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SUMMARY

Simulation is perhaps the most widely used systems-engineering tool in a variety of

engineering and scientific domains. Large-scale applications of simulation provide critical

support for planning and analysis in the governmental and military sectors as well as in

numerous industries, including aerospace, electronics, finance, healthcare, manufacturing,

supply chains, and telecommunications.

Steady-state simulations play a crucial role in the design and performance evaluation of

complex production and service systems (Conway [1], Fishman [2], Hopp and Spearman

[3], Law [4]).

While the steady-state mean of a simulation response characterizes central tendency,

a (marginal) steady-state quantile characterizes the long-run risk associated with the in-

dividual realizations (Nelson [5]). The estimation of a steady-state quantile is typically a

substantially harder problem than the estimation of the mean: while both problems are sub-

ject to effects from the potential presence of an initial transient, substantial serial correlation

in the simulation output process, and departures from normality, quantile estimation is ad-

versely affected by additional issues ranging from the inherent bias of point estimators and

the nature of the marginal distribution such as nonexistence of a probability density function

(p.d.f.), or a p.d.f. with discontinuities and multimodalities with sharp peaks (Alexopoulos

et al. [6]). These theoretical and computational challenges associated with steady-state

quantile estimation have hindered the growth in this area over the last few decades.

This thesis has two main goals: (1) the formulation of the theoretical foundations for

procedures based on Standardized Time Series (STS) for estimating steady-state quantiles

with confidence intervals (CIs) having given coverage probability and, potentially precision;

and (2) the development and experimental evaluation of three automated methods for effec-

tive estimation of marginal quantiles in steady-state simulations: (i) the first fully automated

sequential procedure for estimating steady-state quantiles based on STSs computed from
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nonoverlapping batches; (ii) a fully automated fixed-sample-size procedure for steady-state

quantile estimation based on a single time series; and (iii) the first fully automated fixed-

sample-size procedure for steady-state quantile estimation based on sample paths generated

by independent replications.

Chapter 1 presents a detailed literature review of the current methods for steady-state

quantile estimation and introduces the main topics of this dissertation. Chapter 2 contains

the theoretical results that constitute the basis of the proposed methods in Chapters 4–

6 and provides results from an empirical evaluation of a variety of estimators for the

variance parameter of the empirical-quantile process. Chapter 3 contains exact (or nearly

exact) calculations for the expected values of the variance-parameter estimators in Chapter

2 for the special case of i.i.d. data. Chapter 4 presents and evaluates SQSTS, the first

fully automated sequential procedure for estimating steady-state quantiles based on STSs

that are computed from nonoverlapping batches of observations. Chapter 5 presents and

evaluates FQUEST, a fully automated, fixed-sample-size method for estimating steady-state

quantiles based on a single run. Chapter 6 presents and evaluates FIRQUEST, the first

fully automated, fixed-sample-size method for estimating steady-state quantiles based on

a user-specified number of independent replications. Finally, Chapter 7 contains overall

conclusions, final remarks, and potential future directions.

Some of the contents of this thesis will have been published or submitted for publication

by the time of the submission of this dissertation.
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CHAPTER 1

INTRODUCTION

Simulation is perhaps the most widely used systems-engineering tool in the fields of indus-

trial engineering, operations research, and the management sciences. Large-scale applica-

tions of simulation provide critical support for planning and analysis in the governmental

and military sectors as well as in numerous industries, including aerospace, electronics,

finance, healthcare, manufacturing, supply chains, and telecommunications.

Steady-state simulations play a crucial role in the design and performance evaluation of

complex production and service systems (Conway [1], Fishman [2], Hopp and Spearman

[3], Law [4]).

While the steady-state mean of a simulation response characterizes central tendency,

a (marginal) steady-state quantile characterizes the long-run risk associated with the indi-

vidual realizations (Nelson [5]). For example, let 𝑌𝑘 (𝑘 ≥ 1) denote the loss in the value

of a financial portfolio over the 𝑘th time period of a fixed length (e.g., a single trading

day). Thus, 𝑌𝑘 > 0 represents the magnitude of the loss and 𝑌𝑘 ≤ 0 indicates a gain of

magnitude −𝑌𝑘 over the 𝑘th time period. For each value 𝑦, let 𝐹 (𝑦) ≡ 𝑃(𝑌𝑘 ≤ 𝑦) denote the

cumulative distribution function (c.d.f.) of the steady-state distribution of𝑌𝑘 that is achieved

as 𝑘 → ∞. Given 𝑝 ∈ (0, 1), the 100𝑝% value at risk for the portfolio is the 𝑝-quantile

𝑦𝑝 ≡ 𝐹−1(𝑝) ≡ inf{𝑥 : 𝐹 (𝑦) ≥ 𝑝} of the steady-state loss distribution. Thus, for 𝑝 = 0.95,

the long-run probability that the loss in one period will not exceed 𝑦0.95 is equal to 95%

(Alexopoulos et al. [7]). Another application of steady-state quantile estimation can be

found in contracts between manufacturers and clients, which typically include stipulations

related to quantiles for cycle times, e.g., a guarantee that 95% of items are delivered within

one month.

To set the tone for the literature review below as well as the content of the remaining
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chapters, let {𝑌𝑘 : 𝑘 ≥ 1} be a stationary process with marginal c.d.f. 𝐹 (𝑦) and marginal

probability density function (p.d.f.) 𝑓 (𝑦). For each 𝑘 ≥ 1, define the indicator function

𝐼𝑘 (𝑦) ≡ 1 if 𝑌𝑘 ≤ 𝑦 or 𝐼𝑘 (𝑦) ≡ 0 otherwise. If {𝑌1, . . . , 𝑌𝑛} is a finite sample from this

process, we let 𝑌(1) ≤ · · · ≤ 𝑌(𝑛) be the respective order statistics and define the empirical

c.d.f. 𝐹𝑛 (𝑦) ≡ 𝑛−1 ∑𝑛
𝑘=1 𝐼𝑘 (𝑦), 𝑥 ∈ R. The point estimator of 𝑦𝑝 is �̃�𝑝 (𝑛) ≡ 𝑌(⌈𝑛𝑝⌉) ,

where ⌈·⌉ is the ceiling function. Let 𝐼 (𝑦𝑝; 𝑛) ≡ 𝑛−1 ∑𝑛
𝑘=1 𝐼𝑘 (𝑦𝑝) and assume that the limit

𝜎2
𝐼 (𝑦𝑝) ≡ lim𝑛→∞ 𝑛Var

[
𝐼 (𝑦𝑝; 𝑛)

]
exists and is finite. We shall refer to 𝜎2

𝐼 (𝑦) as the variance

parameter of the indicator process {𝐼𝑘 (𝑦) : 𝑘 ≥ 1}. Under appropriate conditions detailed

in Chapter 2, one can show that the variance parameter 𝜎2
𝑝 = lim𝑛→∞ 𝑛Var

[
�̃�𝑝 (𝑛)

]
exists

and can be written as 𝜎2
𝑝 = 𝜎2

𝐼 (𝑦𝑝)/ 𝑓
2(𝑦𝑝) < ∞. To compute a CI for 𝑦𝑝, one needs to

estimate the variance of �̃�𝑝 (𝑛) or the variance parameter 𝜎2
𝑝 .

Unfortunately, theoretical and computational challenges associated with steady-state

quantile estimation have hindered the growth in this area over the last few decades. These

challenges include dealing with: (i) start-up/initialization problems in simulation exper-

iments (Law [4]); (ii) substantial serial correlation in the underlying stochastic process

{𝑌𝑘 : 𝑘 ≥ 1}; (iii) the bias of the quantile point estimator �̃�𝑝 (𝑛) (Wu [8]); and (iv) a variety

of issues associated with the marginal distribution 𝐹 (𝑦), including nonexistence of the p.d.f.

𝑓 (𝑦), or a p.d.f. with discontinuities and multimodalities with sharp peaks (Alexopoulos

et al. [6]), and departures from global smoothness, e.g., nondifferentiability of 𝑓 (𝑦) or

𝐹 (𝑦). In fact, the startup problem in item (i) above may have a more-pronounced effect in

quantile estimation compared to the estimation of the steady-state mean. As a result, the

literature on procedures for steady-state quantile estimation is substantially thinner than that

of procedures related to the estimation of the steady-state mean.

The nonsequential methods of Iglehart [9], Moore [10], and Seila [11, 12] assume that

the output process {𝑌𝑘 : 𝑘 ≥ 1} is regenerative, and use quantile estimates from a fixed

number of regenerative cycles as basic observations. The method of Iglehart [9] delivers an

approximate CI for 𝑦𝑝 based on a suitably adapted central limit theorem (CLT); however,
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this method can be hard to apply reliably without making a pilot run to gather substantial

preliminary information about the c.d.f. 𝐹 (𝑦). The method of Seila [11, 12] uses batches

containing a fixed number of regenerative cycles and applies jackknifing within each batch

so as to reduce the bias of: (i) the quantile estimator computed from each batch; and (ii) the

final quantile estimator obtained by averaging the within-batch point estimates. The method

of Moore [10] differs from the previous two in that it computes the variance estimate for the

sample quantile through a sequence of subsample assignments. For each assignment the

entire sample of 𝑛 cycles (assumed to be power of 2) is divided into two subsamples, A and

B, each consisting of 𝑛/2 cycles. The 𝑘th assignment of cycle 𝑖 goes into subsample A if the

logical product (bit-by-bit) of the binary representations of 𝑘 and 𝑖 has an even number of

1’s or into subsample B otherwise. Seila [12] compares the three aforementioned methods

in [9]–[12] and elaborates on their advantages and disadvantages. The main drawback of all

three methods is that in a complex or congested system with infrequent regeneration epochs,

a large sampling effort may be needed to simulate a sufficient number of regenerative cycles

so as to ensure good performance of the point estimators and CIs for the quantile of interest.

These challenges escalate for extreme quantiles (Seila [12]).

The indirect method of Bekki et al. [13] delivers point estimators and CIs for a set

of selected quantiles of job cycle times in a manufacturing system. This fixed-sample-

size (nonsequential) method estimates a given quantile 𝑦𝑝 by a four-term Cornish-Fisher

expansion (Fisher and Cornish [14]) based on the standard normal quantile 𝑧𝑝 and the first

four sample moments of the job cycle times {𝑌1, . . . , 𝑌𝑛}. The method has the advantage

of estimating multiple quantiles simultaneously without storing or sorting data. However,

a sample moment computed from strongly correlated data often requires a large sample for

accurate estimation of the associated true moment, and this problem worsens for higher-order

moments. The impact of this problem can be clearly seen in the authors’ use of sample

sizes of 30 and 60 million to analyze job cycle times in simple queueing systems with

server utilizations below and above 90%, respectively. In addition, this method may yield
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unreliable point estimators of 𝑦𝑝 if the marginal density 𝑓 (𝑦) exhibits highly nonnormal

behavior since the Cornish-Fisher expansion does not produce approximations at the same

level of accuracy for different non-normal distributions. Such a pathology occurs in job

cycle times from an M/M/1/LIFO queueing system [i.e., a single-server system with a last

in, first out (LIFO) queue discipline] because the steady-state distribution of a cycle time

typically has such larger values of its absolute skewness and its kurtosis that a four-term

Cornish-Fisher expansion cannot adequately “adjust” 𝑧𝑝 so as to estimate 𝑦𝑝 accurately. This

problem was partially rectified in Bekki et al. [15] by combining the four-term Cornish-

Fisher expansion with a Box-Cox transformation; nevertheless, the revised procedure still

requires relatively large sample sizes. Furthermore, the Cornish-Fisher expansion is known

to produce less reliable approximations as the probability 𝑝 approaches zero or one (extreme

quantile estimation), cf. Bekki et al. [13].

Raatikainen [16, 17] introduced the first sequential quantile-estimation procedures in the

simulation literature. In Raatikainen [16] estimates of several selected quantiles are com-

puted by the extended P2 algorithm (Jain and Chlamtac [18]). The P2 method approximates

the inverse empirical c.d.f. 𝐹−1
𝑛 (𝑢) ≡ 𝑌(⌈𝑛𝑢⌉) for 𝑢 ∈ (0, 1) using a piecewise-quadratic

function 𝑄𝑛 (𝑢) to obtain the point estimate �̊�𝑝 (𝑛) ≡ 𝑄𝑛 (𝑝) of 𝑦𝑝 for a selected value of 𝑝.

In Raatikainen [17] the CI for 𝑦𝑝 is based on the following: a heuristic approximation to the

large-sample behavior of 𝑛1/2 [ �̊�𝑝 (𝑛) − 𝑦𝑝], spectral estimation of the variance parameter

𝜎2
𝐼 (𝑦𝑝) of the indicator process {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1}, and estimation of the unknown value

𝑓 (𝑦𝑝) expressed as an approximation to the reciprocal of the derivative 𝑄′𝑛 (𝑦𝑝). The pro-

cedure in Raatikainen [17] stops when the CI for each selected quantile satisfies its relative

precision requirement. Simultaneous CIs were computed using Bonferroni’s inequality,

hence they are conservative. Four main issues limit the applicability of this methodology:

(i) although it avoids sorting and has low storage requirements, the method lacks a rigorous

basis ensuring that �̊�𝑝 (𝑛) =⇒
𝑛→∞

𝑦𝑝, where =⇒
𝑛→∞

denotes weak convergence as 𝑛 → ∞

(Billingsley [19]); (ii) the CI for 𝑦𝑝 requires estimating the unknown value 𝑓 (𝑦𝑝), but the
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author’s approximation to 1/𝑄′𝑛 (𝑦𝑝) is not guaranteed to converge in distribution to 𝑓 (𝑦𝑝)

as 𝑛 → ∞ because of problem (i) and because 𝑄′𝑛 (𝑢) is not guaranteed to converge in

distribution to the derivative d
d𝑢𝐹

−1(𝑢) = 1/ 𝑓 (𝑦𝑢) for each 𝑢 ∈ (0, 1) as 𝑛 → ∞; (iii) the

conservative nature of the CIs due to Bonferroni’s inequality; and (iv) recent numerical

experiments (Alexopoulos et al. [7] and Chapters 4–6 of this dissertation) indicate that the

advantages of efficient sorting techniques and inexpensive storage have now surpassed those

of the extended P2 algorithm.

McNeil and Frey [20] developed a fixed-sample-size method for estimating extreme

quantiles of the negative log-return on a financial asset price. The method fits a GARCH-

type model (Bollerslev et al. [21]) to a return dataset of size 𝑛 using a pseudo-maximum-

likelihood approach. Then 𝑦𝑝 is estimated from the 𝑘 + 1 largest order statistics of the

estimated residuals using a generalized Pareto approximation to the extreme upper tail of

the c.d.f. of the residuals. This method requires that 𝑛 is sufficiently large, 𝑘 ≪ 𝑛, and

𝑝 > 1 − 𝑘/𝑛; but no general guidelines are provided for setting the values of 𝑛 and 𝑘 .

Further, the method does not return a CI for 𝑦𝑝.

The fixed-sample-size procedure of Drees [22] fits an extreme-value distribution to a

negative log-return dataset to deliver point estimators and CIs for certain extreme quantiles.

However, this procedure is not designed to deliver a consistent point estimator for an

arbitrary, user-specified 𝑦𝑝 or a CI that satisfies user-specified requirements on its coverage

probability and precision as 𝑛 → ∞. Instead, Drees’s method requires the user to select a

sequence of positive probabilities {𝑝𝑛 : 𝑛 ≥ 1} and a positive integer sequence {𝑘𝑛 : 𝑛 ≥ 1}

with the following asymptotic properties as 𝑛 → ∞: (i) 𝑝𝑛 = 𝑂 (1/𝑛); (ii) 𝑘𝑛 → ∞ with

𝑘𝑛 = 𝑜(𝑛); (iii) ln2{𝑛 ln4 [ln(𝑛)]} = 𝑜(𝑘𝑛); (iv) ln(𝑛𝑝𝑛) = 𝑜(𝑘1/2
𝑛 ); and (v) 𝑛𝑝𝑛 = 𝑜(𝑘𝑛).

Unfortunately, no guidance is offered on how to select these sequences in practice. Given

𝑛, 𝑝𝑛 and 𝑘𝑛, point and CIs of 𝑦𝑝𝑛 are computed from the 𝑘𝑛 + 1 largest order statistics

of the observed returns. If properties (i)–(v) hold (along with some technical assumptions

detailed in Drees [22]) and if 𝛼 ∈ (0, 1), then as 𝑛→∞ this procedure delivers a CI of 𝑦𝑝𝑛
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with asymptotic coverage probability 1 − 𝛼. However, in its current formulation, it is clear

that Drees’s nonsequential procedure cannot be extended to the estimation of an arbitrary

extreme quantile (Alexopoulos et al. [23]).

The sequential algorithms of Chen and Kelton [24, 25] are based on a few (typically 3)

approximately i.i.d. simulation runs. On each run of the authors’ zoom-in (ZI) algorithm,

each iteration recomputes the required size of a data buffer as well as lower and upper bounds

on the order statistics used to estimate 𝑦𝑝 so that the ZI algorithm progressively “zooms

in” toward 𝑦𝑝. The end of the first run is based on six stopping rules. The subsequent

runs use the ending buffer size from the first run and stop when the buffer is full. The

results from all runs are not i.i.d. due to their joint dependence on the random buffer size

realized on the first run. On each run of the quasi-independent (QI) algorithm of Chen

and Kelton [24], every iteration attempts to collect approximately i.i.d. observations by

applying progressively larger spacing between the observations used to compute a quantile

estimator. The run ends after 15 iterations. Although the authors find that the ZI algorithm

outperforms the QI algorithm in highly correlated processes, the ZI algorithm’s reliance

on several user-specified parameters makes it difficult to implement as a robust procedure

requiring minimal user intervention. The two-phase QI algorithm of Chen and Kelton [25]

outperforms the authors’ original QI algorithm and it provides an estimate of the steady-

state p.d.f. (the two-phase QI algorithm’s steps are further discussed in Alexopoulos et al.

[7]). Unfortunately, the two-phase QI algorithm can require relatively large sample sizes

and was outperformed by the recent Sequest method of Alexopoulos et al. [7] with respect

to sampling efficiency.

Dong and Nakayama [26] developed quantile-estimation methods based on Latin hyper-

cube sampling (LHS) for a finite-horizon simulation given a fixed number of independent

random inputs and a single response𝑌 with c.d.f. 𝐹 (𝑦). The goal is to generate 𝑠 dependent

runs yielding dependent and identically distributed responses {𝑌1, . . . , 𝑌𝑠} that are used to

build an asymptotically valid CI for the quantile 𝑦𝑝 ≡ 𝐹−1(𝑝) as 𝑠 → ∞. The resulting CI
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has reduced half-length (HL) compared with the usual CI based on 𝑠 i.i.d. runs. However,

these LHS-based methods do not apply to an infinite-horizon simulation, where we seek

to estimate the steady-state quantile 𝑦𝑝 of the dependent responses {𝑌𝑘 : 𝑘 ≥ 1} generated

within a single prolonged run. The latter remark also applies to the LHS-based method of

Jin et al. [27].

Recently, Alexopoulos et al. [23, 7] developed two state-of-the-art automated sequential

procedures for steady-state quantile estimation. The Sequest method of Alexopoulos et

al. [7] is an automated sequential procedure that delivers CIs for nonextreme quantiles

(0.05 ≤ 𝑝 ≤ 0.95) with user-specified absolute or relative precision. The algorithm takes

advantage of ideas from recent batch-means-based methods (Tafazzoli and Wilson [28])

and sectioning (Asmussen and Glynn [29], Section III.5a) and incorporates techniques

to (i) reduce the bias in the point estimator due to the initial transient or inadequate run

length; and (ii) adjust the CI HL to compensate for distorting effects due to autocorrelation

or skewness in the quantile estimators computed from the nonoverlapping batches. The

Sequem procedure of Alexopoulos et al. [23] is an extension of Sequest in the sense that it

uses the maximum-transformation technique of Heidelberger and Lewis [30] to overcome

problems related to the CI coverage probability for extreme quantiles (𝑝 ≥ 0.95 or 𝑝 ≤ 0.05)

in the absence of CI precision requirements. The maximum-transformation technique

converts the estimation of extreme quantiles to nonextreme quantiles. For example, let

𝑝 ≥ 0.95 and let {𝑌 ∗1 , . . . , 𝑌
∗
𝑐 } be an independent and identically distributed (i.i.d.) sample

from the c.d.f. 𝐹 (𝑦). Also, let 𝑐 = ⌊ln(0.9)/ln(𝑝)⌋, where ⌊·⌋ is the floor function, and

define the r.v. 𝑉 = max{𝑌 ∗1 , . . . , 𝑌
∗
𝑐 }. Since the c.d.f. of 𝑉 is 𝐹𝑉 (𝑣) = 𝐹 (𝑣)𝑐, we have

𝐹𝑉 (𝑦𝑝) = 𝐹 (𝑦𝑝)𝑐 = 𝑝𝑐 ≡ 𝑞; so, estimating 𝑦𝑝 reduces to estimating the 𝑞-quantile of the

distribution of 𝑉 . (To estimate lower extreme quantiles, one uses an analogous minimum

transformation.)

The Sequem method arranges the dataset {𝑌1, . . . , 𝑌𝑛} into 𝐿 contiguous groups, each

consisting of 𝑐𝑚 consecutive observations, so that 𝑛 = 𝑐𝑚𝐿. Each group is arranged in
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a 𝑐 × 𝑚 matrix whose rows are formed from consecutive nonoverlapping batches of size

𝑚 within the group—that is, the first batch of 𝑚 observations in the group forms the first

row of the associated matrix, the second batch of 𝑚 observations in the group forms the

second row of the matrix, and so on. The basic observations are the maxima down each

column (Alexopoulos et al. [23]). Sequem also uses a sectioning mechanism to obtain

a point estimator of 𝑦𝑝: the technique applies the maximum transformation to the entire

simulation-generated time series of length 𝑛 by conceptually arranging that time series into a

𝑐× (𝑚𝐿) matrix so that the first subseries of 𝑚𝐿 consecutive observations form the first row

of the matrix, the second subseries of 𝑚𝐿 consecutive observations form the second row of

the matrix, and so on. For more details and an illustration, see Figures 1–2 of Alexopoulos

et al. [23]. When applied to a suite of difficult test processes, Sequest and Sequem exhibited

ease of use, close conformance to user-specified requirements on the coverage probability

and precision of the CI, and outperformed previously established methods with regard to

sample size requirements.

The methodology of standardized time series (STS) was proposed by Schruben [31],

Goldsman and Schruben [32], and Goldsman et al. [33] for the estimation of the steady-

state mean; see Alexopoulos et al. [34] for a detailed review of the related literature. With

regard to this problem, Dong and Glynn [35] laid theoretical foundations for sequential,

asymptotically valid CI procedures based on the STS method. The sufficient conditions

for their work include the strong approximation assumption of Damerdji [36]; certain

regularity conditions involving the behavior of the sequential procedure as a function of the

simulation clock and sample path; and weak convergence of the denominator of the final

CI pivot quantity to a random variable (r.v.) that is positive almost surely (a.s.) when the

precision requirement of the CI approaches zero.

Although STS-based estimation methods for the steady-state mean date back to the early

1980s, the use of STSs for quantile estimation is only a recent development. In fact, the first

application of this methodology for the very special case of i.i.d. data was proposed by Calvin
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and Nakayama [37]. Alexopoulos et al. [38, 39] have raised the stakes substantially by laying

out a theoretical framework for STS-based steady-state quantile estimation in dependent

processes, established asymptotic properties for a variety of variance-parameter estimators

based on nonoverlapping batches, and closed various theoretical gaps related to STS-based

variance-parameter estimation dating back to the 1980s. In particular, Alexopoulos et al.

[39] formulate an estimator for the variance parameter 𝜎2
𝑝 of the quantile process, which is a

linear combination of (i) the average of the STS “area” estimators for𝜎2
𝑝 computed from each

nonoverlapping batch (see Equations (2.14)–(2.16) in Chapter 2) and (ii) a sectioning-based

variance-parameter estimator of 𝜎2
𝑝 that involves the associated batched quantile estimators

(BQEs) as well as the full-sample quantile estimator. Alexopoulos et al. [39] show that this

combined estimator of 𝜎2
𝑝 converges weakly to a scaled chi-squared r.v. with nearly twice

the degrees of freedom (d.f.) compared to each of its constituents as the batch size tends to

infinity while the batch count is held constant.

This thesis has two main goals: (1) the formulation of the theoretical foundations for

STS-based procedures for estimating steady-state quantiles with CIs having given coverage

probability and, potentially precision; and (2) the development and experimental evaluation

of three automated methods for effective estimation of marginal quantiles in steady-state

simulations: (i) the first fully automated sequential procedure for estimating steady-state

quantiles based on STSs computed from nonoverlapping batches; (ii) a fully automated

fixed-sample-size procedure for steady-state quantile estimation based on a single run; and

(iii) the first fully automated fixed-sample-size procedure for steady-state quantile estimation

based on independent replications.

Chapter 2 of this thesis lays out and builds on the theoretical findings of Alexopoulos

et al. [38, 39] by presenting the asymptotic properties for a variety of variance-parameter

estimators for the sample quantile computed from nonoverlapping batches. In particular,

Chapter 2 contains the proof of a CLT (Theorem 2.3.4) for the vector of signed weighted

areas of the STSs computed from nonoverlapping batches of the simulation output as the
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batch size increases while the batch count remains fixed. This result is the basis for the key

steps of the sequential and fixed-sample-size procedures in Chapters 4–6 of this dissertation.

Chapter 2 ends with (i) an empirical performance evaluation of several estimators of the

variance parameter 𝜎2
𝑝 ; (ii) derivation of STS-based area estimators of 𝜎2

𝑝 using alternative

weight functions (not in the current literature), and (iii) an empirical evaluation of the

estimators for 𝜎2
𝑝 in item (ii).

In Chapter 3, we perform a comparison of the variance-parameter estimators of 𝜎2
𝑝 in

Chapter 2 based on exact (or nearly exact) calculations of their expected values for the

special case of i.i.d. samples from a set of distributions with tractable joint moments of

order statistics.

Chapter 4 of this thesis formulates and evaluates the first fully automated sequential

procedure for estimating steady-state quantiles based on STSs that are computed from

nonoverlapping batches of observations. Our so called “SQSTS” procedure incorporates

elements from two existing sequential methods having different objectives: the SPSTS

method of Alexopoulos et al. [40] for estimation of the steady-state mean and the Sequest

method of Alexopoulos et al. [7] for estimation of steady-state quantiles.

In comparison with the SPSTS and Sequest procedures, the proposed SQSTS method

has the following key differences and advantages: (i) SQSTS is substantially simpler than

Sequest in that the former only relies on statistical tests for independence and normality and

manages to avoid CI adjustments for skewness and autocorrelation; (ii) SQSTS modifies

the approach of SPSTS with adjustments targeting issues associated with the small-sample

bias of the STS-based variance estimator (for instance, SQSTS adds a rebatching step); (iii)

it overcomes an ad hoc compensation for the variance estimator used in SPSTS to resolve

small-sample bias issues; and (iv) most importantly, it uses a combined estimator of 𝜎2
𝑝

from Chapter 2 with smaller asymptotic variability (as the batch size tends to infinity) than

the respective estimator of 𝜎2
𝑝 employed in Sequest.

While sequential estimation methods are important, users are often constrained by
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simulation models that are not integrated with the underlying sequential method or by

datasets that are limited due to budget constraints. For example, when the implementation

of the Sequest method (Alexopoulos et al. [7]) in the Sequest app [41] encounters a failed

statistical test or an insufficient sample size to compute a CI with a given precision, it

reports an estimate of the additional observations that should be generated and halts. If the

data are generated by a simulation model, the user may have to restart the model and rerun

Sequest from scratch; and this cycle may need to be repeated multiple times until the method

can terminate successfully. The literature contains a few fixed-sample-size procedures for

estimating the steady-state mean; see Law [4]. The most efficient is the N-Skart procedure

of Tafazzoli et al. [42] which applies the randomness test of von Neumann [43] to batch

means computed from dynamically reconstructed batches with intervening “spacers.” If

the method determines that additional data are required, it seeks permission from the user

to proceed with the computation of a CI that employs adjustments for the residual lag-1

autocorrelation and skewness between the batch means. The latter CI is delivered by default

when the sample size is sufficient to pass the randomness test with an appropriate set of

spaced batch means.

To the best of our knowledge, no commercial simulation software contains a fixed-

sample-size procedure for computing CIs for steady-state quantiles. Both Arena [44] and

Simio [45] incorporate a rudimentary fixed-sample-size procedure for estimating the steady-

state mean based on a single replication. The procedure uses the method of nonoverlapping

batch means (NBMs) (Fishman [2]) and a simple rebatching scheme that ends up with a

batch count between 20 and 39. The respective batch means are subjected to the one-sided

randomness test of von Neumann [43] with type-I error 0.10 (to guard against positive

autocorrelation among the batch means). If the batch means pass the test, the method

delivers a CI based on Student’s 𝑡 ratio; otherwise, it delivers an exorbitant CI HL indicating

that the batch means failed the randomness test. Unfortunately, neither software package

incorporates a method for computing CIs for steady-state quantiles based on a sufficiently
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long run. Simio computes nonparametric CIs from replicate statistics, such as the average

cycle time or average waiting time in a buffer, but does not even have a function that

computes a sample quantile from a tally statistic collected during a replication. (It should

be clear that the distribution of the average cycle time collected during a replication is

different from the marginal distribution of the cycle time in steady state.)

In Chapter 5 of this thesis, we develop and evaluate FQUEST, a fully automated fixed-

sample-size procedure for computing CIs for steady-state quantiles based on a single run.

Although there are a few fixed-sample-size procedures for quantile estimation (e.g., Hei-

delberger and Lewis [30] and Bekki et al. [13]), to the best of our knowledge, FQUEST

is the first such method that (i) uses the STS methodology; (ii) addresses the simulation

initialization problem; and (iii) warns the user when the dataset is insufficient and, subject

to user’s approval, delivers a heuristic CI. Although FQUEST is applicable to i.i.d.samples,

one can use simpler nonparametric methods (Conover [46], pp. 143–148) or apply more

advanced variance reduction methods; cf. Dong and Nakayama [26] and references therein.

Our FQUEST method draws elements from three procedures: (i) the SQSTS method pre-

sented in Chapter 4; (ii) the Sequest method of Alexopoulos et al. [7], and (iii) the N-Skart

method of Tafazzoli et al. [42]. Since the aforementioned methods have different objectives,

as explained above, FQUEST delineates from all three with regard to its scope, structure,

and the computation of the final CI. Specifically, FQUEST is designed to provide a CI for

a selected steady-state quantile, with a user-specified error probability, based on a single

time series of an arbitrary fixed length. If the sample size is insufficient, FQUEST issues

a warning and the user has the option to terminate the procedure early without getting a

CI. In any case, the user can utilize the output of FQUEST as the first step for obtaining a

conservative estimate of the sample size required to compute a CI with a certain absolute

or relative precision.

FQUEST incorporates the combined variance-parameter estimator presented in Chapter

2 and also employed in the sequential SQSTS method in Chapter 4. The theoretical basis for
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its statistical tests is outlined in Theorem 2.3.4. The method employs this result to remove a

subset of data that are potentially contaminated by the initial transient as well as to obtain a

sufficiently large batch size (subject to the sample size limitation). If all statistical tests are

passed, FQUEST constructs a CI based on the empirical quantile computed from the entire

(truncated) sample and the combined estimator of the variance parameter. However, when

some of the statistical tests fail due to an insufficient sample size, the algorithm notifies the

user asking for permission to proceed with the construction of a CI. If the user approves,

FQUEST delivers the full-sample point estimator and an asymmetric CI for 𝑦𝑝 formed

from a set of CIs obtained from the full-sample point estimator, the BQEs, and the batched

(average) STS area estimator for the variance parameter of the quantile process; otherwise,

the process is terminated.

Steady-state analysis methods based on a single simulation replication are convenient

in the sense that data from the onset of the run may have to be eliminated to diminish the

effects of initialization bias. Unfortunately, the potential of pronounced autocorrelation in

the underlying output process may require excessively large sample sizes to attenuate this

correlation effect and yield reliable CIs for the performance measure of interest. On the other

hand, steady-state estimation methods based on independent replications are convenient and

reduce the correlation problems. For practical purposes the need for such tools is further

enhanced by the fact that multiple replications can be made simultaneously on different

cores/threads within a single computer or on different computers on a network, provided

that the software being used for simulation supports this (Law [4]). On the negative side,

independent replications can induce systematic bias if insufficient truncation is applied at

the onset of each replication (Alexopoulos and Goldsman [47], Fishman [48]). Further, for

fixed-sample-size procedures, one has to decide on the number of replications and the run

length within each replication.

In Chapter 6 of this thesis, we develop and evaluate FIRQUEST, the first fully auto-

mated, fixed-sample-size method for estimating steady-state quantiles based on independent

13



replications. FIRQUEST is essentially an extension of the FQUEST procedure in Chapter 5

with adjustments to handle the user-specified number of independent replications and more

aggressive steps to remove any potential warm-up effects that can induce a systematic bias

across replicate estimates (Alexopoulos and Goldsman [47]).

The remainder of this thesis is organized as follows. Chapter 2 contains the theoretical

results that constitute the basis of the proposed methods in Chapters 4–6 and provides results

from the empirical evaluation of a variety of variance-parameter estimators. Chapter

3 contains exact (or nearly exact) calculations for the expected values of the variance-

parameter estimators in Chapter 2 for the special case of i.i.d. data. Chapter 4 presents and

evaluates SQSTS, the first fully automated sequential procedure for estimating steady-state

quantiles based on STSs that are computed from nonoverlapping batches of observations.

Chapter 5 presents and evaluates FQUEST, a fully automated, fixed-sample-size method for

estimating steady-state quantiles based on a single run. Chapter 6 presents and evaluates

FIRQUEST, the first fully automated, fixed-sample-size method for estimating steady-state

quantiles based on a user-specified number of independent replications. Finally, Chapter 7

contains overall conclusions, final remarks, and potential future directions.
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CHAPTER 2

THEORETICAL FOUNDATIONS AND EMPIRICAL EVALUATION OF

VARIANCE-PARAMETER ESTIMATORS AND CONFIDENCE INTERVALS

FOR STEADY-STATE QUANTILES

This chapter contains the basic notation, assumptions, and core results that form the foun-

dation for designing the procedures in Chapters 4–6 to estimating marginal quantiles in

steady-state simulations.

Specifically, in Section 2.1 we introduce the notation that will be used throughout this

thesis. Section 2.2 states the main assumptions needed to establish the core theoretical

results for quantile estimation. Section 2.3 presents the asymptotic properties for quantiles

based on nonoverlapping batches that form the foundation of the theory needed for the

design of effective procedures for quantile estimation. In Section 2.4 we discuss the

computational effort required to efficiently compute the estimates of the variance parameter

of the quantile estimation process based on the STS methodology. Section 2.5 introduces the

main test processes that will be used for the empirical performance evaluation of the quantile

estimation methods of this thesis. Section 2.6 contains an initial empirical evaluation of

the performance of the main variance-parameter estimators, while Section 2.7 contains

an extended empirical evaluation of the performance of a larger set of variance-parameter

estimators. In Section 2.8 we assess weight functions from the literature for STS based

variance parameter estimation. In Section 2.9 we develop new alternative weight functions,

while in Section 2.10 we evaluate their performance.
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2.1 Notation

For 𝑝 ∈ (0, 1), the 𝑝-quantile of a r.v. 𝑋 with c.d.f. 𝐹 (𝑦) is defined as

𝑦𝑝 ≡ 𝐹−1(𝑝) ≡ inf{𝑦 : 𝐹 (𝑦) ≥ 𝑝}.

Our goal is the computation of a point estimate and a CI for 𝑦𝑝 based on a stationary

sample path {𝑌𝑘 : 𝑘 ≥ 1}, which is a warmed-up (i.e., truncated and reindexed) version of

the original sequence of simulation outputs. Let {𝑌𝑘 : 𝑘 = 1, . . . , 𝑛} denote a time series

of length 𝑛 consisting of the first 𝑛 successive outputs, and let 𝑌(1) ≤ · · · ≤ 𝑌(𝑛) be the

respective order statistics. The classical point estimator of 𝑦𝑝 is the empirical 𝑝-quantile

�̃�𝑝 (𝑛) ≡ 𝑌(⌈𝑛𝑝⌉) , where ⌈·⌉ denotes the ceiling function.

For each 𝑦 ∈ R and 𝑘 ≥ 1, we define the indicator r.v. 𝐼𝑘 (𝑦) ≡ 1 if𝑌𝑘 ≤ 𝑥, and 𝐼𝑘 (𝑦) ≡ 0

otherwise; hence E[𝐼𝑘 (𝑦𝑝)] = 𝑝. For 𝑛 ≥ 1, we let 𝐼 (𝑦𝑝; 𝑛) ≡ 𝑛−1 ∑𝑛
𝑘=1 𝐼𝑘 (𝑦𝑝); and for each

ℓ ∈ Z, we let 𝜌𝐼 (ℓ; 𝑦𝑝) ≡ Corr[𝐼𝑘 (𝑦𝑝), 𝐼𝑘+ℓ (𝑦𝑝)] denote the autocorrelation function of the

indicator process {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1} at lag ℓ. Below we also adopt the following notation: 𝑍

denotes an r.v. from 𝑁 (0, 1), the standard normal distribution; 𝒁a ≡
[
𝑍1, . . . , 𝑍a

]T denotes

a a × 1 vector whose components are i.i.d. 𝑁 (0, 1); 𝜒2
a denotes a chi-squared r.v. with a

degrees d.f.; 𝑡a denotes an r.v. having Student’s 𝑡 distribution with a d.f.; and 𝑡𝛿,a denotes

the 𝛿-quantile of 𝑡a.

The assumptions and the core results that are outlined in the following sections are

the key elements for variance cancellation methods (Asmussen and Glynn [29], Chapters

III–IV) to develop 100(1 − 𝛼)% CIs for 𝑦𝑝 with form

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,a�̂�𝑝/
√
𝑛, (2.1)

where �̂�2
𝑝 is an estimator of the (quantile) variance parameter 𝜎2

𝑝 ≡ lim𝑛→∞ 𝑛Var
[
�̃�𝑝 (𝑛)

]
and the d.f. a depend on the underlying quantile-estimation method. The CIs in Equation
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(2.1) will be asymptotically valid in the sense that their coverage probability will tend to

the nominal value 1 − 𝛼 as 𝑛→∞.

2.2 Assumptions

In this section we list the key assumptions for the processes {𝑌𝑘 : 𝑘 ≥ 1} and {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥

1}. Let 𝐷 ≡ 𝐷 [0, 1] be the space of real-valued functions on [0, 1] that are right continuous

with left-hand limits, and let 𝐶 ≡ 𝐶 [0, 1] be the subspace of continuous functions on the

same interval. We use the following notation and key properties of the space 𝐷. Each Z ∈ 𝐷

is bounded on [0, 1] with at most countably many discontinuities; thus Z is continuous

almost everywhere (a.e.) on [0, 1] (Billingsley [19], p. 122; Kolmogorov and Fomin [49],

§§28.3–28.4). Let ∥ Z ∥ ≡ sup{ |Z (𝑡) | : 𝑡 ∈ [0, 1] } be the sup norm, and let Λ denote the

class of strictly increasing, continuous mappings of [0, 1] onto itself, where I ∈ Λ denotes

the identity map. Thus each _ ∈ Λ must have _(0) = 0 and _(1) = 1. For Z, 𝜔 ∈ 𝐷, let

𝑑 (Z, 𝜔) ≡ inf_∈Λ max{ ∥_ − I∥, ∥ Z − 𝜔 ◦_ ∥ } denote the distance between Z and 𝜔 in the

Skorohod 𝐽1 metric on 𝐷, where 𝜔◦_(𝑡) ≡ 𝜔[_(𝑡)] for each 𝑡 ∈ [0, 1] (Billingsley [19], pp.

121–129; Whitt [50], §3.3). Hence with the metric 𝑑 (Z, 𝜔) , the space 𝐷 is separable—i.e.,

it contains a countable dense subset (Billingsley [19], Theorem 12.2). Since the definition

of 𝑑 (Z, 𝜔) includes the case where _(𝑡) = I(𝑡) ≡ 𝑡 for 𝑡 ∈ [0, 1] , we have 𝑑 (Z, 𝜔) ≤ ∥ Z−𝜔∥

for Z, 𝜔 ∈ 𝐷 .

Geometric-Moment Contraction (GMC) Condition (Wu [8]). The process {𝑌𝑘 : 𝑘 ≥ 1}

is defined by a function b (·) of a sequence of i.i.d. r.v.’s {Y𝑘 : 𝑘 ∈ Z} such that 𝑌𝑘 =

b (. . . , Y𝑘−1, Y𝑘 ) for 𝑘 ≥ 0. Moreover, there exist constants 𝜓 > 0, 𝐶∗ > 0, and 𝑟 ∈ (0, 1)

such that for two independent sequences {Y𝑘 : 𝑘 ∈ Z} and {Y′
𝑘

: 𝑘 ∈ Z} each consisting of

i.i.d. variables distributed like Y0, we have

E[|b (. . . , Y−1, Y0, Y1, . . . , Y𝑘 ) − b (. . . , Y′−1, Y
′
0, Y1, . . . , Y𝑘 ) |𝜓] ≤ 𝐶∗𝑟 𝑘 , for 𝑘 ≥ 0.
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The GMC condition holds for a large collection of processes, including autoregressive–

moving average time series (Shao and Wu [51]), a rich collection of linear and nonlinear

processes with short-range dependence, and a broad class of Markov chains; see Alexopou-

los et al. [7, 39] for an extended list of citations and empirical methods for verifying the

GMC assumption. Recently, Dingeç et al. [52] have established the validity of the GMC

condition for the waiting-time process (prior to service) in an M/M/1 queueing system and

a G/G/1 system with non-heavy-tailed service-time distributions.

Density-Regularity (DR) Condition. The p.d.f. 𝑓 (·) is bounded on R and continuous a.e.

on R; moreover, 𝑓 (𝑦𝑝) > 0, and the derivative 𝑓 ′(𝑦𝑝) exists.

Short-Range Dependence (SRD) of the Indicator Process. The indicator process

{𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1} has the SRD property so that

0 <
∑︁
ℓ∈Z

𝜌𝐼 (ℓ; 𝑦𝑝) ≤
∑︁
ℓ∈Z
|𝜌𝐼 (ℓ; 𝑦𝑝) | < ∞. (2.2)

Thus the variance parameters for the r.v.’s 𝐼 (𝑦𝑝; 𝑛) and �̃�𝑝 (𝑛) satisfy the relations

𝜎2
𝐼 (𝑦𝑝) ≡ lim

𝑛→∞
𝑛Var

[
𝐼 (𝑦𝑝; 𝑛)

]
= 𝑝(1 − 𝑝)

∑︁
ℓ∈Z

𝜌𝐼 (ℓ; 𝑦𝑝) ∈ (0,∞),

𝜎2
𝑝 = lim

𝑛→∞
𝑛Var

[
�̃�𝑝 (𝑛)

]
=

𝜎2
𝐼 (𝑦𝑝)

𝑓 2(𝑦𝑝)
∈ (0,∞).


(2.3)

Functional Central Limit Theorem (FCLT) for the Indicator Process. We define the

following sequence of random functions {I𝑛 : 𝑛 ≥ 1} in 𝐷,

I𝑛 (𝑡; 𝑦𝑝) ≡
⌊𝑛𝑡⌋

𝜎𝐼 (𝑦𝑝)𝑛
1/2 [𝐼 (𝑦𝑝; ⌊𝑛𝑡⌋) − 𝑝], for 𝑡 ∈ [0, 1] and 𝑛 ≥ 1, (2.4)

where ⌊·⌋ denotes the floor function. We assume that this random-function sequence

satisfies the FCLT

I𝑛 =⇒
𝑛→∞

W (2.5)

18



in 𝐷 with the appropriate metric, where W denotes a standard Brownian motion on [0, 1];

and =⇒
𝑛→∞

denotes weak convergence as 𝑛 → ∞ (Billingsley [19], pp. 1–6 and Theorem

2.1). Hereafter, the argument 𝑦𝑝 is omitted from the notation for random functions unless

it is needed to avoid ambiguity.

Remark 2.2.1. If the SRD condition defined by Equations (2.2) and (2.3) holds, then for

all practical purposes it is generally reasonable to assume the validity of the FCLT defined

by Equations (2.4) and (2.5) (Whitt [50], p. 107, last paragraph).

Remark 2.2.2. Recently, Dingeç et al. [53] proved that if {𝑌𝑘 : 𝑘 ≥ 1} is stationary and

satisfies the GMC and DR conditions, then the associated indicator process {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1}

satisfies the SRD properties in Equation (2.3). This result and Remark 2.2.1 provide good

theoretical and practical evidence of the mutual compatibility of the GMC, SRD, and FCLT

conditions.

2.3 Asymptotic Properties Based on Nonoverlapping Batches

We focus now on the asymptotic properties that are based on nonoverlapping batches. Given

a fixed batch count 𝑏 ≥ 2, for 𝑗 = 1, . . . , 𝑏, the 𝑗 th nonoverlapping batch of size 𝑚 ≥ 1 con-

sists of the subsequence {𝑌( 𝑗−1)𝑚+1, . . . , 𝑌 𝑗𝑚}, where we assume 𝑛 = 𝑏𝑚. The batch mean

of the associated indicator r.v.’s for the 𝑗 th batch is 𝐼 (𝑦𝑝; 𝑗 , 𝑚) ≡ 𝑚−1 ∑𝑚
ℓ=1 𝐼( 𝑗−1)𝑚+ℓ (𝑦𝑝).

Similarly to the full-sample case, we define the order statistics 𝑌 𝑗 ,(1) ≤ · · · ≤ 𝑌 𝑗 ,(𝑚) corre-

sponding to the 𝑗 th batch and denote the 𝑗 th BQE of 𝑦𝑝 as �̂�𝑝 ( 𝑗 , 𝑚) ≡ 𝑌 𝑗 ,(⌈𝑚𝑝⌉) .

Theorem 2.3.1. (Alexopoulos et al. [7]) If the output process {𝑌𝑘 : 𝑘 ≥ 1} satisfies the

GMC and DR conditions, and the indicator process {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1} satisfies the SRD and

the respective FCLT conditions, then we obtain the Bahadur representation

�̂�𝑝 ( 𝑗 , 𝑚) = 𝑦𝑝 −
𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝

𝑓 (𝑦𝑝)
+𝑂a.s.

[
(log𝑚)3/2

𝑚3/4

]
, as 𝑚 →∞ (2.6)

19



for 𝑗 = 1, . . . , 𝑏, where the big-𝑂a.s. notation for the remainder

𝑄 𝑗 ,𝑚 ≡ �̂�𝑝 ( 𝑗 , 𝑚) − 𝑦𝑝 +
𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝

𝑓 (𝑦𝑝)
= 𝑂a.s.

[
(log𝑚)3/2

𝑚3/4

]
(2.7)

means there exist associated r.v.’s U 𝑗 and R 𝑗 that are bounded a.s. and satisfy

|𝑄 𝑗 ,𝑚 | ≤ U 𝑗

(log𝑚)3/2

𝑚3/4 , for 𝑚 ≥ R 𝑗 and 𝑗 = 1, . . . , 𝑏 a.s. (2.8)

Further,

𝑚1/2 [�̂�𝑝 (1, 𝑚) − 𝑦𝑝, . . . , �̂�𝑝 (𝑏, 𝑚) − 𝑦𝑝
]T

=⇒
𝑚→∞

𝜎𝑝𝒁𝑏 (2.9)

in R𝑏 with the standard Euclidean metric.

2.3.1 Standardized Time Series for Quantile Estimation

The full-sample STS process for quantile estimation is defined as

𝑇𝑛 (𝑡) ≡
⌊𝑛𝑡⌋
𝑛1/2 [ �̃�𝑝 (𝑛) − �̃�𝑝 (⌊𝑛𝑡⌋)], for 𝑛 ≥ 1 and 𝑡 ∈ [0, 1], (2.10)

where �̃�𝑝 (⌊𝑛𝑡⌋) is the empirical 𝑝-quantile (i.e., the ⌈𝑝⌊𝑛𝑡⌋⌉-th order statistic) computed

from the partial sample
{
𝑌𝑘 : 𝑘 = 1, . . . , ⌊𝑛𝑡⌋

}
. We have the following key result.

Theorem 2.3.2. (Alexopoulos et al. [39]) If {𝑌𝑘 : 𝑘 ≥ 1} satisfies the assumptions of

Theorem 2.3.1, then in R × 𝐷,

[
𝑛1/2( �̃�𝑝 (𝑛) − 𝑦𝑝), 𝑇𝑛

]
=⇒

𝑛→∞
𝜎𝑝

[
W (1),B

]
,

where B(𝑡) ≡ W (𝑡) − 𝑡W (1) for 𝑡 ∈ [0, 1] is a standard Brownian bridge process that is

independent of W (1).
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The full-sample STS area estimator of the variance parameter 𝜎2
𝑝 is 𝐴2

𝑝 (𝑤; 𝑛), where:

𝐴𝑝 (𝑤; 𝑛) ≡ 𝑛−1
𝑛∑︁

𝑘=1
𝑤(𝑘/𝑛)𝑇𝑛 (𝑘/𝑛), for 𝑛 ≥ 1 (2.11)

and 𝑤(·) is a deterministic weight function that is bounded and continuous almost every-

where in [0, 1] (so that 𝑤(𝑡)B(𝑡) is Riemann integrable on [0, 1]); and the r.v.

𝑍 (𝑤) ≡
∫ 1

0
𝑤(𝑡)B(𝑡) 𝑑𝑡 ∼ 𝑁 (0, 1). (2.12)

Remark 2.3.1. The r.v. 𝑍 (𝑤) is the signed, weighted area enclosed by the random function

𝑤(𝑡)B(𝑡) for 𝑡 ∈ [0, 1] and the 𝑡-axis so that 𝑍 (𝑤) is normally distributed. The r.v.’s

{𝐴𝑝 (𝑤; 𝑛) : 𝑛 ≥ 1} are designed to yield the following weak-convergence results that

parallel Equation (2.9):

𝐴𝑝 (𝑤; 𝑛) =⇒
𝑛→∞

𝜎𝑝𝑍 (𝑤) and 𝐴2
𝑝 (𝑤; 𝑛) =⇒

𝑛→∞
𝜎2
𝑝𝜒

2
1 . (2.13)

Weight functions that satisfy condition (2.12) include the constant 𝑤0(𝑡) ≡
√

12

(Schruben [31]), the quadratic 𝑤2(𝑡) ≡
√

840(3𝑡2 − 3𝑡 + 1/2) (Goldsman et al. [33]),

and the orthonormal family {𝑤cos,ℓ (𝑡) ≡
√

8𝜋ℓ cos(2𝜋ℓ𝑡) : ℓ = 1, 2, . . .} (Foley and Golds-

man [54]). A brief discussion on the effectiveness of these weights functions for the quantile

estimation problem at hand will be given in Remark 2.3.2 below.

Theorem 2.3.3. (Alexopoulos et al. [39]) If {𝑌𝑘 : 𝑘 ≥ 1} satisfies the assumptions of

Theorem 2.3.1, then Equation (2.13) holds.

The aforementioned results can be extended for the case of nonoverlapping batches

of size 𝑚 (so that 𝑛 = 𝑏𝑚). For 𝑗 = 1, . . . , 𝑏, we define �̂�𝑝 ( 𝑗 , ⌊𝑚𝑡⌋) as the empirical

𝑝-quantile computed from the partial sample
{
𝑌( 𝑗−1)𝑚+𝑘 : 𝑘 = 1, . . . , ⌊𝑚𝑡⌋

}
, and the STS-
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based quantile-estimation process formed from the batch 𝑗 as

𝑇𝑗 ,𝑚 (𝑡) ≡
⌊𝑚𝑡⌋
𝑚1/2

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̂�𝑝 ( 𝑗 , ⌊𝑚𝑡⌋)

]
, for 𝑡 ∈ [0, 1] and 𝑚 ≥ 1. (2.14)

Further, we define the signed (weighted) area computed from batch 𝑗 as

𝐴𝑝 (𝑤; 𝑗 , 𝑚) ≡ 𝑚−1
𝑚∑︁
𝑘=1

𝑤(𝑘/𝑚)𝑇𝑗 ,𝑚 (𝑘/𝑚). (2.15)

The batched STS area estimator is the average of the squared signed areas, namely,

A𝑝 (𝑤; 𝑏, 𝑚) ≡ 𝑏−1
𝑏∑︁
𝑗=1

𝐴2
𝑝 (𝑤; 𝑗 , 𝑚). (2.16)

Since the underlying process {𝑌𝑘 : 𝑘 ≥ 1} is stationary, as 𝑚 → ∞ each 𝑇𝑗 ,𝑚 (·) has

the same asymptotic distribution as the full-sample STS 𝑇𝑛 (·) in Theorem 2.3.2, namely

𝑇𝑗 ,𝑚 =⇒
𝑚→∞

𝜎𝑝B(·). Similarly, because A 2
𝑝 (𝑤; 1, 𝑚) = 𝐴2

𝑝 (𝑤;𝑚) for 𝑚 ≥ 1, Theorem

2.3.3 and the stationarity of the underlying process {𝑌𝑘 : 𝑘 ≥ 1} ensure that as 𝑚 → ∞,

each of the signed areas weakly converges to 𝜎𝑝𝑍 , that is 𝐴𝑝 (𝑤; 𝑗 , 𝑚) =⇒
𝑚→∞

𝜎𝑝𝑍 for

𝑗 = 1, . . . , 𝑏.

Theorems 2.3.4 and 2.3.5 below establish the asymptotic validity of the main CIs used in

the Sequest method of Alexopoulos et al. [7], the SQSTS sequential method in Chapter 4, and

the fixed-sample-size methods in Chapters 5 and 6. In particular, Theorem 2.3.4 establishes

the asymptotic independence of the quantile-based STS processes {𝑇𝑗 ,𝑚 (·) : 𝑗 = 1, . . . , 𝑏}

as well as the asymptotic independence of the respective signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 =

1, . . . , 𝑏} as the batch size 𝑚 → ∞. The convergence of {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} to

i.i.d.𝜎𝑝𝑍 r.v.’s constitutes the basis for the statistical tests of our newly developed procedures

in Chapters 4–6.

Theorem 2.3.4. If {𝑌𝑘 : 𝑘 ≥ 1} satisfies the assumptions of Theorem 2.3.1, then as 𝑚 →∞,

the 𝑏 × 1 vector of the signed areas
[
𝐴𝑝 (𝑤; 1, 𝑚), . . . , 𝐴𝑝 (𝑤; 𝑏, 𝑚)

]T converges weakly to
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the same distributional limit as the (scaled) vector of BQEs in Theorem 2.3.1:

[
𝐴𝑝 (𝑤; 1, 𝑚), . . . , 𝐴𝑝 (𝑤; 𝑏, 𝑚)

]T
=⇒

𝑚→∞
𝜎𝑝𝒁𝑏 . (2.17)

Further,

A𝑝 (𝑤; 𝑏, 𝑚) =⇒
𝑚→∞

𝜎2
𝑝𝜒

2
𝑏/𝑏. (2.18)

Proof. Most of the proof is devoted to establishing Equation (2.17). Then Equation (2.18)

follows immediately by a straightforward application of the continuous mapping theorem

(Whitt [50]). We define the following notation:

I𝑗 ,𝑚 (𝑡) ≡
⌊𝑚𝑡⌋

𝜎2
𝐼 (𝑦𝑝 )𝑚

1/2

(
𝐼 (𝑦𝑝; 𝑗 , ⌊𝑚𝑡⌋) − 𝑝

)
,

T𝑗 ,𝑚 (𝑡) ≡ 𝜎𝑝 [I𝑗 ,𝑚 (𝑡) − 𝑡I𝑗 ,𝑚 (1) ] ,

Δ𝑛 (Z, 𝑤) ≡ 𝑛−1 ∑𝑛
𝑘=1 𝑤(𝑘/𝑛)Z (𝑘/𝑛), and

Δ(Z, 𝑤) ≡
∫ 1

0 𝑤(𝑡)Z (𝑡)𝑑𝑡,


for 𝑡 ∈ [0, 1] and 𝑗 = 1, . . . , 𝑏,

(2.19)

and Z ∈ 𝐷. From the aforementioned it follows that

𝐴𝑝 (𝑤; 𝑗 , 𝑚) ≡ Δ𝑚 (𝑇𝑗 ,𝑚, 𝑤), for 𝑗 = 1, . . . , 𝑏 and 𝑚 ≥ 1.

For 𝑗 = 1, . . . , 𝑏 and for each probabilistic or deterministic element Z ∈ 𝐷 , we define the

functionals 𝔛 𝑗 {Z } ∈ 𝐷 , and 𝔅𝑗 {Z } ∈ 𝐷 as:

𝔛 𝑗 {Z }(𝑡) ≡ 𝑏1/2 [Z ( 𝑗+𝑡−1
𝑏

)
− Z

( 𝑗−1
𝑏

) ]
, and

𝔅𝑗 {Z }(𝑡) ≡ 𝔛 𝑗 {Z }(𝑡) − 𝑡𝔛 𝑗 {Z }(1),

 for 𝑡 ∈ [0, 1] . (2.20)

To prove the desired conclusions (2.17) and (2.18), we will need to apply the generalized

continuous mapping theorem (GCMT) (Whitt [50], Theorem 3.4.4). In this situation, we
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must first prove the following intermediate result:

For every [ ∈ 𝐶 and every sequence {[𝑛 : 𝑛 ≥ 1} ⊂ 𝐷 with lim
𝑛→∞

𝑑 ([𝑛, [) = 0,

we have for 𝑗 = 1, . . . , 𝑏, lim
𝑛→∞

𝑑 (𝔛 𝑗 {[𝑛}, 𝔛 𝑗 {[}) = 0,

lim
𝑛→∞

𝑑 (𝔅𝑗 {[𝑛},𝔅𝑗 {[}) = 0, and lim
𝑚→∞

Δ𝑚 (𝔅𝑗 {[𝑛}, 𝑤) = Δ(𝔅𝑗 {[}, 𝑤).


(2.21)

We define the sequence {𝛿𝑛 : 𝑛 ≥ 1} as

𝛿𝑛 ≡ 𝑑 ([𝑛, [) + 𝑛−1, for 𝑛 ≥ 1 so that lim
𝑛→∞

𝛿𝑛 = 0. (2.22)

The definition of 𝑑 ([𝑛, [) and the inequality 𝑑 ([𝑛, [) < 𝛿𝑛 imply that for every 𝑛 ≥ 1, there

exists _𝑛 ∈ Λ, such that the following equations hold

∥_𝑛 − I∥ = sup𝑡∈[0,1] |_𝑛 (𝑡) − 𝑡 | < 𝛿𝑛, and

∥[𝑛 − [◦_𝑛 ∥ = sup𝑡∈[0,1] |[𝑛 (𝑡) − [◦_𝑛 (𝑡) | < 𝛿𝑛.

 (2.23)

Indeed, if such _𝑛 did not exist, then by the definition of 𝑑 ([𝑛, [), we would have that

𝑑 ([𝑛, [) > 𝛿𝑛, a contradiction.

Since 𝛿𝑛 → 0 as 𝑛→∞, the second equation in (2.23) implies lim𝑛→∞ ∥[𝑛−[◦_𝑛 ∥ = 0.

The first part of Equation (2.23) implies that _𝑛 −−−−→
𝑛→∞

I uniformly. Further, notice that [

is also uniformly continuous on the compact set [0, 1] (Rudin [55],Theorem 4.19). In the

next paragraph we will establish the uniform convergence of [◦_𝑛 to [ as 𝑛 → ∞. Recall

that _𝑛 and I are bounded on the compact set [0, 1].

Since [ is uniformly continuous, for every 𝜖 > 0 there is a 𝛿 > 0 such that for every

𝑦1, 𝑦2 ∈ [0, 1] with |𝑦1 − 𝑦2 | < 𝛿, we have |[(𝑦1) − [(𝑦2) | < 𝜖 . Moreover, since _𝑛

converges uniformly to I, there exists an 𝑛′ such that |_𝑛 (𝑦) − I(𝑦) | < 𝛿 for all 𝑛 > 𝑛′

and 𝑦 ∈ [0, 1]. By considering 𝑦1 = _𝑛 (𝑦) and 𝑦2 = I(𝑦), for every 𝜖 > 0, it follows that

|[(_𝑛 (𝑦))−[(I(𝑦)) | < 𝜖 for all 𝑛 > 𝑛′ and all 𝑦 ∈ [0, 1]. This proves that [◦_𝑛 −−−−→
𝑛→∞

[◦I = [
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uniformly; hence

lim
𝑛→∞
∥[ − [◦_𝑛 ∥ = 0 (2.24)

(Rudin [55],Theorem 7.9).

Next we show that 𝑑 (𝔛 𝑗 {[𝑛},𝔛 𝑗 {[}) → 0; and 𝑑 (𝔅𝑗 {[𝑛},𝔅𝑗 {[}) → 0 for 𝑗 = 1, . . . , 𝑏

as 𝑛 → ∞. For each 𝑡 ∈ [0, 1] and 𝑛 ≥ 1, by the triangle inequality and the definition of

∥ · ∥ , we have

��𝑏1/2 [[𝑛 (𝑡) − [(𝑡) ] �� ≤ ��𝑏1/2 [[𝑛 (𝑡) − [◦_𝑛 (𝑡) ] �� + ��𝑏1/2 [[(𝑡) − [◦_𝑛 (𝑡) ] ��
≤ 𝑏1/2 [ ∥[𝑛 − [◦_𝑛 ∥ + ∥[ − [◦_𝑛 ∥ ] , (2.25)

|𝔛 𝑗 {[𝑛}(𝑡) − 𝔛 𝑗 {[}(𝑡) | =
��𝑏1/2 [[𝑛 ( 𝑗+𝑡−1

𝑏

)
− [

( 𝑗+𝑡−1
𝑏

) ]
− 𝑏1/2 [[𝑛 ( 𝑗−1

𝑏

)
− [

( 𝑗−1
𝑏

) ] ��
≤ 2𝑏1/2 [ ∥[𝑛 − [◦_𝑛 ∥ + ∥[ − [◦_𝑛 ∥ ] (2.26)

|𝔅𝑗 {[𝑛}(𝑡) −𝔅𝑗 {[}(𝑡) | ≤ |𝔛 𝑗 {[𝑛}(𝑡) − 𝔛 𝑗 {[}(𝑡) | + 𝑡 |𝔛 𝑗 {[𝑛}(1) − 𝔛 𝑗 {[}(1) |

≤ 4𝑏1/2 [ ∥[𝑛 − [◦_𝑛 ∥ + ∥[ − [◦_𝑛 ∥ ] . (2.27)

Equations (2.26) and (2.27) are obtained by using Equations (2.25) and (2.26), respectively.

Equations (2.26)–(2.27) and the definition of ∥ · ∥ imply that

∥𝔛 𝑗 {[𝑛} − 𝔛 𝑗 {[} ∥ ≤ 2𝑏1/2 [ ∥[𝑛 − [◦_𝑛 ∥ + ∥[ − [◦_𝑛 ∥ ] and

∥𝔅𝑗 {[𝑛} −𝔅𝑗 {[} ∥ ≤ 4𝑏1/2 [ ∥[𝑛 − [◦_𝑛 ∥ + ∥[ − [◦_𝑛 ∥ ] ,
 (2.28)

for 𝑗 = 1, . . . , 𝑏.

Results similar to Equation (2.28) are needed for |Δ𝑚 (𝔅𝑗 {[𝑛}, 𝑤) − Δ(𝔅𝑗 {[}, 𝑤) | , for

𝑗 = 1, . . . , 𝑏. By the triangle inequality, we have

|Δ𝑚 (𝔅𝑗 {[𝑛}, 𝑤) − Δ(𝔅𝑗 {[}, 𝑤) | ≤ |Δ𝑚 (𝔅𝑗 {[𝑛}, 𝑤) − Δ𝑚 (𝔅𝑗 {[}, 𝑤) |

+ |Δ𝑚 (𝔅𝑗 {[}, 𝑤) − Δ(𝔅𝑗 {[}, 𝑤) |,
(2.29)
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for 𝑚 ≥ 1. Since 𝑤(·)𝔅𝑗 {[}(·) is Riemann integrable on [0, 1], we have

lim
𝑚→∞

Δ𝑚 (𝔅𝑗 {[}, 𝑤) = Δ(𝔅𝑗 {[}, 𝑤) . (2.30)

By the triangle inequality, the definition of ∥ · ∥, and Equation (2.27), we also have

|Δ𝑚 (𝔅𝑗 {[𝑛}, 𝑤) − Δ𝑚 (𝔅𝑗 {[}, 𝑤) | ≤ 𝑚−1
𝑚∑︁
𝑘=1
|𝑤(𝑘/𝑚) [𝔅𝑗 {[𝑛}(𝑘/𝑚) −𝔅𝑗 {[}(𝑘/𝑚) ] |

≤ 4∥𝑤 ∥𝑏1/2 [ ∥[𝑛 − [◦_𝑛 ∥ + ∥[ − [◦_𝑛 ∥ ] . (2.31)

Equations (2.22)–(2.24) and (2.28)–(2.31) imply that the intermediate result (2.21) holds.

Next we must verify that assumptions of the GCMT are satisfied, before it is applied to

the weak convergence results in Equation (2.21). This verification requires some care. Let

𝔉 ≡
{
𝛾 ∈ 𝐷 : There exists {𝛾𝑘 : 𝑘 ≥ 1} ⊂ 𝐷 with

lim
𝑘→∞

𝑑 (𝛾𝑘 , 𝛾) = 0, but Δ𝑘 (𝛾𝑘 , 𝑤) ↛ Δ(𝛾, 𝑤)
}

(2.32)

be the set of every deterministic element 𝛾 in 𝐷 to which some deterministic sequence of

elements {𝛾𝑘 : 𝑘 ≥ 1} in 𝐷 converges with respect to 𝑑, but the associated real sequence{
Δ𝑘 (𝛾𝑘 , 𝑤) : 𝑘 ≥ 1

}
does not converge to Δ(𝛾, 𝑤). If in Equation (2.32) we take

𝛾𝑘 ≡ 𝔅𝑗 {[𝑘𝑏}, for 𝑘 ≥ 1 and

𝛾 ≡ 𝔅𝑗 {[},


then we observe that since [ ∈ 𝐶, Equation (2.20) ensures that 𝛾 ∈ 𝐶 and 𝛾𝑘 ∈ 𝐷 for 𝑘 ≥ 1.
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For this assignment of 𝛾 and the {𝛾𝑘 : 𝑘 ≥ 1}, we have

lim𝑘→∞ 𝑑 (𝛾𝑘 , 𝛾) = lim𝑘→∞ 𝑑 (𝔅𝑗 {[𝑘𝑏},𝔅𝑗 {[})

≤ ∥𝔅𝑗 {[𝑘𝑏},𝔅𝑗 {[}∥

= 0,


(2.33)

by Equations (2.22)–(2.24) and (2.28). On the other hand, Equation (2.21) assumes that for

arbitrary deterministic elements [ ∈ 𝐶 and {[𝑛 : 𝑛 ≥ 1} ⊂ 𝐷 with lim𝑛→∞ 𝑑 ([𝑛, [) = 0,

we have

lim
𝑘→∞

Δ𝑘 (𝛾𝑘 , 𝑤) = lim
𝑘→∞

Δ𝑘 (𝔅𝑗 {[𝑘𝑏}, 𝑤) (2.34)

= lim
𝑚→∞

Δ𝑚 (𝔅𝑗 {[𝑛}, 𝑤) (2.35)

= Δ(𝔅𝑗 {[}, 𝑤) (2.36)

= Δ(𝛾, 𝑤), (2.37)

where: Equation (2.34) follows from the definition of 𝛾𝑘 ; Equation (2.35) follows from the

reindexing scheme 𝑚 ≡ 𝑘 and 𝑛 ≡ 𝑏𝑘 in Equation (2.34); Equation (2.36) follows from

Equation (2.21); and Equation (2.37) follows from the definition of 𝛾. Since [ is an arbitrary

element of 𝐶, Equations (2.33) and (2.37) together imply 𝐶 ∩ 𝔉 = ∅. Since the random

element B belongs to 𝐶 always, no realization of B belongs to 𝔉 so that in the underlying

probability space,

Pr{B ∈ 𝔉} = Pr(∅) = 0. (2.38)

In terms of the random elements {I𝑗 ,𝑚 (𝑡) : 𝑗 = 1, . . . , 𝑏} defined in Equation (2.19),

we can apply Equation (2.21), the FCLT for the indicator process adapted to batch sizes of

length 𝑚,

I𝑗 ,𝑚 =⇒
𝑚→∞

W , (2.39)
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and the GCMT to conclude that

𝔛 𝑗 {I𝑗 ,𝑚} =⇒
𝑚→∞

𝔛 𝑗 {W } in 𝐷,

𝔅𝑗 {I𝑗 ,𝑚} =⇒
𝑚→∞

𝔅𝑗 {W } in 𝐷, and

Δ𝑚 (𝔅𝑗 {I𝑗 ,𝑚}, 𝑤) =⇒
𝑚→∞

Δ(𝔅𝑗 {W }, 𝑤) in R,


for 𝑗 = 1, . . . , 𝑏 . (2.40)

Basic properties of W ensure that

{
𝔛 𝑗 {W } : 𝑗 = 1, . . . , 𝑏

} i.i.d.∼ W in 𝐷,{
𝔅𝑗 {W } : 𝑗 = 1, . . . , 𝑏

} i.i.d.∼ B in 𝐷, and{
Δ(𝔅𝑗 {W }, 𝑤) : 𝑗 = 1, . . . , 𝑏

} i.i.d.∼ 𝑍 in R


(2.41)

because (i) the Brownian motion is self-similar with Hurst index 1/2 so that 𝔛 𝑗 {W } d
= W

for 𝑗 = 1, . . . , 𝑏 (Whitt [50], §4.2.2); and (ii) by the independent-increments property of

Brownian motion, the random elements
{
𝔛 𝑗 {W } : 𝑗 = 1, . . . , 𝑏

}
are independent since

they are respectively defined as rescaled increments of W on the disjoint subintervals{ ( 𝑗−1
𝑏
,
𝑗

𝑏

]
: 𝑗 = 1, . . . , 𝑏

}
of [0, 1] (Whitt [50], §1.2.3). Note here that by definition

𝜎𝑝𝔅𝑗 {I𝑗 ,𝑚} ≡ T 𝑗 ,𝑚, for 𝑗 = 1, . . . , 𝑏, and so (2.42)

𝜎𝑝Δ𝑚 (𝔅𝑗 {I𝑗 ,𝑚}, 𝑤) ≡ Δ𝑚 (T 𝑗 ,𝑚, 𝑤), for 𝑗 = 1, . . . , 𝑏. (2.43)

We will now show that

𝑑 (T 𝑗 ,𝑚, 𝑇𝑗 ,𝑚) =⇒
𝑚→∞

0, for 𝑗 = 1, . . . , 𝑏 .

Theorem 2.3.1 ensures there are a.s. bounded r.v.’s U 𝑗 ∈ R+ and R 𝑗 ∈ Z+ such that the

remainder 𝑄𝑗 ,𝑚 in the Bahadur representation (2.7) for the BQE �̂�𝑝 ( 𝑗 , 𝑚) satisfies Equation
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(2.8). The latter equation yields���� 𝑚1/2

𝑓 (𝑦𝑝)
[
𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝

]
− 𝑚1/2 [𝑦𝑝 − �̂�𝑝 ( 𝑗 , 𝑚)

] ���� = ��𝑚1/2𝑄𝑗 ,𝑚

�� ≤ U 𝑗

(log𝑚)3/2

𝑚1/4 =⇒
𝑚→∞

0.

(2.44)

Using Equations (2.7), (2.8), (2.14), and (2.19), for 𝑗 = 1, . . . , 𝑏 , we can write:

��T 𝑗 ,𝑚(𝑡) − 𝑇𝑗 ,𝑚(𝑡)
�� ≤ sup

𝑡∈[0,1]

���� ⌊𝑚𝑡⌋
𝑚1/2

(
𝐼 (𝑦𝑝; 𝑗 , ⌊𝑚𝑡⌋) − 𝑝

𝑓 (𝑦𝑝)

)
− 𝑡𝑚1/2

(
𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝

𝑓 (𝑦𝑝)

)
− ⌊𝑚𝑡⌋

𝑚1/2
[
�̂�𝑝 ( 𝑗 , 𝑚) − �̂�𝑝 ( 𝑗 , ⌊𝑚𝑡⌋)

] ����
≤ sup

𝑡∈[0,1]

���� ⌊𝑚𝑡⌋
𝑚1/2

(
𝐼 (𝑦𝑝; 𝑗 , ⌊𝑚𝑡⌋) − 𝑝

𝑓 (𝑦𝑝)

)
− 𝑡𝑚1/2

(
𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝

𝑓 (𝑦𝑝)

)
− ⌊𝑚𝑡⌋

𝑚1/2
[
�̂�𝑝 ( 𝑗 , 𝑚) − 𝑦𝑝 + 𝑦𝑝 − �̂�𝑝 ( 𝑗 , ⌊𝑚𝑡⌋)

] ����
≤ sup

𝑡∈[0,1]

���� ⌊𝑚𝑡⌋
𝑚1/2

(
𝐼 (𝑦𝑝; 𝑗 , ⌊𝑚𝑡⌋) − 𝑝

𝑓 (𝑦𝑝)
+ �̂�𝑝 ( 𝑗 , ⌊𝑚𝑡⌋) − 𝑦𝑝

)
− ⌊𝑚𝑡⌋

𝑚1/2

(
𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝

𝑓 (𝑦𝑝)
+ �̂�𝑝 ( 𝑗 , 𝑚) − 𝑦𝑝

)
−

(
𝑚𝑡 − ⌊𝑚𝑡⌋

𝑚

)
𝑚1/2 [ 𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝

] /
𝑓 (𝑦𝑝)

����
≤ sup

𝑡∈[0,1]

���� ⌊𝑚𝑡⌋
𝑚1/2

(
𝑄𝑗 ,⌊𝑚𝑡 ⌋ −𝑄𝑗 ,𝑚

)
−

(
𝑚𝑡 − ⌊𝑚𝑡⌋

𝑚

)
𝑚1/2 [ 𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝

] /
𝑓 (𝑦𝑝)

����
≤ ⌊𝑚𝑡⌋

𝑚1/2
(��𝑄𝑗 ,⌊𝑚𝑡 ⌋

�� + ��𝑄𝑗 ,𝑚

��) + 𝑚−1��𝑚1/2 [ 𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝
] /

𝑓 (𝑦𝑝)
��

≤ 2U 𝑗

(log𝑚)3/2

𝑚1/4 + 𝑚−1��𝑚1/2 [ 𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝
] /

𝑓 (𝑦𝑝)
��, (2.45)

for each 𝑡 ∈ [0, 1] and 𝑚 ≥ R a.s. Equation (2.45) and the definition of ∥ · ∥ imply that

∥T 𝑗 ,𝑚 − 𝑇𝑗 ,𝑚 ∥ ≤ 2U 𝑗

(log𝑚)3/2

𝑚1/4 + 𝑚−1��𝑚1/2 [ 𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝
] /

𝑓 (𝑦𝑝)
��, (2.46)

for each 𝑡 ∈ [0, 1] and 𝑚 ≥ R 𝑗 a.s. By the FCLT in Equation (2.39) at 𝑡 = 1, namely for
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𝑗 = 1, . . . , 𝑏 .

I𝑗 ,𝑚 (1) ≡ 𝑚1/2 [ 𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝
] /

𝑓 (𝑦𝑝) =⇒
𝑚→∞

W (1) ,

and Slutsky’s theorem (Bickel and Doksum [56], Theorem A.14.9), we have

𝑚−1��𝑚1/2 [ 𝐼 (𝑦𝑝; 𝑗 , 𝑚) − 𝑝
] /

𝑓 (𝑦𝑝)
�� =⇒

𝑚→∞
0. (2.47)

Equations (2.44), (2.46), and (2.47) ensure that

𝑑 (T 𝑗 ,𝑚, 𝑇𝑗 ,𝑚) =⇒
𝑚→∞

0, for 𝑗 = 1, . . . , 𝑏 , (2.48)

and as a result, from Equations (2.40)–(2.42) and (2.48) we obtain

[
𝑇1,𝑚 , . . . , 𝑇𝑏,𝑚

]T
=⇒

𝑚→∞
𝜎𝑝

[
𝔅1{W }, . . . ,𝔅𝑏{W }

]T
. (2.49)

Now Equations (2.32), (2.38), (2.43), (2.49), the GCMT, and the basic properties of W

used to obtain Equation (2.41) from Equations (2.39)–(2.40) ensure that

{
𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏

}
=

{
Δ𝑚 (𝑇𝑗 ,𝑚, 𝑤) : 𝑗 = 1, . . . , 𝑏

}
=⇒

𝑚→∞

𝜎𝑝

{
Δ(𝔅𝑗 {W }, 𝑤) : 𝑗 = 1, . . . , 𝑏

} i.i.d.∼ 𝜎𝑝𝑍 in R. (2.50)

Equation (2.50) implies that

Δ2
𝑚 (𝑇𝑗 ,𝑚, 𝑤) =⇒

𝑚→∞
𝜎2
𝑝Δ

2(𝔅𝑗 {W }, 𝑤) d
= 𝜎2

𝑝𝜒
2
1 , for 𝑗 = 1, . . . , 𝑏,

which together with the definition of A𝑝 (𝑤; 𝑏, 𝑚) yields

A𝑝 (𝑤; 𝑏, 𝑚) =⇒
𝑚→∞

𝜎2
𝑝𝜒

2
𝑏/𝑏,
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which completes the proof.

We also define the average BQE as

�̂�𝑝 (𝑏, 𝑚) = 𝑏−1
𝑏∑︁
𝑗=1

�̂�𝑝 ( 𝑗 , 𝑚), (2.51)

and the “average” squared deviations of the BQEs away from the average batch quantile

estimator �̂�𝑝 (𝑏, 𝑚) and the full-sample quantile estimator �̃�𝑝 (𝑛) respectively,

𝑆2
𝑝 (𝑏, 𝑚) ≡ (𝑏 − 1)−1

𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̂�𝑝 (𝑏, 𝑚)

]2
, and (2.52)

𝑆2
𝑝 (𝑏, 𝑚) ≡ (𝑏 − 1)−1

𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̃�𝑝 (𝑛)

]2
. (2.53)

Notice that the value of 𝑞 that minimizes
∑𝑏

𝑗=1
[
�̂�𝑝 ( 𝑗 , 𝑚)−𝑞

]2 is the average BQE �̂�𝑝 (𝑏, 𝑚),

hence

𝑆2
𝑝 (𝑏, 𝑚) ≤ 𝑆2

𝑝 (𝑏, 𝑚). (2.54)

Finally, we set

N𝑝 (𝑏, 𝑚) = 𝑚𝑆2
𝑝 (𝑏, 𝑚), and (2.55)

Ñ𝑝 (𝑏, 𝑚) = 𝑚𝑆2
𝑝 (𝑏, 𝑚), (2.56)

and we define the combined estimators of the variance parameter 𝜎2
𝑝 :

V𝑝 (𝑤; 𝑏, 𝑚) ≡
𝑏A𝑝 (𝑤; 𝑏, 𝑚) + (𝑏 − 1)N𝑝 (𝑏, 𝑚)

2𝑏 − 1
, and (2.57)

Ṽ𝑝 (𝑤; 𝑏, 𝑚) ≡
𝑏A𝑝 (𝑤; 𝑏, 𝑚) + (𝑏 − 1)Ñ𝑝 (𝑏, 𝑚)

2𝑏 − 1
. (2.58)

Theorem 2.3.5. (Alexopoulos et al. [39]) If {𝑌𝑘 : 𝑘 ≥ 1} satisfies the assumptions of
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Theorem 2.3.1, then

𝑛1/2 [�̃�𝑝 (𝑛) − 𝑦𝑝
]

=⇒
𝑚→∞

𝜎𝑝𝑍, (2.59)

N𝑝 (𝑏, 𝑚) =⇒
𝑚→∞

𝜎2
𝑝𝜒

2
𝑏−1/(𝑏 − 1), (2.60)

Ñ𝑝 (𝑏, 𝑚) =⇒
𝑚→∞

𝜎2
𝑝𝜒

2
𝑏−1/(𝑏 − 1), (2.61)

V𝑝 (𝑤; 𝑏, 𝑚) =⇒
𝑚→∞

𝜎2
𝑝𝜒

2
2𝑏−1

/
(2𝑏 − 1), (2.62)

Ṽ𝑝 (𝑤; 𝑏, 𝑚) =⇒
𝑚→∞

𝜎2
𝑝𝜒

2
2𝑏−1

/
(2𝑏 − 1), (2.63)

the limiting r.v.’s in Equations (2.18), (2.59), and (2.60) are independent, and the limiting

r.v.’s in Equations (2.59) and (2.62) are also independent. In addition, the limiting r.v.’s in

Equations (2.18), (2.59), and (2.61) are independent, and the limiting r.v.’s in Equations

(2.59) and (2.63) are also independent. Further, for fixed 𝑏,

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,𝑏
[
A𝑝 (𝑤; 𝑏, 𝑚)/𝑛

]1/2
, (2.64)

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,𝑏−1
[
N𝑝 (𝑏, 𝑚)/𝑛

]1/2
, (2.65)

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,𝑏−1
[
Ñ𝑝 (𝑏, 𝑚)/𝑛

]1/2
, (2.66)

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,2𝑏−1
[
V𝑝 (𝑤; 𝑏, 𝑚)/𝑛

]1/2
, (2.67)

and

�̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,2𝑏−1
[
Ṽ𝑝 (𝑤; 𝑏, 𝑚)/𝑛

]1/2 (2.68)

are asymptotically valid 100(1 − 𝛼)% CIs of 𝑦𝑝 as 𝑚 →∞.

