most pronounced 

when shallow bedrock or frozen subgrade is encountered and is more important for 

vibratory than for impulse loading. Monismith et al. (1988) also found that a complete 

dynamic analysis is not usually needed. The local dynamic response can thus be 

determined by an essentially static method using material properties compatible with the 

rate of loading for usually encountered pavement conditions. 

Recently, Foinquinos et al. (1994) analyzed the dynamic response of pavement 

systems to dynamic loads imposed by nondestructive pavement testing techniques such as 

the falling weight deflectometer test (FWD). Analytical studies of the dynamic response 
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of a flexible pavement system to an FWD load indicated that at low frequencies of less 

than 10 Hz., the response is frequency independent and the system behaves as if the load 

was applied statically. When the frequency increased, the displacements also increased 

until they reached a peak characteristic frequency usually referred to as the resonance 

frequency. With further increase in frequency, the displacements, however, rapidly 

declined as the inertial effects damped out the response. 

The static displacements decreased significantly at low frequencies, less than about 

10 Hz., as the depth to bedrock decreased. The dynamic displacements were influenced 

very little by depth to bedrock for depths in excess of 20 ft. (6.1 m). The ratio of dynamic 

(peak) displacements to the static displacements (the so-called dynamic amplification) 

was also found to be a function of the depth to bedrock, peaking at a depth of about 7 to 

10 ft. (2.1 to 3.1 m). The ratio was greater at radial distances away from the load 

application and was reduced down to less than 1 for a subgrade depth to bedrock of about 

50 ft. (15.2 m). Therefore, for subgrade depths to bedrock less than about 50 ft. (15.2 m), 

a dynamic analysis is more critical and special care should be taken when interpreting the 

results of any static pavement analysis such as the analyses performed using the nonlinear 

GT-PAVE program. 

Summary 

The organization and capabilities of the nonlinear finite element program GT-

PAVE was described in detail for the analysis of flexible pavements with granular bases. 
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The program is capable of modeling the granular base using both the continuum and 

block model approaches. The flow diagrams of the main program and several of the 

subroutines called from the general algorithm were presented. The essential features of 

the program were discussed such as the nonlinear analysis, residual compaction stresses, 

pre- and post-processing, incremental loading, and horizontal tension corrections in the 

unbound aggregate base. 

The nonlinear analysis procedure adapted in the program employs a direct secant 

stiffness approach using a damping factor to iteratively calculate for each load increment 

the new resilient moduli from the stress state. The "no tension" modification procedure, 

which is only applicable to the continuum approach, eliminates any inadmissable 

horizontal tension in the granular base by using the stress transfer approach modified for 

use in flexible pavements. The static analysis performed in the GT-PAVE program is 

usually recognized as adequate for the analysis of flexible pavements except in cases of 

shallow subgrade depths to bedrock of less than 50 ft. (15.2 m). 
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CHAPTER VII 

APPLICATIONS OF THE COMPUTER CODE 

Introduction 

The GT-PAVE finite element program is verified in this chapter using several 

example problems involving both the linear and nonlinear analyses. The results of these 

problems, which can usually be solved using closed form solutions, or results from 

laboratory measured data are compared with the GT-PAVE predictions. The effects of 

the compaction induced residual stresses on the horizontal tension zone in granular bases 

are also demonstrated in one example problem. The applications presented here model 

the AC layer as linearly elastic instead of viscoelastic since the loading time due to wheel 

load is relatively short and the stress levels on the pavement are rather small. 

The resilient response of five well instrumented full-scale test sections is calculated 

in this chapter using the GT-PAVE program to determine if the nonlinear material models 

are practical for routine use give good results. These test sections were a part of an 

earlier study to evaluate factors affecting crushed stone base performance (Barksdale and 

Todres, 1983). They consist of 3 conventional sections with granular bases and two 



inverted sections with cement stabilized subbases. An inverted section is constructed by 

placing in a flexible pavement an unbound aggregate base sandwiched between an upper 

asphalt concrete surfacing and a lower cement stabilized subbase. Eight measured 

response variables are predicted at different locations in the test sections. A sensitivity 

analysis of inverted sections is also performed to find optimum design geometries for the 

inverted sections. The potential performance of the selected inverted pavement sections 

are then compared with the conventional ones and practical conclusions are made. 

Verification of the Computer Code 

The linear elastic verification of the program mainly consists of solving 3 example 

problems using the GT-PAVE finite element program and then comparing the predictions 

with the closed form solutions. These example problems are: (1) a circular uniformly 

distributed load applied on a semi-infinite Boussinesq half-space, (2) a three layer system 

under the circular uniform load, and (3) the same three layer system used in the second 

problem but having cross-anisotropic properties in the granular base. In cases where the 

closed form solutions are not available, the predictions are then compared with the results 

obtained from the widely used, and commercially available, computer codes such as 

Kenlayer (Huang, 1993) and GT-STRUDL . For the nonlinear verification of the GT-

1 Computer Aided Structural Engineering Center, Atlanta, GA 30332-0355 USA. 
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PAVE program, the measured resilient load-deformation response from one of the triaxial 

repeated load tests is used to compare with the finite element model predictions for the 

nonlinear granular material behavior. Verifications of the gravity loading, initial 

compaction stresses, temperature loading, and displacement loading in the form of 

support settlements were performed by comparing the predicted results with the GT-

STRUDL results. These verifications are further checks of the GT-PAVE program but 

are not described here. 

Example 1: Stress Distribution Boussinesq Type Problem 

In this example a uniform circular load is applied over a semi-infinite elastic 

halfspace. The problem was originally solved by Boussinesq (1885) and the closed form 

solutions for the centerline stresses, strains, and surface deflection are given in Equations 

2.2 through 2.6. This example problem then verifies the program for an isotropic, linear 

elastic condition by comparing the GT-PAVE finite element predictions with the closed 

form solutions. 

A 154 element, 513 node axisymmetric finite element mesh was used to analyze 

stress distribution in the Boussinesq problem (see Figure 7.1). The load was applied as a 

uniform pressure of 15 psi (103.4 kPa) over a circular area of radius 5 in. (127 mm). To 

model the infinite depth and the horizontal direction of the Boussinesq problem where all 

stresses and displacements diminish, the finite element mesh was taken to be 

approximately 100 in. (2.54 m) deep (i.e., 20 times the load radius) and 50 in. (1.27 m) 
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wide (i.e., 10 radii). The isotropic material properties assigned to the layer consisted of 

an elastic modulus of 30,000 psi (206.85 MPa) and a Poisson's ratio of 0.3. 

<t r = 5 in. 
• * » 

jmq = 1 5 P s i 

Not To Scale 

100 in. ( = 20r) 

7 7 7 7—T~7—7 7—7—7 
Fixed Boundary 
| ^ 50in.(=10r) • ] 

Notes: 1. 1 in. = 25.4mm, 1 psi = 6.895 kPa. 
2. Nodes on vertical boundaries restrained horizontally. 

Figure 7.1. Finite Element Mesh for the Boussinesq Type Problem. 

The closed-form Boussinesq solution for radial and vertical stresses at the 

centerline of loading calculated using Equations 2.2 and 2.3, respectively, are plotted in 

Figure 7.2 together with the GT-PAVE FEM predictions. For a depth of 50 in. (1270 
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Figure 7.2. GT-PAVE FEM Stress Predictions for the Boussinesq Type Problem. 
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mm) shown, the finite element results are in good agreement with the stress distribution 

curves obtained from the equations. The maximum error between the predicted stresses 

and closed-form solutions is about 3.3% which was obtained for the low values of the 

radial stresses less than 1 psi (6.895 kPa). The predicted surface deflection of 0.00442 in. 

(0.112 mm) also compares very well with the theoretical value of 0.00455 in. (0.116 mm) 

resulting in a 2.9% error. 

Previous experience has shown that stresses based on quadrilateral elements are 

accurate provided that the length to width ratio does not exceed five to one (Cook et al., 

1989). In the present analysis, however, good predictions have been obtained although 

many elements used in the mesh did not satisfy the above stated aspect ratio criterion. 

The use of elongated elements, with an aspect ratio of up to 40 to 1 at the bottom of the 

mesh, has been found not to change the accuracy of the computed response values since 

the stresses, strains, and deflections and their gradients become small at a depth of about 

three to four times the diameter of the loading. 

Example 2: Isotropic Three Layer System 

The elastic multi-layered theory, discussed in Chapter 2, is applied in this example 

for the solution of an isotropic three-layer problem on a semi-infinite halfspace (see 

Figure 7.3). The three-layered system used consists of a 4 in. (102 mm) top layer (asphalt 

concrete, AC), an 11 in. (279 mm) middle layer (base), and a bottom layer (subgrade) of 

infinite in thickness. All layers are homogeneous, isotropic and linearly elastic with 
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stiffnesses of each layer decreasing with depth. The three-layered problem, therefore, 

represents a flexible pavement where the stresses caused by a 15 psi uniformly distributed 

circular wheel load are spread out with increasing depth. The three layer pavement 

having the isotropic material properties are shown in Figure 7.3. 

4 in. 

11 in. 

CO (Subgrade) 

/ A V A V A V A V / A V A V A V A V A V A S 

E3 = 7,500 psi 
v3 = 0.40 

E = Elasticity Modulus, and 1 in.= 25.4 mm, I psi = 6.895 kPa. 

Figure 7.3. Three-Layer Elastic Isotropic System Problem on Semi-Infinite Halfspace. 

The same 154 element, 513 node axisymmetric finite element mesh (see Figure 

7.1) used for the one layer Boussinesq problem is employed again to analyze the stress 

distribution in the isotropic three-layered problem. The load was applied as a uniform 

pressure of 15 psi (103.4 kPa) over a circular area of radius 5 in. (127 mm). The elastic 
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solution was then obtained using both the GT-PAVE program and the two commercially 

available computer codes. The Kenlayer (Huang, 1993) program gave closed form 

integral solutions. The GT-STRUDL program is a finite element program and was also 

employed to solve the three layer problem using the same mesh shown in Figure 7.1. 

Figures 7.4 and 7.5 show the vertical and radial stresses computed by the GT-

PAVE program and the other codes both at the centerline of loading and also at a 5 in. 

(127 mm) radial distance from the centerline. The results obtained for the same mesh 

from the two finite element programs, GT-PAVE and GT-STRUDL, were found to be 

essentially identical for up to six significant figures. The GT-STRUDL results are 

presented as a solid line in Figures 7.4 and 7.5 whereas the GT-PAVE predictions are 

shown as data points. Very good agreement was obtained between the GT-PAVE finite 

element program and the Kenlayer closed form solutions (see Figures 7.4 and 7.5) with 

typical errors in the order of 4% observed at the bottom of the top layer for the radial 

stresses. 

The predicted GT-PAVE surface deflection of 0.00284 in. (0.072 mm) at 

centerline, differed from the 0.00299 in. (0.076 mm) Kenlayer closed form value of about 

5.0%. The theoretical 0.00299 in. (0.076 mm) surface deflection was corrected for the 

100 in. (2.54 m) depth considered in the finite element analysis. According to Duncan et 

al. (1968), a reasonable comparison between the finite element model and the integral 

solution can be made for a three-layered system if the bottom boundary in the mesh is 

moved to a depth of about 50 radii. This implies that an extra 150 in. (3.81 m) depth 
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added to the finite element model would then result in similar surface deflections without 

having to do any corrections on the theoretical surface deflections. 

Example 3: Cross-Anisotropic Three Layer System 

A three-layered linear elastic system similar to the previous isotropic example 

problem is considered now with cross-anisotropy assumed in the middle (base) layer. 

Everything else is the same as shown in Figure 7.3. The cross-anisotropic material 

properties assigned to the middle layer are as follows: 

Elastic modulus in vertical direction: 45,000 psi (310.28 MPa), 

Elastic modulus in horizontal direction: 6,750 psi (46.54 MPa), 

Shear modulus in vertical direction: 15734 psi (108.49 MPa), 

Poisson's ratio in vertical direction: 0.45, 

Poisson's ratio in horizontal direction: 0.15. 

The same finite element mesh as shown in Figure 7.1 is again used in this example to 

achieve the following: (1) to compare both the isotropic and anisotropic solutions and 

also (2) to verify the GT-PAVE program by comparing the anisotropic predictions with 

the anisotropic GT-STRUDL results. No comparison for this example could be made 

with the closed form solutions since cross-anisotropic solutions were not available. 

Figure 7.6 compares at the centerline of loading the vertical and radial stresses 

computed by using the GT-PAVE and GT-STRUDL finite element programs. As in the 

isotropic case, the vertical and radial stress predictions obtained using both computer 
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programs exactly match up to five significant figures for the anisotropic representation of 

the middle (base) layer. Therefore, the cross-anisotropic GT-PAVE program formulation 

is verified as shown in Figure 7.6. The GT-STRUDL results are shown with solid lines 

and the GT-PAVE predictions are plotted as data points. 

The surface deflection at the centerline was found to be greater, 0.00329 in. (0.084 

mm), in the anisotropic problem than the 0.00284 in. (0.072 mm) value obtained in the 

isotropic analysis. This 15.8% increase in surface deflection is computed mainly due to 

larger vertical deformations within the anisotropic base. Moreover, by comparing 

Figures 7.4 and 7.6, the magnitude of radial stresses computed in the base are 

significantly reduced in the anisotropic representation compared to the isotropic one 

because of the assignment of the low modulus in the horizontal direction. 

Example 4: Modeling of Repeated Load Triaxial Tests 

The results of the repeated load triaxial tests performed on granular materials 

(Alba, 1993), given in Appendix A, are used in this example to verify the GT-PAVE 

finite element model predictions for nonlinear incremental loading. As discussed in more 

detail in Chapter 4, the resilient modulus tests used in this example were performed on 6 

in. (152 mm) diameter by 12 in. (305 mm) height cylindrical specimens. These 

specimens can be easily modeled using an axisymmetric finite element mesh (see Figure 

7.7). The loading in the laboratory consisted of repeatedly applying 3 increasing levels of 

deviator stress, Gd, on the triaxial samples at confining pressures G3 of 3, 5, 10, 15, and 
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20 psi (20.7, 34.5, 68.9, 103.4, and 137.9 kPa). The tests were analytically modeled by 

statically loading the triaxial specimens at each confining pressure. 

The measured resilient response was obtained from the tests after about 100 load 

repetitions of the 0.1 second duration haversine load pulse applied once in every second 

vertically on the specimen. The axial strain due to the applied deviator stress was 

measured from the LVDTs between clamps which were positioned at approximately one 

quarter distance from the top and bottom of the specimen height (see Figure 7.7). The 

load sequence was applied following the Strategic Highway Research Program P-46 

(SHRP P-46) procedure. The resilient modulus of the granular material is calculated by 

dividing the applied deviator stress by axial resilient strain measured between the clamps. 

Figure 7.7 shows the finite element idealization of the triaxial tests using a 24 

element 95 node axisymmetric mesh. The granular material selected for this example is 

B1BFS1 which is one of the Georgia Tech bases with the properties given in Appendix 

A. The material is assigned isotropic properties with initial guesses of 45,000 psi 

(310.275 MPa) for the resilient modulus and 0.45 for Poisson's ratio. The nonlinear 

analysis consists of first applying the gravity loading due to its own weight [dry unit 

weight = 142.5 pcf (22.4 kN/m )] and then applying the deviator stress in several 

increments at each confining pressure. For the material characterization, the Uzan (1985) 

model given in Equation 2.20 is used with the following parameters obtained from the 

multiple regression analysis of the measured response (Alba, 1993): K3 = 4231 psi (SI 

equivalent of 521.92 MPa), K4 = 0.645, and K5 = -0.056. 
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Figure 7.8 compares the GT-PAVE predictions obtained using the nonlinear 

incremental loading analysis with the measured experimental results. The load 

increments used in the analysis were 3 psi (20.69 kPa) for the confining pressure G3 = 3 

psi (20.69 kPa); 5 psi (34.48 kPa) for a 3 = 10, 15, and 20 psi (68.95, 103.43, and 137.90 

kPa); and 10 psi (68.95 kPa) for G3 = 30 psi (206.85 kPa). All measured data were 

predicted reasonably accurately by the stress-strain curves generated using the GT-PAVE 

program from a 3 = 3 psi (20.69 kPa) to 20 psi (137.90 kPa). The maximum error 

between the predicted and measured values was 4.1% computed at the confining pressure 

of 10 psi (68.9 kPa). The maximum 4.1% error includes any inaccuracy in fitting the 

Uzan model to the experimental results. Although no experimental data exist, the 

predictions for a 3 = 30 psi (206.85 kPa) are also plotted to present a realistic range for 

the resilient response of the granular material for confining pressures varying between 3 

to 30 psi (20.69 to 206.85 kPa). 