Theorem 2.3.6. (Alexopoulos et al. [39]) The analogues of the CIs in Equations (2.64)–

(2.68) are also asymptotically valid if the overall point estimator �̃�𝑝 (𝑛) is replaced by the

average BQE �̂�𝑝 (𝑏, 𝑚).

Hereafter, we refer to Ñ𝑝 (𝑏, 𝑚) as the main nonoverlapping batched quantile (NBQ)

32



variance estimator and to Ṽ𝑝 (𝑤; 𝑏, 𝑚) as the main combined variance estimator. We also

define the relative precision of a CI as the ratio of its HL over the absolute value of the point

estimate (assuming that the latter is nonzero).

The CI in Equation (2.66) has been used in the Sequest method (Alexopoulos et al.

[7]). The benefits of the combined variance estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) should be apparent:

since its distributional limit as 𝑚 → ∞ has nearly double d.f. compared to its constituents

A𝑝 (𝑤; 𝑏, 𝑚) and Ñ𝑝 (𝑏, 𝑚), for large𝑚 the CI in Equation (2.68) will have a significantly less

variable HL (by a factor of about
√

2) than each of the two competitors in Equations (2.64)

and (2.66); this typically results in better sampling efficiency. The empirical evaluation in

Sections 2.6-2.7 will highlight the benefits of the combined variance estimator.

STS area estimators tailored to the estimation of the steady-state mean are known to

have noticeable small-sample bias; see Aktaran-Kalaycı et al. [57] and the citations therein.

Preliminary experimental evaluation in Sections 2.6–2.7 with test processes from Section

2.5 has revealed that for small batch sizes 𝑚, the batched area estimator A𝑝 (𝑤0; 𝑏, 𝑚) based

on the constant weight function 𝑤0(𝑡) =
√

12 is substantially more biased than its NBQ

counterpart Ñ𝑝 (𝑏, 𝑚); actually, the small-batch-bias problem for STS-based estimators

appears to be more pronounced with regard to quantile estimation. The combined estimator

Ṽ𝑝 (𝑤; 𝑏, 𝑚) partially rectifies this problem.

Remark 2.3.2. We briefly elaborate on the suitability of the aforementioned weight func-

tions 𝑤2(𝑡) =
√

840(3𝑡2 − 3𝑡 + 1/2) and {𝑤cos,ℓ (𝑡) =
√

8𝜋ℓ cos(2𝜋ℓ𝑡): ℓ = 1, 2, . . .} for the

quantile estimation problem. Notably, these alternative weights yield first-order unbiased

estimators for the variance parameter 𝜎2 ≡ lim𝑛→∞ 𝑛Var(𝑌 𝑛) related to the sample mean

𝑌 𝑛 ≡ 𝑛−1 ∑𝑛
𝑘=1𝑌𝑘 of the base process {𝑌𝑘 : 𝑘 ≥ 1} (Foley and Goldsman [54], Goldsman et

al. [33]); hence they were tailored to the estimation of the steady-state mean.

An open question is: does this property carry over to quantile estimation? This problem

is very challenging because the derivation of analytical expressions for the expectation

of the estimators Ñ𝑝 (𝑏, 𝑚), A𝑝 (𝑤; 𝑏, 𝑚), and Ṽ𝑝 (𝑤; 𝑏, 𝑚) of 𝜎2
𝑝 = lim𝑛→∞ 𝑛Var

[
�̃�𝑝 (𝑛)

]
33



involves joint moments of order statistics, which are often hard to obtain even for i.i.d.

sequences; and this task is compounded in the presence of autocorrelation. So far it has

been shown that the bias of all aforementioned estimators is 𝑂 (𝑚−1/4) (Dingeç et al. [58]),

but obtaining exact analytic expressions remains an open problem. Chapter 3 elaborates

more on this topic by conducting a comparison of the variance-parameter estimators for the

sample-quantile process based on calculations of their expected values for the special case

of i.i.d. samples.

Further, extensive numerical and Monte Carlo experimentation in Section 2.8 has so

far failed to provide firm evidence that the STS area and combined estimators based on the

alternative weights from the literature 𝑤2(·) and {𝑤cos,ℓ (·)} improve on A𝑝 (𝑤0; 𝑏, 𝑚) and

Ṽ𝑝 (𝑤0; 𝑏, 𝑚) with respect to small-sample bias and mean-squared error (MSE). This has

motivated the search for new alternative weight functions in Sections 2.9–2.10 below that

could be more tailored towards the estimation of steady-state quantiles.

Experimental evaluation of the bias and MSE of the variance parameter estimators

presented in this chapter based on stationary versions of the processes in Section 2.5 below

can be found in Sections 2.6–2.7 below.

2.4 Computational Complexity

In this section we elaborate on the effort required to compute the batched STS area estimator

A𝑝 (𝑤; 𝑏, 𝑚) in Equation (2.16). It should be clear that the dominant component involves

sorting both within each batch and for the entire sample. To simplify the discussion, we

first consider the case with a single batch of size 𝑛. Since the evaluation of the STS

quantile-estimation process {𝑇𝑛 (𝑡) : 𝑡 ∈ [0, 1]} defined by Equation (2.10) at the points

𝑡 ∈ {1/𝑛, 2/𝑛, . . . , (𝑛 − 1)/𝑛, 1} involves the computation of 𝑝-quantile estimates from all

partial samples of sizes 1, . . . , 𝑛, one practically needs to start with a complete sort of

the sample {𝑌1, . . . , 𝑌𝑛}. We implemented the procedures in Chapters 4–6 in Java, with

the ultimate goal their incorporation into the Sequest application (Alexopoulos et al. [7]).
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For reasons that will become apparent later in this section, we used an object-oriented

paradigm to sort this non-primitive list using the default timsort algorithm of Tim Peters, a

stable hybrid between merge sort and insertion sort with𝑂 (𝑛 log2 𝑛) average and worst-time

complexity based on techniques from McIlroy [59].

It should be clear that once we have evaluated the STS quantile-estimation process

{𝑇𝑛 (𝑡) : 𝑡 ∈ [0, 1]} defined by Equation (2.10) at the points 𝑡 ∈ {1/𝑛, 2/𝑛, . . . , (𝑛−1)/𝑛, 1},

the evaluation of A𝑝 (𝑤; 1, 𝑛) using Equation (2.11) takes 𝑂 (𝑛) extra time. For clarity, we

temporarily adopt the classical notation 𝑌ℓ:𝑘 for the ℓth order statistic from the 𝑘th partial

sample {𝑌1, . . . , 𝑌𝑘 } for 1 ≤ ℓ ≤ 𝑘 ≤ 𝑛 so that �̃�𝑝 (𝑘) = 𝑌⌈𝑘 𝑝⌉:𝑘 for 1 ≤ 𝑘 ≤ 𝑛. Then the

evaluation of 𝑇𝑛 (𝑘/𝑛) reduces to the computation of 𝑌⌈𝑘 𝑝⌉:𝑘 for 𝑘 = 1, . . . , 𝑛. Below we

show how this task can be accomplished recursively in 𝑂 (𝑛) time using object orientation

and proceeding backwards to compute 𝑌⌈𝑘 𝑝⌉:𝑘 in stage 𝑘 for 𝑘 = 𝑛, 𝑛 − 1, . . . , 1.

We store the original dataset {𝑌1, . . . , 𝑌𝑛} in a list comprised of 𝑛 instances of an object.

The 𝑘th instance has the following properties: the value 𝑌𝑘 , a reference (property) to the

predecessor of that object in the original list having the value 𝑌𝑘−1, and references to the

predecessor and successor of that object in the sorted list. For brevity, we will often refer

to the 𝑘th object by the usual symbol 𝑌𝑘 for its value.

We proceed by sorting the original list to obtain the sorted list 𝑌1:𝑛 ≤ 𝑌2:𝑛 ≤ · · · ≤ 𝑌𝑛:𝑛

and setting the predecessor/successor references for each object in the sorted list (essentially

forming a doubly linked list of object instances). Starting at stage 𝑛, we obtain the value

𝑌⌈𝑛𝑝⌉:𝑛 from the ⌈𝑛𝑝⌉th object in the sorted list in 𝑂 (𝑛) time.

We now focus on the recursive computation of 𝑌⌈𝑘 𝑝⌉:𝑘 from 𝑌⌈(𝑘+1)𝑝⌉:𝑘+1 for 𝑘 ≤ 𝑛 − 1.

The location of 𝑌𝑘+1 in the sorted list can be identified directly (in 𝑂 (1) time) using the

predecessor reference of 𝑌𝑘+2 in the original list. Since 𝑝 ∈ (0, 1), we have only two

potential cases:

• ⌈𝑘 𝑝⌉ = ⌈(𝑘 + 1)𝑝⌉: If the value 𝑌𝑘+1 ≤ 𝑌⌈(𝑘+1)𝑝⌉:𝑘+1, then we set 𝑌⌈𝑘 𝑝⌉:𝑘 equal to the

successor of 𝑌⌈(𝑘+1)𝑝⌉:𝑘+1 in the sorted list; otherwise, we set 𝑌⌈𝑘 𝑝⌉:𝑘 = 𝑌⌈(𝑘+1)𝑝⌉:𝑘+1.
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• ⌈𝑘 𝑝⌉ = ⌈(𝑘+1)𝑝⌉−1: If the value𝑌𝑘+1 ≥ 𝑌⌈(𝑘+1)𝑝⌉:𝑘+1, then we set𝑌⌈𝑘 𝑝⌉:𝑘 equal to the

predecessor of𝑌⌈(𝑘+1)𝑝⌉:𝑘+1 in the sorted list; otherwise, we set𝑌⌈𝑘 𝑝⌉:𝑘 = 𝑌⌈(𝑘+1)𝑝⌉:𝑘+1.

After the update, we “remove” 𝑌𝑘+1 from the sorted list by adjusting the predecessor

and successor references from and to its previous successor and predecessor elements,

respectively, in the sorted list (essentially, the list now contains 𝑘 items because there are no

references to/from 𝑌𝑘+1). Since this recursive evaluation of 𝑌⌈𝑘 𝑝⌉:𝑘 from 𝑌⌈(𝑘+1)𝑝⌉:𝑘+1 takes

𝑂 (1) time, the evaluation of 𝑌⌈𝑘 𝑝⌉:𝑘 for 𝑘 = 𝑛, 𝑛 − 1, . . . , 1 takes a total of 𝑂 (𝑛) time. It

follows that the computation of A𝑝 (𝑤; 1, 𝑛) takes a total of 𝑂 (𝑛) time on top of the time to

sort the entire sample.

Remark 2.4.1. Clearly, the use of objects results in higher memory usage. If one uses

traditional (primitive) arrays instead of objects, the location of 𝑌𝑘+1 in the sorted array

can be found in 𝑂 (log2(𝑘 + 1)) time (e.g., using a binary search); therefore the total time

required for the evaluation of the values 𝑌⌈𝑘 𝑝⌉:𝑘 jumps to 𝑂 (𝑛 log2 𝑛).

In the case of 𝑏 > 1 batches, the average and worst-case time for sorting the batches

and computing the full-sample point estimator remains 𝑂 (𝑛 log2 𝑛) and the additional time

for computing A𝑝 (𝑤; 𝑏, 𝑚) remains linear in 𝑛 because 𝑏𝑂 (𝑚) = 𝑂 (𝑛). It should be clear

that variance estimators based solely on BQEs (e.g., Ñ𝑝 (𝑏, 𝑚) defined by Equation (2.53))

can be computed in parallel with A𝑝 (𝑤; 𝑏, 𝑚).

Remark 2.4.2. We close this section by noting that the calculation of a BQE-based estimator

alone can be achieved in 𝑂 (𝑛) average time using a quickselect algorithm that does not sort

observations that are less than a desired order statistic; cf. Section 9.2 of Cormen et al. [60].

2.5 Test Processes for Performance Evaluation

This section contains the descriptions of seven challenging processes from Alexopoulos et

al. [7]. Throughout this paper we will use these processes or close variations of them.
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2.5.1 First-Order Autoregressive Process

The first test process is the Gaussian first-order autoregressive [AR(1)] process defined by

the recursion 𝑌𝑘 = `𝑌 + 𝜙(𝑌𝑘−1 − `𝑌 ) + 𝜖𝑘 , for 𝑘 ≥ 1, where 𝜙 ∈ (−1, 1) and the residuals

{𝜖𝑘 : 𝑘 ≥ 1} are i.i.d. 𝑁 (0, 𝜎2
𝜖 ). The steady-state marginal distribution of this process is

𝑁 [`𝑌 , 𝜎2
𝜖 /(1 − 𝜙2)].

2.5.2 Autoregressive-to-Pareto Process

The second test process is an AR(1)-to-Pareto (ARTOP) process with a location parameter

𝛾 > 0, a shape parameter \ > 0, and an autoregressive parameter 𝜙 ∈ (−1, 1); see Lada et

al. [61] for details.

To generate this process, one starts with a stationary Gaussian AR(1) process {𝑍𝑘 :

𝑘 ≥ 1} defined by the iterative relation 𝑍𝑘 = 𝜙𝑍𝑘−1 + 𝜖𝑘 for 𝑘 ≥ 1, where 𝑍0 is the initial

state and the residuals {𝜖𝑘 : 𝑘 ≥ 1} are i.i.d. 𝑁 (0, 𝜎2
𝜖 ) with 𝜎2

𝜖 = 1 − 𝜙2. The next step

obtains a dependent sequence of random numbers 𝑈𝑘 that are uniformly distributed on

(0, 1) by feeding the Gaussian process {𝑍𝑘 : 𝑘 ≥ 1} into the standard normal c.d.f. Φ(·)

(i.e., 𝑈𝑘 = Φ(𝑍𝑘 ), for 𝑘 ≥ 1). Finally, the sequence {𝑈𝑘 : 𝑘 ≥ 1} is used as input to the

inverse of the Pareto c.d.f.

𝐹 (𝑦) =


1 − (𝛾/𝑦)\ if 𝑦 ≥ 𝛾,

0 if 𝑦 < 𝛾,

(2.69)

to obtain the ARTOP process

𝑌𝑘 = 𝐹−1(𝑈𝑘 ) = 𝐹−1 [Φ(𝑍𝑘 )] = 𝛾/[1 −Φ(𝑍𝑘 )]1/\ , for 𝑘 ≥ 1.

The steady-state marginal mean and variance of this process are `𝑌 = 𝛾\ (\ − 1)−1 (for

\ > 1) and 𝜎2
𝑌
= 𝛾2\ (\ − 1)−2(\ − 2)−1 (for \ > 2).
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2.5.3 M/M/1 Waiting-Time Process

The third test process is the waiting-time sequence in an M/M/1 queueing system with

arrival rate _, service rate 𝜔 (traffic intensity 𝜌 = _/𝜔) and first-in, first-out (FIFO) service

discipline. Let 𝑌𝑘 be the time spent by the 𝑘th entity in queue (prior to service). The

steady-state c.d.f. of 𝑌𝑘 is

𝐹 (𝑦) =



0 if 𝑦 < 0,

1 − 𝜌 if 𝑦 = 0,

1 − 𝜌𝑒−𝜔(1−𝜌)𝑦 if 𝑦 > 0,

(2.70)

with respective expected value `𝑌 = 𝜌/(𝜔−_), and the quantiles of this distribution are read-

ily computed by inverting Equation (2.70). This distribution is distinctly nonnormal, having

an atom at zero, an exponential tail, and a skewness of 2(3 − 3𝜌 + 𝜌2)/[𝜌1/2(2 − 𝜌)3/2].

The pronounced autocorrelation function of {𝑌𝑘 :≥ 1} in steady-state has made this process

a gold-standard test bed for steady-state simulation analysis methods; see Section 4.2 of

Alexopoulos et al. [7] for a more-detailed discussion.

2.5.4 M/H2/1 Waiting-Time Process

The fourth test process is the sequence {𝑌𝑘 : 𝑘 ≥ 1} of entity delays in an M/H2/1 queueing

system with FIFO queue discipline, an empty-and-idle initial state, arrival rate _ = 1; and

i.i.d. service times from the hyperexponential distribution that is a mixture of two other

exponential distributions with mixing probabilities 𝑔 = (5+
√

15)/10 ≈ 0.887 and 1−𝑔 and

associated service rates 𝜔1 = 2𝑔𝜏 and 𝜔2 = 2(1 − 𝑔)𝜏, with 𝜏 = 1.25. The mean service

time is 0.8 and the steady-state server utilization is 𝜌 = 0.8. Using the Pollaczek-Khinchine

formula in Equation (5.105) of Kleinrock [62] one can obtain the Laplace transform of the
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steady-state marginal c.d.f. 𝐹 (·) of the waiting time

L {𝐹; 𝑠} = (1 − 𝜌)
/{

𝑠 − _ + _
[ 𝑔𝜔1
𝜔1 + 𝑠

+ (1 − 𝑔)𝜔2
𝜔2 + 𝑠

]}
;

see Section 4.4 Alexopoulos et al. [7]. Using the first three derivatives of L {𝐹; 𝑠} at 𝑠 = 0,

one obtains the marginal steady-state mean `𝑌 = 8, the marginal steady-state standard

deviation 𝜎𝑌 = 10.733, and the respective marginal skewness of 2.5568 (Equation (A.3)

in Lada et al. [63]). Accurate numerical approximations of the selected quantiles 𝑦𝑝 were

obtained by numerical inversion of L {𝐹; 𝑠} using Euler’s algorithm from Abate and Whitt

[64] to obtain a piecewise-linear approximation of 𝐹 (·), followed by a direct inversion of

the latter approximation.

2.5.5 M/M/1/LIFO Waiting-Time Process

The fifth test process is the sequence of entity delays {𝑌𝑘 : 𝑘 ≥ 1} in a single-server

queueing system with non-preemptive LIFO service discipline, empty-and-idle initial state,

arrival rate _ = 1, and service rate 𝜔 = 1.25. The steady-state server utilization is 𝜌 = 0.8

and the marginal mean waiting time is `𝑌 = 3.2. This test process was selected because it

presents challenges to sequential methods for estimating the steady-state mean (Tafazzoli et

al. [65], Alexopoulos et al. [40]).

Accurate approximations for 𝑦𝑝 were obtained by computing the Laplace transform

L {𝐹; 𝑠} of the marginal c.d.f., numerical inversion of L {𝐹; 𝑠} using Euler’s algorithm

in Abate and Whitt [64] to obtain a piecewise-linear approximation of 𝐹 (·), and direct

inversion of the latter approximation; see Section 4.3 of Alexopoulos et al. [7] for details.

2.5.6 M/M/1/M/1 Waiting-Time Process

The sixth test process is constructed from the sequence {𝑌𝑘 : 𝑘 ≥ 1} of the total waiting

times (prior to service) in a tandem network of two M/M/1 queues. The system has an
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arrival rate of _ = 1, service rates 𝜔 = 1.25 at each station, and is initialized in the empty

and idle state. Transitions between the two stations are instantaneous. The steady-state

utilization for each server is 𝜌 = _/𝜔 = 0.8 and the mean total delay on the system is

equal to 8. It is well known that the c.d.f. 𝐹∗(·) of the total waiting time in steady state is

the convolution of two identical copies of the c.d.f. in Equation (2.70); hence the Laplace

transform L {𝐹∗; 𝑠} of 𝐹∗(·) is the square of the Laplace transform L {𝐹; 𝑠}. We computed

accurate approximations of 𝑦𝑝 by obtaining a piecewise-linear approximation of 𝐹∗(·) using

numerical inversion of L {𝐹∗; 𝑠} by means of Euler’s algorithm in Abate and Whitt [64],

followed by direct inversion of the latter approximation of 𝐹∗(·).

2.5.7 Central Server Model 3

The last test process is generated by a small computer network comprised of three stations,

namely the Central Server Model 3 from Law and Carson [66]. The system contains a

central processing unit (CPU), labeled as station 3, and two peripheral units, labeled as

stations 1 and 2. The system always contains eight jobs. At time zero, station 1 contains

one job, station 2 contains two jobs, and the CPU contains five jobs. A job arriving at

the CPU joins the CPU queue if the CPU is busy; otherwise it moves immediately into

service. Once service is completed at the CPU, the respective job moves instantaneously to

station 1 with probability 0.9 or station 2 with probability 0.1. After service completion at

a peripheral server, the job departs from the system and is immediately replaced by a new

job that arrives at the CPU. Stations 1–3 are G/M/1 queueing systems with FIFO service

discipline and service rates 0.45, 0.05, and 1, respectively. The response time 𝑌𝑘 of the 𝑘th

departing job is the total time the job spent in the system, and the objective of our study is

to estimate marginal steady-state quantiles of the sequence {𝑌𝑘 : 𝑘 ≥ 1}.

The estimation of the marginal steady-state distribution of this process entails a variety

of challenges. The histogram in Figure 4 of Alexopoulos et al. [7] based on a sample of

size 𝑛 = 108 revealed the following findings: (i) the steady-state marginal density 𝑓 (·) of
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the response time exhibits substantial departure from normality with large skewness and

kurtosis; (ii) 𝑓 (·) is tightly concentrated in a narrow neighborhood of its mode, which is

close to 𝑦 = 10; (iii) 𝑓 (·) dropped rapidly over its right-hand “cliff,” which ended near

𝑦 = 40; and (iv) 𝑓 (·) declined very slowly in the portion of its right tail past 𝑦 = 40. Nearly

“exact” values of 𝑦𝑝 were computed from the aforementioned large sample by inversion of

the empirical c.d.f., i.e., 𝑦𝑝 ≈ 𝑌(⌈𝑛𝑝⌉) .

2.6 An Initial Empirical Evaluation of the Performance of the Main Variance-

Parameter Estimators

In this section we conduct an initial empirical evaluation of the performance of the following

variance-parameter estimators:

• the batched STS area estimator A𝑝 (𝑤; 𝑏, 𝑚) defined by Equation (2.16);

• the main NBQ estimator Ñ𝑝 (𝑏, 𝑚) defined in Equation (2.56) based on the BQEs{
�̂�𝑝 ( 𝑗 , 𝑚)

}
and the full-sample point estimator �̃�𝑝 (𝑛); and

• the main combined estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) defined in Equation (2.58) composed of

the batched STS area estimator A𝑝 (𝑤; 𝑏, 𝑚) and the main NBQ estimator Ñ𝑝 (𝑏, 𝑚).

The evaluation will be based on the bias, standard deviation, root mean squared error

(RMSE), and the coverage probability of the 95% CIs for 𝑦𝑝 defined by Equations (2.64),

(2.66), and (2.68), respectively. The main NBQ estimator Ñ𝑝 (𝑏, 𝑚) is used in the Sequest

procedure of Alexopoulos et al. [7].

The goal of this study is the validation of our theoretical findings and, in particular,

to showcase the superiority of the combined estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) with regard to its ef-

ficiency, as its asymptotic variance lim𝑚→∞Var
[
Ṽ𝑝 (𝑤; 𝑏, 𝑚)

]
is nearly 50% smaller than

the asymptotic variances lim𝑚→∞Var
[
A𝑝 (𝑤; 𝑏, 𝑚)

]
and lim𝑚→∞Var

[
Ñ𝑝 (𝑏, 𝑚)

]
of its re-

spective constituents. (Note that the three asymptotic variances in the preceding statementis

different from the variance parameter 𝜎2
𝑝 of the quantile process.) The combined estimator
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Ṽ𝑝 (𝑤; 𝑏, 𝑚) will be used in the sequential and fixed-sample-size procedures in Chapters 4–6

for steady-state quantile estimation. For reasons mentioned in Remark 2.3.2, our analysis

focuses on the constant weight function 𝑤0(𝑡) =
√

12, 𝑡 ∈ [0, 1].

We consider two stationary test processes: a variation of the AR(1) process in Section

2.5.1 with mean zero and correlation coefficient 0.9 and the waiting-time process from an

M/M/1 queueing system as described in Section 2.5.3 with traffic intensity 0.8. For each

process and value of 𝑝 under study, we fix the number of batches at 𝑏 = 32 and consider

an increasing sequence of batch sizes 𝑚 = 2L , where L ∈ {10, 11, . . . , 20}. We note that

batch sizes with L ≤ 15 are often inadequate for variance-parameter estimation in these

problems (Alexopoulos et al. [7]).

All experiments were coded in Java using common random numbers generated by the

RngStreams package of L’Ecuyer et al. [67]. The numerical results were based on 2,500

independent replications for each process; and those results are summarized in Tables 2.1

and 2.2 below. In each table, column 1 contains the values of 𝑝, 𝑦𝑝, and 𝜎2
𝑝 (the latter

quantity is set in bold red typeface); column 2 contains the value of L = log2(𝑚); columns

3, 8, and 13 contain the average values of the selected variance-parameter estimators

computed from 2,500 i.i.d. observations of those estimators; columns 4, 9, and 14 contain

the average bias of the selected variance-parameter estimators; and columns 5, 10, and

15 contain the sample standard deviations of the selected variance-parameter estimators.

For nominal 95% CIs of 𝑦𝑝 that are respectively defined by Equations (2.64), (2.66), and

(2.68), columns 6, 11, and 16 have the heading “95% CI 𝐻” and respectively contain the

average CI HLs computed from 2,500 i.i.d. realizations of those CIs; moreover columns

7, 12, and 17 have the heading “95% CI Cover.” and contain the corresponding empirical

CI coverage probabilities. Finally, Figures 2.1 and 2.2 in Sections 2.6.1 and 2.6.2 below

summarize the accuracy and precision of each variance-parameter estimator as the batch

size increases by plotting estimates of the respective relative biases (as a percentage) and

estimated RMSEs. In the figures we labeled Ñ𝑝 (𝑏, 𝑚) as “NBQ (tilde)” and Ṽ𝑝 (𝑤0; 𝑏, 𝑚)
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as “Combined (tilde).”

2.6.1 First-Order Autoregressive Process

The first test process is a variation of the stationary AR(1) time-series model described in

Section 2.5.1. This regression model is𝑌𝑘 = 𝜙𝑌𝑘−1 +Y𝑘 for 𝑘 ≥ 1, where the autoregressive

parameter is 𝜙 ∈ (−1, 1), the initial state 𝑌0 follows the 𝑁 (0, 1) distribution, and the

residuals {Y𝑘 : 𝑘 ≥ 1} are i.i.d. 𝑁 (0, 1 − 𝜙2) and independent of 𝑌0. Since the marginal

distribution of the 𝑌𝑘 is 𝑁 (0, 1), the 𝑝-quantile can be computed by 𝑦𝑝 = Φ−1(𝑝), where

Φ(·) denotes the standard normal c.d.f.

The asymptotic variance parameter for the AR(1) process was evaluated as follows

(Dingeç et al. [68]). Let T (ℎ, 𝑎) denote Owen’s 𝑇-function:

T (ℎ, 𝑎) = 1
2𝜋

∫ 𝑎

0

exp
[
− 1

2ℎ
2(1 + 𝑥2)

]
1 + 𝑥2 𝑑𝑥, for ℎ, 𝑎 ∈ R.

For two standard normal variates 𝑍1 and 𝑍2 with correlation 𝜑 = Corr(𝑍1, 𝑍2) ∈ (−1, 1),

one has

𝑃
{
𝑍1 ≤ Φ−1(𝑝), 𝑍2 ≤ Φ−1(𝑝)

}
= 𝑝 − 2T

[
Φ−1(𝑝),

(1 − 𝜑

1 + 𝜑

)1/2
]
, for 𝑝 ∈ (0, 1);

see Equation (3.12) of Meyer [69]. Since Corr(𝑌𝑘 , 𝑌𝑘+ℓ) = 𝜙ℓ for ℓ ≥ 0, we have

𝑃{𝑌𝑘 ≤ 𝑦𝑝, 𝑌𝑘+ℓ ≤ 𝑦𝑝} = 𝑝 − 2T

[
Φ−1(𝑝),

(
1 − 𝜙ℓ

1 + 𝜙ℓ

)1/2
]
, for ℓ ≥ 0.

Using the definition of correlation, one can obtain the following expression for the

autocorrelation function {𝜌𝐼 (ℓ) : ℓ ≥ 0} of the indicator process at lag ℓ:

𝜌
𝐼
(ℓ) = 1 − 2

𝑝(1 − 𝑝)T
[
Φ−1(𝑝),

(
1 − 𝜙ℓ

1 + 𝜙ℓ

)1/2
]
, for 𝑝 ∈ (0, 1) and ℓ ≥ 0.

Owen’s 𝑇-function was computed using the R package and the implementation of Azzalini
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[70], which is based on a series expansion. Then the variance parameter 𝜎2
𝐼 (𝑦𝑝) for

the indicator process {𝐼𝑘 (𝑦𝑝) : 𝑘 ≥ 1} was approximated by truncating the infinite sum

𝜎2
𝐼 (𝑦𝑝) = 𝑝(1 − 𝑝)

[
1 + 2

∑∞
ℓ=1 𝜌𝐼(ℓ)

]
. Since for the 𝑁 (0, 1) p.d.f. we have 𝑓 (𝑦𝑝) =

(2𝜋)−1/2 exp
(
− 𝑦2

𝑝

/
2
)
, the approximation of 𝜎2

𝑝 = 𝜎2
𝐼 (𝑦𝑝)

/
𝑓 2(𝑦𝑝) follows immediately.

For experimentation we selected the values 𝜙 = 0.9 and 𝑝 ∈ {0.75, 0.95, 0.99}. Because

of the symmetry of the marginal 𝑁 (0, 1) distribution, we did not consider values of 𝑝 < 1/2.

The results are summarized in Table 2.1, which clearly indicates that all three estimators of

the variance parameter 𝜎2
𝑝 and their respective estimated standard deviations converged to

their asymptotic limits reasonably fast, albeit with speed that diminishes as 𝑝 approaches

1. Further, the estimated coverage probabilities of the three CIs for 𝑦𝑝 respectively based

on Equations (2.64), (2.66), and (2.68) hovered near the nominal value of 0.95. Of equal

importance, the lower standard deviation of the combined estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚) becomes

evident from the plots of the RMSEs in Figure 2.1. Among the three values of 𝑝, the

near-extreme case of 𝑝 = 0.99 provides a few insights, the first of which will become more

prominent with the second example in Section 2.6.2.

• For small batch sizes, the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) has significantly

more bias than the NBQ estimator Ñ𝑝 (𝑏, 𝑚), while the bias of the combined estimator

Ṽ𝑝 (𝑤0; 𝑏, 𝑚) typically falls between the biases of its constituents (see Figure 2.1).

• For small batch sizes, the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) has notice-

ably larger standard deviation than the NBQ estimator Ñ𝑝 (𝑏, 𝑚). Notice that

the asymptotic standard deviation of the batched STS area estimator, namely

lim𝑚→∞
{
Var

[
A𝑝 (𝑤0; 𝑏, 𝑚)

]}1/2
=

[
2𝜎4

𝑝/𝑏
]1/2, is a bit smaller that the respective

value for the NBQ estimator lim𝑚→∞
{
Var

[
Ñ𝑝 (𝑏, 𝑚)

]}1/2
=

[
2𝜎4

𝑝/(𝑏 − 1)
]1/2.

2.6.2 M/M/1 Waiting-Time Process

Our second stationary test process {𝑌𝑘 : 𝑘 ≥ 1} was generated by the M/M/1 queueing

system in Section 2.5.3 with FIFO service discipline, arrival rate _ = 0.8, and service
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rate 𝜔 = 1. In this system the steady-state server utilization is 𝜌 = _/𝜔 = 0.8 and the

steady-state distribution of 𝑌𝑘 has mean `𝑌 = 𝜌/(𝜔 − _) = 4.

The steady-state distribution (2.70) is markedly nonnormal, having an atom at zero,

an exponential tail, and a skewness of 2(3 − 3𝜌 + 𝜌2)/[𝜌1/2(2 − 𝜌)3/2] ≈ 2.1093. These

properties can induce a significant skewness in the corresponding BQEs
{
�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 =

1, . . . , 𝑏
}

that can degrade the performance of the CI defined by Equation (2.66), resulting

in a coverage probability that can be substantially below the nominal level (Alexopoulos et

al. [23]). Because of the atom at zero in the c.d.f. in Equation (2.70), we only considered

values of 𝑝 > 1 − 𝜌 = 0.20.

The variance parameter 𝜎2
𝐼

of the indicator process was computed from Equation (22)

of Blomqvist [71]. After some algebra, we obtained the following analytical expression for

the asymptotic variance parameter corresponding to �̃�𝑝 (𝑛):

𝜎2
𝑝 =

1
𝜔2(1 − 𝜌)4

{
[−2 + 𝑝(3 − 𝜌) + 2𝜌] (1 + 𝜌)

1 − 𝑝
− 4𝜌 ln

( 𝜌

1 − 𝑝

)}
.

We generated the stationary version {𝑌𝑘 : 𝑘 ≥ 1} of this waiting-time process by

sampling 𝑌1 using Equation (2.70), and then using Lindley’s recursion. Table 2.2 below

lists the numerical experimental outcomes. We selected the values 𝑝 = 0.25 (near the value

1 − 𝜌 = 0.2), 𝑝 = 0.75, and the extreme value 𝑝 = 0.99.

A careful examination of Table 2.2 confirms that all three variance-parameter estimators

and their standard deviations converge to the respective theoretical limits, but at a signifi-

cantly lower rate than for the AR(1) process in Section 2.6.1. Most importantly, it reveals

the presence of substantial bias in the variance-parameter estimators for small batch sizes

𝑚; this bias apparently becomes more prominent for 𝑝 = 0.99. We believe that this bias is

primarily explained by the bias of the point estimator �̃�𝑝 (𝑛) that is evident in the Bahadur

representation (2.6). Ongoing work includes a comprehensive study of the relationship

between the bias of �̃�𝑝 (𝑛) and the bias of the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚).
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Notably, the magnitude of this small-batch bias of the variance-parameter estimators cor-

responding to the full-sample quantile estimator �̃�𝑝 (𝑛) is more pronounced than the bias

of the respective variance-parameter estimators corresponding to the sample mean 𝑌 𝑛; see

Table 4 of Alexopoulos et al. [34].

Among the three variance-parameter estimators, the NBQ estimator Ñ𝑝 (𝑏, 𝑚) exhibited

the lowest small-sample bias, while the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) exhib-

ited the largest. Since the combined estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚) is roughly the average of its

constituents, its average bias tends to fall in the middle; see Figure 2.2. For example,

when 𝑝 = 0.25, all three estimators exhibited substantial positive bias for small batch sizes

(𝑚 ≤ 214): the average percent relative bias of the batched STS area estimator decreased

from an overwhelming 272.43% for 𝑚 = 210 to under 1% at approximately 𝑚 = 217; the

relative bias of the NBQ estimator dipped from roughly 40.83% at 𝑚 = 210 to below 1% at

𝑚 = 215; and the relative bias of the combined estimator dropped from roughly 158.47% at

𝑚 = 210 to under 1% near 𝑚 = 217.

When 𝑝 = 0.75 all three variance-parameter estimators exhibited bias with nearly similar

behavior. In particular, the average relative bias of the batched STS area estimator decreased

slowly from 47.12% above the asymptotic variance parameter for 𝑚 = 210 to about 0.19%

below for 𝑚 = 220. When 𝑝 = 0.99, the variance-parameter estimators approached their

limit more slowly, with a relative bias that started at nearly 86% below the asymptotic

variance parameter for 𝑚 = 210, became positive near 𝑚 = 215, and then dropped slowly.

Notice that for 𝑚 = 220 (𝑛 = 225 ≈ 33 million), the average relative bias of the batched

STS area estimator is 1.17%, while the average relative bias of the NBQ estimator is a

bit lower (0.94%) and the average relative bias of the combined estimator is about 1.05%.

Overall, the behavior of the bias of the three estimators exhibits no clear patterns as the

batch size increases. Detailed analysis of the bias is a very hard problem. A rudimentary

analysis for i.i.d. processes is conducted in Chapter 3 (of this thesis).

At this juncture, we would like to caution the reader that for this output process and
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𝑝 = 0.99, the Sequest procedure of Alexopoulos et al. [7], which is based on the NBQ

estimator Ñ𝑝 (𝑏, 𝑚) defined in Equation (2.56), often delivered CIs that exhibited significant

undercoverage while requiring excessive sample sizes. This discovery was one of the

motivations for the development of the Sequem procedure (Alexopoulos et al. [23]) for the

more-challenging problem of estimating near-extreme quantiles.

We now turn to the remaining statistics in Table 2.2. The standard deviation of each

variance-parameter estimator converged to its respective theoretical limit. In particular, the

standard deviation of the batched STS area estimator (column 5) converged to
[
2𝜎4

𝑝/𝑏
]1/2

=

(2/𝑏)1/2𝜎2
𝑝 , based on Equation (2.18). For instance, when 𝑝 = 0.99 and𝑚 = 220, the average

standard deviation of 49780.2 is only 4.11% larger than the theoretical limit𝜎2
𝑝/4 = 47815.2.

In comparison, the average standard deviation 35608.7 of the combined estimator is only

4.49% larger than the theoretical limit
[
2𝜎4

𝑝/(2𝑏 − 1)
]1/2

= [2/(2𝑏 − 1)]1/2𝜎2
𝑝 = 34077.8.

The dominance of the combined estimator with respect to its variance, and hence its mean

squared error (MSE), is evident from the plots of the estimated RMSEs in Figure 2.2, in

particular once the variance-parameter estimates approach the value 𝜎2
𝑝 .

The estimated coverage probabilities of the CIs obtained from Equations (2.64), (2.66),

and (2.68) echo the respective small-batch-size issues. When 𝑝 = 0.25 or 0.75, the

estimated coverage probability of the approximate 95% CIs was near the nominal level for

all batch sizes; this is due to the convergence of the variance-parameter estimators to 𝜎2
𝑝

from above. Unfortunately, this was not the case for 𝑝 = 0.99, when the approximate 95%

CIs exhibited substantial undercoverage for moderate sample sizes; indeed, the estimated

coverage probabilities started approach 0.95 only as 𝑚 ≥ 215. Overall, all three variance-

parameter estimators appear to be equally competitive when 𝑝 = 0.75, while the NBQ

estimator Ñ𝑝 (𝑏, 𝑚) appears to dominate with regard to CI estimated coverage probability

when 𝑝 = 0.99 and 𝑚 ≤ 214 followed by the combined estimator and the batched STS area

estimator. As we stated earlier, such batch sizes are grossly inadequate for estimating such

extreme quantiles.
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Table 2.1: Experimental results for the AR(1) process with `𝑌 = 0 and 𝜙 = 0.9. All estimates are based on 2,500 independent replications
with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L ∈ {10, 11, . . . , 20}, where for nominal 95% CIs for 𝑦𝑝, the average CI HLs and coverage
probabilities are denoted by “95% CI 𝐻” and “95% CI Cover.”, respectively.

Batched STS Area Estimator A𝑝 (𝑤0; 𝑏, 𝑚) NBQ Estimator Ñ𝑝 (𝑏, 𝑚) Combined Estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI 95% CI Std. 95% CI 95% CI Std. 95% CI 95% CI
Var. Par. L Avg. Bias Dev. 𝐻 Cover. Avg. Bias Dev. 𝐻 Cover. Avg. Bias Dev. 𝐻 Cover.

0.75 10 22.3 −0.6 6.0 0.0527 93.64 22.8 −0.1 5.8 0.0533 94.36 22.5 −0.4 4.2 0.0522 94.44
(0.6745) 11 22.7 −0.2 5.8 0.0376 94.60 22.8 −0.1 5.8 0.0377 94.32 22.8 −0.1 4.0 0.0371 94.44

22.9 12 22.9 0.0 5.7 0.0267 95.32 22.7 −0.2 5.8 0.0266 95.24 22.8 −0.1 4.1 0.0263 95.60
13 22.7 −0.2 5.9 0.0188 94.76 22.8 −0.1 5.9 0.0189 94.96 22.7 −0.2 4.1 0.0185 95.24
14 22.9 0.0 5.8 0.0134 95.12 22.8 −0.1 5.8 0.0134 95.44 22.9 0.0 4.1 0.0131 95.16
15 22.8 −0.1 5.8 0.0094 94.80 22.8 −0.1 5.9 0.0094 95.12 22.8 −0.1 4.1 0.0093 94.80
16 22.8 −0.1 5.7 0.0067 94.76 22.9 0.0 5.8 0.0067 95.08 22.9 0.0 4.1 0.0066 95.00
17 22.7 −0.2 5.7 0.0047 95.24 22.9 0.0 5.8 0.0047 95.08 22.8 −0.1 4.0 0.0046 95.48
18 22.9 0.0 5.7 0.0033 95.68 23.0 0.1 5.9 0.0034 96.16 22.9 0.0 4.1 0.0033 95.76
19 22.8 −0.1 5.6 0.0024 94.92 23.0 0.1 5.8 0.0024 94.00 22.9 0.0 4.0 0.0023 94.12
20 23.0 0.1 5.8 0.0017 95.00 22.8 −0.1 5.7 0.0017 95.52 22.9 0.0 4.0 0.0016 95.16

0.95 10 37.8 −0.5 11.4 0.0684 94.32 38.1 −0.2 10.1 0.0689 95.00 38.0 −0.3 7.9 0.0677 94.88
(1.6449) 11 38.4 0.1 10.8 0.0488 93.96 38.0 −0.3 9.8 0.0487 94.40 38.2 −0.1 7.4 0.0480 94.40

38.3 12 38.7 0.4 10.4 0.0347 95.28 38.1 −0.2 9.8 0.0345 94.56 38.4 0.1 7.2 0.0340 94.84
13 38.1 −0.2 10.0 0.0243 94.36 38.1 −0.2 9.9 0.0244 95.00 38.1 −0.2 7.1 0.0240 94.64
14 38.3 0.0 9.9 0.0173 95.12 38.3 0.0 9.7 0.0173 95.68 38.3 0.0 7.0 0.0170 95.40
15 38.4 0.1 9.9 0.0122 94.68 38.1 −0.2 10.0 0.0122 94.40 38.3 0.0 7.0 0.0120 94.36
16 38.2 −0.1 9.9 0.0086 95.32 38.3 0.0 9.8 0.0086 95.44 38.2 −0.1 7.1 0.0085 95.40
17 38.2 −0.1 9.5 0.0061 95.72 38.4 0.1 9.9 0.0061 95.52 38.3 0.0 6.8 0.0060 95.56
18 38.5 0.2 9.6 0.0043 95.16 38.7 0.4 9.9 0.0043 95.44 38.6 0.3 6.9 0.0043 95.24
19 38.4 0.1 9.5 0.0031 94.40 38.7 0.4 9.8 0.0031 94.28 38.5 0.2 6.7 0.0030 94.52
20 38.8 0.5 9.7 0.0022 94.96 38.3 0.0 9.7 0.0022 95.12 38.6 0.3 6.8 0.0021 95.08

0.99 10 76.4 −5.2 32.0 0.0964 92.92 79.6 −2.0 22.8 0.0995 94.52 77.9 −3.7 21.4 0.0966 93.96
(2.3263) 11 81.8 0.2 29.7 0.0709 94.32 81.2 −0.4 21.8 0.0712 94.84 81.5 −0.1 19.9 0.0700 94.56

81.6 12 84.0 2.4 26.1 0.0509 94.60 81.8 0.2 21.6 0.0505 94.32 82.9 1.3 17.4 0.0500 94.84
13 82.6 1.0 23.8 0.0358 94.00 81.4 −0.2 21.7 0.0356 94.48 82.0 0.4 16.6 0.0352 94.12
14 82.4 0.8 22.7 0.0253 95.36 81.4 −0.2 20.8 0.0252 95.44 81.9 0.3 15.4 0.0249 95.40
15 81.8 0.2 21.2 0.0178 94.88 81.5 −0.1 20.3 0.0178 95.28 81.6 0.0 14.9 0.0176 95.12
16 82.1 0.5 21.3 0.0126 94.92 81.1 −0.5 20.4 0.0126 94.92 81.6 0.0 14.7 0.0124 95.00
17 81.8 0.2 20.7 0.0089 95.72 81.5 −0.1 20.6 0.0089 95.00 81.7 0.1 14.5 0.0088 95.04
18 81.5 −0.1 21.3 0.0063 95.04 82.3 0.7 20.8 0.0063 94.92 81.9 0.3 14.9 0.0062 94.80
19 82.1 0.5 20.9 0.0045 95.28 82.6 1.0 20.9 0.0045 94.52 82.3 0.7 14.7 0.0044 94.68
20 83.0 1.4 20.8 0.0032 94.80 82.2 0.6 20.9 0.0032 95.00 82.6 1.0 14.4 0.0031 95.04
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Figure 2.1: Estimated percent relative bias and RMSE of the variance-parameter estimators
for selected marginal quantiles of a stationary AR(1) process with `𝑌 = 0 and 𝜙 = 0.9. All
estimates are based on 2,500 independent replications with 𝑏 = 32 batches and batch sizes
𝑚 = 2L , L ∈ {10, 11, . . . , 20} .
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Table 2.2: Experimental results for a stationary waiting-time process in an M/M/1 queueing system with traffic intensity 𝜌 = 0.8. All
estimates are based on 2,500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L = 10, 11, . . . , 20, where for
nominal 95% CIs for 𝑦𝑝, the average CI HLs and coverage probabilities are denoted by “95% CI 𝐻” and “95% CI Cover.”, respectively.

STS Area Estimator A𝑝 (𝑤0; 𝑏, 𝑚) NBQ Estimator Ñ𝑝 (𝑏, 𝑚) Combined Estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI 95% CI Std. 95% CI 95% CI Std. 95% CI 95% CI
Var. Par. L Avg. Bias Dev. 𝐻 Cover. Avg. Bias Dev. 𝐻 Cover. Avg. Bias Dev. 𝐻 Cover.

0.25 10 357.2 261.3 522.4 0.1923 99.24 135.1 39.2 92.6 0.1266 96.04 247.9 152.0 278.4 0.1626 98.48
(0.3227) 11 192.1 96.1 175.4 0.1047 97.52 113.2 17.3 44.0 0.0834 96.00 153.3 57.3 96.4 0.0939 97.56

95.9 12 127.2 31.3 57.0 0.0622 96.84 104.7 8.8 31.4 0.0570 96.12 116.1 20.2 34.8 0.0589 96.60
13 108.8 12.9 34.5 0.0410 95.96 100.2 4.3 28.0 0.0395 95.84 104.6 8.7 22.8 0.0397 96.28
14 102.4 6.5 28.4 0.0282 95.88 97.4 1.5 25.7 0.0276 94.96 100.0 4.0 19.5 0.0275 95.60
15 98.6 2.6 26.6 0.0196 94.64 96.8 0.8 25.3 0.0194 95.04 97.7 1.8 18.6 0.0192 94.88
16 97.5 1.6 25.3 0.0138 95.00 96.3 0.4 24.2 0.0137 95.04 96.9 1.0 17.4 0.0135 95.12
17 96.7 0.8 24.4 0.0097 94.72 96.3 0.4 23.9 0.0097 94.84 96.5 0.6 17.0 0.0096 94.96
18 96.4 0.5 24.4 0.0069 93.84 95.4 −0.5 23.8 0.0068 94.16 95.9 0.0 17.0 0.0067 93.80
19 96.5 0.6 24.6 0.0048 94.76 95.3 −0.7 24.6 0.0048 95.12 95.9 0.0 17.3 0.0048 94.76
20 95.5 −0.4 23.6 0.0034 94.84 95.9 0.0 24.5 0.0034 94.96 95.7 −0.2 16.9 0.0034 94.88

0.75 10 4853.0 1554.3 3419.9 0.7503 95.92 4798.4 1499.7 3211.7 0.7495 96.12 4826.1 1527.4 2831.1 0.7425 96.52
(5.8158) 11 4992.9 1694.2 3657.9 0.5402 96.56 4113.1 814.4 2162.2 0.4981 95.80 4560.0 1261.3 2449.3 0.5143 96.60
3298.7 12 4242.5 943.8 2046.1 0.3583 96.16 3703.1 404.4 1329.6 0.3379 95.96 3977.1 678.4 1361.7 0.3438 96.20

13 3819.2 520.5 1402.5 0.2423 96.32 3466.6 167.9 1036.7 0.2320 95.68 3645.7 347.0 944.1 0.2338 96.20
14 3547.5 248.8 1045.6 0.1658 95.36 3366.1 67.4 905.0 0.1620 95.16 3458.3 159.6 726.8 0.1614 95.24
15 3412.5 113.8 936.5 0.1152 94.64 3345.8 47.1 878.2 0.1142 94.72 3379.7 81.0 652.7 0.1129 94.76
16 3356.4 57.7 873.3 0.0808 94.60 3337.2 38.5 861.3 0.0807 94.80 3347.0 48.3 617.7 0.0795 94.64
17 3332.1 33.4 859.7 0.0569 94.48 3327.3 28.6 839.2 0.0570 94.68 3329.7 31.0 605.0 0.0561 94.48
18 3316.1 17.4 814.8 0.0402 94.60 3312.8 14.1 829.5 0.0402 94.76 3314.5 15.8 578.2 0.0396 94.60
19 3310.2 11.5 838.5 0.0284 94.36 3306.4 7.7 856.2 0.0284 94.68 3308.3 9.6 593.9 0.0279 94.88
20 3292.4 −6.3 813.3 0.0200 94.64 3316.4 17.7 853.0 0.0201 95.04 3304.2 5.5 580.6 0.0198 94.76

0.99 10 27618.0 −163642.9 17700.9 1.7889 54.88 53584.8 −137676.1 30487.4 2.5205 71.00 40395.4 −150865.5 20481.1 2.1576 62.72
(21.9101) 11 54706.7 −136554.2 37687.2 1.7710 67.96 80128.0 −111132.9 37863.4 2.2007 80.12 67215.6 −124045.3 31916.3 1.9742 74.88
191260.9 12 92768.8 −98492.1 66686.8 1.6278 79.08 123087.5 −68173.4 56786.8 1.9309 89.04 107687.5 −83573.4 52972.3 1.7657 85.16

13 135781.4 −55479.5 93622.5 1.3998 87.72 179439.6 −11821.3 87474.8 1.6448 93.52 157264.0 −33996.9 76578.9 1.5096 91.16
14 179612.2 −11648.7 128351.8 1.1440 91.20 218074.5 26813.6 117142.2 1.2789 94.56 198538.1 7277.2 106052.3 1.1979 93.00
15 204721.9 13461.0 110567.3 0.8759 94.40 213376.8 22115.9 109485.9 0.9002 94.88 208980.7 17719.8 91853.7 0.8764 94.92
16 209708.5 18447.6 106715.1 0.6301 95.44 202610.7 11349.8 77118.1 0.6250 95.84 206215.9 14955.0 75154.4 0.6190 95.80
17 203575.5 12314.6 70787.1 0.4429 95.32 195545.3 4284.4 55570.2 0.4361 95.00 199624.1 8363.2 48901.2 0.4329 95.00
18 199606.7 8345.8 57125.7 0.3111 95.24 193632.8 2371.9 53765.4 0.3070 94.84 196667.2 5406.3 41549.9 0.3043 95.00
19 196112.6 4851.7 52084.9 0.2183 95.52 192647.7 1386.8 51991.8 0.2166 95.20 194407.7 3146.8 38005.1 0.2141 95.04
20 193492.2 2231.3 49780.2 0.1534 95.52 193054.5 1793.6 48724.2 0.1535 95.16 193276.8 2015.9 35608.7 0.1510 95.16
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Figure 2.2: Estimated percent relative bias and RMSE of the variance-parameter estimators
for selected marginal quantiles of a stationary waiting-time process in an M/M/1 queueing
system with traffic intensity 𝜌 = 0.8. All estimates are based on 2500 independent replica-
tions with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L = 10, 11, . . . , 20.
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2.7 Extended Empirical Evaluation of the Performance of Several Variance-

Parameter Estimators

In this section we build on Section 2.6 and we conduct an extended empirical evaluation of

the performance of the following estimators for 𝜎2
𝑝 :

• the batched STS area estimator A𝑝 (𝑤; 𝑏, 𝑚) defined in Equation (2.16);

• the main NBQ estimator Ñ𝑝 (𝑏, 𝑚) defined in Equation (2.56) based on the BQEs{
�̂�𝑝 ( 𝑗 , 𝑚)

}
and the full-sample point estimator �̃�𝑝 (𝑛);

• the NBQ estimator N𝑝 (𝑏, 𝑚) defined in Equation (2.55) based on the BQEs{
�̂�𝑝 ( 𝑗 , 𝑚)

}
and the average BQE �̂�𝑝 (𝑏, 𝑚);

• the main combined estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) defined by Equation (2.58) composed of

the batched STS area estimator A𝑝 (𝑤; 𝑏, 𝑚) and the main NBQ estimator Ñ𝑝 (𝑏, 𝑚);

and

• the combined estimator V𝑝 (𝑤; 𝑏, 𝑚) defined in Equation (2.57) composed of the

batched STS area estimator A𝑝 (𝑤; 𝑏, 𝑚) and the NBQ estimator N𝑝 (𝑏, 𝑚).

The evaluation will be based on the bias, standard deviation, RMSE, and the coverage

probability of the 95% CIs for 𝑦𝑝 defined by Equations (2.64)–(2.68). Similarly to Section

2.6, our analysis focuses on the constant weight function 𝑤0(𝑡) =
√

12, 𝑡 ∈ [0, 1]. Our goal

is to validate our theoretical findings and, in particular, to showcase the superiority of the

combined estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) with regard to its efficiency and make clear why this is

incorporated in the proposed sequential and fixed-sample-size procedures for steady-state

quantile estimation in Chapters 4–6.

We consider three stationary test processes: the AR(1) process in Section 2.6.1 with

mean zero and correlation coefficient 0.9, the waiting-time process from an M/M/1 queueing

system as described in Section 2.6.2 with traffic intensity 0.8, the ARTOP process with
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location parameter 𝛾 = 1, shape parameter \ = 2.1, and autoregressive parameter 𝜙 = 0.995.

For each process and value of 𝑝 under study, we fix the number of batches at 𝑏 = 32 and

consider an increasing sequence of batch sizes 𝑚 = 2L , L ∈ {7, 8, . . . , 20}. We note that

batch sizes with L ≤ 15 are often inadequate for variance-parameter estimation in these

problems (Alexopoulos et al. [7]).

Essentially, in comparison with Section 2.6, we consider more variance-parameter

estimators, we add one more test process, and we increase the range of the batch sizes that

we use. In some situations the number of significant digits displayed may also vary.

All experiments were coded in Java using common random numbers generated by the

RngStreams package of L’Ecuyer et al. [67]. The numerical results were computed from

2,500 independent replications of each test process; and those results are summarized in

Tables 2.3–2.8 below. In each table, column 1 contains the values of 𝑝, 𝑦𝑝, and 𝜎2
𝑝 (the latter

quantity is set in bold red typeface); column 2 contains the value of L = log2(𝑚); columns

3, 7, 11, 15, and 19 respectively contain the average values of the selected variance-parameter

estimators computed from 2,500 i.i.d. observations of those estimators; columns 4, 8, 12, 16,

and 20 respectively contain the average bias of the selected variance-parameter estimators;

columns 5, 9, 13, 17, and 21 respectively contain the sample standard deviations of the

selected variance-parameter estimators; and columns 6, 10, 14, 18, and 22 respectively

contain the corresponding empirical CI coverage probabilities. Finally, Figures 2.3–2.5

summarize the accuracy and precision of each variance-parameter estimator for each test

process in Sections 2.7.1–2.7.3, respectively, as the batch size increases by plotting estimates

of the respective average relative biases (as a percentage) and estimated RMSEs. In the

figures we refer to Ñ𝑝 (𝑏, 𝑚) as “NBQ (tilde)” and to Ṽ𝑝 (𝑤0; 𝑏, 𝑚) as “Combined (tilde).”

2.7.1 First-Order Autoregressive Process

The first test process is the stationary AR(1) time-series model described in Section 2.6.1.

For experimentation we selected the values 𝜙 = 0.9 and 𝑝 ∈ {0.5, 0.75, 0.95, 0.99}. The
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results are summarized in Tables 2.3–2.4 and in Figure 2.3. Notice here that there is some

overlap with the experimental results presented in Section 2.6, thus we will not discuss here

any findings already presented in the previous section.

Tables 2.3–2.4 indicate that all five estimators of 𝜎2
𝑝 and their respective estimated

standard deviations converged to their asymptotic limits reasonably fast (for valuesL > 10).

They also reveal that the BQE-based estimators Ñ𝑝 (𝑏, 𝑚) and N𝑝 (𝑏, 𝑚) converged faster

compared to the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚). Typically, the batched STS area

estimator A𝑝 (𝑤0; 𝑏, 𝑚) was more biased than Ñ𝑝 (𝑏, 𝑚) and N𝑝 (𝑏, 𝑚), especially for small

batch sizes. There were a few exceptions. Specifically, in Table of 2.4 for 𝑝 = 0.99 and

L = 10, 11, A𝑝 (𝑤0; 𝑏, 𝑚) exhibited an average bias of −38.589 and −18.068, respectively,

while N𝑝 (𝑏, 𝑚) exhibited an average bias of −41.419 and −25.188, respectively. Further,

for 𝑝 = 0.99 columns 5 and 9 show that the estimated standard deviation of Ñ𝑝 (𝑏, 𝑚)

approached its asymptotic value more quickly than the estimated standard deviation of

A𝑝 (𝑤0; 𝑏, 𝑚).

For this test process, Tables 2.3 and 2.4 indicate that Ñ𝑝 (𝑏, 𝑚) is less biased than

N𝑝 (𝑏, 𝑚), especially for small batch sizes. Of course, as we expected, the bias of the

combined estimators Ṽ𝑝 (𝑤0; 𝑏, 𝑚) and V𝑝 (𝑤0; 𝑏, 𝑚) fell between the biases of their con-

stituents. Moreover, among A𝑝 (𝑤;𝑏, 𝑚), Ñ𝑝 (𝑏, 𝑚), and N𝑝 (𝑏, 𝑚), the standard deviation

of Ñ𝑝 (𝑏, 𝑚) usually converged more quickly to its asymptotic value. Figure 2.3 illustrates

that the main NBQ estimator Ñ𝑝 (𝑏, 𝑚) outperformed its competitors with regard to per-

cent relative bias, especially for small batch sizes. Further, Figure 2.3 clearly shows the

advantage of the combined estimators Ṽ𝑝 (𝑤0; 𝑏, 𝑚) and V𝑝 (𝑤0; 𝑏, 𝑚) with regard to RMSE.

It is important to note here that comparisons between variance parameter estimators

based on average bias can be misleading because the respective estimates may “oscillate”

about zero. Specifically, in several cases the bias of the batched STS area estimator

A𝑝 (𝑤0; 𝑏, 𝑚) may be low for small samples, and then increase significantly for larger

sample sizes. This issue is more pronounced in the next two examples.
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2.7.2 M/M/1 Waiting-Time Process

Our second stationary test process was generated by the M/M/1 queueing system in Section

2.6.2 with FIFO service discipline, arrival rate _ = 0.8, and service rate 𝜔 = 1.

The results are summarized in Tables 2.5–2.6 and in Figure 2.4. Tables 2.5–2.6 illustrate

that all five variance-parameter estimators and their standard deviations converged to the

respective theoretical limits, but at a significantly lower rate than for the AR(1) process in

Section 2.7.1; these findings are extensions to those in Section 2.6. Again, this example

clearly indicated the presence of substantial bias in the variance-parameter estimators for

small batch sizes𝑚, and this bias became more prominent for large values of 𝑝 (near-extreme

quantiles).

Among the five variance-parameter estimators, the NBQ estimators Ñ𝑝 (𝑏, 𝑚) and

N𝑝 (𝑏, 𝑚) exhibited the lowest absolute bias for 210 ≤ 𝑚 ≤ 217. Although. there was no a

clear winner between the two NBQ estimators, there seems to be an indication that NBQ

Ñ𝑝 (𝑏, 𝑚) exhibits lower absolute bias for larger values of 𝑝 (𝑝 ≥ 0.95) and larger bias for

𝑝 ≤ 0.75 compared to N𝑝 (𝑏, 𝑚). Verifying this “trend” requires experimentation using

a wider set of 𝑝 values and more test processes. On the other hand, most frequently the

batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) exhibited the largest absolute small-sample bias.

There were a few exceptions, e.g., for 𝑝 = 0.5 and 𝑚 < 29, where A𝑝 (𝑤0; 𝑏, 𝑚) reported the

smallest absolute bias. Again, since the combined estimators Ṽ𝑝 (𝑤0; 𝑏, 𝑚) and V𝑝 (𝑤0; 𝑏, 𝑚)

are roughly the average of their constituents, their estimated average bias tends to fall in the

middle; see Figure 2.4. For 𝑝 = 0.5 and 𝑚 ≤ 210, all five variance-parameter estimators

induced CIs that exhibited slight overcoverage. On the other hand, for 𝑝 ≥ 0.75 all five

variance-parameter estimators, induced CIs with significant undercoverage for small values

of𝑚, and this issue was more pronounced in larger values of 𝑝. In all cases, for 𝑝 ≥ 0.75, the

NBQ estimator Ñ𝑝 (𝑏, 𝑚) resulted in CIs for 𝑦𝑝 with coverage probabilities that converged

faster to the nominal value of 95%, followed by the NBQ estimator N𝑝 (𝑏, 𝑚). This was

expected as Ñ𝑝 (𝑏, 𝑚) ≥ N𝑝 (𝑏, 𝑚), so that the NBQ estimator Ñ𝑝 (𝑏, 𝑚) yields wider CIs.
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Additionally, in these cases, the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) usually required

larger batch sizes to achieve estimated CI coverage probabilities close to the nominal value

compared to the NBQ estimators. Specifically, for 𝑝 = 0.99 and 𝑚 = 212, A𝑝 (𝑤0; 𝑏, 𝑚)

yielded a CI with estimated coverage probability of 79.08%, the NBQ estimator Ñ𝑝 (𝑏, 𝑚)

resulted in a CI coverage probability of 89.04%, and the NBQ estimator N𝑝 (𝑏, 𝑚) resulted

in a CI coverage probability of 87.88%.

The combined estimators resulted in CIs with estimated coverage probabilities analo-

gously to the estimated CI coverage probabilities of their constituents. In particular, the

combined estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚) yielded CIs with estimated coverage probabilities that are

closer to the nominal value of 95% compared to V𝑝 (𝑤0; 𝑏, 𝑚). This is one of the main

reasons why we chose to incorporate Ṽ𝑝 (𝑤0; 𝑏, 𝑚) in the newly developed procedures in

Chapters 4-6.

The plots of the RMSEs in Figure 2.4 once more highlight the importance of the

combined estimators, especially for reasonably large batch sizes (𝑚 ≥ 215).

2.7.3 Autoregressive-to-Pareto Process

The third test process is the ARTOP process described in Section 2.5.2 with location

parameter 𝛾 = 1, shape parameter \ = 2.1, and autoregressive parameter 𝜙 = 0.995. The

initial state 𝑍0 is generated from a 𝑁 (0, 1). The results are summarized in Tables 2.7–2.8

and in Figure 2.5.

Tables 2.7–2.8 indicate that all five variance-parameter estimators and their standard

deviations converged to the respective theoretical limits. For 𝑝 ≤ 0.95 and 210 ≤ 𝑚 ≤ 216,

the NBQ estimators outperform ed the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) with regard

to bias. In this example, we also see that in most cases the NBQ estimator N𝑝 (𝑏, 𝑚) reported

smaller absolute bias than the NBQ estimator Ñ𝑝 (𝑏, 𝑚). On the other hand, especially for

small batch sizes, Ñ𝑝 (𝑏, 𝑚) resulted in CIs with coverage probabilities that are closer to the

nominal value compared to N𝑝 (𝑏, 𝑚). Further, the estimated coverage probabilities of the
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CIs based on the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) converged to the nominal value at

a lower rate. We see again that the estimated bias of the combined estimators Ṽ𝑝 (𝑤0; 𝑏, 𝑚)

and V𝑝 (𝑤0; 𝑏, 𝑚) fell between the biases of their constituents and the respective estimated

standard deviations have smaller asymptotic values compared to the other three. Also,

the combined estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚) resulted in CIs with estimated coverage probabilities

that are closer to the nominal value of 95% compared to V𝑝 (𝑤0; 𝑏, 𝑚). Figure 2.5 reveals

that the RMSEs of the NBQ estimators N𝑝 (𝑏, 𝑚) and Ñ𝑝 (𝑏, 𝑚) appear to reach a peak

for relatively small batch sizes, and then converge faster to their theoretical limit than the

RMSE of the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚). Further, the plots of the estimated

relative bias highlight the benefits of the combined estimators.
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Table 2.3: Experimental results for the AR(1) process with `𝑌 = 0 and 𝜙 = 0.9 for 𝑝 ∈ {0.5, 0.75}. All estimates are based on 2,500
independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L ∈ {7, 8, . . . , 20}, where for nominal 95% CIs for 𝑦𝑝, the
coverage probabilities are denoted by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) NBQ Ñ𝑝 (𝑏, 𝑚) NBQ N𝑝 (𝑏, 𝑚) Combined Ṽ𝑝 (𝑤; 𝑏, 𝑚) Combined V𝑝 (𝑤; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.5 7 16.961 −3.897 5.004 92.20 19.183 −1.675 4.870 94.32 19.125 −1.733 4.861 94.24 18.054 −2.804 3.544 93.12 18.026 −2.832 3.541 93.12
(0.0000) 8 19.025 −1.833 5.116 93.12 19.831 −1.027 5.041 93.92 19.794 −1.064 5.033 93.80 19.422 −1.436 3.616 93.28 19.403 −1.455 3.613 93.28
20.858 9 19.939 −0.919 5.389 94.40 20.304 −0.554 5.250 94.44 20.281 −0.577 5.246 94.44 20.119 −0.739 3.826 94.60 20.107 −0.751 3.825 94.60

10 20.370 −0.488 5.340 94.32 20.671 −0.187 5.239 94.52 20.657 −0.201 5.237 94.52 20.518 −0.340 3.759 94.56 20.511 −0.347 3.758 94.56
11 20.638 −0.220 5.141 94.16 20.697 −0.161 5.183 94.44 20.688 −0.170 5.181 94.44 20.667 −0.191 3.614 93.88 20.662 −0.196 3.614 93.88
12 20.751 −0.107 5.309 95.08 20.705 −0.153 5.197 94.92 20.699 −0.159 5.196 94.92 20.728 −0.130 3.667 94.88 20.725 −0.133 3.667 94.88
13 20.525 −0.333 5.292 94.48 20.809 −0.049 5.327 94.84 20.805 −0.053 5.326 94.80 20.664 −0.194 3.738 94.80 20.662 −0.196 3.738 94.80
14 20.813 −0.045 5.165 94.80 20.893 0.035 5.374 95.16 20.890 0.032 5.374 95.16 20.852 −0.006 3.751 94.88 20.851 −0.007 3.750 94.88
15 20.660 −0.198 5.137 94.96 20.936 0.078 5.356 94.72 20.934 0.076 5.355 94.72 20.796 −0.062 3.716 95.52 20.795 −0.063 3.716 95.52
16 20.797 −0.061 5.233 95.28 21.028 0.170 5.197 95.68 21.027 0.169 5.197 95.68 20.911 0.053 3.698 95.24 20.910 0.052 3.698 95.24
17 20.682 −0.176 5.228 95.40 20.907 0.049 5.286 95.24 20.907 0.049 5.285 95.24 20.793 −0.065 3.680 95.32 20.793 −0.065 3.680 95.32
18 20.918 0.060 5.254 95.80 20.997 0.139 5.430 95.80 20.996 0.138 5.430 95.80 20.957 0.099 3.763 95.88 20.956 0.098 3.763 95.88
19 20.815 −0.043 5.171 95.04 20.909 0.051 5.314 94.68 20.908 0.050 5.314 94.68 20.861 0.003 3.734 95.00 20.861 0.003 3.734 95.00
20 20.930 0.072 5.387 94.72 20.908 0.050 5.226 95.04 20.907 0.049 5.226 95.04 20.919 0.061 3.730 94.80 20.919 0.061 3.730 94.80

0.75 7 18.803 −4.055 6.246 91.28 21.135 −1.723 5.431 93.52 20.804 −2.054 5.321 93.28 19.950 −2.908 4.263 92.52 19.787 −3.071 4.236 92.52
(0.6745) 8 21.005 −1.853 6.095 93.76 21.999 −0.859 5.629 95.00 21.825 −1.033 5.567 94.84 21.494 −1.364 4.292 94.48 21.409 −1.449 4.275 94.40
22.858 9 22.127 −0.731 6.260 94.32 22.393 −0.465 5.829 93.96 22.295 −0.563 5.797 93.92 22.258 −0.600 4.310 94.12 22.209 −0.649 4.299 94.04

10 22.317 −0.541 5.974 93.64 22.771 −0.087 5.776 94.36 22.718 −0.140 5.760 94.36 22.541 −0.317 4.152 94.44 22.515 −0.343 4.146 94.40
11 22.733 −0.125 5.810 94.60 22.798 −0.060 5.779 94.32 22.768 −0.090 5.771 94.24 22.765 −0.093 4.042 94.44 22.750 −0.108 4.039 94.44
12 22.912 0.054 5.749 95.32 22.719 −0.139 5.761 95.24 22.703 −0.155 5.757 95.24 22.817 −0.041 4.071 95.60 22.809 −0.049 4.070 95.60
13 22.654 −0.204 5.884 94.76 22.808 −0.050 5.863 94.96 22.799 −0.059 5.860 94.96 22.730 −0.128 4.150 95.24 22.725 −0.133 4.149 95.24
14 22.887 0.029 5.779 95.12 22.844 −0.014 5.832 95.44 22.838 −0.020 5.831 95.44 22.866 0.008 4.099 95.16 22.863 0.005 4.098 95.16
15 22.771 −0.087 5.801 94.80 22.775 −0.083 5.868 95.12 22.771 −0.087 5.867 95.12 22.773 −0.085 4.140 94.80 22.771 −0.087 4.140 94.80
16 22.787 −0.071 5.718 94.76 22.938 0.080 5.810 95.08 22.936 0.078 5.809 95.08 22.862 0.004 4.107 95.00 22.860 0.002 4.107 95.00
17 22.682 −0.176 5.707 95.24 22.881 0.023 5.845 95.08 22.880 0.022 5.845 95.08 22.780 −0.078 4.024 95.48 22.779 −0.079 4.024 95.48
18 22.875 0.017 5.654 95.68 23.007 0.149 5.876 96.16 23.006 0.148 5.875 96.16 22.940 0.082 4.106 95.76 22.940 0.082 4.106 95.72
19 22.844 −0.014 5.593 94.92 23.025 0.167 5.801 94.00 23.025 0.167 5.801 94.00 22.933 0.075 4.044 94.12 22.933 0.075 4.044 94.12
20 22.972 0.114 5.779 95.00 22.810 −0.048 5.725 95.52 22.810 −0.048 5.725 95.52 22.893 0.035 4.030 95.16 22.892 0.034 4.030 95.16
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Table 2.4: Experimental results for the AR(1) process with `𝑌 = 0 and 𝜙 = 0.9 for 𝑝 ∈ {0.95, 0.99}. All estimates are based on 2,500
independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L ∈ {7, 8, . . . , 20}, where for nominal 95% CIs for 𝑦𝑝, the
coverage probabilities are denoted by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) NBQ Ñ𝑝 (𝑏, 𝑚) NBQ N𝑝 (𝑏, 𝑚) Combined Ṽ𝑝 (𝑤; 𝑏, 𝑚) Combined V𝑝 (𝑤; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.95 7 30.912 −7.353 14.120 90.48 33.950 −4.315 9.300 93.28 31.275 −6.990 8.311 92.28 32.407 −5.858 9.081 92.52 31.091 −7.174 8.907 92.12
(1.6449) 8 36.479 −1.786 15.062 93.40 36.504 −1.761 9.666 93.80 35.610 −2.655 9.306 93.64 36.491 −1.774 9.600 94.04 36.051 −2.214 9.545 94.00
38.265 9 37.594 −0.671 13.516 94.32 37.580 −0.685 10.070 95.08 37.028 −1.237 9.842 94.88 37.587 −0.678 8.791 94.64 37.315 −0.950 8.754 94.60

10 37.812 −0.453 11.414 94.32 38.109 −0.156 10.105 95.00 37.698 −0.567 9.961 94.88 37.958 −0.307 7.855 94.88 37.756 −0.509 7.820 94.88
11 38.386 0.121 10.799 93.96 37.984 −0.281 9.849 94.40 37.804 −0.461 9.783 94.28 38.188 −0.077 7.425 94.40 38.099 −0.166 7.405 94.36
12 38.662 0.397 10.384 95.28 38.054 −0.211 9.797 94.56 37.986 −0.279 9.769 94.52 38.363 0.098 7.214 94.84 38.330 0.065 7.206 94.84
13 38.104 −0.161 10.008 94.36 38.085 −0.180 9.928 95.00 38.040 −0.225 9.911 95.00 38.094 −0.171 7.141 94.64 38.072 −0.193 7.136 94.64
14 38.306 0.041 9.899 95.12 38.326 0.061 9.737 95.68 38.291 0.026 9.726 95.68 38.316 0.051 7.016 95.40 38.299 0.034 7.013 95.40
15 38.422 0.157 9.894 94.68 38.115 −0.150 9.956 94.40 38.098 −0.167 9.950 94.40 38.271 0.006 7.035 94.36 38.262 −0.003 7.034 94.36
16 38.226 −0.039 9.943 95.32 38.255 −0.010 9.836 95.44 38.246 −0.019 9.834 95.44 38.240 −0.025 7.091 95.40 38.236 −0.029 7.090 95.40
17 38.153 −0.112 9.532 95.72 38.418 0.153 9.878 95.52 38.412 0.147 9.877 95.52 38.283 0.018 6.806 95.56 38.280 0.015 6.805 95.56
18 38.451 0.186 9.582 95.16 38.743 0.478 9.878 95.44 38.738 0.473 9.877 95.44 38.595 0.330 6.887 95.24 38.592 0.327 6.886 95.24
19 38.399 0.134 9.496 94.40 38.682 0.417 9.760 94.28 38.679 0.414 9.759 94.28 38.538 0.273 6.748 94.52 38.537 0.272 6.748 94.52
20 38.819 0.554 9.716 94.96 38.306 0.041 9.747 95.12 38.304 0.039 9.747 95.12 38.566 0.301 6.788 95.08 38.566 0.301 6.788 95.08

0.99 7 43.023 −38.589 19.888 82.72 59.836 −21.776 19.167 90.56 40.193 −41.419 10.956 83.60 51.296 −30.316 14.885 87.40 41.630 −39.982 12.478 82.96
(2.3263) 8 63.544 −18.068 29.612 90.48 64.789 −16.823 18.939 91.92 56.424 −25.188 15.541 90.04 64.157 −17.455 19.384 91.12 60.040 −21.572 18.620 90.20
81.612 9 69.221 −12.391 33.086 91.60 74.505 −7.107 21.540 94.16 68.185 −13.427 19.802 93.08 71.821 −9.791 21.641 92.76 68.712 −12.900 21.333 91.92

10 76.350 −5.262 31.978 92.92 79.563 −2.049 22.842 94.52 76.832 −4.780 22.154 94.08 77.931 −3.681 21.385 93.96 76.587 −5.025 21.288 93.84
11 81.773 0.161 29.693 94.32 81.200 −0.412 21.763 94.84 80.209 −1.403 21.445 94.64 81.491 −0.121 19.890 94.56 81.003 −0.609 19.845 94.52
12 83.965 2.353 26.111 94.60 81.832 0.220 21.628 94.32 81.558 −0.054 21.525 94.32 82.915 1.303 17.379 94.84 82.780 1.168 17.357 94.80
13 82.641 1.029 23.842 94.00 81.407 −0.205 21.678 94.48 81.241 −0.371 21.616 94.44 82.034 0.422 16.566 94.12 81.952 0.340 16.549 94.12
14 82.426 0.814 22.724 95.36 81.423 −0.189 20.838 95.44 81.307 −0.305 20.796 95.44 81.933 0.321 15.450 95.40 81.876 0.264 15.436 95.40
15 81.767 0.155 21.163 94.88 81.482 −0.130 20.288 95.28 81.401 −0.211 20.263 95.24 81.627 0.015 14.903 95.12 81.587 −0.025 14.895 95.12
16 82.122 0.510 21.256 94.92 81.094 −0.518 20.445 94.92 81.030 −0.582 20.427 94.92 81.616 0.004 14.667 95.00 81.585 −0.027 14.662 95.00
17 81.788 0.176 20.670 95.72 81.524 −0.088 20.606 95.00 81.494 −0.118 20.599 95.00 81.658 0.046 14.482 95.04 81.644 0.032 14.480 95.04
18 81.523 −0.089 21.343 95.04 82.320 0.708 20.759 94.92 82.299 0.687 20.754 94.92 81.916 0.304 14.887 94.80 81.905 0.293 14.886 94.80
19 82.083 0.471 20.924 95.28 82.607 0.995 20.864 94.52 82.594 0.982 20.862 94.52 82.341 0.729 14.732 94.68 82.334 0.722 14.731 94.68
20 82.971 1.359 20.830 94.80 82.194 0.582 20.854 95.00 82.185 0.573 20.852 95.00 82.589 0.977 14.409 95.04 82.584 0.972 14.409 95.04
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Figure 2.3: Estimated percent relative bias and RMSE of the variance-parameter estimators
for selected marginal quantiles of a stationary AR(1) process with `𝑌 = 0 and 𝜙 = 0.9 based
on Tables 2.3–2.4. All estimates are based on 2,500 independent replications with 𝑏 = 32
batches and batch sizes 𝑚 = 2L , L ∈ {7, 8, . . . , 20}.
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Table 2.5: Experimental results for a stationary waiting-time process in an M/M/1 queueing system with traffic intensity 𝜌 = 0.8 for
𝑝 ∈ {0.5, 0.75}. All estimates are based on 2,500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L = 7, 8, . . . , 20,
where for nominal 95% CIs for 𝑦𝑝, the coverage probabilities are denoted by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) NBQ Ñ𝑝 (𝑏, 𝑚) NBQ N𝑝 (𝑏, 𝑚) Combined Ṽ𝑝 (𝑤; 𝑏, 𝑚) Combined V𝑝 (𝑤; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.5 7 812.2 177.2 529.5 94.56 1,566.0 931.0 1,395.1 97.32 1,451.3 816.3 1,266.3 97.08 1,183.1 548.1 848.0 97.00 1,126.7 491.7 786.7 96.72
(2.3500) 8 1,409.7 774.7 1,128.4 97.92 1,708.9 1,073.9 1,576.5 97.88 1,608.1 973.1 1,470.1 97.68 1,556.9 921.9 1,143.3 98.56 1,507.3 872.3 1,095.1 98.52

635.0 9 1,697.4 1,062.4 1,537.4 98.32 1,366.9 731.9 1,405.9 97.32 1,308.9 673.9 1,340.9 97.16 1,534.8 899.8 1,210.1 98.20 1,506.2 871.2 1,183.6 98.16
10 1,489.4 854.4 1,440.2 98.08 928.3 293.3 626.1 96.60 903.9 268.9 602.7 96.40 1,213.3 578.3 869.1 97.76 1,201.3 566.3 862.0 97.64
11 1,110.6 475.6 808.9 97.36 769.7 134.7 343.3 96.04 758.6 123.6 334.8 95.88 942.9 307.9 484.1 97.04 937.4 302.4 481.6 97.00
12 836.0 201.0 352.9 96.92 698.9 63.9 221.6 96.04 693.7 58.7 218.4 95.96 768.5 133.5 227.5 96.52 766.0 131.0 226.4 96.48
13 729.9 94.9 236.3 95.76 664.2 29.2 187.6 95.56 661.6 26.6 186.3 95.52 697.5 62.5 157.2 95.88 696.3 61.3 156.8 95.88
14 682.8 47.8 192.7 95.88 643.7 8.7 170.3 95.64 642.4 7.4 169.7 95.52 663.5 28.5 132.1 95.96 662.9 27.9 131.9 95.96
15 654.3 19.3 176.3 94.36 640.1 5.1 167.0 94.52 639.4 4.4 166.7 94.48 647.3 12.3 122.6 94.52 647.0 12.0 122.5 94.52
16 646.4 11.4 166.6 95.16 639.1 4.1 163.1 95.36 638.8 3.8 163.0 95.36 642.8 7.8 116.9 95.40 642.7 7.7 116.9 95.40
17 639.1 4.1 161.9 94.72 640.0 5.0 163.5 94.80 639.8 4.8 163.5 94.80 639.5 4.5 114.4 94.32 639.5 4.5 114.4 94.32
18 638.9 3.9 159.6 94.40 634.7 -0.3 159.3 94.76 634.6 −0.4 159.2 94.72 636.8 1.8 112.4 94.64 636.8 1.8 112.4 94.64
19 639.4 4.4 163.0 94.64 632.8 −2.2 164.1 94.72 632.8 −2.2 164.1 94.72 636.2 1.2 114.5 94.64 636.2 1.2 114.5 94.64
20 632.5 −2.5 157.6 94.84 637.6 2.6 163.6 94.88 637.6 2.6 163.6 94.88 635.0 0.0 112.2 95.20 635.0 0.0 112.2 95.20

0.75 7 1,125.4 −2,173.3 682.2 73.60 2,527.5 −771.2 1,727.4 89.20 2,497.1 −801.6 1,692.4 88.96 1,815.3 −1,483.4 1,060.7 83.12 1,800.3 −1,498.4 1,043.6 82.96
(5.8158) 8 2,351.4 −947.3 1,727.0 86.56 4,027.8 729.1 2,721.3 94.80 3,940.8 642.1 2,624.7 94.68 3,176.3 −122.4 1,960.0 92.20 3,133.5 −165.2 1,911.9 92.16
3, 298.7 9 3,785.6 486.9 2,732.4 93.00 5,064.1 1,765.4 3,548.2 95.64 4,940.3 1,641.6 3,416.8 95.52 4,414.7 1,116.0 2,682.6 95.00 4,353.8 1,055.1 2,620.3 94.84

10 4,853.0 1,554.3 3,419.9 95.92 4,798.4 1,499.7 3,211.7 96.12 4,707.5 1,408.8 3,111.5 96.04 4,826.1 1,527.4 2,831.1 96.52 4,781.4 1,482.7 2,787.7 96.48
11 4,992.9 1,694.2 3,657.9 96.56 4,113.1 814.4 2,162.2 95.80 4,066.2 767.5 2,113.7 95.64 4,560.0 1,261.3 2,449.3 96.60 4,536.9 1,238.2 2,431.2 96.56
12 4,242.5 943.8 2,046.1 96.16 3,703.1 404.4 1,329.6 95.96 3,681.0 382.3 1,312.2 95.88 3,977.1 678.4 1,361.7 96.20 3,966.2 667.5 1,355.5 96.20
13 3,819.2 520.5 1,402.5 96.32 3,466.6 167.9 1,036.7 95.68 3,456.0 157.3 1,029.9 95.68 3,645.7 347.0 944.1 96.20 3,640.5 341.8 941.7 96.20
14 3,547.5 248.8 1,045.6 95.36 3,366.1 67.4 905.0 95.16 3,360.9 62.2 902.2 95.16 3,458.3 159.6 726.8 95.24 3,455.7 157.0 725.8 95.24
15 3,412.5 113.8 936.5 94.64 3,345.8 47.1 878.2 94.72 3,343.1 44.4 876.9 94.72 3,379.7 81.0 652.7 94.76 3,378.4 79.7 652.3 94.76
16 3,356.4 57.7 873.3 94.60 3,337.2 38.5 861.3 94.80 3,335.9 37.2 860.7 94.80 3,347.0 48.3 617.7 94.64 3,346.3 47.6 617.5 94.64
17 3,332.1 33.4 859.7 94.48 3,327.3 28.6 839.2 94.68 3,326.6 27.9 838.9 94.68 3,329.7 31.0 605.0 94.48 3,329.4 30.7 604.9 94.48
18 3,316.1 17.4 814.8 94.60 3,312.8 14.1 829.5 94.76 3,312.5 13.8 829.3 94.76 3,314.5 15.8 578.2 94.60 3,314.3 15.6 578.1 94.60
19 3,310.2 11.5 838.5 94.36 3,306.4 7.7 856.2 94.68 3,306.2 7.5 856.1 94.68 3,308.3 9.6 593.9 94.88 3,308.2 9.5 593.9 94.88
20 3,292.4 −6.3 813.3 94.64 3,316.4 17.7 853.0 95.04 3,316.3 17.6 853.0 95.04 3,304.2 5.5 580.6 94.76 3,304.1 5.4 580.6 94.76
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Table 2.6: Experimental results for a stationary waiting-time process in an M/M/1 queueing system with traffic intensity 𝜌 = 0.8 for
𝑝 ∈ {0.95, 0.99}. All estimates are based on 2,500 independent replications with 𝑏 = 32 batches and batch sizes𝑚 = 2L ,L = 7, 8, . . . , 20,
where for nominal 95% CIs for 𝑦𝑝, the coverage probabilities are denoted by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) NBQ Ñ𝑝 (𝑏, 𝑚) NBQ N𝑝 (𝑏, 𝑚) Combined Ṽ𝑝 (𝑤; 𝑏, 𝑚) Combined V𝑝 (𝑤; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.95 7 1,884 −30,596 1,038 37.00 5,839 −26,641 5,100 58.76 3,606 −28,874 2,032 49.52 3,830 −28,650 2,749 49.20 2,731 −29,749 1,347 43.24
(13.8629) 8 4,611 −27,869 2,770 54.80 9,082 −23,398 5,698 71.16 7,382 −25,098 3,787 66.56 6,811 −25,669 3,651 62.92 5,974 −26,506 2,867 60.72
32, 480 9 9,503 −22,977 6,386 68.56 14,877 −17,603 7,458 81.20 13,965 −18,515 6,732 80.00 12,147 −20,333 6,009 75.80 11,699 −20,781 5,751 75.04

10 16,816 −15,664 12,658 80.96 24,106 −8,374 11,553 90.60 23,806 −8,674 11,450 90.48 20,403 −12,077 10,560 87.24 20,256 −12,224 10,535 87.00
11 26,142 −6,338 19,292 88.84 34,970 2,490 18,686 94.44 34,807 2,327 18,554 94.44 30,486 −1,994 16,199 92.92 30,406 −2,074 16,133 92.92
12 33,519 1,039 22,209 93.96 39,307 6,827 22,823 95.44 39,103 6,623 22,503 95.44 36,367 3,887 19,361 95.08 36,267 3,787 19,213 95.08
13 37,166 4,686 18,578 95.52 37,129 4,649 18,450 95.80 37,006 4,526 18,232 95.76 37,148 4,668 15,334 96.20 37,087 4,607 15,238 96.16
14 36,801 4,321 17,075 94.76 34,516 2,036 11,262 94.68 34,464 1,984 11,218 94.68 35,676 3,196 11,496 94.80 35,651 3,171 11,478 94.80
15 35,003 2,523 12,155 94.80 33,469 989 9,686 95.04 33,444 964 9,669 95.04 34,249 1,769 8,505 94.72 34,236 1,756 8,498 94.72
16 33,714 1,234 10,240 95.16 33,148 668 8,827 95.84 33,135 655 8,821 95.84 33,436 956 7,193 95.36 33,429 949 7,191 95.36
17 33,065 585 8,831 94.84 32,693 213 8,363 94.76 32,686 206 8,360 94.76 32,882 402 6,177 95.00 32,878 398 6,177 95.00
18 32,996 516 8,343 94.76 32,556 76 8,460 94.72 32,552 72 8,459 94.72 32,779 299 5,911 94.76 32,778 298 5,910 94.76
19 32,564 84 8,239 94.88 32,570 90 8,315 95.20 32,568 88 8,314 95.20 32,567 87 5,859 94.80 32,566 86 5,858 94.80
20 32,462 −18 7,978 94.68 32,593 113 8,318 94.56 32,592 112 8,317 94.56 32,526 46 5,705 94.56 32,526 46 5,705 94.56

0.99 7 2,255 −189,006 1,170 18.92 16,809 −174,452 17,586 49.36 3,846 −187,415 2,095 25.12 9,416 −181,845 8,861 37.52 3,038 −188,223 1,424 21.60
(21.9101) 8 6,001 −185,260 3,245 31.68 26,575 −164,686 26,786 57.36 8,256 −183,005 4,024 37.24 16,125 −175,136 13,839 46.40 7,111 −184,150 3,177 33.60
191, 261 9 13,214 −178,047 7,919 41.56 38,974 −152,287 32,980 62.80 17,133 −174,128 7,526 47.92 25,890 −165,371 18,023 53.40 15,143 −176,118 6,765 44.48

10 27,618 −163,643 17,701 54.88 53,585 −137,676 30,487 71.00 34,675 −156,586 14,418 61.48 40,395 −150,866 20,481 62.72 31,091 −160,170 14,065 57.92
11 54,707 −136,554 37,687 67.96 80,128 −111,133 37,863 80.12 67,239 −124,022 28,074 76.24 67,216 −124,045 31,916 74.88 60,874 −130,387 28,645 72.64
12 92,769 −98,492 66,687 79.08 123,088 −68,173 56,787 89.04 117,742 −73,519 54,211 87.88 107,688 −83,573 52,972 85.16 105,057 −86,204 52,186 84.84
13 135,781 −55,480 93,623 87.72 179,440 −11,821 87,475 93.52 177,898 −13,363 87,261 93.44 157,264 −33,997 76,579 91.16 156,506 −34,755 76,546 91.04
14 179,612 −11,649 128,352 91.20 218,074 26,813 117,142 94.56 217,213 25,952 116,265 94.56 198,538 7,277 106,052 93.00 198,114 6,853 105,703 93.00
15 204,722 13,461 110,567 94.40 213,377 22,116 109,486 94.88 212,818 21,557 108,149 94.88 208,981 17,720 91,854 94.92 208,706 17,445 91,319 94.88
16 209,709 18,448 106,715 95.44 202,611 11,350 77,118 95.84 202,367 11,106 76,595 95.80 206,216 14,955 75,154 95.80 206,096 14,835 74,931 95.80
17 203,576 12,315 70,787 95.32 195,545 4,284 55,570 95.00 195,433 4,172 55,513 95.00 199,624 8,363 48,901 95.00 199,569 8,308 48,876 95.00
18 199,607 8,346 57,126 95.24 193,633 2,372 53,765 94.84 193,573 2,312 53,742 94.84 196,667 5,406 41,550 95.00 196,638 5,377 41,538 95.00
19 196,113 4,852 52,085 95.52 192,648 1,387 51,992 95.20 192,617 1,356 51,983 95.20 194,408 3,147 38,005 95.04 194,392 3,131 38,001 95.04
20 193,492 2,231 49,780 95.52 193,054 1,793 48,724 95.16 193,036 1,775 48,720 95.16 193,277 2,016 35,609 95.16 193,268 2,007 35,607 95.16
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Figure 2.4: Estimated percent relative bias and RMSE of the variance-parameter estimators
for selected marginal quantiles of a stationary waiting-time process in an M/M/1 queueing
system with traffic intensity 𝜌 = 0.8 based on Tables 2.5–2.6. All estimates are based
on 2500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L =

7, 8, . . . , 20.
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Table 2.7: Experimental results of an ARTOP process with 𝛾 = 1, \ = 2.1, and 𝛽 = 0.995 for 𝑝 ∈ {0.5, 0.75}. All estimates are based
on 2,500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L = 7, 8, . . . , 20, where for nominal 95% CIs for 𝑦𝑝, the
coverage probabilities are denoted by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) NBQ Ñ𝑝 (𝑏, 𝑚) NBQ N𝑝 (𝑏, 𝑚) Combined Ṽ𝑝 (𝑤; 𝑏, 𝑚) Combined V𝑝 (𝑤; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.5 7 101.6 −19.8 447.0 64.16 299.3 177.9 983.7 87.56 269.4 148.0 906.7 86.60 198.9 77.5 623.2 81.00 184.2 62.8 586.9 79.60
(1.3911) 8 198.5 77.1 651.3 84.36 327.8 206.4 714.2 94.36 296.8 175.4 662.3 93.32 262.2 140.8 603.7 91.64 246.9 125.5 581.0 90.60

121.4 9 322.5 201.1 1,078.2 93.20 325.6 204.2 850.9 96.76 298.0 176.6 809.7 96.24 324.0 202.6 743.2 96.16 310.4 189.0 728.3 95.72
10 370.4 249.0 2,242.1 96.64 225.3 103.9 198.7 96.88 208.4 87.0 184.7 96.16 299.0 177.6 1,148.9 97.56 290.7 169.3 1,147.7 97.40
11 250.3 128.9 243.5 96.68 171.9 50.5 92.8 96.32 162.9 41.5 86.7 95.96 211.7 90.3 140.8 97.12 207.3 85.9 139.2 96.88
12 192.2 70.8 116.1 97.16 144.9 23.5 56.4 96.00 140.2 18.8 53.7 95.72 168.9 47.5 70.0 96.48 166.6 45.2 69.2 96.40
13 156.2 34.8 68.1 96.16 133.5 12.1 44.1 95.60 131.1 9.7 42.7 95.48 145.0 23.6 43.8 96.04 143.9 22.5 43.4 96.00
14 138.3 16.9 46.4 95.52 128.1 6.7 37.8 95.44 126.9 5.5 37.1 95.40 133.3 11.9 31.9 95.28 132.7 11.3 31.6 95.24
15 129.6 8.2 38.0 94.92 124.9 3.5 34.5 95.32 124.3 2.9 34.2 95.16 127.3 5.9 26.3 95.32 127.0 5.6 26.2 95.28
16 125.7 4.3 34.4 94.92 124.1 2.7 32.4 95.60 123.8 2.4 32.2 95.60 124.9 3.5 24.2 95.60 124.7 3.3 24.1 95.60
17 122.6 1.2 31.7 95.36 122.5 1.1 31.9 95.12 122.4 1.0 31.9 95.12 122.6 1.2 22.3 95.76 122.5 1.1 22.3 95.76
18 122.6 1.2 31.6 95.08 122.5 1.1 31.1 95.28 122.4 1.0 31.1 95.28 122.6 1.2 22.1 95.20 122.5 1.1 22.1 95.20
19 121.3 −0.1 30.3 94.96 122.2 0.8 31.1 94.60 122.2 0.8 31.1 94.60 121.7 0.3 21.8 95.00 121.7 0.3 21.8 95.00
20 122.1 0.7 31.0 94.96 121.4 0.0 30.5 94.92 121.4 0.0 30.5 94.92 121.7 0.3 21.9 94.68 121.7 0.3 21.9 94.68

0.75 7 223.7 −428.6 2,080.3 43.92 799.7 147.4 3,461.1 74.60 769.9 117.6 3,305.7 74.20 507.1 −145.2 2,479.0 64.80 492.5 −159.8 2,404.2 64.44
(1.9351) 8 519.1 −133.2 2,332.2 68.08 1,155.8 503.5 3,689.9 87.28 1,112.7 460.4 3,533.4 87.12 832.4 180.1 2,707.8 81.68 811.2 158.9 2,633.6 81.52

652.3 9 1,044.8 392.5 4,834.3 84.76 1,477.7 825.4 5,288.2 94.00 1,420.5 768.2 5,101.8 93.84 1,257.8 605.5 4,113.0 91.04 1,229.7 577.4 4,033.9 90.88
10 1,988.2 1,335.9 33,099.7 92.44 1,318.0 665.7 2,936.4 95.72 1,268.6 616.3 2,830.3 95.60 1,658.4 1,006.1 16,985.5 94.96 1,634.1 981.8 16,975.2 94.84
11 1,315.0 662.7 3,118.3 95.56 935.6 283.3 632.1 95.68 909.3 257.0 606.0 95.40 1,128.3 476.0 1,684.1 96.00 1,115.3 463.0 1,678.6 95.96
12 1,029.1 376.8 913.9 96.88 779.8 127.5 341.5 96.04 766.3 114.0 330.9 95.84 906.4 254.1 531.7 96.60 899.8 247.5 528.6 96.60
13 845.0 192.7 435.7 96.56 719.4 67.1 255.3 95.28 712.4 60.1 250.7 95.28 783.2 130.9 278.9 96.20 779.7 127.4 277.2 96.08
14 744.2 91.9 256.0 95.44 688.1 35.8 212.5 94.92 684.5 32.2 210.5 94.76 716.6 64.3 178.7 95.56 714.8 62.5 178.0 95.52
15 693.6 41.3 205.0 95.16 671.9 19.6 190.6 95.32 670.2 17.9 189.6 95.32 683.0 30.7 145.9 95.40 682.1 29.8 145.6 95.40
16 673.8 21.5 181.9 95.20 668.8 16.5 179.3 95.12 667.9 15.6 178.8 95.12 671.4 19.1 130.6 95.32 670.9 18.6 130.4 95.32
17 659.9 7.6 171.2 95.32 659.7 7.4 173.3 95.48 659.2 6.9 173.1 95.44 659.8 7.5 123.3 95.08 659.6 7.3 123.2 95.08
18 658.6 6.3 169.0 95.60 659.5 7.2 174.7 95.96 659.3 7.0 174.5 95.96 659.0 6.7 123.0 95.60 658.9 6.6 122.9 95.60
19 653.2 0.9 165.0 94.52 658.7 6.4 170.1 94.84 658.6 6.3 170.1 94.84 655.9 3.6 119.0 94.60 655.8 3.5 119.0 94.60
20 656.1 3.8 169.6 94.92 657.4 5.1 165.1 95.12 657.4 5.1 165.1 95.12 656.8 4.5 119.3 94.92 656.7 4.4 119.3 94.92
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Table 2.8: Experimental results of an ARTOP process with 𝛾 = 1, \ = 2.1, and 𝛽 = 0.995 for 𝑝 ∈ {0.95, 0.99}. All estimates are based
on 2,500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L = 7, 8, . . . , 20, where for nominal 95% CIs for 𝑦𝑝, the
coverage probabilities are denoted by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) NBQ Ñ𝑝 (𝑏, 𝑚) NBQ N𝑝 (𝑏, 𝑚) Combined Ṽ𝑝 (𝑤; 𝑏, 𝑚) Combined V𝑝 (𝑤; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.95 7 668 −12,533 5,867 17.32 3,157 −10,044 14,408 44.20 2,597 −10,604 13,634 36.92 1,893 −11,308 9,516 32.44 1,617 −11,584 9,185 28.40
(4.1643) 8 2,370 −10,831 17,984 34.32 6,986 −6,215 32,553 61.84 6,571 −6,630 32,197 58.08 4,641 −8,560 21,543 51.92 4,437 −8,764 21,376 49.24
13,201 9 5,132 −8,069 16,862 55.92 15,200 1,999 72,014 77.68 14,861 1,660 70,781 76.52 10,086 −3,115 39,342 70.76 9,920 −3,281 38,758 69.80

10 46,958 33,7571,749,162 75.28 31,114 17,913 372,607 87.80 30,534 17,333 360,870 87.64 39,162 25,9611,065,953 83.68 38,876 25,6751,060,252 83.60
11 23,951 10,750 77,224 88.80 27,023 13,822 66,947 93.72 26,578 13,377 64,979 93.68 25,463 12,262 67,137 92.16 25,244 12,043 66,246 92.12
12 27,807 14,606 77,432 93.60 23,532 10,331 34,623 95.36 23,153 9,952 33,674 95.32 25,704 12,503 48,888 95.16 25,517 12,316 48,570 95.16
13 26,155 12,954 69,351 95.48 17,562 4,361 10,935 95.76 17,382 4,181 10,672 95.72 21,927 8,726 37,065 96.16 21,838 8,637 36,988 96.08
14 19,033 5,832 14,175 96.12 15,090 1,889 6,331 95.32 15,012 1,811 6,250 95.32 17,093 3,892 8,591 96.32 17,054 3,853 8,563 96.28
15 15,890 2,689 7,031 96.28 14,168 967 4,620 95.36 14,131 930 4,594 95.28 15,043 1,842 4,664 95.92 15,024 1,823 4,653 95.92
16 14,544 1,343 4,646 96.28 13,787 586 3,987 95.92 13,767 566 3,976 95.92 14,172 971 3,277 96.12 14,162 961 3,272 96.12
17 13,785 584 3,807 95.04 13,505 304 3,655 95.32 13,496 295 3,651 95.32 13,647 446 2,730 95.44 13,643 442 2,728 95.40
18 13,560 359 3,617 96.08 13,453 252 3,597 96.08 13,448 247 3,594 96.08 13,507 306 2,615 96.24 13,505 304 2,614 96.24
19 13,403 202 3,452 95.56 13,301 100 3,427 95.72 13,299 98 3,426 95.72 13,353 152 2,489 95.52 13,352 151 2,488 95.52
20 13,297 96 3,447 95.28 13,364 163 3,414 95.36 13,362 161 3,413 95.36 13,330 129 2,437 95.32 13,329 128 2,436 95.32

0.99 7 1,061−213,216 8,256 6.16 15,922−198,355 79,647 27.28 4,032−210,245 21,183 13.92 8,374−205,903 42,129 19.92 2,523−211,754 13,995 10.36
(8.9615) 8 5,149−209,128 36,627 12.80 28,450−185,827 119,126 37.20 13,379−200,898 71,217 23.12 16,615−197,662 69,166 27.88 9,199−205,078 47,770 18.92
214,277 9 13,456−200,821 63,685 25.52 55,124−159,153 238,687 51.36 38,664−175,613 197,717 40.28 33,960−180,317 130,912 39.92 25,860−188,417 112,048 33.96

10 63,961−150,316 774,835 43.68 341,692 127,41510,855,637 66.72 325,339 111,06210,632,413 60.80 200,622 −13,6555,721,547 57.80 192,576 −21,7015,611,750 54.12
11 149,196 −65,0811,008,149 67.04 359,839 145,562 5,863,407 82.04 350,163 135,886 5,717,035 80.48 252,846 38,5693,121,658 77.40 248,085 33,8083,050,694 76.24
12 389,911 175,6342,852,610 82.24 542,259 327,982 4,877,664 91.72 532,850 318,573 4,740,608 91.56 464,876 250,5993,644,191 88.80 460,246 245,9693,579,002 88.72
13 524,018 309,7414,731,970 91.16 521,692 307,415 1,533,489 95.24 512,116 297,839 1,480,442 95.20 522,874 308,5972,861,910 94.24 518,162 303,8852,845,187 94.24
14 540,122 325,8451,636,833 95.04 389,527 175,250 563,378 96.32 383,525 169,248 545,855 96.32 466,020 251,743 973,150 96.20 463,066 248,789 967,598 96.16
15 433,001 218,724 829,837 95.92 282,290 68,013 167,006 95.84 279,890 65,613 163,576 95.84 358,842 144,565 451,512 96.12 357,661 143,384 450,683 96.12
16 323,008 108,731 323,937 96.52 249,888 35,611 105,017 96.04 248,792 34,515 103,842 96.04 287,028 72,751 182,098 96.88 286,489 72,212 181,769 96.88
17 266,306 52,029 146,212 96.04 230,223 15,946 73,093 95.32 229,724 15,447 72,753 95.32 248,551 34,274 88,058 96.00 248,305 34,028 87,933 96.00
18 236,186 21,909 77,113 95.56 224,068 9,791 64,519 95.44 223,826 9,549 64,376 95.44 230,223 15,946 53,780 95.44 230,104 15,827 53,724 95.44
19 225,507 11,230 63,720 95.08 217,850 3,573 60,228 94.24 217,728 3,451 60,162 94.24 221,739 7,462 45,877 94.88 221,679 7,402 45,851 94.88
20 217,120 2,843 57,690 95.40 218,651 4,374 56,898 95.16 218,588 4,311 56,869 95.16 217,873 3,596 41,702 95.64 217,842 3,565 41,691 95.64
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Figure 2.5: Estimated percent relative bias and RMSE of the variance-parameter estimators
for selected marginal quantiles of an ARTOP process with 𝛾 = 1, \ = 2.1, and 𝛽 = 0.995
based on Tables 2.7–2.8. All estimates are based on 2500 independent replications with
𝑏 = 32 batches and batch sizes 𝑚 = 2L , L = 7, 8, . . . , 20.
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2.8 Experimentation with Weight Functions from the Literature

In this section we conduct a limited experimental evaluation of the bias and MSE of the NBQ

estimator Ñ𝑝 (𝑏, 𝑚) in Equation (2.61) and the batched STS area estimators A𝑝 (𝑤; 𝑏, 𝑚) for

the variance parameter 𝜎2
𝑝 = lim𝑛→∞ 𝑛Var

[
�̃�𝑝 (𝑛)

]
based on the weight functions 𝑤0(𝑡) =

√
12, 𝑤2(𝑡) =

√
840(3𝑡2−3𝑡+1/2) (Goldsman et al. [33]), and {𝑤cos,ℓ (𝑡) =

√
8𝜋ℓ cos(2𝜋ℓ𝑡):

ℓ = 1, 2} (Foley and Goldsman [54]) by means of the stationary AR(1) process in Section

2.6.1 and the M/M/1 waiting-time process in Section 2.6.2. Our objective is to illustrate

our (temporary) decision to use the constant weight function 𝑤0(·) in the procedures in

Chapters 4–6.

Recall that the weights 𝑤2(·) and 𝑤cos,ℓ (·) were tailored to the estimation of the steady-

state mean of the base process {𝑌𝑘 : 𝑘 ≥ 1} and yield first-order unbiased estimators for

the respective variance parameter 𝜎2 = lim𝑛→∞ 𝑛Var(𝑌 𝑛). In particular, the STS area

estimators for 𝜎2 obtained from the orthonormal sequence {𝑤cos,ℓ (·) : ℓ = 1, 2, . . .} are

asymptotically independent as 𝑚 → ∞ for fixed 𝑏; hence they can be averaged to yield an

estimator with smaller variance.

At this junction we wish to review a few findings regarding the bias of the estimators of

𝜎2 in the last paragraph. The main competitor of the STS area estimators for 𝜎2 is the NBM

estimator N (𝑏, 𝑚) ≡ 𝑚
𝑏−1

∑𝑏
𝑗=1(𝑌 𝑗 ,𝑚 − 𝑌 𝑛)2, where 𝑌 𝑗 ,𝑚 the sample average from batch 𝑗 .

(Notice that the NBQ estimator N𝑝 (𝑏, 𝑚) is an analogue of N (𝑏, 𝑚).) Aktaran-Kalaycı

et al. [57] obtained detailed expressions for the expected value of various estimators of 𝜎2,

including the ones mentioned in this section. Specifically, the NBM estimator has first-order

bias equal to −𝛾1(𝑏 + 1)/𝑛, where 𝛾1 ≡ 2
∑∞

𝑖=1 𝑖Cov[𝑌1, 𝑌1+𝑖] (assuming that the infinite

series is summable). Analytical results in Aktaran-Kalaycı et al. [57] for the two stochastic

processes under study herein revealed that, for fixed 𝑏, the STS area estimator of 𝜎2 based

on the quadratic weight 𝑤2(·) has more prominent bias than the NBM estimator N (𝑏, 𝑚)

for very small batch sizes 𝑚 until it “catches up” as 𝑚 increases, and eventually outperforms
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the NBM estimator with regard to the rate of convergence to 𝜎2. Further, Example 1 in

Alexopoulos et al. [40] (corresponding to the Example in Section 2.8.2 below) illustrated

that for processes with positive autocorrelation and for fixed (𝑏, 𝑚), the bias of the estimator

for 𝜎2 based on the weights {𝑤cos,ℓ (·)} : ℓ = 1, 2, . . .} can become more pronounced as ℓ

increases. (Of course, this effect diminishes as 𝑚 increases.)

Unfortunately, as stated in Remark 2.3.2, the derivation of analytical expressions for

the expected value of the estimators for 𝜎2
𝑝 is a very difficult problem, even for i.i.d.

processes (for more details see Chapter 3). A key question is: do the properties of the

STS area estimators based on the weights 𝑤2(𝑡) =
√

840(3𝑡2 − 3𝑡 + 1/2) (Goldsman

et al. [33]) and {𝑤cos,ℓ (𝑡) =
√

8𝜋ℓ cos(2𝜋ℓ𝑡): ℓ = 1, 2, . . .} carry over to the quantile-

estimation setting? The following two examples attempt to provide a preliminary answer

with regard to the small-sample bias of the NBQ variance estimator Ñ𝑝 (𝑏, 𝑚) and the STS

area variance estimators A𝑝 (𝑤; 𝑏, 𝑚) corresponding to the weight functions 𝑤0(·), 𝑤2(·),

and {𝑤cos,ℓ (·) : ℓ = 1, 2}.

2.8.1 First-Order Autoregressive Process

Consider the stationary Gaussian AR(1) time-series from Section 2.6.1. We take 𝑌0 ∼

𝑁 (0, 1), 𝜙 = 0.9, and 𝜎2
𝜖 = 1 − 𝜙2 = 0.19; hence the process is stationary with a standard

normal marginal distribution.

Figure 2.6 displays plots of the five estimated expeced values Ñ𝑝 (𝑏, 𝑚) (“NBQ (tilde)”)

and A𝑝 (𝑤; 𝑏, 𝑚) for the weight functions 𝑤0 (“STS Const”), 𝑤2 (“STS Quad”), 𝑤cos,1

(“STS Cos,1”), and 𝑤cos,2 (“STS Cos,2”) computed from 2,500 independent replications

for a fixed batch count 𝑏 = 32, values 𝑝 ∈ {0.75, 0.9, 0.95, 0.99, 0.995}, and increasing

batch sizes 𝑚 = 2L , L ∈ {10, 11, . . . , 20}. Figure 2.7 displays plots of the respective

estimated relative bias (as a percentage) of the variance estimators and Figure 2.8 contains

plots of the respective estimated RMSEs.

An examination of Figures 2.6–2.8 reveals the following findings: (i) All variance
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estimators converge to the value 𝜎2
𝑝 , as anticipated by theory. Indeed, for 𝑚 = 220 all

averages are within 2% of 𝜎2
𝑝 . (ii) The NBQ variance estimator Ñ𝑝 (𝑏, 𝑚) typically has

the lowest small-sample estimated absolute bias; this is illustrated best for 𝑝 = 0.99 or

0.995. (iii) There is no evidence in this experiment that any of the alternative weights 𝑤2(·)

and {𝑤cos,ℓ : ℓ = 1, 2} induces a variance estimator with lower small-sample absolute bias

than 𝑤0(·). Although for 𝑝 = 0.995 the estimator A𝑝 (𝑤0; 𝑏, 𝑚) has the most-pronounced

estimated bias at 𝑚 = 210, it catches up to the NBQ estimator Ñ𝑝 (𝑏, 𝑚) near 𝑚 = 212, while

the STS area estimators corresponding to 𝑤2(·) and {𝑤cos,ℓ : ℓ = 1, 2} bounce from negative

to excessive positive estimated bias before settling near 𝜎2
𝑝 for 𝑚 ≈ 217. (iv) Among the five

competing estimators of 𝜎2
𝑝 , the NBQ estimator Ñ𝑝 (𝑏, 𝑚) appears to exhibit the quickest

convergence to a small neighborhood of 𝜎2
𝑝 (within 2%) followed by A𝑝 (𝑤0; 𝑏, 𝑚).

2.8.2 M/M/1 Waiting-Time Process

Consider the waiting-time process {𝑌𝑘 : 𝑘 ≥ 1} in an M/M/1 queueing system in steady-

state with arrival rate _ = 0.8, service rate 𝜔 = 1 (traffic intensity 𝜌 = 0.8) and FIFO service

discipline.

Figures 2.9–2.11 depict the experimental results based on 2,500 independent replications

for a fixed batch count 𝑏 = 32, values 𝑝 ∈ {0.5, 0.75, 0.9, 0.95, 0.99, 0.995}, and increasing

batch sizes 𝑚 = 2L , L ∈ {10, 11, . . . , 20} .

For this test process, the dominance of the NBQ estimator Ñ𝑝 (𝑏, 𝑚) (primarily) and

the STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) (secondarily) over their competitors with regard to the

rate of convergence to a narrow neighborhood of 𝜎2
𝑝 (say, within 2%) is more evident than

in the example of Section 2.8.1.

Remark 2.8.1. Based on the limited experimentation in Sections 2.8.1 and 2.8.2 and the

early stage of our theoretical study of the bias of the aforementioned variance estimators,

which may eventually lead to better weight functions adapted to quantile estimation, we

adopted the constant weight 𝑤0(·) in our experimental evaluation of the quantile-estimation
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Figure 2.6: Estimated expected values of the variance estimators Ñ𝑝 (𝑏, 𝑚) (“NBQ (tilde)”)
and A𝑝 (𝑤; 𝑏, 𝑚) for the weight functions𝑤0 (“STS Const”), 𝑤2 (“STS Quad”), 𝑤cos,1 (“STS
Cos,1”), and 𝑤cos,2 (“STS Cos,2”) for selected marginal quantiles of the AR(1) process in
Section 2.8.1 with correlation coefficient 𝜙 = 0.9. All estimates are based on 2,500
independent replications with 𝑏 = 32 batches and batch sizes𝑚 = 2L ,L ∈ {10, 11, . . . , 20}.

procedures in Chapters 4–6.
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Figure 2.7: Estimated percent relative bias of the variance estimators Ñ𝑝 (𝑏, 𝑚) (“NBQ
(tilde)”) and A𝑝 (𝑤; 𝑏, 𝑚) for the weight functions 𝑤0 (“STS Const”), 𝑤2 (“STS Quad”),
𝑤cos,1 (“STS Cos,1”), and 𝑤cos,2 (“STS Cos,2”) for selected marginal quantiles of the
stationary AR(1) process in Section 2.8.1 with correlation coefficient 𝜙 = 0.9. All estimates
are based on 2,500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L ,
L ∈ {10, 11, . . . , 20} .
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Figure 2.8: Estimated RMSEs of the variance estimators Ñ𝑝 (𝑏, 𝑚) (“NBQ (tilde)”) and
A𝑝 (𝑤; 𝑏, 𝑚) for the weight functions 𝑤0 (“STS Const”), 𝑤2 (“STS Quad”), 𝑤cos,1 (“STS
Cos,1”), and 𝑤cos,2 (“STS Cos,2”) for selected marginal quantiles of the stationary AR(1)
process in Section 2.8.1 with correlation coefficient 𝜙 = 0.9. All estimates are based
on 2,500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L ∈
{10, 11, . . . , 20} .
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Figure 2.9: Estimated expected values of the variance estimators Ñ𝑝 (𝑏, 𝑚) (“NBQ (tilde)”)
and A𝑝 (𝑤; 𝑏, 𝑚) for the weight functions 𝑤0 (“STS Const”), 𝑤2 (“STS Quad”), 𝑤cos,1
(“STS Cos,1”), and 𝑤cos,2 (“STS Cos,2”) for selected marginal quantiles of the stationary
waiting-time process in the M/M/1 queueing system in Section 2.8.2 with traffic intensity
𝜌 = 0.8. All estimates are based on 2,500 independent replications with 𝑏 = 32 batches
and batch sizes 𝑚 = 2L , L ∈ {10, 11, . . . , 20} .
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Figure 2.10: Estimated percent relative bias of the variance estimators Ñ𝑝 (𝑏, 𝑚) (“NBQ
(tilde)”) and A𝑝 (𝑤; 𝑏, 𝑚) for the weight functions 𝑤0 (“STS Const”), 𝑤2 (“STS Quad”),
𝑤cos,1 (“STS Cos,1”), and 𝑤cos,2 (“STS Cos,2”) for selected marginal quantiles of the
stationary waiting-time process in the M/M/1 queueing system in Section 2.8.2 with traffic
intensity 𝜌 = 0.8. All estimates are based on 2,500 independent replications with 𝑏 = 32
batches and batch sizes 𝑚 = 2L , L ∈ {10, 11, . . . , 20} .
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Figure 2.11: Estimated RMSEs of the variance estimators Ñ𝑝 (𝑏, 𝑚) (“NBQ (tilde)”) and
A𝑝 (𝑤; 𝑏, 𝑚) for the weight functions 𝑤0 (“STS Const”), 𝑤2 (“STS Quad”), 𝑤cos,1 (“STS
Cos,1”), and 𝑤cos,2 (“STS Cos,2”) for selected marginal quantiles of the stationary waiting-
time process in the M/M/1 queueing system in Section 2.8.2 with traffic intensity 𝜌 = 0.8.
All estimates are based on 2,500 independent replications with 𝑏 = 32 batches and batch
sizes 𝑚 = 2L , L ∈ {10, 11, . . . , 20}.
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2.9 Alternative Weight Functions

In this section, we explore a methodology that leads to the construction of alternative weight

functions which can be more effective with regard to small-sample bias primarily and MSE

than the ones reviewed in Section 2.8.

2.9.1 Requirements for the Weight Function

As we mentioned in Section 2.3, the full-sample STS area estimator of the variance param-

eter 𝜎2
𝑝 is 𝐴2

𝑝 (𝑤; 𝑛), where

𝐴𝑝 (𝑤; 𝑛) ≡ 𝑛−1
𝑛∑︁

𝑘=1
𝑤(𝑘/𝑛)𝑇𝑛 (𝑘/𝑛), for 𝑛 ≥ 1

and 𝑤(·) is a deterministic weight function that is bounded and continuous almost every-

where in [0, 1] (so that 𝑤(𝑡)B(𝑡) is Riemann integrable on [0, 1]); and the r.v.

𝑍 (𝑤) ≡
∫ 1

0
𝑤(𝑡)B(𝑡) 𝑑𝑡 ∼ 𝑁 (0, 1).

Recall that W denotes a standard Brownian motion on [0, 1] and B(𝑡) ≡ W (𝑡) − 𝑡W (1)

for 𝑡 ∈ [0, 1] is a standard Brownian bridge process that is independent of W (1). Clearly,

𝑤0(𝑡) =
√

12 for 𝑡 ∈ [0, 1], is a valid weight function because

𝑍 (𝑤0) =
∫ 1

0

√
12B(𝑡) 𝑑𝑡 =

√
12

∫ 1

0
B(𝑡) 𝑑𝑡

and ∫ 1

0
B(𝑡) 𝑑𝑡 ∼ 𝑁

(
0,

1
12

)
together imply 𝑍 (𝑤0) ∼ 𝑁 (0, 1).
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2.9.2 Partial Weight Functions

In this subsection, we discuss the first set of alternative weight functions, referred to as

“partial” because they assign a constant positive weight on a subinterval of [0, 1].

Since B(𝑡), 𝑡 ∈ [0, 1] is a Brownian bridge, then the integrated Brownian bridge defined

as
∫ 𝑠

0 B(𝑡) 𝑑𝑡 for 𝑠 ∈ [0, 1] is a Gaussian process with zero mean and covariance function

Cov
[ ∫ 𝑢1

0
B(𝑡) 𝑑𝑡,

∫ 𝑢2

0
B(𝑡) 𝑑𝑡

]
=
𝑢1𝑢2 min(𝑢1, 𝑢2)

2
− min(𝑢1, 𝑢2)3

6
−
𝑢2

1𝑢
2
2

4
, (2.71)

for 𝑢1, 𝑢2 ∈ [0, 1] (Henze and Nikitin [72]). From Equation (2.71) with 𝑢1 = 𝑢2 = 𝑢 we

have

Var
[ ∫ 𝑢

0
B(𝑡) 𝑑𝑡

]
=
𝑢3

3
− 𝑢4

4
=

4𝑢3 − 3𝑢4

12
,

which implies ∫ 𝑢

0
B(𝑡) 𝑑𝑡 ∼ 𝑁

(
0,

4𝑢3 − 3𝑢4

12

)
. (2.72)

Equation (2.72) allows us to construct the first type of partial weight functions, with

𝑤(𝑡) = 𝑐𝑢 for 𝑡 ∈ [0, 𝑢] and 𝑤(𝑡) = 0 for 𝑡 ∈ [𝑢, 1]. To ensure that 𝑍 (𝑤) ∼ 𝑁 (0, 1), we

should set

𝑐𝑢 =

√︂
12

4𝑢3 − 3𝑢4 . (2.73)

For example, the weight function that corresponds to a constant weight only for the first half

of the interval [0, 1], i.e.,

𝑤(𝑡) =


√︃

192
5 if 𝑡 ∈ [0, 1/2],

0 otherwise.

We can easily verify this result using Equation (2.73) with 𝑢 = 1.

Our next goal is to construct weight functions that are positive constants on an arbitrary
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subinterval of [0, 1]. First, we show that

∫ 𝑢

𝑙

B(𝑡) 𝑑𝑡 ∼ 𝑁

(
0,

4𝑢3 − 3𝑢4 + 8𝑙3 − 3𝑙4 − 12𝑢𝑙2 + 6𝑙2𝑢2

12

)
. (2.74)

We start with ∫ 𝑢

𝑙

B(𝑡) 𝑑𝑡 =
∫ 𝑢

0
B(𝑡) 𝑑𝑡 −

∫ 𝑙

0
B(𝑡) 𝑑𝑡. (2.75)

By Equation (2.72),
∫ 𝑢

0 B(𝑡) 𝑑𝑡 ∼ 𝑁
(
0, 4𝑢3−3𝑢4

12
)

and
∫ 𝑙

0 B(𝑡) 𝑑𝑡 ∼ 𝑁
(
0, 4𝑙3−3𝑙4

12
)
.

Recall that for 𝑋 ∼ 𝑁
(
`𝑋 , 𝜎

2
𝑋

)
and 𝑌 ∼ 𝑁

(
`𝑌 , 𝜎

2
𝑌

)
, we have 𝑋 ± 𝑌 ∼

𝑁 (`𝑋 ± `𝑌 , 𝜎
2
𝑋
+ 𝜎2

𝑌
± 2Cov[𝑋,𝑌 ]). Using Equation (2.75) we obtain

∫ 𝑢

𝑙

B(𝑡) 𝑑𝑡 ∼ 𝑁

(
0,

4𝑢3 − 3𝑢4

12
+ 4𝑙3 − 3𝑙4

12
− 2Cov

[ ∫ 𝑢

0
B(𝑡) 𝑑𝑡,

∫ 𝑙

0
B(𝑡) 𝑑𝑡

] )
,

while Equation (2.71) yields

∫ 𝑢

𝑙

B(𝑡) 𝑑𝑡 ∼ 𝑁

(
0,

4𝑢3 − 3𝑢4

12
+ 4𝑙3 − 3𝑙4

12
− 2

(
𝑢𝑙2

2
− 𝑙3

6
− 𝑢2𝑙2

4

))
d
= 𝑁

(
0,

4𝑢3 − 3𝑢4

12
+ 4𝑙3 − 3𝑙4

12
− 𝑢𝑙2 + 𝑙2𝑢2

2

)
.

The latter two equations imply

∫ 𝑢

𝑙

B(𝑡) 𝑑𝑡 ∼ 𝑁

(
0,

4𝑢3 − 3𝑢4 + 8𝑙3 − 3𝑙4 − 12𝑢𝑙2 + 6𝑙2𝑢2

12

)
.

Equation (2.74) allows us to construct the second type of partial weight functions, where

𝑤(𝑡) =


𝑐𝑙,𝑢 if 𝑡 ∈ [𝑙, 𝑢],

0 otherwise.
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To ensure that 𝑍 (𝑤) ∼ 𝑁 (0, 1), we should set

𝑐𝑙,𝑢 =

√︂
12

4𝑢3 − 3𝑢4 + 8𝑙3 − 3𝑙4 − 12𝑢𝑙2 + 6𝑙2𝑢2 . (2.76)

We can easily verify the result in Equation (2.76) by setting 𝑙 = 0, under 𝑢 = 1 to obtain

𝑤(𝑡) =
√

12 for 𝑡 ∈ [0, 1]. For example, the weight function that corresponds to a constant

weight only for 𝑡 ∈ [1/4, 3/4] (and zero elsewhere), is

𝑤(𝑡) =


√

24 if 𝑡 ∈ [1/4, 3/4],

0 otherwise.

Remark 2.9.1. This new class of weight functions has spawned the idea of assigning a zero

weight to small intervals close to 0 or 1. Potentially, the length of these intervals could

depend on the sample size 𝑛, This is the subject of future work.

Another interesting special set of weight functions is created when we set 𝑢 = 1. In this

case, ∫ 1

𝑙

B(𝑡) 𝑑𝑡 ∼ 𝑁

(
0,

1 + 8𝑙3 − 3𝑙4 − 6𝑙2

12

)
, (2.77)

which yields the constant

𝑐𝑙,1 =

√︂
12

1 + 8𝑙3 − 3𝑙4 − 6𝑙2
. (2.78)

The first two alternative weight functions that we will evaluate in Section 2.10 belong

to the set of weight functions that we just mentioned. Specifically, the first weight function

will be given by

𝑤𝑠,1(𝑡) =


√︃

1024
63 if 𝑡 ∈ [1/4, 1],

0 otherwise.
(2.79)

We calculated the weight for the second interval by setting 𝑙 = 1/4 in Equation (2.78) above.

79



The second weight function is

𝑤𝑠,2(𝑡) =


√︃

192
5 if 𝑡 ∈ [1/2, 1],

0 otherwise.
(2.80)

Again we calculated the weight for the interval [1/2, 1] by setting 𝑙 = 1/2 in Equation

(2.78) above.

2.9.3 Stepwise Weight Functions

This subsection will present how to construct even more general weight functions, that

assign different constant weights in different intervals of [0, 1]. We will call these “stepwise”

weight functions.

Our first goal is to calculate the expression for

Cov
[ ∫ 𝑢1

𝑙1

B(𝑡) 𝑑𝑡,
∫ 𝑢2

𝑙2

B(𝑡) 𝑑𝑡
]
, for 𝑙1 ≤ 𝑢1 ≤ 𝑙2 ≤ 𝑢2.

We start by writing

Cov
[ ∫ 𝑢1

𝑙1

B(𝑡) 𝑑𝑡,
∫ 𝑢2

𝑙2

B(𝑡) 𝑑𝑡
]
=

= E
[( ∫ 𝑢1

𝑙1

B(𝑡) 𝑑𝑡 − E
[ ∫ 𝑢1

𝑙1

B(𝑡) 𝑑𝑡
] ) ( ∫ 𝑢2

𝑙2

B(𝑡) 𝑑𝑡 − E
[ ∫ 𝑢2

𝑙2

B(𝑡) 𝑑𝑡
] )]

,

Using Equation (2.74) we get

Cov
[ ∫ 𝑢1

𝑙1

B(𝑡) 𝑑𝑡,
∫ 𝑢2

𝑙2

B(𝑡) 𝑑𝑡
]
= E

[ ∫ 𝑢1

𝑙1

B(𝑡) 𝑑𝑡
∫ 𝑢2

𝑙2

B(𝑡) 𝑑𝑡
]
.
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Using the same mechanism as in Equation (2.75) yields

Cov
[ ∫ 𝑢1

𝑙1

B(𝑡) 𝑑𝑡,
∫ 𝑢2

𝑙2

B(𝑡) 𝑑𝑡
]
=

= E
[( ∫ 𝑢1

0
B(𝑡) 𝑑𝑡 −

∫ 𝑙1

0
B(𝑡) 𝑑𝑡

) ( ∫ 𝑢2

0
B(𝑡) 𝑑𝑡 −

∫ 𝑙2

0
B(𝑡) 𝑑𝑡

)]
= E

[ ∫ 𝑢1

0
B(𝑡) 𝑑𝑡

∫ 𝑢2

0
B(𝑡) 𝑑𝑡 −

∫ 𝑙1

0
B(𝑡) 𝑑𝑡

∫ 𝑢2

0
B(𝑡) 𝑑𝑡

−
∫ 𝑢1

0
B(𝑡) 𝑑𝑡

∫ 𝑙2

0
B(𝑡) 𝑑𝑡 +

∫ 𝑙1

0
B(𝑡) 𝑑𝑡

∫ 𝑙2

0
B(𝑡) 𝑑𝑡

]
= E

[ ∫ 𝑢1

0
B(𝑡) 𝑑𝑡

∫ 𝑢2

0
B(𝑡) 𝑑𝑡

]
− E

[ ∫ 𝑙1

0
B(𝑡) 𝑑𝑡

∫ 𝑢2

0
B(𝑡) 𝑑𝑡

]
− E

[ ∫ 𝑢1

0
B(𝑡) 𝑑𝑡

∫ 𝑙2

0
B(𝑡) 𝑑𝑡

]
+ E

[ ∫ 𝑙1

0
B(𝑡) 𝑑𝑡

∫ 𝑙2

0
B(𝑡) 𝑑𝑡

]
.

Equation (2.71) leads to

Cov
[ ∫ 𝑢1

𝑙1

B(𝑡) 𝑑𝑡,
∫ 𝑢2

𝑙2

B(𝑡) 𝑑𝑡
]
=

=
𝑢2

1𝑢2

2
−
𝑢3

1
6
−
𝑢2

1𝑢
2
2

4
−
𝑙21𝑢2

2
+
𝑙31
6
+
𝑙21𝑢

2
2

4

−
𝑢2

1𝑙2

2
+
𝑢3

1
6
+
𝑢2

1𝑙
2
2

4
+
𝑙21𝑙2

2
−
𝑙31
6
−
𝑙21𝑙

2
2

4
,

=
(𝑢2 − 𝑙2) (𝑢1 − 𝑙1) (𝑢1 + 𝑙1) (2 − 𝑢2 − 𝑙2)

4
. (2.81)

We will introduce now the methodology for constructing stepwise weight functions

based on the result in Equation (2.81). We will start with an easy case, where we have

two nonzero constant weights 𝑐1 and 𝑐2 for the intervals [0, 𝑣) and [𝑣, 1], respectively. By

setting 𝑙1 = 0, 𝑢1 = 𝑙2 = 𝑣, and 𝑢2 = 1 in Equation (2.81) we get

Cov
[ ∫ 𝑣

0
B(𝑡) 𝑑𝑡,

∫ 1

𝑣

B(𝑡) 𝑑𝑡
]
=
𝑣2(1 − 𝑣)2

4
. (2.82)

We will calculate the constants 𝑐1 and 𝑐2 using 𝑍 (𝑤) ≡
∫ 1

0 𝑤(𝑡)B(𝑡) 𝑑𝑡 ∼ 𝑁 (0, 1). We
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write ∫ 1

0
𝑤(𝑡)B(𝑡) 𝑑𝑡 =

∫ 𝑣

0
𝑐1B(𝑡) 𝑑𝑡 +

∫ 1

𝑣

𝑐2B(𝑡) 𝑑𝑡.

Equations (2.72) and (2.77) imply
∫ 𝑣

0 𝑐1B(𝑡) 𝑑𝑡 ∼ 𝑁 (0, 𝑐2
1(4𝑣

3 − 3𝑣4)/12) and∫ 1
𝑣
𝑐2B(𝑡) 𝑑𝑡 ∼ 𝑁 (0, 𝑐2

2(1 + 8𝑣3 − 3𝑣4 − 6𝑣2)/12), respectively. Using Equation (2.82)

we can write

∫ 𝑣

0
𝑐1B(𝑡) 𝑑𝑡 +

∫ 1

𝑣

𝑐2B(𝑡) 𝑑𝑡

∼ 𝑁

(
0, 𝑐2

1
4𝑣3 − 3𝑣4

12
+ 𝑐2

2
1 + 8𝑣3 − 3𝑣4 − 6𝑣2

12
+ 𝑐1𝑐2

𝑣2(1 − 𝑣)2
2

)
.

To identify appropriate pairs (𝑐1, 𝑐2), we need to solve

𝑐2
1

4𝑣3 − 3𝑣4

12
+ 𝑐2

2
1 + 8𝑣3 − 3𝑣4 − 6𝑣2

12
+ 𝑐1𝑐2

𝑣2(1 − 𝑣)2
2

= 1,

which can be satisfied for infinitely many pairs of 𝑐1 and 𝑐2. To find a unique solution, we

impose an additional relationship, e.g., 𝑐2 = 2𝑐1. Solving the resulting equation

𝑐2
1

4𝑣3 − 3𝑣4

12
+ 4𝑐2

1
1 + 8𝑣3 − 3𝑣4 − 6𝑣2

12
+ 2𝑐2

1
𝑣2(1 − 𝑣)2

2
= 1

leads to

𝑐1 =

√︂
12

12𝑣3 − 3𝑣4 − 12𝑣2 + 4
, and (2.83)

𝑐2 = 2
√︂

12
12𝑣3 − 3𝑣4 − 12𝑣2 + 4

(2.84)

This leads to the third weight function that we will consider for the empirical evaluation in

Section 2.10, namely

𝑤𝑠,3(𝑡) =


√︃

192
37 if 𝑡 ∈ [0, 1/2),

2
√︃

192
37 if 𝑡 ∈ [1/2, 1] .

(2.85)
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We will also do the calculations for one more general case, where

𝑤(𝑡) =



𝑐1 if 𝑡 ∈ [𝑙1, 𝑢1),

𝑐2 if 𝑡 ∈ [𝑙2, 𝑢2),

0 otherwise.

for 𝑙1 ≤ 𝑢1 ≤ 𝑙2 ≤ 𝑢2. In this case we can write

∫ 1

0
𝑤(𝑡)B(𝑡) 𝑑𝑡 =

∫ 𝑢1

𝑙1

𝑐1B(𝑡) 𝑑𝑡 +
∫ 𝑢2

𝑙2

𝑐2B(𝑡) 𝑑𝑡.

Following a similar analysis as above, we get

∫ 𝑢1

𝑙1

𝑐1B(𝑡) 𝑑𝑡 +
∫ 𝑢2

𝑙2

𝑐2B(𝑡) 𝑑𝑡 ∼ 𝑁 (0, 𝜎2
𝑐 ),

where

𝜎2
𝑐 = 𝑐2

1
4𝑢3

1 − 3𝑢4
1 + 8𝑙31 − 3𝑙41 − 12𝑢1𝑙

2
1 + 6𝑙21𝑢

2
1

12

+ 𝑐2
2

4𝑢3
2 − 3𝑢4

2 + 8𝑙32 − 3𝑙42 − 12𝑢2𝑙
2
2 + 6𝑙22𝑢

2
2

12

+ 𝑐1𝑐2
(𝑢2 − 𝑙2) (𝑢1 − 𝑙1) (𝑢1 + 𝑙1) (2 − 𝑢2 − 𝑙2)

2
.

By a linear relationship between 𝑐1 and 𝑐2 and solving 𝜎2
𝑐 = 1, we can calculate an

appropriate pair (𝑐1, 𝑐2).

The fourth weight function that we will consider for the empirical evaluation in Section
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2.10 is a special case of this category, where

𝑤𝑠,4(𝑡) =



2
√︃

1024
207 if 𝑡 ∈ [1/4, 3/4),√︃

1024
207 if 𝑡 ∈ [3/4, 1],

0 otherwise.

(2.86)

We can extend the methodology described in this section for constructing stepwise

functions that assign a set of nonzero weights in multiple subintervals within [0, 1]. For

example, for 𝑙1 ≤ 𝑢1 ≤ 𝑙2 ≤ 𝑢2 ≤ 𝑙3 ≤ 𝑢3 we can set

𝑤(𝑡) =



𝑐1 if 𝑡 ∈ [𝑙1, 𝑢1),

𝑐2 if 𝑡 ∈ [𝑙2, 𝑢2),

𝑐3 if 𝑡 ∈ [𝑙3, 𝑢3),

0 otherwise.

Since

∫ 1

0
𝑤(𝑡)B(𝑡) 𝑑𝑡 =

∫ 𝑢1

𝑙1

𝑐1B(𝑡) 𝑑𝑡 +
∫ 𝑢2

𝑙2

𝑐2B(𝑡) 𝑑𝑡 +
∫ 𝑢3

𝑙3

𝑐3B(𝑡) 𝑑𝑡,

appropriate constants 𝑐1, 𝑐2 and 𝑐3 can be identified by using: (i) the properties of summation

of normal random variables; and (ii) Equations (2.74) and (2.81).

2.9.4 Continuous Weight Functions

An alternative set of weights is continuous functions on [0, 1]. Goldsman et al. [33]

have provided the formulas for constructing such weight functions on [0, 1] with the goal

of estimating the variance parameter 𝜎2 associated with based on STS. Their work also

applies for the construction of continuous weight functions on [0, 1] for quantile estimation.

We will present here their methodology in short.
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First, we start with 𝑔(𝑡), a continuous function on [0, 1]. Then we calculate an ap-

propriate constant 𝑐 so that 𝑐𝑔(𝑡) is an appropriate weight function 𝑤(𝑡). To find 𝑐, we

calculate

𝑓 =

∫ 1

0

( ∫ 𝑥

0
𝑔(𝑦) 𝑑𝑦 −

∫ 1

0

∫ 𝑧

0
𝑔(𝑦) 𝑑𝑦 𝑑𝑧

)2
𝑑𝑥 (2.87)

and then we set

𝑐 =
1√︁
𝑓
.

Our notation is analogous to Goldsman et al. [33] who used 𝑤(·) in place of 𝑔(·) and 𝑉 in

place of 𝑓 . Equation (2.87) above is a direct analogue of Equation (2) of Goldsman et al.

[33].

Initial experimentation using a variety of new alternative polynomial weight functions

(constructed through the methodology above) based on a limited set of test processes, did

not reveal any significant insights on how to construct efficient weight functions tailored to

quantile estimation.

2.10 Experimental Evaluation of the Alternative STS Weight Area Estimators

In this section we conduct an extended empirical evaluation of the performance of the

following estimators for 𝜎2
𝑝 :

• the batched STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚), with 𝑤0(𝑡) =
√

12 for 𝑡 ∈ [0, 1];

• the batched STS area estimator A𝑝 (𝑤𝑠,1; 𝑏, 𝑚), where 𝑤𝑠,1(·) is defined in Equation

(2.79);

• the batched STS area estimator A𝑝 (𝑤𝑠,2; 𝑏, 𝑚), where 𝑤𝑠,2(·) is defined in Equation

(2.80);

• the batched STS area estimator A𝑝 (𝑤𝑠,3; 𝑏, 𝑚), where 𝑤𝑠,3(·) is defined in Equation

(2.85); and
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• the batched STS area estimator A𝑝 (𝑤𝑠,4; 𝑏, 𝑚), where 𝑤𝑠,4(·) is defined in Equation

(2.86).

The evaluation will be based on the bias, standard deviation, RMSE, and the coverage

probability of the 95% CIs for 𝑦𝑝 defined in Equation (2.64). Our goal is to validate the

new alternative weights constructed in Section 2.9 and examine whether any of the newly

constructed weight functions has clear advantages over the constant weight function 𝑤0(·).

We consider two stationary test processes: the AR(1) process in Section 2.6.1 with mean

zero and correlation coefficient 0.9 and the waiting-time process from an M/M/1 queueing

system as described in Section 2.6.2 with traffic intensity 0.8. For each process and value of

𝑝 under study, we fix the number of batches at 𝑏 = 32 and consider an increasing sequence

of batch sizes 𝑚 = 2L , L ∈ {10, 11, . . . , 20}. Again, we note that batch sizes with L ≤ 15

are often inadequate for variance-parameter estimation in these problems (Alexopoulos et

al. [7]).

All experiments were coded in Java using common random numbers generated by the

RngStreams package of L’Ecuyer et al. [67]. The numerical results were computed from

2,500 independent replications of each test process; and those results are summarized in

Tables 2.9–2.12 below. In each table, column 1 contains the values of 𝑝, 𝑦𝑝, and 𝜎2
𝑝 (the

latter quantity is set in bold red typeface); column 2 contains the value of L = log2(𝑚);

columns 3, 7, 11, 15, and 19 respectively contain the average values of the selected variance-

parameter estimators computed from 2,500 i.i.d. observations of those estimators; columns

4, 8, 12, 16, and 20 respectively contain the average bias of the selected variance-parameter

estimators; columns 5, 9, 13, 17, and 21 respectively contain the sample standard deviations

of the selected variance-parameter estimators; and columns 6, 10, 14, 18, and 22 respectively

contain the corresponding empirical CI coverage probabilities. Finally, Figures 2.12–2.13

summarize the accuracy and precision of each variance-parameter estimator for each test

process in Sections 2.10.1 and 2.10.2, respectively, as the batch size increases by plotting

estimates of the respective average relative biases (as a percentage) and estimated RMSEs.
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2.10.1 First-Order Autoregressive Process

The first test process is the stationary AR(1) time-series model described in Section 2.6.1.

For experimentation we selected the values 𝜙 = 0.9 and 𝑝 ∈ {0.5, 0.75, 0.95, 0.99}. The

results are summarized in Tables 2.9–2.10 and in Figure 2.12 and they reveal several

findings:

(i) All five estimators of 𝜎2
𝑝 and their respective estimated standard deviations converged

to their asymptotic limits reasonably fast (the respective estimated standard deviations

of all five estimators seem to converge to the same asymptotic limit).

(ii) For 𝑝 = 0.5 and L ≤ 13, A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) reported the smallest (absolute) bias.

However, for 𝑝 = 0.5 and L ≥ 19, A𝑝 (𝑤0; 𝑏, 𝑚) reported the smallest (absolute)

bias, while A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) reported the largest (absolute) bias.

(iii) For 𝑝 = 0.75 and the smallest value L = 10, again A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) reported the small-

est (absolute) bias, while A𝑝 (𝑤𝑠,1; 𝑏, 𝑚) delivered an estimated coverage probability

of 94.04%, which was closest to the nominal value in comparison with the other

estimators of 𝜎2
𝑝 . Notably, for L = 10, all variance-parameter estimators yielded CIs

with estimated coverage probabilities near the nominal value. A𝑝 (𝑤0; 𝑏, 𝑚) reported

the smallest value which was 93.63%. For 𝑝 = 0.75 and L ≥ 18, A𝑝 (𝑤0; 𝑏, 𝑚)

reported again the smallest (absolute) bias, while A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) reported the largest

(absolute) bias.

(iv) For 𝑝 = 0.95 and L ≤ 13, A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) reported the largest (absolute) bias.

(v) For 𝑝 = 0.99 and L = 10, A𝑝 (𝑤𝑠,1; 𝑏, 𝑚) reported the smallest (absolute) bias, while

A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) delivered an estimated coverage probability of 93.88%, which was

closest to the nominal value. The estimator A𝑝 (𝑤𝑠,4; 𝑏, 𝑚) delivered an estimated

coverage probability of 93.84%, while A𝑝 (𝑤0; 𝑏, 𝑚) resulted in the CI with the

smallest estimated coverage probability of 92.92%.
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(vi) The standard deviation of A𝑝 (𝑤0; 𝑏, 𝑚) usually appeared to converge more rapidly

to its asymptotic value.

(vii) Figure 2.12 indicates that there was no clear winner among the five estimators of 𝜎2
𝑝

with respect to estimated relative bias. For 𝑝 = 0.95, 0.99 andL ≤ 13, A𝑝 (𝑤𝑠,2; 𝑏, 𝑚)

exhibited the largest estimated (absolute) relative bias.

(viii) Figure 2.12 revealed also that there was no clear winner among the five estimators of

𝜎2
𝑝 with respect to estimated RMSE. For 𝑝 = 0.95, 0.99 and L ≤ 13, A𝑝 (𝑤𝑠,2; 𝑏, 𝑚)

reported the largest estimated RMSE, followed by A𝑝 (𝑤𝑠,3; 𝑏, 𝑚) and A𝑝 (𝑤𝑠,1; 𝑏, 𝑚),

while A𝑝 (𝑤0; 𝑏, 𝑚) reported the smallest estimated RMSE.

These experimental results did not yield any valid reasons for replacing the constant

weight function 𝑤0(·) with one of the newly constructed weight functions in Section 2.9.

2.10.2 M/M/1 Waiting-Time Process

Our second stationary test process was generated by the M/M/1 queueing system in Section

2.6.2 with FIFO service discipline, arrival rate _ = 0.8, and service rate 𝜔 = 1. The results

are summarized in Tables 2.11–2.12 and in Figure 2.13, and they reveal several findings:

(i) All five variance-parameter estimators and their standard deviations seem to converge

to the respective theoretical limits, but at a significantly lower rate than for the AR(1)

process in Section 2.10.1. This example clearly indicated the presence of substantial

bias in these variance-parameter estimators for small batch sizes 𝑚, and this bias

became more prominent for large values of 𝑝 (near-extreme quantiles).

(ii) For 𝑝 = 0.5 and L ≤ 14, A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) reported the smallest estimated (absolute)

bias and its estimated standard deviation converged more rapidly to its asymptotic

value. For L ≤ 10, all five variance-parameter estimators resulted in CIs that

exhibited some overcoverage.
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(iii) For 𝑝 = 0.75, 0.95 and 0.99, there was no clear winner among the five variance-

parameter estimators with respect to the estimated bias and standard deviation. This

conclusion is further strengthened by Figure 2.13 as no variance-parameter estimator

stands out with regard to estimated relative bias and RMSE.

Again, these experimental results did not provide any valid reasons for replacing the

constant weight function 𝑤0(·) with one of the newly constructed weight functions in

Section 2.9. Further, these results showcased the importance of identifying alternative

weight functions for computing STS area estimators inducing lower small-sample bias than

the constant weight 𝑤0(𝑡) =
√

12, 𝑡 ∈ [0, 1]. This will be an interesting direction for future

work. Further, the performance evaluation of an alternative weight function should be based

on an expanded experimental test bed.
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Table 2.9: Performance evaluation of the batched STS area estimators in Section 2.10 for the AR(1) process with `𝑌 = 0 and 𝜙 = 0.9
for 𝑝 ∈ {0.5, 0.75}. All estimates are based on 2,500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L ,
L ∈ {10, 11, . . . , 20}, where for nominal 95% CIs for 𝑦𝑝, the coverage probabilities are denoted by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,1; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,3; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,4; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.5 10 20.370 −0.488 5.340 94.32 20.643 −0.215 5.424 94.36 20.750 −0.108 5.384 94.68 20.508 −0.350 5.353 94.36 20.678 −0.180 5.449 94.56
(0.0000) 11 20.638 −0.220 5.141 94.16 20.780 −0.078 5.159 94.48 20.862 0.004 5.234 94.44 20.726 −0.132 5.155 94.44 20.799 −0.059 5.172 94.36
20.858 12 20.751 −0.107 5.309 95.08 20.813 −0.045 5.349 94.92 20.851 −0.007 5.332 94.96 20.793 −0.065 5.328 95.08 20.811 −0.047 5.339 95.00

13 20.525 −0.333 5.292 94.48 20.612 −0.246 5.343 94.64 20.793 −0.065 5.407 94.56 20.615 −0.243 5.330 94.56 20.578 −0.280 5.324 94.52
14 20.813 −0.045 5.165 94.80 20.838 −0.020 5.162 94.68 20.827 −0.031 5.219 94.92 20.812 −0.046 5.171 94.84 20.829 −0.029 5.157 94.68
15 20.660 −0.198 5.137 94.96 20.718 −0.140 5.139 95.08 20.742 −0.116 5.153 95.04 20.689 −0.169 5.126 94.96 20.708 −0.150 5.153 95.00
16 20.797 −0.061 5.233 95.28 20.841 −0.017 5.185 95.24 20.775 −0.083 5.115 95.48 20.793 −0.065 5.186 95.48 20.843 −0.015 5.188 94.96
17 20.682 −0.176 5.228 95.40 20.699 −0.159 5.233 95.20 20.694 −0.164 5.212 95.56 20.681 −0.177 5.226 95.44 20.709 −0.149 5.236 95.24
18 20.918 0.060 5.254 95.80 20.961 0.103 5.313 95.92 21.032 0.174 5.361 96.12 20.972 0.114 5.310 96.00 20.917 0.059 5.289 95.84
19 20.815 −0.043 5.171 95.04 20.780 −0.078 5.194 94.96 20.730 −0.128 5.209 94.68 20.771 −0.087 5.177 95.00 20.791 −0.067 5.187 94.92
20 20.930 0.072 5.387 94.72 20.939 0.081 5.356 94.84 20.997 0.139 5.267 94.80 20.955 0.097 5.364 94.76 20.939 0.081 5.357 94.76

0.75 10 22.317 −0.541 5.974 93.64 22.642 −0.216 6.010 94.04 22.768 −0.090 6.017 93.84 22.478 −0.380 5.996 94.00 22.677 −0.181 6.035 93.96
(0.6745) 11 22.733 −0.125 5.810 94.60 22.919 0.061 5.866 94.72 23.054 0.196 5.929 94.52 22.860 0.002 5.842 94.64 22.932 0.074 5.889 94.68
22.858 12 22.912 0.054 5.749 95.32 23.014 0.156 5.821 95.52 23.071 0.213 5.885 95.68 22.985 0.127 5.808 95.52 22.996 0.138 5.807 95.36

13 22.654 −0.204 5.884 94.76 22.740 −0.118 5.955 94.92 22.858 0.000 6.027 95.28 22.725 −0.133 5.925 94.80 22.706 −0.152 5.945 94.76
14 22.887 0.029 5.779 95.12 22.904 0.046 5.802 95.08 22.883 0.025 5.810 94.84 22.878 0.020 5.781 95.00 22.890 0.032 5.793 95.00
15 22.771 −0.087 5.801 94.80 22.819 −0.039 5.808 94.92 22.852 −0.006 5.774 94.64 22.810 −0.048 5.790 94.84 22.792 −0.066 5.808 95.00
16 22.787 −0.071 5.718 94.76 22.829 −0.029 5.717 94.56 22.788 −0.070 5.703 94.68 22.790 −0.068 5.704 94.48 22.818 −0.040 5.725 94.60
17 22.682 −0.176 5.707 95.24 22.713 −0.145 5.703 95.36 22.750 −0.108 5.730 95.16 22.694 −0.164 5.711 95.32 22.720 −0.138 5.702 95.32
18 22.875 0.017 5.654 95.68 22.928 0.070 5.710 95.80 23.001 0.143 5.794 95.76 22.934 0.076 5.715 95.68 22.890 0.032 5.672 95.68
19 22.844 −0.014 5.593 94.92 22.799 −0.059 5.644 95.04 22.711 −0.147 5.682 94.88 22.787 −0.071 5.616 94.92 22.814 −0.044 5.634 94.96
20 22.972 0.114 5.779 95.00 23.016 0.158 5.751 95.12 23.090 0.232 5.635 95.52 23.018 0.160 5.739 95.16 23.009 0.151 5.766 95.28
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Table 2.10: Performance evaluation of the batched STS area estimators in Section 2.10 for the AR(1) process with `𝑌 = 0 and 𝜙 = 0.9
for 𝑝 ∈ {0.95, 0.99}. All estimates are based on 2,500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L ,
L ∈ {10, 11, . . . , 20}, where for nominal 95% CIs for 𝑦𝑝, the coverage probabilities are denoted by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,1; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,3; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,4; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.95 10 37.812 −0.453 11.414 94.32 38.859 0.594 11.961 94.68 39.639 1.374 13.132 95.08 38.464 0.199 12.120 94.76 38.797 0.532 11.720 95.00
(1.6449) 11 38.386 0.121 10.799 93.96 39.083 0.818 11.142 94.56 39.683 1.418 11.944 94.80 38.878 0.613 11.242 94.44 39.008 0.743 10.948 94.52
38.265 12 38.662 0.397 10.384 95.28 39.105 0.840 10.620 95.32 39.474 1.209 11.227 95.36 38.978 0.713 10.715 95.12 38.999 0.734 10.449 95.28

13 38.104 −0.161 10.008 94.36 38.400 0.135 10.206 94.36 38.885 0.620 10.696 94.68 38.396 0.131 10.265 94.52 38.258 −0.007 10.041 94.24
14 38.306 0.041 9.899 95.12 38.444 0.179 9.941 95.24 38.439 0.174 9.952 94.92 38.357 0.092 9.942 95.24 38.399 0.134 9.931 95.28
15 38.422 0.157 9.894 94.68 38.613 0.348 9.893 94.76 38.782 0.517 9.892 94.92 38.574 0.309 9.881 94.60 38.557 0.292 9.877 94.60
16 38.226 −0.039 9.943 95.32 38.416 0.151 9.909 95.32 38.552 0.287 9.907 95.16 38.342 0.077 9.951 95.36 38.370 0.105 9.914 95.32
17 38.153 −0.112 9.532 95.72 38.149 −0.116 9.498 95.80 38.243 −0.022 9.589 96.00 38.174 −0.091 9.559 95.84 38.128 −0.137 9.489 95.80
18 38.451 0.186 9.582 95.16 38.506 0.241 9.530 94.92 38.591 0.326 9.604 94.92 38.513 0.248 9.549 95.16 38.471 0.206 9.514 95.08
19 38.399 0.134 9.496 94.40 38.424 0.159 9.543 94.32 38.397 0.132 9.550 94.20 38.402 0.137 9.502 94.36 38.407 0.142 9.551 94.40
20 38.819 0.554 9.716 94.96 38.873 0.608 9.727 95.16 38.893 0.628 9.614 95.20 38.878 0.613 9.711 95.08 38.872 0.607 9.765 95.16

0.99 10 76.350 −5.262 31.978 92.92 80.905 −0.707 34.921 93.68 87.162 5.550 42.497 93.88 80.187 −1.425 36.589 93.32 79.885 −1.727 32.387 93.84
(2.3263) 11 81.773 0.161 29.693 94.32 85.380 3.768 32.221 94.72 89.164 7.552 38.633 94.84 84.575 2.963 33.403 94.60 84.578 2.966 30.145 94.88
81.612 12 83.965 2.353 26.111 94.60 86.266 4.654 27.257 94.96 88.490 6.878 30.573 95.04 85.778 4.166 27.904 95.08 85.603 3.991 26.310 95.08

13 82.641 1.029 23.842 94.00 84.200 2.588 24.887 94.28 86.271 4.659 27.518 94.60 84.025 2.413 25.335 94.20 83.496 1.884 23.972 94.12
14 82.426 0.814 22.724 95.36 83.343 1.731 23.141 95.40 84.277 2.665 24.474 95.36 83.148 1.536 23.424 95.28 83.004 1.392 22.737 95.40
15 81.767 0.155 21.163 94.88 82.546 0.934 21.346 95.08 83.357 1.745 21.838 95.16 82.340 0.728 21.374 95.08 82.254 0.642 21.195 95.00
16 82.122 0.510 21.256 94.92 82.601 0.989 21.312 95.12 83.016 1.404 21.557 95.20 82.452 0.840 21.433 94.80 82.532 0.920 21.266 95.16
17 81.788 0.176 20.670 95.72 81.900 0.288 20.796 95.36 82.206 0.594 21.088 95.44 81.927 0.315 20.855 95.60 81.845 0.233 20.738 95.56
18 81.523 −0.089 21.343 95.04 81.804 0.192 21.227 94.96 82.092 0.480 21.121 94.80 81.743 0.131 21.313 95.00 81.694 0.082 21.147 94.96
19 82.083 0.471 20.924 95.28 82.283 0.671 20.820 95.16 82.386 0.774 20.842 95.20 82.236 0.624 20.862 95.44 82.161 0.549 20.819 95.08
20 82.971 1.359 20.830 94.80 83.056 1.444 20.823 94.64 82.970 1.358 20.709 94.60 83.047 1.435 20.860 94.72 83.040 1.428 20.820 94.76
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Figure 2.12: Estimated percent relative bias and RMSE of the variance-parameter estimators
for selected marginal quantiles of a stationary AR(1) process with `𝑌 = 0 and 𝜙 = 0.9 based
on Tables 2.9–2.10. All estimates are based on 2,500 independent replications with 𝑏 = 32
batches and batch sizes 𝑚 = 2L , L ∈ {10, 11, . . . , 20} .
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Table 2.11: Performance evaluation of the batched STS area estimators in Section 2.10 for a stationary waiting-time process in an M/M/1
queueing system with traffic intensity 𝜌 = 0.8 for 𝑝 ∈ {0.5, 0.75}. All estimates are based on 2,500 independent replications with 𝑏 = 32
batches and batch sizes 𝑚 = 2L , L = 10, 11, . . . , 20, where for nominal 95% CIs for 𝑦𝑝, the coverage probabilities are denoted by “95%
CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,1; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,3; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,4; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.5 10 1,489.4 854.4 1,440.2 98.08 1,438.0 803.0 1,471.6 97.84 1,218.0 583.0 1,166.8 97.32 1,377.5 742.5 1,325.9 97.80 1,501.1 866.1 1,575.3 98.04
(2.3500) 11 1,110.6 475.6 808.9 97.36 1,007.0 372.0 716.1 97.00 879.8 244.8 593.3 96.92 1,009.2 374.2 662.1 97.08 1,039.2 404.2 773.3 97.08

635.0 12 836.0 201.0 352.9 96.92 773.8 138.8 296.3 96.52 730.3 95.3 242.2 96.20 788.9 153.9 294.4 96.68 785.0 150.0 312.6 96.56
13 729.9 94.9 236.3 95.76 697.3 62.3 206.7 95.32 678.1 43.1 189.7 95.44 707.4 72.4 212.5 95.60 701.9 66.9 211.6 95.40
14 682.8 47.8 192.7 95.88 669.3 34.3 184.2 95.72 664.5 29.5 180.3 95.72 674.5 39.5 186.2 95.64 671.0 36.0 185.6 95.84
15 654.3 19.3 176.3 94.36 649.9 14.9 171.7 94.20 652.3 17.3 168.8 94.60 652.8 17.8 172.9 94.32 649.5 14.5 172.5 94.16
16 646.4 11.4 166.6 95.16 644.9 9.9 166.6 95.12 645.0 10.0 168.2 95.04 645.6 10.6 167.0 95.00 644.3 9.3 165.8 95.08
17 639.1 4.1 161.9 94.72 637.5 2.5 161.6 94.40 638.9 3.9 162.0 94.68 638.9 3.9 162.4 94.56 637.4 2.4 161.5 94.36
18 638.9 3.9 159.6 94.40 638.6 3.6 160.2 94.48 639.9 4.9 159.0 94.76 639.2 4.2 159.8 94.36 638.6 3.6 160.6 94.40
19 639.4 4.4 163.0 94.64 638.8 3.8 162.4 94.56 639.6 4.6 163.4 94.68 639.6 4.6 163.2 94.48 638.5 3.5 161.8 94.56
20 632.5 −2.5 157.6 94.84 631.0 −4.0 155.3 94.72 631.7 −3.3 153.6 94.60 632.0 −3.0 155.5 94.76 631.0 −4.0 155.9 94.80

0.75 10 4,853.0 1,554.3 3,419.9 95.92 5,224.9 1,926.2 3,780.1 96.08 5,232.5 1,933.8 4,075.5 96.08 5,012.4 1,713.7 3,695.7 95.80 5,304.4 2,005.7 3,734.2 96.44
(5.8158) 11 4,992.9 1,694.2 3,657.9 96.56 5,098.9 1,800.2 3,927.7 96.76 4,817.0 1,518.3 4,274.0 96.52 4,917.4 1,618.7 3,788.6 96.52 5,205.2 1,906.5 3,935.4 96.76
3,298.7 12 4,242.5 943.8 2,046.1 96.16 4,134.4 835.7 1,948.8 95.96 3,878.9 580.2 1,597.0 95.96 4,083.1 784.4 1,797.6 96.00 4,203.8 905.1 2,064.5 96.12

13 3,819.2 520.5 1,402.5 96.32 3,692.3 393.6 1,236.2 96.20 3,562.6 263.9 1,067.5 96.00 3,709.4 410.7 1,231.5 96.36 3,726.4 427.7 1,283.2 96.20
14 3,547.5 248.8 1,045.6 95.36 3,482.2 183.5 983.5 95.44 3,454.4 155.7 962.2 95.20 3,504.0 205.3 996.7 95.28 3,492.7 194.0 993.5 95.40
15 3,412.5 113.8 936.5 94.64 3,390.0 91.3 907.1 94.84 3,387.4 88.7 893.1 94.92 3,400.2 101.5 912.6 94.72 3,391.3 92.6 910.5 94.76
16 3,356.4 57.7 873.3 94.60 3,349.8 51.1 872.5 94.52 3,354.2 55.5 884.5 94.28 3,353.3 54.6 875.5 94.60 3,346.7 48.0 867.5 94.48
17 3,332.1 33.4 859.7 94.48 3,321.5 22.8 859.4 94.36 3,328.2 29.5 862.0 94.28 3,330.6 31.9 862.9 94.24 3,320.9 22.2 859.9 94.40
18 3,316.1 17.4 814.8 94.60 3,311.9 13.2 819.2 94.48 3,317.6 18.9 817.1 94.64 3,315.1 16.4 814.9 94.56 3,311.9 13.2 822.8 94.44
19 3,310.2 11.5 838.5 94.36 3,309.4 10.7 837.1 94.28 3,319.7 21.0 846.7 94.76 3,313.5 14.8 842.0 94.40 3,305.5 6.8 832.0 94.20
20 3,292.4 −6.3 813.3 94.64 3,287.4 −11.3 806.7 94.72 3,290.6 −8.1 802.4 95.04 3,290.9 −7.8 806.9 94.76 3,287.7 −11.0 808.3 94.76
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Table 2.12: Performance evaluation of the batched STS area estimators in Section 2.10 for a stationary waiting-time process in an M/M/1
queueing system with traffic intensity 𝜌 = 0.8 for 𝑝 ∈ {0.95, 0.99}. All estimates are based on 2,500 independent replications with
𝑏 = 32 batches and batch sizes 𝑚 = 2L , L = 10, 11, . . . , 20, where for nominal 95% CIs for 𝑦𝑝, the coverage probabilities are denoted
by “95% CI Cover.”

STS area A𝑝 (𝑤0; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,1; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,2; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,3; 𝑏, 𝑚) STS area A𝑝 (𝑤𝑠,4; 𝑏, 𝑚)
𝑝

(𝑦𝑝 ) Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI Std. 95% CI
Var. Par. L Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover. Avg. Bias Dev. Cover.