The good agreement between the measured data points and the predicted response 

curves, therefore, verifies the convergence of the nonlinear iterations at each load 

increment. The shapes of the curves shown in Figure 7.8 also justify the hardening type 

of the granular material resilient response behavior as characterized by the Uzan (1985) 

model. In addition, two potential sources of errors which could affect the results in the 

finite element model were not important in predicting vertical displacements. These are: 

(1) the shear loading on the top and bottom of the specimen due to the placement of a 
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rigid cap on the specimen, and (2) the assumption in developing Uzan model constants 

that the radial stress is equal to the tangential hoop stress (a r = a^ for the triaxial 

conditions which is only true at the centerline in the model. 

Effects of Compaction Induced Residual Stresses 

The influence of the compaction induced residual stresses on the horizontal tension 

zone in granular bases has been investigated by several researchers as discussed in 

Chapter 3 (Uzan, 1985; Selig, 1987). Selig (1987) proposed one possible explanation to 

the no tension problem stating that the existence of high horizontal compressive residual 

stresses in a base layer offsets the incremental tensile stresses predicted by the elastic 

solution. The magnitudes of these horizontal residual stresses were recently measured in 

the field to be as high as 3 psi (21 kPa) in the unbound aggregate due to the application of 

a 10 ton (8,896 kN) vibratory compactor (Barksdale and Alba, 1993). 

To demonstrate the offsetting effects of the compaction induced residual stresses 

on the horizontal tension in granular bases, an example problem involving a three layer 

conventional flexible pavement was analyzed using the GT-PAVE program. The 

pavement section had the same geometry of the three layer system shown in Figure 7.3. 

The section consisted of a 4 in. (102 mm) thick asphalt concrete surfacing (AC) and an 11 

in. (279 mm) thick unbound aggregate base underlain by the subgrade layer. A 3 psi 

(20.7 kPa) horizontal compressive residual stress was assumed to exist in the granular 
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base before the 100 psi (689 kPa) uniform tire pressure was applied on the surface over a 

circular area of diameter 10 in. (254 mm). 

The 154 element 513 node finite element mesh given in Figure 7.1 was used to 

model the conventional pavement section with the subgrade thickness taken as 

approximately 85 in. (2159 mm). The isotropic material properties assigned to the top 

AC layer, middle aggregate base, and the bottom subgrade are shown in Figure 7.3. The 

3 3 

unit weights used were 147 pcf (23.1 kN/mJ) for the AC, 137 pcf (21.5 kN/rn ) for base, 

and 105 pcf (16.5 kN/m ) for the subgrade. The anisotropic representation of the granular 

base was also achieved by using the same anisotropic properties as in the program 

verification Example No. 3 for the cross-anisotropic three layer system. 

For the nonlinear analysis, the model parameters used were selected such that the 

average stiffnesses obtained in base and subgrade layers after the nonlinear analysis were 

approximately equal to the linear elastic initial guesses. The Uzan (1985) MR model 

given in Equation 2.20 was used in base with the following parameters: K3 = 5367 psi 

(SI equivalent of 1091.6 MPa), K4 = 0.75, and K5 = -0.07. For the subgrade, the resilient 

response was modeled using the bilinear approximation given in Equation 2.31 with the 

parameters: K19 = 4900 psi (33.79 MPa), K20 = 2.5 psi (0.017 MPa), K21 = 8040, K22 = 

26.67. A tension modification factor n of 15% was also employed in the granular base 

for determining the horizontal moduli as percentage of the vertical moduli when 

horizontal tension was encountered in the base. 
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Figure 7.9 shows the radial stresses predicted on the centerline of loading from the 

linear isotropic, linear anisotropic, and nonlinear anisotropic analyses. For comparison 

purposes, radial stresses, in all cases, have been calculated both in the presence (dashed 

lines) and absence (solid lines) of the 3 psi (20.7 kPa) initial horizontal residual stress in 

the granular base. Neither in the subgrade, nor in the AC layer, the 3 psi (20.7 kPa) 

residual stress included in the analysis resulted in an apparent change in the predictions. 

In the granular base, however, predictions obtained in the presence of residual 

stress from all three analyses clearly indicate reductions in horizontal tension. The larger 

reductions of up to 3 psi (20.7 kPa) in radial stress were observed mainly in the 

anisotropic analyses (see Figure 7.9). The nonlinear anisotropic analysis with the applied 

3 psi (20.7 kPa) residual stress predicts a maximum tensile stress of 0.74 psi (5.1 kPa) in 

the base. The 3 psi residual stress thus almost eliminates the maximum 16 psi (110.3 

kPa) tension predicted by the linear isotropic analysis. Even though the stress predictions 

by both linear and nonlinear anisotropic analyses are reasonably close in magnitude (see 

Figure7.9), the main differences between the two analyses are generally found in the 

predicted strains. Nonlinear anisotropic analysis tends to predict more accurate vertical 

and horizontal strains in the granular layer as shown in the next section. 
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Full-Scale Pavement Resilient Response Predictions 

The GT-PAVE nonlinear finite element program is used in this section to calculate 

the resilient pavement response of five well instrumented full-scale test sections. These 

sections were a part of an earlier study at Georgia Tech to evaluate factors affecting 

crushed stone base performance (Barksdale and Todres, 1983). Mainly two types of 

flexible pavement sections are considered here for analysis. These are conventional 

sections with a granular base but no subbase and the inverted sections having an 

unstabilized crushed stone base sandwiched between a lower cement stabilized subbase 

and the upper asphalt concrete surfacing. A 140 element, 475 node axisymmetric mesh is 

used to analyze both the conventional and inverted sections as nonlinear elastic layered 

systems. 

Georgia Tech Full-Scale Pavement Test Study 

A total of twelve large scale pavement test sections were tested to evaluate 

pavement performance (Barksdale and Todres, 1983). Pavement testing was conducted 

in a facility consisting of a test pit 8 ft. (2.4 m) by 12 ft. (36.6 m) in plan and 5 ft. (1.5 m) 

deep. A heavy steel reaction frame was constructed over the test pit and an air over oil 

pneumatic loading system was attached to the load frame. Pavements tested in this 

facility consisted of two inverted sections, five conventional sections having crushed 

stone bases and five full depth asphalt concrete sections (see Table 7.1). The pavement 

test sections were fully instrumented with pressure cells and bison type strain coils. The 



Table 7.1. The Geometry and Performance Summary of Georgia Tech 
Pavement Test Sections (after Barksdale and Todres, 1983). 

Asphalt Crushed Repetitions 
Section Concrete Stone to Failure Comments 

No. Thickness 

(in.) 

Thickness 
(in.) 

Failure Mode 

CRUSHED STONE BASE 

1 3.5 12.0 3,000,000 Fatigue/ 
3,500,000 Rutting Tested to 2.4 million repetitions 

Failure Extrapolated 
2 3.5 8.0 1,000,000 Rutting 

FUI ,L DEPTH A LSPHALT 

3 9.0 None 10,000,000 Rutting 
(1 in.) 

Bad Asphalt: 
AC Content: 5.9% 

Flow: 15.4 (1/100 in.) 
4 6.5 None 10,000 Rutting 

(1 in.) 
Stability: 1870 1b. 
Dry Density: 145.1 pcf 

5 9.0 None 130,000 Rutting Rutting Primarily in AC 

6 6.5 None 440,000 Rutting Rutting Primarily in AC 

7 7.0 None 150,000 Rutting 
CRU SHED STO> IE BASE 

8 3.5 8.0 550,000 Rutting 

9 3.5 8.0 2,400,000 Fatigue Permanent Deformation: 0.28 in. 

10 3.5 8.0 2,900,000 Fatigue Permanent Deformation: 0.34 in. 
INV ERTED SEC :TIONS 

11 3.5 8.0 3,600,000 Fatigue/ 
Rutting 

6.0 in. Soil Cement Subbase 

12 3.5 8.0 4,400,000 Fatigue/ 

Rutting 
6.0 in. Cement Stabilized 

Subbase 

Note: lin. = 25.4 mm; 1 psi = 6.895 kPa; 1 lb. = 4.448 kN 
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instrumented sections were then tested to either a rutting or fatigue type failure under a 

repetitively applied, 6,500 lb. (28.9 kN) uniform circular load having a diameter of 9.1 in. 

(231 mm). 

The aggregate gradations and the material properties used in the full-scale test 

sections are summarized in Table 7.2. A Georgia DOT B-binder asphalt concrete was 

employed for the AC surfacing with an AC-20 viscosity grade asphalt cement used in the 

mix. The unstabilized aggregate base course consisted of crushed granitic gneiss 

prepared by blending in a small 0.125 yd3 (0.096 m3) Barber-Greene pugmill 20% by 

weight of No. 5 size aggregate, 25% of No. 57, and 55% of No. 810 stone sizes. A low to 

moderate strength micaceous nonplastic silty sand subgrade, classified as an AASHTO 

A-4 soil, was used beneath the test sections. 

Test Section Construction. The silty sand subgrade was placed in the pit in 2 in. 

(51 mm) lifts up to a total thickness of 50 in. (1270 mm) in the conventional sections and 

44 in. (1118 mm) in the inverted sections. Each lift was compacted using a Wacker or a 

Jay compactor to 98% of AASHTO T-99 (1990) standard proctor maximum dry density 

at a moisture content of 20.5%. A spring loaded static penetrometer was used to insure 

the uniformity of the subgrade during construction. The as constructed density was 

determined using a thin wall, drive tube sampler. 

The 6 in. (152 mm) thick cement stabilized subbase used only in the inverted 

sections was constructed on top of the subgrade followed by the placement of the crushed 



Table 7.2. Aggregate Gradations and Material Properties Used In Flexible Pavement Test Sections. 

SIEVES 
Cumulative % Passing By Weight Maximum 

Density 
(pcf) 

Opt. Water 
Content 

(%) 
SIEVES 1.5 in. 

(38 mm) 
lin. 

(25 mm) 
3/4 in. 

(19 mm) 
1/2 in. 

(13 mm) 
3/8 in. 

(10 mm) 
No. 4 

(4.75 mm) 
No. 10 

(2.00 mm) 
No.40 

(.425 mm) 
No. 60 

(0.25 mm) 
No. 200 

(.075 mm) 

Maximum 
Density 

(pcf) 

Opt. Water 
Content 

(%) 

AC Aggregate 
Gradation:(2) 100 100 100 86 75 51 36 18 14 7 147 _ 

Base Aggregate 
Gradations: 

No. 5 
No. 57 
No. 810 
Combined 

100 
100 
100 
100 

96 
98 
100 
99 

37 
82 
100 
83 

5 
43 
100 
67 

2 
20 
100 
61 

3 
77 
43 

56 
31 

27 
15 

19 
10 

8 
4 137(5) 5.7 

Subgrade 
Gradation: 

(3) 
100 100 100 100 100 100 99 85 70 39 105(4> 18.5 

CEMENT STABILIZED SUBBASE PROPERTIES : 
A. Soil - Cement Subbase: 5% by weight of Type I Portland cement added to the silty sand subgrade. 

(Section 11) Average 28-day unconfmed compressive strength = 214 psi. 
107(5) 18.0 

B. Aggregate - Cement Subbase: 4.5% by weight of Type I Portland cement added to the Combined base. 
(Section 12) Average 28-day unconfmed compressive strength = 1146 psi. 138(5) 6.0 

Notes: 1. 1 in. = 25.4 mm; 1 psi = 6.895 kPa; 1 lb = 4.448 kN; 1 pcf = 0.157 kN/mA3 
2. The B-binder AC had a 5.2% optimum asphalt content, 4 % voids in the total mix, 

Marshall mix stability of 2300 lb. (10.2 kN), and a flow value of 9.0/100.0 in. (2.3 mm). 
3. Maximum aggregate size = 1.5 in. (38 mm) 
4. Determined by AASHTO T-99 test method 
5. Determined by AASHTO T-180 test method 
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stone base. All base and subbase layers were placed in approximately 2 in. (51 mm) lifts. 

Compaction of the subbase and base was achieved using 5 to 7 passes of the Jay 12 

vibrating plate compactor. The unstabilized aggregate bases were compacted to 100% of 

the AASHTO T-180 (1990) modified proctor maximum dry density. Nuclear density 

measurements revealed that due to the presence of the underlying rigid cement stabilized 

subbase, the compaction density in the unstabilized aggregate base of the inverted 

sections was 105% of the T-180 maximum dry density. 

The cement stabilized layers used in the inverted sections were allowed to cure for 

28 days before loading the test sections. The B-binder asphalt concrete mix was placed 

over the unstabilized base. This mixture was used to give a strong asphalt concrete 

surface course so as to resist rutting in that layer under the heavy applied loading. 

Performance of the Test Sections. The full-scale laboratory tests conducted to 

failure permitted comparing the performance of the conventional sections with both the 

inverted sections and the full depth asphalt concrete sections (see Tables 7.1 and 7.3). A 

maximum rut depth of 0.5 in. (13 mm) was considered to constitute a rutting failure. A 

fatigue failure of the sections was also considered to occur when the surface cracks 

became connected together to form a grid type pattern usually over the loaded area. Only 

hairline cracks were allowed to develop. Before wider cracks formed, testing was 

terminated because of the large number of load repetitions required to reach this state of 

deterioration. 



Table 7.3. Detailed Summary of Resilient Test Section Response^) 

Horizontal Tensile 

Strain (micro in./in.) 

Vertical Stress 

(psi) 

Vertical Strain 

(micro in. /in.) 

Surface Deflection 

(in.) 

AC Base Base 
Top 

Subgrade AC 
Top 
Base 

Bottom 
Base 

Top 
Subgrade 

10 in. from 
Center line 

14.5 in. from 
Centerline 

CRUSHED STONE BASE 

1 

1 2 465 
674 

597 
754 _ 

3.4 

11000 21300 
- 1700 

13100 
1 0.03 

0.019 
0.015 

o.oi 1 
FULL DEPTH ASPHALT 

3 

1 4 Premature Failure - Excessive Asphalt Content 
Premature Failure - Excessive Asphalt Content 

5 
6 
7 

| 319 
460 
410 

- -

8.7 
12.6 
12.9 

850 

650 
- -

1380 
1500 
2200 

0.012 

' 0.02 
0.019 

0.007 
0.012 
0.013 

CRUSHED STONE BASE 

8 
9 

1 10 

300 
280 

1 400 

375 

1080 
1025 

62 
54 

11.9 
11.1 
6.8 

-

560 
560 
620 

110 
340 
400 

1850 
1750 
2500 

0.02 

0.022 
0.017 

0.013 
0.013 
0.01 

INVERTED SEC HON 

11 
1 12 

340 
260 

54 
22 _ 

3.3 | 
3.4 

- 730 
760 

370 
420 

390 
340 

0.007 
0.006 

O003 
0.003 1 

Note: 1. A "-" in a data field indicates data was not taken. 
1 in = 25.4 mm; 1 psi = 6.895 kPa; (Compression is positive) 

NJ 

o 

' - " • • 
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Overall, the two inverted sections performed the best of all the sections studied 

(see Table 7.1). Both inverted sections (Section 11 and 12) failed in combined rutting 

and fatigue with the strongest cement stabilized crushed stone subbase (Section 12) 

withstanding up to a maximum of 4.4 million load repetitions. The two inverted sections 

also exhibited lower vertical stresses on the subgrade and lower resilient surface 

displacements than the others (see Table 7.3). 

Table 7.3 presents a detailed summary of the observed resilient response of the 

pavement test sections as obtained at different locations in the sections. In addition to the 

critical response values such as the vertical stress on the subgrade and the horizontal 

tensile strain at the bottom of the AC, up to 7 more response variables (stresses, strains 

and displacements) were measured in the sections using the bison type strain coils and 

pressure cells. These results are used in this study to compare the predicted with the 

observed resilient response of the test sections using the GT-PAVE nonlinear finite 

element program. The accuracy of the overall modeling of resilient behavior of both the 

conventional and inverted sections is related to how well the measured response variables 

are predicted at the same time. 

Modeling of the Pavement Test Sections 

Figure 7.10 shows the typical cross sections used for the conventional (Sections 8, 

9, and 10) and inverted sections (Sections 11 and 12) along with the locations of the 

measured and predicted response variables. In both the conventional and the inverted 
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£ r = 4.55 in. 

CONVENTIONAL q = l 0 0 psi 

SECTIONS fTTTf 

L i i-g^. 

INVERTED 
SECTIONS 

3.5 in. 

Unstabilized 

Aggregate Base 

h //\V£\V/\V/\\ 

50.0 in. 

Cement 

Stabilized Subbase 

;R 

8.0 in. 

i 
'R 

//WAV/ \V/\V/ 
Silty Sand Subgrade ®2r £Z 

6.0 in. 

44.0 in. 

Note: 1 in. = 25.4 mm, 1 psi = 6.895 kPa. 