0.95 10 16,816 −15,664 12,658 80.96 18,250 −14,230 14,218 82.28 20,163 −12,317 17,800 83.08 18,248 −14,232 15,001 81.72 17,863 −14,617 12,897 82.40
(13.8629) 11 26,142 −6,338 19,292 88.84 28,747 −3,733 21,842 90.52 31,840 −640 28,313 91.20 28,485 −3,995 23,197 89.56 28,199 −4,281 19,478 90.36

32,480 12 33,519 1,039 22,209 93.96 36,984 4,504 25,196 94.88 39,951 7,471 31,669 95.12 36,032 3,552 26,110 94.20 36,577 4,097 22,943 95.12
13 37,166 4,686 18,578 95.52 39,632 7,152 20,792 96.12 39,937 7,457 22,995 96.24 38,277 5,797 20,014 95.88 39,850 7,370 20,711 96.16
14 36,801 4,321 17,075 94.76 37,392 4,912 16,831 94.80 36,583 4,103 15,221 95.32 36,685 4,205 16,147 94.80 37,632 5,152 17,259 94.88
15 35,003 2,523 12,155 94.80 34,959 2,479 11,141 95.04 34,573 2,093 10,722 95.08 34,793 2,313 11,117 94.88 35,075 2,595 11,312 95.08
16 33,714 1,234 10,240 95.16 33,549 1,069 9,787 95.20 33,471 991 9,677 95.24 33,574 1,094 9,888 95.12 33,573 1,093 9,773 95.20
17 33,065 585 8,831 94.84 32,905 425 8,710 94.88 32,807 327 8,709 94.84 32,950 470 8,723 94.68 32,953 473 8,731 94.88
18 32,996 516 8,343 94.76 32,924 444 8,348 95.00 32,977 497 8,387 95.20 32,977 497 8,344 94.92 32,905 425 8,331 95.04
19 32,564 84 8,239 94.88 32,612 132 8,131 94.68 32,789 309 8,143 94.64 32,646 166 8,161 94.60 32,559 79 8,116 94.72
20 32,462 −18 7,978 94.68 32,400 −80 7,901 94.84 32,277 −203 7,883 94.56 32,392 −88 7,935 94.76 32,432 −48 7,892 94.84

0.99 10 27,618 −163,643 17,701 54.88 28,851 −162,410 19,742 55.68 30,801 −160,460 24,659 56.00 29,258 −162,003 20,883 55.76 28,254 −163,007 17,953 55.36
(21.9101) 11 54,707 −136,554 37,687 67.96 57,858 −133,403 42,382 68.84 63,179 −128,082 54,767 69.12 58,747 −132,514 45,242 68.48 56,192 −135,069 37,620 69.00
191,261 12 92,769 −98,492 66,687 79.08 99,087 −92,174 75,008 79.88 109,502 −81,759 97,461 80.16 100,134 −91,127 80,154 79.44 95,872 −95,389 66,034 80.40

13 135,781 −55,480 93,623 87.72 146,984 −44,277 104,752 88.44 161,829 −29,432 132,776 88.72 146,551 −44,710 110,923 88.20 144,020 −47,241 95,028 89.00
14 179,612 −11,649 128,352 91.20 197,294 6,033 144,902 91.72 216,109 24,848 184,611 92.40 194,135 2,874 152,860 91.28 194,203 2,942 130,054 92.00
15 204,722 13,461 110,567 94.40 222,011 30,750 124,641 95.12 231,261 40,000 146,642 94.96 215,280 24,019 125,004 94.56 221,184 29,923 119,390 95.12
16 209,709 18,448 106,715 95.44 217,362 26,101 112,770 95.56 214,930 23,669 107,089 95.40 211,760 20,499 107,237 95.40 218,422 27,161 114,314 95.60
17 203,576 12,315 70,787 95.32 203,675 12,414 66,934 95.44 199,868 8,607 63,503 94.88 202,000 10,739 65,835 95.32 204,745 13,484 67,958 95.44
18 199,607 8,346 57,126 95.24 198,737 7,476 56,057 94.96 197,947 6,686 56,585 95.20 198,792 7,531 56,283 95.04 198,870 7,609 55,832 94.96
19 196,113 4,852 52,085 95.52 195,583 4,322 51,580 95.40 195,410 4,149 52,288 95.24 195,807 4,546 51,860 95.52 195,514 4,253 51,450 95.56
20 193,492 2,231 49,780 95.52 192,720 1,459 48,830 95.48 191,263 2 48,458 95.28 192,646 1,385 49,061 95.48 193,072 1,811 48,960 95.48
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Figure 2.13: Estimated percent relative bias and RMSE of the variance-parameter estimators
for selected marginal quantiles of a stationary waiting-time process in an M/M/1 queueing
system with traffic intensity 𝜌 = 0.8 based on Tables 2.11–2.12. All estimates are based
on 2500 independent replications with 𝑏 = 32 batches and batch sizes 𝑚 = 2L , L =

10, 11, . . . , 20.
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CHAPTER 3

COMPARISON OF SEVERAL VARIANCE-PARAMETER ESTIMATORS BASED

ON EXACT CALCULATIONS OF THEIR EXPECTED VALUES FOR THE

SPECIAL CASE OF I.I.D. SAMPLES

In this chapter, we derive exact (or nearly exact) calculations for the expected values of

the variance-parameter estimators of 𝜎2
𝑝 in Chapter 2; and we compare these estimators

with regard to small-sample bias and rate of convergence to their asymptotic limits. The

exact calculations of the expected values of the variance parameter estimators involve the

evaluations of joint moments of order statistics. Unfortunately, the computation of such

joint moments of order statistics is hard even for i.i.d. data, as we will show in the following

sections using four illustrative examples.

3.1 Analytical Expressions for Order Statistics and Joint Moments of Order Statistics

for Specific Distributions for the Special Case of I.I.D. Data

We consider i.i.d. samples from the following four distributions: (i) the uniform distribution

on [0, 1]; (ii) the exponential distribution with parameter one; (iii) the Pareto distribution

with parameters 𝛾 = 1 and \ = 2.1; and (iv) the Laplace distribution with zero mean and

unit scale parameter. For the exact calculations of the expected values of the variance

parameter estimators N𝑝 (𝑏, 𝑚), Ñ𝑝 (𝑏, 𝑚), and A𝑝 (𝑤; 𝑏, 𝑚) in the special case of i.i.d.

observations, we need analytical expressions for E
[
�̃�2
𝑝 (𝑖)

]
and E

[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

]
, as we will

show in Sections 3.2–3.3. We will use the notation 𝑌𝑘:𝑛 for the 𝑘th order statistics of a

sample {𝑌1, . . . , 𝑌𝑛}. Then �̃�𝑝 (𝑖) = 𝑌𝑘:𝑖 for 𝑘 = ⌈𝑝𝑖⌉ and 𝑖 = 1, . . . , 𝑛.

Below, we will derive analytical expressions for E
[
�̃�2
𝑝 (𝑖)

]
and E

[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

]
for the
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four distributions under study. We have

E
[
�̃�2
𝑝 (𝑖)

]
= E[𝑌2

𝑘:𝑖], for 𝑘 = ⌈𝑝𝑖⌉ and 𝑖 = 1, . . . , 𝑛,

and

E
[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

]
= E[𝑌𝑘:𝑖𝑌ℓ: 𝑗 ] =

𝑗−𝑖+𝑘∑︁
𝑟=𝑘

(𝑟−1
𝑘−1

) ( 𝑗−𝑟
𝑖−𝑘

)( 𝑗
𝑖

) E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ], (3.1)

for 𝑘 = ⌈𝑝𝑖⌉, ℓ = ⌈𝑝 𝑗⌉, and 𝑖 < 𝑗 . The last equality follows from Equation (2) in Dołęgowski

and Wesołowski [73]. The second moment of order statistics can be calculated by evaluating

the single-dimensional integral

E[𝑌2
𝑘:𝑖] =

𝑖!
(𝑖 − 1)!(𝑖 − 𝑘)!

∫ ∞

−∞
𝑥2𝐹𝑘−1(𝑥) (1 − 𝐹 (𝑥))𝑖−𝑘 𝑓 (𝑥) 𝑑𝑥;

see Equation (7.3), Ahsanullah et al. [74]. Also, the product moments E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ] for

1 ≤ 𝑟 < ℓ ≤ 𝑗 can be calculated by computing the double integral

E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ] =
𝑗!

(𝑟 − 1)!(ℓ − 𝑟 − 1)!( 𝑗 − ℓ)!

×
∫ ∞

−∞

∫ 𝑥

−∞
𝑥𝑟 𝑦ℓ𝐹𝑟−1(𝑥) [𝐹 (𝑦) − 𝐹 (𝑥)]ℓ−𝑟−1 [1 − 𝐹 (𝑦)] 𝑗−ℓ 𝑓 (𝑥) (𝑦) 𝑑𝑦 𝑑𝑥;

see Equations (7.4) and (7.5), Ahsanullah et al. [74]. Furthermore, for uniform, exponential,

and Pareto distributions, there are closed formulas for the raw and product moments of order

statistics.

3.1.1 Uniform Distribution

For i.i.d. observations from the uniform distribution on [0, 1], the second moments and the

product moments of the order statistics are

E[𝑌2
𝑘:𝑖] =

𝑘 (𝑘 + 1)
(𝑖 + 1) (𝑖 + 2) and E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ] =

𝑟 (ℓ + 1)
( 𝑗 + 1) ( 𝑗 + 2) , for 𝑟 < ℓ, (3.2)
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respectively (see Equations (8.4) and (8.9) in Section 8.1 of Ahsanullah et al. [74]). Further,

for 𝑖 < 𝑗 , we can use Equations (3.1)–(3.2) and Mathematica from Wolfram Research, Inc.

[75] to write

E[𝑌𝑘:𝑖𝑌ℓ: 𝑗 ] =
1( 𝑗
𝑖

) [{ ℓ∑︁
𝑟=𝑘

+
𝑗−𝑖+𝑘∑︁
𝑟=ℓ+1

} (
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)
E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ]

]
=

1( 𝑗
𝑖

) [ ℓ∑︁
𝑟=𝑘

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)
𝑟 (ℓ + 1)

( 𝑗 + 1) ( 𝑗 + 2)

+
𝑗−𝑖+𝑘∑︁
𝑟=ℓ+1

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)
ℓ(𝑟 + 1)

( 𝑗 + 1) ( 𝑗 + 2)

]
=

1
( 𝑗 + 1) ( 𝑗 + 2)

( 𝑗
𝑖

) [ℓ 𝑗−𝑖+𝑘∑︁
𝑟=𝑘

𝑟

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)
+

ℓ∑︁
𝑟=𝑘

𝑟

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)
+ ℓ

𝑗−𝑖+𝑘∑︁
𝑟=ℓ+1

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)]
=

𝑖!( 𝑗 − 𝑖)!
( 𝑗 + 1) ( 𝑗 + 2) 𝑗!

[
𝑘ℓ( 𝑗 + 1)!
(𝑖 + 1)!( 𝑗 − 𝑖)! +

ℓ∑︁
𝑟=𝑘

𝑟

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)
+ ℓ

𝑗−𝑖+𝑘∑︁
𝑟=ℓ+1

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)]
=

𝑘ℓ

(𝑖 + 1) ( 𝑗 + 2) +
𝑖!( 𝑗 − 𝑖)!
( 𝑗 + 2)!

[ ℓ∑︁
𝑟=𝑘

𝑟

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)
+ ℓ

𝑗−𝑖+𝑘∑︁
𝑟=ℓ+1

(
𝑟 − 1
𝑘 − 1

) (
𝑗 − 𝑟
𝑖 − 𝑘

)]
.

(3.3)

3.1.2 Exponential Distribution

For i.i.d. observations from an exponential distribution with unit rate parameter, the mean

and variance of order statistics are

E[𝑌𝑘:𝑖] =
𝑘∑︁
𝑠=1

1
𝑖 − 𝑠 + 1

and Var[𝑌𝑘:𝑖] =
𝑘∑︁
𝑠=1

1
(𝑖 − 𝑠 + 1)2

, (3.4)
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respectively (see Equations (8.25) and (8.26) in Section 8.2 of Ahsanullah et al. [74]). Thus

the second moment of 𝑌𝑘:𝑖 is

E[𝑌2
𝑘:𝑖] = Var[𝑌𝑘:𝑖] + E[𝑌𝑘:𝑖]2 =

𝑘∑︁
𝑠=1

1
(𝑖 − 𝑠 + 1)2

+
( 𝑘∑︁
𝑠=1

1
𝑖 − 𝑠 + 1

)2
, (3.5)

and the covariance between the order statistics 𝑌𝑟: 𝑗 and 𝑌ℓ: 𝑗 is

Cov[𝑌𝑟: 𝑗 , 𝑌ℓ: 𝑗 ] = Var[𝑌𝑟: 𝑗 ] =
𝑟∑︁
𝑠=1

1
( 𝑗 − 𝑠 + 1)2

, for 𝑟 ≤ ℓ;

see the solution of Exercise 8.9 in Section 8.2 of Ahsanullah et al. [74]. Thus

E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ] = Cov[𝑌𝑟: 𝑗 , 𝑌ℓ: 𝑗 ] + E[𝑌𝑟: 𝑗 ]E[𝑌ℓ: 𝑗 ]

=

𝑟∑︁
𝑠=1

1
( 𝑗 − 𝑠 + 1)2

+
( 𝑟∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

) ( ℓ∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

)
, for 𝑟 ≤ ℓ. (3.6)

Using Equations (3.1) and (3.6) we have

E[𝑌𝑘:𝑖𝑌ℓ: 𝑗 ] =
{ ℓ∑︁
𝑟=𝑘

+
𝑗−𝑖+𝑘∑︁
𝑟=ℓ+1

} (𝑟−1
𝑘−1

) ( 𝑗−𝑟
𝑖−𝑘

)( 𝑗
𝑖

) E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ]

=

ℓ∑︁
𝑟=𝑘

(𝑟−1
𝑘−1

) ( 𝑗−𝑟
𝑖−𝑘

)( 𝑗
𝑖

) [ 𝑟∑︁
𝑠=1

1
( 𝑗 − 𝑠 + 1)2

+
( 𝑟∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

) ( ℓ∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

)]
+

𝑗−𝑖+𝑘∑︁
𝑟=ℓ+1

(𝑟−1
𝑘−1

) ( 𝑗−𝑟
𝑖−𝑘

)( 𝑗
𝑖

) [ ℓ∑︁
𝑠=1

1
( 𝑗 − 𝑠 + 1)2

+
( 𝑟∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

) ( ℓ∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

)]
=

ℓ∑︁
𝑟=𝑘

(𝑟−1
𝑘−1

) ( 𝑗−𝑟
𝑖−𝑘

)( 𝑗
𝑖

) 𝑟∑︁
𝑠=1

1
( 𝑗 − 𝑠 + 1)2

+
( ℓ∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

) ( 𝑗−𝑖+𝑘∑︁
𝑟=𝑘

(𝑟−1
𝑘−1

) ( 𝑗−𝑟
𝑖−𝑘

)( 𝑗
𝑖

) 𝑟∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

)
+

( 𝑗−𝑖+𝑘∑︁
𝑟=ℓ+1

(𝑟−1
𝑘−1

) ( 𝑗−𝑟
𝑖−𝑘

)( 𝑗
𝑖

) ) ( ℓ∑︁
𝑠=1

1
( 𝑗 − 𝑠 + 1)2

)
. (3.7)
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3.1.3 Pareto Distribution

For i.i.d. observations from a Pareto distribution with parameters 𝛾 and \ and the density

𝑓 (𝑥) = \𝛾\𝑥−\−1, for 𝑥 ≥ 𝛾, the moments of the order statistics are given by

E[𝑌[

𝑘:𝑖] = 𝛾[
𝑖!

(𝑖 − 𝑘)!
Γ(𝑖 − 𝑘 + 1 − [/\)
Γ(𝑖 + 1 − [/\) , for [ < (𝑖 − 𝑘 + 1)\; (3.8)

see Equation (4) of Huang [76]. For \ ≥ 2 and 𝑗 ≥ 2, the product moments are

E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ] = 𝛾2 𝑗!
( 𝑗 − ℓ)!

Γ( 𝑗 − ℓ + 1 − 1/\) Γ( 𝑗 − 𝑟 + 1 − 2/\)
Γ( 𝑗 − 𝑟 + 1 − 1/\) Γ( 𝑗 + 1 − 2/\) , for 𝑟 < ℓ; (3.9)

see Equation (4.5) of Malik [77].

3.1.4 Laplace Distribution

For i.i.d. data {𝑌1, . . . , 𝑌𝑛} from the Laplace (double exponential) distribution with density

function 𝑓 (𝑥) = 𝑒−|𝑥 |/2, for −∞ < 𝑥 < ∞, the second and product moments of order

statistics can be calculated by using the moment formulas of order statistics for the expo-

nential distribution (Section 4 of Govindarajulu [78]). Let {𝑍1, . . . , 𝑍𝑖}, 𝑖 = 1, . . . , 𝑛, be

i.i.d. exponential r.v.’s with unit rate and let 𝑍𝑖:𝑛, 𝑖 = 1, . . . , 𝑛, denote the respective order

statistics. Then, by Formula 2.1 in Govindarajulu [78], the first and second moment of the

order statistic 𝑌𝑘:𝑖 is given by

E[𝑌𝑘:𝑖] = 2−𝑖
{ 𝑘−1∑︁
𝑚=0

(
𝑖

𝑚

)
E[𝑍(𝑘−𝑚):(𝑖−𝑚)] −

𝑖∑︁
𝑚=𝑘

(
𝑖

𝑚

)
E[𝑍(𝑚−𝑘+1):𝑚]

}
= 2−𝑖

{ 𝑘−1∑︁
𝑚=0

(
𝑖

𝑚

) 𝑘−𝑚∑︁
𝑠=1

1
𝑖 − 𝑚 − 𝑠 + 1

−
𝑖∑︁

𝑚=𝑘

(
𝑖

𝑚

) 𝑚−𝑘+1∑︁
𝑠=1

1
𝑚 − 𝑠 + 1

}
. (3.10)
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E[𝑌2
𝑘:𝑖] = 2−𝑖

{ 𝑘−1∑︁
𝑚=0

(
𝑖

𝑚

)
E[𝑍2

(𝑘−𝑚):(𝑖−𝑚)] +
𝑖∑︁

𝑚=𝑘

(
𝑖

𝑚

)
E[𝑍2

(𝑚−𝑘+1):𝑚]
}

= 2−𝑖
{ 𝑘−1∑︁
𝑚=0

(
𝑖

𝑚

) [ 𝑘−𝑚∑︁
𝑠=1

1
(𝑖 − 𝑚 − 𝑠 + 1)2

+
( 𝑘−𝑚∑︁

𝑠=1

1
𝑖 − 𝑚 − 𝑠 + 1

)2]
+

𝑖∑︁
𝑚=𝑘

(
𝑖

𝑚

) [ 𝑚−𝑘+1∑︁
𝑠=1

1
(𝑚 − 𝑠 + 1)2

+
( 𝑚−𝑘+1∑︁

𝑠=1

1
𝑚 − 𝑠 + 1

)2]}
. (3.11)

The last equality follows from Equation (3.5). Also, by Formula 2.2 in Govindarajulu [78],

the product moment E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ] for 𝑟 < ℓ can be computed as follows:

E[𝑌𝑟: 𝑗𝑌ℓ: 𝑗 ] = 2− 𝑗
{ 𝑟−1∑︁
𝑚=0

(
𝑗

𝑚

)
E[𝑍(𝑟−𝑚):( 𝑗−𝑚)𝑍(ℓ−𝑚):( 𝑗−𝑚)]

−
ℓ−1∑︁
𝑚=𝑟

(
𝑗

𝑚

)
E[𝑍(𝑚−𝑟+1):𝑚]E[𝑍(ℓ−𝑚):( 𝑗−𝑚)] +

𝑗∑︁
𝑚=ℓ

(
𝑗

𝑚

)
E[𝑍(𝑚+1−ℓ):𝑚𝑍(𝑚+1−𝑟):𝑚]

}
= 2− 𝑗

{ 𝑟−1∑︁
𝑚=0

(
𝑗

𝑚

) [ 𝑟−𝑚∑︁
𝑠=1

1
( 𝑗 − 𝑚 − 𝑠 + 1)2

+
( 𝑟−𝑚∑︁
𝑠=1

1
𝑗 − 𝑚 − 𝑠 + 1

) ( ℓ−𝑚∑︁
𝑠=1

1
𝑗 − 𝑚 − 𝑠 + 1

)]
−

ℓ−1∑︁
𝑚=𝑟

(
𝑗

𝑚

) ( 𝑚−𝑟+1∑︁
𝑠=1

1
𝑚 − 𝑠 + 1

) ( ℓ−𝑚∑︁
𝑠=1

1
𝑗 − 𝑚 − 𝑠 + 1

)
+

𝑗∑︁
𝑚=ℓ

(
𝑗

𝑚

) [ 𝑚+1−ℓ∑︁
𝑠=1

1
(𝑚 − 𝑠 + 1)2

+
( 𝑚+1−ℓ∑︁

𝑠=1

1
𝑚 − 𝑠 + 1

) ( 𝑚+1−𝑟∑︁
𝑠=1

1
𝑚 − 𝑠 + 1

)]}
.

(3.12)

The last equality follows from Equations(3.4) and (3.6).

3.1.5 Asymptotic Variance Parameter 𝜎2
𝑝

In this subsection, we calculate the asymptotic variance parameter 𝜎2
𝑝 for the four distribu-

tions under consideration. We will use these values to calculate the bias of the variance-

parameter estimators in the numerical results for the exact (or nearly exact) calculations in

Section 3.5.
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For the uniform distribution on [0, 1], the asymptotic variance parameter is

𝜎2
𝑝 = 𝑝(1 − 𝑝). (3.13)

For the exponential distribution with rate _ > 0 and density 𝑓 (𝑥) = _𝑒−_𝑥 , 𝑥 > 0 the

asymptotic variance parameter is

𝜎2
𝑝 =

𝑝(1 − 𝑝)
𝑓 2(𝑦𝑝)

=
𝑝

_2(1 − 𝑝)
, . (3.14)

For the Pareto distribution with parameters 𝛾 and \ and density 𝑓 (𝑥) = \𝛾\𝑥−\−1, 𝑥 ≥ 𝛾,

the asymptotic variance parameter is given by

𝜎2
𝑝 = 𝑝(1 − 𝑝)

[
𝛾

\ (1 − 𝑝)
(\+1)

\

]2
=

𝛾2𝑝

\2(1 − 𝑝)1+2/\
. (3.15)

Finally, the Laplace distribution with parameters ` ∈ R 𝑏 > 0 and density 𝑓 (𝑥) = 1
2𝑏 𝑒
− |𝑥−` |

𝑏 ,

−∞ < 𝑥 < ∞, the 𝑝-quantile is

𝑦𝑝 = 𝐹−1(𝑝) =


` + 𝑏 log(2𝑝) if 0 < 𝑝 ≤ 1/2

` − 𝑏 log(2(1 − 𝑝)) if 1/2 < 𝑝 ≤ 1,

and so the asymptotic variance parameter is

𝜎2
𝑝 =

𝑝(1 − 𝑝)
𝑓 2(𝑦𝑝)

= 𝑏2 ×


1−𝑝
𝑝
, if 0 < 𝑝 ≤ 1/2

𝑝

1−𝑝 , if 1/2 < 𝑝 ≤ 1.
(3.16)

102



3.2 Expected Value of the STS Area Variance-Parameter Estimator

For now, consider a single batch {𝑌1, 𝑌2, . . . , 𝑌𝑛} of observations. Recall that the STS area

quantile-estimation process is defined as

𝑇𝑛 (𝑡) ≡
⌊𝑛𝑡⌋
𝑛1/2

[
�̃�𝑝 (𝑛) − �̃�𝑝 (⌊𝑛𝑡⌋)

]
, for 𝑛 ≥ 1 and 𝑡 ∈ [0, 1],

where �̃�𝑝 (⌊𝑛𝑡⌋) is the point estimator of the 𝑝-quantile 𝑦𝑝 based on the partial sample

{𝑌1, . . . , 𝑌⌊𝑛𝑡⌋}, and the STS area variance estimator is 𝐴2
𝑝 (𝑤; 𝑛), where

𝐴𝑝 (𝑤; 𝑛) ≡ 𝑛−1
𝑛∑︁

𝑘=1
𝑤(𝑘/𝑛)𝑇𝑛 (𝑘/𝑛) = 𝑛−3/2

𝑛∑︁
𝑘=1

𝑘 𝑤(𝑘/𝑛)
[
�̃�𝑝 (𝑛) − �̃�𝑝 (𝑘)

]
= 𝑛−3/2

𝑛∑︁
𝑘=1

𝛼𝑘 �̃�𝑝 (𝑘),

and

𝛼𝑘 ≡ −𝑘𝑤(𝑘/𝑛), for 𝑘 = 1, . . . , 𝑛 − 1 and 𝛼𝑛 ≡ −
𝑛−1∑︁
𝑘=1

𝛼𝑘 . (3.17)

Thus, we can write

𝑛3E
[
𝐴2
𝑝 (𝑤; 𝑛)

]
= E

[( 𝑛∑︁
𝑘=1

𝛼𝑘 �̃�𝑝 (𝑘)
)2]

=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛼𝑖𝛼 𝑗E[ �̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)] .

=

𝑛∑︁
𝑖=1

𝛼2
𝑖 E

[
�̃�2
𝑝 (𝑖)

]
+ 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗E
[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

]
. (3.18)

3.3 Expected Values of the NBQ Variance-Parameter Estimators for the Special Case

of I.I.D. Data

In this section, we undertake some analytical work related to the expected values of the NBQ

variance-parameter estimators N𝑝 (𝑏, 𝑚) and Ñ𝑝 (𝑏, 𝑚) based on 𝑏 batches of size𝑚, for the

special case of i.i.d. data. Recall that given a fixed batch count 𝑏 ≥ 2, for 𝑗 = 1, . . . , 𝑏, the

𝑗 th nonoverlapping batch of size 𝑚 ≥ 1 consists of the subsequence {𝑌( 𝑗−1)𝑚+1, . . . , 𝑌 𝑗𝑚}.
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First, we will derive an analytical expression for the expected value of the NBQ variance-

parameter estimator N𝑝 (𝑏, 𝑚) defined in Equation (2.55). Note that the BQEs �̂�𝑝 ( 𝑗 , 𝑚) are

i.i.d. Ṫhus we have

E
[
N𝑝 (𝑏, 𝑚)

]
=

𝑚𝑏

𝑏 − 1

(
Var

[
�̂�𝑝 (1, 𝑚)

]
− Var

[
�̂�𝑝 (𝑏, 𝑚)

] )
=

𝑚𝑏

𝑏 − 1

(
Var

[
�̂�𝑝 (1, 𝑚)

]
− Var

[
1
𝑏

𝑏∑︁
𝑗=1

�̂�𝑝 ( 𝑗 , 𝑚)
] )

=
𝑚𝑏

𝑏 − 1

(
Var

[
�̂�𝑝 (1, 𝑚)

]
− 1
𝑏

Var
[
�̂�𝑝 (1, 𝑚)

] )
=
𝑚𝑏(𝑏 − 1)
(𝑏 − 1)𝑏 Var

[
�̂�𝑝 (1, 𝑚)

]
= 𝑚Var

[
�̂�𝑝 (1, 𝑚)

]
= 𝑚Var

[
�̃�𝑝 (𝑚)

]
. (3.19)

It is worth noting that the expected value and the bias for the NBQ variance-parameter

estimator N𝑝 (𝑏, 𝑚) in the i.i.d. case depend only on 𝑚 (and not on 𝑗).

Second, we will derive the analytical expression for the expected value of the NBQ

variance-parameter estimator Ñ𝑝 (𝑏, 𝑚) defined in Equation (2.56). Again, the �̂�𝑝 ( 𝑗 , 𝑚)

are i.i.d. due to the i.i.d. data, which allows us to write that E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
=

E
[
�̂�𝑝 (2, 𝑚) �̃�𝑝 (𝑛)

]
= · · · = E

[
�̂�𝑝 (𝑏, 𝑚) �̃�𝑝 (𝑛)

]
. It follows that

E
[
Ñ𝑝 (𝑏, 𝑚)

]
=

𝑚

𝑏 − 1

𝑏∑︁
𝑗=1

E
[
( �̂�𝑝 ( 𝑗 , 𝑚) − �̃�𝑝 (𝑛))2

]
=

𝑚

𝑏 − 1

𝑏∑︁
𝑗=1

E
[
�̂�2
𝑝 ( 𝑗 , 𝑚) − 2�̂�𝑝 ( 𝑗 , 𝑚) �̃�𝑝 (𝑛) + �̃�2

𝑝 (𝑛)
]

=
𝑚𝑏

𝑏 − 1
(
E
[
�̂�2
𝑝 ( 𝑗 , 𝑚)

]
− 2E

[
�̂�𝑝 ( 𝑗 , 𝑚) �̃�𝑝 (𝑛)

]
+ E

[
�̃�2
𝑝 (𝑛)

] )
. (3.20)

Next, we wish to obtain a relation between the expected values of the NBQ variance-

parameter estimators N𝑝 (𝑏, 𝑚) and Ñ𝑝 (𝑏, 𝑚) for the i.i.d. case. Starting with Equation
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(3.20), we can write

E
[
Ñ𝑝 (𝑏, 𝑚)

]
=

𝑚𝑏

𝑏 − 1
(
E
[
�̂�2
𝑝 (1, 𝑚)

]
− 2E

[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
+ E

[
�̃�2
𝑝 (𝑛)

] )
=

𝑚𝑏

𝑏 − 1
(
E
[
�̂�2
𝑝 (1, 𝑚)

]
− E

[
�̂�𝑝 (1, 𝑚)

]2 + E
[
�̂�𝑝 (1, 𝑚)

]2

− 2E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
+ E

[
�̃�2
𝑝 (𝑛)

]
− E

[
�̃�𝑝 (𝑛)

]2 + E
[
�̃�𝑝 (𝑛)

]2)
=

𝑚𝑏

𝑏 − 1
(
E
[
�̂�2
𝑝 (1, 𝑚)

]
− E

[
�̂�𝑝 (1, 𝑚)

]2) + 𝑚𝑏

𝑏 − 1
(
E
[
�̃�2
𝑝 (𝑛)

]
− E

[
�̃�𝑝 (𝑛)

]2)
+ 𝑚𝑏

𝑏 − 1
(
E
[
�̃�𝑝 (𝑛)

]2 − 2E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
+ E

[
�̂�𝑝 (1, 𝑚)

]2)
.

Then using Equation (3.19) and the fact that E
[
�̃�𝑝 (𝑛)

]
= E

[
�̂�𝑝 (1, 𝑛)

]
, we obtain

E
[
Ñ𝑝 (𝑏, 𝑚)

]
=

𝑏

𝑏 − 1
E
[
N𝑝 (𝑏, 𝑚)

]
+ 1
𝑏 − 1

E
[
N𝑝 (𝑏, 𝑛)

]
+ 𝑚𝑏

𝑏 − 1
(
E
[
�̃�𝑝 (𝑛)

]2 − 2E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
+ E

[
�̂�𝑝 (1, 𝑚)

]2)
.

Using the inequality

E
[
�̃�𝑝 (𝑛)

]2 + E
[
�̂�𝑝 (1, 𝑚)

]2 ≥ 2E
[
�̂�𝑝 (1, 𝑚)

]
E
[
�̃�𝑝 (𝑛)

]
,

we obtain

E
[
Ñ𝑝 (𝑏, 𝑚)

]
≥ 𝑏

𝑏 − 1
E
[
N𝑝 (𝑏, 𝑚)

]
+ 1
𝑏 − 1

E
[
N1(𝑏, 𝑛)

]
+ 𝑚𝑏

𝑏 − 1
(
2E

[
�̂�𝑝 (1, 𝑚)

]
E
[
�̃�𝑝 (𝑛)

]
− 2E

[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

] )
,

which yields

E
[
Ñ𝑝 (𝑏, 𝑚)

]
≥ 𝑏

𝑏 − 1
E
[
N𝑝 (𝑏, 𝑚)

]
+ 1
𝑏 − 1

E
[
N𝑝 (𝑏, 𝑛)

]
− 2𝑚𝑏

𝑏 − 1
Cov[ �̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)] .
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3.4 Analytical Expressions of the Expected Value of Variance-Parameter Estimators

for Four Specific Distributions for the Special Case of I.I.D. Data

In this section we will derive analytical expressions for the expected values of the NBQ

and STS area variance-parameter estimators in the case of i.i.d. observations from the four

distributions under consideration.

3.4.1 Uniform Distribution

The 𝑘th order statistic of 𝑛 i.i.d. observations from the uniform distribution on [0, 1] is a

beta r.v. with parameters 𝑘 and 𝑛 + 1 − 𝑘 , denoted as 𝐵(𝑘, 𝑛 + 1 − 𝑘). Thus, �̂�𝑝 (1, 𝑚) ∼

𝐵(⌈𝑚𝑝⌉, 𝑚 + 1 − ⌈𝑚𝑝⌉) (Gentle [79]) and

Var
[
�̂�𝑝 ( 𝑗 , 𝑚)

]
=
⌈𝑚𝑝⌉ (𝑚 + 1 − ⌈𝑚𝑝⌉)
(𝑚 + 1)2(𝑚 + 2)

. (3.21)

Equation (3.21) can also be obtained directly by using the expressions in Equation (3.2).

Using Equation (3.19), we obtain

E
[
N𝑝 (𝑏, 𝑚)

]
=
𝑚⌈𝑚𝑝⌉ (𝑚 + 1 − ⌈𝑚𝑝⌉)
(𝑚 + 1)2(𝑚 + 2)

. (3.22)

Further, using Equation (3.21), we can write

E
[
�̂�2
𝑝 (1, 𝑚)

]
= E

[
𝑌2
⌈𝑚𝑝⌉:𝑚

]
=
⌈𝑚𝑝⌉ (⌈𝑚𝑝⌉ + 1)
(𝑚 + 1) (𝑚 + 2) , (3.23)

E
[
�̃�2
𝑝 (𝑛)

]
= E

[
𝑌2
⌈𝑛𝑝⌉:𝑛

]
=
⌈𝑛𝑝⌉ (⌈𝑛𝑝⌉ + 1)
(𝑛 + 1) (𝑛 + 2) , (3.24)
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and

E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
= E

[
𝑌⌈𝑚𝑝⌉:𝑚𝑌⌈𝑛𝑝⌉:𝑛

]
=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) E[𝑌𝑟:𝑛𝑌⌈𝑛𝑝⌉:𝑛]

=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) min(𝑟, ⌈𝑛𝑝⌉)(max(𝑟, ⌈𝑛𝑝⌉) + 1)
(𝑛 + 1) (𝑛 + 2)

=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) min(𝑟, ⌈𝑛𝑝⌉) + 𝑟 ⌈𝑛𝑝⌉
(𝑛 + 1) (𝑛 + 2) . (3.25)

Remark 3.4.1. We can also obtain an expression for E
[
�̂�𝑝 ( 𝑗 , 𝑚) �̃�𝑝 (𝑛)

]
using Equation

(3.3)

E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
= E

[
𝑌⌈𝑚𝑝⌉:𝑚𝑌⌈𝑛𝑝⌉:𝑛

]
=
⌈𝑚𝑝⌉ ⌈𝑛𝑝⌉
(𝑚 + 1) (𝑛 + 2)

+ 𝑚!(𝑛 − 𝑚)!
(𝑛 + 2)!

[ ⌈𝑛𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

𝑟

(
𝑟 − 1
⌈𝑚𝑝⌉ − 1

) (
𝑛 − 𝑟

𝑚 − ⌈𝑚𝑝⌉

)
+ ⌈𝑛𝑝⌉

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑛𝑝⌉+1

(
𝑟 − 1
⌈𝑚𝑝⌉ − 1

) (
𝑛 − 𝑟

𝑚 − ⌈𝑚𝑝⌉

)]
(3.26)

Equation (3.26) could be potentially used for more-efficient calculations from the compu-

tational point of view as it avoids the use of min.

Using Equations (3.20) and (3.23)–(3.25) we obtain

E
[
Ñ𝑝 (𝑏, 𝑚)

]
=

𝑚𝑏

𝑏 − 1

(
⌈𝑚𝑝⌉ (⌈𝑚𝑝⌉ + 1)
(𝑚 + 1) (𝑚 + 2) +

⌈𝑛𝑝⌉ (⌈𝑛𝑝⌉ + 1)
(𝑛 + 1) (𝑛 + 2)

− 2
𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) min(𝑟, ⌈𝑛𝑝⌉) + 𝑟 ⌈𝑛𝑝⌉
(𝑛 + 1) (𝑛 + 2)

)
. (3.27)
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Equations (3.18) and (3.23)–(3.25) yield

E
[
𝐴2
𝑝 (𝑤; 𝑛)

]
= 1/𝑛3

( 𝑛∑︁
𝑖=1

𝛼2
𝑖 E

[
�̃�2
𝑝 (𝑖)

]
+ 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗E
[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

] )
= 1/𝑛3

( 𝑛∑︁
𝑖=1

𝛼2
𝑖

⌈𝑖𝑝⌉ (⌈𝑖𝑝⌉ + 1)
(𝑖 + 1) (𝑖 + 2)

+ 2
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗

𝑗−𝑖+⌈𝑖𝑝⌉∑︁
𝑟=⌈𝑖𝑝⌉

( 𝑟−1
⌈𝑖𝑝⌉−1

) ( 𝑗−𝑟
𝑖−⌈𝑖𝑝⌉

)( 𝑗
𝑖

) min(𝑟, ⌈ 𝑗 𝑝⌉)(max(𝑟, ⌈ 𝑗 𝑝⌉) + 1)
( 𝑗 + 1) ( 𝑗 + 2)

)
,

(3.28)

where the constants 𝛼𝑘 are define in Equation (3.17).

Remark 3.4.2. In this special case, we can also use the work of Ahsanullah and Nevzorov

[80] to write

E
[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

]
= E

[
�̃�2
𝑝 ( 𝑗)

] (
𝑘

ℓ−1∑︁
𝑟=𝑘

𝑞𝑟

𝑟 + 1
+ 𝑝0 + (𝑖 − 𝑘 + 1)

𝑗−𝑖−ℓ+𝑘∑︁
𝑠=1

𝑝𝑠

𝑠 + 𝑖 − 𝑘 + 1

)
+ E

[
�̃�𝑝 ( 𝑗)

] 𝑗−𝑖−ℓ+𝑘∑︁
𝑠=1

𝑝𝑠𝑠

𝑠 + 𝑖 − 𝑘 + 1
,

where 𝑘 = ⌈𝑝𝑖⌉, ℓ = ⌈𝑝 𝑗⌉, and

𝑞𝑟 =
(ℓ − 1)! 𝑖! (−ℓ + 𝑗 + 1)!( 𝑗 − 𝑖)!

𝑗!𝑟!(ℓ − 𝑟 − 1)!(𝑖 − 𝑟)!(−ℓ − 𝑖 + 𝑗 + 𝑟 + 1)! ,

𝑝0 =
(ℓ − 1)! 𝑖! ( 𝑗 − ℓ)!( 𝑗 − 𝑖)!

(𝑘 − 1)! 𝑗!(ℓ − 𝑘)!(𝑖 − 𝑘)!(𝑘 − ℓ − 𝑖 + 𝑗)! ,

and

𝑝𝑠 =
ℓ! 𝑖! ( 𝑗 − ℓ)!( 𝑗 − 𝑖)!

𝑗!(𝑘 − 𝑠)!(−𝑘 + ℓ + 𝑠)!(−𝑘 + 𝑖 + 𝑠)!(𝑘 − ℓ − 𝑖 + 𝑗 − 𝑠)! .

We could use these closed-form formulas to rewrite the expressions in Equations (3.27) and

(3.28).
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3.4.2 Exponential Distribution

In the case of the exponential distribution, Equation (3.4) implies

Var
[
�̂�𝑝 (1, 𝑚)

]
= Var[𝑌⌈𝑚𝑝⌉:𝑚] =

⌈𝑚𝑝⌉∑︁
𝑠=1

1
(𝑚 − 𝑠 + 1)2

,

which in association with Equation (3.19) leads to

E
[
N𝑝 (𝑏, 𝑚)

]
= 𝑚

⌈𝑚𝑝⌉∑︁
𝑠=1

1
(𝑚 − 𝑠 + 1)2

. (3.29)

Using Equations (3.5) and (3.6), we can write

E
[
�̂�2
𝑝 (1, 𝑚)

]
= E

[
𝑌2
⌈𝑚𝑝⌉:𝑚

]
=

⌈𝑚𝑝⌉∑︁
𝑠=1

1
(𝑚 − 𝑠 + 1)2

+
( ⌈𝑚𝑝⌉∑︁

𝑠=1

1
𝑚 − 𝑠 + 1

)2
, (3.30)

E
[
�̃�2
𝑝 (𝑛)

]
= E

[
𝑌2
⌈𝑛𝑝⌉:𝑛

]
=

⌈𝑛𝑝⌉∑︁
𝑠=1

1
(𝑛 − 𝑠 + 1)2

+
( ⌈𝑛𝑝⌉∑︁

𝑠=1

1
𝑛 − 𝑠 + 1

)2
, (3.31)

and

E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
= E

[
𝑌⌈𝑚𝑝⌉:𝑚𝑌⌈𝑛𝑝⌉:𝑛

]
=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) E[𝑌𝑟:𝑛𝑌⌈𝑛𝑝⌉:𝑛]

=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

)
·
( min(𝑟,⌈𝑛𝑝⌉)∑︁

𝑠=1

1
(𝑛 − 𝑠 + 1)2

+
( 𝑟∑︁
𝑠=1

1
𝑛 − 𝑠 + 1

) ( ⌈𝑛𝑝⌉∑︁
𝑠=1

1
𝑛 − 𝑠 + 1

))
.

(3.32)

Remark 3.4.3. We can also obtain an expression for E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
using Equation
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(3.7)

E
[
�̂�𝑝 ( 𝑗 , 𝑚) �̃�𝑝 (𝑛)

]
= E

[
𝑌⌈𝑚𝑝⌉:𝑚𝑌⌈𝑛𝑝⌉:𝑛

]
=

⌈𝑛𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) [ 𝑟∑︁
𝑠=1

1
(𝑛 − 𝑠 + 1)2

+
( ⌈𝑛𝑝⌉∑︁

𝑠=1

1
𝑛 − 𝑠 + 1

) ( 𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑗
𝑚

) 𝑟∑︁
𝑠=1

1
𝑛 − 𝑠 + 1

)
+

( 𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑛𝑝⌉+1

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) ) ( ⌈𝑛𝑝⌉∑︁
𝑠=1

1
(𝑛 − 𝑠 + 1)2

)]
. (3.33)

Equation (3.33) could be potentially used for more efficient calculations from the computa-

tional point of view as it avoids the use of min.

Using Equations (3.20) and (3.30)–(3.32) we obtain

E
[
Ñ𝑝 (𝑏, 𝑚)

]
=

𝑚𝑏

𝑏 − 1

( ⌈𝑚𝑝⌉∑︁
𝑠=1

1
(𝑚 − 𝑠 + 1)2

+
( ⌈𝑚𝑝⌉∑︁

𝑠=1

1
𝑚 − 𝑠 + 1

)2

− 2
𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

)
·
( min(𝑟,⌈𝑛𝑝⌉)∑︁

𝑠=1

1
(𝑛 − 𝑠 + 1)2

+
( 𝑟∑︁
𝑠=1

1
𝑛 − 𝑠 + 1

) ( ⌈𝑛𝑝⌉∑︁
𝑠=1

1
𝑛 − 𝑠 + 1

))
+
⌈𝑛𝑝⌉∑︁
𝑠=1

1
(𝑛 − 𝑠 + 1)2

+
( ⌈𝑛𝑝⌉∑︁

𝑠=1

1
𝑛 − 𝑠 + 1

)2)
. (3.34)
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Finally, Equations (3.18) and (3.30)–(3.32) yield

E
[
𝐴2
𝑝 (𝑤; 𝑛)

]
= 1/𝑛3

( 𝑛∑︁
𝑖=1

𝛼2
𝑖 E

[
�̃�2
𝑝 (𝑖)

]
+ 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗E
[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

] )
= 1/𝑛3

( 𝑛∑︁
𝑖=1

𝛼2
𝑖

( ⌈𝑖𝑝⌉∑︁
𝑠=1

1
(𝑖 − 𝑠 + 1)2

+
( ⌈𝑖𝑝⌉∑︁
𝑠=1

1
𝑖 − 𝑠 + 1

)2)
+ 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗

𝑗−𝑖+⌈𝑖𝑝⌉∑︁
𝑟=⌈𝑖𝑝⌉

( 𝑟−1
⌈𝑖𝑝⌉−1

) ( 𝑗−𝑟
𝑖−⌈𝑖𝑝⌉

)( 𝑗
𝑖

)
·
( min(𝑟,⌈ 𝑗 𝑝⌉)∑︁

𝑠=1

1
( 𝑗 − 𝑠 + 1)2

+
( 𝑟∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

) ( ⌈ 𝑗 𝑝⌉∑︁
𝑠=1

1
𝑗 − 𝑠 + 1

)))
, (3.35)

where the constants 𝛼𝑘 are defined in Equation (3.17).

3.4.3 Pareto Distribution

In the case of the Pareto distribution, Equation (3.8) yields

E
[
�̂�𝑝 (1, 𝑚)

]
= E

[
𝑌⌈𝑚𝑝⌉:𝑚

]
= 𝛾

𝑚!
(𝑚 − ⌈𝑚𝑝⌉)!

Γ(𝑚 − ⌈𝑚𝑝⌉ + 1 − 1/\)
Γ(𝑚 + 1 − 1/\) , (3.36)

for 1 < (𝑚 − ⌈𝑚𝑝⌉ + 1)\, and

E
[
�̂�2
𝑝 ( 𝑗 , 𝑚)

]
= E

[
𝑌2
⌈𝑚𝑝⌉:𝑚

]
= 𝛾2 𝑚!
(𝑚 − ⌈𝑚𝑝⌉)!

Γ(𝑚 − ⌈𝑚𝑝⌉ + 1 − 2/\)
Γ(𝑚 + 1 − 2/\) , (3.37)

for 2 < (𝑚 − ⌈𝑚𝑝⌉ + 1)\.

Remark 3.4.4. For the numerical results in Section 3.5 we are considering the Pareto(1,

2.1) distribution, where 𝛾 = 1 and \ = 2.1. We can easily verify that both conditions

mentioned above are satisfied for these parameters.
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Using Equations (3.36) and (3.37) we can write

E
[
N𝑝 (𝑏, 𝑚)

]
= 𝑚Var

[
�̂�𝑝 (1, 𝑚)

]
= 𝑚

(
E
[
�̂�2
𝑝 (1, 𝑚)

]
−

(
E
[
�̂�𝑝 (1, 𝑚)

] )2)
= 𝑚𝛾2 𝑚!

(𝑚 − ⌈𝑚𝑝⌉)!

[
Γ(𝑚 − ⌈𝑚𝑝⌉ + 1 − 2/\)

Γ(𝑚 + 1 − 2/\)

− 𝑚!
(𝑚 − ⌈𝑚𝑝⌉)!

(
Γ(𝑚 − ⌈𝑚𝑝⌉ + 1 − 1/\)

Γ(𝑚 + 1 − 1/\)

)2]
. (3.38)

Further, Equation (3.8) implies

E
[
�̃�2
𝑝 (𝑛)

]
= E

[
𝑌2
⌈𝑛𝑝⌉:𝑛

]
= 𝛾2 𝑛!
(𝑛 − ⌈𝑛𝑝⌉)!

Γ(𝑛 − ⌈𝑛𝑝⌉ + 1 − 2/\)
Γ(𝑛 + 1 − 2/\) , (3.39)

for 2 < (𝑛 − ⌈𝑛𝑝⌉ + 1)\, while Equation (3.9) yields

E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
= E

[
𝑌⌈𝑚𝑝⌉:𝑚𝑌⌈𝑛𝑝⌉:𝑛

]
=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) E[𝑌𝑟:𝑛𝑌⌈𝑛𝑝⌉:𝑛]

=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( ( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) · 𝛾2 · 𝑛!
(𝑛 −max(𝑟, ⌈𝑛𝑝⌉)!

· Γ(𝑛 −max(𝑟, ⌈𝑛𝑝⌉) + 1 − 1/\) Γ(𝑛 −min(𝑟, ⌈𝑛𝑝⌉) + 1 − 2/\)
Γ(𝑛 −min(𝑟, ⌈𝑛𝑝⌉) + 1 − 1/\)Γ(𝑛 + 1 − 2/\)

)
.

(3.40)

Using Equations (3.20) and (3.37)–(3.40) we obtain

E
[
Ñ𝑝 (𝑏, 𝑚)

]
=

𝑚𝑏

𝑏 − 1

(
𝛾2 𝑚!
(𝑚 − ⌈𝑚𝑝⌉)!

Γ(𝑚 − ⌈𝑚𝑝⌉ + 1 − 2/\)
Γ(𝑚 + 1 − 2/\)

− 2
𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) 𝛾2 · 𝑛!
(𝑛 −max(𝑟, ⌈𝑛𝑝⌉)!

· Γ(𝑛 −max(𝑟, ⌈𝑛𝑝⌉) + 1 − 1/\) Γ(𝑛 −min(𝑟, ⌈𝑛𝑝⌉) + 1 − 2/\)
Γ(𝑛 −min(𝑟, ⌈𝑛𝑝⌉) + 1 − 1/\)Γ(𝑛 + 1 − 2/\)

+ 𝛾2 𝑛!
(𝑛 − ⌈𝑛𝑝⌉)!

Γ(𝑛 − ⌈𝑛𝑝⌉ + 1 − 2/\)
Γ(𝑛 + 1 − 2/\)

)
. (3.41)
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Finally, Equations (3.18) and (3.37)–(3.40) imply

E
[
𝐴2
𝑝 (𝑤; 𝑛)

]
= 1/𝑛3

( 𝑛∑︁
𝑖=1

𝛼2
𝑖 E

[
�̃�2
𝑝 (𝑖)

]
+ 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗E
[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

] )
= 1/𝑛3

( 𝑛∑︁
𝑖=1

𝛼2
𝑖 𝛾

2 𝑖!
(𝑖 − ⌈𝑖𝑝⌉)!

Γ(𝑖 − ⌈𝑖𝑝⌉ + 1 − 2/\)
Γ(𝑖 + 1 − 2/\)

+ 2
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗

𝑗−𝑖+⌈𝑖𝑝⌉∑︁
𝑟=⌈𝑖𝑝⌉

( 𝑟−1
⌈𝑖𝑝⌉−1

) ( 𝑗−𝑟
𝑖−⌈𝑖𝑝⌉

)( 𝑗
𝑖

) · 𝛾2 · 𝑗!
( 𝑗 −max(𝑟, ⌈ 𝑗 𝑝⌉)!

· Γ( 𝑗 −max(𝑟, ⌈ 𝑗 𝑝⌉) + 1 − 1/\) Γ( 𝑗 −min(𝑟, ⌈ 𝑗 𝑝⌉) + 1 − 2/\)
Γ( 𝑗 −min(𝑟, ⌈ 𝑗 𝑝⌉) + 1 − 1/\)Γ( 𝑗 + 1 − 2/\)

)
,

(3.42)

where the constants 𝛼𝑘 are defined in Equation (3.17).

3.4.4 Laplace Distribution

In the case of the Laplace distribution, Equations (3.10) and (3.11), allows us to write

E
[
�̂�𝑝 (1, 𝑚)

]
= E

[
𝑌⌈𝑚𝑝⌉:𝑚

]
= 2−𝑚

{ ⌈𝑚𝑝⌉−1∑︁
𝑟=0

(
𝑚

𝑟

) ⌈𝑚𝑝⌉−𝑟∑︁
𝑠=1

1
𝑚 − 𝑟 − 𝑠 + 1

−
𝑚∑︁

𝑟=⌈𝑚𝑝⌉

(
𝑚

𝑟

) 𝑟−⌈𝑚𝑝⌉+1∑︁
𝑠=1

1
𝑟 − 𝑠 + 1

}
,

(3.43)

E
[
�̂�2
𝑝 (1, 𝑚)

]
= E

[
𝑌2
⌈𝑚𝑝⌉:𝑚

]
= 2−𝑚

{ ⌈𝑚𝑝⌉−1∑︁
𝑟=0

(
𝑚

𝑟

) [ ⌈𝑚𝑝⌉−𝑟∑︁
𝑠=1

1
(𝑚 − 𝑟 − 𝑠 + 1)2

+
( ⌈𝑚𝑝⌉−𝑟∑︁

𝑠=1

1
𝑚 − 𝑟 − 𝑠 + 1

)2]
+

𝑚∑︁
𝑟=⌈𝑚𝑝⌉

(
𝑚

𝑟

) [ 𝑟−⌈𝑚𝑝⌉+1∑︁
𝑠=1

1
(𝑟 − 𝑠 + 1)2

+
( 𝑟−⌈𝑚𝑝⌉+1∑︁

𝑠=1

1
𝑟 − 𝑠 + 1

)2]}
. (3.44)
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Using Equations (3.43) and (3.44) we can write

E
[
N𝑝 (𝑏, 𝑚)

]
= 𝑚Var

[
�̂�𝑝 (1, 𝑚)

]
= 𝑚

(
E
[
�̂�2
𝑝 (1, 𝑚)

]
−

(
E
[
�̂�𝑝 (1, 𝑚)

] )2)
= 𝑚

(
2−𝑚

{ ⌈𝑚𝑝⌉−1∑︁
𝑟=0

(
𝑚

𝑟

) [ ⌈𝑚𝑝⌉−𝑟∑︁
𝑠=1

1
(𝑚 − 𝑟 − 𝑠 + 1)2

+
( ⌈𝑚𝑝⌉−𝑟∑︁

𝑠=1

1
𝑚 − 𝑟 − 𝑠 + 1

)2

+
𝑚∑︁

𝑟=⌈𝑚𝑝⌉

(
𝑚

𝑟

) [ 𝑟−⌈𝑚𝑝⌉+1∑︁
𝑠=1

1
(𝑟 − 𝑠 + 1)2

+
( 𝑟−⌈𝑚𝑝⌉+1∑︁

𝑠=1

1
𝑟 − 𝑠 + 1

)2]}
−

(
2−𝑚

{ ⌈𝑚𝑝⌉−1∑︁
𝑟=0

(
𝑚

𝑟

) ⌈𝑚𝑝⌉−𝑟∑︁
𝑠=1

1
𝑚 − 𝑟 − 𝑠 + 1

−
𝑚∑︁

𝑟=⌈𝑚𝑝⌉

(
𝑚

𝑟

) 𝑟−⌈𝑚𝑝⌉+1∑︁
𝑠=1

1
𝑟 − 𝑠 + 1

})2)
. (3.45)

Further, Equation (3.11) implies

E
[
�̃�2
𝑝 (𝑛)

]
= E

[
𝑌2
⌈𝑛𝑝⌉:𝑛

]
= 2−𝑛

{ ⌈𝑛𝑝⌉−1∑︁
𝑟=0

(
𝑛

𝑟

) [ ⌈𝑛𝑝⌉−𝑟∑︁
𝑠=1

1
(𝑛 − 𝑟 − 𝑠 + 1)2

+
( ⌈𝑛𝑝⌉−𝑟∑︁

𝑠=1

1
𝑛 − 𝑟 − 𝑠 + 1

)2]
+

𝑛∑︁
𝑟=⌈𝑛𝑝⌉

(
𝑛

𝑟

) [ 𝑟−⌈𝑛𝑝⌉+1∑︁
𝑠=1

1
(𝑟 − 𝑠 + 1)2

+
( 𝑟−⌈𝑛𝑝⌉+1∑︁

𝑠=1

1
𝑟 − 𝑠 + 1

)2]}
.

(3.46)
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From Equation (3.12), we have

E
[
�̂�𝑝 (1, 𝑚) �̃�𝑝 (𝑛)

]
= E

[
𝑌⌈𝑚𝑝⌉:𝑚𝑌⌈𝑛𝑝⌉:𝑛

]
=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

) E[𝑌𝑟:𝑛𝑌⌈𝑛𝑝⌉:𝑛]

=

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

)
× 2−𝑛

{ min(𝑟,⌈𝑛𝑝⌉)−1∑︁
𝑘=0

(
𝑛

𝑘

) [ min(𝑟,⌈𝑛𝑝⌉)−𝑘∑︁
𝑠=1

1
(𝑛 − 𝑘 − 𝑠 + 1)2

+
( min(𝑟,⌈𝑛𝑝⌉)−𝑘∑︁

𝑠=1

1
𝑛 − 𝑘 − 𝑠 + 1

) ( max(𝑟,⌈𝑛𝑝⌉)−𝑘∑︁
𝑠=1

1
𝑛 − 𝑘 − 𝑠 + 1

)]
−

max(𝑟,⌈𝑛𝑝⌉)−1∑︁
𝑘=min(𝑟,⌈𝑛𝑝⌉)

(
𝑛

𝑘

) ( 𝑘−min(𝑟,⌈𝑛𝑝⌉)+1∑︁
𝑠=1

1
𝑘 − 𝑠 + 1

)
×

( max(𝑟,⌈𝑛𝑝⌉)−𝑘∑︁
𝑠=1

1
𝑛 − 𝑘 − 𝑠 + 1

)
+

𝑛∑︁
𝑘=max(𝑟,⌈𝑛𝑝⌉)

(
𝑛

𝑘

) [ 𝑘+1−max(𝑟,⌈𝑛𝑝⌉)∑︁
𝑠=1

1
(𝑘 − 𝑠 + 1)2

+
( 𝑘+1−max(𝑟,⌈𝑛𝑝⌉)∑︁

𝑠=1

1
𝑘 − 𝑠 + 1

) ( 𝑘+1−min(𝑟,⌈𝑛𝑝⌉)∑︁
𝑠=1

1
𝑘 − 𝑠 + 1

)]}
. (3.47)
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Using Equations (3.20) and (3.44)–(3.47), we obtain

E
[
Ñ𝑝 (𝑏, 𝑚)

]
=

𝑚𝑏

𝑏 − 1

(
2−𝑚

{ ⌈𝑚𝑝⌉−1∑︁
𝑟=0

(
𝑚

𝑟

) [ ⌈𝑚𝑝⌉−𝑟∑︁
𝑠=1

1
(𝑚 − 𝑟 − 𝑠 + 1)2

+
( ⌈𝑚𝑝⌉−𝑟∑︁

𝑠=1

1
𝑚 − 𝑟 − 𝑠 + 1

)2]
+

𝑚∑︁
𝑟=⌈𝑚𝑝⌉

(
𝑚

𝑟

) [ 𝑟−⌈𝑚𝑝⌉+1∑︁
𝑠=1

1
(𝑟 − 𝑠 + 1)2

+
( 𝑟−⌈𝑚𝑝⌉+1∑︁

𝑠=1

1
𝑟 − 𝑠 + 1

)2]}
− 2

𝑛−𝑚+⌈𝑚𝑝⌉∑︁
𝑟=⌈𝑚𝑝⌉

( 𝑟−1
⌈𝑚𝑝⌉−1

) ( 𝑛−𝑟
𝑚−⌈𝑚𝑝⌉

)( 𝑛
𝑚

)
× 2−𝑛

{ min(𝑟,⌈𝑛𝑝⌉)−1∑︁
𝑘=0

(
𝑛

𝑘

) [ min(𝑟,⌈𝑛𝑝⌉)−𝑘∑︁
𝑠=1

1
(𝑛 − 𝑘 − 𝑠 + 1)2

+
( min(𝑟,⌈𝑛𝑝⌉)−𝑘∑︁

𝑠=1

1
𝑛 − 𝑘 − 𝑠 + 1

) ( max(𝑟,⌈𝑛𝑝⌉)−𝑘∑︁
𝑠=1

1
𝑛 − 𝑘 − 𝑠 + 1

)
−

max(𝑟,⌈𝑛𝑝⌉)−1∑︁
𝑘=min(𝑟,⌈𝑛𝑝⌉)

(
𝑛

𝑘

) ( 𝑘−min(𝑟,⌈𝑛𝑝⌉)+1∑︁
𝑠=1

1
𝑘 − 𝑠 + 1

) ( max(𝑟,⌈𝑛𝑝⌉)−𝑘∑︁
𝑠=1

1
𝑛 − 𝑘 − 𝑠 + 1

)
+

𝑛∑︁
𝑘=max(𝑟,⌈𝑛𝑝⌉)

(
𝑛

𝑘

) [ 𝑘+1−max(𝑟,⌈𝑛𝑝⌉)∑︁
𝑠=1

1
(𝑘 − 𝑠 + 1)2

+
( 𝑘+1−max(𝑟,⌈𝑛𝑝⌉)∑︁

𝑠=1

1
𝑘 − 𝑠 + 1

) ( 𝑘+1−min(𝑟,⌈𝑛𝑝⌉)∑︁
𝑠=1

1
𝑘 − 𝑠 + 1

)]}
+ 2−𝑛

{ ⌈𝑛𝑝⌉−1∑︁
𝑟=0

(
𝑛

𝑟

) [ ⌈𝑛𝑝⌉−𝑟∑︁
𝑠=1

1
(𝑛 − 𝑟 − 𝑠 + 1)2

+
( ⌈𝑛𝑝⌉−𝑟∑︁

𝑠=1

1
𝑛 − 𝑟 − 𝑠 + 1

)2]
+

𝑛∑︁
𝑟=⌈𝑛𝑝⌉

(
𝑛

𝑟

) [ 𝑟−⌈𝑛𝑝⌉+1∑︁
𝑠=1

1
(𝑟 − 𝑠 + 1)2

+
( 𝑟−⌈𝑛𝑝⌉+1∑︁

𝑠=1

1
𝑟 − 𝑠 + 1

)2]})
. (3.48)
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Finally, Equations (3.18) and (3.44)–(3.47) imply

E
[
𝐴2
𝑝 (𝑤; 𝑛)

]
= 1/𝑛3

( 𝑛∑︁
𝑖=1

𝛼2
𝑖 E

[
�̃�2
𝑝 (𝑖)

]
+ 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗E
[
�̃�𝑝 (𝑖) �̃�𝑝 ( 𝑗)

] )
= 1/𝑛3

( 𝑛∑︁
𝑖=1

𝛼2
𝑖 2−𝑖

{ ⌈𝑖𝑝⌉−1∑︁
𝑟=0

(
𝑖

𝑟

) [ ⌈𝑖𝑝⌉−𝑟∑︁
𝑠=1

1
(𝑖 − 𝑟 − 𝑠 + 1)2

+
( ⌈𝑖𝑝⌉−𝑟∑︁

𝑠=1

1
𝑖 − 𝑟 − 𝑠 + 1

)2]
+

𝑖∑︁
𝑟=⌈𝑖𝑝⌉

(
𝑖

𝑟

) [ 𝑟−⌈𝑖𝑝⌉+1∑︁
𝑠=1

1
(𝑟 − 𝑠 + 1)2

+
( 𝑟−⌈𝑖𝑝⌉+1∑︁

𝑠=1

1
𝑟 − 𝑠 + 1

)2]}
+ 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛼𝑖𝛼 𝑗

𝑗−𝑖+⌈𝑖𝑝⌉∑︁
𝑟=⌈𝑖𝑝⌉

( 𝑟−1
⌈𝑖𝑝⌉−1

) ( 𝑗−𝑟
𝑖−⌈𝑖𝑝⌉

)( 𝑗
𝑖

)
× 2− 𝑗

{ min(𝑟,⌈ 𝑗 𝑝⌉)−1∑︁
𝑘=0

(
𝑗

𝑘

) [ min(𝑟,⌈ 𝑗 𝑝⌉)−𝑘∑︁
𝑠=1

1
( 𝑗 − 𝑘 − 𝑠 + 1)2

+
( min(𝑟,⌈ 𝑗 𝑝⌉)−𝑘∑︁

𝑠=1

1
𝑗 − 𝑘 − 𝑠 + 1

) ( max(𝑟,⌈ 𝑗 𝑝⌉)−𝑘∑︁
𝑠=1

1
𝑗 − 𝑘 − 𝑠 + 1

)]
−

max(𝑟,⌈ 𝑗 𝑝⌉)−1∑︁
𝑘=min(𝑟,⌈ 𝑗 𝑝⌉)

(
𝑗

𝑘

) ( 𝑘−min(𝑟,⌈ 𝑗 𝑝⌉)+1∑︁
𝑠=1

1
𝑘 − 𝑠 + 1

) ( max(𝑟,⌈ 𝑗 𝑝⌉)−𝑘∑︁
𝑠=1

1
𝑗 − 𝑘 − 𝑠 + 1

)
+

𝑛∑︁
𝑘=max(𝑟,⌈ 𝑗 𝑝⌉)

(
𝑗

𝑘

) [ 𝑘+1−max(𝑟,⌈𝑛𝑝⌉)∑︁
𝑠=1

1
(𝑘 − 𝑠 + 1)2

+
( 𝑘+1−max(𝑟,⌈𝑛𝑝⌉)∑︁

𝑠=1

1
𝑘 − 𝑠 + 1

) ( 𝑘+1−min(𝑟,⌈𝑛𝑝⌉)∑︁
𝑠=1

1
𝑘 − 𝑠 + 1

)]})
, (3.49)

where the constants 𝛼𝑘 are given in Equation (3.17).

3.5 Exact Numerical Results for the Expected Values of Several Variance-Parameter

Estimators

In this section we present exact (or nearly exact) numerical results based on i.i.d. observations

for the expected values of the variance-parameter estimators that we also evaluated in Section

2.7, i.e., we will consider (i) the STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚); (ii) the NBQ estimator
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N𝑝 (𝑏, 𝑚); (iii) the NBQ estimator Ñ𝑝 (𝑏, 𝑚); (iv) the combined estimator V𝑝 (𝑤0; 𝑏, 𝑚);

and (v) the combined estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚).

Remark 3.5.1. Recall that our analysis in Sections 2.8 and 2.10 did not reveal any com-

pelling reasons for using a weight function other than the constant 𝑤0(·). However, future

work could include a direct comparison between the constant and alternative weight func-

tions based on exact numerical results for i.i.d. observations, based on the work in Sections

3.1–3.4.

The exact numerical results for the distributions under consideration are presented in

Tables 3.1–3.5. In each table we provide the exact expected values and biases of one

of the variance-parameter estimators for each distribution and for 𝑝 ∈ {0.5, 0.95, 0.99}.

The last row for each distribution corresponds to the asymptotic variance parameter 𝜎2
𝑝

(𝑚 → ∞). The column with label “𝑚” contains the batch sizes and the column with label

“𝑛” contains the total sample sizes. However, since the number of batches that we use is

irrelevant for the exact calculations of the STS area estimator A𝑝 (𝑤0; 𝑏, 𝑚) and N𝑝 (𝑏, 𝑚),

we dropped column “𝑛” from Tables 3.1 and 3.2. The exact numerical results in Tables 3.3–

3.5, were computed with 𝑏 = 16 batches. In all experiments we used batch sizes 𝑚 = 2L ,

L ∈ {2, 3, . . . , 11}. However, in some tables corresponding to the Laplace distribution, the

maximum batch size was much smaller than 211 due to time limitations.

Table 3.1 reports the exact expected values and biases of the STS area estimator

𝐴2
𝑝 (𝑤0; 𝑛) from Equations (3.28)–(3.49). Table 3.2 reports the exact expected values and

biases of the NBQ estimator N𝑝 (𝑏, 𝑚) using Equations (3.22)–(3.45). Table 3.3 reports

the exact expected values and biases of the NBQ estimator Ñ𝑝 (𝑏, 𝑚) based on Equa-

tions (3.27)–(3.48). Tables 3.4 and 3.5 report the exact expected values and biases of the

combined estimators V𝑝 (𝑤0; 𝑏, 𝑚) and Ṽ𝑝 (𝑤0; 𝑏, 𝑚), respectively.

Some tabulated results are summarized in Figures 3.1–3.3. Specifically, we considered

three cases: (i) the uniform distribution with 𝑝 = 0.99 (Figure 3.1); (ii) the exponential

distribution with 𝑝 = 0.95 (Figure 3.2); and (iii) the Pareto distribution with 𝑝 = 0.95
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(Figure 3.3). Figure 3.3 contains two plots, with the second plot using a logarithmic scale.

Tables 3.1–3.5 and Figures 3.1–3.3 reveal a variety of interesting findings:

(i) All five estimators of 𝜎2
𝑝 converged to their asymptotic limits reasonably fast.

(ii) The STS area estimator reported larger (absolute) bias in most cases and it converged

more slowly to its asymptotic limit than its competitors.

(iii) There is no clear winner between the two NBQ estimators N𝑝 (𝑏, 𝑚) and Ñ𝑝 (𝑏, 𝑚)

with regard to small-sample bias and rate of convergence to 𝜎2
𝑝 . In some cases

N𝑝 (𝑏, 𝑚) performed better, e.g., see Figure 3.1 for 𝑝 = 0.99 and the uniform dis-

tribution, while in others Ñ𝑝 (𝑏, 𝑚) performed better, e.g., for 𝑝 = 0.5 and the

exponential distribution.

(iv) The performance of the combined estimators was commensurate with the performance

of their constituents.

The numerical results did not reveal any additional major findings, but validated our

observations in Chapter 2.

Tables 3.6–3.8 contain experimental results to verify the exact calculations in Tables

3.1–3.3. The results are based on 100,000 replications with 𝑏 = 16 batches of size 𝑚 = 2L ,

L ∈ {2, 3, . . . , 11}. All experiments were coded in Java using common random numbers

generated by the RngStreams package of L’Ecuyer et al. [67]. The simulation results were

very closed to the exact results, with a few exceptions, e.g., for small batch sizes and 𝑝 = 0.95

or 0.99 for the Pareto distribution. This discrepancy is potentially due to the pronounced

small-sample (absolute) bias of the variance-parameter estimators; this conjecture could

be verified by rerunning the simulation experiments with many more replications, e.g.,

1,000,000.
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Table 3.1: Exact expected values and biases of the STS area estimator 𝐴2
𝑝 (𝑤0; 𝑛).

𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.99
𝑚 Expected Value Bias Expected Value Bias Expected Value Bias

Uniform(0, 1) 4 0.1625 −0.0875 0.2250 0.1775 0.2250 0.2151
8 0.2017 −0.0483 0.2403 0.1928 0.2403 0.2304

16 0.2294 −0.0206 0.1921 0.1446 0.1921 0.1822
32 0.2454 −0.0046 0.1115 0.0640 0.1276 0.1177
64 0.2531 0.0031 0.0718 0.0243 0.0754 0.0655

128 0.2559 0.0059 0.0644 0.0169 0.0260 0.0161
256 0.2562 0.0062 0.0632 0.0157 0.0213 0.0114
512 0.2555 0.0055 0.0549 0.0074 0.0145 0.0046

1,024 0.2545 0.0045 0.0511 0.0036 0.0125 0.0026
2,048 0.2534 0.0034 0.0500 0.0025 0.0117 0.0018
∞ 0.2500 0.0475 0.0099

Expo(1) 4 1.2500 0.2500 5.2188 −13.7813 5.2188 −93.7813
8 1.1776 0.1776 12.8765 −6.1235 12.8765 −86.1235

16 1.1389 0.1389 28.3060 9.3060 28.3060 −70.6940
32 1.1077 0.1077 22.1858 3.1858 59.2348 −39.7652
64 1.0813 0.0813 13.9750 −5.0250 121.1333 22.1333

128 1.0602 0.0602 21.3233 2.3233 133.5575 34.5575
256 1.0439 0.0439 21.2966 2.2966 114.8635 15.8635
512 1.0317 0.0317 20.3529 1.3529 125.0791 26.0791

1,024 1.0227 0.0227 20.0736 1.0736 112.0033 13.0033
2,048 1.0162 0.0162 19.7029 0.7029 106.6767 7.6767
∞ 1.0000 19.0000 99.0000

Pareto(1, 2.1) 4 4.5216 4.0828 145.5091 70.7970 145.5091 −1,657.3364
8 1.3143 0.8755 612.5504 537.8383 612.5504 −1,190.2951

16 0.7325 0.2937 2,422.0966 2,347.3845 2,422.0966 619.2511
32 0.5782 0.1394 2,126.6643 2,051.9522 9,428.4047 7,625.5592
64 0.5169 0.0781 458.1188 383.4067 36,550.5299 34,747.6844

128 0.4859 0.0471 156.6993 81.9872 104,452.8501 102,650.0046
256 0.4683 0.0295 101.8110 27.0989 17,021.9880 15,219.1425
512 0.4579 0.0191 87.9547 13.2425 5,511.0072 3,708.1617

1,024 0.4514 0.0126 83.4814 8.7692 2,881.1354 1,078.2899
2,048 0.4472 0.0084 79.4565 4.7444 2,217.8375 414.9920
∞ 0.4388 74.7121 1,802.8455

Laplace(0, 1) 4 2.8359 1.8359 6.2422 −12.7578 6.2422 −92.7578
8 2.3423 1.3423 13.3708 −5.6292 13.3708 −85.6292

16 1.9338 0.9338 28.5260 9.5260 28.5260 −70.4740
32 1.6437 0.6437 22.2178 3.2178 59.3364 −39.6636
64 1.4446 0.4446 23.9702 4.9702 121.1821 22.1821

128 1.3084 0.3084 21.3235 2.3235 133.5531 34.5531
256 1.2149 0.2149 21.2974 2.2974 114.8647 15.8647
∞ 1.0000 19.0000 99.0000
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Table 3.2: Exact expected values and biases of the NBQ estimator N𝑝 (𝑏, 𝑚).

𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.99
𝑚 Expected Value Bias Expected Value Bias Expected Value Bias

Uniform(0, 1) 4 0.1600 −0.0900 0.1067 0.0592 0.1067 0.0968
8 0.1975 −0.0525 0.0790 0.0315 0.0790 0.0691

16 0.2215 −0.0285 0.0492 0.0017 0.0492 0.0393
32 0.2351 −0.0149 0.0536 0.0061 0.0277 0.0178
64 0.2424 −0.0076 0.0560 0.0085 0.0147 0.0048

128 0.2461 −0.0039 0.0505 0.0030 0.0150 0.0051
256 0.2481 −0.0019 0.0477 0.0002 0.0114 0.0015
512 0.2490 −0.0010 0.0479 0.0004 0.0115 0.0016

1,024 0.2495 −0.0005 0.0481 0.0006 0.0106 0.0007
2,048 0.2498 −0.0002 0.0477 0.0002 0.0101 0.0002
∞ 0.2500 0.0475 0.0099

Expo(1) 4 0.6944 −0.3056 5.6944 −13.3056 5.6944 −93.3056
8 0.8305 −0.1695 12.2194 −6.7806 12.2194 −86.7806

16 0.9108 −0.0892 25.3495 6.3495 25.3495 −73.6505
32 0.9543 −0.0457 19.6534 0.6534 51.6534 −47.3467
64 0.9768 −0.0232 17.1724 −1.8276 104.2836 5.2836

128 0.9883 −0.0117 18.6577 −0.3423 81.5555 −17.4445
256 0.9942 −0.0058 19.4711 0.4711 100.1051 1.1051
512 0.9971 −0.0029 19.0168 0.0168 91.8383 −7.1617

1,024 0.9985 −0.0015 18.8834 −0.1166 96.4508 −2.5492
2,048 0.9993 −0.0007 18.9806 −0.0194 98.8829 −0.1171
∞ 1.0000 19.0000 99.0000

Pareto(1, 2.1) 4 0.4093 −0.0295 262.6510 187.9389 262.6510 −1,540.1945
8 0.4255 −0.0133 1,018.3200 943.6079 1,018.3200 −784.5255

16 0.4326 −0.0062 3,944.5600 3,869.8479 3,944.5600 2,141.7145
32 0.4358 −0.0030 158.0330 83.3209 15,272.8000 13,469.9545
64 0.4373 −0.0015 80.3721 5.6600 59,120.9000 57,318.0545

128 0.4381 −0.0007 82.7581 8.0460 2,420.3300 617.4845
256 0.4384 −0.0004 83.9088 9.1967 2,676.4745 873.6290
512 0.4386 −0.0002 77.8614 3.1492 1,826.6021 23.7566

1,024 0.4387 −0.0001 75.0719 0.3598 1,858.1757 55.3302
2,048 0.4387 −0.0001 75.1866 0.4744 1,873.5939 70.7484
∞ 0.4388 74.7121 1,802.8455

Laplace(0, 1) 4 2.0829 1.0829 5.7669 −13.2331 5.7669 −93.2331
8 1.6825 0.6825 12.2228 −6.7772 12.2280 −86.7720

16 1.4521 0.4521 25.3496 6.3496 25.3496 −73.6504
32 1.3072 0.3072 19.6534 0.6534 51.6534 −47.3466
64 1.2117 0.2117 17.1724 −1.8276 104.2840 5.2840

128 1.1471 0.1471 18.6577 −0.3423 81.5555 −17.4445
256 1.1027 0.1027 19.4711 0.4711 100.1051 1.1051
512 1.0720 0.0720 19.0768 0.0768 91.8383 −7.1617

1,024 1.0506 0.0506 18.8834 −0.1166 96.4508 −2.5492
2,048 1.0356 0.0356 18.9806 −0.0194 98.8829 −0.1171
∞ 1.0000 19.0000 99.0000
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Table 3.3: Exact expected values and biases of the NBQ estimator Ñ𝑝 (𝑏, 𝑚) using 𝑏 = 16
batches.

𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.99
n 𝑚 Expected Value Bias Expected Value Bias Expected Value Bias

Uniform(0, 1) 64 4 0.2025 −0.0475 0.1937 0.1462 0.2586 0.2487
128 8 0.2257 −0.0243 0.1101 0.0626 0.1615 0.1516
256 16 0.2388 −0.0112 0.0526 0.0051 0.0898 0.0799
512 32 0.2455 −0.0045 0.0587 0.0112 0.0408 0.0309

1,024 64 0.2486 −0.0014 0.0654 0.0179 0.0168 0.0069
2,048 128 0.2500 0.0000 0.0537 0.0062 0.0193 0.0094
4,096 256 0.2505 0.0005 0.0484 0.0009 0.0125 0.0026
8,192 512 0.2506 0.0006 0.0486 0.0011 0.0133 0.0034

16,384 1,024 0.2505 0.0005 0.0489 0.0014 0.0113 0.0014
32,768 2,048 0.2504 0.0004 0.0481 0.0006 0.0104 0.0005
∞ ∞ 0.2500 0.0475 0.0099

Expo(1) 64 4 0.7672 −0.2328 9.1084 −9.8916 41.2349 −57.7651
128 8 0.8803 −0.1197 13.3306 −5.6694 40.5842 −58.4158
256 16 0.9441 −0.0559 28.4606 9.4606 55.0795 −43.9205
512 32 0.9765 −0.0235 20.3131 1.3131 61.8404 −37.1596

1,024 64 0.9918 −0.0082 17.9843 −1.0158 109.7608 10.7608
2,048 128 0.9985 −0.0015 18.9890 −0.0110 88.0001 −10.9999
4,096 256 1.0011 0.0011 19.8736 0.8736 102.4672 3.4672
8,192 512 1.0019 0.0019 19.2658 0.2658 96.7640 −2.2360

16,384 1,024 1.0019 0.0019 19.0393 0.0393 98.5628 −0.4372
32,768 2,048 1.0016 0.0016 19.0750 0.0750 99.8848 0.8848
∞ ∞ 1.0000 19.0000 99.0000

Pareto(1, 2.1) 64 4 0.4331 −0.0057 282.2080 207.4959 4,049.4300 2,246.5845
128 8 0.4422 0.0034 1,083.6000 1,008.8879 1,330.3300 −472.5155
256 16 0.4443 0.0055 4,275.9900 4,201.2779 4,409.2200 2,606.3745
512 32 0.4440 0.0052 170.6320 95.9199 16,226.7000 14,423.8545

1,024 64 0.4431 0.0043 82.4016 7.6895 63,648.8000 61,845.9545
2,048 128 0.4421 0.0033 84.5105 9.7984 2,505.8800 703.0345
4,096 256 0.4413 0.0025 86.8946 12.1825 2,805.2842 1,002.4387
8,192 512 0.4406 0.0018 78.9740 4.2619 1,875.2114 72.3659

16,384 1,024 0.4401 0.0013 75.5977 0.8856 1,885.4866 82.6411
32,768 2,048 0.4397 0.0009 75.5791 0.8670 1,896.8248 93.9793
∞ ∞ 0.4388 74.7121 1,802.8455

Laplace(0, 1) 64 4 2.6083 1.6083 9.2169 −9.7831 41.4180 −57.5820
128 8 1.9209 0.9209 13.3345 −5.6655 40.5904 −58.4096
256 16 1.5667 0.5667 28.4606 9.4606 55.0795 −43.9205
512 32 1.3657 0.3657 20.3131 1.3131 61.8404 −37.1596

1,024 64 1.2433 0.2433 17.9843 −1.0157 109.7608 10.7608
2,048 128 1.1650 0.1650 18.9890 −0.0110 88.0001 −10.9999
∞ ∞ 1.0000 19.0000 99.0000
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Table 3.4: Exact expected values and biases of the combined estimator V𝑝 (𝑤0; 𝑏, 𝑚) using
𝑏 = 16 batches.

𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.99
n 𝑚 Expected Value Bias Expected Value Bias Expected Value Bias

Uniform(0, 1) 64 4 0.1613 −0.0887 0.1677 0.1202 0.1677 0.1578
128 8 0.1997 −0.0503 0.1623 0.1148 0.1623 0.1524
256 16 0.2256 −0.0244 0.1230 0.0755 0.1230 0.1131
512 32 0.2404 −0.0096 0.0835 0.0360 0.0792 0.0693

1,024 64 0.2479 −0.0021 0.0642 0.0167 0.0460 0.0361
2,048 128 0.2512 0.0012 0.0577 0.0102 0.0207 0.0108
4,096 256 0.2523 0.0023 0.0557 0.0082 0.0165 0.0066
8,192 512 0.2524 0.0024 0.0515 0.0040 0.0131 0.0032

16,384 1,024 0.2521 0.0021 0.0496 0.0021 0.0116 0.0017
32,768 2,048 0.2516 0.0016 0.0489 0.0014 0.0109 0.0010
∞ ∞ 0.2500 0.0475 0.0099

Expo(1) 64 4 0.9812 −0.0188 5.4489 −13.5511 5.4489 −93.5511
128 8 1.0096 0.0096 12.5585 −6.4415 12.5585 −86.4415
256 16 1.0285 0.0285 26.8754 7.8754 26.8755 −72.1245
512 32 1.0335 0.0335 20.9604 1.9604 55.5664 −43.4336

1,024 64 1.0307 0.0307 15.5221 −3.4779 112.9802 13.9802
2,048 128 1.0254 0.0254 20.0335 1.0335 108.3952 9.3952
4,096 256 1.0199 0.0199 20.4133 1.4133 107.7223 8.7223
8,192 512 1.0150 0.0150 19.7064 0.7064 108.9949 9.9949

16,384 1,024 1.0110 0.0110 19.4977 0.4977 104.4779 5.4779
32,768 2,048 1.0080 0.0080 19.3534 0.3534 102.9055 3.9055
∞ ∞ 1.0000 19.0000 99.0000

Pareto(1, 2.1) 64 4 2.5318 2.0930 202.1907 127.4785 202.1907 −1,600.6548
128 8 0.8842 0.4454 808.8905 734.1784 808.8905 −993.9550
256 16 0.5874 0.1486 3,158.7724 3,084.0603 3,158.7724 1,355.9269
512 32 0.5093 0.0705 1,174.1008 1,099.3886 12,256.3379 10,453.4924

1,024 64 0.4784 0.0396 275.3381 200.6260 47,471.6767 45,668.8312
2,048 128 0.4628 0.0240 120.9213 46.2092 55,082.2759 53,279.4304
4,096 256 0.4538 0.0150 93.1486 18.4365 10,080.6105 8,277.7650
8,192 512 0.4486 0.0098 83.0708 8.3587 3,728.2305 1,925.3850

16,384 1,024 0.4453 0.0065 79.4123 4.7001 2,386.1549 583.3094
32,768 2,048 0.4431 0.0043 77.3904 2.6783 2,051.2680 248.4225
∞ ∞ 0.4388 74.7121 1802.8455

Laplace(0, 1) 64 4 2.4715 1.4715 6.0122 −12.9878 6.0122 −92.9878
128 8 2.0230 1.0230 12.8153 −6.1847 12.8178 −86.1822
256 16 1.7007 0.7007 26.9890 7.9890 26.9890 −72.0110
512 32 1.4809 0.4809 20.9770 1.9770 55.6188 −43.3812

1,024 64 1.3319 0.3319 20.6809 1.6809 113.0056 14.0056
2,048 128 1.2303 0.2303 20.0336 1.0336 108.3929 9.3929
∞ ∞ 1.0000 19.0000 99.0000
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Table 3.5: Exact expected values and biases of the combined estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚) using
𝑏 = 16 batches.

𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.99
n 𝑚 Expected Value Bias Expected Value Bias Expected Value Bias

Uniform(0, 1) 64 4 0.1819 −0.0681 0.2098 0.1623 0.2413 0.2314
128 8 0.2133 −0.0367 0.1773 0.1298 0.2022 0.1923
256 16 0.2340 −0.0160 0.1246 0.0771 0.1426 0.1327
512 32 0.2454 −0.0046 0.0860 0.0385 0.0856 0.0757

1,024 64 0.2509 0.0009 0.0687 0.0212 0.0471 0.0372
2,048 128 0.2530 0.0030 0.0592 0.0117 0.0228 0.0129
4,096 256 0.2534 0.0034 0.0560 0.0085 0.0171 0.0072
8,192 512 0.2531 0.0031 0.0519 0.0044 0.0139 0.0040

16,384 1,024 0.2526 0.0026 0.0500 0.0025 0.0119 0.0020
32,768 2,048 0.2520 0.0020 0.0491 0.0016 0.0111 0.0012
∞ ∞ 0.2500 0.0475 0.0099

Expo(1) 64 4 1.0164 0.0164 7.1008 −11.8992 22.6459 −76.3541
128 8 1.0337 0.0337 13.0962 −5.9038 26.2835 −72.7165
256 16 1.0446 0.0446 28.3808 9.3808 41.2609 −57.7391
512 32 1.0442 0.0442 21.2797 2.2797 60.4956 −38.5044

1,024 64 1.0380 0.0380 15.9149 −3.0851 115.6305 16.6305
2,048 128 1.0303 0.0303 20.1938 1.1938 111.5136 12.5136
4,096 256 1.0232 0.0232 20.6080 1.6080 108.8653 9.8653
8,192 512 1.0173 0.0173 19.8269 0.8269 111.3782 12.3782

16,384 1,024 1.0126 0.0126 19.5731 0.5731 105.4998 6.4998
32,768 2,048 1.0091 0.0091 19.3991 0.3991 103.3903 4.3903
∞ ∞ 1.0000 19.0000 99.0000

Pareto(1, 2.1) 64 4 2.5433 2.1045 211.6537 136.9416 2,034.5031 231.6576
128 8 0.8923 0.4535 840.4776 765.7655 959.8631 −842.9824
256 16 0.5930 0.1542 3,319.1418 3,244.4296 3,383.6079 1,580.7624
512 32 0.5133 0.0745 1,180.1971 1,105.4849 12,717.9024 10,915.0569

1,024 64 0.4812 0.0424 276.3202 201.6080 49,662.5961 47,859.7506
2,048 128 0.4647 0.0259 121.7692 47.0571 55,123.6710 53,320.8255
4,096 256 0.4552 0.0164 94.5934 19.8812 10,142.9378 8,340.0923
8,192 512 0.4495 0.0107 83.6092 8.8970 3,751.7512 1,948.9057

16,384 1,024 0.4459 0.0071 79.6667 4.9545 2,399.3698 596.5243
32,768 2,048 0.4436 0.0048 77.5803 2.8682 2,062.5088 259.6633
∞ ∞ 0.4388 74.7121 1,802.8455

Laplace(0, 1) 64 4 2.7258 1.7258 7.6815 −11.3185 23.2628 −75.7372
128 8 2.1384 1.1384 13.3532 −5.6468 26.5416 −72.4584
256 16 1.7562 0.7562 28.4943 9.4943 41.3745 −57.6255
512 32 1.5092 0.5092 21.2962 2.2962 60.5480 −38.4520

1,024 64 1.3472 0.3472 21.0738 2.0738 115.6556 16.6556
2,048 128 1.2390 0.2390 20.1939 1.1939 111.5113 12.5113
∞ ∞ 1.0000 19.0000 99.0000
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Figure 3.1: Bias of the variance-parameter estimators for the uniform distribution on [0, 1]
and 𝑝 = 0.99, in the special case of i.i.d. observations. The results are based on Tables
3.1–3.5, with batch sizes 𝑚 = 2L , L = 2, 3, . . . , 11.

Figure 3.2: Bias of the variance-parameter estimators for the exponential distribution with
unit rate parameter and 𝑝 = 0.95, in the special case of i.i.d. observations. The results are
based on Tables 3.1–3.5, with batch sizes 𝑚 = 2L , L = 2, 3, . . . , 11.
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Figure 3.3: Bias of the variance-parameter estimators for the Pareto distribution with
parameters 𝛾 = 1 and \ = 2.1 and 𝑝 = 0.95, in the special case of i.i.d. observations. The
results are based on Tables 3.1–3.5, with batch sizes 𝑚 = 2L , L = 2, 3, . . . , 11. The second
graph plots the same values as the first one, but we use a logarithmic scale for the vertical
axis.
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Table 3.6: Verification of the exact results in Table 3.1 for the expected values and biases of
the STS area estimator Ã𝑝 (𝑤0; 𝑏, 𝑚). The results are based on 100,000 replications with
𝑏 = 16 batches of size 𝑚.

𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.99
𝑛 𝑚 Expected Value Bias Expected Value Bias Expected Value Bias

Uniform(0, 1) 64 4 0.1624 −0.0876 0.2251 0.1776 0.2251 0.2152
128 8 0.2017 −0.0483 0.2409 0.1934 0.2409 0.231
256 16 0.2295 −0.0205 0.1922 0.1447 0.1922 0.1823
512 32 0.2450 −0.0050 0.1113 0.0638 0.1277 0.1178

1024 64 0.2535 0.0035 0.0716 0.0241 0.0755 0.0656
2048 128 0.2561 0.0061 0.0643 0.0168 0.0260 0.0161
4096 256 0.2557 0.0057 0.0632 0.0157 0.0213 0.0114
8192 512 0.2556 0.0056 0.0549 0.0074 0.0145 0.0046

16384 1024 0.2546 0.0046 0.0511 0.0036 0.0126 0.0027
32768 2048 0.2535 0.0035 0.0501 0.0026 0.0117 0.0018
∞ ∞ 0.2500 0.0475 0.0099

Expo(1) 64 4 1.2504 0.2504 5.2023 −13.7977 5.2023 −93.7977
128 8 1.1772 0.1772 12.9122 −6.0878 12.9122 −86.0878
256 16 1.1396 0.1396 28.3053 9.3053 28.3053 −70.6947
512 32 1.1065 0.1065 22.1531 3.1531 59.3864 −39.6136

1024 64 1.0829 0.0829 23.9586 4.9586 121.0511 22.0511
2048 128 1.0608 0.0608 21.3112 2.3112 133.1777 34.1777
4096 256 1.0423 0.0423 21.3414 2.3414 115.0248 16.0248
8192 512 1.0315 0.0315 20.3520 1.3520 125.2362 26.2362

16384 1024 1.0228 0.0228 20.0783 1.0783 112.0425 13.0425
32768 2048 1.0163 0.0163 19.7304 0.7304 107.0313 8.0313
∞ ∞ 1.0000 19.0000 99.0000

Pareto(1, 2.1) 64 4 4.3157 3.8769 76.7433 2.0312 76.7433 −1,726.1022
128 8 1.2957 0.8569 285.4158 210.7037 285.4158 −1,517.4297
256 16 0.7173 0.2785 939.0643 864.3522 939.0643 −863.7812
512 32 0.5738 0.1350 988.7529 914.0408 4,460.3143 2,657.4688

1024 64 0.5174 0.0786 469.6862 394.9741 16,806.1935 15,003.3480
2048 128 0.4856 0.0468 184.1516 109.4395 96,463.9087 94,661.0632
4096 256 0.4675 0.0287 102.0384 27.3263 13,119.5019 11,316.6564
8192 512 0.4578 0.0190 88.0488 13.3367 5,025.5242 3,222.6787

16384 1024 0.4515 0.0127 83.4638 8.7517 2,746.5135 943.6680
32768 2048 0.4472 0.0084 79.5687 4.8566 2,208.9441 406.0986
∞ ∞ 0.4388 74.7121 1,802.8455

Laplace(0, 1) 64 4 2.8360 1.8360 6.2371 −12.7629 6.2371 −92.7629
128 8 2.3415 1.3415 13.3564 −5.6436 13.3564 −85.6436
256 16 1.9327 0.9327 28.3851 9.3851 28.3851 −70.6149
512 32 1.6453 0.6453 22.2273 3.2273 59.2076 −39.7924

1024 64 1.4425 0.4425 23.9929 4.9929 121.4868 22.4868
2048 128 1.3082 0.3082 21.3155 2.3155 133.3865 34.3865
4096 256 1.2167 0.2167 21.3015 2.3015 114.6917 15.6917
8192 512 1.1489 0.1489 20.4139 1.4139 124.9536 25.9536

16384 1024 1.1061 0.1061 20.1183 1.1183 112.1394 13.1394
32768 2048 1.0733 0.0733 19.7135 0.7135 106.6866 7.6866
∞ ∞ 1.0000 19.0000 99.0000
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Table 3.7: Verification of the exact results in Table 3.2 for the expected values and biases of
the NBQ estimator N𝑝 (𝑏, 𝑚). The results are based on 100,000 replications with 𝑏 = 16
batches of size 𝑚.

𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.99
𝑛 𝑚 Expected Value Bias Expected Value Bias Expected Value Bias

Uniform(0, 1) 64 4 0.1601 −0.0899 0.1066 0.0591 0.1066 0.0967
128 8 0.1979 −0.0521 0.0791 0.0316 0.0791 0.0692
256 16 0.2217 −0.0283 0.0492 0.0017 0.0492 0.0393
512 32 0.2356 −0.0144 0.0536 0.0061 0.0277 0.0178

1024 64 0.2427 −0.0073 0.0561 0.0086 0.0147 0.0048
2048 128 0.2459 −0.0041 0.0506 0.0031 0.0151 0.0052
4096 256 0.2478 −0.0022 0.0477 0.0002 0.0114 0.0015
8192 512 0.2492 −0.0008 0.0480 0.0005 0.0115 0.0016

16384 1024 0.2496 −0.0004 0.0481 0.0006 0.0106 0.0007
32768 2048 0.2493 −0.0007 0.0477 0.0002 0.0101 0.0002
∞ ∞ 0.2500 0.0475 0.0099

Expo(1) 64 4 0.6948 −0.3052 5.6993 −13.3007 5.6993 −93.3007
128 8 0.8310 −0.1690 12.2491 −6.7509 12.2491 −86.7509
256 16 0.9099 −0.0901 25.3988 6.3988 25.3988 −73.6012
512 32 0.9565 −0.0435 19.6816 0.6816 51.8084 −47.1916

1024 64 0.9780 −0.0220 17.1900 −1.8100 104.4081 5.4081
2048 128 0.9873 −0.0127 18.6847 −0.3153 81.6047 −17.3953
4096 256 0.9934 −0.0066 19.4602 0.4602 100.0662 1.0662
8192 512 0.9977 −0.0023 19.0956 0.0956 91.9019 −7.0981

16384 1024 0.9987 −0.0013 18.8861 −0.1139 96.5214 −2.4786
32768 2048 0.9973 −0.0027 18.9812 −0.0188 98.9691 −0.0309
∞ ∞ 1.0000 19.0000 99.0000

Pareto(1, 2.1) 64 4 0.4069 −0.0319 147.9965 73.2844 147.9965 −1,654.8490
128 8 0.4251 −0.0137 484.1441 409.4320 484.1441 −1,318.7014
256 16 0.4331 −0.0057 1,780.1279 1,705.4158 1,780.1279 −22.7176
512 32 0.4369 −0.0019 157.2442 82.5321 6,644.2400 4,841.3945

1024 64 0.4379 −0.0009 80.5462 5.8341 36,623.8829 34,821.0374
2048 128 0.4376 −0.0012 82.8637 8.1516 2,428.4070 625.5615
4096 256 0.4380 −0.0008 83.8321 9.1200 2,675.7794 872.9339
8192 512 0.4389 0.0001 77.9031 3.1910 1,827.7987 24.9532

16384 1024 0.4387 −0.0001 75.0747 0.3626 1,860.6216 57.7761
32768 2048 0.4379 −0.0009 75.1760 0.4639 1,875.0958 72.2503
∞ ∞ 0.4388 74.7121 1,802.8455

Laplace(0, 1) 64 4 2.0831 1.0831 5.7598 −13.2402 5.7598 −93.2402
128 8 1.6824 0.6824 12.2000 −6.8000 12.2000 −86.8000
256 16 1.4530 0.4530 25.3410 6.3410 25.3410 −73.6590
512 32 1.3095 0.3095 19.6770 0.6770 51.6760 −47.3240

1024 64 1.2142 0.2142 17.1742 −1.8258 104.3546 5.3546
2048 128 1.1493 0.1493 18.6739 −0.3261 81.5766 −17.4234
4096 256 1.1040 0.1040 19.5123 0.5123 100.0925 1.0925
8192 512 1.0725 0.0725 19.0747 0.0747 91.8258 −7.1742

16384 1024 1.0506 0.0506 18.8852 −0.1148 96.4822 −2.5178
32768 2048 1.0352 0.0352 18.9450 −0.0550 98.9591 −0.0409
∞ ∞ 1.0000 19.0000 99.0000
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Table 3.8: Verification of the exact results in Table 3.3 for the expected values and biases of
the NBQ estimator Ñ𝑝 (𝑏, 𝑚). The results are based on 100,000 replications with 𝑏 = 16
batches of size 𝑚.

𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.99
𝑛 𝑚 Expected Value Bias Expected Value Bias Expected Value Bias

Uniform(0, 1) 64 4 0.2027 −0.0473 0.1936 0.1461 0.2586 0.2487
128 8 0.2262 −0.0238 0.1102 0.0627 0.1615 0.1516
256 16 0.2391 −0.0109 0.0525 0.0050 0.0899 0.0800
512 32 0.2460 −0.0040 0.0588 0.0113 0.0409 0.0310

1024 64 0.2490 −0.0010 0.0654 0.0179 0.0169 0.0070
2048 128 0.2498 −0.0002 0.0538 0.0063 0.0194 0.0095
4096 256 0.2502 0.0002 0.0484 0.0009 0.0125 0.0026
8192 512 0.2508 0.0008 0.0487 0.0012 0.0133 0.0034

16384 1024 0.2505 0.0005 0.0489 0.0014 0.0113 0.0014
32768 2048 0.2499 −0.0001 0.0481 0.0006 0.0104 0.0005
∞ ∞ 0.2500 0.0475 0.0099

Expo(1) 64 4 0.7678 −0.2322 9.1011 −9.8989 41.4232 −57.5768
128 8 0.8808 −0.1192 13.3593 −5.6407 40.6656 −58.3344
256 16 0.9434 −0.0566 28.5165 9.5165 55.1407 −43.8593
512 32 0.9787 −0.0213 20.3415 1.3415 62.0076 −36.9924

1024 64 0.9930 −0.0070 18.0052 −0.9948 109.8971 10.8971
2048 128 0.9975 −0.0025 19.0128 0.0128 88.0655 −10.9345
4096 256 1.0004 0.0004 19.8616 0.8616 102.4331 3.4331
8192 512 1.0026 0.0026 19.2851 0.2851 96.8201 −2.1799

16384 1024 1.0020 0.0020 19.0414 0.0414 98.6367 −0.3633
32768 2048 0.9996 −0.0004 19.0752 0.0752 99.9691 0.9691
∞ ∞ 1.0000 19.0000 99.0000

Pareto(1, 2.1) 64 4 0.4307 −0.0081 159.8003 85.0882 2217.0827 414.2372
128 8 0.4419 0.0031 513.8276 439.1155 766.6884 −1,036.1571
256 16 0.4448 0.0060 1,967.2317 1,892.5196 2,099.1771 296.3316
512 32 0.4450 0.0062 169.7745 95.0624 7,022.0654 5,219.2199

1024 64 0.4436 0.0048 82.5926 7.8805 3,9645.0957 3,7842.2502
2048 128 0.4417 0.0029 84.6089 9.8968 2,514.5563 711.7108
4096 256 0.4408 0.0020 86.8118 12.0997 2,804.3265 1,001.4810
8192 512 0.4409 0.0021 79.0190 4.3069 1,876.3340 73.4885

16384 1024 0.4401 0.0013 75.5988 0.8867 1,887.9799 85.1344
32768 2048 0.4389 0.0001 75.5652 0.8531 1,898.3584 95.5129
∞ ∞ 0.4388 74.7121 1,802.8455

Laplace(0, 1) 64 4 2.6096 1.6096 9.1994 −9.8006 41.3127 −57.6873
128 8 1.9212 0.9212 13.3021 −5.6979 40.5058 −58.4942
256 16 1.5678 0.5678 28.4508 9.4508 55.0313 −43.9687
512 32 1.3679 0.3679 20.3421 1.3421 61.8744 −37.1256

1024 64 1.2457 0.2457 17.9814 −1.0186 109.8195 10.8195
2048 128 1.1673 0.1673 19.0049 0.0049 88.0347 −10.9653
4096 256 1.1148 0.1148 19.9145 0.9145 102.4663 3.4663
8192 512 1.0791 0.0791 19.2634 0.2634 96.7777 −2.2223

16384 1024 1.0548 0.0548 19.0415 0.0415 98.6023 −0.3977
32768 2048 1.0380 0.0380 19.0396 0.0396 99.9643 0.9643
∞ ∞ 1.0000 19.0000 99.0000
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CHAPTER 4

SQSTS: A SEQUENTIAL PROCEDURE FOR ESTIMATING STEADY-STATE

QUANTILES USING STANDARDIZED TIME SERIES

This chapter builds on the theoretical foundations laid out in Chapter 2 to develop and

assess SQSTS, an automated sequential procedure for computing point estimators and CIs

for steady-state quantiles based on the simulation analysis methods of STS and sectioning

as the latter method is applied to batch quantile estimators and the full-sample quantile

estimator. The variance parameter 𝜎2
𝑝 associated with the full-sample quantile estimator

is estimated by a combination of variance-parameter estimators that are based on the two

aforementioned methods of simulation analysis and are asymptotically independent as the

batch size increases with a fixed number of batches (Alexopoulos et al. [7]).

SQSTS is the first sequential procedure to incorporate STS-based variance-parameter

estimators for steady-state quantile estimation. Theorem 2.3.4 forms the basis for some of

the key steps in SQSTS that control the growth of the batch size on successive iterations of

the procedure. Our SQSTS method borrows elements from two recent sequential methods

having different objectives: the SPSTS method of Alexopoulos et al. [40] for estimation

of the steady-state mean and the Sequest method of Alexopoulos et al. [7] for estimation

of steady-state quantiles. The key differences of SQSTS with Sequest and SPSTS will

be detailed in Section 4.1 below. The remainder of this chapter is organized as follows.

Section 4.1 contains a formal algorithmic statement of SQSTS. Section 4.2 includes an

experimental evaluation of SQSTS using a test bed of seven challenging processes and a

direct comparison to the Sequest and Sequem methods (Alexopoulos et al. [7, 23]), which

are the state-of-the-art methods for sequential steady-state quantile estimation. Section 4.3

contains a short summary of this chapter and the findings in Section 4.2.
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4.1 SQSTS Algorithm

In this section we present our STS-based sequential procedure for estimating a steady-state

quantile of a stochastic sequence. Figure 4.1 contains a high-level flowchart of the

procedure. The user provides the probability associated with the quantile 𝑝 and the nominal

error probability 𝛼 ∈ (0, 1) for the CI for 𝑦𝑝. Further, the user has the option to impose an

upper bound for the absolute or relative precision of the CI.

We start with a cursory overview of the procedure. The core of SQSTS consists of three

loops. Step [2] of SQSTS (the first loop) progressively increases the batch size 𝑚 until the

signed (weighted) areas 𝐴𝑝 (𝑤; 𝑗 , 𝑚) under the STSs based on 𝑏 nonoverlapping batches

pass the two-sided randomness test of von Neumann [43], while Step [3] (the second loop)

increases the batch size until the signed areas pass the one-sided test of Shapiro and Wilk

[81] for testing the hypothesis that the approximately i.i.d. {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}

sample has a univariate normal distribution, whose mean and variance are not specified.

To control the growth of the batch size, both loops use a rapidly decreasing sequence of

significance levels. We focus on the signed areas in an attempt to ameliorate the pronounced

bias of the batched STS area estimator A𝑝 (𝑤; 𝑏, 𝑚) relative to the NBQ variance estimator

(Alexopoulos et al. [39]). At the end of the two loops, the signed areas 𝐴𝑝 (𝑤; 𝑗 , 𝑚) in

Equation (2.15) approximately satisfy the asymptotic properties in Theorem 2.3.4 as they

are approximately i.i.d. normal r.v.’s. In Step [4] the first batch of size 𝑚 is removed because

the (near) independence of 𝐴𝑝 (𝑤; 1, 𝑚) and the remaining signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 =

2, . . . , 𝑏} based on the successful completion of Step [2] indicates that any initialization bias

due to warm-up effects is mostly confined to the first batch; and the simulation is restarted

to generate another batch of the current size 𝑚 and compute another BQE and signed area

that are almost free of initialization bias. In Step [5] the batch size is quadrupled so that

the batch count is reduced by a factor of 1/4, and the signed areas and BQEs {�̂�𝑝 ( 𝑗 , 𝑚)}

are recomputed. The scope of this rebatching is to increase the reliability of the CI for 𝑦𝑝
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in the case where there are no precision requirements for the CI HL; this is typical for most

commercial simulation packages and a reasonable starting point for estimating the sample

size required to achieve a given precision requirement. If the user has specified a finite

upper bound on the HL of the CI for 𝑦𝑝, Step [6], the last loop of SQSTS, performs iterative

increases of the batch count 𝑏 or batch size 𝑚 until the CI for 𝑦𝑝 in Equation (2.68) meets

the target relative-precision requirement.

In comparison with the Sequest and Sequem procedures (Alexopoulos et al. [23, 7]),

the SQSTS procedure is structurally less complicated. For instance: (i) while Sequest starts

with a smaller initial batch size (128 versus 512 or 4096), it contains an intricate loop that

increases the batch size in a progressively cautious fashion until the estimated absolute

skewness of the BQEs {�̂�𝑝 ( 𝑗 , 𝑚)}, drops below an upper bound that is a function of 𝑝;

(ii) the CI for 𝑦𝑝 delivered by Sequest incorporates adjustments for residual skewness and

autocorrelation in the BQEs; and (iii) Sequem adds more complexity to Sequest because

it uses two-dimensional blocks of batches in order to apply the maximum transformation.

On another front, whereas SQSTS has similar core logic akin to the SPSTS procedure of

Alexopoulos et al. [40] for estimating the steady-state mean, it has key differences from

the latter. Specifically, (i) SPSTS attempts to control the excessive small-sample bias of

the STS-based estimates of the associated variance parameter 𝜎2 = lim𝑛→∞ 𝑛Var
[
𝑌 𝑛

]
by

means of an ad hoc variance estimator computed as the maximum of the area estimators

based on the cosine weights 𝑤cos,1(·) and 𝑤cos,2(·) and an estimator arising from the method

of overlapping batch means (Meketon and Schmeiser [82]); and (ii) SQSTS provides an

additional safeguard against small-sample bias with the aggressive rebatching in Step [5].

The next few paragraphs contain a detailed description of each step of SQSTS.

Steps [0]–[1] initialize the experimental parameters and generate the initial dataset

comprised of 𝑏 = 64 batches of size 512 when 𝑝 ∈ [0.05, 0.95] or 4096 otherwise. The

values of 𝑝, 𝛼, and the CI precision requirement (if any) are specified by the user. The

level of significance for the statistical tests in Steps [2]–[3] is set according to the sequence
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{𝛽𝜓(ℓ) : ℓ = 1, 2, . . .}, where 𝛽 = 0.3, 𝜓(ℓ) ≡ exp
[
− [(ℓ − 1)\

]
, [ = 0.2, and \ = 2.3.

Step [2] consists of a loop that tests for the randomness (i.i.d. property) of the signed areas

𝐴𝑝 (𝑤; 𝑗 , 𝑚) using a two-sided test based on von Neumann’s ratio (von Neumann [43],

Young [83]) with progressively decreasing size 𝛽𝜓(ℓ) on iteration ℓ. Let 𝐴𝑝 (𝑤; 𝑏, 𝑚) =

𝑏−1 ∑𝑏
𝑗=1 𝐴𝑝 (𝑤; 𝑗 , 𝑚) be the average of the sample {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}, and let

�̂�1 =

∑𝑏−1
𝑗=1 [𝐴𝑝 (𝑤; 𝑗 , 𝑚) − 𝐴𝑝 (𝑤; 𝑏, 𝑚)] [𝐴𝑝 (𝑤; 𝑗 + 1, 𝑚) − 𝐴𝑝 (𝑤; 𝑏, 𝑚)]∑𝑏

𝑗=1 [𝐴𝑝 (𝑤; 𝑗 , 𝑚) − 𝐴𝑝 (𝑤; 𝑏, 𝑚)]2

be the estimate of the respective lag-1 sample autocorrelation. The (rescaled) von Neumann

test statistic is

𝑈𝑏 ≡
√︂

𝑏2 − 1
𝑏 − 2

{
�̂�1 +
[𝐴𝑝 (𝑤; 1, 𝑚) − 𝐴𝑝 (𝑤; 𝑏, 𝑚)]2 + [𝐴𝑝 (𝑤; 𝑏, 𝑚) − 𝐴𝑝 (𝑤; 𝑏, 𝑚)]2

2
∑𝑏

𝑗=1 [𝐴𝑝 (𝑤; 𝑗 , 𝑚) − 𝐴𝑝 (𝑤; 𝑏, 𝑚)]2

}
.

(4.1)

Notice that the quantity inside the square brackets of Equation (4.1) is equal to the

estimate �̂�1 plus end effects that diminish as 𝑏 increases. If the data are nearly normal,

for sufficiently large 𝑏, the distribution of 𝑈𝑏 under the null hypothesis is approximately

𝑁 (0, 1); hence the two-sided test rejects the i.i.d. property at level of significance 𝛽 when

|𝑈𝑏 | > 𝑧1−𝛽/2.

At this juncture, a few additional comments on the application of von Neumann’s test are

in order. First, the test should have sufficient power to avoid passing to the Shapiro–Wilk

test in Step [3] a sample dataset {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} that is contaminated by

significant statistical dependencies. Since the power of the test increases with increasing

batch count 𝑏, we chose the initial value 𝑏 = 64 in Step [1] of SQSTS. Second, the null

distribution of von Neumann’s test can be badly distorted by departures from normality

in the dataset {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}; and the distortion is pronounced when the

underlying distribution is heavy-tailed (Bartels [84], §1, 1st para.). This is the basis for

133



setting the initial batch size in Step [1] as

𝑚0 =


512 if 𝑝 ∈ [0.05, 0.95],

4096 otherwise.

The values of these 𝛽, [, and \ were chosen after careful experimentation to balance the

tradeoff between the rate of convergence of the vector [𝐴𝑝 (𝑤; 1, 𝑚), . . . , 𝐴𝑝 (𝑤; 𝑏, 𝑚)]T to

a vector of i.i.d. normal r.v.’s and the explosion of the batch size; indeed, on iteration 4

the significance level drops 𝛽𝜓(4) = 0.025, thus facilitating the acceptance of the null

hypothesis. If the signed areas fail the randomness test, the batch size is incremented by the

factor of
√

2 and 𝑏
( [[
𝑚
√

2
]]
− 𝑚

)
additional data are generated, where [[·]] is the rounding

function to the nearest integer.

Step [3] contains a second loop that assesses the univariate normality of the signed areas

𝐴𝑝 (𝑤; 𝑗 , 𝑚) using the one-sided Shapiro–Wilk test again with level of significance 𝛽𝜓(ℓ)

on iteration ℓ. Let 𝐴𝑝 (𝑤; (1), 𝑚) ≤ 𝐴𝑝 (𝑤; (2), 𝑚) ≤ · · · ≤ 𝐴𝑝 (𝑤; (𝑏), 𝑚) be the order

statistics of the sample {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}. The Shapiro–Wilk test statistic is

𝑊𝑏 ≡
[ ∑𝑏

𝑗=1 𝑎 𝑗 𝐴𝑝 (𝑤; ( 𝑗), 𝑚)
]2∑𝑏

𝑗=1
[
𝐴𝑝 (𝑤; 𝑗 , 𝑚) − 𝐴𝑝 (𝑤; 𝑏, 𝑚)

]2 , (4.2)

with the coefficients 𝑎 𝑗 computed from

𝒂 ≡ (𝑎1, . . . , 𝑎𝑏) =
𝒒ᵀ𝑽−1(

𝒒ᵀ𝑽−1𝑽−1𝒒
)1/2 , (4.3)

where 𝒒 ≡ (𝑞1, . . . , 𝑞𝑏)ᵀ is the vector of the expected values of the order statistics corre-

sponding to an i.i.d. sample from the standard normal distribution and 𝑽 is the covariance

matrix of these order statistics. The vector 𝒂 of coefficients was selected to satisfy the

following properties: (i) 𝒂ᵀ𝒂 = 1 and 𝑎 𝑗 = −𝑎𝑏− 𝑗+1 for 1 ≤ 𝑗 ≤ 𝑏. (ii) the null distribution

of 𝑊𝑏 depends only on 𝑏; (iii) the value of 𝑊𝑏 ranges from 𝑏𝑎2
1/(𝑏 − 1) to unity; and (iv)
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the closer 𝑊𝑏 is to unity, the better the data conform to normality. For a test of size 𝛾,

the null hypothesis is rejected when 𝑊𝑏 < 𝑤∗1−𝛾,𝑏 with the critical value chosen so that

Pr(𝑊𝑏 ≥ 𝑤∗1−𝛾,𝑏) = 1 − 𝛾. Tables containing the elements of the vector of coefficients 𝒂

and critical values 𝑤∗1−𝛾,𝑏 for 3 ≤ 𝑏 ≤ 5000 are contained in Royston [85] and references

therein. The Shapiro–Wilk test for univariate normality is widely recognized as having

the highest power when compared to several alternative tests (Fishman [2], §2.10). In

particular, it is the most powerful test when the data have a continuous, skewed, and short-

or long-tailed distribution.

By now, it should be clear that the von Neumann and Shapiro–Wilk tests are intertwined:

the initial batch-size assignment aims at supplying signed areas 𝐴𝑝 (𝑤; 𝑗 , 𝑚) that do not

exhibit pronounced departures from normality, while the loop in Step [3] starts with near

i.i.d. data and increases the batch size until the signed areas 𝐴𝑝 (𝑤; 𝑗 , 𝑚) can be considered

as an i.i.d. sample from the normal distribution.

Step [4] deals with the initial transient phase. Specifically, after the signed areas pass

both the independence and normality tests, the first of the 64 batches is removed and a new

batch is generated in anticipation that once the latter statistical tests are passed any transient

effects are confined to the first batch. We realize that this truncation may be excessive,

and plan to address it in the future. Step [5] rebatches the current sample into 16 batches

of quadruple batch size. In the absence of a user-specified CI precision requirement for

the CI’s HL, the algorithm skips to Step [7]. Otherwise, Step [6] sequentially increases

the batch count 𝑏 (up to 𝑏∗ = 64) or the batch size 𝑚 until the HL of the CI for 𝑦𝑝 meets

the precision requirement. The value 𝑏′ corresponds to the typical formula for increasing

the sample size. If the batch count cannot be increased all the way to 𝑏′, the batch size is

increased by a relatively small factor (between 5% and 30%) to avoid an explosion of the

sample size. Step [7] delivers the final CI for 𝑦𝑝 defined in Equation (2.68), based on the

combined variance-parameter estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚).

The formal algorithmic statement of SQSTS follows. We state the algorithm for a
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general weight function 𝑤(·) satisfying Equation (2.12) and in terms of a relative precision

of the CI for 𝑦𝑝. If the user wishes to impose a finite upper bound ℎ∗ on the absolute

precision (half-length) of the CI, then the condition ℎ(𝑏, 𝑚, 𝛼) > 𝑟∗ | �̃�𝑝 (𝑛) | of the loop in

Step [6] should be replaced by ℎ(𝑏, 𝑚, 𝛼) > ℎ∗.

Algorithm SQSTS

[0] Initialization: Set 𝛽 = 0.30, 𝑏∗ = 64, 𝑝 ∈ (0, 1) and 𝛼 ∈ (0, 1). If the user specifies an

upper bound on the CI’s relative precision, set 𝑟∗ to the value of the bound. Let 𝑤(𝑡),

𝑡 ∈ [0, 1] be the weight function, and define the significance level for the hypothesis

tests as 𝛽𝜓(ℓ), where 𝜓(ℓ) ≡ exp
[
− [(ℓ − 1)\

]
, ℓ = 1, 2, . . ., with [ = 0.2 and

\ = 2.3.

[1] Generate 𝑏 = 64 batches of size 𝑚0 = 512 for 𝑝 ∈ [0.05, 0.95] or 4096 for 𝑝 ∈

[0.005, 0.05) ∪ (0.95, 0.995]. Let ℓ = 1.

[2] Until von Neumann’s test fails to reject randomness
(
|𝑈𝑏 | ≤ 𝑧1−𝛽𝜓(ℓ)/2

)
:

• Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏};

• Assess the randomness of {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} using von Neumann’s

two-sided randomness test based on the statistic 𝑈𝑏 in Equation (4.1) and the

significance level 𝛽𝜓(ℓ);

• Set ℓ ← ℓ + 1, generate 𝑏
( [[
𝑚
√

2
]]
− 𝑚

)
additional observations, and set 𝑚 ←[[

𝑚
√

2
]]

.

End

[3] Reset ℓ ← 1.

Until the Shapiro–Wilk test fails to reject normality
(
𝑊𝑏 > 𝑤∗1−𝛽𝜓(ℓ),𝑏

)
:
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• Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏};

• Assess the univariate normality of {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} using the

Shapiro–Wilk test based on the statistic 𝑊𝑏 in Equations (4.2)–(4.3) and the

significance level 𝛽𝜓(ℓ);

• Set ℓ ← ℓ + 1, generate 𝑏
( [[
𝑚
√

2
]]
− 𝑚

)
additional observations, and set 𝑚 ←[[

𝑚
√

2
]]

.

End

[4] Remove the first batch and append a new batch of size 𝑚.

[5] Rebatch the data with 𝑏 ← 𝑏/4 = 16 and batches of size 𝑚 ← 4𝑚. If the user has

not specified an upper bound on the CI’s relative precision, go to Step [7].

[6] Until the relative CI HL ℎ(𝑏, 𝑚, 𝛼) = 𝑡1−𝛼/2,2𝑏−1
[
Ṽ𝑝 (𝑤; 𝑏, 𝑚)/𝑛

]1/2 satisfies

ℎ(𝑏, 𝑚, 𝛼) ≤ 𝑟∗ | �̃�𝑝 (𝑛) |:

• Compute the CI midpoint �̃�𝑝 (𝑛) and the HL ℎ(𝑏, 𝑚, 𝛼) using the combined

variance-parameter estimator

Ṽ𝑝 (𝑤; 𝑏, 𝑚) ≡
𝑏A𝑝 (𝑤; 𝑏, 𝑚) + (𝑏 − 1)Ñ𝑝 (𝑏, 𝑚)

2𝑏 − 1

in Equation (2.58), where

A𝑝 (𝑤; 𝑏, 𝑚) = 𝑏−1
𝑏∑︁
𝑗=1

𝐴2
𝑝 (𝑤; 𝑗 , 𝑚) and

Ñ𝑝 (𝑏, 𝑚) = 𝑚(𝑏 − 1)−1
𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̃�𝑝 (𝑛)

]2;

• Estimate the number of batches of the current size required to satisfy the preci-
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sion requirement,

𝑏′ =

⌈
𝑏

{
ℎ(𝑏, 𝑚, 𝛼)
𝑟∗ �̃�𝑝 (𝑛)

}2⌉
;

• Update the batch count 𝑏, the batch size𝑚, and the total sample size 𝑛 as follows:

𝑏 ← min{𝑏′, 𝑏∗},

𝑚 ←


𝑚 if 𝑏 = 𝑏′,

⌈𝑚 ×mid{1.05, (𝑏′/𝑏), 1.3}⌉ if 𝑏 < 𝑏′,

𝑛 ← 𝑏𝑚,

where the function mid(·) computes the median of its arguments;

• Generate the necessary additional data.

End

[7] Deliver the 100(1 − 𝛼)% CI: �̃�𝑝 (𝑛) ± 𝑡1−𝛼/2,2𝑏−1
[
Ṽ𝑝 (𝑤; 𝑏, 𝑚)/𝑛

]1/2.
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No 

Yes 

 
Start 

Start with 𝑏 = 64 batches of size 𝑚 =

512 (for 0.05 ≤ 𝑝 ≤ 0.95) or 𝑚 =

4096 (for 𝑝 > 0.95 or 𝑝 < 0.05). 
Compute the signed areas based on 
the weight 𝑤 (∙) 

Randomness 
test passed? 

Update significance level 𝛽 ← 𝛽𝜓(ℓ), 

set ℓ ←  ℓ + 1, and batch size 𝑚 ← √2𝑚  

Yes 

Normality test 
passed? 

No 

Update significance level 𝛽 ← 𝛽𝜓(ℓ), set 

ℓ ←  ℓ + 1, and batch size 𝑚 ← √2𝑚  

Collect new observations and 
compute signed areas 

Yes 

Rebatch data with 𝑏 ← 𝑏/4 = 16 
batches of size 𝑚 ← 4𝑚 

No CI precision 
requirement 

met? 

Update batch size m, batch 
count b, and sample size 𝑛. 
Collect new observations 

Deliver CI and 
stop 

Collect new observations and compute 
the signed areas 

Conduct randomness and 
normality tests, each at level of 
significance 𝛽. Set ℓ = 1 

Compute the combined variance 
estimator and CI 

Remove the first batch and append a 
new batch of size 𝑚 

Set ℓ = 1 

Figure 4.1: High-Level Flowchart of SQSTS.
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4.2 Experimental Results

This section contains an extensive empirical study designed to assess the performance of

SQSTS using a test bed of seven challenging processes from Alexopoulos et al. [7] and

Alexopoulos et al. [23]. Specifically, the test bed is related to two time-series models, three

single-server queueing systems, and two small queueing networks, described in Sections

2.5.1–2.5.7 of this thesis. For each test problem, the analysis considered two levels of

95% (𝛼 = 0.05) CI relative precision: (i) no CI precision requirement (denoted for brevity

by “𝑟∗ = ∞”), and (ii) a model-dependent values of 𝑟∗ that was usually selected at least

10% lower than the smallest estimated CI relative precision observed in Sequest under no

precision requirement. We chose the value of 𝑟∗ to evaluate the effectiveness of Step [6]

of SQSTS, especially when relatively little additional sampling is required compared to

the case of no CI precision requirement; this is the case where sequential methods tend

to exhibit substantial loss of CI coverage probability. All experiments were coded in Java

using common random numbers generated by the RngStreams package of L’Ecuyer et al.

[67]. Since the experimentation in Sections 2.8 and 2.10, and the analytical calculations

in Chapter 3 failed to provide firm evidence for the dominance of the STS area estimators

for 𝜎2
𝑝 based on alternative weight functions, including 𝑤2(𝑡) =

√
840(3𝑡2 − 3𝑡 + 1/2)

(Goldsman et al. [33]), and {𝑤cos,ℓ (𝑡) =
√

8𝜋ℓ cos(2𝜋ℓ𝑡): ℓ = 1, 2} (Foley and Goldsman

[54]), over A𝑝 (𝑤0; 𝑏, 𝑚) with respect to small-sample bias and MSE, we used the constant

weight function 𝑤0(·) =
√

12, 0 ≤ 𝑡 ≤ 1 in our experimentation.

Each table contains experimental results for SQSTS, Sequest (in bold typeface), and

Sequem (in italic typeface). All estimates are averages computed from 1,000 independent

trials; the entries for Sequest were taken from Alexopoulos et al. [7], whereas most entries

for Sequem were taken from Alexopoulos et al. [23] and are limited to the extreme values

𝑝 ≥ 0.95. Specifically, column 1 of Tables 4.1–4.7 lists selected values of 𝑝 from the

tables in Alexopoulos et al. [23, 7], and columns 2 and 3 list the (nearly) exact value of
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the associated quantile 𝑦𝑝 and the average value of the absolute bias of the associated point

estimator, respectively. Columns 4–6 contain the average value of the HL of the 95% CI,

the average value of the CI’s relative precision expressed as a percentage, and the estimated

coverage probability of the CI as a percentage, respectively. The standard errors of the

latter estimates are approximately
√︁
(0.95 × 0.05)/1000 = 0.007. Finally columns 7 and

8 of Tables 4.1–4.7 display the average final batch size (𝑚) and average final sample size

(𝑛), respectively. The experimental results for Sequem do not include the average batch

sizes because the method of maximum transformation (Heidelberger and Lewis [30]) forms

two-dimensional blocks of batches, as outlined in the next paragraph.

Further, below each table we provide a set of graphs based on the respective table for

both levels of 95% (𝛼 = 0.05) CI relative precision for the list of selected values of 𝑝

depicting the three most important metrics for SQSTS’ performance evaluation: (i) the

average sample sizes; (ii) the average 95% CI relative precision, defined as the ratio of

the CI HL over | �̃�𝑝 (𝑛) |; and (iii) the estimated 95% CI coverage probability. Essentially,

Figures 4.2–4.9 illustrate SQSTS’ performance (against its competitors) on these fronts in a

more intelligible way by plotting the estimates of the 95% CI relative precision and coverage

probability, and the average sample sizes in columns 5, 6, and 8, respectively, of Tables

4.1–4.7.

We close this preamble with a few comments regarding the simpler structure of SQSTS

compared to its Sequest and Sequem competitors, as well as the potential effects of the

initial batch sizes used in SQSTS. Recall that SQSTS starts with 𝑏 = 64 batches of size

𝑚 = 512 when 𝑝 ∈ [0.05, 0.95] or 𝑚 = 4096 when 𝑝 ∈ [0.005, 0.05) ∪ (0.95, 0.995];

hence its initial sample size is equal to 215 for nonextreme quantiles and 218 for extreme

quantiles. On the other hand, Sequest was designed for 𝑝 ∈ [0.05, 0.95] and is initialized

with 64 batches of size 128; hence it starts with the substantially smaller sample size of

213. While in many cases Sequest performs well with regard to estimated CI coverage

probability, the relatively small initial batch size can cause the method to perform poorly
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for extreme quantiles in the absence of a CI precision requirement, as illustrated by the

respective table entries. On the other hand, Sequem was designed for extreme quantiles

and starts with 64 adjacent blocks of data, each consisting of 𝑐 = ⌊ln(0.9)/ln(𝑝)⌋ rows of

adjacent batches of size 𝑚0 = 256 (cf. Fig. 1 Alexopoulos et al. [23]). For example 𝑝 = 0.99

yields 𝑐 = 10 and an initial sample size of 26 × (10 × 28) = 10 × 214, which is 1.6 times

smaller than the initial sample size of SQSTS for this value of 𝑝. Under no CI precision

requirement, the smaller initial sample size of Sequest may result in noticeably smaller final

sample sizes when the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} pass von Neumann’s randomness

test early on and the absolute value of the estimated skewness of the BQEs drops below

a threshold for relatively small batch sizes; we anticipate that this potential advantage of

Sequest will vanish due to the potential effectiveness of von Neumann’s and Shapiro–Wilk

tests applied to the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}. In the presence of tight CI

precision requirements, SQSTS may receive an additional boost with regard to the average

sample-size requirement due to (i) the lack of adjustments to the CI for 𝑦𝑝 for compensation

against residual skewness and autocorrelation in the BQEs {�̂�𝑝 ( 𝑗 , 𝑚)}; and (ii) the smaller

limiting (as 𝑚 →∞) standard deviation of the combined variance estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚).

4.2.1 First-Order Autoregressive Processes

The first test process is the Gaussian AR(1) process defined in Section 2.5.1 with `𝑌 = 100,

𝜙 = 0.995, 𝜎𝜖 = 1, and 𝑌0 = 0. Since the steady-state marginal standard deviation is

𝜎𝑌 = 𝜎𝜖/(1 − 𝜙2)1/2 = 10.01, the process was initialized nearly 10 standard deviations

below its steady-state mean. On top of the pronounced initialization bias, this process

exhibits strong stochastic dependence with a lag-ℓ conditional correlation given𝑌0 given by

Corr[𝑌𝑘 , 𝑌𝑘+ℓ |𝑌0] = 𝜙ℓ
[

1 − 𝜙2𝑘

1 − 𝜙2(𝑘+ℓ)

]1/2
, for ℓ ≥ 1 and 𝑘 ≥ 1
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(Fishman [86], Equation (6)), so that in our case Corr[𝑌10, 𝑌11 |𝑌0] ≈ 0.95 and the

Corr[𝑌𝑘 , 𝑌𝑘+1] converges monotonically to 𝜙 = 0.995 as 𝑘 → ∞. Hence, this case study is

a good test for evaluating the ability of SQSTS to overcome the effects of initialization bias

and pronounced serial correlation between successive observations of the base process.

The experimental results are displayed in Table 4.1 and in Figure 4.2. The selected

quantiles were computed by inverting the normal steady-state c.d.f. An examination of

column 3 reveals that the point estimates of 𝑦𝑝 delivered by SQSTS exhibit little average

absolute bias (typically under 1% relative to the true value of 𝑦𝑝). Under no CI precision

requirements and for 𝑝 ≤ 0.95, SQSTS was outperformed by Sequest with regard to the

average sample size required to compute 95% CIs for 𝑦𝑝 with near-nominal estimated

coverage probability. As we elaborated earlier, this dominance is due to the significantly

larger (by a factor of 4) initial sample size used by SQSTS. As it becomes clear from

Figure 4.2, this victory for Sequest vanishes for extreme quantiles (𝑝 > 0.95) because of

the noticeable undercoverage of the CIs it delivered (e.g., 90.2% for 𝑝 = 0.995). Under the

tight CI relative precision requirement of 𝑟∗ = 0.5%, SQSTS clearly outperformed Sequest

for 𝑝 ≤ 0.95 and both Sequest and Sequem for 𝑝 > 0.95 with regard to the reported average

sample sizes required to obtain 95% CIs for 𝑦𝑝 with near-nominal coverage probability.

This reduction in average sample size is primarily due to the additional d.f. of the combined

variance estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚) used in Step [6] of SQSTS. It should be noted that SQSTS

requires little additional sampling effort in the transition from the no-precision case to

𝑟∗ = 0.5%. Overall, we judge the performance of SQSTS in this problem as satisfactory.

4.2.2 Autoregressive-to-Pareto Process

The second test process is a version of the ARTOP process described in Section 2.5.2.

We considered the case with 𝛾 = 1, \ = 2.1, and 𝜙 = 0.995. These assignments yield

`𝑌 = 1.9091, 𝜎2
𝑌
= 17.3554, marginal skewness E{[(𝑌𝑘 − `𝑌 )/𝜎𝑌 ]3} = +∞, and marginal

kurtosis E{[(𝑌𝑘 − `𝑌 )/𝜎𝑌 ]4} = ∞. We also initialized the original AR(1) process with the
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value 𝑍0 = 3.4; this assignment yields the initial observation 𝑌0 = 𝐹−1 [Φ(𝑍0)] = 43.5689

for the ARTOP process which is approximately 10 standard deviations above its steady-

state mean. On top of the initialization problem and the strong stochastic dependence, this

process has a marginal distribution with a fat tail (Mandelbrot [87]), which is reflected by

the infinite marginal skewness and kurtosis.

Table 4.2 and Figure 4.3 summarize the experimental results for this process for the CI

relative precision levels of 𝑟∗ = ∞ and 𝑟∗ = 2.5%. The selected quantiles 𝑦𝑝 were computed

by inverting the c.d.f. in Equation (2.69). Despite the relatively small range for the values 𝑦𝑝

(from 1.185 to 12.466), the large average sample sizes reflect the aforementioned challenges

with regard to the initialization of the process far away from the steady-state mean `𝑌 , the

strong autocorrelation between {𝑌𝑘 : 𝑖 ≥ 1} caused by the large autoregressive coefficient

𝜙 = 0.995 of the initial AR(1) process, and the infinite marginal skewness and kurtosis.

In spite of these challenges, as it can be clearly seen in Figure 4.3, SQSTS substantially

outperformed its competitors by delivering CIs for 𝑦𝑝 with estimated coverage probabilities

near the nominal value 0.95 based on substantially smaller average sample sizes, especially

in the absence of a CI precision requirement. For instance, for 𝑟∗ = ∞ and 𝑝 = 0.99, SQSTS

required an average sample size that is smaller by a factor of 18,133,822/2,578,084 ≈ 7.03

than the average sample size required by Sequest and smaller by a factor of about 3.84 than

the average sample size required by Sequem. It should also be noted that for 𝑟∗ = 2.5%

and 𝑝 = 0.99, SQSTS reported an approximately 50% smaller sample size on average than

Sequem despite starting with a larger sample size by a a factor of 24/10 = 1.6 than its

competitor.

4.2.3 M/M/1 Waiting-Time Process

The third test process is the waiting-time sequence in an M/M/1 queueing system described

in Section 2.5.3 with arrival rate _ = 0.9, service rate𝜔 = 1 (traffic intensity 𝜌 = _/𝜔 = 0.9)

and FIFO service discipline. 𝑌𝑘 is the time spent by the 𝑘th entity in queue (prior to service).
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The respective expected value is `𝑋 = 𝜌/(𝜔 − _) = 9.

To assess the ability of the heuristic approach in Step [4] that removes the first batch

after completion of the loops in Steps [2]–[3], we initialized the system with one entity

in service and 112 entities in queue. The steady-state probability of this initial state is

(1 − 𝜌)𝜌113 ≈ 6.752 × 10−7, implying a high probability for a prolonged transient phase.

For this process Sequest and Sequem outperformed their earlier competitors, such as the

two-phase QI procedure of Chen and Kelton [25], with regard to sampling efficiency, but

required substantial average sample sizes to deliver reliable CIs for quantiles with 𝑝 ≥ 0.9

(even in the absence of a CI precision requirement).

Table 4.3 and Figure 4.4 contain the experimental results for two levels of CI relative

precision, 𝑟∗ = ∞ and 𝑟∗ = 2%. A close examination of Figure 4.4 reveals that, in

this test problem, SQSTS substantially outmatched its competitors, in particular under

no CI precision requirement: while all methods delivered CIs with estimated coverage

probabilities near the nominal value of 0.95, with the exception of Sequest for 𝑝 > 0.95,

SQSTS required substantially smaller sample sizes. For example, from Table 4.3 for 𝑟∗ = ∞

and 𝑝 = 0.95, we see that Sequest required 9,809,640/378,815 ≈ 25.9 more samples on

average than SQSTS. The sample size reduction is less pronounced for 𝑝 ≤ 0.7, but

remains significant. As we mentioned earlier, a partial explanation for the dominance of

SQSTS in this experimental setting pertains to the effectiveness of the von Neumann and

Shapiro–Wilk tests applied to the signed areas. Under the stringent 𝑟∗ = 2% CI relative

precision requirement, the ratio of the average sample sizes reflects the smaller asymptotic

variance of the combined variance estimator Ṽ𝑝 (𝑤0; 𝑏, 𝑚).

4.2.4 M/H2/1 Waiting-Time Process

The fourth test process is the sequence {𝑌𝑘 : 𝑘 ≥ 1} of entity waiting times in an M/H2/1

queueing system described in Section 2.5.4 with FIFO queue discipline, an empty-and-idle

initial state, arrival rate _ = 1; and i.i.d. service times from the hyperexponential distribution
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that is a mixture of two other exponential distributions with mixing probabilities 𝑔 =

(5+
√

15)/10 ≈ 0.887 and 1− 𝑔 and associated service rates 𝜔1 = 2𝑔𝜏 and 𝜔2 = 2(1− 𝑔)𝜏,

with 𝜏 = 1.25. The mean service time is 0.8 and the steady-state server utilization is

𝜌 = 0.8.

Table 4.4 and Figure 5.7 display the experimental findings for two cases of CI relative

precision, 𝑟∗ = ∞ and 𝑟∗ = 2%. Figure 5.7 clearly indicates that under no precision

requirement, SQSTS outshined its competitors with substantially smaller sample sizes

required to obtain CIs with near-nominal estimated coverage probability. For instance, in

Table 4.4 with 𝑝 = 0.95, SQSTS reported an average sample size of 314,152, which is

5,352,998/314,152 = 17.04 times lower than the average sample size reported by Sequest

and 5.41 times smaller than the average sample size required by Sequem. (As in the M/M/1

system, Sequest exhibited substantial CI undercoverage for 𝑝 = 0.99 and 0.995 despite the

very large average sample sizes.) This dominance of SQSTS with regard to average sample

size is less noticeable under the 𝑟∗ = 2% CI relative precision requirement. For example,

when 𝑝 = 0.995, SQSTS reported an average sample size of 17,775,197, which is nearly

half the average sample size reported by Sequest and approximately 2.21 time smaller than

the average sample size reported by Sequem (despite the lower initial sample sizes employed

by the latter two methods).

4.2.5 M/M/1/LIFO Waiting-Time Process

The fifth test process is the sequence of entity delays {𝑌𝑘 : 𝑘 ≥ 1} in a single-server

queueing system described in Section 2.5.5 with non-preemptive LIFO service discipline,

empty-and-idle initial state, arrival rate _ = 1, and service rate 𝜔 = 1.25. The steady-state

server utilization is 𝜌 = 0.8 and the marginal mean waiting time is `𝑌 = 3.2. This test

process has caused trouble in the past to sequential methods for estimating the steady-state

mean (Tafazzoli et al. [65], Alexopoulos et al. [40]).

Accurate approximations for 𝑦𝑝 were obtained by computing the Laplace transform
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L {𝐹; 𝑠} of the marginal c.d.f., numerical inversion of L {𝐹; 𝑠} using Euler’s algorithm

in Abate and Whitt [64] to obtain a piecewise-linear approximation of 𝐹 (·), and direct

inversion of the latter approximation; see Section 4.3 of Alexopoulos et al. [7] for details.

Table 4.5 and Figure 4.6 display the experimental outcomes for two levels of CI relative

precision requirements, 𝑟∗ = ∞ and 𝑟∗ = 2%. For this test process all three methods

delivered 95% CIs with estimated coverage probabilities near the nominal value. Table 4.5

showcases that under no CI precision requirement, SQSTS outperformed its competitors

with regard to average sample size, with the exception of 𝑝 ∈ {0.3, 0.5}; in these cases the

large initial batch size of SQSTS seems to be detrimental. It should be noted that such sample

sizes are typically low for estimating quantiles of dependent processes. An examination

of Figure 4.6 illustrates that under the tight 2% CI relative precision requirement, SQSTS

dominated its competitors with noticeably smaller average sample sizes.

4.2.6 M/M/1/M/1 Waiting-Time Process

The sixth test process is constructed from the sequence {𝑌𝑘 : 𝑘 ≥ 1} of the total waiting

times (prior to service) in a tandem network of two M/M/1 queues; see Section 2.5.6 for

details. The system has an arrival rate of _ = 1, service rates 𝜔 = 1.25 at each station,

and is initialized in the empty and idle state. The steady-state utilization for each server is

𝜌 = _/𝜔 = 0.8 and the mean total delay on the system is equal to 8.

Table 4.6 and Figure 4.7 display the experimental results for two levels of CI relative

precision, 𝑟∗ = ∞ and 𝑟∗ = 2%. As noted in Section 4.3 of Alexopoulos et al. [23], under no

CI precision requirement Sequest exhibited substantial slippage with regard to the estimated

CI coverage probability for 𝑝 > 0.95: despite the larger average sample sizes than Sequem,

the estimated CI coverage probability dropped from 94.7% for 𝑝 = 0.95 to 87% for 𝑝 = 0.99

and to the unacceptable rate of 81.1% for 𝑝 = 0.995.

An examination of Table 4.6 and Figure 4.7 reveals that SQSTS clearly outperformed

its competitors with near-nominal estimated CI coverage rates and lower average sample
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sizes. The slightly low estimates of the CI coverage probabilities for 𝑝 = 0.995 are within

three standard errors off the nominal value.

4.2.7 Central Server Model 3

The last test process is described in Section 2.5.7 and is generated by a small computer

network comprised of three stations, namely the Central Server Model 3 from Law and

Carson [66].

Table 4.7 and Figures 4.8–4.9 display experimental results for two levels of CI precision,

no precision and 𝑟∗ = 2%. The estimates reveal a variety of interesting findings:

(i) The accuracy of the point estimates delivered by SQSTS was on par with its competi-

tors.

(ii) Under no CI precision requirement and for 𝑝 ≤ 0.87, we see from Table 4.7 that

SQSTS required noticeably larger average sample sizes than Sequest; this is due to

its larger initial batch size of 512 (versus 128). However, such sample sizes are not

exorbitant for steady-state quantile estimation.

(iii) Under no CI precision requirement and for 𝑝 = 0.5, Table 4.7 indicates that SQSTS

exhibited a noticeable CI undercoverage rate with an estimate of 93%; we postulate

that this is due to the skewness and kurtosis of the marginal density 𝑓 (·). Section

EC.3 of the e-companion of Alexopoulos et al. [7] contains a heuristic argument

that attempts to explain the dependence of the marginal skewness of the BQEs

{�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} on 𝑝, 𝑓 (𝑦𝑝), 𝑓 ′(𝑦𝑝), and on the structure of the stochastic

dependence of the base process {𝑌𝑘 : 𝑘 ≥ 1}. The close proximity of the estimated

CI coverage probability (94.1%) of Sequest to the nominal value is likely due the

adjustments employed by Sequest to the CI for 𝑦𝑝 to compensate for excess skewness

and kurtosis in the BQEs.
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(iv) Under no CI precision requirement, the average sample sizes reported by SQSTS

and Sequest exhibited an incline as 𝑝 increased from 0.87 to 0.91 and a decline as

𝑝 increased from 0.91 to 0.95; this variation was more prominent for Sequest. We

believe that the heuristic discussion in item (iii) above provides a partial explanation

for this sample-size variability, in particular with regard to Sequest.

(v) Under no CI precision requirement and for 𝑝 ∈ {0.99, 0.995}, we see from Figure

4.8 that SQSTS reported average sample sizes which are larger by nearly an order of

magnitude from the respective averages reported by Sequest.

(vi) Under the tight relative precision requirement of 𝑟∗ = 2%, SQSTS outper-

formed its competitors with respect to average sample size. In a few cases

(𝑝 ∈ {0.5, 0.93, 0.99}), Figure 4.9 indicates that the CIs delivered by SQSTS ex-

hibit slight undercoverage; this issue is a subject of ongoing investigation.

Overall, we judge the performance of SQSTS in this challenging test case as adequate.

4.3 Summary

In this chapter, we described SQSTS, the first fully automated sequential procedure for

computing point estimators and CIs for steady-state quantiles of a stochastic process based

on STSs. SQSTS estimates the variance parameter for the quantile process {�̃�𝑝 (𝑛) : 𝑛 ≥ 1}

by a linear combination of estimators computed from nonoverlapping batches: the first

estimator is computed from the associated BQEs while the second estimator is obtained

from STSs based on the batches. The core of SQSTS keeps the batch count constant and

progressively increases the batch size until both the von Neumann and Shapiro–Wilk tests

fail to reject the hypothesis that the signed areas associated with the batched STSs are i.i.d.

normal r.v.’s. As detailed in Chapter 2 of this dissertation, the asymptotic i.i.d. normality

of the signed areas, as the batch size 𝑚 → ∞, was established mainly under the GMC

condition of Wu [8] and regularity conditions for the marginal density function.
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Extensive experimentation with the test bed of output processes from Alexopoulos et al.

[23, 7] highlighted the potential benefits of SQSTS over Sequest and Sequem: (i) under no

CI precision requirement, SQSTS was frequently able to curtail excessive average sample

sizes, often by an order of magnitude, despite its larger initial batch size—we believe that

this dominance was partially due to the effectiveness of the von Neumann and Shapiro–Wilk

tests for the signed areas; and (ii) under tight CI relative precision requirements, the lack of

CI adjustments and lower standard deviation of the combined variance estimator allowed

SQSTS to outperform its competitors with regard to average sample size in most cases.

Moreover, SQSTS performed comparatively well against Sequest and Sequem with regard

to average absolute bias of the point estimator and estimated CI coverage probability.
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Table 4.1: Performance evaluation of SQSTS against Sequest (in bold typeface) and Sequem
(in italic typeface) with regard to point and 95% CIs of 𝑦𝑝 for the AR(1) process in Section
4.2.1 based on 1,000 independent replications.

Avg. 95% Avg. 95% CI Avg. 95%
𝑝 𝑦𝑝 Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑛

No CI prec. req.
0.3 94.749 0.459 1.126 1.188 94.0 9,722 157,977

0.580 1.497 1.579 94.7 3,016 98,551
0.5 100.000 0.519 1.261 1.261 93.7 7,320 118,956

0.561 1.458 1.457 94.9 2,997 97,752
0.7 105.251 0.509 1.252 1.190 93.7 7,700 125,118

0.559 1.499 1.424 95.6 3,046 99,245
0.9 112.832 0.471 1.156 1.024 94.2 12,245 198,985

0.649 1.716 1.521 95.6 3,138 102,220
0.95 116.469 0.472 1.177 1.010 94.7 15,217 247,276

0.737 1.901 1.633 95.3 3,271 106,485
0.614 1.594 1.369 93.4 207,766

0.99 123.293 0.286 0.715 0.580 94.5 87,749 1,425,914
1.056 2.457 1.995 91.0 3,661 119,018
0.385 0.975 0.791 95.2 1,789,741

0.995 125.791 0.305 0.765 0.608 94.5 111,485 1,811,627
1.276 2.780 2.213 90.2 4,121 133,743
0.308 0.772 0.614 94.1 4,324,081

CI prec. req. 𝑟∗ = 0.5%
0.3 94.749 0.182 0.450 0.475 95.3 13,464 839,705

0.163 0.428 0.452 96.4 34,929 1,119,707
0.5 100.000 0.198 0.477 0.477 94.1 11,109 698,901

0.183 0.452 0.452 94.3 29,508 946,075
0.7 105.251 0.209 0.500 0.475 94.1 10,825 670,115

0.191 0.475 0.451 95.4 28,177 903,434
0.9 112.832 0.223 0.529 0.469 95.5 14,220 818,735

0.199 0.510 0.452 95.8 32,720 1,048,849
0.95 116.469 0.226 0.545 0.468 94.8 17,344 1,001,216

0.196 0.523 0.450 96.3 40,111 1,285,409
0.212 0.530 0.455 94.7 1,421,778

0.99 123.293 0.238 0.567 0.460 94.4 87,757 2,013,577
0.216 0.556 0.451 95.0 74,491 2,385,618
0.229 0.545 0.442 93.6 3,734,704

0.995 125.791 0.238 0.579 0.461 93.6 111,543 2,781,998
0.224 0.564 0.448 95.6 106,578 3,412,348
0.225 0.540 0.430 93.7 6,178,909
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Figure 4.2: Plots of the estimates for sample sizes, CI relative precision, and coverage
probability for the AR(1) process from Table 4.1.
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Table 4.2: Performance evaluation of SQSTS against Sequest (in bold typeface) and Sequem
(in italic typeface) with regard to point and 95% CIs of 𝑦𝑝 for the ARTOP process in Section
4.2.2 based on 1,000 independent replications.

Avg. 95% Avg. 95% CI Avg. 95%
𝑝 𝑦𝑝 Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑛

No CI prec. req.
0.300 1.185 0.009 0.024 2.038 95.0 20,848 338,776

0.004 0.013 1.116 97.1 41,866 1,341,069
0.500 1.391 0.017 0.045 3.244 94.8 19,429 315,726

0.009 0.025 1.832 96.9 36,858 1,180,865
0.700 1.774 0.032 0.083 4.654 94.7 21,161 343,862

0.016 0.044 2.482 97.6 43,999 1,409,450
0.900 2.994 0.079 0.211 7.021 95.8 29,202 474,533

0.032 0.087 2.903 95.8 96,589 3,092,677
0.950 4.164 0.135 0.368 8.811 96.1 33,958 551,823

0.046 0.125 3.001 96.3 159,321 5,100,396
0.085 0.247 5.943 96.7 1,903,394

0.990 8.962 0.245 0.662 7.382 94.8 158,651 2,578,084
0.100 0.268 2.991 96.0 566,595 18,133,822
0.177 0.471 5.253 95.7 9,894,374

0.995 12.466 0.412 1.107 8.886 94.5 188,485 3,062,888
0.136 0.376 3.017 95.1 917,832 29,373,651
0.243 0.636 5.101 96.2 19,341,046

CI prec. req. 𝑟∗ = 2.5%
0.300 1.185 0.008 0.020 1.721 95.1 20,861 408,985

0.004 0.013 1.113 97.1 41,884 1,341,637
0.500 1.391 0.010 0.026 1.855 95.7 20,066 767,613

0.009 0.024 1.734 96.6 37,862 1,212,989
0.700 1.774 0.013 0.033 1.878 96.0 27,645 1,579,259

0.013 0.037 2.080 96.9 51,603 1,652,781
0.900 2.994 0.024 0.057 1.902 94.2 72,412 4,589,273

0.025 0.065 2.157 95.2 137,164 4,391,066
0.950 4.164 0.033 0.079 1.904 95.9 127,335 8,126,953

0.036 0.091 2.175 95.2 237,505 7,602,293
0.038 0.094 2.257 94.0 7,838,045

0.990 8.962 0.085 0.212 2.366 95.2 300,817 18,832,429
0.076 0.195 2.180 95.4 833,521 26,675,482
0.085 0.200 2.234 94.1 36,308,107

0.995 12.466 0.120 0.295 2.365 94.3 507,755 32,340,386
0.107 0.273 1.193 95.4 1,387,032 44,388,041
0.117 0.278 2.229 94.0 67,186,848
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Figure 4.3: Plots of the estimates for sample sizes, CI relative precision, and coverage
probability for the ARTOP process from Table 4.2.
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Table 4.3: Performance evaluation of SQSTS against Sequest (in bold typeface) and Sequem
(in italic typeface) with regard to point and 95% CIs of 𝑦𝑝 for the M/M/1 waiting-time
process in Section 4.2.3 based on 1,000 independent replications.

Avg. 95% Avg. 95% CI Avg. 95%
𝑝 𝑦𝑝 Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑛

No CI prec. req.
0.300 2.513 0.055 0.150 5.974 96.3 37,483 609,093

0.034 0.095 3.801 96.6 56,354 1,806,090
0.500 5.878 0.124 0.348 5.901 96.0 30,694 498,777

0.007 0.185 3.149 96.6 64,229 2,058,446
0.700 10.986 0.291 0.808 7.277 96.0 27,231 442,498

0.111 0.311 2.839 96.0 81,992 2,627,562
0.900 21.972 0.717 1.948 8.827 95.3 22,018 357,785

0.204 0.527 2.400 96.0 183,093 5,864,109
0.950 28.904 1.031 2.634 9.088 93.7 23,312 378,815

0.274 0.654 2.268 95.0 306,385 9,809,640
0.584 1.529 5.314 95.0 2,960,055

0.990 44.998 0.983 2.472 5.498 93.8 152,099 2,471,614
0.777 1.055 2.371 90.0 1,008,926 32,290,677
0.680 1.737 3.866 96.3 15,309,534

0.995 51.930 1.262 3.128 6.027 92.7 176,113 2,861,834
1.322 1.357 2.666 86.0 1,467,551 46,966,504
0.715 1.776 3.424 95.4 30,444,573

CI prec. req. 𝑟∗ = 2%
0.300 2.513 0.020 0.048 1.896 95.1 71,132 4,528,399

0.017 0.045 1.777 95.6 186,504 5,970,862
0.500 5.878 0.047 0.111 1.893 94.6 56,470 3,576,460

0.039 0.105 1.783 95.6 148,044 4,740,512
0.700 10.986 0.087 0.208 1.891 94.6 58,612 3,731,135

0.075 0.194 1.768 95.8 156,768 5,020,393
0.900 21.972 0.169 0.416 1.893 94.6 85,310 5,461,971

0.146 0.377 1.717 95.1 257,961 8,259,880
0.950 28.904 0.226 0.547 1.892 94.1 117,098 7,500,116

0.184 0.483 1.671 95.9 384,836 12,320,089
0.209 0.522 1.808 95.7 11,158,913

0.990 44.998 0.357 0.845 1.879 93.0 290,332 18,479,751
0.266 0.700 1.556 96.1 1,177,202 37,675,497
0.318 0.795 1.767 95.5 37,861,128

0.995 51.930 0.417 0.974 1.877 93.6 441,517 28,290,323
0.312 0.808 1.558 95.8 1,796,989 57,508,525
0.368 0.900 1.734 95.1 64,312,254
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Figure 4.4: Plots of the estimates for sample sizes, CI relative precision, and coverage
probability for the M/M/1 waiting-time process from Table 4.3.
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Table 4.4: Performance evaluation of SQSTS against Sequest (in bold typeface) and Sequem
(in italic typeface) with regard to point and 95% CIs of 𝑦𝑝 for the M/H2/1 waiting-time
process in Section 4.2.4 based on 1,000 independent replications.

Avg. 95% Avg. 95% CI Avg. 95%
𝑝 𝑦𝑝 Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑛

No CI prec. req.
0.300 0.669 0.032 0.094 13.973 96.0 22,650 368,063

0.013 0.036 5.360 95.7 85,629 2,740,816
0.500 3.847 0.150 0.399 10.349 94.6 16,062 261,001

0.072 0.200 5.207 96.8 39,164 1,254,058
0.700 9.606 0.326 0.868 8.998 95.5 14,621 237,598

0.126 0.353 3.678 96.0 46,571 1,491,189
0.900 22.011 0.736 1.895 8.595 95.0 15,422 250,613

0.223 0.607 2.763 96.1 98,903 3,166,001
0.950 29.837 0.972 2.491 8.355 94.0 19,332 314,152

0.312 0.755 2.536 95.0 167,246 5,352,998
0.594 1.708 5.751 96.1 1,698,441

0.990 48.010 0.939 2.371 4.936 94.9 122,859 1,996,451
0.903 1.209 2.551 88.9 575,488 18,416,822
0.755 1.886 3.940 95.0 8,859,686

0.995 55.837 1.149 2.924 5.229 94.5 158,175 2,570,337
1.358 1.487 2.713 86.0 895,356 28,652,597
0.795 2.048 3.675 94.9 17,162,987

CI prec. req. 𝑟∗ = 2%
0.300 0.669 0.005 0.013 1.910 94.7 210,335 13,467,079

0.005 0.012 1.797 94.7 559,132 17,892,922
0.500 3.847 0.030 0.074 1.913 94.5 87,509 5,604,582

0.027 0.069 1.794 94.9 233,039 7,458,036
0.700 9.606 0.074 0.183 1.905 95.2 53,214 3,408,128

0.066 0.172 1.794 94.9 140,522 4,497,635
0.900 22.011 0.170 0.418 1.900 95.2 60,084 3,847,939

0.148 0.386 1.754 95.4 171,509 5,489,375
0.950 29.837 0.233 0.566 1.898 95.8 78,268 5,013,977

0.200 0.511 1.713 95.2 240,091 7,684,059
0.214 0.538 1.805 94.5 7,631,701

0.990 48.010 0.365 0.900 1.875 94.9 188,828 11,784,581
0.272 0.758 1.579 95.9 703,708 22,519,866
0.339 0.848 1.767 94.1 23,491,128

0.995 55.837 0.436 1.049 1.878 94.2 279,123 17,775,197
0.325 0.870 1.559 95.7 1,099,249 35,177,170
0.386 0.972 1.741 93.8 39,279,619
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Figure 4.5: Plots of the estimates for sample sizes, CI relative precision, and coverage
probability for the M/H2/1 waiting-time process from Table 4.4.
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Table 4.5: Performance evaluation of SQSTS against Sequest (in bold typeface) and Sequem
(in italic typeface) with regard to point and 95% CIs of 𝑦𝑝 for the M/M/1/LIFO waiting-time
process in Section 4.2.5 based on 1,000 independent replications.

Avg. 95% Avg. 95% CI Avg. 95%
𝑝 𝑦𝑝 Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑛

No CI prec. req.
0.300 0.113 0.005 0.013 11.504 95.0 3,616 58,757

0.007 0.019 16.587 96.3 1,039 33,630
0.500 0.469 0.009 0.024 5.102 94.5 3,375 54,842

0.013 0.036 7.657 97.1 964 31,227
0.700 1.358 0.022 0.056 4.120 94.7 4,413 71,716

0.023 0.063 4.612 96.0 2,355 75,709
0.900 6.718 0.125 0.324 4.829 95.9 7,523 122,251

0.083 0.234 3.477 95.9 9,040 289,601
0.950 14.405 0.292 0.773 5.366 95.8 9,931 161,386

0.169 0.490 3.403 96.7 15,617 500,097
0.307 0.871 6.056 96.4 208,045

0.990 49.582 0.795 2.015 4.062 95.6 45,073 732,442
0.561 1.575 3.179 96.1 47,679 1,526,164
0.902 2.513 5.067 97.0 1,038,381

0.995 71.844 1.218 3.186 4.430 95.1 56,246 913,998
0.826 2.158 3.004 95.3 80,022 2,561,157
1.166 3.263 4.541 97.2 2,088,031

CI prec. req. 𝑟∗ = 2%
0.300 0.113 0.001 0.002 1.914 94.0 27,493 1,760,476

0.001 0.002 1.803 95.9 73,070 2,338,645
0.500 0.469 0.004 0.009 1.898 95.8 5,209 321,943

0.003 0.008 1.790 95.6 13,108 419,824
0.700 1.358 0.010 0.026 1.883 95.5 5,121 277,689

0.009 0.024 1.796 95.7 10,839 347,201
0.900 6.718 0.051 0.127 1.888 95.2 10,341 624,688

0.046 0.120 1.785 95.3 24,780 793,280
0.950 14.405 0.111 0.274 1.899 95.2 16,222 1,022,400

0.097 0.257 1.782 95.4 41,617 1,332,079
0.104 0.261 1.815 95.4 1,513,981

0.990 49.582 0.386 0.931 1.877 95.1 52,032 2,792,264
0.342 0.883 1.781 96.2 112,097 3,587,515
0.370 0.888 1.792 94.1 5,514,620

0.995 71.844 0.543 1.350 1.880 95.7 70,315 4,070,692
0.488 1.267 1.764 95.9 168,645 5,397,092
0.537 1.287 1.792 94.3 8,827,362
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Figure 4.6: Plots of the estimates for sample sizes, CI relative precision, and coverage
probability for the M/M/1/LIFO waiting-time process from Table 4.5.
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Table 4.6: Performance evaluation of SQSTS against Sequest (in bold typeface), and
Sequem (in italic typeface) with regard to point and 95% CIs of 𝑦𝑝 for the M/M/1/M/1 total
waiting-time process in Section 4.2.6 based on 1,000 independent replications.

Avg. 95% Avg. 95% CI Avg. 95%
𝑝 𝑦𝑝 Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑛

No CI prec. req.
0.300 2.748 0.058 0.152 5.544 95.3 9,214 149,724

0.041 0.111 4.057 96.4 10,571 338,750
0.500 5.079 0.098 0.260 5.113 95.0 8,439 137,135

0.063 0.172 3.391 96.5 11,505 368,704
0.700 8.126 0.152 0.438 5.379 96.1 7,995 129,921

0.088 0.240 2.961 96.4 15,734 504,095
0.900 13.931 0.288 0.754 5.407 94.8 10,271 166,906

0.138 0.347 2.493 95.4 35,988 1,152,326
0.950 17.349 0.351 0.917 5.290 95.4 13,662 222,008

0.183 0.430 2.481 94.7 59,728 1,912,034
0.304 0.833 4.812 95.0 652,442

0.990 24.928 0.319 0.788 3.161 95.4 91,639 1,489,131
0.501 0.703 2.858 87.6 201,486 6,448,335
0.324 0.816 3.280 94.9 3,701,075

0.995 28.096 0.384 0.943 3.355 93.4 118,687 1,928,664
0.771 0.864 3.142 81.1 329,066 10,530,896
0.329 0.834 2.969 94.8 7,224,510

CI prec. req. 𝑟∗ = 2%
0.300 2.748 0.022 0.052 1.896 94.5 15,495 976,761

0.019 0.049 1.793 96.7 38,778 1,241,390
0.500 5.079 0.041 0.096 1.889 94.7 12,430 756,582

0.034 0.091 1.787 95.2 30,275 969,348
0.700 8.126 0.064 0.154 1.890 95.1 12,447 759,540

0.053 0.144 1.771 96.0 31,373 1,004,546
0.900 13.931 0.109 0.263 1.887 93.8 17,007 1,059,133

0.088 0.237 1.703 96.2 50,537 1,617,912
0.950 17.349 0.136 0.328 1.890 94.7 22,851 1,433,861

0.108 0.286 1.649 96.5 76,926 2,462,381
0.123 0.312 1.799 95.1 2,158,319

0.990 24.928 0.191 0.462 1.853 94.0 84,576 3,692,005
0.142 0.374 1.503 96.0 250,911 8,029,952
0.176 0.436 1.747 94.3 7,493,148

0.995 28.096 0.208 0.520 1.853 93.8 124,712 5,640,097
0.155 0.413 1.472 94.8 414,067 13,250,919
0.191 0.482 1.717 94.3 12,731,353

161



Figure 4.7: Plots of the estimates for sample sizes, CI relative precision, and coverage
probability for the M/M/1/M/1 total waiting-time process from Table 4.6.
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Table 4.7: Performance evaluation of SQSTS against Sequest (in bold typeface) and Sequem
(in italic typeface) with regard to point and 95% CIs of 𝑦𝑝 for the Response-Time process
in the Central Server Model 3 in Section 4.2.7 based on 1,000 independent replications.

Avg. 95% Avg. 95% Avg. 95%
𝑝 𝑦𝑝 Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑛

No CI prec. req.
0.300 7.078 0.178 0.435 6.140 93.0 3,972 64,549

0.230 0.572 8.036 94.4 1,244 40,502
0.500 10.771 0.222 0.527 4.891 93.0 3,233 52,532

0.263 0.641 5.931 94.1 1,190 38,760
0.700 15.364 0.188 0.470 3.061 93.7 4,355 70,764

0.260 0.686 4.460 95.1 1,142 37,168
0.800 18.868 0.159 0.399 2.114 93.6 5,592 90,868

0.250 0.720 3.816 97.1 1,048 34,093
0.850 21.631 0.138 0.364 1.683 95.3 5,823 94,626

0.232 0.731 3.382 98.0 948 30,675
0.870 23.236 0.115 0.309 1.329 95.9 7,554 122,751

0.155 0.477 2.052 97.4 2,032 65,372
0.890 25.514 0.095 0.251 0.985 96.1 15,798 256,720

0.091 0.255 0.999 96.9 9,582 306,988
0.900 27.181 0.108 0.300 1.102 96.3 21,398 347,722

0.071 0.193 0.709 96.2 30,581 979,010
0.910 29.648 0.188 0.576 1.940 96.4 22,543 366,316

0.067 0.185 0.624 96.2 99,104 3,171,779
0.930 44.766 2.041 4.594 10.163 92.8 7,032 114,271

0.871 2.046 4.551 93.2 30,613 980,176
0.950 74.481 3.052 7.323 9.838 93.7 4,134 67,176

3.304 8.339 11.105 94.9 1,839 59,421
3.290 8.565 11.523 95.4 76,294

0.990 166.528 1.562 4.041 2.430 94.2 27,104 440,432
4.954 13.090 7.854 96.1 1,478 47,958
2.231 6.398 3.850 97.0 421,463

0.995 196.230 1.781 4.546 2.319 95.5 31,020 504,081
5.748 15.039 7.658 95.9 1,758 56,950
1.762 5.182 2.643 97.0 1,036,913

CI prec. req. 𝑟∗ = 2%
0.300 7.078 0.056 0.136 1.916 94.3 8,741 556,478

0.052 0.128 1.809 95.0 23,744 760,490
0.500 10.771 0.090 0.206 1.913 92.3 4,764 293,162

0.080 0.195 1.805 93.5 12,783 409,717
0.700 15.364 0.120 0.287 1.865 93.9 4,415 153,859

0.108 0.276 1.795 95.0 6,122 196,531
0.800 18.868 0.135 0.331 1.752 93.9 5,594 111,179

0.129 0.334 1.771 96.0 3,681 118,358
0.850 21.631 0.131 0.339 1.564 95.3 5,823 100,013

0.141 0.381 1.762 96.1 2,563 82,370
0.870 23.236 0.115 0.307 1.319 95.9 7,554 123,237

0.141 0.392 1.689 97.3 2,492 80,072
0.890 25.514 0.095 0.251 0.985 96.1 15,798 256,720

0.091 0.254 0.995 96.9 9,590 307,241
0.900 27.181 0.108 0.298 1.095 96.3 21,400 348,987

0.071 0.193 0.709 96.2 30,581 979,010
0.910 29.648 0.166 0.483 1.631 96.3 22,605 443,819

0.067 0.185 0.624 96.2 99,104 3,171,779
0.930 44.766 0.372 0.855 1.915 93.7 44,045 2,820,610

0.321 0.804 1.801 95.2 124,853 3,995,832
0.950 74.481 0.592 1.425 1.916 94.0 24,869 1,592,628

0.535 1.342 1.803 95.1 67,765 2,169,067
0.533 1.355 1.822 96.1 2,530,587

0.990 166.528 1.244 3.069 1.845 93.6 27,104 661,011
1.235 2.988 1.797 94.2 24,203 775,168
1.162 2.979 1.791 96.1 1,284,382

0.995 196.230 1.413 3.568 1.820 94.9 31,023 701,700
1.400 3.527 1.799 96.0 24,247 776,614
1.328 3.430 1.749 95.0 1,594,629
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Figure 4.8: Plots of the estimates for sample sizes for the response-time process in the
Central Server Model 3 from Table 4.7.
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Figure 4.9: Plots of the estimates for CI relative precision and coverage probability for the
response-time process in the Central Server Model 3 from Table 4.7.
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CHAPTER 5

FQUEST: A FIXED-SAMPLE-SIZE METHOD FOR ESTIMATING

STEADY-STATE QUANTILES BASED ON A SINGLE SAMPLE PATH

While sequential estimation methods have their own merit, users are often constrained

by simulation models that are not integrated with the underlying sequential method or by

datasets that are limited due to budget limitations. For example, when the implementation

of the Sequest method (Alexopoulos et al. [7]) in the Sequest app [41] encounters a failed

statistical test or an insufficient sample size to compute a CI with a given precision, it

reports an estimate of the additional observations that should be generated and halts. When

the data are generated by a simulation model, the user may have to restart the model and

rerun Sequest from scratch; and this cycle may need to be repeated multiple times until the

method can terminate successfully.