Figure 7.10. Typical Cross Sections of Pavement Test Sections. 
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sections, a 3.5 in. (89 mm) asphalt concrete (AC) binder was employed for the surfacing. 

The unstabilized aggregate base course consisted of crushed granitic gneiss 8 in. (203 

mm) in thickness. Section 11 and 12, the inverted sections, had an additional 6 in. (152 

mm) subbase consisting of a cement stabilized subgrade and a stronger cement treated 

aggregate base, respectively. The thickness of the micaceous silty sand subgrade was 44 

in. (1118 mm) in the inverted sections and 50 in. (1270 mm) in the conventional sections. 

A 6 in. (152 mm) thick concrete slab was located at the bottom of the subgrade. 

A 140 element, 475 node axisymmetric finite element mesh was used to analyze 

both the conventional and inverted sections as nonlinear elastic layered systems. The 

subgrade and the unstabilized aggregate base were treated as nonlinear elastic materials 

while the AC surfacing and cement stabilized subbase were modeled as linear elastic 

materials. In addition, the base was also given cross-anisotropic material properties. Use 

of an anisotropic characterization, compared to isotropic characterization, has been found 

to be necessary to better model the tension effect in the unstabilized granular bases 

(Barksdale et al., 1989). To model the test sections, the wheel load was applied as a 

uniform pressure of 100 psi (689 kPa) over a circular area of radius 4.55 in. (116 mm) 

(see Figure 7.10). A fixed boundary was assumed at the bottom of the subgrade where 

the concrete slab was placed. 

Table 7.4 summarizes the material properties used in the pavement test sections 

including initial guesses and the model parameters needed for the nonlinear analysis. The 

initial guesses consist of the vertical and horizontal values of resilient modulus and 



Table 7.4. Matenal Properties and Model Parameters Used In Modeling Pavement Test Section Response. 

Layer Type Thickness 
(in.) 

Vertical 
Modulus 

(psi) 

Vertical 
Poisson's 

Ratio 

Horizontal 
Modulus 

(psi) 

Horizontal 
Poisson's 

Ratio 

Shear 
Modulus 

(psi) 

Model Parameters (3/4) 
Density 

(pcf) 

Layer Type Thickness 
(in.) 

Vertical 
Modulus 

(psi) 

Vertical 
Poisson's 

Ratio 

Horizontal 
Modulus 

(psi) 

Horizontal 
Poisson's 

Ratio 

Shear 
Modulus 

(psi) 
K3/K19 

(psi) 
K4/K20 K5/K21 K22 Density 

(pcf) 
| Asphalt Concrete (*) 3.5 250,000 0.35 - - - - - - - 147 
| Crushed Stone Base: (3) 
Conventional Sections: Top 

Middle 
Bottom 

Inverted Sections: Top 
Middle 
Bottom 

2.6 
2.6 
2.8 

53,960 
38,000 
31,084 

0.43 
0.43 
0.45 

42,940 
3,234 
863 

0.15 
0.15 
0.10 

18,867 
13,287 
10,719 

4,867 
4,867 
4,867 

0.80 
0.80 
0.80 

-0.05 
-0.05 
-0.05 

- 137 
137 
137 

| Crushed Stone Base: (3) 
Conventional Sections: Top 

Middle 
Bottom 

Inverted Sections: Top 
Middle 
Bottom 

2.6 
2.6 
2.8 

53,960 
38,000 
31,084 

0.43 
0.43 
0.45 

42,940 
30,239 
24,736 

0.15 
0.15 
0.10 

18,867 
13,287 
10,719 

5,367 
5,367 
5,367 

0.61 
0.61 
0.61 

-0.07 
-0.07 
-0.07 

-

144 
144 
144 

Cement Stabilized Subbase*1) 
Soil-Cement (Sect. 11) 

Stone-Cement (Sect. 12) 
6.0 
6.0 

600,000 
1,500,000 

0.2 
0.2 

- - - - - - - 107 
138 

Silty Sand Subgrade:(4) 
Top 

Middle 
Bottom 

3.0 (2.02) 
27.0 (22.02) 

20.0 

3,000 
6,000 
15,000 

0.4 
0.4 
0.4 

-

-

-

5,900 
5,900 
5,900 

2.5 
2.5 
2.5 

11640 
11640 
11640 

26.67 
1 26.67 
1 26.67 

105 
105 
105 J 

Notes: 1. Isotropic linear elastic analysis 
2. Inverted sections only 
3. Cross-anisotropic nonlinear analysis using Uzan's model 
4. Isotropic nonlinear analysis using bilinear representation 

5. 1 in. = 25.4 mm; 1 psi = 6.895 kPa; 1 pcf = 0.157 kN/m? 
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Poisson's ratio, vertical shear modulus and material densities. Model parameters Kj are 

given for the Uzan model (1985) used in the granular base (see Equation 2.20) and for the 

bilinear approximation used in the subgrade (see Equation 2.31). The nonlinear model 

parameters used in the crushed stone base differed between the conventional and the 

inverted sections since a higher percentage compaction was achieved in the inverted 

sections due to the presence of the underlying stiff cement stabilized subbase. 

When modeling the pavement sections, both the nonlinear aggregate base and the 

subgrade were divided into sublayers, thus enabling a more realistic assignment of initial 

material properties (see Table 7.4). The unstabilized crushed stone bases were initially 

assigned vertical resilient moduli varying from 30 ksi (206.9 MPa) at the bottom to 60 ksi 

(413.7 MPa) at the top. The horizontal resilient moduli were initially assumed to be 80% 

of the vertical moduli at the top of the anisotropic base. In the conventional sections 

only, the horizontal moduli were initially 2% of the vertical moduli in the lower portion 

of the base to account for the horizontal tension. Similarly, an assumed Poisson's ratio of 

0.43 in the vertical direction was reduced to 0.15 in the horizontal direction based on 

previous studies (Barksdale et al., 1989). The subgrade was also initially assigned 

nonlinear isotropic material properties with a Poisson's ratio of 0.40 and the resilient 

moduli varying from 3 ksi (20.7 MPa) at the top to 15 ksi (103.4 MPa) at the bottom. 

The resilient modulus of the AC layer was taken based on previous studies 

(Barksdale et al., 1989) to be 250 ksi (1720 MPa) with a corresponding Poisson's ratio of 

0.35. Linear elastic moduli used to model the cement treated subbase were estimated 
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from both charts and empirical correlations obtained from several sources (Felt and 

Abrams, 1957; Jones, 1966; Williams, 1972; FHWA, 1979; and Hadley, 1991). Resilient 

moduli in these correlations were related to the unconfined compressive strength of 

laboratory specimens prepared from cement treated materials used in the Georgia Tech 

study (Barksdale and Todres, 1983). 

For the soil-cement subbase of Section 11, the estimated elastic moduli ranged 

from 507 to 1,300 ksi (3,500 to 8,900 MPa). Similarly, for the crushed stone cement 

subbase of Section 12, the estimated moduli ranged from 1,200 to 2,000 ksi (8,300 to 

14,800 MPa). After reviewing the variations in the moduli, a modulus of 600 ksi (4,140 

MPa) was assumed in the cement treated silty sand subbase of Section 11, and a modulus 

of 1,500 ksi (10,340 MPa) was used for the cement stabilized crushed stone subbase of 

Section 12. The Poisson's ratio was assumed to be 0.2 for both sections (FHWA, 1979). 

Test Section Resilient Response Predictions 

Table 7.5 compares the eight measured resilient response variables with the 

predicted ones. The average values of the measured resilient response of the conventional 

sections, Sections 8, 9, and 10, have been used in the comparisons. In general, finite 

element predictions are in reasonably good agreement with the observed behavior of both 

the conventional and inverted sections. The predicted values of surface deflections, 

vertical strain and stress on the subgrade, and radial strains at the bottom of base and AC 

are essentially the same as the measured ones in the conventional sections. In the 



TABLE 7.5. Comparison of Predicted and Measured Response Variables. 

RESPONSE 
SUBGRADE SUBBASE 

BOTTOM 
BASE 

TOP 
BASE 

BOTTOM 
AC 

SURFACE 
DEFLECTION 

RESPONSE 

°"z 

(psi) 

ez 

do-6) do-6) do-6) 

ER 

do-6) 

eZ 

do-6) do-6) Oo-6) do-6) 
8 (2) 

6C.L. 

(in.) 

. (3) 
Ol0» 

(in.) 

^ ( 3 ) 

(in.) 

1 MEASURED 
(Conventional4) 9.9 2000 - - -936 280 580 -330 - 0.028 0.017 0.013 

PREDICTED 
[(Conventional) 

9.5 2080 - - -985 478 626 -384 553 0.026 0.017 0.013 

| MEASURED 
1 (Inverted 11) 3.3 390 - - 54 370 730 -340 - 0.019 0.007 0.003 

PREDICTED 
| (Inverted 11) 

4.0 390 -79 45 51 317 1050 -348 536 0.016 0.009 0.006 

1 MEASURED 
1 (Inverted 12) 3.4 340 - - 22 420 760 -260 - 0.016 0.006 0.003 

1 PREDICTED 
(Inverted 12) 3.5 236 -46 25 35 362 1047 -341 532 0.015 0.008 0.006 

Notes: 1. A "-" in data field indicates not applicable or no data was taken 
2. Measured deflections at centerline 5C L are extrapolated 
3. Deflections measured at 10 in. and 14.5 in. radial distances away from centerline 
4. Measured values are averaged from response of Sections 8, 9, and 10 
5. lin. = 25.4 mm; 1 psi = 6.895 kPa; (Compression is positive) 
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inverted sections, predicted vertical and radial strains in different layers were in better 

agreement with observed response for Section 11 than for Section 12. The vertical stress 

on top of subgrade was, however, predicted better in Section 12 than in Section 11. The 

resilient surface deflections and vertical strains on top of the base were not predicted to a 

high degree of accuracy. 

The predictions summarized in Table 7.5 tend to verify the ability of nonlinear, 

anisotropic finite element models such as GT-PAVE, to reasonably accurately predict at 

the same time a large number of measured stress, strain, and deflection response 

variables. Although room for improvement still exists, such predictions are hard to 

achieve and indicate that the model used is reasonably valid. This, however, can not be 

said for models that are verified by predicting only one or perhaps two measured response 

variables. 

For the conventional three layer pavement, the variation of vertical resilient 

modulus within the nonlinear unstabilized aggregate base and the silty sand subgrade are 

shown in Figure 7.11. The values plotted are at the middle of elements both at the 

centerline of loading and at the top of the granular base layer. The variations with 

increasing depth in both layers, are nonlinear. The moduli decrease with depth in the 

base, as shown in Figure 7.11a, due to the decreasing bulk stress term in Equation 2.20. 

And as indicated in Figure 7.1 lc, the moduli increase with depth in the subgrade due to 

the decrease in deviatoric stress in Equation 2.31. Figure 7.1 lb also shows an expected 
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decrease in stiffness with radial distance due to the lower vertical confinement 

encountered radially away from the wheel load. 

A 15% tension modification factor n, which was empirically obtained in the 

nonlinear analysis by trial and error, was needed in the bottom portion of the base to 

obtain good radial strain prediction compared to measured values in the conventional 

sections. The 15% corresponds to the percentage of the vertical moduli assigned to the 

horizontal moduli where horizontal tension was observed in the base. Similarly, a 10 to 

20% reduction in vertical moduli were also reported by others assigned in horizontal 

direction in their analyses of cross-anisotropic bases (Chan et al., 1989 and Barksdale et 

al., 1989). In addition, the stress transfer method (Doddihal and Pandey, 1984) was also 

applied at the end of the nonlinear iterations to eliminate any horizontal tension in the 

unstabilized aggregate base. 

Figure 7.12 shows the vertical stress distribution on the centerline of loading 

predicted in the conventional sections and inverted Section 12. The results of the 

different analysis types used (Boussinesq halfspace approach, linear elastic layered with 

isotropic and anisotropic base, and the nonlinear anisotropic layered analysis) are 

presented for comparison. The linear elastic analyses were performed by using the initial 

guesses of material properties assigned in the nonlinear analysis. For both conventional 

and inverted sections, the good vertical stress predictions shown in Table 7.5 have been 

found to generally fall in between the linear elastic layered and Boussinesq halfspace 

solutions. This is indeed in accordance with the earlier experience of linear elastic 
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layered solution's usually underestimating the measured vertical stresses in the field. 

Moreover, the decrease of vertical stresses throughout the cement stabilized subbase in 

inverted Section 12 is greater for the nonlinear analysis than the other methods (see 

Figure 7.12b). 

Figure 7.13 shows for the inverted Section 12 contours of horizontal radial stresses 

plotted for the top portion of the finite element mesh. The contours in Figure 7.13 show 

that the upper portion of the cement treated subbase and all of the unstabilized crushed 

stone base near the load are in horizontal compression. The bottom half of the subbase is 

in horizontal tension. As a result of placing the cement stabilized layer beneath the 

unstabilized crushed stone base, primarily horizontal compressive stresses of magnitudes 

ranging from 0 to 16 psi (0 to 110 kPa) are developed in the base. The aggregate base 

performed very well with the high calculated values of vertical resilient moduli varying 

from 35 ksi (241 MPa) at the bottom to 80 ksi (552 MPa) at the top. Relatively high 

horizontal tensile stresses (up to 85 psi; 586 kPa on the centerline of loading) were 

predicted at the bottom of stabilized subbase in Sections 11 and 12. 

Practical Design Considerations of Inverted Sections 

A sensitivity analysis of inverted sections was performed using the GT-PAVE 

program for four different unstabilized aggregate base thicknesses varying from 3 to 16 

in. (76 to 406 mm) in thickness and three different cement treated subbase thicknesses 

varying from 4 to 10 in. (102 to 254 mm). The purpose of the sensitivity analysis was to 
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find optimum design geometries for the inverted sections as defined by horizontal tensile 

strain in the bottom of the AC, vertical stress on the subgrade, and the tensile stress in the 

cement stabilized subbase. Levels of subbase stabilization comparable to Section 11 and 

12 were used corresponding to resilient moduli of 600 ksi (4,140 MPa) and 1,500 ksi 

(10,340 MPa), respectively. An important factor in achieving good performance of an 

inverted section is to provide a stabilized subbase having sufficient strength to prevent 

fatigue and durability related failures. 

The sensitivity analysis (see Figure 7.14 ) indicates that increasing the thickness of 

the unstabilized aggregate base in the inverted sections causes an important increase in 

the horizontal tensile strains at the bottom of the AC for stabilized subbase thicknesses of 

4 in., 6 in., and 10 in. (102 mm, 152 mm and 254 mm). Resilient surface deflections also 

increase with increasing base thickness although these results are not presented. For a 

base thickness equal to or greater than about 6 in. (152 mm), only a very small reduction 

occurs in the vertical subgrade stress with increasing base thickness (see Figure 7.14). 

Therefore, inverted pavements having a 6 to 8 in. (152 mm to 203 mm) thick unstabilized 

crushed stone base and also a similar thickness of cement stabilized subbase appear to be 

a practical, economical design which minimizes tensile strain in the AC and vertical 

stress on the subgrade. Base or subbase thicknesses less than 6 in. (152 mm) are not 

considered to be practical to construct. This finding is in general agreement with the full-

scale field tests recently conducted by the North Carolina DOT. 
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Figure 7.15 shows the variation of horizontal radial tensile strain at the bottom of 

AC with increasing AC thicknesses for both inverted and conventional sections. The 

lower curve, which is for inverted Section 12 having a 6 in. (152 mm) thick base and 

subbase, shows significant reductions in tensile strain compared to the conventional 

sections. For both type sections, the horizontal radial tensile strain at the bottom of the 

AC decreases significantly with increasing AC thickness suggesting the potential for 

improved fatigue life of the AC. 

The variation of the horizontal radial tensile stress at the bottom of the stabilized 

subbase beneath the center of the load is shown in Figure 7.16 as a function of subbase 

thicknesses. In both the low and high moduli subbase inverted sections, an important 

decrease in tensile stress occurs with increasing subbase thickness. Fatigue life of the 

cement stabilized subbase can therefore be improved by increasing subbase thickness. 

Cost Comparison Analysis 

A 6 in. (152 mm) unbound aggregate base and a 6 to 8 in. (152 to 203 mm) thick 

cement stabilized subbase has been found in the sensitivity analysis to be a practical 

inverted section which minimizes tensile strain in AC and vertical stress on the subgrade. 

Using this finding, a cost analysis was undertaken comparing the potential performance 

of inverted and conventional sections having equal initial construction cost. Three 

inverted field sections were compared with 3 conventional unbound base sections of 

approximately the same cost. The inverted sections consist of a 6 in. (152 mm) 
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unstabilized aggregate base and a 6 in. (152 mm) cement stabilized silty sand subbase 

having the same properties as used in test Section 11 (see Table 7.4). Asphalt concrete 

(AC) thicknesses were 3.5 in. (89 mm), 6 in. (152 mm) and 12 in. (305 mm). 