As noted in Chapter 1, the literature contains a few fixed-sample-size procedures for

estimating the steady-state mean; see Law [4]. The most efficient is the N-Skart procedure

of Tafazzoli et al. [42] which is based on a single run and applies the randomness test of

von Neumann [43] to batch means computed from dynamically reconstructed batches with

intervening “spacers.” If the method determines that additional data are required, it seeks

permission from the user to proceed with the computation of a CI that employs adjustments

for the residual lag-1 autocorrelation and skewness between the batch means. The latter CI

is delivered by default when the sample size is sufficient to pass the randomness test with

an appropriate set of spaced batch means.

To the best of our knowledge, no commercial simulation software contains a fixed-

sample-size procedure for computing CIs for steady-state quantiles. Both Arena [44] and

Simio [45] incorporate a rudimentary procedure for estimating the steady-state mean based

on a single replication with a given length. The procedure uses the method of nonoverlapping

166



batch means (Fishman [2]) and a simple rebatching scheme that ends up with a batch count

between 20 and 39. The respective batch means are subjected to the one-sided randomness

test of von Neumann [43] with type-I error 0.10 (to guard against positive autocorrelation

among the batch means). If the batch means pass the test, the method delivers a CI based

on Student’s 𝑡 ratio; otherwise, it delivers an exorbitant CI HL indicating that the batch

means failed the randomness test. Unfortunately, neither package incorporates a method

for computing CIs for steady-state quantiles based on a sufficiently long run or replicated

sample paths. Simio computes nonparametric CIs from replicate statistics, such as the

average cycle time or average waiting time in a buffer, but, to this day, it does not even

have a function that computes a sample quantile from a tally statistic collected during a

replication.

In this chapter, we present and assess FQUEST, a fully automated fixed-sample-size

procedure for computing CIs for steady-state quantiles based on a single run. To the best

of our knowledge, FQUEST is the first such method that (i) uses the STS methodology; (ii)

addresses the simulation initialization problem; and (iii) warns the user when the dataset is

insufficient and, subject to user’s approval, delivers a heuristic CI. We substantiate our claim

with a synopsis of a few methods from the literature. Methods based on regenerative cycles

(Iglehart [9], Moore [10], Seila [11], Seila [12]) can address the simulation initialization

problem but do not lie within our scope because the number of cycles that can be completed

within a finite limit𝑁 on the sample size may be insufficient so as to ensure good performance

of the point estimators and CIs for the quantile of interest. This challenge escalates for

extreme quantiles Seila [12].

Heidelberger and Lewis [30] presented three procedures for estimating steady-state

quantiles, the first based on the spectral method and the last two based on empirical quantiles

computed from groups of nonoverlapping batches. The estimation of the 𝑝-quantile was

reduced to the estimation of the 𝑝𝑣-quantile of a sequence composed of the maxima of 𝑣

spaced observations, where 𝑣 ≈ ⌊ln(𝑞)/ln(𝑝)⌋ and 𝑞 is a value away from 0 or 1. The
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authors provided no recommendations for the spacing between the observations or the

number of groups. Although their experimentation was based on stationary processes, the

CIs generated by all methods exhibited substantial undercoverage for waiting-time processes

generated by single-server queues with traffic intensity 0.9 and large values of the associated

probability 𝑝.

The indirect method of Bekki et al. [13] also assumes that the initial transient phase

has been eliminated and computes point estimators and CIs for a set of selected quantiles.

This fixed-sample-size method estimates a given quantile by a four-term Cornish-Fisher

expansion (Fisher and Cornish [14]) based on the respective standard normal quantile

and the first four sample moments of the time series. The method has the advantage of

estimating multiple quantiles simultaneously without storing or sorting data. However, a

sample moment computed from strongly correlated data often requires a large sample for

accurate estimation of the associated true moment, and this problem worsens for higher-

order moments. The impact of this problem is evident with use of sample sizes of 30 and

60 million to estimate job cycle times in simple queueing systems with server utilizations

below and above 90%, respectively. In addition, this method may yield unreliable point

estimates of quantiles if the marginal density exhibits highly nonnormal behavior. This

issue was partially rectified in Bekki et al. [15] by combining the Cornish-Fisher expansion

with a Box-Cox transformation. Furthermore, the Cornish-Fisher expansion is known to

produce less reliable approximations as the probability 𝑝 approaches zero or one (extreme

quantile estimation), cf. Bekki et al. [13]. Notably, the latter three methods do not address

the issues in items (ii) and (iii) above.

The user provides a (simulation-generated) dataset of arbitrary size and specifies the

required quantile and nominal coverage probability of the anticipated CI. FQUEST incor-

porates the simulation analysis methods of batching, STS, and sectioning. When the sample

size is sufficiently large, FQUEST delivers (i) the empirical quantile from a truncated dataset

that is nearly free of initialization bias; and (ii) a CI based on an estimator for the variance
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parameter associated with the quantile process computed from the batched STSs, the BQEs,

and the empirical quantile in item (i) above. Otherwise, the method returns a warning

message and, subject to the user’s agreement, computes a point estimate and a heuristic CI

formed by a set of CIs based on the empirical quantile of the truncated sample, the BQEs,

and the batched STSs.

The theoretical foundations of FQUEST are in Chapter 2, with Theorem 2.3.4 forming

the basis for some of the statistical tests in FQUEST. The method draws elements from

three procedures: (i) the SQSTS method introduced in Chapter 4 of this dissertation; (ii)

the Sequest method of Alexopoulos et al. [7]; and (iii) the N-Skart method of Tafazzoli et

al. [42]. However, since the aforementioned methods have different objectives, FQUEST

delineates from all three and has significant differences with regard to its scope, structure,

and the computation of the final CI. These differences will become transparent in Section

5.2. The remainder of this chapter is organized as follows. Section 5.1 presents and

describes an approximate CI from the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} computed from 𝑏

nonoverlapping batches and the full-sample estimator �̃�𝑝 (𝑛) using adjustments for residual

skewness and lag-1 autocorrelation in the BQEs that FQUEST may incorporate in its final

stage. Section 5.2 contains a formal algorithmic statement of FQUEST. Section 5.3 contains

an experimental performance evaluation of FQUEST using a test bed of seven challenging

processes (two of them with two sets of parameters, for a total of nine experiments) as

well as an informal comparison of FQUEST against the SQSTS procedure. Section 5.4

concludes with a short summary of the contributions and performance of FQUEST.

5.1 An Approximate Correlation- and Skewness-Adjusted Confidence Interval

FQUEST employs statistical tests to assess the asymptotic properties related to Equations

(2.9) and (2.17). When any of the statistical tests fails and the size of the dataset limits

the ability to increase the batch size (subject to approval by the user), FQUEST may also

construct an approximate CI from the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} and the full-sample
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estimator �̃�𝑝 (𝑛∗) based on a truncated sample of size 𝑛∗ using adjustments for residual

skewness and lag-1 autocorrelation in the BQEs. The steps below are based on Willink

[88], Tafazzoli et al. [42], and Alexopoulos et al. [7].

First, we calculate the sample skewness of the BQEs

𝐵�̂�𝑝 (𝑏, 𝑚) ≡
𝑏

(𝑏 − 1) (𝑏 − 2)

𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̂�𝑝 (𝑏, 𝑚)

𝑆𝑝 (𝑏, 𝑚)

]3
,

where 𝑆2
𝑝 (𝑏, 𝑚) is the sample variance of the BQEs in Equation (2.52).Then we compute

the skewness-adjustment parameter

𝜗 ≡
𝐵�̂�𝑝 (𝑏, 𝑚)

6
√
𝑏

and define the skewness-adjustment function

𝐺 (Z) ≡


Z if |𝜗 | ≤ 0.001,

[1+6𝜗(Z−𝜗)]1/3−1
2𝜗 if |𝜗 | > 0.001,

for all real Z . The sample lag-1 autocorrelation of the BQEs is estimated by

𝜙 �̂�𝑝 (𝑏, 𝑚) ≡
1

𝑏 − 1

𝑏−1∑︁
𝑗=1

[ �̂�𝑝 ( 𝑗 , 𝑚) − �̂�𝑝 (𝑏, 𝑚)] [ �̂�𝑝 ( 𝑗 + 1, 𝑚) − �̂�𝑝 (𝑏, 𝑚)]
𝑆2
𝑝 (𝑏, 𝑚)

,

and the correlation-adjustment factor is computed from

𝜑 = max

(
1 + 𝜙 �̂�𝑝 (𝑏, 𝑚)
1 − 𝜙 �̂�𝑝 (𝑏, 𝑚)

, 1

)
.

Finally we set

𝐺1 ≡ 𝐺 (𝑡1−𝛼/2,𝑏−1)
√︃
𝜑𝑆2

𝑝 (𝑏, 𝑚)/𝑏, and 𝐺2 ≡ 𝐺 (𝑡𝛼/2,𝑏−1)
√︃
𝜑𝑆2

𝑝 (𝑏, 𝑚)/𝑏. (5.1)
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The (asymmetric) correlation- and skewness-adjusted CI for 𝑦𝑝 is given by

[
min

(
�̃�𝑝 (𝑛∗) − 𝐺1, �̃�𝑝 (𝑛∗) − 𝐺2

)
,max

(
�̃�𝑝 (𝑛∗) − 𝐺1, �̃�𝑝 (𝑛∗) − 𝐺2

) ]
. (5.2)

This CI differs from the symmetric CI delivered by the Sequest method of Alexopoulos et

al. [7]. We will elaborate more on this adjusted CI in Section 5.2 below.

5.2 FQUEST Algorithm

In this section we present the proposed procedure for estimating a steady-state quantile based

on a single run of fixed length. Figure 5.1 contains a high-level flowchart of the procedure.

At a high level, FQUEST is comprised of four main blocks. The first block consists of Steps

[0]–[2] which initialize the experimental parameters. The second block includes Steps [3]–

[5] and deals with the potential transient effects in the data sample. At the end of this block

the observations comprising the first batch are removed. The third block consists of Steps

[6]–[9], which conduct randomness and normality tests to assess the statistical conformance

of the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} and the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} to

the asymptotic properties in Equations (2.17) and (2.9), respectively. Finally, the last block

consists of Step [10]: If the statistical tests within the third block are passed, the procedure

delivers the CI in Equation (2.68) based on the combined variance estimator. Otherwise, it

potentially delivers a conservative CI, subject to user approval. The following paragraphs

contain an elaborate description of each step of FQUEST.

In Step [0], the simulation model or user provides a sample path {𝑌1, . . . , 𝑌𝑁 } of fixed

size 𝑁 , the probability associated with the quantile 𝑝, and the nominal error probability

𝛼 ∈ (0, 1) for the CI for 𝑦𝑝. Step [1] initializes the experimental parameters. The initial

number of batches is set at 𝑏 = 50 to enhance the power of von Neumann’s randomness test

in Step [3], and the initial batch size is set at 𝑚 = 500. We also define the array of batch

counts 𝒔 = [32, 24, 16, 10] for Steps [5]–[9]. Further, we initialize the counters 𝑙 = 1 and
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𝑣 = 1, and set flag = false. At this point the algorithm sets the weight function that will

be used for the calculation of the signed areas and the STS variance-parameter estimator.

For the reasons stated at the start of Section 4.1, we used the constant weight function 𝑤0

for the experiments in Section 5.3 but state the algorithm using a general weight function

satisfying Equation (2.12). The level of significance for the statistical test in Step [3] is set

according to the sequence {𝛽𝜓(ℓ) : ℓ = 1, 2, . . .}, where 𝛽 = 0.3, 𝜓(ℓ) ≡ exp
[
−[(ℓ−1)\

]
,

[ = 0.2, and \ = 2.3. For the statistical tests in Steps [6]–[9] we fix the significance level

at 𝛽. The values of the parameters 𝛽, [, and \ were chosen after careful experimentation

to control the growth of the batch size and to avoid excessive truncation during Step [5]

which can be detrimental given the sample-size limitation. Notice that on a potential fourth

iteration within Step [3] one has 𝛽𝜓(4) = 0.025, which makes passing the test easier.

Since the sample size 𝑁 is fixed, it is possible that it is less than the initial assignment

𝑏𝑚 = 25,000. In this case Step [2] sets 𝑚 = ⌊𝑁/𝑏⌋, which is the largest allowable value

for the current batch count 𝑏. Step [3] consists of a loop that tests for the randomness of

the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} computed from the first 𝑏𝑚 observations

(the tail 𝑁 − 𝑏𝑚 observations are ignored, but not discarded) using a two-sided test based

on von Neumann’s ratio (von Neumann [43], Young [83]) with progressively decreasing

significance level 𝛽𝜓(ℓ) on iteration ℓ; see Section 4.1 of this thesis for a detailed discussion

of the test statistic and its power. If the randomness test fails, we increase the batch size to[[
𝑚
√

2
]]

, where [[·]] is the rounding function to the nearest integer. If the updated sample

size exceeds 𝑁 , we set 𝑚 = ⌊𝑁/𝑏⌋, which is the largest allowable value for the current batch

count 𝑏. If the randomness test fails with the largest allowable batch size ⌊𝑁/𝑏⌋, FQUEST

exits Step [3] and moves to Step [4], where it issues a warning to the user regarding the

insufficiency of the sample. Then it seeks permission from the user to continue with the

construction of a CI. As with the sequential SQSTS method in Chapter 4, we focus on the

signed areas in an attempt to ameliorate the pronounced small-sample bias of the batched

STS area estimator A𝑝 (𝑤; 𝑏, 𝑚) relative to the NBQ variance estimator (Alexopoulos et al.
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[39]).

If the randomness test in Step [3] is passed or the user decides to proceed with the

construction of the CI despite the failure of the randomness test, in Step [5] FQUEST

removes the first batch, sets the new sample size to 𝑁∗ = 𝑁 −𝑚, and reindexes the truncated

dataset. Assuming the successful completion of Step [3], the (approximate) independence

between 𝐴𝑝 (𝑤; 1, 𝑚) and the remaining signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 2, . . . , 𝑏} indicates

that any initialization bias due to warmup effects is mostly confined to the first batch. In the

worst-case scenario where the randomness test in Step [3] fails, Step [5] ends up removing

⌊𝑁/𝑏⌋ data points.

Remark 5.2.1. At this junction, a few comments are in order. We avoid decreasing the

batch count 𝑏 in Step [3] to limit the size of the truncated set. Also the initial batch size is

set at 𝑚 = 500 to address situations where the provided sample has a short transient phase.

For example, if 𝑁 = 500,000, FQUEST will remove only 500 data points if the randomness

test in Step [3] is passed on the first attempt. On the other hand, if we had started with

50 batches of size 10,000 each (i.e., all the data) in Step [3] and the randomness test was

successful in the first iteration (which is highly likely given that the randomness test was

successful with 𝑚 = 500), the algorithm would end up removing the excessive number of

10,000 initial observations.

Step [5] restarts with 𝑏 = 𝑠[1] = 32 and 𝑚 = ⌊𝑁∗/𝑏⌋. Notice that we may have to ignore

(but not remove) a few initial observations in the updated sample. We chose the entries of

the vector 𝒔 = [32, 24, 16, 10] after extensive experimentation. Notice that the elements of

𝒔 decrease at a rate of about
√

2. Further, 32 batches typically suffice for effective estimation

of the variance parameter 𝜎2
𝑝 , while fewer than 10 batches may result in unreliable CIs.

In Steps [6]–[9] we conduct the two-sided randomness test of von Neumann [43] and the

one-sided test of Shapiro and Wilk [81] for univariate normality to assess whether the signed

areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} and the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} satisfy the

asymptotic properties in Equations (2.17) and (2.9), respectively. A detailed presentation of
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the Shapiro–Wilk test and its interconnection with von Neumann’s test is given in Section

4.1 of this thesis. Each of the Steps [6]–[9] has a very similar structure. First we compute

the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} or the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}

and conduct the pertinent statistical test using the fixed significance level of 𝛽 = 0.3. The

significance level is kept constant and high to avoid passing a test with an inadequately small

batch size leading to unreliable CIs. If the test is passed, FQUEST proceeds to the next

step; otherwise, the batch count decreases to the next element of the array 𝒔. For example,

if we fail a test with 24 batches, we set the batch count to 16, recompute the batch size 𝑚,

and ignore any leftover initial observations. Since 𝒔 contains only four values, we can have

up to four failed attempts to pass any of the statistical tests in Steps [6]–[9]. If at any point

a statistical test fails with 𝑏 = 10, then FQUEST skips the remaining statistical tests and

moves to Step [10].

In Step [10], if all the statistical tests have been passed, FQUEST computes the combined

variance estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) and returns the CI in Equation (2.68). Otherwise, it issues

a warning mentioning that some of the statistical tests failed (with the significance level of

𝛽 = 0.3) and asks the user for permission to continue with the construction of a CI for 𝑦𝑝.

If the user chooses to continue, then FQUEST computes the quantity

ℎ𝛼,𝑏,𝑚 ≡ max
{
𝑡1−𝛼/2,𝑏

[
A𝑝 (𝑤; 𝑏, 𝑚)/𝑛∗

]1/2
, 𝑡1−𝛼/2,𝑏−1

[
Ñ𝑝 (𝑏, 𝑚)/𝑛∗

]1/2
}
, (5.3)

with 𝑛∗ = 𝑏𝑚 using Equations (2.16) and (2.56), and constructs two new intervals with

HL ℎ𝛼,𝑏,𝑚: the first CI is centered around the full-sample point estimator �̃�𝑝 (𝑛∗) defined

in Section 2.1 of this thesis, while the second CI is centered around the average (batch

quantile) point estimator �̂�𝑝 (𝑏, 𝑚) defined in Equation (2.51). Then FQUEST reports the

point estimate �̃�𝑝 (𝑛∗) computed from the truncated sample of 𝑛∗ = 𝑏𝑚 observations (with

the initial 𝑁∗ − 𝑛∗ observations ignored) and the smallest interval containing both newly

constructed intervals and the correlation- and skewness-adjusted CI in Equation (5.2) with
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𝑛∗, and stops.

Remark 5.2.2. By the inequality 𝑆2
𝑝 (𝑏, 𝑚) ≤ 𝑆2

𝑝 (𝑏, 𝑚), as noted in Equation (2.54), we

have N𝑝 (𝑏, 𝑚) ≤ Ñ𝑝 (𝑏, 𝑚). Since the FQUEST procedure relies on conservative CIs when

one of the statistical tests fails, we will ignore the alternative batched estimator N𝑝 (𝑏, 𝑚)

of 𝜎2
𝑝 .

Remark 5.2.3. Passing a single pair of the statistical tests in Steps [6]–[9] (i.e., [6]–[7]

or [8]–[9]) could provide on its own the theoretical basis for using the respective CIs in

Equations (2.64) or (2.66). However, due to the sample-size limitations, FQUEST often

resolves to batch counts 𝑏 ≤ 16, which typically reduce the power of von Neumann’s and

Shapiro–Wilk tests. Preliminary experimentation with two output processes from Sections

2.5.3 and 2.5.4 with 𝑝 = 0.95 and 𝑁 = 50,000 revealed that FQUEST frequently delivered

CIs with substantial undercoverage. This explains why FQUEST is designed to incorporate

the heuristic CI in Step [10] even if only one of the statistical tests failed during Steps

[6]–[9].

The formal algorithmic statement of FQUEST follows. As we stated earlier, we present

the algorithm for a general weight function 𝑤(·) satisfying Equation (2.12).

Algorithm FQUEST

[0] User-Initialization: Provide a sample of fixed size 𝑁 , the probability 𝑝 corresponding

to the quantile, and the error probability 𝛼 ∈ (0, 1).

[1] Parameter-Initialization: Set the number of batches 𝑏 = 50, batch size 𝑚 = 500,

ℓ = 1, 𝑣 = 1, and flag = false. Also set 𝛽 = 0.30 and 𝒔 = [32, 24, 16, 10]. Let

𝑤(𝑡), 𝑡 ∈ [0, 1], be the weight function and define the initial significance level for

the first hypothesis test in Step [3] as 𝛽𝜓(ℓ) ≡ exp
[
− [(ℓ − 1)\

]
, ℓ = 1, 2, . . ., with

[ = 0.2 and \ = 2.3.
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[2] If 𝑁 < 𝑏𝑚:

Set 𝑚 ← ⌊𝑁/𝑏⌋;

End If

[3] Until von Neumann’s test fails to reject randomness or flag = true:

• Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} from the initial 𝑏𝑚

observations;

• Assess the randomness of {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} using von Neumann’s

two-sided randomness test with significance level 𝛽𝜓(ℓ);

• Set ℓ ← ℓ + 1 and 𝑚 ←
[[
𝑚
√

2
]]

;

• If 𝑁 < 𝑏𝑚 and 𝑚 ≠ ⌊𝑁/𝑏⌋:

Set 𝑚 ← ⌊𝑁/𝑏⌋;

Else

Set flag← true;

End If

End

[4] If the randomness test in Step [3] failed, then issue a warning that the randomness

test failed due to insufficient size of the dataset and seek permission from the user

to continue with the construction of a CI. If the user declines, then exit without

delivering a CI.

[5] Remove the first batch, reindex the truncated dataset, and set 𝑁∗ equal to the size of

the truncated sample. Set the number of batches 𝑏 ← 𝑠[𝑣] and calculate the batch

size as 𝑚 ← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗ − 𝑏𝑚 observations.
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[6] Until von Neumann’s test fails to reject randomness or 𝑣 = 5 (a test has failed with

𝑏 = 10):

• Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏};

• Assess the randomness of the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} using

von Neumann’s two-sided randomness test with significance level 𝛽;

• Set 𝑣 ← 𝑣 + 1. Update 𝑏 ← 𝑠[𝑣] and 𝑚 ← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗ − 𝑏𝑚

observations.

End

[7] Until the Shapiro-Wilk test fails to reject normality or 𝑣 = 5 (a test has failed with

𝑏 = 10):

• Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏};

• Assess the univariate normality of the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}

using the Shapiro–Wilk test with significance level 𝛽;

• Set 𝑣 ← 𝑣 + 1. Update 𝑏 ← 𝑠[ 𝑗] and 𝑚 ← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗ − 𝑏𝑚

observations.

End

[8] Until von Neumann’s test fails to reject randomness or 𝑣 = 5 (a test has failed with

𝑏 = 10):

• Compute the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏};

• Assess the randomness of the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} using von

Neumann’s two-sided randomness test with significance level 𝛽;

• Set 𝑣 ← 𝑣 + 1. Update 𝑏 ← 𝑠[𝑣] and 𝑚 ← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗ − 𝑏𝑚

observations.
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End

[9] Until the Shapiro–Wilk test fails to reject normality or 𝑣 = 5 (a test has failed with

𝑏 = 10):

• Compute the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏};

• Assess the univariate normality of the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} using

the Shapiro–Wilk test with significance level 𝛽;

• Set 𝑣 ← 𝑣 + 1. Update 𝑏 ← 𝑠[𝑣] and 𝑚 ← ⌊𝑁∗/𝑏⌋. Ignore the initial 𝑁∗ − 𝑏𝑚

observations.

End

[10] Set 𝑛∗ ← 𝑏𝑚.

If 𝑣 < 5 (no statistical test in Steps [6]–[9] failed):

• Compute the combined variance estimator

Ṽ𝑝 (𝑤; 𝑏, 𝑚) =
𝑏A𝑝 (𝑤; 𝑏, 𝑚) + (𝑏 − 1)Ñ𝑝 (𝑏, 𝑚)

2𝑏 − 1

in Equation (2.58), deliver the 100(1 − 𝛼)% CI for 𝑦𝑝,

�̃�𝑝 (𝑛∗) ± 𝑡1−𝛼/2,2𝑏−1
(
Ṽ𝑝 (𝑤; 𝑏, 𝑚)/𝑛∗

)1/2
,

and exit;

Else

• Issue a warning that a statistical test failed due to insufficient size of the dataset

and seek permission from the user to continue with the construction of a CI. If

the user declines, then exit without delivering a CI;
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• Compute

ℎ𝛼,𝑏,𝑚 = max
{
𝑡1−𝛼/2,𝑏

[
A𝑝 (𝑤; 𝑏, 𝑚)/𝑛∗

]1/2
, 𝑡1−𝛼/2,𝑏−1

[
Ñ𝑝 (𝑏, 𝑚)/𝑛∗

]1/2
}
,

where

A𝑝 (𝑤; 𝑏, 𝑚) = 𝑏−1
𝑏∑︁
𝑗=1

𝐴2
𝑝 (𝑤; 𝑗 , 𝑚) and

Ñ𝑝 (𝑏, 𝑚) = 𝑚(𝑏 − 1)−1
𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̃�𝑝 (𝑛)

]2
.

Then, construct the following (auxiliary) CIs for 𝑦𝑝 with HL ℎ𝛼,𝑏,𝑚:

�̃�𝑝 (𝑛∗) ± ℎ𝛼,𝑏,𝑚 and �̂�𝑝 (𝑏, 𝑚) ± ℎ𝛼,𝑏,𝑚, (5.4)

where the first CI centered around the full-sample point estimator �̃�𝑝 (𝑛∗) and

the second centered around the average BQE �̂�𝑝 (𝑏, 𝑚) = 𝑏−1 ∑𝑏
𝑗=1 �̂�𝑝 ( 𝑗 , 𝑚);

• Construct the (asymmetric) correlation- and skewness-adjusted CI

[
min

(
�̃�𝑝 (𝑛∗) − 𝐺1, �̃�𝑝 (𝑛∗) − 𝐺2

)
,max

(
�̃�𝑝 (𝑛∗) − 𝐺1, �̃�𝑝 (𝑛∗) − 𝐺2

) ]
(5.5)

with 𝐺1 and 𝐺2 defined in Equation (5.1);

• Deliver the full-sample point estimator �̃�𝑝 (𝑛∗) and the smallest interval contain-

ing the CIs in Equations (5.4) and (5.5), and exit.

End If
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Figure 5.1: High-Level Flowchart of FQUEST.
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5.3 Experimental Results

In this section we present an extensive empirical study designed to assess the performance

of the FQUEST procedure. Our test bed includes the seven challenging stochastic processes

from Alexopoulos et al. [23] and Alexopoulos et al. [7], involving two time-series models,

three single-server queueing systems, and two small queueing networks. For two processes

we present results for different choices of parameters, hence we consider a total of nine

test problems. We have already introduced these stochastic processes in Sections 2.5.1–

2.5.7. All experiments were coded in Java using common random numbers generated by

the RngStreams package of L’Ecuyer et al. [67]. As mentioned earlier, we constructed the

STS area variance estimators using the constant weight function 𝑤0(·).

For each experimental setting we present three different sets of experimental results:

(i) an initial table with numerical results for the FQUEST method using five different

sample sizes 𝑁 ∈ S ≡ {50,000, 100,000, 200,000, 500,000, 1,000,000} and a nominal 95%

(𝛼 = 0.05) CI coverage probability; (ii) a set of graphs based on the aforementioned table,

each for a specific probability 𝑝 depicting the average 95% CI relative precision, defined

as the ratio of the CI HL over | �̃�𝑝 (𝑛) |, and the estimated 95% CI coverage probability; and

(iii) a second table containing results for an informal comparison of FQUEST against the

sequential SQSTS from Chapter 4 of this thesis. The sample sizes in S are larger than

those used for the experimental evaluation of the N-Skart procedure (Tafazzoli et al. [42])

(namely 10,000; 20,000; 50,000; and 200,000), but quantile estimation typically requires

substantially larger sample sizes than mean estimation. Notably, the smaller values in

S are typically insufficient for estimating marginal quantiles for the stationary processes

with a high degree of autocorrelation of departures from normality (Chen and Kelton [25],

Alexopoulos et al. [23], Alexopoulos et al. [7]), in particular extreme ones.

Tables 5.1, 5.3, 5.5, 5.7, 5.9, 5.11, 5.13, 5.15, 5.17, and 5.18 contain experimental

results for the FQUEST method with all estimates being averages computed from 1,000
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independent trials. Specifically, column 1 lists selected values of 𝑝 and column 2 contains

the (nearly) exact value of the associated quantile 𝑦𝑝. Column 3 lists the sample size 𝑁 .

Columns 4 and 5 contain the average value of the point estimate �̃�𝑝 (𝑛) and the average value

of the absolute error
���̃�𝑝 (𝑛) − 𝑦𝑝

��, respectively. Columns 6–8 contain the average value of

the HL of the 95% CI for 𝑦𝑝, the average value of the CI’s relative precision expressed as

a percentage and the estimated coverage of the CI as a percentage, respectively. We report

the average CI HL and average relative precision despite the fact that the final CI delivered

in Step [10] of FQUEST may be asymmetric for small samples (when a statistical test in

Steps [6]–[9] fails with 𝑏 = 10 batches). The standard errors of the estimated coverage

probabilities are approximately
√︁
(0.95 × 0.05)/1000 = 0.007. Columns 9 and 10 display

the average final batch size (𝑚) and average final batch count (𝑏), respectively, after the

truncation of the initial subset of observations in Step [5]. Finally, Columns 11 and 12

list the standard deviation of the CI HL and the average truncated sample size (𝑁 − 𝑛∗),

respectively.

Given the nonsequential nature of FQUEST, the two most important metrics for its

performance evaluation are the estimated coverage probability of the CI and the average

value of the CI’s relative precision. There is always a tradeoff between these two metrics. A

reliable fixed-sample-size procedure should achieve the requested CI coverage probability,

while keeping the average value of the CI’s relative precision as low as possible. Figures

5.2–5.11 illustrate FQUEST’s performance on this front in a more intelligible way by

plotting the estimates of the 95% CI relative precision and coverage probability in columns

7–8 of Tables 5.1, 5.3, 5.5, 5.7, 5.9, 5.11, 5.13, 5.15, 5.17, and 5.18.

Tables 5.2, 5.4, 5.6, 5.8, 5.10, 5.12, 5.14, 5.16, and 5.19 aim at an ad hoc comparison

between FQUEST and the sequential SQSTS procedure, presented in Chapter 4 of this

thesis, when the latter is executed without a CI precision requirement. They have a very

similar format with the tables in the first set, but do not report the average final number of

batches (𝑏) and the average truncated sample size. The entries from SQSTS are provided in
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italic typeface. The selected sample size for FQUEST was obtained by rounding the average

final sample size requested by the SQSTS method to the nearest 1,000. All results are based

on 1,000 replications. The main purpose of this comparison is to evaluate the behavior

of FQUEST when the provided sample size is close to what a cutting-edge sequential

procedure like SQSTS requests: ideally, as the sample size 𝑁 increases, FQUEST should

be able to deliver CIs with similar reliability and relative precision as those delivered by

SQSTS. Because of the computation of the heuristic CI in Step [10] of FQUEST when a

statistical test in Steps [6]–[9] cannot be passed, the average relative precision of the CIs

delivered by FQUEST will typically be larger that the respective CIs obtained from SQSTS

for the (nearly) same sample size; this gap (and the frequency of the heuristic CI) should

diminish as 𝑁 becomes very large.

Finally, Figure 5.12 reports the frequency of the heuristic CI in Step [10] in a few

selected cases and for 𝑁 ∈ {50,000, 100,000, 200,000, 500,000, 1,000,000}. These results

are also based on 1,000 independent replications.

5.3.1 First-Order Autoregressive Processes

The first test process is the Gaussian AR(1) process defined in Section 2.5.1. We considered

two sets of parameters. In the first case we chose `𝑌 = 100, 𝜙 = 0.995, 𝜎𝜖 = 1, and 𝑌0 = 0.

Since the steady-state marginal standard deviation is 𝜎𝑌 = 𝜎𝜖/(1 − 𝜙2)1/2 = 10.01, this

process was initialized nearly 10 standard deviations below its steady-state mean. As we

have already mentioned in Section 4.2.1, on top of the pronounced initialization bias, this

process exhibits strong stochastic dependence. These traits will allow us to evaluate the

ability of FQUEST to overcome the effects of initialization bias and pronounced serial

correlation between successive observations of the base process.

The experimental results are displayed in Tables 5.1 and 5.2, and Figure 5.2. We start our

analysis with Table 5.1. An examination of columns 4 and 5 reveals that the point estimates

of 𝑦𝑝 delivered by FQUEST are close to the exact value, with small average absolute bias,
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which significantly decreases as the sample size increases. The 95% CIs exhibit slight

undercoverage for 𝑝 ∈ {0.3, 0.5, 0.99, 0.995} and small values of 𝑁 (50,000 and 100,000).

For example, for 𝑁 = 50,000 and 𝑝 = 0.5 or 𝑝 = 0.995, the estimated CI coverage

probabilities are 92.9% and 90.9%, respectively. This effect vanishes for 𝑁 ≥ 200,000. The

estimated CI relative precision is reasonable in all cases and decreases significantly as the

sample size increases. The average size of the truncated sample was near 620, which seems

reasonable. From Table 5.2 we see that when FQUEST was executed with sample sizes near

the average sample sizes required by the sequential SQSTS procedure, it delivered CIs with

estimated coverage probabilities typically close to the nominal value and slightly higher CI

relative precision. This is expected due to the adjustments in Step [10] of FQUEST. In a

few cases the estimated CI coverage probability was closer to the nominal value compared

to SQSTS. For example, for 𝑝 = 0.7 FQUEST delivered CIs with an estimated coverage

probability of 94.6% and relative precision of 1.285, while SQSTS delivered CIs with an

estimated coverage coverage probability of 93.7% and relative precision of 1.156. Overall,

we judge the performance of FQUEST in this problem as satisfactory.

In the second (less challenging) case we took `𝑌 = 0, 𝜙 = 0.9, 𝜎𝜖 = 1, and 𝑌0 = 0. The

stationary version of this process was used to compare the Sequest method (Alexopoulos et

al. [7]) against the two-phase procedure of Chen and Kelton [25]. The experimental results

are displayed in Tables 5.3 and 5.4, and Figure 5.3. In Table 5.3, the estimated CI coverage

probabilities were close to the nominal value, with some small overcoverage in a few cases.

Specifically, for 𝑝 = 0.45 and 𝑁 = 500,000 FQUEST delivered CIs with estimated coverage

probability 97.4%. Further, the estimated CI relative precision was reasonable for all the

probabilities except for 𝑝 = 0.45, where it was quite large at 39.432% for 𝑁 = 50,000

and dropped to 8.325% for 𝑁 = 1,000,000. The high CI relative precision at 𝑝 = 0.45 is

partially attributable to the exact value of 𝑦𝑝 = −0.288, which is close to zero. The average

truncated sample size was close to 600, which is deemed as reasonable. We conclude that

FQUEST performed well in this case.
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The outcome of the informal comparison between FQUEST and SQSTS in Table 5.4,

for this example, clearly confirmed FQUEST’s ability to yield CI coverage probabilities

close to the nominal value while keeping the CI relative precision slightly higher than what

SQSTS yielded.

5.3.2 Autoregressive-to-Pareto Process

The second test process is the ARTOP process described in Section 2.5.2. For this example

we used 𝛾 = 1, \ = 2.1, and 𝜙 = 0.995. Recall that these assignments yield `𝑌 = 1.9091,

𝜎2
𝑌

= 17.3554, marginal skewness E{[(𝑌𝑘 − `𝑌 )/𝜎𝑌 ]3} = +∞, and marginal kurtosis

E{[(𝑌𝑘 − `𝑌 )/𝜎𝑌 ]4} = +∞. We also initialized the original AR(1) process with the value

𝑍0 = 3.4; which results to an initial observation𝑌0 = 𝐹−1 [Φ(𝑍0)] = 43.5689 for the ARTOP

process, which is approximately 10 standard deviations above its steady-state mean. On

top of the initialization problem and the strong stochastic dependence, this process has a

marginal distribution with a fat tail (Mandelbrot [87]), which is reflected by the infinite

marginal skewness and kurtosis.

The experimental results for this process are displayed in Tables 5.5 and 5.6, and Figure

5.4. We start our analysis with Table 5.5. Columns 4 and 5 illustrate that FQUEST

delivered reasonably accurate point estimates for 𝑦𝑝. For 𝑝 < 0.9, FQUEST performed

reasonably well with regard to CI coverage probability and relative precision, with a few

cases of noticeable CI overcoverage in small samples (e.g., for 𝑝 = 0.3 and 𝑁 ≤ 200,000).

For 𝑝 ≥ 0.9 and small samples, FQUEST underperformed, in particular with regard to

estimated CI relative precision; this issue became more pronounced as 𝑝 approached 0.995.

For instance, at 𝑝 = 0.995, the average CI relative precision dropped from the unacceptable

value of nearly 106% for 𝑁 = 50,000 to about 24% for 𝑁 = 1,000,000. This behavior

is not unexpected: a close examination of Table 5.6 reveals that for 𝑝 = 0.99 and 0.995

the largest sample size used in the experimental evaluation of FQUEST was lower by a

factor of about 2.5 and 3, respectively, than the average sample sizes requested by the
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sequential SQSTS method. In particular, for 𝑁 ≤ 100,000 FQUEST reported excessively

wide CIs. An examination of Figure 5.12 below (for 𝑝 = 0.99) reveals that FQUEST failed

a statistical test in Steps [6]–[9] with a frequency near 91% with 𝑁 = 50,000 and 87% with

𝑁 = 100,000. Such failures caused the use of the heuristic CI in Step [10]. The warning

issued to the user in those cases should be an indicator for potential problems associated

with the insufficiency of the sample size for delivering a CI based on a sound theoretical

foundation. In these cases, the user should probably rerun FQUEST using a larger sample

size. A potential recipe for determining an appropriate sample size is discussed in Section

5.4.

The entries of Table 5.6 clearly demonstrate that when FQUEST was fed with the average

sample size reported by SQSTS, it caught up with the latter procedure by delivering CIs

whose estimated coverage probabilities were close to the nominal value and similar average

relative precision (within 2%). We deem that FQUEST performed well in this test problem.

5.3.3 M/M/1 Waiting-Time Process

The third test process is the waiting-time sequence in an M/M/1 queueing system described

in Section 2.5.3 with FIFO service discipline. We considered two examples for this process.

For the first example we used an arrival rate _ = 0.9 and a service rate𝜔 = 1 (traffic intensity

𝜌 = _/𝜔 = 0.9). Let 𝑌𝑘 be the time spent by the 𝑘th entity in queue (prior to service).

To assess the ability of the FQUEST method to deal with excessive initialization bias,

we initialized the system with one entity beginning service and 112 entities in queue. Recall

that the steady-state probability of this initial state is (1 − 𝜌)𝜌113 ≈ 6.752 × 10−7, implying

a high probability for a prolonged transient phase.

The experimental results for this case are displayed in Tables 5.7 and 5.8, and Figure 5.5.

We start our analysis with Table 5.7. FQUEST managed to provide satisfactory estimated

CI coverage probabilities, with the worst one being 90.1% for 𝑝 = 0.995 and 𝑁 = 50,000.

There were a few cases with noticeable CI overcoverage for 𝑝 ≤ 0.7 and 𝑁 ≤ 200,000. As
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illustrated in Figure 5.5, the near proximity of the estimated CI coverage probability to the

nominal value of 95% often came at the expense of high estimated CI relative precision, in

particular for relatively small samples and large values of 𝑝 where the average batch counts

in column 10 indicates that FQUEST failed the statistical tests in Steps [6]–[9] with high

frequency and resorted to the computation of the heuristic CI in Step [10] with approximately

10 batches. This trait diminished substantially as 𝑁 increased. An examination of Table

5.8 reveals that when FQUEST was supplied with a sample size near the one required by

SQSTS, it performed well with regard to both primary performance metrics of interest. As

with the ARTOP process in Section 2.5.2, the values of 𝑁 in our experimentation were

significantly smaller than those required by the sequential SQSTS method (under no CI

precision requirement) for 𝑝 ≥ 0.99. The value of FQUEST is evident from its ability to

provide usable CIs for smaller fixed sample sizes 𝑁 that are smaller than those required by

SQSTS and Sequest (Table 4.3 of this thesis), e.g., for 𝑝 = 0.3 and 𝑁 ∈ {200,000, 500,000}

or 𝑝 = 0.99 and 𝑁 ∈ {500,000, 1,000,000}.

For the second, less-challenging example we only lowered the arrival rate to _ = 0.8,

so that 𝜌 = 0.8. The experimental results are displayed in Tables 5.9 and 5.10, and Figure

5.6. Based on these results we conclude that FQUEST encountered fewer issues in this

less-challenging setting. Overall, FQUEST performed adequately in both difficult settings.

5.3.4 M/H2/1 Waiting-Time Process

The fourth test process is the sequence {𝑌𝑘 : 𝑘 ≥ 1} of entity waiting times in an M/H2/1

queueing system as described in Section 2.5.4 with FIFO queue discipline, an empty-

and-idle initial state, arrival rate _ = 1, and i.i.d. service times from the hyperexponential

distribution that is a mixture of two other exponential distributions with mixing probabilities

𝑔 = (5 +
√

15)/10 ≈ 0.887 and 1 − 𝑔 and associated service rates 𝜔1 = 2𝑔𝜏 and 𝜔2 =

2(1 − 𝑔)𝜏, with 𝜏 = 1.25. As a result, we have a mean service time of 0.8 and a steady-

state server utilization of 𝜌 = 0.8. Recall that for this process and under no CI precision
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requirement, the Sequest sequential method of Alexopoulos et al. [7] reported average

sample sizes ranging from 1.2 to 28.7 million, and yet delivered CIs with significant

undercoverage for 𝑝 ≥ 0.99 (see Table 4.4 in this thesis). Most importantly, it was

outshined by SQSTS for all values of 𝑝 under study.

The experimental results for this process are displayed in Tables 5.11 and 5.12, and

Figure 5.7. We start our analysis with Table 5.11. For 𝑝 ∈ {0.3, 0.5, 0.7}, the 95% CIs

for 𝑦𝑝 exhibited noticeable overcoverage. On the other hand, for 𝑝 ≥ 0.99 FQUEST

delivered CIs with significant undercoverage for sample sizes 𝑁 ≤ 100,000. However,

Figure 5.7 illustrates clearly that this issue was resolved as the sample size approached

1 million. Column 7 also reveals cases with excessive estimated CI relative precision,

especially for small sample sizes 𝑁 ≤ 100,000. Figure 5.7 clearly showcases the significant

improvements in the reported estimated CI relative precision as the sample size 𝑁 increased

beyond 200,000. For 𝑝 = 0.3 and 𝑁 = 50,000 FQUEST’s excessive estimate of 90.834%

for the estimated CI relative precision is partially attributable to the small value of the actual

quantile 𝑦𝑝 = 0.669.

Table 5.12 reveals once again that when FQUEST was supplied with sample sizes close

to those requested by SQSTS, it performed well with regard to both estimated CI coverage

probability and relative precision. Notice that for 𝑝 ≥ 0.99, SQSTS required sample sizes

that exceeded the largest value of 𝑁 in Table 5.11 by a factor of 2 or more. Overall,

we believe that FQUEST handled this challenging process effectively for reasonably low

sample sizes 𝑁 depending on the value of 𝑝.

5.3.5 M/M/1/LIFO Waiting-Time Process

The fifth test process is the sequence of entity waiting times {𝑌𝑘 : 𝑘 ≥ 1} in a single-server

queueing system as described in Section 2.5.5 with non-preemptive LIFO service discipline,

empty-and-idle initial state, arrival rate _ = 1, and service rate 𝜔 = 1.25. The steady-state

server utilization is 𝜌 = 0.8 and the marginal mean waiting time is `𝑌 = 3.2.
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The experimental results for this process are displayed in Tables 5.13 and 5.14, and

Figure 5.8. Table 5.13 and Figure 5.8 reveal that the 95% CIs for 𝑦𝑝 exhibited noticeable

overcoverage for all values of 𝑝 under study and excessive average relative precision for tail

probabilities 𝑝 ≥ 0.99 and small samples 𝑁 ≤ 100,000. A perusal of Table 5.14 clearly

showcases the issue of excessive CI overcoverage; this is due to the heuristic used in Step

[10] of FQUEST. However, column 7 reveals that the reported estimates of CI relative

precision delivered by FQUEST and SQSTS were reasonably close. Overall, FQUEST

performed adequately in this example.

5.3.6 M/M/1/M/1 Waiting-Time Process

The sixth test process, detailed in Section 2.5.6, is constructed from the sequence {𝑌𝑘 :

𝑘 ≥ 1} of the total waiting times (prior to service) in a tandem network of two M/M/1

queues. The system has an arrival rate of _ = 1, service rates 𝜔 = 1.25 at each station,

and is initialized in the empty and idle state. The steady-state utilization for each server is

𝜌 = _/𝜔 = 0.8 and the mean total waiting time in the system is equal to 8.

The experimental results for this process are displayed in Tables 5.15 and 5.16, and

Figure 5.9. Based on Table 5.15 and Figure 5.9, FQUEST performed exceptionally well

with respect to all metrics for all 𝑝 ≤ 0.95. The estimated CI coverage probabilities

were very close to the nominal values without resulting in excessive estimated CI relative

precision. However, for 𝑝 ≥ 0.99 and 𝑁 = 50,000 FQUEST delivered CIs with noticeable

undercoverage. Table 5.16 reveals that FQUEST performed very well once it was supplied

with sample sizes near those required by SQSTS. Overall, we assess that FQUEST performed

well in this case study despite the sample size limitations.

5.3.7 Central Server Model 3

The seventh test process, described in Section 2.5.7, is generated by the sequence {𝑌𝑘 : 𝑘 ≥

1} of response times (cycle times) in a small computer network comprised of three stations,
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namely the Central Server Model 3 from Law and Carson [66].

The experimental results for this process are displayed in Tables 5.17–5.19 and Figures

5.10–5.11. Recall from the discussion in Section 4.2.7 that in the absence of a CI precision

requirement and for 𝑝 ∈ {0.85, . . . , 0.93}, the Sequest method (Alexopoulos et al. [7])

experienced substantial sample-size variation and delivered CIs with noticeable variation

around the nominal 95% level (see Table 4.7 in this thesis) while SQSTS delivered CIs with

minor undercoverage in a few cases (𝑝 ∈ {0.3, 0.5, 0.93}). For this response-time process

FQUEST performed well, with a few exceptions: the CIs delivered by FQUEST exhibited

noticeable overcoverage for 𝑝 ∈ {0.87, 0.89, 0.90, 0.91} and noticeable undercoverage for

𝑝 = 0.95 and 𝑁 ≤ 100,000.

The experimental results in Table 5.19 indicate that FQUEST managed to deliver CIs

with estimated coverage probability very close to the nominal value and reasonable estimated

relative precision when it was supplied with sample sizes close to the respective averages

required by the sequential SQSTS method. Overall, we judge the performance of FQUEST

in this test case as solid.

5.4 Summary

In this chapter, we presented FQUEST, a completely automated procedure for computing

point estimators and CIs for steady-state quantiles based on a single sample path with fixed

length. The user provides the sample and specifies the probability of the quantile and

the required coverage probability of the requested CI. FQUEST incorporates the analysis

methods of batching, STS, and sectioning. If the sample size suffices to identify a set of

signed weighted areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} and BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}

that pass the von Neumman and Shapiro-Wilk tests, FQUEST reports a CI for the quantile 𝑦𝑝

under consideration centered at the empirical quantile from a truncated subset of the sample

path and based on the combined estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) of 𝜎2
𝑝 . Otherwise, the procedure

issues a warning and, upon user’s approval, formulates a wider CI from a set of CIs based
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on the quantile estimator computed from the entire truncated sample, the BQEs, and the

batched area estimator A𝑝 (𝑤; 𝑏, 𝑚) obtained from the nonoverlapping batches.

Experimentation with an extensive test bed of output processes in Section 5.3 showed

that FQUEST delivered CIs with coverage probabilities close to the nominal level. This

feat is quite remarkable, considering that the state-of-the-art sequential methods Sequest

and SQSTS required substantial sample sizes for the same processes under no CI precision

requirement (Alexopoulos et al. [7], Chapter 4 of this thesis).

In difficult cases, such as the ARTOP process in Section 5.3.2 or the waiting-time process

in an M/M/1 queue in Section 5.3.3, and with small samples, FQUEST may report a CI with

an excessive HL or relative precision. This should be an indicator (especially in practical

applications) for potential problems associated with the delivered CI or insufficiency of

the sample size. In these cases, the user should probably rerun FQUEST with a larger

sample size. Such an estimate can be obtained by a pilot study with sequential methods

executed without a CI precision requirement. For instance, the Sequest method supplied

with the same sample will either deliver a CI or (most likely) will provide an estimate of

the augmented size of the sample that should be collected and resubmitted to FQUEST.
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Table 5.1: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the AR(1) process in Section 5.3.1
with `𝑌 = 100 and 𝜙 = 0.995 based on 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.3 94.749 50,000 94.753 0.739 2.067 2.183 93.2 3,467 17.16 0.936 625
100,000 94.773 0.554 1.488 1.570 93.2 6,451 18.69 0.604 639
200,000 94.751 0.385 1.091 1.151 94.8 12,598 19.28 0.414 639
500,000 94.765 0.237 0.682 0.720 95.7 30,304 20.10 0.225 640

1,000,000 94.751 0.165 0.497 0.524 97.0 60,715 20.11 0.190 640

0.5 100.000 50,000 99.997 0.723 2.024 2.025 92.9 3,388 17.73 0.973 629
100,000 100.021 0.543 1.430 1.430 93.0 6,309 19.14 0.544 635
200,000 100.001 0.381 1.052 1.052 95.6 12,541 19.41 0.393 636
500,000 100.015 0.232 0.673 0.673 95.9 30,957 19.74 0.226 636

1,000,000 100.002 0.162 0.470 0.470 96.9 59,908 20.36 0.143 636

0.7 105.251 50,000 105.238 0.745 2.135 2.029 94.7 3,559 16.63 0.968 628
100,000 105.264 0.549 1.514 1.439 94.2 6,504 18.59 0.603 639
200,000 105.252 0.392 1.071 1.017 94.8 12,478 19.46 0.376 640
500,000 105.262 0.240 0.700 0.665 95.8 31,587 19.36 0.248 640

1,000,000 105.250 0.168 0.489 0.465 96.8 60,234 20.37 0.157 640

0.9 112.832 50,000 112.808 0.879 2.785 2.468 94.5 4,169 13.26 1.351 612
100,000 112.830 0.626 1.856 1.644 94.3 7,502 15.64 0.850 622
200,000 112.820 0.455 1.280 1.134 95.1 13,620 17.63 0.522 623
500,000 112.835 0.277 0.811 0.718 96.1 32,712 18.60 0.303 624

1,000,000 112.829 0.197 0.568 0.504 95.9 62,065 19.66 0.183 625

0.95 116.469 50,000 116.424 1.027 3.385 2.905 94.1 4,518 11.66 1.657 613
100,000 116.451 0.706 2.251 1.932 93.9 8,351 13.32 1.048 622
200,000 116.445 0.511 1.498 1.286 94.9 15,085 15.61 0.682 624
500,000 116.466 0.309 0.928 0.797 96.0 33,607 18.04 0.371 626

1,000,000 116.462 0.219 0.651 0.559 96.0 63,258 19.27 0.236 627

0.99 123.293 50,000 123.112 1.489 5.125 4.152 93.2 4,842 10.34 2.507 603
100,000 123.198 0.988 3.653 2.962 95.7 9,486 10.84 1.882 611
200,000 123.217 0.712 2.501 2.029 95.0 18,043 11.86 1.364 612
500,000 123.263 0.441 1.415 1.147 95.9 39,219 14.86 0.674 615

1,000,000 123.273 0.321 0.976 0.791 95.5 72,252 16.63 0.450 616

0.995 125.791 50,000 125.483 1.795 6.079 4.823 90.9 4,891 10.17 3.188 602
100,000 125.630 1.199 4.365 3.468 93.8 9,673 10.47 2.251 608
200,000 125.674 0.863 3.098 2.463 94.6 18,910 10.94 1.655 609
500,000 125.741 0.537 1.808 1.437 96.6 43,201 12.77 0.919 611

1,000,000 125.757 0.388 1.226 0.975 95.0 78,190 14.92 0.630 613
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Figure 5.2: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the AR(1) process from Table 5.1.
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Table 5.2: Comparison between FQUEST and SQSTS (in italic typeface) without a CI precision requirement for the AR(1) process in
Section 5.3.1 with `𝑌 = 100 and 𝜙 = 0.995 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST) and
1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.3 94.749 158,000 94.762 0.427 1.217 1.285 94.3 10,018 0.496
157,977 94.767 0.459 1.126 1.188 94.0 9,722 0.246

0.5 100.000 119,000 100.015 0.486 1.323 1.323 94.3 7,417 0.502
118,956 100.023 0.519 1.261 1.261 93.7 7,320 0.290

0.7 105.251 125,000 105.270 0.485 1.352 1.285 94.6 8,058 0.532
125,118 105.278 0.509 1.252 1.190 93.7 7,700 0.277

0.9 112.832 199,000 112.820 0.455 1.288 1.141 95.3 13,770 0.550
198,985 112.828 0.471 1.156 1.024 94.2 12,245 0.241

0.95 116.469 247,000 116.443 0.455 1.370 1.176 94.7 18,156 0.623
247,276 116.454 0.472 1.177 1.010 94.7 15,217 0.243

0.99 123.293 1,426,000 123.274 0.266 0.829 0.673 96.6 99,337 0.366
1,425,914 123.274 0.286 0.715 0.580 94.5 87,749 0.149

0.995 125.791 1,812,000 125.776 0.282 0.866 0.688 95.0 129,654 0.378
1,811,627 125.773 0.305 0.765 0.608 94.5 111,485 0.168
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Table 5.3: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the AR(1) process in Section 5.3.1
with `𝑌 = 0 and 𝜙 = 0.9 based on 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.25 −1.547 50,000 −1.545 0.038 0.116 7.520 96.7 3,058 19.74 0.042 595
100,000 −1.545 0.028 0.079 5.146 95.9 6,006 20.17 0.024 600
200,000 −1.547 0.020 0.057 3.710 96.5 12,228 20.04 0.019 600
500,000 −1.547 0.012 0.036 2.306 96.2 30,907 19.71 0.011 600

1,000,000 -1.548 0.008 0.026 1.667 96.6 61,322 20.04 0.009 600

0.45 −0.288 50,000 −0.287 0.037 0.110 39.432 96.2 2,986 20.18 0.040 597
100,000 −0.286 0.027 0.077 27.200 96.1 6,019 20.12 0.025 599
200,000 −0.288 0.019 0.054 19.009 96.1 12,191 19.99 0.017 599
500,000 −0.288 0.011 0.035 12.105 97.4 30,772 19.89 0.012 599

1,000,000 -0.288 0.008 0.024 8.325 96.9 60,066 20.28 0.007 600

0.75 1.547 50,000 1.548 0.039 0.114 7.351 95.2 3,020 20.04 0.038 598
100,000 1.548 0.029 0.082 5.274 95.4 6,182 19.72 0.029 601
200,000 1.548 0.020 0.056 3.648 96.3 11,988 20.26 0.017 602
500,000 1.548 0.012 0.036 2.297 96.5 29,709 20.33 0.011 602

1,000,000 1.548 0.009 0.026 1.661 97.3 61,236 19.92 0.008 602

0.9 2.940 50,000 2.939 0.046 0.132 4.506 96.3 3,090 19.48 0.051 593
100,000 2.940 0.033 0.092 3.121 96.0 6,201 19.53 0.029 596
200,000 2.941 0.023 0.066 2.228 96.2 12,229 20.05 0.023 596
500,000 2.941 0.014 0.042 1.434 96.3 31,110 19.58 0.016 595

1,000,000 2.940 0.010 0.030 1.011 96.6 62,215 19.66 0.011 596

0.95 3.774 50,000 3.772 0.052 0.150 3.976 95.7 3,181 18.98 0.057 603
100,000 3.774 0.037 0.103 2.740 95.0 6,292 19.07 0.034 604
200,000 3.774 0.026 0.073 1.931 96.5 12,168 19.93 0.023 605
500,000 3.774 0.016 0.047 1.257 97.4 31,346 19.42 0.017 605

1,000,000 3.774 0.012 0.033 0.881 95.7 62,371 19.64 0.011 605

0.99 5.337 50,000 5.336 0.076 0.229 4.294 95.0 3,606 16.43 0.100 594
100,000 5.336 0.052 0.156 2.913 95.3 6,780 17.77 0.061 597
200,000 5.338 0.037 0.108 2.024 95.4 12,918 18.80 0.037 597
500,000 5.337 0.024 0.067 1.265 96.5 31,028 19.70 0.023 598

1,000,000 5.337 0.017 0.048 0.902 95.7 60,577 20.22 0.015 599

0.995 5.909 50,000 5.905 0.092 0.284 4.813 95.0 3,827 15.01 0.132 590
100,000 5.907 0.064 0.192 3.253 96.0 7,114 16.62 0.086 595
200,000 5.909 0.045 0.134 2.260 95.6 13,310 18.24 0.054 595
500,000 5.909 0.029 0.081 1.377 96.9 30,934 19.67 0.026 597

1,000,000 5.909 0.021 0.058 0.987 95.4 61,451 19.82 0.021 597
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Figure 5.3: Plots of the estimates for CI relative precision and coverage probability for the
AR(1) process from Table 5.3.
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Table 5.4: Comparison between FQUEST and SQSTS (in italic typeface) without a CI precision requirement for the AR(1) process in
Section 5.3.1 with `𝑌 = 0 and 𝜙 = 0.9 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST) and 1,000
independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.25 −1.547 49,000 −1.545 0.039 0.117 7.579 97.5 3,017 0.043
48,556 −1.544 0.041 0.106 6.881 95.2 2,988 0.021

0.45 −0.288 46,000 −0.288 0.038 0.116 41.500 96.7 2,841 0.043
46,403 −0.286 0.040 0.104 37.678 95.5 2,856 0.020

0.75 1.547 49,000 1.547 0.039 0.115 7.453 95.9 3,053 0.038
48,798 1.548 0.042 0.105 6.808 94.5 3,003 0.021

0.9 2.940 57,000 2.940 0.043 0.122 4.133 95.7 3,549 0.041
56,556 2.941 0.046 0.113 3.834 94.3 3,480 0.025

0.95 3.774 66,000 3.772 0.046 0.128 3.398 95.9 4,150 0.043
65,655 3.771 0.048 0.120 3.180 94.9 4,040 0.030

0.99 5.337 438,000 5.337 0.025 0.073 1.375 96.6 27,156 0.027
437,898 5.337 0.026 0.067 1.260 95.2 26,948 0.015

0.995 5.909 499,000 5.909 0.029 0.083 1.409 96.1 31,032 0.030
498,559 5.908 0.030 0.077 1.307 94.9 30,681 0.018
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Table 5.5: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the ARTOP process in Section 5.3.2
based on 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.3 1.185 50,000 1.188 0.021 0.103 8.648 98.0 4,719 10.77 0.061 739
100,000 1.187 0.016 0.062 5.208 97.3 8,989 11.78 0.035 871
200,000 1.186 0.011 0.038 3.225 97.1 16,710 13.36 0.019 885
500,000 1.186 0.007 0.021 1.812 96.8 35,771 16.70 0.008 887

1,000,000 1.185 0.005 0.015 1.240 97.5 67,890 17.75 0.006 888

0.5 1.391 50,000 1.395 0.039 0.176 12.589 97.1 4,619 11.14 0.112 766
100,000 1.394 0.029 0.107 7.669 96.4 8,759 12.28 0.060 914
200,000 1.392 0.020 0.067 4.837 96.4 16,144 14.11 0.033 927
500,000 1.392 0.012 0.039 2.795 96.1 35,563 16.76 0.016 930

1,000,000 1.391 0.009 0.026 1.880 97.1 65,144 18.53 0.009 931

0.7 1.774 50,000 1.780 0.073 0.330 18.460 97.5 4,648 11.00 0.223 786
100,000 1.779 0.054 0.206 11.529 96.2 8,740 12.33 0.126 970
200,000 1.776 0.038 0.129 7.246 96.0 16,006 14.19 0.067 995
500,000 1.776 0.023 0.074 4.137 96.7 35,868 16.55 0.030 997

1,000,000 1.774 0.016 0.050 2.792 96.9 65,123 18.63 0.018 998

0.9 2.994 50,000 3.014 0.223 1.145 37.296 97.2 4,811 10.38 0.895 793
100,000 3.006 0.157 0.675 22.313 95.6 9,321 11.06 0.447 1,019
200,000 2.997 0.114 0.425 14.112 96.5 17,331 12.61 0.279 1,068
500,000 2.997 0.069 0.233 7.777 96.6 38,526 15.09 0.127 1,070

1,000,000 2.994 0.049 0.152 5.070 96.4 68,538 17.65 0.062 1,072

0.95 4.164 50,000 4.205 0.428 2.393 55.444 95.7 4,854 10.25 2.041 758
100,000 4.184 0.290 1.410 33.363 95.7 9,574 10.59 1.045 933
200,000 4.168 0.209 0.878 20.878 96.7 18,261 11.57 0.629 973
500,000 4.168 0.126 0.461 11.044 95.9 41,294 13.72 0.274 975

1,000,000 4.164 0.089 0.290 6.954 96.6 73,992 15.87 0.134 977

0.99 8.962 50,000 9.112 1.741 9.631 98.912 93.2 4,926 10.02 9.566 662
100,000 9.011 1.136 7.257 77.372 94.0 9,869 10.10 6.566 736
200,000 8.955 0.810 4.802 52.634 95.8 19,568 10.31 4.039 747
500,000 8.958 0.500 2.365 26.132 96.3 47,897 10.73 1.682 747

1,000,000 8.955 0.365 1.443 16.050 96.0 89,404 12.04 0.929 749

0.995 12.466 50,000 12.751 3.197 14.953 106.177 90.7 4,938 10.01 15.592 601
100,000 12.552 2.080 12.777 95.946 93.1 9,910 10.04 12.796 635
200,000 12.451 1.485 9.518 73.741 95.5 19,647 10.25 8.832 643
500,000 12.451 0.919 4.963 39.181 96.6 48,821 10.40 3.804 643

1,000,000 12.444 0.664 3.041 24.255 96.1 94,027 11.10 2.170 644
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Figure 5.4: Plots of the estimates for CI relative precision and coverage probability for the
ARTOP process from Table 5.5.
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Table 5.6: Comparison between FQUEST and SQSTS (in italic typeface) without a CI precision requirement for the ARTOP process in
Section 5.3.2 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST) and 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.3 1.185 339,000 1.186 0.008 0.027 2.295 97.0 26,148 0.012
338,776 1.186 0.009 0.024 2.038 95.0 20,848 0.007

0.5 1.391 316,000 1.392 0.015 0.051 3.640 96.4 23,559 0.023
315,726 1.393 0.017 0.045 3.244 94.8 19,429 0.014

0.7 1.774 344,000 1.776 0.028 0.092 5.155 97.0 25,314 0.042
343,862 1.778 0.032 0.083 4.654 94.7 21,161 0.025

0.9 2.994 475,000 2.998 0.072 0.243 8.091 96.5 37,185 0.129
474,533 2.998 0.079 0.211 7.021 95.8 29,202 0.067

0.95 4.164 552,000 4.168 0.123 0.440 10.550 97.0 44,732 0.246
551,823 4.168 0.135 0.368 8.811 96.1 33,958 0.118

0.99 8.962 2,578,000 8.960 0.227 0.778 8.677 96.4 203,651 0.428
2,578,084 8.954 0.245 0.662 7.382 94.8 158,651 0.191

0.995 12.466 3,063,000 12.467 0.373 1.346 10.782 96.6 251,432 0.749
3,062,888 12.441 0.412 1.107 8.886 94.5 188,485 0.313
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Table 5.7: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the M/M/1 waiting-time process in
Section 5.3.3 with traffic intensity 0.9 based on 1000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.3 2.513 50,000 2.541 0.186 1.045 40.769 97.4 4,809 10.42 0.711 765
100,000 2.533 0.129 0.599 23.530 98.0 9,316 11.08 0.371 1,031
200,000 2.525 0.091 0.357 14.130 97.8 17,276 12.72 0.190 1,088
500,000 2.520 0.056 0.188 7.442 97.6 37,209 15.80 0.072 1,091

1,000,000 2.516 0.040 0.128 5.076 96.8 68,747 17.42 0.050 1,093

0.5 5.878 50,000 5.946 0.386 2.166 36.056 97.6 4,790 10.52 1.733 674
100,000 5.925 0.263 1.211 20.350 98.0 9,252 11.22 0.785 755
200,000 5.906 0.183 0.720 12.187 97.8 17,474 12.50 0.380 765
500,000 5.894 0.114 0.387 6.569 97.2 37,968 15.36 0.157 768

1,000,000 5.884 0.081 0.262 4.447 96.7 69,099 17.46 0.097 769

0.7 10.986 50,000 11.145 0.750 4.419 39.082 97.9 4,761 10.65 4.226 646
100,000 11.090 0.508 2.391 21.410 97.3 9,231 11.30 1.748 666
200,000 11.046 0.348 1.384 12.518 98.4 17,617 12.38 0.797 668
500,000 11.017 0.220 0.746 6.765 96.7 37,801 15.39 0.335 671

1,000,000 10.998 0.156 0.499 4.539 97.0 69,797 17.28 0.185 672

0.9 21.972 50,000 22.578 1.908 11.376 49.271 96.6 4,822 10.41 9.492 659
100,000 22.342 1.258 6.885 30.346 97.0 9,408 10.97 6.174 675
200,000 22.160 0.871 3.908 17.532 96.5 18,159 11.74 2.925 677
500,000 22.061 0.545 1.951 8.826 96.8 41,262 13.81 1.159 679

1,000,000 22.007 0.379 1.274 5.781 97.2 75,474 15.69 0.602 680

0.95 28.904 50,000 30.108 3.099 15.268 49.204 95.5 4,822 10.42 11.617 656
100,000 29.606 2.053 11.057 36.538 96.5 9,612 10.60 9.494 676
200,000 29.240 1.393 6.709 22.652 96.3 18,611 11.25 5.867 677
500,000 29.045 0.857 3.302 11.314 96.3 44,391 12.30 2.285 678

1,000,000 28.963 0.590 2.090 7.202 96.7 80,608 14.22 1.210 680

0.99 44.998 50,000 49.730 8.917 28.705 51.357 92.6 4,907 10.10 27.367 653
100,000 47.619 5.882 20.448 40.031 93.9 9,821 10.21 18.106 668
200,000 46.054 3.691 15.032 31.680 94.9 19,583 10.31 11.375 668
500,000 45.416 2.164 10.379 22.538 95.8 47,266 10.98 8.282 669

1,000,000 45.131 1.490 6.894 15.132 95.2 92,147 11.46 5.667 670

0.995 51.930 50,000 57.240 11.541 36.435 55.529 90.1 4,924 10.04 34.815 661
100,000 55.654 8.615 27.125 43.841 91.4 9,880 10.09 26.090 676
200,000 53.680 5.549 19.006 33.343 92.5 19,636 10.25 16.403 676
500,000 52.644 3.186 13.465 25.022 95.2 48,511 10.49 10.124 676

1,000,000 52.155 2.180 10.277 19.437 95.7 94,553 10.99 7.988 677
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Figure 5.5: Plots of the estimates for CI relative precision and coverage probability for the
M/M/1 waiting-time process from Table 5.7.
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Table 5.8: Comparison between FQUEST and SQSTS (in italic typeface) without a CI precision requirement for the M/M/1 waiting-time
process in Section 5.3.3 with traffic intensity 0.9 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST)
and 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.3 2.513 609,000 2.520 0.052 0.167 6.639 97.4 44,317 0.067
609,093 2.518 0.055 0.150 5.974 96.3 37,483 0.043

0.5 5.878 499,000 5.894 0.114 0.394 6.685 97.2 37,796 0.175
498,777 5.894 0.124 0.348 5.901 96.0 30,694 0.129

0.7 10.986 442,000 11.016 0.234 0.816 7.397 97.5 34,744 0.390
442,498 11.030 0.291 0.808 7.277 96.0 27,231 0.595

0.9 21.972 358,000 22.089 0.660 2.341 10.568 97.1 30,795 1.415
357,785 22.008 0.717 1.948 8.827 95.3 22,018 0.735

0.95 28.904 379,000 29.081 1.001 4.080 13.929 96.3 33,988 3.045
378,815 28.879 1.031 2.634 9.088 93.7 23,312 0.885

0.99 44.998 2,472,000 45.052 0.935 3.494 7.729 96.9 212,102 2.402
2,471,614 44.894 0.983 2.472 5.498 93.8 152,099 0.690

0.995 51.930 2,862,000 51.965 1.226 5.109 9.774 96.0 256,190 4.113
2,861,834 51.777 1.262 3.128 6.027 92.7 176,113 0.875
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Table 5.9: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the M/M/1 waiting-time process in
Section 5.3.3 with traffic intensity 0.8 based on 1000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.3 0.668 50,000 0.667 0.044 0.160 24.030 97.3 4,098 13.49 0.080 1,002
100,000 0.669 0.030 0.105 15.774 96.8 7,431 15.45 0.051 1,950
200,000 0.669 0.021 0.071 10.582 97.3 13,665 17.37 0.031 2,460
500,000 0.669 0.013 0.042 6.348 97.1 31,526 19.25 0.015 2,461

1,000,000 0.668 0.010 0.030 4.429 96.9 62,711 19.48 0.009 2,463

0.5 2.350 50,000 2.348 0.090 0.335 14.223 96.9 4,099 13.37 0.180 986
100,000 2.352 0.062 0.215 9.149 96.9 7,388 15.52 0.100 1,897
200,000 2.352 0.044 0.143 6.070 97.3 13,807 17.20 0.059 2,336
500,000 2.352 0.028 0.085 3.626 97.2 31,159 19.32 0.026 2,338

1,000,000 2.350 0.020 0.060 2.545 96.6 61,917 19.72 0.019 2,340

0.7 4.904 50,000 4.905 0.173 0.658 13.368 97.1 4,170 13.08 0.401 880
100,000 4.910 0.120 0.418 8.497 97.2 7,548 15.13 0.208 1,553
200,000 4.909 0.083 0.276 5.623 97.9 14,031 16.93 0.120 1,881
500,000 4.908 0.052 0.166 3.378 97.7 32,139 18.77 0.063 1,883

1,000,000 4.905 0.038 0.113 2.304 97.8 62,625 19.47 0.033 1,885

0.9 10.397 50,000 10.431 0.416 1.784 17.005 96.5 4,437 11.95 1.289 628
100,000 10.428 0.288 1.108 10.592 96.8 8,369 13.37 0.667 667
200,000 10.415 0.206 0.702 6.730 96.7 15,466 15.04 0.367 673
500,000 10.408 0.129 0.404 3.880 96.6 34,019 17.68 0.162 676

1,000,000 10.400 0.094 0.277 2.661 96.7 64,571 18.84 0.099 677

0.95 13.863 50,000 13.922 0.638 3.064 21.803 96.6 4,585 11.37 2.302 604
100,000 13.914 0.442 1.916 13.691 97.0 8,806 12.35 1.306 612
200,000 13.886 0.321 1.140 8.186 96.8 16,442 13.82 0.650 613
500,000 13.879 0.199 0.641 4.615 96.4 35,872 16.70 0.293 616

1,000,000 13.868 0.146 0.435 3.137 96.3 66,674 18.22 0.163 617

0.99 21.910 50,000 22.107 1.607 6.700 29.648 94.9 4,827 10.43 4.864 602
100,000 22.061 1.129 5.151 23.043 95.4 9,537 10.74 3.801 607
200,000 21.972 0.792 3.546 16.019 95.7 18,488 11.45 2.708 608
500,000 21.949 0.498 1.794 8.152 96.1 42,812 12.93 1.103 610

1,000,000 21.918 0.344 1.209 5.509 96.3 79,373 14.65 0.670 611

0.995 25.376 50,000 25.630 2.317 8.272 31.061 93.3 4,888 10.20 6.109 599
100,000 25.581 1.614 6.503 24.989 93.7 9,711 10.43 4.507 603
200,000 25.470 1.143 5.137 19.937 95.2 19,066 10.80 3.833 604
500,000 25.435 0.714 2.946 11.532 95.4 45,271 11.88 2.147 605

1,000,000 25.388 0.492 1.895 7.441 95.6 85,392 13.04 1.212 607
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Figure 5.6: Plots of the estimates for CI relative precision and coverage probability for the
M/M/1 waiting-time process from Table 5.9.
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Table 5.10: Comparison between FQUEST and SQSTS (in italic typeface) without a CI precision requirement for the M/M/1 waiting-time
process in Section 5.3.3 with traffic intensity 0.8 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST)
and 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.3 0.668 799,000 0.668 0.011 0.033 4.908 97.2 50,685 0.010
798,681 0.668 0.012 0.030 4.559 95.8 49,150 0.008

0.5 2.350 760,000 2.351 0.022 0.069 2.936 96.7 46,032 0.022
759,669 2.352 0.025 0.064 2.728 96.1 46,749 0.018

0.7 4.904 725,000 4.907 0.044 0.135 2.754 97.2 45,462 0.044
725,428 4.908 0.048 0.126 2.561 96.6 44,642 0.036

0.9 10.397 620,000 10.407 0.119 0.361 3.463 96.9 42,313 0.138
619,642 10.412 0.140 0.358 3.432 95.3 38,132 0.197

0.95 13.863 546,000 13.876 0.192 0.616 4.436 97.1 39,395 0.287
546,450 13.871 0.243 0.626 4.509 94.9 33,628 0.303

0.99 21.910 4,013,000 21.917 0.177 0.541 2.468 96.9 274,623 0.238
4,012,767 21.922 0.195 0.527 2.402 95.2 246,940 0.254

0.995 25.376 3,361,000 25.378 0.272 0.896 3.529 96.1 250,979 0.478
3,361,373 25.381 0.321 0.826 3.250 94.9 206,854 0.328
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Table 5.11: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the M/H2/1 waiting-time process in
Section 5.3.4 based on 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.3 0.669 50,000 0.675 0.086 0.616 90.834 98.8 4,861 10.26 0.387 615
100,000 0.676 0.062 0.334 49.245 99.0 9,591 10.61 0.203 620
200,000 0.674 0.043 0.188 27.839 98.0 17,994 11.87 0.105 622
500,000 0.671 0.027 0.096 14.382 97.8 39,649 14.52 0.043 625

1,000,000 0.670 0.019 0.062 9.311 97.6 71,368 16.79 0.026 626

0.5 3.847 50,000 3.854 0.316 1.472 38.055 97.9 4,621 11.17 0.918 666
100,000 3.865 0.228 0.901 23.229 97.7 8,807 12.20 0.517 682
200,000 3.864 0.161 0.557 14.412 97.0 15,773 14.51 0.275 685
500,000 3.853 0.100 0.316 8.206 97.0 35,000 17.17 0.127 687

1,000,000 3.851 0.072 0.217 5.631 97.0 65,682 18.50 0.080 687

0.7 9.606 50,000 9.603 0.601 2.762 28.587 96.3 4,563 11.42 1.874 680
100,000 9.631 0.432 1.742 18.024 97.3 8,639 12.56 1.077 710
200,000 9.634 0.306 1.058 10.957 96.8 15,751 14.52 0.536 712
500,000 9.618 0.193 0.609 6.328 97.6 35,249 16.95 0.247 714

1,000,000 9.613 0.139 0.411 4.278 97.1 66,149 18.30 0.142 715

0.9 22.011 50,000 22.013 1.468 7.123 32.021 95.2 4,674 10.96 5.626 663
100,000 22.039 1.044 4.575 20.623 95.6 8,934 12.01 3.526 689
200,000 22.041 0.734 2.750 12.434 96.4 16,754 13.31 1.739 690
500,000 22.019 0.469 1.496 6.788 95.4 37,574 15.69 0.740 693

1,000,000 22.025 0.341 1.012 4.595 96.3 70,256 16.94 0.431 693

0.95 29.837 50,000 29.873 2.266 10.388 34.251 94.2 4,776 10.60 7.812 651
100,000 29.900 1.630 7.716 25.467 94.7 9,268 11.27 6.178 667
200,000 29.880 1.143 4.609 15.310 95.7 17,764 12.16 3.464 669
500,000 29.844 0.726 2.468 8.252 95.6 40,734 14.13 1.410 670

1,000,000 29.860 0.520 1.663 5.568 95.7 73,636 16.10 0.867 672

0.99 48.010 50,000 48.090 5.432 17.728 35.163 88.7 4,909 10.09 13.143 644
100,000 48.178 3.934 14.617 29.619 91.4 9,718 10.39 10.276 653
200,000 48.060 2.825 11.495 23.602 93.1 19,185 10.72 8.237 653
500,000 48.029 1.792 7.613 15.726 93.5 46,407 11.38 5.892 654

1,000,000 48.092 1.261 4.789 9.918 95.3 87,155 12.62 3.404 655

0.995 55.837 50,000 55.517 7.327 22.459 37.773 84.9 4,918 10.06 18.149 638
100,000 55.962 5.523 17.943 30.710 88.4 9,811 10.23 13.492 645
200,000 55.854 4.033 14.261 25.006 90.6 19,548 10.35 9.880 645
500,000 55.893 2.592 10.788 19.104 93.8 47,938 10.70 7.801 645

1,000,000 55.983 1.819 7.478 13.275 94.8 91,968 11.60 5.629 646
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Figure 5.7: Plots of the estimates for CI relative precision and coverage probability for the
M/H2/1 waiting-time process from Table 5.11.
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Table 5.12: Comparison between FQUEST and SQSTS (in italic typeface) without a CI precision requirement for the M/H2/1 waiting-time
process in Section 5.3.4 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST) and 1,000 independent
replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.3 0.669 368,000 0.672 0.031 0.120 17.899 97.8 30,289 0.063
368,063 0.672 0.032 0.094 13.973 96.0 22,650 0.027

0.5 3.847 261,000 3.861 0.138 0.473 12.228 96.4 20,170 0.223
261,001 3.860 0.150 0.399 10.349 94.6 16,062 0.128

0.7 9.606 238,000 9.633 0.281 0.948 9.826 96.6 18,517 0.435
237,598 9.624 0.326 0.868 8.998 95.5 14,621 0.375

0.9 22.011 251,000 22.038 0.663 2.330 10.555 97.0 20,864 1.361
250,613 21.995 0.736 1.895 8.595 95.0 15,422 0.622

0.95 29.837 314,000 29.852 0.912 3.227 10.768 95.8 26,459 2.080
314,152 29.760 0.972 2.491 8.355 94.0 19,332 0.723

0.99 48.010 1,996,000 48.054 0.898 2.946 6.121 95.7 161,440 1.647
1,996,451 47.993 0.939 2.371 4.936 94.9 122,859 0.649

0.995 55.837 2,570,000 55.894 1.117 3.980 7.099 95.6 215,430 2.658
2,570,337 55.823 1.149 2.924 5.229 94.5 158,175 0.773
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Table 5.13: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the M/M/1/LIFO waiting-time
process in Section 5.3.5 based on 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.3 0.113 50,000 0.113 0.005 0.017 15.080 97.7 3,148 19.13 0.005 615
100,000 0.113 0.004 0.012 10.499 97.6 6,143 19.62 0.004 622
200,000 0.113 0.003 0.008 7.240 97.1 12,390 19.63 0.002 621
500,000 0.113 0.002 0.005 4.537 98.1 30,089 20.25 0.002 622

1,000,000 0.113 0.001 0.004 3.119 97.4 61,709 19.75 0.001 622

0.5 0.469 50,000 0.468 0.009 0.030 6.493 97.9 3,155 19.13 0.009 606
100,000 0.469 0.006 0.021 4.416 97.5 6,177 19.59 0.006 610
200,000 0.469 0.005 0.014 3.071 97.3 12,270 19.80 0.004 610
500,000 0.469 0.003 0.009 1.943 98.2 30,846 20.00 0.003 610

1,000,000 0.469 0.002 0.006 1.314 97.4 59,793 20.39 0.002 610

0.7 1.358 50,000 1.357 0.024 0.080 5.879 97.9 3,277 18.33 0.025 610
100,000 1.358 0.017 0.055 4.022 96.8 6,399 18.99 0.017 612
200,000 1.358 0.012 0.038 2.792 96.8 12,646 19.22 0.012 613
500,000 1.358 0.008 0.024 1.752 98.1 30,382 20.25 0.008 613

1,000,000 1.358 0.005 0.016 1.213 97.2 61,895 19.66 0.005 613

0.9 6.718 50,000 6.713 0.174 0.654 9.743 98.5 3,860 14.84 0.269 593
100,000 6.724 0.126 0.428 6.367 98.1 6,924 17.16 0.167 598
200,000 6.724 0.089 0.290 4.312 97.4 13,214 18.47 0.105 598
500,000 6.722 0.055 0.176 2.617 98.0 31,029 19.54 0.056 600

1,000,000 6.718 0.039 0.123 1.825 97.5 61,393 19.88 0.040 600

0.95 14.405 50,000 14.395 0.481 1.931 13.403 99.0 4,117 13.46 0.885 578
100,000 14.420 0.350 1.252 8.670 98.2 7,549 15.37 0.589 583
200,000 14.426 0.246 0.826 5.728 97.4 13,573 17.74 0.338 585
500,000 14.416 0.152 0.498 3.452 97.9 32,257 18.92 0.177 585

1,000,000 14.408 0.111 0.339 2.354 96.6 60,983 20.09 0.110 587

0.99 49.582 50,000 49.500 2.685 13.716 27.565 98.6 4,571 11.39 8.233 592
100,000 49.680 1.905 8.358 16.783 98.6 8,634 12.62 4.515 598
200,000 49.656 1.347 5.186 10.438 98.1 16,034 14.17 2.398 599
500,000 49.588 0.859 2.895 5.834 97.4 35,027 17.14 1.120 602

1,000,000 49.567 0.607 2.003 4.039 97.8 66,015 18.35 0.729 603

0.995 71.844 50,000 71.632 4.700 28.478 39.366 98.9 4,772 10.65 19.253 586
100,000 72.028 3.371 17.138 23.697 98.8 9,089 11.67 10.416 595
200,000 71.932 2.390 10.005 13.894 98.8 16,936 13.08 5.264 597
500,000 71.876 1.512 5.402 7.510 98.0 37,375 15.69 2.311 599

1,000,000 71.835 1.080 3.487 4.853 97.8 67,535 17.72 1.233 601
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Figure 5.8: Plots of the estimates for CI relative precision and coverage probability for the
M/M/1/LIFO waiting-time process from Table 5.13.
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Table 5.14: Comparison between FQUEST and SQSTS (in italic typeface) without a CI precision requirement for the M/M/1/LIFO
waiting-time process in Section 5.3.5 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST) and 1,000
independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.3 0.113 59,000 0.113 0.005 0.016 13.939 97.7 3,683 0.005
58,757 0.113 0.005 0.013 11.504 95.0 3,616 0.003

0.5 0.469 55,000 0.468 0.009 0.029 6.167 97.7 3,463 0.009
54,842 0.468 0.009 0.024 5.102 94.5 3,375 0.005

0.7 1.358 72,000 1.357 0.020 0.066 4.837 97.7 4,732 0.022
71,716 1.357 0.022 0.056 4.120 94.7 4,413 0.014

0.9 6.718 122,000 6.728 0.116 0.381 5.659 97.6 8,319 0.138
122,251 6.717 0.125 0.324 4.829 95.9 7,523 0.090

0.95 14.405 161,000 14.427 0.277 0.938 6.498 97.4 11,264 0.387
161,386 14.405 0.292 0.773 5.366 95.8 9,931 0.212

0.99 49.582 732,000 49.577 0.734 2.361 4.762 96.9 48,807 0.926
732,442 49.594 0.795 2.015 4.062 95.6 45,073 0.540

0.995 71.844 914,000 71.867 1.142 3.770 5.243 97.5 63,322 1.454
913,998 71.871 1.218 3.186 4.430 95.1 56,246 0.894
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Table 5.15: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the M/M/1/M/1 total waiting-time
process in Section 5.3.6 based on 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.3 2.748 50,000 2.745 0.092 0.335 12.203 97.4 4,065 13.80 0.174 626
100,000 2.748 0.065 0.221 8.026 97.1 7,450 15.69 0.104 637
200,000 2.749 0.045 0.144 5.236 95.2 13,430 17.97 0.058 639
500,000 2.749 0.030 0.086 3.121 96.0 31,238 19.37 0.027 640

1,000,000 2.748 0.021 0.062 2.254 96.0 62,833 19.46 0.023 639

0.5 5.079 50,000 5.075 0.145 0.521 10.264 97.1 4,035 13.85 0.269 641
100,000 5.080 0.103 0.346 6.810 96.7 7,361 15.85 0.163 651
200,000 5.082 0.072 0.232 4.571 96.5 13,647 17.51 0.094 653
500,000 5.082 0.047 0.141 2.775 96.1 32,472 18.67 0.047 653

1,000,000 5.080 0.034 0.101 1.981 97.0 63,327 19.32 0.038 653

0.7 8.126 50,000 8.119 0.223 0.844 10.383 97.1 4,051 13.83 0.483 641
100,000 8.129 0.164 0.563 6.920 96.7 7,536 15.53 0.287 651
200,000 8.133 0.115 0.379 4.655 96.3 13,824 17.50 0.181 653
500,000 8.131 0.075 0.224 2.759 96.3 31,896 18.98 0.076 655

1,000,000 8.128 0.053 0.159 1.954 97.0 62,403 19.56 0.052 654

0.9 13.931 50,000 13.929 0.468 1.900 13.577 95.9 4,308 12.61 1.305 645
100,000 13.941 0.341 1.164 8.329 96.6 7,971 14.23 0.696 660
200,000 13.939 0.236 0.780 5.586 96.6 15,031 15.55 0.382 661
500,000 13.933 0.152 0.470 3.372 95.0 33,091 18.25 0.207 663

1,000,000 13.931 0.111 0.322 2.314 96.6 63,294 19.12 0.125 664

0.95 17.349 50,000 17.344 0.681 2.966 16.990 95.1 4,541 11.58 2.164 632
100,000 17.362 0.495 1.802 10.328 96.3 8,564 12.79 1.205 645
200,000 17.351 0.351 1.188 6.833 96.1 16,023 14.31 0.690 646
500,000 17.348 0.222 0.690 3.971 94.9 35,396 16.87 0.333 649

1,000,000 17.346 0.164 0.478 2.756 96.9 66,141 18.37 0.206 650

0.99 24.928 50,000 24.903 1.536 5.555 21.919 91.9 4,834 10.37 3.696 623
100,000 24.924 1.111 4.422 17.527 94.1 9,549 10.72 3.142 631
200,000 24.920 0.810 3.183 12.670 94.2 18,214 11.74 2.453 632
500,000 24.920 0.510 1.831 7.324 94.7 42,380 13.14 1.262 634

1,000,000 24.918 0.366 1.167 4.676 95.6 78,415 14.79 0.654 636

0.995 28.096 50,000 27.966 2.124 6.814 23.574 87.9 4,858 10.31 4.858 621
100,000 28.068 1.566 5.477 19.163 92.5 9,729 10.36 3.748 626
200,000 28.071 1.145 4.291 15.131 92.0 19,038 10.83 3.053 627
500,000 28.075 0.704 2.772 9.823 93.8 44,989 12.00 2.074 628

1,000,000 28.081 0.503 1.813 6.441 95.9 84,986 13.23 1.222 629
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Figure 5.9: Plots of the estimates for CI relative precision and coverage probability for the
M/M/1/M/1 total waiting-time process from Table 5.15.
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Table 5.16: Comparison between FQUEST and SQSTS (in italic typeface) without a CI precision requirement for the M/M/1/M/1 total
waiting-time process in Section 5.3.6 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST) and 1,000
independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.3 2.748 150,000 2.749 0.053 0.164 5.966 96.6 10,564 0.057
149,724 2.750 0.058 0.152 5.544 95.3 9,214 0.045

0.5 5.079 137,000 5.084 0.088 0.288 5.656 97.0 9,553 0.129
137,135 5.083 0.098 0.260 5.113 95.0 8,439 0.081

0.7 8.126 130,000 8.137 0.144 0.464 5.697 96.6 8,923 0.213
129,921 8.133 0.152 0.438 5.379 96.1 7,995 0.150

0.9 13.931 167,000 13.940 0.263 0.882 6.314 95.8 12,659 0.513
166,906 13.931 0.288 0.754 5.407 94.8 10,271 0.226

0.95 17.349 222,000 17.350 0.332 1.122 6.459 96.1 17,475 0.655
222,008 17.328 0.351 0.917 5.290 95.4 13,662 0.255

0.99 24.928 1,489,000 24.924 0.297 0.934 3.745 95.6 113,373 0.495
1,489,131 24.913 0.319 0.788 3.161 95.4 91,639 0.208

0.995 28.096 1,929,000 28.090 0.351 1.186 4.218 95.9 154,282 0.665
1,928,664 28.077 0.384 0.943 3.355 93.4 118,687 0.237
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Table 5.17: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the response-time process in the
Central Server Model 3 in Section 5.3.7 for 𝑝 ∈ {0.3, 0.5, 0.7, 0.8, 0.85, 0.87, 0.89} based on 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.3 7.078 50,000 7.090 0.190 0.533 7.531 95.2 3,168 18.84 0.174 662
100,000 7.095 0.137 0.387 5.459 94.8 6,133 19.70 0.143 679
200,000 7.092 0.095 0.276 3.898 95.7 12,779 19.10 0.094 678
500,000 7.090 0.059 0.174 2.452 95.8 30,456 20.02 0.054 680

1,000,000 7.087 0.043 0.123 1.732 96.0 61,169 19.87 0.040 679

0.5 10.771 50,000 10.783 0.211 0.567 5.265 94.0 2,990 20.09 0.178 660
100,000 10.789 0.153 0.414 3.835 93.8 5,930 20.31 0.146 674
200,000 10.786 0.106 0.302 2.802 94.9 12,273 19.83 0.109 674
500,000 10.785 0.066 0.193 1.787 95.9 30,929 19.83 0.058 674

1,000,000 10.782 0.047 0.136 1.265 95.7 61,396 19.92 0.043 674

0.7 15.364 50,000 15.375 0.204 0.584 3.798 95.1 3,321 18.00 0.220 645
100,000 15.381 0.145 0.417 2.714 95.0 6,207 19.32 0.158 654
200,000 15.379 0.102 0.297 1.933 96.1 12,423 19.59 0.113 654
500,000 15.379 0.064 0.188 1.223 95.8 31,213 19.60 0.061 654

1,000,000 15.376 0.046 0.131 0.851 95.9 61,158 19.98 0.039 654

0.8 18.868 50,000 18.879 0.192 0.570 3.021 96.0 3,516 16.73 0.237 619
100,000 18.884 0.133 0.395 2.093 95.6 6,496 18.43 0.149 626
200,000 18.881 0.094 0.283 1.498 96.3 12,909 18.80 0.114 626
500,000 18.880 0.059 0.177 0.939 96.5 31,837 19.31 0.061 626

1,000,000 18.878 0.042 0.123 0.650 96.6 62,613 19.42 0.043 626

0.85 21.631 50,000 21.642 0.180 0.548 2.532 96.9 3,502 16.87 0.204 585
100,000 21.645 0.125 0.374 1.729 96.2 6,556 18.26 0.124 588
200,000 21.643 0.087 0.259 1.199 96.7 12,283 19.76 0.089 588
500,000 21.640 0.055 0.164 0.760 96.6 31,393 19.33 0.059 588

1,000,000 21.638 0.039 0.116 0.536 96.1 62,836 19.35 0.043 588

0.87 23.236 50,000 23.246 0.176 0.604 2.598 97.6 3,566 16.60 0.215 560
100,000 23.249 0.126 0.385 1.655 97.1 6,387 18.86 0.117 563
200,000 23.245 0.087 0.264 1.136 97.0 12,375 19.61 0.095 562
500,000 23.242 0.053 0.165 0.712 96.8 31,271 19.48 0.057 562

1,000,000 23.240 0.039 0.115 0.495 96.1 63,539 19.18 0.042 563

0.89 25.514 50,000 25.529 0.207 1.009 3.951 98.7 4,453 11.95 0.574 561
100,000 25.527 0.146 0.563 2.206 98.0 7,678 15.09 0.261 566
200,000 25.520 0.103 0.346 1.355 97.2 13,429 18.01 0.136 567
500,000 25.516 0.064 0.206 0.806 97.2 31,801 19.15 0.081 568

1,000,000 25.515 0.046 0.141 0.553 96.9 62,827 19.45 0.054 569
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Figure 5.10: Plots of the estimates for CI relative precision and coverage probability for the
response-time process in the Central Server Model 3 from Table 5.17.
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Table 5.18: Experimental results for FQUEST with regard to point and 95% CI estimation of 𝑦𝑝 for the response-time process in the
Central Server Model 3 in Section 5.3.7 for 𝑝 ∈ {0.9, 0.91, 0.93, 0.95, 0.99, 0.995} based on 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Trunc. Point

0.9 27.181 50,000 27.199 0.280 1.890 6.939 98.8 4,768 10.63 1.234 575
100,000 27.187 0.199 0.946 3.478 99.1 8,931 12.00 0.513 580
200,000 27.179 0.141 0.533 1.960 97.8 16,179 14.07 0.241 582
500,000 27.175 0.085 0.298 1.098 97.0 35,338 16.94 0.132 584

1,000,000 27.175 0.062 0.192 0.708 96.8 65,556 18.53 0.069 586

0.91 29.648 50,000 29.690 0.500 4.411 14.798 99.4 4,899 10.14 2.754 593
100,000 29.656 0.344 2.176 7.323 99.2 9,615 10.54 1.362 597
200,000 29.639 0.241 1.181 3.979 98.4 18,229 11.65 0.653 598
500,000 29.632 0.148 0.589 1.987 97.8 40,609 14.12 0.290 600

1,000,000 29.633 0.108 0.366 1.234 97.6 72,436 16.31 0.152 603

0.93 44.766 50,000 44.883 2.778 8.988 20.170 94.4 4,480 11.70 4.757 615
100,000 44.691 1.988 5.955 13.376 95.3 8,425 13.05 3.069 624
200,000 44.640 1.381 4.139 9.276 94.3 15,441 14.88 1.849 626
500,000 44.636 0.848 2.511 5.627 94.9 33,600 17.89 0.978 629

1,000,000 44.658 0.598 1.783 3.993 96.4 66,094 18.27 0.676 629

0.95 74.481 50,000 74.440 3.387 8.725 11.739 91.6 3,246 18.30 3.404 632
100,000 74.305 2.411 6.444 8.684 93.1 6,213 19.56 2.467 638
200,000 74.300 1.685 4.692 6.318 95.0 12,572 19.33 1.619 638
500,000 74.340 1.054 3.018 4.061 95.6 30,440 20.18 0.957 639

1,000,000 74.381 0.734 2.167 2.914 95.6 62,433 19.59 0.666 638

0.99 166.528 50,000 166.402 4.300 13.277 7.976 95.0 3,458 17.23 5.676 636
100,000 166.218 3.101 9.220 5.547 96.0 6,519 18.67 3.643 642
200,000 166.261 2.261 6.529 3.926 96.0 12,843 18.95 2.532 643
500,000 166.374 1.369 4.088 2.457 96.3 31,644 19.16 1.414 644

1,000,000 166.441 0.973 2.917 1.753 95.9 60,817 19.98 1.044 644

0.995 196.230 50,000 195.971 5.254 16.823 8.584 95.9 3,838 15.00 7.756 641
100,000 195.898 3.709 11.282 5.761 95.6 7,043 16.99 4.841 651
200,000 195.965 2.654 7.898 4.029 96.4 13,205 18.37 3.247 653
500,000 196.062 1.667 4.864 2.481 95.5 31,418 19.38 1.656 654

1,000,000 196.122 1.172 3.482 1.775 96.1 61,576 19.78 1.324 654
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Figure 5.11: Plots of the estimates for CI relative precision and coverage probability for the
response-time process in the Central Server Model 3 from Table 5.18.
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Table 5.19: Comparison between FQUEST and SQSTS (in italic typeface) without a CI
precision requirement for the response-time process in the Central Server Model 3 in Section
5.3.7 based on approximately equal sample sizes (rounded to the nearest 1,000 for FQUEST)
and 1,000 independent replications.

Point Avg. 95% Avg. 95% CI Avg. 95% St. Dev.
𝑝 𝑦𝑝 𝑁 Est. Avg. |Bias| CI HL rel. prec. (%) CI cov. (%) 𝑚 HL

0.3 7.078 65,000 7.092 0.168 0.474 6.691 94.4 4,111 0.150
64,549 7.092 0.178 0.435 6.140 93.0 3,972 0.099

0.5 10.771 53,000 10.780 0.205 0.560 5.200 94.8 3,226 0.190
52,532 10.784 0.222 0.527 4.891 93.0 3,233 0.106

0.7 15.364 71,000 15.381 0.173 0.494 3.211 95.8 4,589 0.183
70,764 15.374 0.188 0.470 3.061 93.7 4,355 0.117

0.8 18.868 91,000 18.885 0.142 0.422 2.233 94.8 6,122 0.166
90,868 18.884 0.159 0.399 2.114 93.6 5,592 0.117

0.85 21.631 95,000 21.645 0.129 0.384 1.774 96.1 6,184 0.132
94,626 21.646 0.138 0.364 1.683 95.3 5,823 0.105

0.87 23.236 123,000 23.247 0.111 0.340 1.461 97.5 7,883 0.099
122,751 23.249 0.115 0.309 1.329 95.9 7,554 0.072

0.89 25.514 257,000 25.520 0.090 0.300 1.177 97.2 17,123 0.125
256,720 25.517 0.095 0.251 0.985 96.1 15,798 0.053

0.9 27.181 348,000 27.179 0.104 0.368 1.352 97.6 25,468 0.153
347,722 27.180 0.108 0.300 1.102 96.3 21,398 0.079

0.91 29.648 366,000 29.636 0.175 0.724 2.441 98.1 31,028 0.359
366,316 29.648 0.188 0.576 1.940 96.4 22,543 0.225

0.93 44.766 114,000 44.677 1.841 5.724 12.845 95.6 9,553 2.874
114,271 45.030 2.041 4.594 10.163 92.8 7,032 1.322

0.95 74.481 67,000 74.373 2.958 7.631 10.282 93.4 4,222 2.687
67,176 74.523 3.052 7.323 9.838 93.7 4,134 1.620

0.99 166.528 440,000 166.360 1.434 4.339 2.609 97.3 27,811 1.347
440,432 166.345 1.562 4.041 2.430 94.2 27,104 0.903

0.995 196.230 504,000 196.071 1.658 4.880 2.489 95.9 31,770 1.804
504,081 196.026 1.781 4.546 2.319 95.5 31,020 1.089

220



Figure 5.12: Frequency of Heuristic CI in Step [10] of FQUEST for selected ex-
amples. The results are based on 1,000 independent replications with sample sizes
𝑁 ∈ {50,000, 100,000, 200,000, 500,000, 1,000,000}.
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CHAPTER 6

FIRQUEST: A FIXED-SAMPLE-SIZE METHOD FOR ESTIMATING

STEADY-STATE QUANTILES BASED ON INDEPENDENT REPLICATIONS

Steady-state analysis methods based on a single simulation run such as SQSTS in Chapter

4 and FQUEST in Chapter 5 are convenient since they usually diminish the effects of

initialization bias by truncating only an initial portion of the sample. Unfortunately, the

potential issues associated with pronounced autocorrelation in the underlying output process

may require an excessively large sample path to attenuate this correlation effect and yield

reliable CIs for the performance measure of interest. On the other hand, steady-state

estimation methods based on independent replications are convenient and can potentially

tackle these correlation issues. For practical purposes, the need for such tools is further

enhanced by the fact that multiple replications can be made simultaneously on different

cores/threads within a single computer or on different computers on a network, provided

that the software being used for simulation supports this (Law [4]). On the negative side,

independent replications can induce systematic bias in the replicated point estimates if

insufficient truncation is applied at the onset of each replication, and this systematic bias

can have deleterious effects on the reliability of a CI for a steady-state measure; see Section

6.4 in Fishman [48] and Alexopoulos and Goldsman [47] with regard to the estimation of

the steady-state mean. Further, for fixed-sample-size procedures, one has to decide on the

number of replications and the length of each replication.

In this chapter, we present and assess FIRQUEST, the first automated fixed-sample-size

procedure for computing CIs for steady-state quantiles based on independent replications.

The user provides a dataset comprised of 𝑅 ≥ 2 sample paths of finite length that are

generated by independent replications, and specifies the required quantile and nominal

coverage probability of the anticipated CI. We describe FIRQUEST assuming that each
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replication has the same length (number of observations) 𝑛, but it can also handle situations,

in which the replications have different lengths. We will revisit this issue in Section 6.3

below. FIRQUEST is essentially an extension of the FQUEST procedure in Chapter 5

with adjustments to handle replicate sample paths and more-aggressive steps to remove any

potential warm-up effects that can induce systematic bias across replicate estimates. The

foundations for the statistical tests are laid out in an extension of Theorem 2.3.4 for multiple

replications and in Section 6.1 below.

The remainder of this chapter is organized as follows. Section 6.1 extends results

from Chapter 2 and presents (approximate) CIs for 𝑦𝑝 computed from independent batched

replications. Section 6.2 presents and describes an approximate CI from the replicate BQEs

and the full-sample estimator using adjustments for residual skewness in the BQEs that

FIRQUEST may incorporate in its final stage. Section 6.3 contains a formal algorithmic

statement of FIRQUEST. Section 6.4 contains an experimental performance evaluation of

FIRQUEST using a test bed of seven challenging processes (one of them with two sets

of parameters, and another with three sets of parameters) for a total of ten experiments as

well as an informal comparison of FIRQUEST against the FQUEST procedure. Section 6.5

concludes with a short summary of the contributions and performance of FIRQUEST.

6.1 Preliminaries

In this section we form the foundations for the statistical tests employed by FIRQUEST

as well as approximate CIs for the quantile 𝑦𝑝 under study. For simplicity, assume that

we have generated 𝑅 i.i.d. stationary sample paths of the process {𝑌𝑘 : 𝑘 ≥ 1}, each of

size 𝑏𝑚, so that 𝑁 = 𝑅𝑏𝑚. We split each replicate path in 𝑏 nonoverlapping batches of

size 𝑚 each. From each batch we compute the respective empirical quantile and weighted

signed area. For the remainder of this chapter, we denote the replicate batched quantile

estimator (RBQE) as
{
�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏

}
and the (replicate) signed areas as

{𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏}, where the subscript 𝑗 in �̂�𝑝 ( 𝑗 , 𝑚) or 𝐴𝑝 (𝑤; 𝑗 , 𝑚) denotes
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the 𝑖th RBQE or signed area, respectively, from replication 𝑟 + 1 with 𝑟 = ⌊ 𝑗/𝑏⌋ and

𝑖 ≡ 𝑗 − 𝑟𝑏. For example, if 𝑏 = 20, �̂�𝑝 (43, 𝑚) is the 3rd RBQE from replication 3. Also, let

�̃�𝑝 (𝑁) be the empirical quantile from the entire dataset comprised of the 𝑅 sample paths.

We define the replicated batched STS area estimator for 𝜎2
𝑝 as

A𝑝 (𝑤; 𝑅, 𝑏, 𝑚) ≡ (𝑅𝑏)−1
𝑅𝑏∑︁
𝑗=1

𝐴2
𝑝 (𝑤; 𝑗 , 𝑚). (6.1)

We also define the average RBQE

�̂�𝑝 (𝑅, 𝑏, 𝑚) ≡ (𝑅𝑏)−1
𝑅𝑏∑︁
𝑗=1

�̂�𝑝 ( 𝑗 , 𝑚) (6.2)

and the “average” squared deviations of the RBQEs away from the average RBQE

�̂�𝑝 (𝑅, 𝑏, 𝑚) and the full-sample quantile estimator �̃�𝑝 (𝑁), respectively,

𝑆2
𝑝 (𝑅, 𝑏, 𝑚) ≡ (𝑅𝑏 − 1)−1

𝑅𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̂�𝑝 (𝑅, 𝑏, 𝑚)

]2
, and (6.3)

𝑆2
𝑝 (𝑅, 𝑏, 𝑚) ≡ (𝑅𝑏 − 1)−1

𝑅𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̃�𝑝 (𝑁)

]2
. (6.4)

Finally, we let

N𝑝 (𝑅, 𝑏, 𝑚) ≡ 𝑚𝑆2
𝑝 (𝑅, 𝑏, 𝑚), and (6.5)

Ñ𝑝 (𝑅, 𝑏, 𝑚) ≡ 𝑚𝑆2
𝑝 (𝑅, 𝑏, 𝑚), (6.6)

and we define the combined estimators of the variance parameter 𝜎2
𝑝

V𝑝 (𝑤; 𝑅, 𝑏, 𝑚) ≡
𝑅𝑏A𝑝 (𝑤; 𝑅, 𝑏, 𝑚) + (𝑅𝑏 − 1)N𝑝 (𝑅, 𝑏, 𝑚)

2𝑅𝑏 − 1
, and (6.7)

Ṽ𝑝 (𝑤; 𝑅, 𝑏, 𝑚) ≡
𝑅𝑏A𝑝 (𝑤; 𝑅, 𝑏, 𝑚) + (𝑅𝑏 − 1)Ñ𝑝 (𝑅, 𝑏, 𝑚)

2𝑅𝑏 − 1
. (6.8)
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Under the assumptions of Theorem 2.3.1, we can easily show that

each of the (𝑅𝑏)-dimensional random vectors
[
�̂�𝑝 (1, 𝑚), . . . , �̂�𝑝 (𝑅𝑏, 𝑚)

]T and[
𝐴𝑝 (𝑤; 1, 𝑚), . . . , 𝐴𝑝 (𝑤; 𝑅𝑏, 𝑚)

]T converges to a vector of i.i.d. normal r.v.’s as 𝑚 → ∞.

Hence, one can readily see that, for fixed 𝑅 and 𝑏,

A𝑝 (𝑤; 𝑅, 𝑏, 𝑚) =⇒
𝑚→∞

𝜎2
𝑝𝜒

2
𝑅𝑏/(𝑅𝑏).

We postulate that the following 100(1 − 𝛼)% CIs for 𝑦𝑝 are asymptotically valid as

𝑚 →∞ with fixed 𝑅 and 𝑏:

�̃�𝑝 (𝑁) ± 𝑡1−𝛼/2,𝑅𝑏
[
A𝑝 (𝑤; 𝑅, 𝑏, 𝑚)/𝑁

]1/2
, (6.9)

�̂�𝑝 (𝑅, 𝑏, 𝑚) ± 𝑡1−𝛼/2,𝑅𝑏
[
A𝑝 (𝑤; 𝑅, 𝑏, 𝑚)/𝑁

]1/2
, (6.10)

�̃�𝑝 (𝑁) ± 𝑡1−𝛼/2,𝑅𝑏−1
[
Ñ𝑝 (𝑅, 𝑏, 𝑚)/𝑁

]1/2
, (6.11)

�̂�𝑝 (𝑅, 𝑏, 𝑚) ± 𝑡1−𝛼/2,𝑅𝑏−1
[
Ñ𝑝 (𝑅, 𝑏, 𝑚)/𝑁

]1/2
, (6.12)

and

�̃�𝑝 (𝑁) ± 𝑡1−𝛼/2,2𝑅𝑏−1
[
Ṽ𝑝 (𝑤; 𝑅, 𝑏, 𝑚)/𝑁

]1/2
. (6.13)

Remark 6.1.1. The asymptotic validity of CIs for the steady-state mean that are constructed

from replicated batch means and are analogues of Equation (6.11) was established by Argon

and Andradóttir [89].

6.2 An Approximate Skewness-Adjusted Confidence Interval

Similarly to FQUEST, FIRQUEST employs statistical tests to assess the extensions of

asymptotic properties in Equations (2.9) and (2.17) for 𝑅 > 1 replications. When any of the

statistical tests fails and the size of the dataset limits the ability to increase the batch size,

(subject to approval by the user) FIRQUEST may also construct an approximate CI from the

225



RBQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} and the full-sample estimator �̃�𝑝 (𝑁) using adjustments

for residual skewness in the RBQEs. (Since the RBQEs are not computed from a single

time series, we do not perform an adjustment for residual autocorrelation.) Essentially, the

steps below are the same as in Section 5.1, but we skip the parts that correspond to the

correlation-adjustment factor (Willink [88], Tafazzoli et al. [42], Alexopoulos et al. [7]).

Initially, we calculate the sample skewness of the RBQEs

𝐵�̂�𝑝 (𝑅, 𝑏, 𝑚) ≡
𝑅𝑏

(𝑅𝑏 − 1) (𝑅𝑏 − 2)

𝑅𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̂�𝑝 (𝑅, 𝑏, 𝑚)

𝑆𝑝 (𝑅, 𝑏, 𝑚)

]3
,

we compute the skewness-adjustment parameter

𝜗 ≡
𝐵�̂�𝑝 (𝑅, 𝑏, 𝑚)

6
√
𝑅𝑏

,

and define the skewness-adjustment function

𝐺 (Z) ≡


Z if |𝜗 | ≤ 0.001,

[1+6𝜗(Z−𝜗)]1/3−1
2𝜗 if |𝜗 | > 0.001,

for all real Z . Then we set

𝐺1 ≡ 𝐺 (𝑡1−𝛼/2,𝑅𝑏−1)
√︃
𝑆2
𝑝 (𝑅, 𝑏, 𝑚)/(𝑅𝑏), and 𝐺2 ≡ 𝐺 (𝑡𝛼/2,𝑅𝑏−1)

√︃
𝑆2
𝑝 (𝑅, 𝑏, 𝑚)/(𝑅𝑏).

The (asymmetric) skewness-adjusted CI for 𝑦𝑝 is given by

[
min

(
�̃�𝑝 (𝑁) − 𝐺1, �̃�𝑝 (𝑁) − 𝐺2

)
,max

(
�̃�𝑝 (𝑁) − 𝐺1, �̃�𝑝 (𝑁) − 𝐺2

) ]
. (6.14)

We will elaborate more on this adjusted CI in Section 6.3 below.
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6.3 FIRQUEST Algorithm

In this section we present FIRQUEST, the first automated fixed-sample-size procedure for

estimating a steady-state quantile based on independent replications. Figure 6.1 contains

a high-level flowchart of the procedure. FIRQUEST uses the same batching scheme in

each replication, specifically 𝑏 batches of size 𝑚, to execute the statistical tests. At a high

level, similarly to FQUEST, FIRQUEST is comprised of four main blocks. The first block

consists of Steps [0]–[2] which initialize the experimental parameters. The second block

includes Steps [3]–[5] and deals with the potential transient effects in each replication.

At the end of this block we remove the same number of initial observations from every

replication. The third block consists of Steps [6]–[9], which conduct randomness and

normality tests to assess the statistical conformance of each of the replicate signed areas

{𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} and the RBQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} to asymptotic

independence and normality. Finally, the last block consists of Step [10]: If the statistical

tests within the third block are passed, the procedure delivers the CI in Equation (6.13)

based on the combined variance estimator. Otherwise, it potentially delivers a conservative

CI, subject to user approval. The following paragraphs contain a detailed description of

each step of FIRQUEST.

In Step [0], the simulation model or user provides the number of independent replications

𝑅, the fixed size 𝑛 of each replication, the probability 𝑝, and the nominal error probability

𝛼 ∈ (0, 1) for the CI for 𝑦𝑝. Step [1] initializes the experimental parameters. The initial

number of batches is set at 𝑏 = 25 and the initial batch size is set at 𝑚 = 500.

Remark 6.3.1. In Step [3], FIRQUEST performs the randomness test of von Neumann

[43] for every replication independently (i.e., every time we finish with one replication,

we reset the significance level to 0.3, and the batch size 𝑚 to 500) and starts with fewer

batches compared to FQUEST (which initially sets 𝑏 = 50). This change lies in the scope of

allowing FIRQUEST to take more aggressive steps towards removing any potential warm-

227



up effects when the provided sample size for every replication is relatively small. For

example, if the user provides 𝑛 = 20,000 observations per replication, using 𝑏 = 25 and

keeping it constant can result in the removal of up to 800 initial observations from each

replication. Alternatively, using 𝑏 = 50 batches can lead to the the removal of up to 400

initial observations from each replication, which may be too small in some cases.

We also define the array of batch counts 𝒔 for Steps [5]–[9] as a function of the number

of independent replications 𝑅, and we set 𝑞 equal to the number of elements in 𝒔. The

assignment of the elements of 𝒔 is based on the following guidelines: (i) keep the total

number of batches 𝑅𝑏 ≥ 10; (ii) start with at least 16 total number of batches 𝑅𝑏; (iii) use

the same number of batches from every replication; (iv) use at least one batch from every

replication; and (v) if 𝑅 < 33, use 𝑅𝑏 ≤ 66 batches in total. Notice here that 32 batches

typically suffice for effective estimation of a variance parameter (𝜎2
𝑝 in our setting), while

fewer than 10 batches may result in unreliable CIs (see also Section 5.2 of this thesis).

Further, we initialize the counters 𝑙 = 1 and 𝑣 = 1, and set flag = false. At this point

the algorithm sets the weight function that will be used for the calculation of the signed

areas and the STS variance-parameter estimator. Again, for the reasons stated at the start

of Section 4.2, we used the constant weight function 𝑤0 for the experiments in Section 6.4.

The level of significance for the statistical test in Step [3] is set according to the sequence

{𝛽𝜓(ℓ) : ℓ = 1, 2, . . .}, where 𝛽 = 0.3, 𝜓(ℓ) ≡ exp
[
− [(ℓ − 1)\

]
, [ = 0.2, and \ = 2.3.

For the statistical tests in Steps [6]–[9] we fix the significance level at 𝛽. The values of the

parameters 𝛽, [, and \ were chosen after careful experimentation to control the growth of

the batch size and to avoid excessive truncation during Step [5], which can be detrimental

given the sample-size limitation and the fact that FIRQUEST removes the same number of

initial observations from every replication. Notice that on a potential fourth iteration one

has 𝛽𝜓(4) = 0.025, which makes passing the test easier.

Since the sample size 𝑛 for each replication is fixed, it is possible that it is less than

the initial assignment 𝑏𝑚 = 25,000. In this case, Step [2] sets 𝑚 = ⌊𝑛/𝑏⌋, which is the
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largest allowable value for the current batch count 𝑏. Step [3] consists of a loop that tests

for the randomness of the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚)} in each replication computed from

the first 𝑏𝑚 observations (the tail 𝑛 − 𝑏𝑚 observations are ignored, but not discarded)

using a two-sided test based on von Neumann’s ratio (von Neumann [43], Young [83])

with progressively decreasing significance level 𝛽𝜓(ℓ) on iteration ℓ; see Section 4.1 of

this thesis for a detailed discussion of the test statistic when 𝑅 = 1 and its power. If the

randomness test fails, we increase the batch size to
[[
𝑚
√

2
]]

, where [[·]] is the rounding

function to the nearest integer. If the updated sample size exceeds 𝑛, we reset 𝑚 = ⌊𝑛/𝑏⌋.

If the randomness test fails with the largest allowable batch size ⌊𝑛/𝑏⌋ even for one of the

independent replications, FIRQUEST exits Step [3] and moves to Step [4], where it issues

a warning to the user regarding the insufficiency of the length of each replication. Then it

seeks permission from the user to continue with the construction of a CI. We focus on the

signed areas in an attempt to ameliorate the pronounced small-sample bias of the batched

STS area estimator in Equation (6.1) relative to variance estimators computed from RBQEs,

e.g., Ñ𝑝 (𝑅, 𝑏, 𝑚) in Equation (6.6).

If the dataset of every replication passes the randomness test in Step [3] or the user

decides to proceed with the construction of the CI despite the failure of the randomness

test, FIRQUEST calculates 𝑚max, the maximum batch size 𝑚 that was used across the

independent replications in Step [3]. Then in Step [5] FIRQUEST removes the 𝑚max

first observations from every replication, sets the new run length to 𝑛∗ = 𝑛 − 𝑚max, and

reindexes the truncated dataset in each replication. Assuming the successful completion of

Step [3], the (approximate) independence between the first and the remaining signed areas

within every replication indicates that any initialization bias due to warmup effects is mostly

confined to the first batch within every replication. In the worst-case scenario where the

randomness test in Step [3] fails, even for one replication, Step [5] ends up removing ⌊𝑛/𝑏⌋

data points from every replication.

Remark 6.3.2. At this junction, a few comments are in order. We avoid decreasing the batch
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count 𝑏 in Step [3] to avoid reducing significantly the power of von Neumann’s randomness

test (displayed in Section 4.1 of this thesis for 𝑅 = 1). Also the initial batch size is set

at 𝑚 = 500 to address situations where the provided samples have a short transient phase.

For example, if 𝑛 = 500,000, FIRQUEST will remove only 500 data points from every

replication if the randomness test in Step [3] is passed on the first attempt. On the other

hand, if we had started with 25 batches of size 20,000 each (i.e., with all data) in Step [3]

and the randomness test was successful in the first iteration (which is highly likely given that

the randomness test was successful with 𝑚 = 500), the algorithm would end up removing

the excessive number of 20,000 initial observations from every replication.

Step [5] restarts with 𝑏 = 𝑠[1] and 𝑚 = ⌊𝑛∗/𝑏⌋. Notice that we may have to ignore (but

not remove) a few initial observations at the beginning of every replication. We choose the

entries of the vector 𝒔 according to the number of the provided independent replications 𝑅.

In Steps [6]–[9] we conduct the two-sided randomness test of von Neumann [43] and the

one-sided test of Shapiro and Wilk [81] for univariate normality to assess the convergence

of each of the replicate signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} and the RBQEs

{�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} to asymptotic independence and normality. Each of the

Steps [6]–[9] has a very similar structure. First we compute the replicate signed areas

{𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} or the RBQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} and conduct

the pertinent statistical test using the fixed significance level of 𝛽 = 0.3. The significance

level is kept constant and high to avoid passing a test with an inadequately small batch

size leading to unreliable CIs. If the test is passed, FIRQUEST proceeds to the next step;

otherwise, the batch count in each replication decreases to the next element of the array 𝒔.

For example, if 𝑅 = 10 and we fail a test with 3 batches in every replication (30 in total), we

set the batch count to 2 per replication (20 in total), recompute the batch size 𝑚, and ignore

any leftover initial observations at the beginning of each replication. Since 𝑞 is equal to the

number of elements in 𝒔, we can have up to 𝑞 failed attempts to pass any of the statistical

tests in Steps [6]–[9]. If at any point a statistical test fails with 𝑣 = 𝑞, then FIRQUEST skips
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the remaining statistical tests and moves to Step [10].

In Step [10], if all the statistical tests have been passed, FIRQUEST computes the

combined variance estimator Ṽ𝑝 (𝑤; 𝑅, 𝑏, 𝑚) in Equation (6.8) and returns the CI in Equation

(6.13). Otherwise, it issues a warning mentioning that some of the statistical tests failed

(with the significance level of 𝛽 = 0.3) and asks the user for permission to continue with

the construction of a CI for 𝑦𝑝. If the user chooses to continue, then FIRQUEST computes

the quantity

ℎ𝛼,𝑅,𝑏,𝑚 = max
𝑡1−𝛼/2,𝑅𝑏

[
A𝑝 (𝑤; 𝑅, 𝑏, 𝑚)

𝑁∗

]1/2
, 𝑡1−𝛼/2,𝑅𝑏−1

[
Ñ𝑝 (𝑅, 𝑏, 𝑚)

𝑁∗

]1/2 , (6.15)

with 𝑁∗ = 𝑅𝑏𝑚 using Equations (6.1) and (6.6), and constructs two new approximate CIs

with HL ℎ𝛼,𝑅,𝑏,𝑚: the first CI is centered around the full-sample point estimator �̃�𝑝 (𝑁∗)

computed from 𝑁∗ = 𝑅𝑏𝑚 total observations with 𝑛∗ − 𝑏𝑚 initial observations within each

replication ignored, while the second CI is centered around the average RBQE �̂�𝑝 (𝑅, 𝑏, 𝑚)

in Equation (6.2). Then FIRQUEST reports the point estimate �̃�𝑝 (𝑁∗) and the smallest

interval containing both two newly constructed intervals and the skewness-adjusted CI in

Equation (6.14) with sample size 𝑁∗, and stops.

Since FIRQUEST also relies on conservative CIs when one of the statistical tests fail, by

the same reasoning as in Remark 5.2.2, we will ignore the alternative estimator N𝑝 (𝑅, 𝑏, 𝑚)

of𝜎2
𝑝 in Equation (6.5). Further, for the same reasons as in Remark 5.2.3, FIRQUEST avoids

using the respective CIs in Equations (6.9) or (6.11) when a single pair of the statistical

tests in Steps [6]–[9] (i.e., [6]–[7] or [8]–[9]) is passed.

Remark 6.3.3. We present the FIRQUEST algorithm assuming that the user provides the

same run length 𝑛 for every independent replication. However, we can easily modify the

procedure to handle replications with different sample sizes. Specifically, at the beginning

we can calculate the minimum number of observations in a single replication across all

replications 𝑛min and from each replication we consider only the 𝑛min trailing observations.
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For example, if replication 𝑖 contains 𝑛𝑖 observations, we will ignore the initial 𝑛𝑖 − 𝑛min

observations.

Remark 6.3.4. It is important to note that currently FIRQUEST issues a warning to the

user in Step [4] even if the randomness test in Step [3] fails only for one of the indepen-

dent replications. We could modify FIRQUEST to inform the user about the number of

replications that fail the test in Step [3] and if this number is small, the user could allow

FIRQUEST to ignore these replications and continue. However, we should mention that due

to the decreasing significance level in the randomness test of Step [3], if the user provides

a reasonably large dataset for each replication and the randomness test in Step [3] fails for

one replication, most likely, this will be also the case for all supplied replicate paths.

The remarks above will be taken into consideration in the development of an industrial-

strength version of FIRQUEST.

The formal algorithmic statement of FIRQUEST follows. We present the algorithm for

a general weight function 𝑤(·) satisfying Equation (2.12).
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Algorithm FIRQUEST

[0] User-Initialization: Provide a sample from 𝑅 independent replications of size 𝑛 (total

sample size 𝑅𝑛), the probability of the quantile 𝑝, and the error probability 𝛼 ∈ (0, 1).

[1] Parameter-Initialization: Set number of batches 𝑏 = 25, batch size 𝑚 = 500, ℓ = 1,

𝑣 = 1, and flag = false. Also set 𝛽 = 0.30 and

𝒔 =



[14, 11, 8, 5] if 𝑅 = 2,

[10, 8, 6, 4] if 𝑅 = 3,

[6, 5, 4, 3] if 𝑅 = 4,

[5, 4, 3, 2] if 5 ≤ 𝑅 < 10,

[4, 3, 2, 1] if 10 ≤ 𝑅 < 17,

[3, 2, 1] if 17 ≤ 𝑅 < 23,

[2, 1] if 23 ≤ 𝑅 < 33,

[1] if 33 ≤ 𝑅.

Further, set 𝑞 equal to the number of elements in 𝒔. Let 𝑤(𝑡), 𝑡 ∈ [0, 1] be the weight

function and define the initial significance level for the first hypothesis test in Step [3]

as 𝛽𝜓(ℓ) ≡ exp
[
− [(ℓ − 1)\

]
, ℓ = 1, 2, . . ., with [ = 0.2 and \ = 2.3.

[2] If 𝑛 < 𝑏𝑚:

Set 𝑚 ← ⌊𝑛/𝑏⌋;

End If

[3] For the observations of every independent replication repeat the following procedure

and calculate the maximum batch size 𝑚max (the maximum 𝑚 that was used across
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the independent replications in this step):

Until von Neumann’s test fails to reject randomness or flag = true:

• Compute the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚)} from the current replication;

• Assess the randomness of the signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚)} from the current

replication using von Neumann’s two-sided randomness test with significance

level 𝛽𝜓(ℓ);

• Set ℓ ← ℓ + 1 and 𝑚 ←
[[
𝑚
√

2
]]

;

• If 𝑛 < 𝑏𝑚 and 𝑚 ≠ ⌊𝑛/𝑏⌋:

Set 𝑚 ← ⌊𝑛/𝑏⌋;

Else

Set flag← true;

End If

End

Set ℓ ← 1 and 𝑚 ← 500.

[4] If the randomness test in Step [3] failed for any of the independent replications, then

issue a warning that the randomness test failed due to insufficient length of each

replication and seek permission from the user to continue with the construction of a

CI. If the user declines, then exit without delivering a CI.

[5] Remove the first 𝑚max observations from each replication, reindex the truncated

datasets, and set 𝑛∗ equal to the size of the truncated sample of each replication

(𝑛∗ = 𝑛 − 𝑚max). Set the number of batches 𝑏 ← 𝑠[𝑣] and calculate the batch size as

𝑚 ← ⌊𝑛∗/𝑏⌋. Ignore the initial 𝑛∗ − 𝑏𝑚 observations from each replication.

[6] Until von Neumann’s test fails to reject randomness or 𝑣 = 𝑞 + 1 (a test has failed

with minimum allowable number of batches in 𝒔):
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• Compute the replicate signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} 1;

• Assess the randomness of the replicate signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 =

1, . . . , 𝑅𝑏} using von Neumann’s two-sided randomness test with significance

level 𝛽;

• Set 𝑣 ← 𝑣 + 1. Update 𝑏 ← 𝑠[𝑣] and 𝑚 ← ⌊𝑛∗/𝑏⌋. Ignore the initial 𝑛∗ − 𝑏𝑚

observations from each replication.

End

[7] Until the Shapiro-Wilk test fails to reject normality or 𝑣 = 𝑞 +1 (a test has failed with

minimum allowable number of batches in 𝒔):

• Compute the replicate signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏};

• Assess the univariate normality of the replicate signed areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 =

1, . . . , 𝑅𝑏} using the Shapiro–Wilk test with significance level 𝛽;

• Set 𝑣 ← 𝑣 + 1. Update 𝑏 ← 𝑠[𝑣] and 𝑚 ← ⌊𝑛∗/𝑏⌋. Ignore the initial 𝑛∗ − 𝑏𝑚

observations from each replication.

End

[8] Until von Neumann’s test fails to reject randomness or 𝑣 = 𝑞 + 1 (a test has failed

with minimum allowable number of batches in 𝒔):

• Compute the RBQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏};

• Assess the randomness of the RBQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} using von

Neumann’s two-sided randomness test with significance level 𝛽;

• Set 𝑣 ← 𝑣 + 1. Update 𝑏 ← 𝑠[𝑣] and 𝑚 ← ⌊𝑛∗/𝑏⌋. Ignore the initial 𝑛∗ − 𝑏𝑚

observations from each replication.

1across all replications
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End

[9] Until the Shapiro–Wilk test fails to reject normality or 𝑣 = 𝑞 + 1 (a test has failed

with minimum allowable number of batches in 𝒔):

• Compute the RBQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏};

• Assess the univariate normality of the BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} using

the Shapiro–Wilk test with significance level 𝛽;

• Set 𝑣 ← 𝑣 + 1. Update 𝑏 ← 𝑠[𝑣] and 𝑚 ← ⌊𝑛∗/𝑏⌋. Ignore the initial 𝑛∗ − 𝑏𝑚

observations from each independent replication.

End

[10] Set 𝑁∗ ← 𝑅𝑏𝑚.

If 𝑣 < 𝑞 + 1 (no statistical test in Steps [6]–[9] failed):

• Compute the combined variance estimator

Ṽ𝑝 (𝑤; 𝑅, 𝑏, 𝑚) ≡
𝑅𝑏A𝑝 (𝑤; 𝑅, 𝑏, 𝑚) + (𝑅𝑏 − 1)Ñ𝑝 (𝑅, 𝑏, 𝑚)

2𝑅𝑏 − 1
,

with

A𝑝 (𝑤; 𝑅, 𝑏, 𝑚) = (𝑅𝑏)−1
𝑅𝑏∑︁
𝑗=1

𝐴2
𝑝 (𝑤; 𝑗 , 𝑚), and

Ñ𝑝 (𝑅, 𝑏, 𝑚) = 𝑚(𝑅𝑏 − 1)−1
𝑅𝑏∑︁
𝑗=1

[
�̂�𝑝 ( 𝑗 , 𝑚) − �̃�𝑝 (𝑁∗)

]2
,

deliver the 100(1 − 𝛼)% CI for 𝑦𝑝,

�̃�𝑝 (𝑁∗) ± 𝑡1−𝛼/2,2𝑅𝑏−1
(
Ṽ𝑝 (𝑤; 𝑅𝑏, 𝑚)/𝑁∗

)1/2
,

and exit;
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Else

• Issue a warning that a statistical test failed due to insufficiency of the dataset

and seek permission from the user to continue with the construction of a CI. If

the user declines, then exit without delivering a CI;

• Compute

ℎ𝛼,𝑅,𝑏,𝑚 = max
𝑡1−𝛼/2,𝑅𝑏

√︂
A𝑝 (𝑤; 𝑅, 𝑏, 𝑚)

𝑁∗
, 𝑡1−𝛼/2,𝑅𝑏−1

√︄
Ñ𝑝 (𝑅, 𝑏, 𝑚)

𝑁∗

 ,

where A𝑝 (𝑤; 𝑅, 𝑏, 𝑚) and Ñ𝑝 (𝑅, 𝑏, 𝑚) are displayed earlier in this step. Then,

construct the following approximate CIs for 𝑦𝑝 with HL ℎ𝛼,𝑅,𝑏,𝑚:

�̃�𝑝 (𝑁∗) ± ℎ𝛼,𝑅,𝑏,𝑚 and �̂�𝑝 (𝑅, 𝑏, 𝑚) ± ℎ𝛼,𝑅,𝑏,𝑚, (6.16)

with the first CI centered around the full-sample point estimator �̃�𝑝 (𝑁∗)

and the second centered around the average RBQE �̂�𝑝 (𝑅, 𝑏, 𝑚) =

(𝑅𝑏)−1 ∑𝑅𝑏
𝑗=1 �̂�𝑝 ( 𝑗 , 𝑚);

• Construct the (asymmetric) skewness-adjusted CI

[
min

(
�̃�𝑝 (𝑁∗) − 𝐺1, �̃�𝑝 (𝑁∗) − 𝐺2

)
,max

(
�̃�𝑝 (𝑁∗) − 𝐺1, �̃�𝑝 (𝑁∗) − 𝐺2

) ]
(6.17)

with 𝐺1 and 𝐺2 defined in Equation (6.14);

• Deliver the full-sample point estimator �̃�𝑝 (𝑁∗) and the smallest interval con-

taining the CIs in Equations (6.16) and (6.17), and exit.

End If
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Figure 6.1: High-Level Flowchart of FIRQUEST.
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6.4 Experimental Results

In this section we present an extensive empirical study designed to assess the performance

of the FIRQUEST procedure. Our test bed includes the seven challenging stochastic

processes from Alexopoulos et al. [23] and Alexopoulos et al. [7], involving two time-series

models, three single-server queueing systems, and two small queueing networks. For some

processes we present results for different choices of parameters, hence we consider a total

of ten test problems. A detailed description of these processes is given in Sections 2.5.1–

2.5.7. All experiments were coded in Java using common random numbers generated by

the RngStreams package of L’Ecuyer et al. [67]. As mentioned earlier, we constructed the

STS area variance estimators using the constant weight function 𝑤0(·).

For each experimental setting we present two different sets of experimental results:

(i) tables with numerical results for the FIRQUEST method with 𝑅 = 5 and 10 in-

dependent replications and the FQUEST method using five different total sample sizes

𝑁 ∈ S ≡ {50,000, 100,000, 200,000, 500,000, 1,000,000} and a nominal 95% (𝛼 = 0.05)

CI coverage probability; and (ii) a set of graphs based on the aforementioned tables, each

for a specific probability 𝑝 depicting the average 95% CI relative precision, defined as

the ratio of the CI HL over the reported point estimate, and the estimated 95% CI cover-

age probability. Notably, the smaller values in S are typically insufficient for estimating

marginal quantiles for the stationary processes with a high degree of autocorrelation of

departures from normality (Chen and Kelton [25], Alexopoulos et al. [23], Alexopoulos et

al. [7]), in particular extreme quantiles. For the remainder of this chapter, we will write

FIRQUEST(𝑅 = 𝑅0) to denote the FIRQUEST method when executed with 𝑅0 independent

replications.

Tables 6.1–6.32 contain experimental results for the FIRQUEST and FQUEST methods

with all estimates computed from 1,000 independent trials. Specifically, column 1 lists

selected values of 𝑝 and column 2 contains the (nearly) exact value of the associated
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quantile 𝑦𝑝. Column 3 lists the respective number of independent replications 𝑅. Column

4 lists the fixed-sample size 𝑛 for every replication. Column 5 refers to the method used

(FIRQUEST or FQUEST). Columns 6 and 7 contain the average value of the point estimate

and the average value of the absolute error (the absolute value of the difference between

the point estimate and the exact value of the associated quantile), respectively. Columns

8–10 contain the average value of the HL of the 95% CI for 𝑦𝑝, the average value of the

CI’s relative precision expressed as a percentage, and the estimated coverage probability

of the CI as a percentage, respectively. We report the average CI HL and average relative

precision despite the fact that the final CI delivered in Step [10] for both FIRQUEST

and FQUEST may be asymmetric for small samples (when a statistical test in Steps [6]–

[9] fails). The standard errors of the estimated coverage probabilities are approximately√︁
(0.95 × 0.05)/1000 = 0.007. Columns 11 and 12 display the average final batch size

(𝑚) and average final batch count (𝑏), respectively, after removing observations in Step

[5]. Finally, Columns 13 and 14 list the standard deviation of the CI HL and the average

truncated sample size from every replication, respectively.

Similarly to FQUEST, the two most important metrics for FIRQUEST’s performance

evaluation are the estimated coverage probability of the CI and the average value of the

CI’s relative precision. As we mentioned in Chapter 5, there is always a tradeoff between

these two metrics. A reliable fixed-sample-size procedure should achieve the requested CI

coverage probability, while keeping the average value of the CI’s relative precision as low

as possible. Figures 6.2–6.12 illustrate FIRQUEST’s and FQUEST’s performances on this

front in a more intelligible way by plotting the estimates of the 95% CI relative precision

and coverage probability in columns 9–10 of Tables 6.1–6.32.

Finally, Figure 6.13 reports the frequency of the heuristic CI in Step [10] in a few

selected cases for the FIRQUEST and FQUEST methods. These results are also based on

1,000 independent replications.
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6.4.1 First-Order Autoregressive Processes

The first test process is the Gaussian AR(1) process defined in Section 2.5.1. We considered

two sets of parameters. In the first case we chose `𝑌 = 100, 𝜙 = 0.995, 𝜎𝜖 = 1, and 𝑌0 = 0.

Since the steady-state marginal standard deviation is 𝜎𝑌 = 𝜎𝜖/(1 − 𝜙2)1/2 = 10.01, this

process was initialized nearly 10 standard deviations below its steady-state mean. As we

have already mentioned in Section 4.2.1, on top of the pronounced initialization bias, this

process exhibits strong stochastic dependence. These traits will allow us to evaluate the

ability of FIRQUEST to overcome the effects of initialization bias and pronounced serial

correlation between successive observations of the base process.

The experimental results are displayed in Tables 6.1–6.3 and Figure 6.2. We start

our analysis with Tables 6.1–6.3. An examination of columns 6 and 7 reveals that for

small total sample sizes the point estimates of 𝑦𝑝 delivered by FQUEST are closer to

the exact value, with smaller average absolute bias, followed by FIRQUEST(𝑅 = 5) and

FIRQUEST(𝑅 = 10) in that order. As the total sample size increased, the differences

between those three became smaller. This phenomenon is expected as: (i) FIRQUEST

tends to remove more data points in total due to the removal of the same number of

observations from every replication in Step [5]; and (ii) column 14 reveals that when 𝑅 = 5

FIRQUEST removed 400 observations from each replication on average, while when 𝑅 = 10

the method removed only 200 observations from each replication on average; hence there

is a higher chance to have remaining warm-up effects with 𝑅 = 10. For replication length

𝑛 = 10,000, the 95% CIs reported by FIRQUEST(𝑅 = 5) exhibited slight undercoverage for

𝑝 ∈ {0.3, 0.7, 0.9, 0.95}, and significant undercoverage for 𝑝 ∈ {0.99, 0.995}. For example,

for 𝑝 = 0.7, FIRQUEST(𝑅 = 5) reported an estimated CI coverage probability of 92.7%

whereas for 𝑝 = 0.995 it reported an estimated CI coverage probability of 88.4%. For the

same 𝑛, the 95% CIs reported by FIRQUEST(𝑅 = 10) exhibited significant undercoverage

for all values of 𝑝. In the worst case, FIRQUEST(𝑅 = 10) for 𝑝 = 0.3 reported an estimated

71.7% CI coverage probability, which is unacceptable. Clearly a replication size 𝑛 = 10,000
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is too small for this case, so it would be better to use fewer independent replications with

larger replication lengths.

FQUEST’s dominance started diminishing for total sample sizes greater than 100,000,

which showcases FIRQUEST’s value. This effect is plainly illustrated in Figure 6.2 as

the reported CI coverage probabilities approach the nominal value for larger total sample

sizes, while in most cases the average CI relative precision reported by FQUEST is higher

compared to the value FIRQUEST reported. In most cases, FIRQUEST(𝑅 = 10) reported

the smallest average CI relative precision, especially for large total sample sizes. However,

we have to be careful with our conclusions here as the arrays of batch counts 𝒔 are not

the same for different values of 𝑅. The entries of column 14 of Tables 6.1–6.3 reveal

that the truncated sample size per replication is larger for FQUEST when the total sample

size is 𝑁 = 50,000, which is reasonable as the maximum truncated sample size that

FIRQUEST can remove when 𝑅 = 5 and 10 is 400 and 200, respectively. However,

as the total sample size increased, FIRQUEST reported larger truncated sample size per

replication than what FQUEST reported. Further, for total sample sizes greater than

200,000, FIRQUEST(𝑅 = 10) reported the largest truncated sample size per replication.

This behavior is expected for two reasons: (i) FIRQUEST removes 𝑚max, the maximum

batch size 𝑚 that was used in Step [3], from each replication, from every replication; and

(ii) FIRQUEST performs the randomness test in Step [3] with 𝑏 = 25 for every replication

(instead of 50 for FQUEST), which increases the maximum allowable batch size in that

step.

In the second (less challenging) case we took `𝑌 = 0, 𝜙 = 0.9, 𝜎𝜖 = 1, and 𝑌0 = 0.

The stationary version of this process was used by Chen and Kelton [25]. The experimental

results are displayed in Tables 6.4–6.6 and Figure 6.3. In Tables 6.4–6.6, the estimated CI

coverage probabilities were close to the nominal value both for FIRQUEST and FQUEST,

with some small overcoverage in a few cases. Further, the estimated CI relative precision

was reasonable for both procedures for all probabilities 𝑝, except for 𝑝 = 0.45; in this case
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as we explained in Section 5.3.1, the high CI relative precision is partially attributable to

the exact value of 𝑦𝑝 = −0.288, which is close to zero. Figure 6.3 illustrates that in most

cases (with very few exceptions) FIRQUEST(𝑅 = 10) reported the smallest estimated CI

relative precision, followed by FIRQUEST(𝑅 = 5), and then FQUEST. In this example,

FIRQUEST was not outperformed by FQUEST and in most cases it performed slightly

better with regard to the estimated CI relative precision.

Overall, we conclude that FIRQUEST performed well in these test cases.

6.4.2 Autoregressive-to-Pareto Process

The second test process is the ARTOP process described in Section 2.5.2. For this example

we used 𝛾 = 1, \ = 2.1, and 𝜙 = 0.995. Recall that these assignments yield `𝑌 = 1.9091,

𝜎2
𝑌

= 17.3554, marginal skewness E{[(𝑌𝑘 − `𝑌 )/𝜎𝑌 ]3} = +∞, and marginal kurtosis

E{[(𝑌𝑘 − `𝑌 )/𝜎𝑌 ]4} = +∞. We initialized the original AR(1) process with the value

𝑍0 = 3.4; which results to an initial observation 𝑌0 = 𝐹−1 [Φ(𝑍0)] = 43.5689 for the

ARTOP process, which is approximately 10 standard deviations above its steady-state mean.

On top of the initialization problem and the strong stochastic dependence, this process has

a marginal distribution with a fat tail (Mandelbrot [87]), which is reflected by the infinite

marginal skewness and kurtosis.

The experimental results for this process are displayed in Tables 6.7–6.9 and Figure

6.4. Columns 6 and 7 of Tables 6.7–6.9 illustrate that FIRQUEST and FQUEST deliv-

ered reasonably accurate point estimates for 𝑦𝑝. For 𝑝 < 0.9, FIRQUEST(𝑅 = 5) and

FIRQUEST(𝑅 = 10) performed well with regard to CI coverage probability and relative

precision, and their estimated metrics were closed to what FQUEST reported. Similarly to

FQUEST, FIRQUEST encountered issues for 𝑝 ≥ 0.95 and small samples with regard to the

estimated CI relative precision. This issue was more pronounced for FIRQUEST(𝑅 = 10).

Specifically, for 𝑝 = 0.995 and replication length 𝑛 = 5,000, FIRQUEST(𝑅 = 10) reported

the enormous value of 128.260% for average CI relative precision. When 𝑛 was increased to
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10,000, the average CI relative precision dropped to 109.043%, which is still unacceptable.

It is worth noting that for 𝑅 = 5 independent replications, 𝑝 = 0.995, and replication size

𝑛 = 10,000, FIRQUEST reported a lower average CI relative precision 104.159% (which

is still unusable), but it also experienced a slight undercoverage reporting a CI coverage

probability of 90.9%.

For extreme quantiles and more suitable sample sizes (greater than 200,000), both

FIRQUEST and FQUEST performed well and the reported average CI relative precision

dropped to values below 40%. However, even when we used a sample size of 1,000,000 for

𝑝 = 0.995 the smallest CI relative precision was reported by FIRQUEST(𝑅 = 10) and it was

22.324%. This behavior is not unexpected because for 𝑝 = 0.99 and 0.995 the largest sample

size used in the experimental evaluation in Table 6.9 was lower by a factor of about 2.5 and

3, respectively, than the average sample sizes requested by the sequential SQSTS method

(see Section 5.3.2). Further, Figure 6.4 illustrates that as the total sample size increased,

FIRQUEST outperformed FQUEST with respect to average CI relative precision. It is worth

pointing out that for a total sample size 𝑁 = 1,000,000, FIRQUEST(𝑅 = 10) reported the

smallest CI relative precision, followed by FIRQUEST(𝑅 = 5).

An examination of Figure 6.13 reveals that, for 𝑝 = 0.99, FIRQUEST and FQUEST

failed a statistical test in Steps [6]–[9] with a frequency more than 90% with total sample size

50,000 and more than 80% with total sample size 100,000. Such failures caused FIRQUEST

to use the heuristic CI in Step [10]. Similarly to FQUEST, FIRQUEST will issue a warning

to the user in those cases, which should be an indicator for potential problems associated with

the insufficiency of the replication length (and total sample size) for delivering a CI based on

a sound theoretical foundation. In these cases, the user should probably rerun FIRQUEST

using a larger replication size 𝑛. Figure 6.13 also showcases that FIRQUEST(𝑅 = 5),

FIRQUEST(𝑅 = 10), and FQUEST used the heuristic CI with similar frequencies. However,

for the ARTOP process, we see that in most cases, FIRQUEST(𝑅 = 5) has the smallest

frequency of the heuristic CI, while FIRQUEST(𝑅 = 10) has the largest one.
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Overall, we deem that FIRQUEST performed well in this test problem, in particular for

appropriately large sample sizes.

6.4.3 M/M/1 Waiting-Time Process

The third test process is the waiting-time sequence in an M/M/1 queueing system described

in Section 2.5.3 with FIFO service discipline. We considered three examples for this

process. For the first example we used an arrival rate _ = 0.9, a service rate 𝜔 = 1 (traffic

intensity 𝜌 = _/𝜔 = 0.9), and we initialized the system in the empty-and-idle state. Again,

𝑌𝑘 be the time spent by the 𝑘th entity in queue (prior to service).

The experimental results for this case are displayed in Tables 6.10–6.12 and Figure

6.5. Tables 6.10–6.12 reveal that FIRQUEST performed well for 𝑝 < 0.95 with respect to

average CI relative precision and coverage probability, with only few exceptions where it ex-

perienced slight CI overcoverage. For example, for 𝑝 = 0.3 and replication size 𝑛 = 10,000,

FIRQUEST(𝑅 = 5) reported a CI coverage probability of 97.5%. However, FIRQUEST

experienced less CI overcoverage than FQUEST, which in the same case reported a CI

coverage probability of 98.4% (the highest value across Tables 6.10–6.12). Figure 6.5

clearly illustrates that for 𝑝 < 0.95, FIRQUEST reported estimated CI coverage probabili-

ties closer to the nominal value compared to FQUEST. However, Table 6.12 indicates that

FIRQUEST encountered issues for the extreme values 𝑝 ∈ {0.99, 0.995} when the total

sample size was less than 500,000, as it reported estimated CI coverage probabilities much

smaller than the nominal value of 95%. For example, for 𝑝 = 0.995 and replication size

𝑛 = 20,000, FIRQUEST(𝑅 = 5) reported an estimated CI coverage probability of 82.5%,

while FIRQUEST(𝑅 = 10) with replication size 𝑛 = 10,000 reported an estimated CI cov-

erage probability of 81.5%. FQUEST also experienced similar problems, but the issues

were slightly more pronounced with FIRQUEST. This is expected for two reasons: (i) for

smaller total sample sizes with larger number of independent replications, it is more difficult

to effectively remove the warm-up effects due to limitations associated with the maximum
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allowable truncation size; and (ii) independent replications could induce systematic bias

if insufficient truncation is applied. These observations indicate again the importance of

using fewer independent replications with larger replication sizes, when the total sample

size is relatively small.

In the second example, we used the same arrival rate _ = 0.9 and service rate 𝜔 = 1,

but we initialized the system with one entity beginning service and 112 entities in queue.

Recall that the steady-state probability of this initial state is (1 − 𝜌)𝜌113 ≈ 6.752 × 10−7,

implying a high probability for a prolonged transient phase.

The experimental results for this case are displayed in Tables 6.13–6.15 and Figure

6.6. Columns 6 and 7 of Tables 6.13–6.15 clearly illustrate that for small total sample

sizes FIRQUEST reported point estimates that are much larger than the true value. This

issue is more pronounced for 𝑅 = 10 and values of 𝑝 near 1. In this example FIRQUEST

experienced systematic bias in many cases with relatively small total sample size. This

explains the unacceptable CI coverage probabilities reported with 𝑅 = 10 and total sample

size 𝑁 = 50,000. For example, for 𝑝 = 0.95, FIRQUEST(𝑅 = 10) reported an estimated

CI coverage probability of 9%. This is directly explained by the reported average point

estimate of 74.284, while the true value is 28.904. Clearly, the prolonged transient phase was

detrimental to the performance of FIRQUEST in these cases. As with the ARTOP process in

Section 6.4.2, the total sample sizes used in our experimentation were significantly smaller

than those required by the sequential SQSTS method in Chapter 4 under no CI precision

requirement for large values of 𝑝. Further, as Figure 6.6 illustrates, for sample sizes greater

than 200,000, FIRQUEST reported estimated CI coverage probabilities close to the nominal

value, and the average CI relative precision dropped significantly.

For the third, less-challenging example we only lowered the arrival rate to _ = 0.8, so

that 𝜌 = 0.8 (we initialized the system again with one entity beginning service and 112

entities in queue). The experimental results are displayed in Tables 6.16–6.18 and Figure

6.7. In this less-challenging setting, FIRQUEST encountered fewer issues, but there were
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still cases of significant CI undercoverage (especially with 𝑅 = 10) and overcoverage.

Overall, FIRQUEST performed well in these three examples, especially for relatively

large sample sizes.

6.4.4 M/H2/1 Waiting-Time Process

The fourth test process is the sequence {𝑌𝑘 : 𝑘 ≥ 1} of entity waiting times in an M/H2/1

queueing system as described in Section 2.5.4 with FIFO queue discipline, an empty-

and-idle initial state, arrival rate _ = 1, and i.i.d. service times from the hyperexponential

distribution that is a mixture of two other exponential distributions with mixing probabilities

𝑔 = (5 +
√

15)/10 ≈ 0.887 and 1 − 𝑔 and associated service rates 𝜔1 = 2𝑔𝜏 and 𝜔2 =

2(1− 𝑔)𝜏, with 𝜏 = 1.25. As a result, we have a mean service time of 0.8 and a steady-state

server utilization of 𝜌 = 0.8. For this process and under no CI precision requirement, the

Sequest sequential method of Alexopoulos et al. [7] reported average sample sizes ranging

from 1.2 to 28.7 million, and yet delivered CIs with significant undercoverage for 𝑝 ≥ 0.99

(Table 4.4 of this thesis). Most importantly, it was outshined by SQSTS for all values of 𝑝

under study.

The experimental results for this process are displayed in Tables 6.19–6.21 and Figure

6.8. We start our analysis with Table 6.19. For 𝑝 = 0.3, the 95% CIs reported by FIRQUEST

exhibited noticeable overcoverage for total sample sizes 𝑁 < 200,000. Specifically, for

𝑝 = 0.3 and replication size 𝑛 = 10,000, FIRQUEST(𝑅 = 5) reported an estimated CI

coverage probability of 99.3%, while with replication size 𝑛 = 5,000, FIRQUEST(𝑅 = 10)

reported an estimated CI coverage probability of 98.6%. Further, for 𝑝 = 0.3 and total

sample size 50,000, FIRQUEST delivered large average CI relative precisions. For example,

with 𝑅 = 5 and 10, it yielded average 84.594% and 78.030% CI relative precisions,

respectively. Both these values were lower than 90.834%, the estimate reported by FQUEST.

This issue is partially attributable to the actual value of 𝑦𝑝 = 0.669, which is very close

to zero. As Figure 6.8 illustrates, FIRQUEST performed well, for all values of 𝑝 under
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study, with regard to average CI relative precision when it was supplied with total sample

sizes greater than 100,000. Additionally, column 10 of Tables 6.19–6.20 reveals that

FIRQUEST yielded estimated CI coverage probabilities close to the nominal value for

𝑝 ∈ {0.5, 0.7, 0.9}, while it experienced some slight undercoverage for 𝑝 = 0.95 and total

sample size 𝑁 < 200,000. Table 6.21 showcases that FIRQUEST experienced significant

CI undercoverage for extreme quantiles for total sample sizes 𝑁 < 200,000. FQUEST

experienced similar issues, but provided slightly better estimated CI coverage probabilities

than FIRQUEST. Both FIRQUEST and FQUEST performed well for 𝑝 ∈ {0.99, 0.995}

when they were provided with total sample sizes 𝑁 > 200,000, which are more suitable for

extreme quantile estimation.

An examination of the plots in Figure 6.13 for 𝑝 = 0.3 and 0.99 reveals that FIRQUEST

and FQUEST failed a statistical test in Steps [6]–[9] with a frequency close to or more than

80% with 𝑁 = 50,000. Further, we see that FIRQUEST(𝑅 = 5), FIRQUEST(𝑅 = 10),

and FQUEST use the heuristic CI at similar frequencies. However, similarly to what we

observed for the ARTOP process, we see that in most cases, FIRQUEST(𝑅 = 5) used the

heuristic CI with the lowest frequency, while FIRQUEST(𝑅 = 10) used the heuristic CI

most often.

Overall, we believe that FIRQUEST handled this challenging process effectively for

reasonably low total sample sizes 𝑁 .

6.4.5 M/M/1/LIFO Waiting-Time Process

The fifth test process is the sequence of entity waiting times {𝑌𝑘 : 𝑘 ≥ 1} in a single-server

queueing system as described in Section 2.5.5 with non-preemptive LIFO service discipline,

empty-and-idle initial state, arrival rate _ = 1, and service rate 𝜔 = 1.25. The steady-state

server utilization is 𝜌 = 0.8 and the marginal mean waiting time is `𝑌 = 3.2.

The experimental results for this process are displayed in Tables 6.22–6.24 and Figure

6.9. These results reveal that the 95% CIs for 𝑦𝑝 exhibited some noticeable overcoverage for
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total sample sizes 𝑁 ≤ 100,000 and all values of 𝑝 under study. Figure 6.9 clearly illustrates

that FIRQUEST outperformed FQUEST with regard to average CI relative precision; clearly,

the total sample sizes 𝑁 that we considered for this example are sufficient.

An examination of the plots of this example for 𝑝 = 0.99 in Figure 6.13, showcases that

FIRQUEST and FQUEST failed a statistical test in Steps [6]–[9] with a frequency close to

70% with total sample size 𝑁 = 50,000, which quickly dropped as we increased the total

sample size. Further, for 𝑝 = 0.3, we see that the values of the frequency of the heuristic

CI for all methods were around 17% for all the total sample sizes under consideration.

Once again, we see that FIRQUEST(𝑅 = 5), FIRQUEST(𝑅 = 10), and FQUEST used the

heuristic CI at similar frequencies.

Overall, FIRQUEST performed very well in this example.

6.4.6 M/M/1/M/1 Waiting-Time Process

The sixth test process, detailed in Section 2.5.6, is constructed from the sequence {𝑌𝑘 :

𝑘 ≥ 1} of the total waiting times (prior to service) in a tandem network of two M/M/1

queues. The system has an arrival rate of _ = 1, service rates 𝜔 = 1.25 at each station,

and is initialized in the empty and idle state. The steady-state utilization for each server is

𝜌 = _/𝜔 = 0.8 and the mean total waiting time in the system is equal to 8.

The experimental results for this process are displayed in Tables 6.25–6.27 and Figure

6.10. Based on Tables 6.25–6.27, and Figure 6.10, FIRQUEST performed exceptionally

well with respect to all metrics for 𝑝 ≤ 0.9. The estimated CI coverage probabilities

were very close to the nominal values without resulting in excessive estimated CI relative

precision. However, for 𝑝 ≥ 0.95 and total sample size 𝑁 = 50,000, FIRQUEST delivered

CIs with noticeable undercoverage. In these cases, the estimated CI coverage probabilities

were significantly improved once the used total sample size 𝑁 exceeded 100,000.

Overall, we assess that FIRQUEST performed well in this case study despite the sample

size limitations.
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6.4.7 Central Server Model 3

The seventh test process, described in Section 2.5.7, is generated by the sequence {𝑌𝑘 : 𝑘 ≥

1} of response times (cycle times) in a small computer network comprised of three stations,

namely the Central Server Model 3 from Law and Carson [66].

The experimental results for this process are displayed in Tables 6.28–6.32 and Figures

6.11–6.12. Recall from the discussion in Section 4.2.7 that in the absence of a CI precision

requirement and for 𝑝 ∈ {0.85, . . . , 0.93}, the Sequest method (Alexopoulos et al. [7])

experienced substantial sample-size variation and delivered CIs with noticeable variation

around the nominal 95% level (see Table 4.7 of this thesis), while the sequential SQSTS

method delivered CIs with minor undercoverage in a few cases (𝑝 ∈ {0.3, 0.5, 0.93}).

For this response-time process, similarly to FQUEST, FIRQUEST performed well, with

a few exceptions. FIRQUEST delivered CIs that exhibited noticeable overcoverage for

𝑝 ∈ {0.89, 0.90, 0.91} and total sample size 𝑁 ≤ 100,000. It is worth mentioning that

for total sample size 50,000, FIRQUEST reported an estimated CI coverage probability of

93.4% (for both 𝑅 = 5 and 10), which is closer to the nominal value than the estimate of

91.6% that FQUEST reported.

The graphs of this example in Figure 6.13 illustrate again that FIRQUEST(𝑅 = 5),

FIRQUEST(𝑅 = 10), and FQUEST used the heuristic CI at similar frequencies. Unfortu-

nately, these plots did not provide any additional insights.

Overall, we judge the performance of FIRQUEST in this test case as solid.

6.5 Summary

In this chapter, we presented FIRQUEST, the first completely automated procedure for com-

puting point estimators and CIs for steady-state quantiles based on independent replications.

The user provides a fixed number 𝑅 of replicate sample paths, each with fixed length 𝑛,

and specifies the probability of the quantile and the required coverage probability of the re-
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quested CI. FIRQUEST incorporates the analysis methods of batching, STS, and sectioning.

If the total sample size and the replication length suffice to identify a set of replicate signed

weighted areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} and RBQEs
{
�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏

}
that

pass both the von Neumman and Shapiro-Wilk tests, FIRQUEST reports a CI for the quan-

tile 𝑦𝑝 under consideration that is centered at the overall empirical quantile computed from

all sample paths and based on the combined estimator Ṽ𝑝 (𝑤; 𝑅, 𝑏, 𝑚) of 𝜎2
𝑝 . Otherwise, the

procedure issues a warning and, upon user’s approval, formulates a wider CI from a set of

CIs based on the aforementioned overall quantile estimator, the RBQEs, and the replicate

signed areas obtained from the nonoverlapping batches.

Experimentation with an extensive test bed of output processes and 5 or 10 replications in

Section 6.4 showed that for sufficiently large replicate paths FIRQUEST delivered CIs with

coverage probabilities close to the nominal level. This feat is impressive, considering that

the state-of-the-art sequential methods Sequest and SQSTS required substantial sample sizes

for the same processes under no CI precision requirement (see Alexopoulos et al. [7] and

Chapter 4 of this thesis). Our experimental analysis revealed that for relatively small sample

sizes, it is preferable to use fewer independent replications with larger replication lengths (in

these cases FQUEST outperformed FIRQUEST). However, in several experimental settings

and with sufficiently large replication lengths, FIRQUEST outperformed FQUEST with

regard to average CI relative precision. In these cases using more independent replications

may be beneficial.