The same AC thicknesses were used for the conventional sections with the 

thickness of the base being varied to give the same total cost as for the inverted sections. 

Sections having approximately the same total cost were determined using the following 

prices reported by the Georgia Department of Transportation: AC mix, $29.00/ton; 

unbound base, $5.00/ton; cement stabilized subgrade, $13.40/ton. The use of a cement 

stabilized natural subgrade for the subbase is about 23% cheaper than a cement stabilized 

aggregate subbase. To have similar total cost, 18.9 in. (480 mm) of unbound base in the 

conventional sections replaced 6 in. (152 mm) of unbound base and 6 in. (152 mm) of 

cement stabilized subgrade (see Figure 7.17). Using the GT-PAVE program, both the 

inverted and conventional sections were analyzed as actual field sections having a total 

depth of 227.6 in. (5780 mm) which corresponds to 50 radii of the wheel load (Duncan et 

al., 1968). 

Figure 7.18 shows the variation of horizontal tensile strain (8^ at the bottom of the 

AC and the vertical stress on top of subgrade with increasing AC thickness. Both the 

equal cost inverted and conventional section results are shown. In general, an increase in 

AC thickness causes a reduction in both the horizontal tensile strain in AC and the 

vertical stress on subgrade. Predicted vertical subgrade stresses are lower in inverted 

sections than in conventional sections. Similarly, the horizontal predicted tensile strains 
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are slightly lower in the inverted sections than in the conventional sections for AC 

thicknesses greater than 5.1 in. (130 mm). However, for AC thicknesses smaller than 5.1 

in. (130 mm), the horizontal tensile strain in the conventional section is less and becomes 

relatively small as AC thickness decreases below 3.5 in. (89 mm). This important finding 

helps to explain the excellent performance observed in conventional sections having thin 

AC thicknesses. This large reduction in strain is not observed in models that do not use a 

no tension, cross-anisotropic analysis. 
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Figure 7.17. Equal Cost Inverted and Conventional Field Section Constructions. 
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Fatigue Study. Full-scale test sections 9 through 12, including both the 

conventional and inverted sections, failed in fatigue or a combined fatigue-rutting failure 

(see Table 7.1). Assuming that each load application caused the same amount of damage, 

the following fatigue relationship was obtained from these data points for 26.1° C: 

N f= 0.00108 8t"
2695 (7.1) 

where Nf is the number of repetitions to cause fatigue failure, and 8t is the tensile strain 

in the bottom of AC layer. 

The number of load repetitions calculated using Equation 7.1 for the equal cost 

inverted and conventional sections 1, 2 and 3 are plotted in Figure 7.19. The predicted 

fatigue performance of the inverted sections are better than the conventional ones except 

for Section 1 having the very thin AC surfacing. The fatigue curves of both inverted and 

conventional sections, represented on the same line, fall above the mean relationship 

given by Rauhut and Kennedy (1982). This may be due to use of a high quality unbound 

aggregate base in both sections and the absence of environmental effects in the test 

sections. 
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Summary 

Reasonably good agreement with measured values was achieved of the resilient 

behavior of a number of response variables for five flexible pavements with unbound 

aggregate bases using the cross-anisotropic, nonlinear GT-PAVE program. Resilient 

modulus models which consider both confinement and shear stress effects in granular 

materials give good results and are also suitable for routine design use. Inverted flexible 

pavements with an unbound aggregate base sandwiched between lower cement stabilized 

subbase and an upper asphalt concrete surfacing have been observed to perform better 

than conventional ones. 

Both measurements and theory show that inverted sections have lower subgrade 

vertical stresses and lower tensile strains in AC surfacing. The lower vertical stresses on 

the subgrade are primarily caused by the "beam" action of the stabilized subbase which 

spreads the stress out. The significant reduction of vertical stress on the subgrade make 

the use of an inverted section appealing for construction over a weak subgrade. The high 

quality, cement stabilized crushed stone subbase inverted section had the lowest tensile 

strain in the bottom of the AC of all twelve test sections studied. The low tensile strain in 

the AC and low vertical subgrade stress help explain why this section performed best. 

Inverted sections also make optimum use of the excellent compressive 

characteristics of unstabilized aggregate by placing it above the cement stabilized layer 

where radial stresses are compressive. Better compaction of unstabilized materials placed 

over the stabilized layers is achieved. As a result of better confinement and a higher level 
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of compaction, permanent deformations in the base are small. Reflection cracking is 

significantly reduced or eliminated since the cement treated layer is placed deep in the 

section below the aggregate base. 

The accuracy of the overall modeling of resilient behavior of both the conventional 

and inverted sections is related to how well the measured response variables are predicted 

at the same time. Pavement response predictions for the two inverted sections made at 

six locations were in reasonably good agreement with observed values. This finding 

indicates the GT-PAVE nonlinear, cross-anisotropic program and the material 

characterization models used is quite encouraging. The theoretical sensitivity analysis 

performed using these models indicate an optimum and economical inverted pavement 

design placed on a weak to moderately strong subgrade would have a 6 in. (152 mm) 

thick unstabilized aggregate base and a 6 to 8 in. (152 mm to 203 mm) thick cement 

stabilized subbase. 

An inverted section and a conventional section having the same total cost give 

different performances as predicted by the GT-PAVE program. For equal AC thicknesses 

greater than about 5.1 in. (130 mm), the inverted sections should perform slightly better 

than the conventional sections. Fatigue life is about 30% greater and subgrade stress 10% 

less than the conventional sections of comparable cost. For AC thicknesses less than 5.1 

in. (130 mm), however, conventional sections show increasingly better performance due 

to an important decrease in tensile strain in the bottom of the AC. 
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CHAPTER VIII 

ANALYSIS OF GRANULAR BASES USING THE BLOCK MODEL 

Introduction 

Unlike a homogeneous continuum, granular bases are actually particulate media 

where individual particles are surrounded by other particles in contact with air voids in 

between. The granular medium also has the ability to increase or decrease its volume 

(dilate) under shear stresses. Therefore, when a granular base is strained, motion takes 

place that may involve one or all of the following modes: interparticle slippage, particle 

rotation, particle separation and even fracture at particle contacts. As a result of small 

rearrangements of particles, stresses are transmitted along different lines through the 

material. A new state of stress is then formed in the material where some contacts have 

opened up slightly, and some small gaps have closed to readjust for the equilibrium of the 

particles. In most micromechanics based continuum solutions discussed in Chapter 3, 

however, the constitutive relationships used for granular systems do not take into account 

the effects of separation and particle sliding at contacts. 

A new block model approach is introduced in this chapter for modeling granular 

bases in flexible pavements. In this approach, blocks of aggregates are employed in the 
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base to approximately model the load transfer mechanisms of the real particulate nature 

of granular materials. The organizations are summarized of the block model INTSTIF 

and INTSTRES subroutines. The iterative procedure for equilibrium employed in the 

model is described in detail, and the criteria used in the analysis are listed for 

determining the behavior modes of the interface elements. The verification of the 

interface elements are first achieved by comparing the normal and shear interface stresses 

with the closed-form solutions of a one-layer continuum problem. The block model 

behavior is then demonstrated in a simple three-layered sliding block example problem. 

Finally, the model is applied to the granular base layer of the Georgia Tech conventional 

pavement test sections, and the results obtained are used to explain the "no tension" 

problem of the elastic continuum solutions. 

Literature Review: Discrete Particle Approach 

Several investigators in the past have described the behavior of granular media as 

well as that of discontinuous rocks using a discrete particle approach involving the 

equilibrium of particles and their compliance to external forces. The objective was, in 

general, to model a particulate material or a jointed rock system using certain strain 

discontinuities and volume change properties. Computer programs have been developed 

in which the behavior of an assembly of particles are calculated by considering the 

behavior and interrelation of individual contacts. Round (1976) developed a program 
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where particle movements were obtained from the solution of equilibrium equations. 

Cundall and Strack (1979) developed a similar program which uses a "Distinct Element 

Method" that considers particle dynamics. The program is able to handle a two-

dimensional sample of disks or cylinders to calculate the forces and displacements at 

contacts. The average stresses and strains are then determined when the system 

stabilizes. The solution is time dependent and models the slow progressive movement of 

particles. 

Goodman and Shi (1981) introduced a "key block method" which identifies 

potentially loose rocks as kinematically possible mechanisms in exposed rock faces and 

underground excavations. In any jointed rock mass, key blocks can be removed or fall 

from rock faces without breaking intact rock. Other blocks are locked in place until these 

key blocks are removed. Goodman and Shi developed a powerful approach that used 

analytical geometry to identify the key blocks considering the static equilibrium of joints. 

Later, in 1985, Goodman and Shi proposed the block theory based on geometric 

information from structural geology and equilibrium equations using simple statics. By 

means of block theory, the system of joints and other rock discontinuities are analyzed to 

find the critical blocks of the rock mass when excavated along defined surfaces. Using a 

three-dimensional analysis, the key block types are determined, and the theory then 

provides a description of the locations around the excavation where the key block is a 

potential hazard. 
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Ghaboussi (1988) proposed a fully deformable discrete element analysis using a 

finite element approach for the deformation of individual blocks used in rock mechanics. 

The method of analysis, similar to the block model proposed in this chapter, considers 

blocks as single quadrilateral elements. A constitutive model is used for computing the 

contact forces. The importance of block deformations in the analysis is emphasized by 

comparing the two classes of problems involving both deformable and the rigid blocks. 

Goodman and Shi (1989) formulated a generalized two-dimensional discontinuous 

deformation analysis for numerical modeling of rock block systems. The analysis 

computed stress, strain, sliding and opening of the rock blocks; considered rigid body 

movement and deformation to occur simultaneously. Input data consist of block 

geometry, loading forces, the deformability constants E and v, and the restraint or 

boundary conditions of the block system. Output data give the movements, deformations, 

stresses and strains of each block, and the sliding and detachment or rejoining of blocks. 

The forces acting on each block, from external loading or contact with other blocks, 

satisfy the equilibrium equations. Equilibrium is also achieved between external forces 

and block stresses. 

Wang and Garga (1991) proposed a block-spring model for analyzing 

discontinuous heavily jointed rocks. The jointed rock mass is simulated by an 

assemblage of rigid blocks interacting through particle contacts. Based on the 

equilibrium of all the blocks, the model evaluates the states of stress and deformation of 

the rock masses by solving a set of stiffness equations. The block-spring model was also 
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developed to simulate large scale sliding of the blocks and to predict unstable blocks. 

The model was used to analyze stability of the surrounding rock masses of either open 

pits or underground excavations in jointed rocks. 

Very recently, Ullidtz (1995) performed calculations using the Distinct Element 

Method for a two-dimensional particulate material. A box containing about 3010 disks 

was loaded by a small plate at the surface, and the displacements and contact forces 

between the particles were calculated using the method for small increments of time. 

Normal stresses and strains were determined at different distances and depths. These 

results were compared to stresses and strains predicted using a linear elastic continuum 

model and a probabilistic stress distribution model. Even though the vertical stresses 

calculated by these two methods agreed reasonably well with the Distinct Element 

solutions, predicted horizontal stresses and strains were not in good agreement. 

The distinct element approach solves for the assembly deformation based on 

governing equations for each particle interacting with its surrounding particles. The 

approach, however, can be cumbersome for systems composed of a large number of 

different size particles. For example, considering the work of Ullidtz (1995), 

approximately three thousand particles were used to model a one-layer particulate 

medium to compare with the Boussinesq solution. The simple problem modeled did not 

deal with real pavements as layered systems or even with real irregular shaped and sized 

pavement materials (friction and interlocking of particles). This approach still needs to 

be researched for a long time before any practical usage can be achieved in design. 
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Load Transfer in Granular Materials 

The mechanism of load transfer in granular materials was first experimentally 

studied by Dantu (1957) with the help of photoelastic models. From the experiments 

performed, it was concluded that the stresses in granular materials were not uniformly 

distributed but were concentrated along load carrying particle chains. Later Oda (1974) 

described other experiments in which photoelastic rods were loaded biaxially. Forces 

across individual particle contacts were monitored by counting the resulting interference 

fringes. 

Based on experimental studies, the stresses in particulate media are not transferred 

in a uniform manner but are concentrated along continuous columns of particles. The 

particles in between the columns only provide lateral support but do not carry much load. 

At a critical load, a column will fail and the internal structure will be rearranged. 

Formation of a new column takes place if particles in that region are favorably orientated. 

The deformation of a particulate mass under increasing load is then mostly the continual 

collapse and generation of adjacent chains of load-carrying particles. And the 

predominant orientation of particle contacts are in the direction of the major principal 

stress. 

Similar results on the load transfer and deformation characteristics of granular 

materials were also obtained by Dobry et al. (1989). Using the discrete element approach 
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(Cundall and Strack, 1979), Dobry et al. modeled granular soil as random arrays of 531 

elastic, rough spheres of two different sizes. Numerical simulations of these arrays under 

monotonic and cyclic loading were compared with typical experimental results from 

compression triaxial tests on a medium dense uniform quartz sand. The contact forces 

between spheres were computed using the Hertz-Mindlin force-displacement law (Seridi 

and Dobry, 1984). Figures 8.1a and 8.1b show the contact forces under anisotropic 

deviator loading, with and without spheres respectively, corresponding to the shearing 

part of the triaxial tests. A wider rectangle represents greater force at contact points. 

Contact forces smaller than 25% of the maximum contact force in the assembly are not 

included in the figures. The triaxial deviator stress is clearly transmitted by a limited 

number of "stiff chains" or irregular columns of grains aligned in generally the vertical 

direction. 

According to the experimental and numerical findings, the deformation pattern of 

the base is directly related to load transfer by shear in the columns of particles (see 

Figure 8.2). The orientation of the columns are primarily in the direction of the principal 

stresses and are also affected by the assembly of the grains and their shape. In Figure 8.3, 

these load-bearing columns are shown to be originating from the applied load on the 

centerline of the pavement. Each column of grains is supported by the adjacent 

surrounding particles. The fixed support representation at the bottom of each column 

corresponds to shear and normal forces at the interface of base with the underlying 

subgrade layer. 
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Figure 8.1. Contact Forces for Two-Dimensional Numerical Simulation 
Anisotropic Loading (After Dobry et al., 1989). 
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Figure 8.2. Deformation of The Base Layer. 

Figure 8.3. Load Transfer In the Base Layer. 
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A model of the base as a set of coupled springs was proposed by Galjaard and 

Allaart (1989) and Allaart (1992). This model considers the shear load transfer between 

the aggregates. In this model, vertical springs support the asphalt concrete (AC) 

surfacing while the coupling between them permit the shear load from vertical to 

horizontal directions in the base (see Figure 8.4). The existence of any horizontal tension 

in the base can then be realistically resisted by the shear load. 

Subgrade 

Figure 8.4. Base Layer As A Set of Coupled Springs (After Allaart, 1992). 

Block Model 

A new method of modeling particulate media is developed as a part of this thesis. 

The new model incorporates both the classical continuum constitutive relations and at the 



239 

same time handles the particulate material characteristics such as translation, sliding, and 

even separation. This technique is called the "Block Model". In this approach, a granular 

base is modeled by discrete blocks with each block consisting of an assembly of granular 

particles that interact with each other through normal and shear springs (see Figure 8.5). 

Each block is considered to be a part of the continuum. When the block size becomes as 

small as the size of an aggregate, micromechanical particle interactions are achieved. 

Conventional interface elements are used between the blocks of aggregates 

(Goodman et al., 1968; Clough and Duncan, 1969; Desai et al., 1984). Normal and shear 

springs placed between neighboring blocks provide for different behavior and relative 

movements depending upon the spring stiffnesses. When subjected to compressive forces 

at block interfaces, the normal interface springs are assigned high normal stiffnesses to 

maintain continuity and prevent overlapping of the two blocks. When a block is 

subjected to tension, the normal interface spring stiffnesses are set to zero to enable 

separation of the two blocks. A slip condition between any two blocks is reached when 

the applied shear force on the interface exceeds the shear strength of the granular material 

as defined by the Mohr-Coulomb failure envelope: 

Tmax = c + °n tan(l> (3.12) 
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where Tmax is the shear stress at failure and, a n is the compressive normal stress acting 

on the interface; and c and (|) are the cohesion (usually negligible for unbound aggregates) 

and friction angle of the granular material, respectively. 

The model can be easily incorporated into the finite element method. In modeling 

the granular base, each aggregate block which is represented by a continuum element is 

surrounded by interface elements. The interface elements used are of negligible 

thickness. The use of no thickness interface elements between the continuum blocks of 

aggregates therefore helps to macroscopically model the behavior of the particulate 

medium. 

The deformation pattern under the applied wheel load is directly related to load 

transfer between the blocks through compression and shear forces. When horizontal 

tension is encountered in unstabilized aggregate bases and subbases, the block 

representation models the particulate media as follows (see Figure 8.5): (1) the vertical 

interfaces separate since interface elements are not assigned stiffness in tension, and also 

(2) slip can occur in the horizontal interface elements when the maximum shear stress at 

failure (Tmax) is exceeded by the calculated interface shear stress due to the external 

loading. 

The main purpose of employing the block model in unbound aggregate bases is to 

approximately model the real particulate nature of these layers. This can best be achieved 

when response to a surface loading is calculated at the interfaces which allows 
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determination of the interaction between aggregate blocks. Realistic interface properties, 

preferably obtained from direct shear tests on each material, are used in the analysis. 

Granular bases used in flexible pavements do not, in general, fail even though high 

horizontal tensile stresses are predicted by elastic continuum solutions. However, the 

interface elements, when assigned zero normal stiffness in tension and residual shear 

stiffness in slip, can cause the base layer to totally collapse under the wheel load. The 

interface elements, when in the slip and separation modes, must have balancing forces 

applied to them using an iterative procedure to maintain overall equilibrium. The 

proposed block analysis, therefore, calculates iteratively the final displacement and stress 

states which consider the limited amount of horizontal tension on the block taken by the 

shear resistance at the horizontal interfaces. 

Using the block model approach, the so-called "no tension" condition of granular 

bases related to elastic continuum assumptions is investigated. The blocks of aggregates 

are best idealized when the block size approaches to the aggregate size used in the field. 

Whether or not the base is capable of taking apparent tension in the field depends then on 

the ability of granular particles taking shear stresses in the horizontal direction under 

normal confinement. Since pavements do not actually fail under the predicted tensile 

stresses, any explanation attempted will also have to consider the effects of residual 

compaction stresses and the cross-anisotropic material behavior. These important aspects 

of granular base behavior are discussed subsequently in more detail. 
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Organization of Interface Elements In the Computer Code 

The GT-PAVE nonlinear finite element program includes as an option the block 

model analysis of unbound granular layers using six-node interface elements. When this 

option is selected, the block model is employed only in the unstabilized base and subbase. 

Asphalt concrete surfacing (AC) overlies the base and the subgrade is below it. To 

generate the rectangular finite element mesh, proper numbering of the elements and nodes 

are required in the granular layers with interface elements. Figure 8.6 shows the block 

model representation in a small, three layered rectangular axisymmetric finite element 

mesh. The mesh consists of top and bottom continuum layers, and a middle granular 

layer. The example mesh, which is used later in an example problem, permits the use of 

interface elements between the continuum elements in the granular layer. The node 

numbering starts first from the bottom left corner and proceeds horizontally to the right 

and then increases in the vertical direction. The last node and element numbers in the 

mesh are always assigned at the top right corner of the mesh. 

The formulations given in Chapter 5 for the element stiffnesses of the 6-node 

interface elements are implemented in INTSTIF subroutine. Figure 8.7 shows the flow 

diagram in which the mathematical procedure is summarized. The interface element 

stiffness matrix is calculated in a closed form and then stored in the global stiffness 

matrix of the system with subroutine ADSTIF. Transformation of the local interface 

element stiffness into the global coordinate system is achieved by the following matrix 

multiplications: 
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Figure 8.7. Flow Diagram of INTSTIF Element Stiffness Subroutine. 



Sj = RotT*Sie*Rot (8.1) 

where Sje = interface element stiffness matrix in local coordinates, 

Sj = interface element stiffness matrix for the global system, and 

Rot = rotation transformation matrix. 

The rotation matrix Rot performs coordinate transformation using the inclination 

angle a of the interface element. The inclination angle a , which is shown in Figure 5.5, 

indicates the orientation of the interface element measured counter-clockwise from the 

horizontal. The interface elements used in the block model are either assigned a = 0 for 

the horizontal, or a = 90 degrees for the vertical directions in the granular layer. The 

12x12 rotation matrix Rot is then formed by placing the following 2x2 Rotd matrix in the 

diagonal, 

Rotd = cosa sina 

- s ina cosa 
(8.2) 

where a is the inclination angle of the interface. 
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Interface element stresses are calculated in INTSTRES subroutine and the no 

tension analysis using interface elements are performed after each linear or nonlinear 

elastic analysis is completed. INTSTRES calls for the stiffness matrix to compute 

interface stresses in the granular base from average relative displacements between the 

nodes of two adjacent continuum elements. The flowchart of computations performed in 

the INTSTRES subroutine is shown in Figure 8.8. 

For each interface element, normal (Gn) and shear (Ts) interface stresses are 

calculated in the normal and tangential directions to the interface, respectively. The 

maximum shear stress at failure (Tmax) is obtained from the Mohr-Coulomb envelope 

(Equation 5.24) using measured material properties c and (|), and the computed normal 

stress Gn. The interface behavior mode is then determined through a series of 

computations as indicated in the elliptical block in the flow diagram of Figure 8.8 and is 

described in detail in the next section. 

The three possible behavior modes that an interface can have are: no slip (0), slip 

(1), and separation (2). Interface elements in separation are assigned zero shear and 

normal subgrade reaction type moduli (i.e., ks = kn = 0) while the ones in the slip mode 

are given the residual value of shear stiffnesses. In both cases, required balancing forces 

on the blocks are applied in the next iteration. The analysis and special computations 

necessary for determining the interface behavior is described next and the iterative 

equilibrium procedure is summarized. 
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Figure 8.8. Flow Diagram of INTSTRES Interface Element Stress Subroutine. 



Interface Behavior and Iterative Procedure For Equilibrium 

The six node interface elements surrounding the continuum elements in a granular 

base deform quadratically due to load application in a similar manner as the eight node 

elements. Figure 8.9 illustrates both the undeformed and a deformed shape of an initially 

horizontal interface element. An average chord drawn at the interface determines 

direction of the contact plane. As indicated in Figure 8.9, the originally horizontal 

interface element deforms giving inclination a with the horizontal. In a typical flexible 

pavement problem, this angle, however, is very small and therefore neglected in the 

analysis since GT-PAVE program considers only small-displacements. The program 

does not update the coordinates of the nodes through iterations for different geometries 

since small-displacements are assumed. 

Figure 8.9 also shows, for the originally horizontal interface element, the initial 

and final (deformed) positions of an interface element center point defined by the 

following average coordinates: 

rc = (rx + r2 + r3 + r4 + r5 + r6) / 6 
(o.3J 

zc = (zj + z2 + z3 + z4 + z5 + z6) / 6 

where rc and zc = r and z coordinates of the interface element center point, 
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Figure 8.9. Interface Behavior with Relative Displacements and Stresses. 
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I*! to r6 = r coordinates of the six nodes of the interface element, and 

Zj to z6 = z coordinates of the six nodes of the interface element. 

Starting from an initially undeformed displacement state, the average relative 

displacements at the centerpoint All are obtained between the top and bottom nodes of 

the interface element as follows: 

Aur = (u2 + u4 + u 6 - u 1 - u 3 - u 5 ) / 3 

Auz = ( w 2 + w 4 + w 6 - Wj - w 3 - w 5 ) / 3 

where Uj to u6 = nodal displacements in r direction and 

Wj to w6 = nodal displacements in z direction. 

Consider now the horizontal interface elements located at the centerline of the 

axisymmetric mesh. The average vertical relative displacement for these elements is 

approximated by the centroid value (see Figure 8.9): 

Auz = ( w 4 - w 3 ) (8.5) 

The normal and tangential average relative displacements, Aun and Aus, are 

computed in the direction of the interface using the average relative displacements in r 

and z directions and the inclination angle a as follows: 



Aun = Au7 cosa - Aur sin a 
n z r (8.6) 

Aus = Auz sin a + Aur cosa 

The interface normal and shear stresses, a n and Ts, are then calculated at the interface 

centerpoint by using the following equations: 

°n = K Aun 
(8.7) 

^s = k s A u s 

where kn and ks are the normal and shear moduli of subgrade reaction (F/L3), 

respectively. The centerpoint stresses are used to determine the behavior mode of the 

element. Additionally, the stresses calculated at the nodes of the interface elements are 

generally assigned as the interface final stress state. 

Figure 8.10 summarizes the algorithm used for interface behavior computations in 

the INTSTRES subroutine. The algorithm consists of first selecting the behavior mode of 

the interface element, and then performing balancing force computations related to the 

behavior mode. Interface shear and normal stresses are used to define the mode of 

behavior of an element. The slip and separation modes, when encountered in the 
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Set Imode = 0 
(No Slip) 

Set Imode = 2 
(Separation) 

Figure 8.10. Algorithm for the Selection of Interface Behavior Mode and 
Computation of Balancing Forces. 
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interfaces, require special computations to obtain the unbalanced forces that must be 

applied to the system to maintain the overall equilibrium. 

The algorithm begins by setting the direction of the maximum shear stress at 

failure (Tmax) in the same direction with the calculated interface shear stress Ts in case of 

a possible slip behavior. Next, internal spring forces at the interface are computed using 

the interface element stiffness matrix Sj and the calculated nodal displacements u. The 

forces are given by the following matrix equation: 

Pin, = Si U (8.8) 

where P j n t = internal spring forces at the interface. 

When the calculated interface normal stress Gn is tensile, tension is said to exist at 

the interface. Separation between the elements is then likely to occur. To maintain 

overall equilibrium, forces equal in magnitude but in the opposite direction are applied in 

the next iteration. These forces are the balancing forces computed in the internal springs 

(-Pint)- Both the normal and shear interface stiffnesses, kn and ks, are set to zero in the 

interface. These zero stiffnesses are also used in the next iteration in the formulation of 

the interface element stiffness matrix. 

If tension does not exist in the interface element, the slip condition is checked next. 

Slip of an interface element means that the maximum allowable shear force due to one 
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block pushing against another has been exceeded by the applied force (i.e., by the 

calculated spring shear forces of the interface). The algorithm summarized in Figure 8.10 

checks slip by comparing the magnitudes of the computed shear stress Ts with the shear 

strength of the interface Tmax. In case of slip, special computations are necessary. 

The limiting slip force is defined as the maximum allowable shear force that can 

develop in the shear spring corresponding to the maximum shear stress Tmax available in 

the interface. Consider the general case of an interface element having an inclination 

angle a with the horizontal. The nodal force components due to the maximum shear 

stress are given for the 12 degrees of freedom of the interface element (see Figure 5.4b) in 

the r, z coordinate axes as follows: 

max 

max 

- T max 

- T 
max 

PsHp = < 

wmax 

T 

''max 

''max 

~^max 
T 

''max 

^max - T 
max 

— T vmax 

ALj cosa 1 

ALj sin a 

AL, cosa 

,AL, sina 

AL3 cosa 

AL3 sina 

AL3 cosa 

AL3 sina 

AL5 cosa 

AL5 sina 

AL5 cosa 

AL5 sina 

(8.9) 

12x1 
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where Tmax = maximum shear stress, a = the angle of inclination, and AL1? AL3, and 

AL5 are the axisymmetric load distribution factors derived in Chapter 5 and given by 

Equation 5.30. 

The correction forces that must be applied to the system for the slip condition are 

then the unbalanced slip forces which are not taken by the maximum shear stress at slip. 

These unbalanced forces are given by 

P = P — P = P 
x unbal * spring x slip x slip ^^max 

(8.10) 

where ^unbal = unbalanced slip forces, 

^spring = forces created at the springs due to the calculated Ts 

= (Ts' Tmax) Pslip' an(^ 

Psi ip = slip forces given in Equation 8.9. 

To maintain the general equilibrium of the system, the elements in the slip mode 

are acted upon by the balancing forces. The shear stiffnesses ks of the elements in slip 

mode are assigned small residual values and iterations are performed with the following 

balancing forces P b a l applied to the system: 
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P = - P — P 
x bal *• int x slip ^^max 

(8.11) 

where Pj n t = internal spring forces and the other terms are as defined above. The system 

becomes in equilibrium when no element exists in slip mode (but elements can be on the 

verge of slip). An unstable system may be encountered, when the interface elements are 

not able to take the total unbalanced shear force. This condition is usually followed by 

the separation of the interface element in the next iterations, sometimes resulting in 

dislocation of the neighboring continuum elements. 

The Block Model Iterative Equilibrium Procedure: 

The block model analysis using interface elements mainly involves: (1) the 

elimination of tension in the vertical interface elements and (2) balancing the slip 

condition which occurs when the computed interface shear stress exceeds the maximum 

shear stress at failure in the horizontal interfaces. The amount of apparent tension that 

can be taken in a granular layer depends on the material properties of the aggregates 

(especially the friction angle (|)) and the shear stiffness ks of the aggregates. These 

properties should preferably be obtained from direct shear testing of the material. The 

procedure outlined below is performed after the end of each linear or nonlinear elastic 

analysis until equilibrium of the system is achieved: 
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1. The iteration counter INTFLAG and the other counters showing the 

number of interface elements undergoing tension (ITEN) or slip (ISHEAR) failure 

are set to zero for the first iteration. 

2. No slip is assumed in the interface (IMODE = 0). The average relative 

normal and shear displacements, Aun and Aus, are calculated at the centerpoint of 

each interface element. 

3. The interface normal and shear stresses, Gn and Ts, are calculated using 

Aun and Aus, and interface normal and shear stiffnesses, kn and ks. 

4. The maximum shear stress at failure, Tmax, is computed using the Mohr-

Coulomb law: Tmax = c + a n tan (|). The direction of Tmax is set in the direction of 

the calculated shear stress Ts. 

5. The interface behavior mode is determined. First, the interface is checked 

for tension and separation. If <3n is tensile, IMODE is set to 2 and both the normal 

and shear stiffnesses at the interface are set to zero (kn = ks = 0). The balancing 

forces Pbaj are calculated from internal spring forces P i n t . 

6. If Gn is not tensile, the interface is checked for slip. In case of slip, the 

magnitude of the maximum shear stress is exceeded by the interface shear stress 

(i.e., |TS| > | Tmax |). IMODE is then set to 1 and the shear stiffness at the interface 
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ks is set to a small residual value (typically 1 % of the original). The balancing 

force vector P b a l is computed from Equation 8.11. 

7. Steps 2 to 6 are repeated for each interface element. 

8. Print the total number of interface elements in tension (ITEN) and in slip 

(ISHEAR) failure. If both ITEN and ISHEAR are not equal to 0, balancing forces 

are added to the current external load to obtain the total global loading (Ptotai = 

^external+ ^bai) which is applied to the system in the next iteration. 

9. When both ITEN and ISHEAR are equal to 0, overall equilibrium exists 

and the no tension iterations have converged to the correct condition. The new 

stress state in the granular layer is obtained from the interface stresses which are 

obtained at the nodes. An unstable system, if encountered, results in an increase or 

fluctuation of the number of elements undergoing a tension or slip failure. 

Verification of Interface Elements 

Example 1: Boussinesq Type Problem 

The accuracy of the interface elements is verified in this section by comparing the 

response predicted at the interfaces with the closed form solutions of an elastic halfspace 

Boussinesq type problem. A 100 psi (689 kPa) uniformly distributed circular load is 
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applied over a diameter of 9.1 in. (231 mm). Figure 8.11 shows the finite element mesh 

used to approximate the semi-infmite halfspace. The geometry and loading conditions of 

the mesh are similar to the one used in Chapter 7 for modeling the Georgia Tech 

pavement test sections. In addition to the 140 continuum elements, this new mesh 

contains 721 nodes and 98 interface elements located in a middle 8 in. (203 mm) zone 

(see Figure 8.11). Isotropic material properties consisting of a 250,000 psi (1723.8 MPa) 

modulus of elasticity and a Poisson's ratio of 0.35 are assigned for this example to the 

elastic Boussinesq halfspace. 

The spring coefficients Ks and Kn of the interface elements (defined by Equation 

5.35 in Chapter 5) are made as large as practical to give negligible fictitious deformation 

in the springs. Present and past computer analyses using interface elements have 

indicated that the following values for the normal and shear subgrade reaction type 

moduli give good accuracy when the variables are given double precision (Zeevaert, 

1980): kn = 9.0* 106pci (2,442.6 GN/m3) and ks = 4.0*106 pci (1,085.6 GN/m3). The 

use of higher subgrade reaction type moduli do not result in any significant improvement 

in accuracy. 

Figure 8.12 shows the interface element stress predictions in the middle 8.0 in. 

(203 mm) zone compared with the theoretical Boussinesq solution results. In Figure 

8.12a, the average normal stresses in the interfaces are plotted with depth both at 2.98 in. 

(76 mm) and 7.05 in. (179 mm) radial distances from the centerline. A maximum error of 
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2.7% was found between the predicted normal interface stresses and the Boussinesq 

vertical stresses. 
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The variation of the interface shear stresses are plotted with radial distance in 

Figure 8.12b at 3 different depths in the 8.0 in. (203 mm) middle zone. The stresses 

shown at depths 3.5 in. (89 mm) and 11.5 in. (292 mm) are from the interfaces located at 

the zone boundaries. The shear stresses at 7.4 in. (188 mm) are for the middle of the 

zone. The interface shear stress predictions, in general, are in good agreement with the 

Boussinesq shear stress solutions with a maximum error of 6.7% between the predicted 

and the theoretical values. 

Applications of the Block Model 

The block model analysis is first employed in this section using the simple finite 

element mesh shown in Figure 8.6. This mesh has an 8.0 in. (203 mm) thick granular 

layer in the middle of the mesh. The use of this simple mesh which has 6 aggregate 

blocks and 13 interface elements demonstrates how the block model works for layered 

systems under both normal and failure load conditions. Later, the block model is applied 

to the unbound aggregate bases used in the Georgia Tech full-scale conventional 

pavement test sections. The iterative procedure using the interface elements is then 

carried out in the granular base to solve for the final displacement, strain and stress states 

obtained at the block interfaces. 
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Interface Properties 

The particulate media modeled using the block model in the applications section 

consists of the crushed granitic gneiss used in the Georgia Tech conventional pavement 

test sections (Barksdale and Todres, 1983). The combined aggregate gradations of the 

unstabilized crushed granitic gneiss base course are listed in Table 7.2. Table 7.2 also 

gives the properties of the base which include a density of 137 pcf (21.5 kN/m ) 

corresponding to 100% of AASHTO T-180 (1990) modified proctor maximum dry 

density and 5.7% optimum moisture content. 

The interface properties required for the model are the cohesion c, friction angle ((), 

and the subgrade reaction type modulus in shear ks. These properties were obtained from 

direct shear tests performed on several granitic gneisses in an earlier study undertaken at 

Georgia Tech to determine the shear strength of rock discontinuities in Georgia 

(Syriopoulos and Barksdale, 1985). In this study, the angle of internal friction of rock 

discontinuities was measured using a multi-stage, direct shear test. The rock surfaces 

tested were fractures found in 2 in. (51 mm) cored rock specimens. Rock samples 

varying in surface roughness from very smooth to very rough were tested at 3 different 

normal stresses changing from 63 to 191 psi (434.4 to 1316.9 kPa). Relationships 

between peak shear strength and normal stress were established. 

Among the 7 granitic gneiss rock samples tested, only the one with the very rough 

surface resulted in a maximum peak friction angle of 46°. The others with smooth to 



265 

rough surfaces gave friction angles ranging between 19 to 36 degrees. The subgrade 

reaction type modulus in shear ks was also obtained from the plots of shear stress as a 

function of horizontal displacement. The values for ks ranged between 8,800 to 29,900 

pci (2,388.3 to 8,114.9 MN/m ) with a representative value for the very rough sample of 

approximately ks = 15,000 pci (4071 MN/m ) obtained at a normal stress of 63 psi (434.4 

kPa). 

Based on the shear strength study results for granitic gneiss (Syriopoulos and 

Barksdale, 1985), the following properties are assigned to the interface elements in the 

block model examples examined in this Chapter: 1. cohesion c = 0; 2. friction angle (j) = 

46 degrees, and 3. subgrade reaction type shear modulus ks = 15,000 pci (4071 MN/m3) 

with the assignment of a 1% residual value (i.e., 150 pci; 40.7 MN/m ) when slip is 

encountered at the interface. A large vertical subgrade reaction type modulus of kn = 

ft ^ 

9.0*10° pci (2,442.6 GN/mJ), which was also used in Example 1, was used again for the 

crushed granitic gneiss layer since overlapping of the blocks of aggregates are not 

permitted in the block model. 

Example 2: Sliding Block Example 

The block model approach is employed here for the simple layered system problem 

shown in Figure 8.6. The 8 in. (203 mm) thick middle granular layer, which is similar to 

a base course in a flexible pavement, is sandwiched between the top AC and bottom 
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subgrade layers modeled using continuum elements. The block model representation of 

the middle granular layer simply consists of using 6 blocks of aggregates as continuum 

elements surrounded by a total of 13 interface elements. Unlike a conventional flexible 

pavement, however, the vertical nodes on the right side of the finite element mesh are not 

restrained in the horizontal direction. As shown in Figure 8.6, the loading on the system 

includes both a uniform vertical compressive load q] = 100 psi (689 kPa) on the top of 

the mesh and a uniform tensile load q2 applied on the right side of the mesh. The 

problem is solved for magnitudes of q2 equal to 40 and 200 psi (276 and 1379 kPa). 

The top and bottom layers were assigned isotropic properties for this illustrative 

example. The middle granular layer was considered to be cross-anisotropic inside the 

blocks for the continuum to model the assembly of particles. The material properties 

(inside the blocks in the base layer) used in the analysis are as follows: 

Top (AC) laver: MR = 250,000 psi, V = 0.35, unit weight y = 148 pcf, 

Middle (base) layer: MR
V = 38,000 psi, MR

h = 5700 psi, GR
V = 13287 psi, 

Vv = 0.43, Vh = 0.15, unit weight y = 139 pcf, 

Bottom (subgrade) layer: MR = 6,000 psi, V = 0.40, unit weight y = 105 pcf, 

where 1 in. = 25.4 mm, 1 psi = 6.895 kPa, 1 pcf = 0.157 kN/m3. 

The simple layered system problem was analyzed using the linear elastic option of 

the GT-PAVE finite element program under the following two loading conditions: 1. qj 



267 

= 100 psi (689 kPa) compression and q2 = 40 psi (276 kPa) tension, and 2. qj = 100 psi 

(689 kPa) compression and q2= 200 psi (1379 kPa) tension. For both loading conditions, 

the applied tensile load q2 initially caused the vertical interface elements in the granular 

layer to separate. Failure due to slip at the horizontal interfaces, however, occurred only 

for the second loading condition where the horizontal interface shear stresses Ts exceeded 

the maximum shear stress Tmax due to the application of the large 200 psi tensile stress 

on the boundary. 

To visualize the variation of the interface normal and shear stresses obtained at the 

end of the iterations, contour plots of interface vertical, radial, and shear stresses are 

drawn on the finite element mesh in the r-z plane. Figure 8.13 illustrates in the r-z plane 

the equivalent vertical, radial, and shear stresses on the sides of one continuum element. 

The stresses are obtained from the relative displacements between the top and bottom 

nodes in vertical and horizontal interface elements. Assume that the displacements 

calculated are small, and the interface elements have negligible change in inclination at 

the end of the analysis. Then, (1) the normal stress in the vertical interface element can 

be considered to be equivalent to the radial stress and (2) the normal stress in the 

horizontal interface element is considered to be equivalent to the vertical stress in the r-z 

plane. Since the interface stresses calculated are not valid within an element, the contour 

plots, strictly interpreted, are not valid. They do, however, nicely show general trends of 

stresses acting within the interfaces. 
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Loading Condition 1 fq2 = 40 psi): For the horizontal tensile load q2 = 40 psi 

(276 kPa), the 4 vertical interfaces in the granular layer went into the separation mode. 

This resulted in the assignment of zero normal and shear stiffnesses in the second 

iteration. At the end of two iterations, however, equilibrium was achieved without any 

horizontal interface going into the slip mode. The shear stresses created at the horizontal 

interfaces due to q2 = 40 psi (276 kPa), therefore, were not exceeded by the maximum 

shear stresses calculated from the Mohr-Coulomb envelope using Equation 5.24. 
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Figure 8.13. Interpretation of Interface Element Normal and Shear Stresses in r-z 

plane. 



Figure 8.14 shows contours of interface shear stresses predicted in the deformed 

mesh at the end of the no tension analysis. The deformed mesh was plotted using an 

exaggeration factor of 10. The calculated displacements were multiplied by 10 and added 

to the original coordinates. The granular layer shear stress distribution shown in the plot 

was obtained by interpreting stress at the nodes of the interface elements (see Figure 

8.13). The negative shear stresses mainly computed in the horizontal interfaces prevent 

slip failure and help maintain the equilibrium of the continuum elements. The stresses in 

the top and bottom layers are the calculated stresses at the 9 integration points in the 

eight-node quadrilateral elements. 

Loading Condition 2 (q2 = 2QQ pgi); For the applied large horizontal tensile load 

q2 = 200 psi (276 kPa), the 4 vertical interfaces in the granular layer again went into the 

separation mode in the first iteration. In addition, the three horizontal interface elements, 

elements 3, 6, and 9, went into the slip mode. After the first iteration, vertical elements 

were assigned zero normal and shear stiffnesses, and the shear stiffness in the sliding 

horizontal elements was reduced to a residual value of 1% of the peak value. The 

calculated balancing forces for separation and slip were then applied in the subsequent 

iterations. At the end of 4 iterations, equilibrium was never achieved, and elements 3, 6, 

and 9 were in a condition of total slip failure. The shear stresses applied to these 
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Figure 8.14. Example 2: The Deformed Mesh and the Variation of Interface Shear 
Stresses Throughout the Middle (Base) Layer for Loading Condition 1. 
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horizontal interfaces due to q2 = 200 psi (1379 kPa) therefore exceeded the maximum 

possible shear stresses calculated from the Mohr-Coulomb envelope (Equation 5.24). 

Figure 8.15 illustrates how the block model works in the granular layer when 

failure is encountered due to slip and separation. Blocks with element numbers 6 and 9 

were both pulled out in the deformed mesh showing no shear resistance to the high 200 

psi (1379 kPa) horizontal tensile load. The interface shear stress distribution predicted 

for the failure condition, however, still indicates stresses less than required for failure at 

the horizontal interfaces of the other 4 non-failing blocks (see Figure 8.15). The shear 

resistance observed at these non-failing horizontal block interfaces demonstrates the load 

transfer ability of the granular particles in shear when subjected to normal stress. 

Example 3: Georgia Tech Conventional Test Sections 

The block model is applied in this example to the crushed granitic gneiss base 

course used in the Georgia Tech full-scale conventional pavement test sections. First, the 

cross-anisotropic nonlinear analysis described in Chapter 7 is performed on the sections. 

Next, the block model is used with the iterative equilibrium procedure employed in the 

base. The stress state determined at the interfaces between the neighboring blocks is 

proposed as a practical method for calculating the tensile stress actually developed in the 

granular base. Thus, a solution is presented to the long neglected "no tension" granular 

base problem of the elastic continuum approach discussed in Chapter 3. 
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Figure 8.15. Example 2: The Deformed Mesh and the Variation of Interface Shear 
Stresses Throughout the Middle (Base) Layer for Loading Condition 2. 
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Stress State at the End of the Nonlinear Continuum Solution: The conventional 

test sections (Sections 8, 9, and 10) were modeled earlier in Chapter 7 using the 

continuum representation for the granular layers. The geometry and the material 

properties used in the analysis are summarized in Figure 7.10 and Table 7.4. The results 

of the cross-anisotropic nonlinear analysis performed using the GT-PAVE program were 

given previously in Table 7.5 and in Figure 7.12. In these solutions, the horizontal tensile 

stresses in base were artificially eliminated using the stress transfer algorithm for no 

tension modifications. Figure 8.16 presents a contour plot of the horizontal stresses in the 

base. These stresses were obtained from the nonlinear analysis presented in Chapter 7 

before the stress transfer algorithm for "no tension" modifications were applied. The 

complete granular base was found to be in radial tension with horizontal tensile stresses 

as large as 5 psi predicted in the middle section using the continuum approach. After the 

tension modifications were applied, the radial tensile stresses were completely eliminated 

in the base. 

The Block Model Iterative Equilibrium Analysis: The nonlinear block model 

analysis of the Georgia Tech conventional test sections was carried out using the same 

initial material properties of the base (within the blocks) and subgrade layers as used in 

Chapter 7 (see Table 7.4). Figure 8.11 shows the 140 continuum element, 921 node finite 

element mesh used in the block analysis with 98 interface elements employed in the 8.0 
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in. (230 mm) thick middle base layer. The iterative procedure for the block model 

described earlier is applied after convergence is reached for the nonlinear analysis. 

In the first iteration of the block model analysis, 15 vertical interface elements 

were found to be in the separation mode while 15 horizontal interface elements were in 

slip mode. The vertical interfaces in the separation mode were assigned zero normal and 

shear stiffnesses and the horizontal ones in the slip mode were given 1% residual shear 

stiffness. The second and subsequent iterations were performed with the calculated 

balancing forces applied to the system as nodal loads together with the external wheel 

load of 100 psi (689 kPa). At the end of 5 iterations, no interface element was found to 

be in either the slip or separation mode and the overall equilibrium was maintained. 

Figure 8.17 shows the contour plots of radial stresses in the top portion of the finite 

element mesh. The deformed mesh is plotted this time using an exaggeration factor of 

100. The radial stresses shown in Figure 8.17 in the AC and subgrade were calculated at 

the nodes using the continuum approach. The radial stresses shown in the granular base 

layer were obtained from the normal stresses in the vertical interface elements. A total of 

25 vertical interfaces that went into the separation mode resulted in zero radial stresses in 

the r - direction. 

Figure 8.18 presents contours of the vertical stresses in the top portion of the mesh. 

The vertical stresses in the granular base were extrapolated from the interface normal 

stresses calculated in the horizontal interface elements. The equal stress contours are, 
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therefore, not actually continuous in the blocks of crushed granitic gneiss. The continuity 

of stresses, however, is present in the subgrade and AC layers. 

Due to the discontinuity between the blocks, interface stresses were non-existent in 

the vertical interfaces which had separated. Spreading laterally of the vertical stress from 

the wheel load in the base layer, therefore, did not occur in the block model. Spreading 

of the vertical stress did occur in the continuum representation. As a result, the vertical 

stress on the subgrade of the block model was predicted at the centerline to be 12.9 psi 

(88.9 kPa) which is higher than the measured value of 9.9 psi (68.3 kPa) as shown in 

Table 7.5. Similarly, the surface deflection at the centerline was computed to be 0.030 in. 

(0.76 mm) as compared to 0.028 in. (0.71 mm), and the horizontal tensile strain at the 

bottom of the AC was 554* 10" in./in. when compared to the measured value of 330* 10" 

in./in. A better geometric modeling of the discrete particle aggregate base can be 

achieved by using a staggered arrangement of blocks which allows better spreading of the 

wheel load. 

Shear Resistance: Figure 8.19 presents a contour plot of the shear stresses 

predicted in the top portion of the finite element mesh at the end of the iterative block 

model equilibrium procedure. The shear stress contours shown in the crushed stone base 

correspond to the interface shear stresses determined at the horizontal interfaces. The 

shear stresses obtained from approximately 15 horizontal interface elements that 

experienced slip were limited to the failure shear stress values (Xmax). The larger interface 
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shear stresses are primarily concentrated in the upper portion of the base at a radial 

distance of approximately 4.55 in. (116 mm). This distance corresponds to the edge of 

the 100 psi (689 kPa) applied tire pressure. 

A simple assembly of three spherical particles aligned and loaded vertically is 

shown in Figure 8.20. Under the applied normal load N, the friction forces F, and F2 

developed between the particles can resist the horizontal pull H applied on particle 2. 

The friction forces considered in this example are analogous to the shear resistance 

between blocks at the horizontal interfaces. The horizontal pull H then corresponds to 

tension load due to the predicted horizontal tensile stresses in the continuum 

representation of the base. 

IN 

IN 

Figure 8.20. Frictional Shear Resistance Under Normal Stress in A Three Grain 

Assembly. 
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To demonstrate how shear forces developed between blocks to resist radial tension 

predicted in the continuum representation, the results are compared of the (1) block 

model and (2) "no tension" continuum approaches. (1) Using the block model, the 

internal shear spring forces at the interfaces are computed in the horizontal interface 

elements. (2) The radial tensile stresses predicted in the base layer using the continuum 

approach are shown in Figure 8.16. The nodal forces from the continuum solution due to 

these horizontal tensile stresses are calculated to obtain the tension in the horizontal 

direction. 

Figure 8.21 shows the distribution of the radial tension forces predicted by both the 

"no tension" type elastic continuum and the block model at the horizontal interface nodes. 

Horizontal forces are plotted in the base at a height of both one-third and two-thirds 

above the bottom of the base. The interface shear stresses predicted at both heights in the 

base by the block model clearly exceed the radial tension obtained from the elastic 

continuum model. A maximum difference is indicated at a radial distance of 7 in. (178 

mm) where the interface shear force is about 18 times larger than the tension force 

predicted by the continuum solution. 

The most important finding from the block model analysis is that the blocks of 

aggregates develop very high peak shear resistance at the interfaces due to the application 

of large normal stress. The shear stresses are frictional forces which in turn are capable 

of resisting any apparent tension forces (such as those predicted by the elastic continuum 

solution) applied on the blocks (see Figure 8.20). Because of the development of this 
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shear resistance between the aggregates, flexible pavements with granular bases, 

therefore, do not usually fail in the field. The "no tension" problem of the continuum 

model is then at least partly explained by the shear resistance of unbound aggregates 

under vertical compressive stresses (see Figure 8.20) as demonstrated using particulate 

mechanics. 

Comparison of the Block Model and Continuum Method: When compared to the 

elastic continuum approach, the block model analysis does not allow horizontal tension to 

develop in the unstabilized aggregate base at the block interfaces. The translation, sliding 

and separation of the blocks of aggregates are permitted in the model through an iterative 

procedure which solves for the equilibrium interactions between blocks. Load transfer in 

shear can, therefore, be modeled in aggregates using realistic interface friction properties 

between the blocks obtained from direct shear tests. On the other hand, the continuum 

model incorporates the stress transfer algorithm for a "no tension" type analysis which 

completely eliminates any predicted apparent tension in the continuum representation of 

the aggregate base. 

Practical Findings of the Block Model Relevant to Design: The block model 

analysis proves that the frictional shear resistance calculated between the discrete blocks 

could allow an apparent limiting tension to be taken by the assembly of aggregates. This 

apparent tension is analogous to the tensile stresses predicted by the classical elastic 
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continuum approaches that do not use the "no tension" type analysis. For all practical 

design purposes, it is then of no use to have methods, such as the stress transfer method, 

which completely eliminate these tensile stresses. The continuum approach may well be 

adequate in most cases to design a flexible pavement provided that the tensile stresses 

predicted in the lower portion of the base are smaller than failure values. The failure 

stresses could, for example, be obtained from comparison charts, such as shown in Figure 

8.21, that give the maximum amount of apparent tension permitted by the frictional 

resistance in the block interfaces. Residual compaction stresses, if known or measured, 

should also be included in the analyses. 

Summary 

A new block model approach was introduced for modeling granular bases in 

flexible pavements. The block model employs blocks of aggregates to approximately 

model the load transfer mechanisms of the real particulate nature of granular materials. 

The block model was proposed as an alternative method to investigate tension carrying 

ability of granular bases. The unbound aggregate bases were modeled as particulate 

media composed of blocks of aggregates which are able to transfer both shear and normal 

compressive loads through the interfaces. The modeling was achieved by using 6-node 

interface elements between the 8-node continuum elements in the finite element mesh. 
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The GT-PAVE program organization and subroutines related to the block model option 

were described and the interface element behavior was studied in detail. 

The main purpose of applying the block model to granular bases was to 

realistically predict using a practical model the particulate nature of aggregate behavior 

and then explain in a rational way why unbound bases do not fail. It was shown that 

granular bases can take relatively large amounts of apparent horizontal tension in the 

form of shear resistance between aggregate particles subjected to vertical stresses. The 

classical elastic continuum solution of a granular base, therefore, may not include a "no 

tension" type analysis provided that the apparent horizontal tension do not exceed the 

frictional shear resistance between blocks of aggregates. Applying block model to the 

granular bases of Georgia Tech conventional test sections, the shear forces at the 

horizontal block interfaces were found to be the largest for radial distances greater than 

the radius of the wheel load. The vertical stress on the subgrade and other response 

variables were, however, overestimated by the block model due to the lack of spreading 

of the wheel load through the vertical interfaces. 
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CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

A theoretical and analytical study was undertaken in this thesis to develop an 

improved analysis method for calculating the performance of flexible pavements with 

granular bases. Mathematical finite element formulations limited to resilient response 

were presented to analyze the pavement system when subjected to external wheel loads. 

Two different models were included in the GT-PAVE nonlinear finite element program 

developed for the current state of the art analysis of the unbound materials. These 

nonlinear methods are based upon a continuum approach and a new block model 

approach which permits modeling of the granular layers as discrete blocks of aggregates. 

To more correctly model flexible pavement behavior, the following essential features 

were included in the GT-PAVE program within the framework of the elastic continuum 

approach: (1) nonlinear behavior of granular bases and subgrade soils through elastic 

constitutive behavior laws, (2) cross-anisotropic representation of the granular materials, 

(3) incremental loading, (4) the compaction induced residual stresses, and (5) "no 
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tension" modifications. The block model approach models the real particulate nature of 

the granular media enabling translation, sliding and separation of the blocks in the base. 

The block model offers a new insight into the long abandoned "no tension" problem 

encountered in granular layers. 

A new neural network model of the resilient modulus of granular materials was 

also proposed using laboratory measured results for different aggregate types. This 

modeling of the resilient modulus behavior is believed to be the first use of artificial 

neural networks (ANN) in granular material characterization. The neural network model 

was shown to quite accurately predict resilient modulus from a known stress state for a 

specific material type. The ANN model, however, memorized the data sets for different 

aggregate types and categorized each material according to its material properties such as 

dry unit weight, percent fines, and aggregate size. A larger experimental database is 

needed to correctly train a more generalized ANN model which would work for different 

aggregate types having various material properties. 

The GT-PAVE program was verified using both theoretical examples and 

measured results of laboratory and full-scale tests. The theoretical verification consisted 

of a separate analysis of the various components of the method such as the cross-

anisotropic formulation and convergence of nonlinear analysis. The results of the linear 

elastic computations compared quite well with the closed form solutions as well as with 

the results of other computer programs. Measured response from laboratory tests and 

full-scale flexible pavement test sections provided a second verification of the program. 
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The resilient behavior of five pavement test sections were predicted at the same time 

reasonably accurately for up to 8 response variables (i.e., displacements, stresses and 

strains) using a cross-anisotropic nonlinear analysis. Such predictions are hard to achieve 

and indicate the finite element model used is reasonably valid. 

The general limitations of the finite element formulation presented include no 

provision to consider the dynamic inertia effects due to the moving traffic loads. Instead, 

a static analysis is performed for practical purposes to simulate wheel load. Special care 

should be given to the possibility of amplification of the computed response variables in a 

resonance condition. Resonance could occur, for example, when a shallow subgrade 

depth to bedrock exists. Other limitations of the program include: (1) neglecting 

viscoelastic AC layer behavior by using linear elastic material properties which assume 

that the loading time is relatively short and the stress levels on the pavement are small, 

(2) assuming small-displacement theory is valid, (3) solving only axisymmetric problems, 

and (4) neglecting the effects of dilation of granular particles at block interfaces. The 

present formulation implemented in the GT-PAVE finite element program, however, is 

considered to be an improvement of the current analysis methods for multilayered elastic 

pavement systems with granular layers. 

The following specific conclusions can be made: 

1. Simplified resilient modulus models, such as the Uzan (1985) and UT-Austin 

(Pezo, 1993) models consider both confinement and shear stress effects in granular 
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materials. These models were found to give sufficiently accurate results for 

pavement design and are also practical enough for routine design use. 

2. A hardening type of granular material resilient behavior was fitted nicely using 

the Uzan (1985) model. As a result, a direct secant stiffness approach for nonlinear 

analysis adapted here in the program was found to be a more efficient method 

compared to the Newton-Raphson and tangent stiffness approaches. 

3. To converge smoothly for each load increment in the nonlinear analysis, a 

damping factor of 0.3, as defined in the thesis, was employed to obtain an 

improved estimate of the resilient modulus to be used as the initial estimate in the 

next load increment. 

4. A convergence criterion of a 5% maximum individual error was adapted 

between any two resilient moduli calculated in two subsequent nonlinear iterations. 

The 5% criterion mainly controlled convergence rather than the cumulative error 

criterion. This criterion was adequate for the required accuracy of the computed 

pavement response. 

5. A cross-anisotropic representation of the base was shown to reduce the 

horizontal tension in the granular base by up to 75%. Use of 15% of the vertical 

modulus in the horizontal direction was found by trial and error to be necessary 

for: (1) predicting correctly the horizontal and vertical measured strains in the base 

layers, and (2) properly modeling the horizontal tension in the granular base layer. 



6. An iterative tension modification procedure using the modified stress transfer 

approach was successfully adapted in the continuum model for the fast elimination 

of the horizontal tension in the base. The tensile stresses in the granular layer are 

balanced in this method by applying counteracting forces at the nodes. 

7. Observed hardening type of resilient response of laboratory granular samples 

was successfully predicted at different stress levels using the incremental nonlinear 

procedure adapted in the program. 

8. Compaction induced residual stresses in the base were shown to affect both the 

linear and nonlinear solutions by mainly reducing the amount of radial tension 

predicted in the granular layer. The effect of residual stresses was more prominent 

in the cross-anisotropic base. 

9. The resilient behavior of 5 well instrumented full-scale pavement test sections 

were successfully predicted using the GT-PAVE program for up to 8 measured 

response variables, such as displacements, stresses and strains. A nonlinear cross-

anisotropic analysis was found to be necessary for predicting at the same time 

these 8 variables thus validating the GT-PAVE program. The good predictions 

were unaffected when the "no tension" stress transfer approach was applied for 

eliminating tensile stresses in the granular base of the conventional test sections. 

10. The vertical and horizontal resilient modulus distributions within the base and 

subgrade layers were shown to be highly nonlinear both vertically and radially. 
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11. The block model employed in granular layers used realistic properties obtained 

from direct shear tests to model the particulate media. Horizontal tension was not 

allowed to develop at the block interfaces. The load transfer in granular materials 

was shown to be done by shear and normal compressive stresses at block interfaces 

since tensile stresses can not occur. 

12. The granular base of the conventional test sections was modeled using the 

block model approach. The frictional shear forces calculated in the horizontal 

block interfaces were found to be at least equal to or greater than the horizontal 

tension forces predicted by the continuum model. 

13. The vertical stress on the subgrade and other critical response variables were 

overestimated by the block model due to the lack of spreading of the wheel load 

through the vertical interfaces. This deficiency needs be solved by offsetting 

blocks in a staggered arrangement. 

14. The interface behavior formulated analytically must be verified by laboratory 

experiments for further improvements in the model. 

Practical Findings: 

15. Inverted pavement sections were found to make optimum use of the 

compressive characteristics of the unbound aggregate base when the base is 

sandwiched between a lower cement stabilized subbase and an upper AC surfacing. 
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16. A 6 in. (152 mm) unbound aggregate base and a 6 to 8 in. (152 to 203 mm) 

thick cement stabilized subbase were found by theoretical analyses to give a 

practical inverted section design which minimizes tensile strain in AC and vertical 

stress on the subgrade. 

17. An inverted section and a conventional section having the same total cost give 

different performances as predicted using the GT-PAVE program. For equal AC 

thicknesses greater than 5.1 in. (130 mm), the inverted sections performed better 

than the conventional sections. Fatigue life was about 30% greater and subgrade 

stress was 10% less than for the conventional sections. 

18. Applying block model to Georgia Tech conventional test sections, frictional 

shear resistance calculated in the granular base between the discrete blocks allowed 

an apparent limiting tension which was taken by the assembly of aggregates. This 

apparent tension is analogous to the tensile stresses predicted by the classical 

elastic continuum approach that do not use a "no tension" type analysis. 

19. For all practical design purposes, it is probably not necessary to employ 

tension correction methods, such as the stress transfer approach, which completely 

eliminate predicted tensile stresses in granular bases. The continuum approach 

may well be adequate in most cases to design a flexible pavement provided that the 

tensile stresses predicted in the lower portion of the base do not exceed frictional 

resistance of aggregates under the compressive wheel load. 
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Recommendations for Future Work 

The GT-PAVE finite element program developed in this thesis can be verified and 

further improved with additional work undertaken in the following research areas: 

1. Measurements of several response variables need to be obtained from other 

well-instrumented experimental pavement sections to validate and improve the 

current analytical finite element model. 

2. To determine realistic cross-anisotropic material properties to be assigned in the 

analysis, laboratory testing of pavement materials should be performed under 

various loading conditions. 

3. Appropriate models should be researched and included in the analysis to model 

the viscoelastic asphalt concrete behavior. 

4. Resilient behavior modeling of unbound materials using artificial neural 

networks (ANN) should be further investigated as a potential source for 

improvements in the area of material characterization. A successful 

implementation of a general ANN model into finite element computations can be 

quite beneficial in the future provided that a large database is used in the training 

of the model. 

5. The block model proposed in this thesis should be verified by laboratory testing 

of aggregate blocks to show that the shear resistance and interlocking between 
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aggregates is responsible for any horizontal tension predicted in the granular bases. 

Improvements for the block model can be achieved by accounting for dilation of 

granular materials at the interfaces. 

6. Better modeling of the base can be achieved using the block model when 

smaller blocks are considered in a staggered arrangement. 

7. Large displacement and elastoplastic analysis can be included in the 

mathematical formulation for the continuum and block models. Permanent 

deformations can also be modeled for damage analysis in pavements. For 

example, plasticity models, such as the Cam-Clay model, can be considered for a 

cohesive subgrade soil in which consolidation effects are also included. 

8. A soil fabric system can be included in the axisymmetric formulations where 

geosynthetics are used in the layered system as reinforcements. The soil-fabric 

model can be used to study fabric behavior at the interfaces, both the fabric and 

interface elements in the formulation. 
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APPENDIX A 

RESILIENT MODULUS DATA FOR POTENTIAL ARTIFICIAL 

NEURAL NETWORK VARIABLES 



Table A. 1. GT Resilient Modulus Data For Potential ANN Variables 

GT-BASES 
(B#: Base #, B: Regular Gradation, F: Full Gradation, 
C: Coarse Gradation, R: Replaced Gradation, S#: Sample #) 

Sample Name BlBFSl B1BFS2 BlCRSl B1CRS2 BlBRSl B1BRS2 
Max. Aggregate Size, (in.): 1.5 1.5 2.5 2.5 1.5 1.5 
Avg. Aggregate Size, D50 ( in.): 0.25 0.25 0.35 0.35 0.35 0.35 
Coefficient of Uniformity, Cu: 30 30 61 61 61 61 
Dry Unit Weight (pcf.) 

Average: 143 143 143 143 143 143 
Lab Result: 142.5 140.6 132.9 131.9 140.7 139.9 

Water Content (%) 
Average: 5 5 5 5 5 5 
Lab Result: 6.1 6.7 8.2 5.9 4.7 5.7 

% Fines Content: 4 4 4 4 4 4 
% Compaction < DfT-180: 100 100 100 100 100 100 
Plasticity Index, (%): - - - - - -

Confining Deviator Bulk 
Pressure Stress Stress MEASURED RESILIENT MODULUS (psi) 

(psi) (psi) (psi) 
3 3 12 19017.3 25751.7 21358.3 21603.5 19197.5 18545.3 
3 6 15 22875.6 27789.4 22733.8 21804.2 20718.8 20893.5 
3 9 18 24451.2 30649.7 23880 22450.6 22407.8 20897.4 
5 5 20 24573.5 31062.5 22652.7 23754.5 23383.9 21571.6 
5 10 25 29454.6 35176.3 29098.7 25719.5 26745.4 24891.8 
5 15 30 33757 36834.4 30067.2 26703.5 27344.4 26031.4 
10 10 40 42172 49737.3 39070.1 30228 36341.2 34897.6 
10 20 50 45386.9 51574.2 42330 36135.2 37860.6 35381.3 
10 30 60 46231.5 50181.4 43912.7 37231.7 38573.2 39684.8 
15 10 55 50144.6 54730.9 44651.6 39485.9 43061 43091.1 
15 15 60 49369.3 55582.8 46494.7 39971.8 43348.7 42271.6 
15 30 75 56136.8 60698 50963.3 44180.8 48355.6 49135.9 
20 15 75 59705 64644.5 55590.2 48928.8 54644.4 53311 
20 20 80 61469.9 64246 55546.5 48285.2 53400.7 52541.6 
20 40 100 65475.3 69820.9 60950.3 52467 57468 56697.2 



Table A. 1 (cont'd). GT Resilient Modulus Data For Potential ANN Variables 

GT-BASES 

(B#: Base #, B: Regular Gradation, F: Full Gradation, 
C: Coarse Gradation, R: Replaced Gradation, S#: Sample #) 

Sample Name B2FS1 B2FS2 B2RS1 B2RS2 B4S5 B4S6 
Max. Aggregate Size, (in.): 1.25 1.25 1.25 1.25 0.75 0.75 
Avg. Aggregate Size, D50 ( in.): 0.1 0.1 0.1 0.1 0.1 0.1 
Coefficient of Uniformity, Cu: 67 67 67 67 73 73 
Dry Unit Weight (pcf.) 

Average 141.3 141.3 141.3 141.3 142.2 142.2 
Lab Result: 138.7 136.9 138.5 138.5 130.3 136.65 

Water Content (%) 
Average 5.1 5.1 5.1 5.1 4.1 4.1 
Lab Result: 6.7 5.1 3.9 3.9 5.63 5.75 

% Fines Content: 10 10 10 10 - -
% Compaction of T-180: 100 100 100 100 95 95 
Plasticity Index (%): - - - - 5 5 

Confining Deviator Bulk 
Pressure Stress Stress MEASURED RESILIENT MODULUS (psi) 

(psi) (psi) (psi) 
3 3 12 23221 31065 27460 29009 23555 26277.2 
3 6 15 26261 30330 32143 31412 23083 27465.6 
3 9 18 26858 32117 33050 32516 22986 26865.2 
5 5 20 30534 36794 36824 34864 32426 32064.6 
5 10 25 33901 38150 39644 38707 29805 32015.4 
5 15 30 35374 40587 41392 39588 30579 32035.9 
10 10 40 45927 53591 55049 51705 46884 47486.8 
10 20 50 48064 53835 56194 52973 44796 47051.8 
10 30 60 48380 53191 56030 52077 44052 47204.6 
15 10 55 52998 57107 60072 55566 55551 58508.6 
15 15 60 54724 58774 63603 56016 55732 56745.1 
15 30 75 57146 64796 68799 62665 57787 59098.9 
20 15 75 63992 69593 76123 69613 67753 72273 
20 20 80 63535 69588 75343 67582 67929 71155.5 
20 40 100 67444 72173 77558 70093 67088 71233.7 



Table A.2. SHRP Resilient Modulus Data For Potential ANN Variables 

SHRP BASES 

Sample Name: 26A 26B 51A 51B 148A 148B 
Max. Aggregate ! Size, (in.): 1.5 1.5 1.5 1.5 1.5 1.5 
Avg. Aggregate Size, D50 (in.): 0.48 0.48 0.4 0.4 0.47 0.47 
Coefficient of Uniformity, Cu: 40 40 14 14 42 42 
Dry Unit Weight (pcf.) 

Average- 138.6 138.6 138.6 138.6 138.6 138.6 
Lab Result: 140.6 138.9 135.4 138.5 141.8 138.8 

Water Content (%) 
Average: 6 6 6 6 6 6 
Lab Result: 6.4 4.8 5.5 5.5 5.4 5.7 

% Fines Content: 3 3 1.5 1.5 2 2 
% Compaction < 3fT-180: 100 100 100 100 100 100 
Plasticity Index (%): - - - - - -

Confining Deviator Bulk 
Pressure Stress Stress MEASURED RESILIENT MODULUS (psi) 

(psi) (psi) (psi) 
3 3 12 22201 20033 18568 16071 25461 21593 
3 6 15 21886 21977 19947 16044 25846 25567 
3 9 18 27977 22549 26059 21154 27563 25859 
5 5 20 25521 23558 29684 23356 33086 33022 
5 10 25 31963 28088 30740 23884 33483 30040 
5 15 30 31347 26739 33261 24775 34672 32329 
10 10 40 38997 32211 42781 32268 46227 45291 
10 20 50 39552 38349 43157 33884 46027 46603 
10 30 60 39505 36143 42737 35076 45386 46508 
15 10 55 44939 41938 48828 38079 52966 50547 
15 15 60 44108 41400 49100 37789 53226 51396 
15 30 75 46224 46815 51325 47660 53475 55088 
20 15 75 55695 50239 56071 41781 64299 61792 
20 20 80 52664 51465 57078 46462 61324 62212 
20 40 100 56380 52670 61010 51939 64440 65860 



Table A.2 (cont'd.). SHRP Resilient Modulus Data For Potential 
ANN Variables 

SHRP BASES 

Sample Name; 173A 173B 178A 178B 196A 196B 
Max. Aggregate Size, (in.): 
Avg. Aggregate Size, D50 (in.): 
Coefficient of Uniformity, Cu: 
Dry Unit Weight (pcf.) 

Average: 
Lab Result: 

Water Content (%) 
Average: 
Lab Result: 

% Fines Content: 
% Compaction of T-180: 
Plasticity Index, (%): 

1.5 1.5 1.5 1.5 1.5 1.5 
0.42 0.42 0.38 0.38 0.38 0.38 
21 21 11 11 21 21 

133.6 133.6 133.6 133.6 138.6 138.6 
133.5 136 130.7 134.1 139.8 138.4 

8 8 8 8 6 6 
8.1 6.1 8.9 11.7 5.1 5.4 
0.3 0.3 0.1 0.1 0.2 0.2 
100 100 100 100 100 100 

Confining 
Pressure 

(psi) 

Deviator 
Stress 
(psi) 

Bulk 
Stress 
(psi) 

M E A S U R E D RESILIENT M O D U L U S (psi) 

3 
3 
3 

5 
5 

5 
10 

10 
10 
15 
15 
15 

20 
20 
20 

3 
6 
9 

5 
10 
15 
10 
20 
30 
10 
15 
30 

15 
20 

40 

12 
15 
18 
20 
25 
30 
40 
50 
60 
55 
60 
75 
75 
80 
100 

36118 
30505 
31192 
35590 
39356 
40560 
56202 
56057 
54962 
59967 
59618 
63643 
72354 
74021 
97820 

35587 
31763 
30504 
35845 
36507 
39102 
51548 
52468 
53845 
63020 
64009 
64462 
75560 
76528 
79189 

29811 
25153 
25021 
28348 
29040 
35705 
39136 
48659 
48640 
51243 
51254 
60359 
55907 
66787 
70493 

21646 
30533 
28703 
22666 
26256 
31045 
41548 
47348 
45588 
49278 
51188 
54805 
64097 
63081 
67541 

30519 
30191 
31198 
33599 
34731 
35510 
44405 
45646 
45622 
51790 
50777 
56407 
62438 
59605 
63643 

39382 
40118 
28967 
40951 
32853 
34893 
54439 
55587 
55875 
61923 
62917 
66667 
69249 
70718 
75347 



Table A.2 (cont'd.). SHRP Resilient Modulus Data For Potential 
ANN Variables 

SHRP BASES 

Sample Name: 197 A 197B 202A 202B 
Max. Aggregate Size, (in.): 
Avg. Aggregate Size, D50 (in.): 
Coefficient of Uniformity, Cu: 
Dry Unit Weight (pcf.) 

Average: 
Lab Result: 

Water Content (%) 
Average: 
Lab Result: 

% Fines Content: 
% Compaction of T-180: 
Plasticity Index, (%): 

1.75 1.75 1.5 1.5 
0.4 0.4 0.36 0.36 
39 39 47 47 

33.6 133.6 133.6 133.6 
- 132.7 131.6 132.7 

8 8 8 8 
- 7.5 9.8 8.2 
2 2 2 2 

100 100 100 100 

Confining Deviator Bulk 
Pressure Stress Stress MEASURED RESILIENT MODULUS (psi) 

(psi) (psi) (psi) 
3 3 12 27917.8 26849 30113.2 29957 
3 6 15 30935.9 24793.3 25808.9 28172.4 
3 9 18 30228.5 23976 27339 27852.2 
5 5 20 33374.2 30167.5 30483.5 28099.8 
5 10 25 32646 29426 28978.4 31810.6 
5 15 30 34275 31554.2 31561.3 29733.3 
10 10 40 46857.1 37428.3 41654.6 40556 
10 20 50 48215.8 39184.1 44672.9 43427.1 
10 30 60 49719 39734.6 57625.1 41331.8 
15 10 55 55312.1 43581 51196.4 56395.4 
15 15 60 55500 45416.9 46497.4 55453.1 
15 30 75 60250.3 51302 63315.6 59317.8 
20 15 75 69164.4 56845.7 58769.7 68280.1 
20 20 80 69493.6 57566.5 85412.2 66174 
20 40 100 73479 69903.4 75128.3 64238.4 



Table A.3. NC Resilient Modulus Data For Potential ANN Variables 

NC BASES 

(Sample A: MR After 50 Repetitions, 
Sample B: MR After 100 Repetitions) 

Sample Name 10F3S1A 10F3S1B 10F3S2A 10F3S2B 
Max. Aggregate Size, (in.): 1.5 1.5 1.5 1.5 
Avg. Aggregate Size, D50 1 in.): 0.25 0.25 0.25 0.25 
Coefficient of Uniformity, Cu: 33 33 33 33 
Dry Unit Weight (pcf.) 

Average: 151.1 151.1 151.1 151.1 
Lab Result: 145.6 145.6 148.3 148.3 

Water Content (%) 
Average: 3.5 3.5 3.5 3.5 
Lab Result: 4.17 4.17 6.75 6.75 

% Fines Content: 5 5 5 5 
% Compact ion of T-180: 100 100 100 100 
Plasticity Index, (%): - - - -

Confining Deviator Bulk 
Pressure Stress Stress MEASURED RESILIENT MODULUS (psi) 

(psi) (psi) (Psi) 
3 3 12 41832.8 40142.8 22726.1 23670.6 
3 6 15 33170.7 33317.8 22304.3 22348.2 
3 9 18 32977.9 32548.7 22922 23134.7 
5 5 20 46911.4 44988.7 25306.6 25575.9 
5 10 25 40708.4 39662 28187.8 27893.1 
5 15 30 39259.2 40832.5 30158.4 28963.7 
10 10 40 64399.4 59527.6 39881.6 39649.1 
10 20 50 58416 58491.9 41890.7 41771 
10 30 60 60858.2 60653.7 43443.5 42983.4 
15 10 55 74482.9 74127.3 50846.2 50843.8 
15 15 60 74554.2 70763.5 49925.8 49470.5 
15 30 75 75559.3 74988.2 54005.9 51461.4 
20 15 75 91727.4 89994.5 60481.1 60662.5 
20 20 80 83723.7 83277.4 59303.3 59008.8 
20 40 100 88875.4 89459 64324.8 63220 



Table A.3 (cont'd). NC Resilient Modulus Data For Potential 
ANN Variables 

NC BASES 

(Sample A: MR After 50 Repetitions, 
Sample B: MR After 100 Repetitions) 

Sample Name : 20F3S2A 20F3S2B 30F3S2A 30F3S2B 
Max. Aggregate Size, (in.): 1.5 1.5 1.5 1.5 
Avg. Aggregate Size, D50 (in.): 0.25 0.25 0.25 0.25 
Coefficient of Uniformity, ( 2u: 28 28 40 40 
Dry Unit Weight (pcf.) 

Average 149.7 149.7 149.7 149.7 
Lab Result: 148.5 148.5 147.9 147.9 

Water Content (%) 
Average 5.6 5.6 5.6 5.6 
Lab Result: 6.7 6.7 8.1 8.1 

% Fines Content: 5 5 5 5 
% Compaction of T-180: 100 100 100 100 
Plasticity Index (%): - - - -

Confining Deviator Bulk 
Pressure Stress Stress MEASURED RESILIENT MODULUS (psi) 

(psi) (psi) (psi) 
3 3 12 24314.1 25003.3 27567.6 27065 
3 6 15 22152.3 22057 25830.4 26125.4 
3 9 18 22815.7 22668.7 26958 26768 
5 5 20 29916.5 29789.8 28400.3 28385.4 
5 10 25 27097.2 27588.9 30010.6 29903.6 
5 15 30 29676.1 30453.8 30962.8 30710.2 
10 10 40 41382.3 41333.6 38943.6 41060.3 
10 20 50 41481.8 42633.2 42265.9 41200.4 
10 30 60 44721.6 44851.6 41666 41795.6 
15 10 55 51442.6 52748.3 47454.3 47573.7 
15 15 60 52188.9 51765.3 47951.8 48100.5 
15 30 75 55614.2 54970.3 50881.7 50589.7 
20 15 75 62691.4 61298.3 57422.9 56807.2 
20 20 80 60278.5 60217.3 55397.7 55611.9 
20 40 100 63515.9 63646.7 60226.1 59830.6 
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APPENDIX B 

GT-PAVE NONLINEAR FINITE ELEMENT PROGRAM 

Input and Output Capabilities 

The GT-PAVE finite element program requires as the input information the 

geometry, material properties, loading and boundary conditions, analysis type (linear or 

nonlinear), interface properties, and nonlinear analysis and tension modification 

parameters. The default values of units used in the GT-PAVE program are pounds, 

inches, and degrees Fahrenheit. Any consistent system of units, however, can be used in 

the analysis. The dimensional units F=force, L=length and (°)=degrees are given in 

parentheses for the variables. The following steps present the detailed information that 

must be entered in a data file for each input category: 

(a) Geometry: 

Number of elements, nodal points, boundary points, and interface elements; 

Number of zones for rectangular mesh generation, 

For each zone: number of layers, number of columns, initial node number, 
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r and z coordinates of the initial node (L), initial element 

number, layer and column spacings (L); 

(b) Material Properties: 

Number of material types, 

For each material type: specify if isotropic or cross-anisotropic, 

(i) isotropic: resilient modulus (F/L2), Poisson's ratio, coefficient of 

thermal expansion (1/°), and unit weight (F/L3), 

(ii) cross-anisotropic: vertical resilient modulus (F/L ), horizontal resilient 

i i 

modulus (F/L ), vertical shear modulus (F/L ), vertical 

Poisson's ratio, horizontal Poisson's ratio, thermal expansion 

coefficient (1/°), unit weight (F/L3); 

For cross-anisotropic analyses, default values can be used in the granular bases. 

Sublayering of the nonlinear layers is also suggested to input correct initial 

guesses. 

(c) Loading Conditions: 

Concentrated nodal point loads (F) and gravity loads (as the unit weight, F/L3), 

Temperature loads: constant temperature change (Tf - Tj) (° F) creating initial 

strains, 

Distributed edge loads: constant pressure (F/L2), 

Horizontal residual compaction stresses: initial stresses in granular layer (F/L2); 



(d) Boundary Conditions: 

For each boundary node: support conditions (fixed or free) in r and z directions, 

specified support settlements (L) in r and z directions; 

(e) Analysis Type: 

Linear or nonlinear elastic analysis: 

Asphalt concrete (AC) layer taken only as linear elastic, 

Continuum or block model employed in granular base layer; 

(f) Interface Properties: 

For the block model approach: 

Normal and shear subgrade modulus (F/L3) used in interface elements, 

cohesion (F/L ) and angle of friction (°) of the unbound aggregates in base; 

(g) Nonlinear Analysis: 

Number of load increments for the gravity and the surface wheel loadings, moduli 

averaging coefficients (the damping factors X) used for the gravity and surface 

wheel loadings, horizontal modulus reduction coefficient (n) used when tension is 

observed in granular bases, 

For nonlinear bases and subgrades: model selection and model parameters; 

(h) No Tension or Equilibrium Analysis: 

For continuum approach: optional usage of modified stress transfer tension 

modification approach (Doddihal and Pandey, 1984), 
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2 

limiting tensile strength (F/L ) of granular materials 

(default value has been set at 0.1 psi, 0.689 kPa.), 

For block model approach: shear stiffness reduction coefficient for slip, 
number of maximum iterations for block equilibrium. 

The output capabilities of the GT-PAVE program give a complete state of stress, 

strain and deformation of the finite element model. The program first prints the input 

information to an user specified output file for verification purposes. Then, the following 

information is printed for each load increment both on the screen and in the output file 

during the execution of the program: 

The results of nonlinear iterations: iteration number, maximum individual error 

and element number, maximum cumulative error, 

convergence messages; 

The results of tension/equilibrium iterations: iteration number, number of interface 

elements in slip and separation; convergence 

messages. 

Finally, the computed output response variables are printed in the output file. The 

results of the analysis include by default the following: 

(i) the displacements of the nodal points, 

(ii) the stresses and strains calculated at the center of the elements, 

(iii) the principal stresses and strains at the center of the elements, 
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(iv) the stresses and strains averaged at the nodes, 

(v) the maximum and minimum summary of the strains and stresses, and 

(vi) the interface stresses and strains if granular base has been modeled using the 

block model approach. 

By specifying the element numbers in the input file, the stresses and strains calculated at 

the nodes in each element can also be printed in the output file. This option is best to use 

for the elements at the layer interfaces since the averaged nodal response values could be 

erroneous for the nodes shared by two neighboring layers. 

A separate output file has been reserved in the GT-PAVE program for the fast 

output data visualization of the pavement sections using the Tecplot software (Amtec 

Engineering Inc., Bellewue, WA, 1993). The computed total displacements are printed in 

the first zone of this output file together with the geometry of the finite element mesh. 

The stresses and strains obtained at the integration points in each pavement layer are then 

printed in separate data zones to make possible the interpolation of the results on the 

nodes of the complete finite element mesh. The final output file, therefore, becomes 

automatically generated at the end of the GT-PAVE program run to be input into the 

Tecplot software. The results can then be easily visualized in the form of the deformed 

mesh and contour plots for different response variables such as vertical or radial stresses. 
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