The last statements raise the possibilities of potential benefits from parallel executions

(e.g., multi-treading). Such an implementation will not only permit an execution speed-up

of various loops, in particular those in Steps [6]–[7], but it will also allow faster execution

of the underlying simulation model that generates the sample paths, thereby relaxing the

computational and time-related constraints.
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Table 6.1: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the AR(1) process in Section 6.4.1 with `𝑌 = 100
and 𝜙 = 0.995 for 𝑝 ∈ {0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 94.749 5 10,000 FIRQUEST 94.486 0.787 2.039 2.159 93.3 3,426 15.85 0.800 400
10 5,000 FIRQUEST 93.300 1.508 2.191 2.348 71.7 3,482 17.83 0.856 200
1 50,000 FQUEST 94.753 0.739 2.067 2.183 93.2 3,467 17.16 0.936 625

5 20,000 FIRQUEST 94.742 0.558 1.446 1.526 94.0 6,544 16.72 0.466 777
10 10,000 FIRQUEST 94.466 0.583 1.422 1.506 93.2 6,003 21.23 0.501 400
1 100,000 FQUEST 94.773 0.554 1.488 1.570 93.2 6,451 18.69 0.604 639

5 40,000 FIRQUEST 94.775 0.382 1.042 1.100 94.3 13,192 16.68 0.302 1,074
10 20,000 FIRQUEST 94.750 0.379 1.015 1.072 94.9 10,994 23.32 0.360 796
1 200,000 FQUEST 94.751 0.385 1.091 1.151 94.8 12,598 19.28 0.414 639

5 100,000 FIRQUEST 94.768 0.242 0.674 0.711 96.0 33,001 16.99 0.210 1,081
10 50,000 FIRQUEST 94.768 0.230 0.644 0.680 95.4 26,901 23.96 0.187 1,224
1 500,000 FQUEST 94.765 0.237 0.682 0.720 95.7 30,304 20.10 0.225 640

5 200,000 FIRQUEST 94.754 0.166 0.482 0.508 95.8 66,104 17.08 0.152 1,081
10 100,000 FIRQUEST 94.759 0.168 0.466 0.492 96.5 54,610 23.95 0.140 1,223
1 1,000,000 FQUEST 94.751 0.165 0.497 0.524 97.0 60,715 20.11 0.190 640

0.5 100.000 5 10,000 FIRQUEST 99.764 0.769 1.951 1.956 93.6 3,385 16.08 0.729 400
10 5,000 FIRQUEST 98.921 1.215 2.051 2.073 79.2 3,333 18.98 0.795 200
1 50,000 FQUEST 99.997 0.723 2.024 2.025 92.9 3,388 17.73 0.973 629

5 20,000 FIRQUEST 99.979 0.553 1.414 1.414 94.0 6,466 16.82 0.476 780
10 10,000 FIRQUEST 99.754 0.566 1.350 1.354 93.1 5,756 22.34 0.455 400
1 100,000 FQUEST 100.021 0.543 1.430 1.430 93.0 6,309 19.14 0.544 635

5 40,000 FIRQUEST 100.023 0.374 1.030 1.030 94.9 13,187 16.72 0.349 1,027
10 20,000 FIRQUEST 99.994 0.373 0.997 0.997 95.2 10,832 23.65 0.356 797
1 200,000 FQUEST 100.001 0.381 1.052 1.052 95.6 12,541 19.41 0.393 636

5 100,000 FIRQUEST 100.016 0.239 0.657 0.656 96.0 32,700 17.21 0.211 1,028
10 50,000 FIRQUEST 100.015 0.222 0.633 0.632 96.2 27,523 23.71 0.185 1,142
1 500,000 FQUEST 100.015 0.232 0.673 0.673 95.9 30,957 19.74 0.226 636

5 200,000 FIRQUEST 100.003 0.167 0.463 0.463 95.7 66,346 16.95 0.128 1,029
10 100,000 FIRQUEST 100.009 0.167 0.449 0.449 94.7 54,456 24.30 0.137 1,142
1 1,000,000 FQUEST 100.002 0.162 0.470 0.470 96.9 59,908 20.36 0.143 636

0.7 105.251 5 10,000 FIRQUEST 105.037 0.797 2.049 1.951 92.7 3,452 15.70 0.879 400
10 5,000 FIRQUEST 104.389 1.086 2.144 2.054 84.3 3,608 16.83 0.843 200
1 50,000 FQUEST 105.238 0.745 2.135 2.029 94.7 3,559 16.63 0.968 628

5 20,000 FIRQUEST 105.224 0.562 1.479 1.406 93.8 6,680 16.37 0.550 764
10 10,000 FIRQUEST 105.038 0.572 1.424 1.356 92.6 6,060 21.18 0.529 400
1 100,000 FQUEST 105.264 0.549 1.514 1.439 94.2 6,504 18.59 0.603 639

5 40,000 FIRQUEST 105.269 0.384 1.066 1.013 95.3 13,294 16.63 0.389 943
10 20,000 FIRQUEST 105.241 0.381 1.044 0.992 94.4 11,449 22.78 0.407 788
1 200,000 FQUEST 105.252 0.392 1.071 1.017 94.8 12,478 19.46 0.376 640

5 100,000 FIRQUEST 105.260 0.249 0.668 0.635 95.8 33,112 16.99 0.193 945
10 50,000 FIRQUEST 105.262 0.229 0.644 0.612 95.5 27,286 24.07 0.194 1,052
1 500,000 FQUEST 105.262 0.240 0.700 0.665 95.8 31,587 19.36 0.248 640

5 200,000 FIRQUEST 105.253 0.174 0.471 0.447 95.5 65,835 17.11 0.130 945
10 100,000 FIRQUEST 105.257 0.171 0.463 0.440 94.7 53,028 24.71 0.166 1,052
1 1,000,000 FQUEST 105.250 0.168 0.489 0.465 96.8 60,234 20.37 0.157 640
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Table 6.2: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the AR(1) process in Section 6.4.1 with `𝑌 = 100
and 𝜙 = 0.995 for 𝑝 ∈ {0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 112.832 5 10,000 FIRQUEST 112.626 0.930 2.594 2.302 92.5 3,952 13.36 1.132 400
10 5,000 FIRQUEST 112.153 1.084 2.742 2.444 88.9 4,246 12.83 1.221 200
1 50,000 FQUEST 112.808 0.879 2.785 2.468 94.5 4,169 13.26 1.351 612

5 20,000 FIRQUEST 112.795 0.635 1.811 1.605 93.6 7,264 14.99 0.758 750
10 10,000 FIRQUEST 112.645 0.652 1.830 1.624 93.5 7,718 15.22 0.842 400
1 100,000 FQUEST 112.830 0.626 1.856 1.644 94.3 7,502 15.64 0.850 622

5 40,000 FIRQUEST 112.839 0.446 1.254 1.111 95.9 13,844 16.03 0.482 891
10 20,000 FIRQUEST 112.820 0.439 1.254 1.111 94.7 13,274 19.23 0.507 779
1 200,000 FQUEST 112.820 0.455 1.280 1.134 95.1 13,620 17.63 0.522 623

5 100,000 FIRQUEST 112.831 0.285 0.764 0.677 95.2 33,370 16.86 0.235 892
10 50,000 FIRQUEST 112.838 0.277 0.749 0.664 94.9 29,435 22.29 0.220 1,001
1 500,000 FQUEST 112.835 0.277 0.811 0.718 96.1 32,712 18.60 0.303 624

5 200,000 FIRQUEST 112.829 0.203 0.561 0.497 95.2 67,084 16.92 0.204 892
10 100,000 FIRQUEST 112.837 0.202 0.537 0.476 94.0 57,007 23.21 0.181 1,001
1 1,000,000 FQUEST 112.829 0.197 0.568 0.504 95.9 62,065 19.66 0.183 625

0.95 116.469 5 10,000 FIRQUEST 116.252 1.070 3.149 2.706 92.0 4,274 11.99 1.440 400
10 5,000 FIRQUEST 115.852 1.178 3.299 2.845 90.9 4,498 11.45 1.507 200
1 50,000 FQUEST 116.451 0.706 2.251 1.932 93.9 8,351 13.32 1.048 622

5 20,000 FIRQUEST 116.424 0.727 2.163 1.857 94.4 7,787 13.75 0.998 744
10 10,000 FIRQUEST 116.295 0.745 2.207 1.897 93.9 8,454 12.97 1.074 400
1 100,000 FQUEST 116.451 0.706 2.251 1.932 93.9 8,351 13.32 1.048 622

5 40,000 FIRQUEST 116.471 0.505 1.434 1.231 95.1 14,763 14.97 0.575 875
10 20,000 FIRQUEST 116.454 0.509 1.481 1.272 94.9 14,749 16.37 0.699 777
1 200,000 FQUEST 116.445 0.511 1.498 1.286 94.9 15,085 15.61 0.682 624

5 100,000 FIRQUEST 116.463 0.315 0.899 0.771 95.6 34,240 16.50 0.345 876
10 50,000 FIRQUEST 116.471 0.319 0.867 0.745 94.4 31,914 20.10 0.307 991
1 500,000 FQUEST 116.466 0.309 0.928 0.797 96.0 33,607 18.04 0.371 626

5 200,000 FIRQUEST 116.462 0.225 0.643 0.552 96.1 68,861 16.50 0.245 876
10 100,000 FIRQUEST 116.472 0.231 0.598 0.513 94.6 60,124 22.08 0.199 991
1 1,000,000 FQUEST 116.462 0.219 0.651 0.559 96.0 63,258 19.27 0.236 627
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Table 6.3: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the AR(1) process in Section 6.4.1 with `𝑌 = 100
and 𝜙 = 0.995 for 𝑝 ∈ {0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 123.293 5 10,000 FIRQUEST 122.963 1.524 4.730 3.838 90.7 4,622 10.62 2.267 400
10 5,000 FIRQUEST 122.709 1.581 4.876 3.963 90.6 4,715 10.36 2.348 200
1 50,000 FQUEST 123.112 1.489 5.125 4.152 93.2 4,842 10.34 2.507 603

5 20,000 FIRQUEST 123.187 1.038 3.397 2.753 93.6 8,977 11.20 1.811 741
10 10,000 FIRQUEST 123.103 1.079 3.577 2.901 92.4 9,334 10.61 1.871 400
1 100,000 FQUEST 123.198 0.988 3.653 2.962 95.7 9,486 10.84 1.882 611

5 40,000 FIRQUEST 123.256 0.726 2.360 1.914 94.4 17,241 12.22 1.280 865
10 20,000 FIRQUEST 123.241 0.737 2.499 2.026 95.3 17,867 11.65 1.332 776
1 200,000 FQUEST 123.217 0.712 2.501 2.029 95.0 18,043 11.86 1.364 612

5 100,000 FIRQUEST 123.261 0.450 1.384 1.123 94.7 39,328 14.09 0.705 866
10 50,000 FIRQUEST 123.270 0.464 1.443 1.170 94.5 40,259 14.51 0.744 983
1 500,000 FQUEST 123.263 0.441 1.415 1.147 95.9 39,219 14.86 0.674 615

5 200,000 FIRQUEST 123.274 0.323 0.936 0.759 95.5 73,445 15.32 0.401 866
10 100,000 FIRQUEST 123.284 0.334 0.916 0.743 92.8 71,167 17.97 0.399 983
1 1,000,000 FQUEST 123.273 0.321 0.976 0.791 95.5 72,252 16.63 0.450 616

0.995 125.791 5 10,000 FIRQUEST 125.365 1.840 5.579 4.433 88.4 4,696 10.36 2.691 400
10 5,000 FIRQUEST 125.143 1.878 5.699 4.535 87.5 4,731 10.30 2.789 200
1 50,000 FQUEST 125.483 1.795 6.079 4.823 90.9 4,891 10.17 3.188 602

5 20,000 FIRQUEST 125.636 1.256 4.042 3.210 92.5 9,283 10.60 2.077 740
10 10,000 FIRQUEST 125.556 1.297 4.144 3.292 90.5 9,486 10.26 2.125 400
1 100,000 FQUEST 125.630 1.199 4.365 3.468 93.8 9,673 10.47 2.251 608

5 40,000 FIRQUEST 125.713 0.881 2.936 2.333 93.9 18,273 11.21 1.603 865
10 20,000 FIRQUEST 125.716 0.889 3.097 2.460 94.5 18,674 10.62 1.679 774
1 200,000 FQUEST 125.674 0.863 3.098 2.463 94.6 18,910 10.94 1.655 609

5 100,000 FIRQUEST 125.744 0.548 1.736 1.380 93.5 41,647 13.09 0.954 866
10 50,000 FIRQUEST 125.750 0.564 1.857 1.476 94.7 44,955 11.94 1.007 978
1 500,000 FQUEST 125.741 0.537 1.808 1.437 96.6 43,201 12.77 0.919 611

5 200,000 FIRQUEST 125.767 0.391 1.183 0.940 94.9 78,513 14.13 0.591 866
10 100,000 FIRQUEST 125.777 0.409 1.174 0.933 93.4 79,466 15.14 0.575 978
1 1,000,000 FQUEST 125.757 0.388 1.226 0.975 95.0 78,190 14.92 0.630 613
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Figure 6.2: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the AR(1) process from Tables 6.1–6.3.
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Table 6.4: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the AR(1) process in Section 6.4.1 with `𝑌 = 0
and 𝜙 = 0.9 for 𝑝 ∈ {0.25, 0.45, 0.75} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.25 -1.547 5 10,000 FIRQUEST -1.546 0.039 0.110 7.142 96.3 3,129 17.25 0.029 400
10 5,000 FIRQUEST -1.548 0.039 0.110 7.123 95.2 2,700 23.83 0.036 200
1 50,000 FQUEST -1.545 0.038 0.116 7.520 96.7 3,058 19.74 0.042 595

5 20,000 FIRQUEST -1.547 0.029 0.079 5.128 95.5 6,430 17.01 0.024 707
10 10,000 FIRQUEST -1.546 0.027 0.077 5.009 97.0 5,046 25.12 0.024 400
1 100,000 FQUEST -1.545 0.028 0.079 5.146 95.9 6,006 20.17 0.024 600

5 40,000 FIRQUEST -1.546 0.020 0.055 3.565 95.6 12,865 17.23 0.016 796
10 20,000 FIRQUEST -1.546 0.019 0.055 3.529 96.1 10,544 24.42 0.017 753
1 200,000 FQUEST -1.547 0.020 0.057 3.710 96.5 12,228 20.04 0.019 600

5 100,000 FIRQUEST -1.547 0.012 0.035 2.267 96.1 33,473 16.81 0.010 796
10 50,000 FIRQUEST -1.546 0.012 0.034 2.170 96.1 27,273 23.95 0.009 900
1 500,000 FQUEST -1.547 0.012 0.036 2.306 96.2 30,907 19.71 0.011 600

5 200,000 FIRQUEST -1.547 0.009 0.025 1.596 96.6 66,681 16.98 0.007 796
10 100,000 FIRQUEST -1.547 0.009 0.024 1.553 95.4 55,292 24.12 0.008 900
1 1,000,000 FQUEST -1.548 0.008 0.026 1.667 96.6 61,322 20.04 0.009 600

0.45 -0.288 5 10,000 FIRQUEST -0.287 0.038 0.108 38.612 96.7 3,124 17.33 0.032 400
10 5,000 FIRQUEST -0.289 0.038 0.104 36.965 95.1 2,600 24.68 0.030 200
1 50,000 FQUEST -0.287 0.037 0.110 39.432 96.2 2,986 20.18 0.040 597

5 20,000 FIRQUEST -0.288 0.028 0.076 26.736 95.9 6,352 17.26 0.022 708
10 10,000 FIRQUEST -0.287 0.026 0.074 26.054 97.0 5,152 24.64 0.020 400
1 100,000 FQUEST -0.286 0.027 0.077 27.200 96.1 6,019 20.12 0.025 599

5 40,000 FIRQUEST -0.287 0.019 0.053 18.619 95.9 13,015 17.13 0.015 792
10 20,000 FIRQUEST -0.287 0.019 0.052 18.383 96.1 10,770 23.92 0.017 753
1 200,000 FQUEST -0.288 0.019 0.054 19.009 96.1 12,191 19.99 0.017 599

5 100,000 FIRQUEST -0.287 0.012 0.033 11.630 95.5 33,162 16.98 0.010 792
10 50,000 FIRQUEST -0.287 0.011 0.032 11.188 95.7 26,786 24.51 0.009 893
1 500,000 FQUEST -0.288 0.011 0.035 12.105 97.4 30,772 19.89 0.012 599

5 200,000 FIRQUEST -0.288 0.008 0.024 8.187 96.5 65,393 17.27 0.007 792
10 100,000 FIRQUEST -0.288 0.008 0.023 8.051 95.5 54,640 24.15 0.007 894
1 1,000,000 FQUEST -0.288 0.008 0.024 8.325 96.9 60,066 20.28 0.007 600

0.75 1.547 5 10,000 FIRQUEST 1.549 0.040 0.113 7.329 95.5 3,213 17.00 0.035 400
10 5,000 FIRQUEST 1.547 0.040 0.110 7.097 94.9 2,678 24.11 0.034 200
1 50,000 FQUEST 1.548 0.039 0.114 7.351 95.2 3,020 20.04 0.038 598

5 20,000 FIRQUEST 1.547 0.028 0.079 5.119 96.0 6,397 17.11 0.024 702
10 10,000 FIRQUEST 1.549 0.028 0.076 4.892 94.4 5,147 24.86 0.018 400
1 100,000 FQUEST 1.548 0.029 0.082 5.274 95.4 6,182 19.72 0.029 601

5 40,000 FIRQUEST 1.549 0.020 0.056 3.588 95.3 12,974 17.18 0.017 784
10 20,000 FIRQUEST 1.548 0.020 0.054 3.504 95.8 10,670 24.01 0.016 752
1 200,000 FQUEST 1.548 0.020 0.056 3.648 96.3 11,988 20.26 0.017 602

5 100,000 FIRQUEST 1.548 0.013 0.035 2.252 96.2 33,390 16.92 0.010 784
10 50,000 FIRQUEST 1.548 0.011 0.034 2.188 96.5 26,148 24.79 0.010 900
1 500,000 FQUEST 1.548 0.012 0.036 2.297 96.5 29,709 20.33 0.011 602

5 200,000 FIRQUEST 1.548 0.009 0.025 1.602 95.9 66,529 16.97 0.008 784
10 100,000 FIRQUEST 1.548 0.009 0.024 1.538 96.1 55,753 23.68 0.007 900
1 1,000,000 FQUEST 1.548 0.009 0.026 1.661 97.3 61,236 19.92 0.008 602
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Table 6.5: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the AR(1) process in Section 6.4.1 with `𝑌 = 0
and 𝜙 = 0.9 for 𝑝 ∈ {0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 2.940 5 10,000 FIRQUEST 2.941 0.045 0.130 4.414 96.3 3,221 16.95 0.044 400
10 5,000 FIRQUEST 2.941 0.048 0.127 4.317 95.0 2,765 23.19 0.044 200
1 50,000 FQUEST 2.939 0.046 0.132 4.506 96.3 3,090 19.48 0.051 593

5 20,000 FIRQUEST 2.940 0.031 0.089 3.044 96.4 6,421 17.07 0.028 703
10 10,000 FIRQUEST 2.941 0.032 0.088 3.009 95.2 5,509 23.54 0.027 400
1 100,000 FQUEST 2.940 0.033 0.092 3.121 96.0 6,201 19.53 0.029 596

5 40,000 FIRQUEST 2.941 0.022 0.063 2.136 96.2 12,924 17.21 0.019 789
10 20,000 FIRQUEST 2.940 0.022 0.064 2.161 96.4 10,705 23.81 0.023 753
1 200,000 FQUEST 2.941 0.023 0.066 2.228 96.2 12,229 20.05 0.023 596

5 100,000 FIRQUEST 2.941 0.014 0.039 1.335 96.2 32,892 17.13 0.010 789
10 50,000 FIRQUEST 2.941 0.013 0.039 1.318 96.6 26,155 24.79 0.012 906
1 500,000 FQUEST 2.941 0.014 0.042 1.434 96.3 31,110 19.58 0.016 595

5 200,000 FIRQUEST 2.940 0.010 0.028 0.946 96.1 66,215 17.02 0.007 789
10 100,000 FIRQUEST 2.940 0.010 0.027 0.931 96.5 55,863 23.72 0.009 906
1 1,000,000 FQUEST 2.940 0.010 0.030 1.011 96.6 62,215 19.66 0.011 596

0.95 3.774 5 10,000 FIRQUEST 3.774 0.051 0.149 3.948 96.2 3,292 16.55 0.053 400
10 5,000 FIRQUEST 3.774 0.053 0.142 3.762 94.1 2,853 22.29 0.048 200
1 50,000 FQUEST 3.772 0.052 0.150 3.976 95.7 3,181 18.98 0.057 603

5 20,000 FIRQUEST 3.773 0.035 0.102 2.708 96.6 6,410 17.08 0.033 710
10 10,000 FIRQUEST 3.775 0.036 0.101 2.667 95.2 5,584 22.92 0.030 400
1 100,000 FQUEST 3.774 0.037 0.103 2.740 95.0 6,292 19.07 0.034 604

5 40,000 FIRQUEST 3.774 0.025 0.073 1.931 96.9 13,400 16.64 0.023 799
10 20,000 FIRQUEST 3.774 0.024 0.072 1.905 96.9 11,051 23.18 0.025 753
1 200,000 FQUEST 3.774 0.026 0.073 1.931 96.5 12,168 19.93 0.023 605

5 100,000 FIRQUEST 3.774 0.016 0.046 1.221 96.2 33,608 16.78 0.016 799
10 50,000 FIRQUEST 3.774 0.015 0.044 1.161 96.1 26,834 24.29 0.012 895
1 500,000 FQUEST 3.774 0.016 0.047 1.257 97.4 31,346 19.42 0.017 605

5 200,000 FIRQUEST 3.774 0.011 0.032 0.843 95.8 66,301 17.05 0.009 799
10 100,000 FIRQUEST 3.774 0.011 0.031 0.817 95.3 54,383 24.30 0.008 895
1 1,000,000 FQUEST 3.774 0.012 0.033 0.881 95.7 62,371 19.64 0.011 605
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Table 6.6: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the AR(1) process in Section 6.4.1 with `𝑌 = 0
and 𝜙 = 0.9 for 𝑝 ∈ {0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 5.337 5 10,000 FIRQUEST 5.335 0.075 0.214 4.014 95.2 3,487 15.61 0.076 400
10 5,000 FIRQUEST 5.337 0.077 0.214 4.010 93.7 3,379 18.31 0.086 200
1 50,000 FQUEST 5.336 0.076 0.229 4.294 95.0 3,606 16.43 0.100 594

5 20,000 FIRQUEST 5.336 0.054 0.148 2.769 95.3 6,644 16.47 0.048 704
10 10,000 FIRQUEST 5.339 0.053 0.150 2.806 95.4 6,131 20.74 0.057 400
1 100,000 FQUEST 5.336 0.052 0.156 2.913 95.3 6,780 17.77 0.061 597

5 40,000 FIRQUEST 5.339 0.038 0.106 1.993 96.2 13,485 16.52 0.039 786
10 20,000 FIRQUEST 5.337 0.036 0.104 1.947 96.4 11,516 22.49 0.034 752
1 200,000 FQUEST 5.338 0.037 0.108 2.024 95.4 12,918 18.80 0.037 597

5 100,000 FIRQUEST 5.338 0.023 0.066 1.243 96.9 33,379 16.87 0.022 786
10 50,000 FIRQUEST 5.338 0.023 0.065 1.222 95.2 28,078 23.45 0.021 892
1 500,000 FQUEST 5.337 0.024 0.067 1.265 96.5 31,028 19.70 0.023 598

5 200,000 FIRQUEST 5.338 0.017 0.046 0.861 96.7 66,095 17.14 0.013 786
10 100,000 FIRQUEST 5.338 0.017 0.045 0.840 95.5 55,093 23.97 0.012 892
1 1,000,000 FQUEST 5.337 0.017 0.048 0.902 95.7 60,577 20.22 0.015 599

0.995 5.909 5 10,000 FIRQUEST 5.905 0.091 0.268 4.540 95.6 3,634 14.89 0.114 400
10 5,000 FIRQUEST 5.906 0.091 0.269 4.556 95.0 3,692 16.35 0.118 200
1 50,000 FQUEST 5.905 0.092 0.284 4.813 95.0 3,827 15.01 0.132 590

5 20,000 FIRQUEST 5.907 0.064 0.183 3.102 95.0 7,069 15.42 0.068 701
10 10,000 FIRQUEST 5.910 0.063 0.186 3.140 96.2 6,704 18.53 0.075 400
1 100,000 FQUEST 5.907 0.064 0.192 3.253 96.0 7,114 16.62 0.086 595

5 40,000 FIRQUEST 5.911 0.046 0.130 2.200 95.6 13,685 16.21 0.052 770
10 20,000 FIRQUEST 5.909 0.044 0.128 2.158 95.6 12,376 20.47 0.046 750
1 200,000 FQUEST 5.909 0.045 0.134 2.260 95.6 13,310 18.24 0.054 595

5 100,000 FIRQUEST 5.911 0.028 0.079 1.330 96.3 33,821 16.60 0.022 770
10 50,000 FIRQUEST 5.910 0.029 0.079 1.337 94.8 28,609 23.07 0.026 876
1 500,000 FQUEST 5.909 0.029 0.081 1.377 96.9 30,934 19.67 0.026 597

5 200,000 FIRQUEST 5.910 0.020 0.056 0.954 96.7 66,135 17.10 0.017 770
10 100,000 FIRQUEST 5.910 0.020 0.054 0.911 95.7 56,055 23.40 0.014 876
1 1,000,000 FQUEST 5.909 0.021 0.058 0.987 95.4 61,451 19.82 0.021 597
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Figure 6.3: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the AR(1) process from Tables 6.4–6.6.
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Table 6.7: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the ARTOP process in Section 6.4.2 for 𝑝 ∈
{0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 1.185 5 10,000 FIRQUEST 1.190 0.022 0.099 8.336 97.7 4,563 10.86 0.058 400
10 5,000 FIRQUEST 1.200 0.026 0.098 8.136 95.7 4,757 10.18 0.057 200
1 50,000 FQUEST 1.188 0.021 0.103 8.648 98.0 4,719 10.77 0.061 739

5 20,000 FIRQUEST 1.187 0.016 0.059 4.990 97.5 8,643 11.78 0.033 796
10 10,000 FIRQUEST 1.189 0.016 0.059 4.918 97.2 9,102 11.11 0.033 400
1 100,000 FQUEST 1.187 0.016 0.062 5.208 97.3 8,989 11.78 0.035 871

5 40,000 FIRQUEST 1.186 0.011 0.037 3.079 96.2 15,619 13.69 0.016 1,337
10 20,000 FIRQUEST 1.186 0.011 0.037 3.098 96.7 16,893 12.83 0.019 800
1 200,000 FQUEST 1.186 0.011 0.038 3.225 97.1 16,710 13.36 0.019 885

5 100,000 FIRQUEST 1.186 0.007 0.021 1.729 96.2 36,538 15.21 0.008 1,437
10 50,000 FIRQUEST 1.186 0.006 0.021 1.764 96.7 36,199 16.71 0.009 1,613
1 500,000 FQUEST 1.186 0.007 0.021 1.812 96.8 35,771 16.70 0.008 887

5 200,000 FIRQUEST 1.185 0.005 0.014 1.190 96.0 69,758 16.08 0.005 1,437
10 100,000 FIRQUEST 1.185 0.005 0.014 1.165 97.2 64,989 19.65 0.005 1,617
1 1,000,000 FQUEST 1.185 0.005 0.015 1.240 97.5 67,890 17.75 0.006 888

0.5 1.391 5 10,000 FIRQUEST 1.400 0.040 0.168 11.954 96.8 4,471 11.19 0.105 400
10 5,000 FIRQUEST 1.420 0.048 0.171 12.054 95.6 4,730 10.30 0.104 200
1 50,000 FQUEST 1.395 0.039 0.176 12.589 97.1 4,619 11.14 0.112 766

5 20,000 FIRQUEST 1.393 0.029 0.100 7.172 95.9 8,258 12.59 0.056 797
10 10,000 FIRQUEST 1.398 0.029 0.105 7.488 96.7 8,758 11.95 0.064 400
1 100,000 FQUEST 1.394 0.029 0.107 7.669 96.4 8,759 12.28 0.060 914

5 40,000 FIRQUEST 1.393 0.020 0.065 4.684 96.5 15,182 14.16 0.032 1,369
10 20,000 FIRQUEST 1.393 0.020 0.065 4.661 96.4 15,947 14.11 0.034 800
1 200,000 FQUEST 1.392 0.020 0.067 4.837 96.4 16,144 14.11 0.033 927

5 100,000 FIRQUEST 1.392 0.013 0.037 2.677 96.5 35,521 15.65 0.015 1,485
10 50,000 FIRQUEST 1.392 0.012 0.037 2.675 96.4 33,672 18.45 0.016 1,668
1 500,000 FQUEST 1.392 0.012 0.039 2.795 96.1 35,563 16.76 0.016 930

5 200,000 FIRQUEST 1.391 0.009 0.026 1.841 95.6 69,876 16.08 0.009 1,485
10 100,000 FIRQUEST 1.392 0.009 0.025 1.767 94.9 61,967 20.99 0.009 1,676
1 1,000,000 FQUEST 1.391 0.009 0.026 1.880 97.1 65,144 18.53 0.009 931

0.7 1.774 5 10,000 FIRQUEST 1.790 0.078 0.318 17.690 96.3 4,460 11.23 0.218 400
10 5,000 FIRQUEST 1.834 0.093 0.333 18.072 95.6 4,714 10.37 0.216 200
1 50,000 FQUEST 1.780 0.073 0.330 18.460 97.5 4,648 11.00 0.223 786

5 20,000 FIRQUEST 1.777 0.055 0.190 10.671 96.2 8,310 12.49 0.112 798
10 10,000 FIRQUEST 1.787 0.055 0.201 11.215 95.9 8,913 11.65 0.123 400
1 100,000 FQUEST 1.779 0.054 0.206 11.529 96.2 8,740 12.33 0.126 970

5 40,000 FIRQUEST 1.778 0.038 0.122 6.877 96.0 15,105 14.20 0.062 1,418
10 20,000 FIRQUEST 1.777 0.037 0.126 7.078 96.0 15,941 14.15 0.069 800
1 200,000 FQUEST 1.776 0.038 0.129 7.246 96.0 16,006 14.19 0.067 995

5 100,000 FIRQUEST 1.776 0.025 0.071 3.998 96.6 35,378 15.74 0.030 1,574
10 50,000 FIRQUEST 1.776 0.023 0.070 3.962 95.8 34,423 18.04 0.030 1,759
1 500,000 FQUEST 1.776 0.023 0.074 4.137 96.7 35,868 16.55 0.030 997

5 200,000 FIRQUEST 1.775 0.017 0.049 2.764 95.5 69,485 16.11 0.018 1,574
10 100,000 FIRQUEST 1.775 0.017 0.047 2.670 95.1 60,516 21.30 0.019 1,768
1 1,000,000 FQUEST 1.774 0.016 0.050 2.792 96.9 65,123 18.63 0.018 998
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Table 6.8: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the ARTOP process in Section 6.4.2 for 𝑝 ∈
{0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 2.994 5 10,000 FIRQUEST 3.035 0.233 1.096 35.703 95.8 4,607 10.68 0.818 400
10 5,000 FIRQUEST 3.186 0.283 1.215 37.708 97.9 4,754 10.19 0.865 200
1 50,000 FQUEST 3.014 0.223 1.145 37.296 97.2 4,811 10.38 0.895 793

5 20,000 FIRQUEST 3.003 0.159 0.643 21.309 95.0 8,865 11.34 0.432 798
10 10,000 FIRQUEST 3.029 0.161 0.688 22.575 97.3 9,248 10.80 0.463 400
1 100,000 FQUEST 3.006 0.157 0.675 22.313 95.6 9,321 11.06 0.447 1,019

5 40,000 FIRQUEST 3.003 0.113 0.399 13.266 95.5 16,546 12.61 0.241 1,461
10 20,000 FIRQUEST 3.002 0.110 0.416 13.800 96.2 17,475 12.11 0.265 800
1 200,000 FQUEST 2.997 0.114 0.425 14.112 96.5 17,331 12.61 0.279 1,068

5 100,000 FIRQUEST 2.996 0.072 0.225 7.509 95.6 37,553 14.69 0.122 1,663
10 50,000 FIRQUEST 2.998 0.070 0.223 7.427 95.6 36,935 15.96 0.115 1,834
1 500,000 FQUEST 2.997 0.069 0.233 7.777 96.6 38,526 15.09 0.127 1,070

5 200,000 FIRQUEST 2.994 0.051 0.150 4.999 95.3 72,575 15.48 0.070 1,662
10 100,000 FIRQUEST 2.996 0.051 0.146 4.874 94.9 67,614 18.83 0.067 1,840
1 1,000,000 FQUEST 2.994 0.049 0.152 5.070 96.4 68,538 17.65 0.062 1,072

0.95 4.164 5 10,000 FIRQUEST 4.238 0.436 2.376 54.768 95.6 4,719 10.28 1.910 400
10 5,000 FIRQUEST 4.527 0.534 2.852 61.925 98.3 4,778 10.09 2.801 200
1 50,000 FQUEST 4.205 0.428 2.393 55.444 95.7 4,854 10.25 2.041 758

5 20,000 FIRQUEST 4.181 0.298 1.374 32.494 95.0 9,119 10.87 1.026 797
10 10,000 FIRQUEST 4.230 0.304 1.478 34.673 97.7 9,462 10.30 1.211 400
1 100,000 FQUEST 4.184 0.290 1.410 33.363 95.7 9,574 10.59 1.045 933

5 40,000 FIRQUEST 4.182 0.209 0.795 18.943 95.3 17,204 11.95 0.532 1,422
10 20,000 FIRQUEST 4.180 0.209 0.836 19.887 96.3 18,274 11.10 0.577 800
1 200,000 FQUEST 4.168 0.209 0.878 20.878 96.7 18,261 11.57 0.629 973

5 100,000 FIRQUEST 4.168 0.129 0.434 10.383 96.0 39,396 13.90 0.252 1,599
10 50,000 FIRQUEST 4.171 0.131 0.439 10.497 95.1 41,014 13.56 0.248 1,805
1 500,000 FQUEST 4.168 0.126 0.461 11.044 95.9 41,294 13.72 0.274 975

5 200,000 FIRQUEST 4.165 0.092 0.288 6.904 96.6 75,774 14.67 0.147 1,599
10 100,000 FIRQUEST 4.169 0.094 0.282 6.764 95.7 73,393 16.76 0.143 1,806
1 1,000,000 FQUEST 4.164 0.089 0.290 6.954 96.6 73,992 15.87 0.134 977
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Table 6.9: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the ARTOP process in Section 6.4.2 for 𝑝 ∈
{0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 8.962 5 10,000 FIRQUEST 9.228 1.727 9.780 99.251 94.3 4,785 10.05 9.508 400
10 5,000 FIRQUEST 10.364 2.130 14.209 125.688 98.6 4,798 10.01 38.849 200
1 50,000 FQUEST 9.112 1.741 9.631 98.912 93.2 4,926 10.02 9.566 662

5 20,000 FIRQUEST 9.028 1.185 7.220 76.522 93.5 9,464 10.25 9.022 774
10 10,000 FIRQUEST 9.217 1.249 8.184 84.632 96.0 9,576 10.05 10.628 400
1 100,000 FQUEST 9.011 1.136 7.257 77.372 94.0 9,869 10.10 6.566 736

5 40,000 FIRQUEST 9.012 0.833 4.611 50.140 94.9 18,831 10.52 4.135 1,185
10 20,000 FIRQUEST 9.010 0.842 4.791 51.942 96.6 19,096 10.12 4.282 795
1 200,000 FQUEST 8.955 0.810 4.802 52.634 95.8 19,568 10.31 4.039 747

5 100,000 FIRQUEST 8.961 0.512 2.213 24.476 96.2 46,361 11.08 1.574 1,259
10 50,000 FIRQUEST 8.973 0.531 2.282 25.170 95.2 47,310 10.52 1.761 1,478
1 500,000 FQUEST 8.958 0.500 2.365 26.132 96.3 47,897 10.73 1.682 747

5 200,000 FIRQUEST 8.958 0.367 1.353 15.046 95.4 86,517 12.39 0.875 1,259
10 100,000 FIRQUEST 8.971 0.382 1.338 14.852 94.2 90,880 11.72 0.905 1,478
1 1,000,000 FQUEST 8.955 0.365 1.443 16.050 96.0 89,404 12.04 0.929 749

0.995 12.466 5 10,000 FIRQUEST 12.988 3.203 14.894 104.159 90.9 4,790 10.03 15.082 400
10 5,000 FIRQUEST 14.996 3.951 22.108 128.260 97.1 4,798 10.01 66.808 200
1 50,000 FQUEST 12.751 3.197 14.953 106.177 90.7 4,938 10.01 15.592 601

5 20,000 FIRQUEST 12.616 2.183 12.692 92.756 91.4 9,547 10.14 18.828 736
10 10,000 FIRQUEST 12.922 2.297 15.387 109.043 94.2 9,590 10.02 37.440 400
1 100,000 FQUEST 12.552 2.080 12.777 95.946 93.1 9,910 10.04 12.796 635

5 40,000 FIRQUEST 12.538 1.520 9.377 72.060 95.1 19,116 10.33 10.405 988
10 20,000 FIRQUEST 12.571 1.538 10.158 76.665 95.7 19,152 10.08 13.238 777
1 200,000 FQUEST 12.451 1.485 9.518 73.741 95.5 19,647 10.25 8.832 643

5 100,000 FIRQUEST 12.465 0.941 4.808 37.962 94.7 47,766 10.59 3.841 1,025
10 50,000 FIRQUEST 12.484 0.967 4.955 39.117 96.0 48,103 10.29 3.972 1,240
1 500,000 FQUEST 12.451 0.919 4.963 39.181 96.6 48,821 10.40 3.804 643

5 200,000 FIRQUEST 12.465 0.671 2.861 22.806 96.0 91,560 11.43 2.010 1,025
10 100,000 FIRQUEST 12.488 0.703 2.813 22.324 94.2 95,221 10.75 2.117 1,240
1 1,000,000 FQUEST 12.444 0.664 3.041 24.255 96.1 94,027 11.10 2.170 644
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Figure 6.4: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the ARTOP process from Tables 6.7–6.9.
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Table 6.10: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.9 initialized in the empty-and-idle state
for 𝑝 ∈ {0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 2.513 5 10,000 FIRQUEST 2.513 0.179 0.929 36.618 97.9 4,561 10.83 0.661 400
10 5,000 FIRQUEST 2.496 0.182 0.903 35.965 97.3 4,733 10.30 0.615 200
1 50,000 FQUEST 2.513 0.184 0.990 39.027 97.8 4,756 10.62 0.679 685

5 20,000 FIRQUEST 2.514 0.134 0.559 22.184 97.5 8,702 11.74 0.338 744
10 10,000 FIRQUEST 2.509 0.133 0.543 21.562 96.4 9,152 11.00 0.351 400
1 100,000 FQUEST 2.519 0.127 0.593 23.461 98.4 9,174 11.40 0.384 710

5 40,000 FIRQUEST 2.517 0.091 0.326 12.930 97.0 16,157 13.30 0.173 891
10 20,000 FIRQUEST 2.512 0.095 0.326 12.956 95.1 16,863 12.90 0.179 779
1 200,000 FQUEST 2.519 0.090 0.341 13.538 97.3 16,963 13.03 0.177 712

5 100,000 FIRQUEST 2.517 0.059 0.179 7.116 96.1 37,295 14.95 0.077 892
10 50,000 FIRQUEST 2.514 0.061 0.182 7.216 94.9 37,488 16.21 0.089 1,009
1 500,000 FQUEST 2.517 0.056 0.187 7.429 97.9 36,012 16.46 0.078 715

5 200,000 FIRQUEST 2.517 0.042 0.120 4.754 94.6 68,906 16.39 0.044 892
10 100,000 FIRQUEST 2.513 0.041 0.119 4.723 95.6 65,785 19.56 0.047 1,010
1 1,000,000 FQUEST 2.515 0.040 0.126 4.995 96.8 68,110 17.62 0.045 716

0.5 5.878 5 10,000 FIRQUEST 5.879 0.370 1.858 31.286 96.9 4,542 10.92 1.364 400
10 5,000 FIRQUEST 5.840 0.369 1.822 30.976 95.5 4,697 10.45 1.292 200
1 50,000 FQUEST 5.873 0.373 2.000 33.724 97.0 4,734 10.70 1.545 723

5 20,000 FIRQUEST 5.876 0.279 1.126 19.071 97.2 8,649 11.81 0.701 758
10 10,000 FIRQUEST 5.869 0.275 1.108 18.810 95.8 9,103 11.13 0.738 400
1 100,000 FQUEST 5.888 0.262 1.196 20.249 97.8 9,046 11.66 0.796 767

5 40,000 FIRQUEST 5.886 0.191 0.671 11.377 96.5 16,125 13.28 0.388 955
10 20,000 FIRQUEST 5.874 0.195 0.686 11.645 94.6 16,861 12.89 0.409 787
1 200,000 FQUEST 5.891 0.186 0.708 12.021 96.7 17,098 12.93 0.399 768

5 100,000 FIRQUEST 5.883 0.122 0.373 6.330 95.7 37,548 14.78 0.176 957
10 50,000 FIRQUEST 5.880 0.126 0.375 6.371 94.8 37,382 16.27 0.186 1,094
1 500,000 FQUEST 5.886 0.115 0.385 6.537 97.4 36,681 16.05 0.159 771

5 200,000 FIRQUEST 5.885 0.085 0.249 4.238 95.2 70,601 15.89 0.093 957
10 100,000 FIRQUEST 5.877 0.085 0.244 4.145 95.7 66,135 19.34 0.100 1,093
1 1,000,000 FQUEST 5.880 0.083 0.261 4.434 97.2 68,127 17.70 0.105 771

0.7 10.986 5 10,000 FIRQUEST 10.983 0.700 3.555 31.935 96.0 4,482 11.17 3.005 400
10 5,000 FIRQUEST 10.906 0.705 3.451 31.285 94.8 4,696 10.46 2.778 200
1 50,000 FQUEST 10.975 0.710 3.842 34.454 96.4 4,719 10.76 3.158 725

5 20,000 FIRQUEST 10.982 0.522 2.142 19.404 96.5 8,621 11.92 1.451 760
10 10,000 FIRQUEST 10.969 0.521 2.103 19.062 94.9 8,995 11.42 1.519 400
1 100,000 FQUEST 11.005 0.493 2.348 21.208 97.5 9,111 11.54 1.674 781

5 40,000 FIRQUEST 10.999 0.365 1.296 11.748 95.9 16,284 13.17 0.788 969
10 20,000 FIRQUEST 10.977 0.368 1.302 11.817 95.1 17,004 12.72 0.817 788
1 200,000 FQUEST 11.008 0.348 1.364 12.368 96.9 17,373 12.68 0.796 783

5 100,000 FIRQUEST 10.990 0.227 0.720 6.546 95.9 37,751 14.74 0.364 972
10 50,000 FIRQUEST 10.988 0.236 0.711 6.467 94.9 37,858 16.03 0.357 1,116
1 500,000 FQUEST 11.000 0.223 0.738 6.702 96.8 37,900 15.40 0.310 785

5 200,000 FIRQUEST 10.996 0.162 0.479 4.355 95.4 72,044 15.52 0.186 972
10 100,000 FIRQUEST 10.982 0.161 0.473 4.301 95.3 68,577 18.62 0.207 1,116
1 1,000,000 FQUEST 10.987 0.158 0.498 4.529 96.9 67,787 17.78 0.204 786
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Table 6.11: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.9 initialized in the empty-and-idle state
for 𝑝 ∈ {0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 21.972 5 10,000 FIRQUEST 21.976 1.705 8.095 36.193 94.4 4,538 10.96 6.303 400
10 5,000 FIRQUEST 21.775 1.715 7.780 35.149 93.4 4,706 10.40 5.923 200
1 50,000 FQUEST 21.960 1.754 8.723 38.759 93.4 4,770 10.62 7.228 704

5 20,000 FIRQUEST 21.983 1.265 5.844 26.233 95.4 8,893 11.37 4.853 752
10 10,000 FIRQUEST 21.930 1.253 5.700 25.655 94.3 9,198 10.94 4.680 400
1 100,000 FQUEST 22.055 1.244 6.154 27.549 94.9 9,317 11.14 5.050 746

5 40,000 FIRQUEST 22.008 0.902 3.493 15.764 94.9 17,318 12.09 2.700 922
10 20,000 FIRQUEST 21.940 0.888 3.465 15.675 94.7 17,708 11.85 2.642 782
1 200,000 FQUEST 22.023 0.861 3.630 16.380 95.2 17,900 11.99 2.696 747

5 100,000 FIRQUEST 21.982 0.550 1.835 8.335 95.6 40,422 13.54 1.067 924
10 50,000 FIRQUEST 21.969 0.571 1.856 8.438 94.1 41,260 13.93 1.111 1,049
1 500,000 FQUEST 22.003 0.546 1.911 8.671 95.6 40,548 14.11 1.079 749

5 200,000 FIRQUEST 21.993 0.389 1.183 5.378 94.9 75,094 14.93 0.558 924
10 100,000 FIRQUEST 21.956 0.391 1.194 5.430 94.4 76,012 16.24 0.616 1,049
1 1,000,000 FQUEST 21.974 0.385 1.275 5.798 96.6 76,453 15.44 0.625 750

0.95 28.904 5 10,000 FIRQUEST 28.941 2.640 10.559 35.648 92.6 4,648 10.55 7.562 400
10 5,000 FIRQUEST 28.596 2.604 10.201 34.914 91.6 4,756 10.19 7.195 200
1 50,000 FQUEST 28.983 2.748 10.974 36.721 91.4 4,820 10.42 8.472 679

5 20,000 FIRQUEST 28.945 1.960 8.470 28.819 92.6 9,063 11.05 6.444 743
10 10,000 FIRQUEST 28.852 1.957 8.465 28.892 93.4 9,382 10.51 6.250 400
1 100,000 FQUEST 29.101 1.990 9.035 30.387 93.7 9,532 10.73 7.416 708

5 40,000 FIRQUEST 28.964 1.380 6.028 20.616 94.2 17,958 11.51 4.972 890
10 20,000 FIRQUEST 28.858 1.374 5.889 20.169 94.5 18,335 11.01 4.846 777
1 200,000 FQUEST 29.001 1.373 6.128 20.903 94.2 18,607 11.27 4.922 709

5 100,000 FIRQUEST 28.935 0.844 3.084 10.612 95.3 42,070 12.81 2.124 891
10 50,000 FIRQUEST 28.898 0.881 3.007 10.383 94.1 43,657 12.57 1.920 1,006
1 500,000 FQUEST 28.960 0.838 3.218 11.088 95.1 43,262 12.79 2.156 710

5 200,000 FIRQUEST 28.940 0.596 1.896 6.546 95.6 79,224 13.99 0.963 891
10 100,000 FIRQUEST 28.884 0.597 1.905 6.584 95.0 81,555 14.49 1.095 1,006
1 1,000,000 FQUEST 28.907 0.589 2.029 7.013 96.4 81,317 14.06 1.154 711
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Table 6.12: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.9 initialized in the empty-and-idle state
for 𝑝 ∈ {0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 44.998 5 10,000 FIRQUEST 44.754 6.177 16.022 33.680 82.1 4,752 10.16 11.484 400
10 5,000 FIRQUEST 43.949 5.964 15.870 34.198 81.2 4,793 10.03 10.863 200
1 50,000 FQUEST 44.758 6.372 18.781 38.650 84.8 4,917 10.05 16.746 664

5 20,000 FIRQUEST 45.273 4.835 13.825 29.135 87.3 9,536 10.18 10.004 735
10 10,000 FIRQUEST 44.895 4.693 13.920 29.800 89.3 9,562 10.08 9.440 400
1 100,000 FQUEST 45.449 4.984 15.029 31.230 87.8 9,804 10.23 12.652 681

5 40,000 FIRQUEST 45.171 3.349 12.026 25.964 90.8 18,953 10.56 8.621 858
10 20,000 FIRQUEST 44.920 3.314 11.360 24.650 90.8 19,074 10.16 8.079 773
1 200,000 FQUEST 45.146 3.416 12.160 26.256 92.0 19,530 10.35 8.686 681

5 100,000 FIRQUEST 45.116 2.139 9.051 19.812 92.8 46,531 11.13 6.797 858
10 50,000 FIRQUEST 44.950 2.138 8.900 19.577 94.2 47,671 10.63 6.387 969
1 500,000 FQUEST 45.070 2.047 9.202 20.146 94.4 47,371 10.98 7.018 682

5 200,000 FIRQUEST 45.083 1.484 6.206 13.669 94.5 90,607 11.66 4.806 858
10 100,000 FIRQUEST 44.989 1.509 6.102 13.448 94.0 93,956 11.18 4.702 969
1 1,000,000 FQUEST 44.979 1.434 6.584 14.521 95.3 91,417 11.71 5.326 683

0.995 51.930 5 10,000 FIRQUEST 50.551 7.994 18.986 35.024 74.4 4,772 10.10 13.130 400
10 5,000 FIRQUEST 49.752 7.694 18.894 35.679 74.6 4,795 10.02 12.514 200
1 50,000 FQUEST 50.464 8.036 23.078 41.694 78.5 4,929 10.02 20.676 655

5 20,000 FIRQUEST 51.786 6.474 16.423 29.853 81.5 9,557 10.14 11.804 731
10 10,000 FIRQUEST 51.491 6.351 16.684 30.708 82.5 9,581 10.04 11.323 400
1 100,000 FQUEST 52.074 6.747 19.200 33.926 83.1 9,858 10.13 17.841 671

5 40,000 FIRQUEST 52.213 4.830 14.505 26.688 88.1 19,212 10.31 10.331 847
10 20,000 FIRQUEST 51.798 4.784 13.709 25.415 87.5 19,191 10.04 9.830 771
1 200,000 FQUEST 52.047 4.807 15.102 27.659 87.6 19,660 10.22 12.290 671

5 100,000 FIRQUEST 52.131 3.096 11.299 21.299 91.6 47,864 10.61 8.028 848
10 50,000 FIRQUEST 51.875 3.043 11.231 21.294 92.7 48,353 10.30 7.607 961
1 500,000 FQUEST 52.034 2.998 11.756 22.166 93.2 48,608 10.45 8.496 671

5 200,000 FIRQUEST 52.067 2.129 8.816 16.760 93.3 93,409 11.10 6.607 848
10 100,000 FIRQUEST 51.924 2.178 8.758 16.654 92.8 95,976 10.66 6.494 961
1 1,000,000 FQUEST 51.888 2.064 9.270 17.654 94.2 95,448 10.87 7.230 672

266



Figure 6.5: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the M/M/1 waiting-time process from Tables 6.10–6.12.
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Table 6.13: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.9 initialized with 113 customers for
𝑝 ∈ {0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 2.513 5 10,000 FIRQUEST 2.767 0.297 1.352 48.348 98.0 4,789 10.04 1.012 400
10 5,000 FIRQUEST 3.296 0.784 1.727 51.706 66.9 4,800 10.00 2.028 200
1 50,000 FQUEST 2.541 0.186 1.045 40.769 97.4 4,809 10.42 0.711 765

5 20,000 FIRQUEST 2.561 0.143 0.612 23.822 98.7 9,157 10.81 0.358 795
10 10,000 FIRQUEST 2.761 0.262 0.671 24.291 88.0 9,595 10.01 0.456 400
1 100,000 FQUEST 2.533 0.129 0.599 23.530 98.0 9,316 11.08 0.371 1,031

5 40,000 FIRQUEST 2.520 0.094 0.333 13.177 97.1 16,319 12.84 0.174 1,482
10 20,000 FIRQUEST 2.559 0.103 0.348 13.576 95.8 18,400 10.90 0.178 800
1 200,000 FQUEST 2.525 0.091 0.357 14.130 97.8 17,276 12.72 0.190 1,088

5 100,000 FIRQUEST 2.518 0.058 0.181 7.201 96.7 36,876 14.96 0.080 1,736
10 50,000 FIRQUEST 2.514 0.060 0.183 7.283 96.2 36,610 16.14 0.086 1,899
1 500,000 FQUEST 2.520 0.056 0.188 7.442 97.6 37,209 15.80 0.072 1,091

5 200,000 FIRQUEST 2.518 0.041 0.120 4.755 95.0 69,238 16.24 0.043 1,736
10 100,000 FIRQUEST 2.513 0.041 0.118 4.709 96.9 65,135 19.41 0.047 1,918
1 1,000,000 FQUEST 2.516 0.040 0.128 5.076 96.8 68,747 17.42 0.050 1,093

0.5 5.878 5 10,000 FIRQUEST 6.475 0.671 3.077 46.957 97.8 4,789 10.04 2.382 400
10 5,000 FIRQUEST 7.791 1.913 4.278 53.933 64.7 4,800 10.00 4.171 200
1 50,000 FQUEST 5.946 0.386 2.166 36.056 97.6 4,790 10.52 1.733 674

5 20,000 FIRQUEST 5.993 0.301 1.261 20.926 97.5 9,094 10.95 0.773 782
10 10,000 FIRQUEST 6.463 0.608 1.499 23.121 87.1 9,586 10.03 1.206 400
1 100,000 FQUEST 5.925 0.263 1.211 20.350 98.0 9,252 11.22 0.785 755

5 40,000 FIRQUEST 5.904 0.199 0.692 11.696 96.8 16,624 12.67 0.383 1,264
10 20,000 FIRQUEST 5.984 0.218 0.747 12.459 95.0 18,329 10.99 0.401 798
1 200,000 FQUEST 5.906 0.183 0.720 12.187 97.8 17,474 12.50 0.380 765

5 100,000 FIRQUEST 5.891 0.120 0.375 6.358 95.9 37,444 14.71 0.175 1,359
10 50,000 FIRQUEST 5.884 0.125 0.378 6.425 96.0 37,802 15.67 0.185 1,586
1 500,000 FQUEST 5.894 0.114 0.387 6.569 97.2 37,968 15.36 0.157 768

5 200,000 FIRQUEST 5.888 0.085 0.246 4.182 95.5 69,541 16.25 0.090 1,359
10 100,000 FIRQUEST 5.880 0.084 0.243 4.125 96.5 66,740 19.20 0.093 1,591
1 1,000,000 FQUEST 5.884 0.081 0.262 4.447 96.7 69,099 17.46 0.097 769

0.7 10.986 5 10,000 FIRQUEST 12.377 1.495 7.738 61.316 98.3 4,782 10.06 6.801 400
10 5,000 FIRQUEST 15.936 4.950 12.719 77.947 64.6 4,800 10.00 10.831 200
1 50,000 FQUEST 11.145 0.750 4.419 39.082 97.9 4,761 10.65 4.226 646

5 20,000 FIRQUEST 11.272 0.599 2.598 22.910 97.6 9,168 10.83 1.745 751
10 10,000 FIRQUEST 12.365 1.406 3.316 26.627 85.6 9,590 10.02 2.627 400
1 100,000 FQUEST 11.090 0.508 2.391 21.410 97.3 9,231 11.30 1.748 666

5 40,000 FIRQUEST 11.093 0.392 1.372 12.340 96.3 17,218 12.19 0.810 972
10 20,000 FIRQUEST 11.242 0.445 1.542 13.682 96.2 18,343 11.01 0.928 783
1 200,000 FQUEST 11.046 0.348 1.384 12.518 98.4 17,617 12.38 0.797 668

5 100,000 FIRQUEST 11.031 0.232 0.740 6.703 96.3 39,629 13.95 0.370 985
10 50,000 FIRQUEST 11.034 0.245 0.735 6.654 95.0 40,134 14.57 0.370 1,160
1 500,000 FQUEST 11.017 0.220 0.746 6.765 96.7 37,801 15.39 0.335 671

5 200,000 FIRQUEST 11.014 0.167 0.479 4.349 95.7 72,466 15.59 0.175 985
10 100,000 FIRQUEST 11.006 0.160 0.480 4.361 96.2 70,874 17.81 0.221 1,160
1 1,000,000 FQUEST 10.998 0.156 0.499 4.539 97.0 69,797 17.28 0.185 672
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Table 6.14: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.9 initialized with 113 customers for
𝑝 ∈ {0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 21.972 5 10,000 FIRQUEST 27.681 5.796 24.641 88.476 97.9 4,767 10.12 14.174 400
10 5,000 FIRQUEST 49.091 27.119 29.493 61.648 28.1 4,800 10.00 13.585 200
1 50,000 FQUEST 22.578 1.908 11.376 49.271 96.6 4,822 10.41 9.492 659

5 20,000 FIRQUEST 23.074 1.685 8.905 37.912 97.6 9,272 10.68 7.526 722
10 10,000 FIRQUEST 27.544 5.590 16.970 60.672 91.7 9,576 10.05 12.005 400
1 100,000 FQUEST 22.342 1.258 6.885 30.346 97.0 9,408 10.97 6.174 675

5 40,000 FIRQUEST 22.450 1.020 4.210 18.608 97.4 18,251 11.25 3.086 838
10 20,000 FIRQUEST 22.920 1.273 4.836 20.881 95.6 18,645 10.67 3.896 765
1 200,000 FQUEST 22.160 0.871 3.908 17.532 96.5 18,159 11.74 2.925 677

5 100,000 FIRQUEST 22.154 0.585 1.968 8.857 96.9 42,035 12.93 1.141 840
10 50,000 FIRQUEST 22.229 0.629 1.999 8.963 95.0 43,648 12.66 1.161 951
1 500,000 FQUEST 22.061 0.545 1.951 8.826 96.8 41,262 13.81 1.159 679

5 200,000 FIRQUEST 22.075 0.411 1.220 5.520 95.3 77,001 14.50 0.568 840
10 100,000 FIRQUEST 22.081 0.405 1.264 5.718 94.8 79,998 14.95 0.660 951
1 1,000,000 FQUEST 22.007 0.379 1.274 5.781 97.2 75,474 15.69 0.602 680

0.95 28.904 5 10,000 FIRQUEST 41.514 12.688 32.397 78.284 97.4 4,787 10.04 15.894 400
10 5,000 FIRQUEST 74.284 45.380 32.671 44.360 9.0 4,800 10.00 11.401 200
1 50,000 FQUEST 30.108 3.099 15.268 49.204 95.5 4,822 10.42 11.617 656

5 20,000 FIRQUEST 31.122 2.982 15.207 47.875 98.6 9,392 10.44 11.336 715
10 10,000 FIRQUEST 41.369 12.473 28.561 69.018 91.1 9,590 10.02 14.521 400
1 100,000 FQUEST 29.606 2.053 11.057 36.538 96.5 9,612 10.60 9.494 676

5 40,000 FIRQUEST 29.850 1.691 8.344 27.539 97.9 18,519 11.00 6.811 819
10 20,000 FIRQUEST 30.765 2.283 10.352 33.015 97.8 18,966 10.29 8.686 762
1 200,000 FQUEST 29.240 1.393 6.709 22.652 96.3 18,611 11.25 5.867 677

5 100,000 FIRQUEST 29.261 0.936 3.409 11.595 95.9 43,859 12.11 2.213 821
10 50,000 FIRQUEST 29.397 1.034 3.639 12.301 96.5 45,653 11.72 2.558 938
1 500,000 FQUEST 29.045 0.857 3.302 11.314 96.3 44,391 12.30 2.285 678

5 200,000 FIRQUEST 29.093 0.650 2.076 7.115 96.8 81,715 13.49 1.143 821
10 100,000 FIRQUEST 29.126 0.666 2.137 7.320 95.3 85,221 13.58 1.204 938
1 1,000,000 FQUEST 28.963 0.590 2.090 7.202 96.7 80,608 14.22 1.210 680
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Table 6.15: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.9 initialized with 113 customers for
𝑝 ∈ {0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 44.998 5 10,000 FIRQUEST 78.782 33.838 50.217 62.325 98.6 4,797 10.01 22.070 400
10 5,000 FIRQUEST 109.519 64.521 43.525 39.691 15.1 4,800 10.00 12.100 200
1 50,000 FQUEST 49.730 8.917 28.705 51.357 92.6 4,907 10.10 27.367 653

5 20,000 FIRQUEST 54.081 10.484 26.921 47.362 96.9 9,543 10.17 17.559 714
10 10,000 FIRQUEST 81.797 36.799 43.863 53.525 87.8 9,600 10.00 15.583 400
1 100,000 FQUEST 47.619 5.882 20.448 40.031 93.9 9,821 10.21 18.106 668

5 40,000 FIRQUEST 48.573 5.136 19.002 37.906 96.8 19,187 10.35 12.904 814
10 20,000 FIRQUEST 52.715 8.362 25.087 46.359 98.1 19,193 10.05 14.906 758
1 200,000 FQUEST 46.054 3.691 15.032 31.680 94.9 19,583 10.31 11.375 668

5 100,000 FIRQUEST 46.297 2.562 11.808 25.115 96.8 47,275 10.84 9.010 815
10 50,000 FIRQUEST 46.851 2.926 13.593 28.514 98.1 47,700 10.63 10.389 918
1 500,000 FQUEST 45.416 2.164 10.379 22.538 95.8 47,266 10.98 8.282 669

5 200,000 FIRQUEST 45.625 1.670 7.102 15.422 96.1 91,315 11.55 5.703 815
10 100,000 FIRQUEST 45.877 1.813 8.102 17.452 97.3 94,238 11.12 6.608 918
1 1,000,000 FQUEST 45.131 1.490 6.894 15.132 95.2 92,147 11.46 5.667 670

0.995 51.930 5 10,000 FIRQUEST 90.449 38.574 57.001 61.287 99.2 4,795 10.02 24.044 400
10 5,000 FIRQUEST 118.537 66.607 46.624 39.190 27.2 4,800 10.00 13.890 200
1 50,000 FQUEST 57.240 11.541 36.435 55.529 90.1 4,924 10.04 34.815 661

5 20,000 FIRQUEST 64.778 14.849 32.805 47.347 96.9 9,579 10.11 21.596 710
10 10,000 FIRQUEST 95.613 43.684 50.424 52.382 90.6 9,600 10.00 16.847 400
1 100,000 FQUEST 55.654 8.615 27.125 43.841 91.4 9,880 10.09 26.090 676

5 40,000 FIRQUEST 58.102 8.388 23.597 38.682 96.3 19,359 10.20 15.593 805
10 20,000 FIRQUEST 64.230 13.139 30.533 45.537 98.4 19,175 10.07 18.194 758
1 200,000 FQUEST 53.680 5.549 19.006 33.343 92.5 19,636 10.25 16.403 676

5 100,000 FIRQUEST 54.210 3.996 15.940 28.776 95.9 48,100 10.54 10.947 805
10 50,000 FIRQUEST 55.225 4.771 18.341 32.429 96.7 48,692 10.18 12.263 915
1 500,000 FQUEST 52.644 3.186 13.465 25.022 95.2 48,511 10.49 10.124 676

5 200,000 FIRQUEST 52.990 2.474 10.968 20.417 96.0 93,988 11.00 8.401 805
10 100,000 FIRQUEST 53.450 2.747 12.415 22.841 97.5 97,111 10.44 9.315 915
1 1,000,000 FQUEST 52.155 2.180 10.277 19.437 95.7 94,553 10.99 7.988 677
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Figure 6.6: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the M/M/1 waiting-time process from Tables 6.13–6.15.
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Table 6.16: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.8 initialized with 113 customers for
𝑝 ∈ {0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 0.668 5 10,000 FIRQUEST 0.682 0.046 0.188 27.559 99.4 4,371 11.68 0.085 400
10 5,000 FIRQUEST 0.774 0.109 0.193 25.021 77.7 4,800 10.00 0.097 200
1 50,000 FQUEST 0.667 0.044 0.160 24.030 97.3 4,098 13.49 0.080 1,002

5 20,000 FIRQUEST 0.667 0.032 0.104 15.664 97.8 7,303 14.75 0.039 800
10 10,000 FIRQUEST 0.682 0.034 0.117 17.107 98.3 8,695 12.22 0.050 400
1 100,000 FQUEST 0.669 0.030 0.105 15.774 96.8 7,431 15.45 0.051 1,950

5 40,000 FIRQUEST 0.668 0.022 0.069 10.267 96.9 13,560 16.01 0.024 1,600
10 20,000 FIRQUEST 0.667 0.022 0.069 10.404 96.2 12,698 19.62 0.026 800
1 200,000 FQUEST 0.669 0.021 0.071 10.582 97.3 13,665 17.37 0.031 2,460

5 100,000 FIRQUEST 0.668 0.014 0.041 6.077 96.5 33,564 16.51 0.012 2,023
10 50,000 FIRQUEST 0.668 0.015 0.042 6.276 97.0 29,164 21.88 0.016 2,000
1 500,000 FQUEST 0.669 0.013 0.042 6.348 97.1 31,526 19.25 0.015 2,461

5 200,000 FIRQUEST 0.668 0.010 0.028 4.185 96.0 65,874 17.11 0.008 2,023
10 100,000 FIRQUEST 0.668 0.010 0.028 4.137 97.2 56,421 23.05 0.008 2,048
1 1,000,000 FQUEST 0.668 0.010 0.030 4.429 96.9 62,711 19.48 0.009 2,463

0.5 2.350 5 10,000 FIRQUEST 2.382 0.097 0.398 16.666 99.1 4,346 11.80 0.182 400
10 5,000 FIRQUEST 2.599 0.253 0.434 16.706 77.0 4,800 10.00 0.226 200
1 50,000 FQUEST 2.348 0.090 0.335 14.223 96.9 4,099 13.37 0.180 986

5 20,000 FIRQUEST 2.349 0.065 0.221 9.431 97.9 7,311 14.70 0.098 800
10 10,000 FIRQUEST 2.382 0.072 0.250 10.488 98.5 8,774 12.17 0.104 400
1 100,000 FQUEST 2.352 0.062 0.215 9.149 96.9 7,388 15.52 0.100 1,897

5 40,000 FIRQUEST 2.351 0.045 0.144 6.123 97.6 13,852 15.66 0.055 1,600
10 20,000 FIRQUEST 2.349 0.045 0.145 6.173 96.7 12,926 19.19 0.056 800
1 200,000 FQUEST 2.352 0.044 0.143 6.070 97.3 13,807 17.20 0.059 2,336

5 100,000 FIRQUEST 2.351 0.028 0.083 3.548 96.1 33,779 16.40 0.026 2,016
10 50,000 FIRQUEST 2.350 0.029 0.086 3.652 96.4 28,512 22.23 0.032 2,000
1 500,000 FQUEST 2.352 0.028 0.085 3.626 97.2 31,159 19.32 0.026 2,338

5 200,000 FIRQUEST 2.351 0.020 0.058 2.472 95.3 67,054 16.74 0.019 2,016
10 100,000 FIRQUEST 2.350 0.020 0.057 2.405 96.7 56,460 22.98 0.016 2,037
1 1,000,000 FQUEST 2.350 0.020 0.060 2.545 96.6 61,917 19.72 0.019 2,340

0.7 4.904 5 10,000 FIRQUEST 4.980 0.192 0.820 16.420 99.6 4,395 11.54 0.395 400
10 5,000 FIRQUEST 5.504 0.601 1.002 18.142 77.0 4,800 10.00 0.540 200
1 50,000 FQUEST 4.905 0.173 0.658 13.368 97.1 4,170 13.08 0.401 880

5 20,000 FIRQUEST 4.903 0.125 0.426 8.679 97.5 7,428 14.40 0.203 800
10 10,000 FIRQUEST 4.980 0.144 0.536 10.746 99.3 8,846 11.90 0.223 400
1 100,000 FQUEST 4.910 0.120 0.418 8.497 97.2 7,548 15.13 0.208 1,553

5 40,000 FIRQUEST 4.905 0.087 0.278 5.664 96.5 14,228 15.26 0.114 1,594
10 20,000 FIRQUEST 4.903 0.087 0.281 5.719 97.1 13,365 18.33 0.112 800
1 200,000 FQUEST 4.909 0.083 0.276 5.623 97.9 14,031 16.93 0.120 1,881

5 100,000 FIRQUEST 4.905 0.054 0.160 3.263 96.0 33,258 16.61 0.050 1,998
10 50,000 FIRQUEST 4.904 0.056 0.163 3.314 96.6 29,496 21.51 0.059 2,000
1 500,000 FQUEST 4.908 0.052 0.166 3.378 97.7 32,139 18.77 0.063 1,883

5 200,000 FIRQUEST 4.905 0.038 0.111 2.268 96.4 66,172 17.08 0.034 1,998
10 100,000 FIRQUEST 4.903 0.037 0.109 2.226 97.1 55,880 23.28 0.033 2,024
1 1,000,000 FQUEST 4.905 0.038 0.113 2.304 97.8 62,625 19.47 0.033 1,885
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Table 6.17: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.8 initialized with 113 customers for
𝑝 ∈ {0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 10.397 5 10,000 FIRQUEST 10.686 0.515 2.893 26.833 99.7 4,561 10.90 1.946 400
10 5,000 FIRQUEST 13.034 2.637 7.368 55.534 94.9 4,800 10.00 6.121 200
1 50,000 FQUEST 10.431 0.416 1.784 17.005 96.5 4,437 11.95 1.289 628

5 20,000 FIRQUEST 10.413 0.305 1.100 10.545 96.7 7,920 13.43 0.632 748
10 10,000 FIRQUEST 10.689 0.410 1.830 17.063 99.4 9,265 10.81 0.775 400
1 100,000 FQUEST 10.428 0.288 1.108 10.592 96.8 8,369 13.37 0.667 667

5 40,000 FIRQUEST 10.413 0.216 0.688 6.604 97.2 14,982 14.59 0.335 1,026
10 20,000 FIRQUEST 10.404 0.211 0.727 6.983 97.4 15,155 15.43 0.377 784
1 200,000 FQUEST 10.415 0.206 0.702 6.730 96.7 15,466 15.04 0.367 673

5 100,000 FIRQUEST 10.402 0.134 0.400 3.840 96.6 35,642 15.66 0.157 1,069
10 50,000 FIRQUEST 10.403 0.136 0.402 3.865 95.4 33,498 19.06 0.166 1,308
1 500,000 FQUEST 10.408 0.129 0.404 3.880 96.6 34,019 17.68 0.162 676

5 200,000 FIRQUEST 10.401 0.094 0.270 2.592 96.4 67,840 16.60 0.090 1,069
10 100,000 FIRQUEST 10.396 0.091 0.268 2.576 95.2 60,517 21.65 0.101 1,309
1 1,000,000 FQUEST 10.400 0.094 0.277 2.661 96.7 64,571 18.84 0.099 677

0.95 13.863 5 10,000 FIRQUEST 14.459 0.896 6.274 42.491 99.7 4,591 10.78 5.570 400
10 5,000 FIRQUEST 21.374 7.511 23.386 109.054 99.0 4,800 10.00 11.289 200
1 50,000 FQUEST 13.922 0.638 3.064 21.803 96.6 4,585 11.37 2.302 604

5 20,000 FIRQUEST 13.905 0.469 1.925 13.787 96.7 8,331 12.55 1.257 710
10 10,000 FIRQUEST 14.449 0.730 3.861 26.501 99.8 9,382 10.51 2.358 400
1 100,000 FQUEST 13.914 0.442 1.916 13.691 97.0 8,806 12.35 1.306 612

5 40,000 FIRQUEST 13.900 0.339 1.160 8.329 96.6 15,878 13.70 0.636 817
10 20,000 FIRQUEST 13.878 0.322 1.197 8.607 97.3 16,276 13.81 0.640 758
1 200,000 FQUEST 13.886 0.321 1.140 8.186 96.8 16,442 13.82 0.650 613

5 100,000 FIRQUEST 13.872 0.206 0.642 4.623 96.9 37,476 14.84 0.273 821
10 50,000 FIRQUEST 13.873 0.210 0.647 4.663 96.2 36,666 16.80 0.275 946
1 500,000 FQUEST 13.879 0.199 0.641 4.615 96.4 35,872 16.70 0.293 616

5 200,000 FIRQUEST 13.870 0.147 0.429 3.089 96.3 70,860 15.93 0.154 821
10 100,000 FIRQUEST 13.860 0.142 0.422 3.040 95.8 65,013 20.05 0.160 947
1 1,000,000 FQUEST 13.868 0.146 0.435 3.137 96.3 66,674 18.22 0.163 617
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Table 6.18: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the waiting-time process in an M/M/1 system
described in Section 6.4.3 with traffic intensity 0.8 initialized with 113 customers for
𝑝 ∈ {0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 21.910 5 10,000 FIRQUEST 24.926 3.549 17.094 65.854 99.8 4,725 10.27 11.185 400
10 5,000 FIRQUEST 62.465 40.555 42.929 69.427 77.8 4,800 10.00 10.533 200
1 50,000 FQUEST 22.107 1.607 6.700 29.648 94.9 4,827 10.43 4.864 602

5 20,000 FIRQUEST 22.031 1.127 5.389 24.149 95.9 9,164 10.90 4.028 698
10 10,000 FIRQUEST 24.799 3.082 18.010 70.652 99.8 9,535 10.15 11.089 400
1 100,000 FQUEST 22.061 1.129 5.151 23.043 95.4 9,537 10.74 3.801 607

5 40,000 FIRQUEST 22.016 0.803 3.539 15.917 96.2 17,768 11.70 2.787 768
10 20,000 FIRQUEST 21.956 0.789 3.850 17.422 98.0 18,477 10.88 2.946 747
1 200,000 FQUEST 21.972 0.792 3.546 16.019 95.7 18,488 11.45 2.708 608

5 100,000 FIRQUEST 21.929 0.501 1.853 8.415 96.4 41,867 12.99 1.163 769
10 50,000 FIRQUEST 21.927 0.504 1.916 8.709 97.0 43,943 12.52 1.096 874
1 500,000 FQUEST 21.949 0.498 1.794 8.152 96.1 42,812 12.93 1.103 610

5 200,000 FIRQUEST 21.919 0.351 1.190 5.418 96.5 78,797 14.08 0.590 768
10 100,000 FIRQUEST 21.905 0.353 1.222 5.571 96.5 81,167 14.62 0.663 874
1 1,000,000 FQUEST 21.918 0.344 1.209 5.509 96.3 79,373 14.65 0.670 611

0.995 25.376 5 10,000 FIRQUEST 31.443 6.725 21.137 63.422 99.4 4,757 10.15 13.590 400
10 5,000 FIRQUEST 75.286 49.911 49.519 66.322 81.5 4,800 10.00 10.998 200
1 50,000 FQUEST 25.630 2.317 8.272 31.061 93.3 4,888 10.20 6.109 599

5 20,000 FIRQUEST 25.586 1.646 6.812 26.044 95.4 9,391 10.46 5.023 697
10 10,000 FIRQUEST 31.580 6.422 23.184 70.931 99.8 9,581 10.04 12.622 400
1 100,000 FQUEST 25.581 1.614 6.503 24.989 93.7 9,711 10.43 4.507 603

5 40,000 FIRQUEST 25.525 1.145 5.181 20.006 96.1 18,616 10.89 3.782 762
10 20,000 FIRQUEST 25.441 1.134 5.370 20.925 97.5 18,753 10.58 3.664 749
1 200,000 FQUEST 25.470 1.143 5.137 19.937 95.2 19,066 10.80 3.833 604

5 100,000 FIRQUEST 25.400 0.717 2.970 11.620 96.4 44,177 12.03 2.175 762
10 50,000 FIRQUEST 25.392 0.722 3.145 12.312 97.5 46,404 11.25 2.200 870
1 500,000 FQUEST 25.435 0.714 2.946 11.532 95.4 45,271 11.88 2.147 605

5 200,000 FIRQUEST 25.388 0.497 1.864 7.322 97.1 83,979 13.01 1.147 762
10 100,000 FIRQUEST 25.368 0.502 1.930 7.592 96.7 86,937 13.02 1.148 870
1 1,000,000 FQUEST 25.388 0.492 1.895 7.441 95.6 85,392 13.04 1.212 607
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Figure 6.7: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the M/M/1 waiting-time process from Tables 6.16–6.18.
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Table 6.19: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/H2/1 waiting-time process in Section 6.4.4
for 𝑝 ∈ {0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 0.669 5 10,000 FIRQUEST 0.672 0.088 0.571 84.594 99.3 4,713 10.30 0.360 400
10 5,000 FIRQUEST 0.669 0.090 0.522 78.030 98.6 4,781 10.08 0.326 200
1 50,000 FQUEST 0.675 0.086 0.616 90.834 98.8 4,861 10.26 0.387 615

5 20,000 FIRQUEST 0.669 0.064 0.308 45.761 97.5 9,140 10.90 0.188 710
10 10,000 FIRQUEST 0.669 0.063 0.292 43.573 97.5 9,408 10.40 0.179 400
1 100,000 FQUEST 0.676 0.062 0.334 49.245 99.0 9,591 10.61 0.203 620

5 40,000 FIRQUEST 0.669 0.043 0.169 25.280 97.0 17,074 12.29 0.087 797
10 20,000 FIRQUEST 0.669 0.045 0.172 25.703 96.3 18,108 11.24 0.095 757
1 200,000 FQUEST 0.674 0.043 0.188 27.839 98.0 17,994 11.87 0.105 622

5 100,000 FIRQUEST 0.671 0.027 0.088 13.124 96.6 38,579 14.34 0.038 797
10 50,000 FIRQUEST 0.668 0.028 0.088 13.211 95.1 39,977 14.61 0.041 912
1 500,000 FQUEST 0.671 0.027 0.096 14.382 97.8 39,649 14.52 0.043 625

5 200,000 FIRQUEST 0.671 0.019 0.058 8.672 96.3 71,167 15.78 0.021 797
10 100,000 FIRQUEST 0.669 0.019 0.057 8.573 95.6 71,499 17.66 0.022 913
1 1,000,000 FQUEST 0.670 0.019 0.062 9.311 97.6 71,368 16.79 0.026 626

0.5 3.847 5 10,000 FIRQUEST 3.842 0.326 1.375 35.681 96.7 4,394 11.49 0.885 400
10 5,000 FIRQUEST 3.831 0.334 1.330 34.691 96.7 4,631 10.77 0.834 200
1 50,000 FQUEST 3.854 0.316 1.472 38.055 97.9 4,621 11.17 0.918 666

5 20,000 FIRQUEST 3.840 0.239 0.839 21.825 96.6 8,259 12.61 0.490 734
10 10,000 FIRQUEST 3.842 0.231 0.816 21.202 96.0 8,786 11.98 0.467 400
1 100,000 FQUEST 3.865 0.228 0.901 23.229 97.7 8,807 12.20 0.517 682

5 40,000 FIRQUEST 3.846 0.162 0.515 13.396 96.1 15,217 14.35 0.240 866
10 20,000 FIRQUEST 3.845 0.166 0.532 13.811 94.6 15,628 14.63 0.261 775
1 200,000 FQUEST 3.864 0.161 0.557 14.412 97.0 15,773 14.51 0.275 685

5 100,000 FIRQUEST 3.854 0.101 0.299 7.750 95.6 35,706 15.65 0.105 867
10 50,000 FIRQUEST 3.845 0.103 0.301 7.821 95.8 34,314 18.27 0.124 987
1 500,000 FQUEST 3.853 0.100 0.316 8.206 97.0 35,000 17.17 0.127 687

5 200,000 FIRQUEST 3.855 0.071 0.205 5.311 95.8 68,154 16.55 0.064 867
10 100,000 FIRQUEST 3.849 0.072 0.199 5.171 95.5 61,921 20.92 0.064 987
1 1,000,000 FQUEST 3.851 0.072 0.217 5.631 97.0 65,682 18.50 0.080 687

0.7 9.606 5 10,000 FIRQUEST 9.574 0.626 2.610 27.016 95.8 4,358 11.63 1.910 400
10 5,000 FIRQUEST 9.570 0.626 2.512 26.081 95.9 4,582 11.00 1.739 200
1 50,000 FQUEST 9.603 0.601 2.762 28.587 96.3 4,563 11.42 1.874 680

5 20,000 FIRQUEST 9.581 0.454 1.633 16.972 95.2 8,237 12.71 1.027 742
10 10,000 FIRQUEST 9.592 0.441 1.571 16.315 95.2 8,723 12.20 0.992 400
1 100,000 FQUEST 9.631 0.432 1.742 18.024 97.3 8,639 12.56 1.077 710

5 40,000 FIRQUEST 9.596 0.310 0.985 10.237 95.7 15,341 14.16 0.487 906
10 20,000 FIRQUEST 9.599 0.312 1.025 10.655 95.5 15,851 14.37 0.548 779
1 200,000 FQUEST 9.634 0.306 1.058 10.957 96.8 15,751 14.52 0.536 712

5 100,000 FIRQUEST 9.615 0.195 0.590 6.132 96.2 36,012 15.57 0.255 907
10 50,000 FIRQUEST 9.602 0.197 0.577 6.006 95.6 34,043 18.66 0.249 1,033
1 500,000 FQUEST 9.618 0.193 0.609 6.328 97.6 35,249 16.95 0.247 714

5 200,000 FIRQUEST 9.618 0.135 0.401 4.173 96.5 69,330 16.26 0.143 907
10 100,000 FIRQUEST 9.608 0.138 0.391 4.074 95.7 62,868 20.78 0.143 1,033
1 1,000,000 FQUEST 9.613 0.139 0.411 4.278 97.1 66,149 18.30 0.142 715
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Table 6.20: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/H2/1 waiting-time process in Section 6.4.4
for 𝑝 ∈ {0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 22.011 5 10,000 FIRQUEST 21.983 1.546 6.928 30.985 93.1 4,473 11.21 5.762 400
10 5,000 FIRQUEST 21.962 1.513 6.707 30.117 93.7 4,647 10.70 5.401 200
1 50,000 FQUEST 22.013 1.468 7.123 32.021 95.2 4,674 10.96 5.626 663

5 20,000 FIRQUEST 21.981 1.088 4.322 19.543 94.6 8,579 12.03 3.290 738
10 10,000 FIRQUEST 22.001 1.068 4.237 19.082 94.2 8,944 11.57 3.237 400
1 100,000 FQUEST 22.039 1.044 4.575 20.623 95.6 8,934 12.01 3.526 689

5 40,000 FIRQUEST 21.998 0.755 2.628 11.915 95.1 16,316 13.13 1.660 881
10 20,000 FIRQUEST 22.003 0.724 2.662 12.069 94.3 17,174 12.52 1.735 775
1 200,000 FQUEST 22.041 0.734 2.750 12.434 96.4 16,754 13.31 1.739 690

5 100,000 FIRQUEST 22.016 0.470 1.445 6.558 95.0 37,491 14.83 0.742 883
10 50,000 FIRQUEST 22.007 0.471 1.436 6.514 96.2 38,174 15.79 0.728 1,002
1 500,000 FQUEST 22.019 0.469 1.496 6.788 95.4 37,574 15.69 0.740 693

5 200,000 FIRQUEST 22.032 0.328 1.012 4.591 95.7 71,536 15.78 0.472 883
10 100,000 FIRQUEST 22.013 0.339 0.979 4.445 95.8 69,595 18.32 0.443 1,002
1 1,000,000 FQUEST 22.025 0.341 1.012 4.595 96.3 70,256 16.94 0.431 693

0.95 29.837 5 10,000 FIRQUEST 29.857 2.415 9.948 32.638 92.2 4,556 10.90 7.875 400
10 5,000 FIRQUEST 29.771 2.314 9.950 32.873 92.5 4,684 10.52 7.405 200
1 50,000 FQUEST 29.873 2.266 10.388 34.251 94.2 4,776 10.60 7.812 651

5 20,000 FIRQUEST 29.846 1.677 7.010 23.210 92.5 8,783 11.60 5.639 731
10 10,000 FIRQUEST 29.825 1.669 7.095 23.486 93.8 9,207 10.92 5.552 400
1 100,000 FQUEST 29.900 1.630 7.716 25.467 94.7 9,268 11.27 6.178 667

5 40,000 FIRQUEST 29.855 1.153 4.441 14.779 94.0 17,147 12.28 3.302 849
10 20,000 FIRQUEST 29.839 1.131 4.540 15.138 94.7 17,667 11.90 3.491 770
1 200,000 FQUEST 29.880 1.143 4.609 15.310 95.7 17,764 12.16 3.464 669

5 100,000 FIRQUEST 29.855 0.729 2.335 7.808 95.0 39,813 13.83 1.300 850
10 50,000 FIRQUEST 29.846 0.718 2.329 7.785 95.3 41,001 14.18 1.384 971
1 500,000 FQUEST 29.844 0.726 2.468 8.252 95.6 40,734 14.13 1.410 670

5 200,000 FIRQUEST 29.870 0.509 1.594 5.332 95.9 74,146 15.17 0.816 850
10 100,000 FIRQUEST 29.843 0.530 1.546 5.176 94.6 75,905 16.27 0.815 971
1 1,000,000 FQUEST 29.860 0.520 1.663 5.568 95.7 73,636 16.10 0.867 672
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Table 6.21: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/H2/1 waiting-time process in Section 6.4.4
for 𝑝 ∈ {0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 48.010 5 10,000 FIRQUEST 48.192 5.718 16.313 32.238 85.0 4,703 10.33 11.885 400
10 5,000 FIRQUEST 47.781 5.365 15.938 32.080 87.4 4,786 10.06 10.813 200
1 50,000 FQUEST 48.090 5.432 17.728 35.163 88.7 4,909 10.09 13.143 644

5 20,000 FIRQUEST 48.147 4.053 13.452 27.198 90.0 9,370 10.47 9.394 726
10 10,000 FIRQUEST 48.001 3.838 13.836 28.150 91.9 9,524 10.18 9.301 400
1 100,000 FQUEST 48.178 3.934 14.617 29.619 91.4 9,718 10.39 10.276 653

5 40,000 FIRQUEST 48.109 2.794 10.735 21.975 91.5 18,658 10.83 7.982 831
10 20,000 FIRQUEST 48.015 2.713 11.099 22.771 92.1 18,862 10.44 8.015 766
1 200,000 FQUEST 48.060 2.825 11.495 23.602 93.1 19,185 10.72 8.237 653

5 100,000 FIRQUEST 48.024 1.805 7.060 14.560 93.2 44,866 11.75 5.506 832
10 50,000 FIRQUEST 48.052 1.757 7.161 14.772 94.1 46,706 11.06 5.443 943
1 500,000 FQUEST 48.029 1.792 7.613 15.726 93.5 46,407 11.38 5.892 654

5 200,000 FIRQUEST 48.039 1.238 4.374 9.068 94.0 84,880 12.79 3.019 831
10 100,000 FIRQUEST 48.025 1.246 4.625 9.600 94.3 90,432 12.02 3.288 944
1 1,000,000 FQUEST 48.092 1.261 4.789 9.918 95.3 87,155 12.62 3.404 655

0.995 55.837 5 10,000 FIRQUEST 55.693 7.749 19.566 32.929 79.2 4,735 10.22 14.123 400
10 5,000 FIRQUEST 55.272 7.397 19.298 32.931 80.5 4,794 10.03 13.323 200
1 50,000 FQUEST 55.517 7.327 22.459 37.773 84.9 4,918 10.06 18.149 638

5 20,000 FIRQUEST 55.923 5.748 16.226 27.842 86.7 9,465 10.30 11.241 724
10 10,000 FIRQUEST 55.912 5.479 16.623 28.576 88.6 9,570 10.07 11.286 400
1 100,000 FQUEST 55.962 5.523 17.943 30.710 88.4 9,811 10.23 13.492 645

5 40,000 FIRQUEST 55.956 4.045 13.531 23.613 90.7 19,092 10.44 9.434 821
10 20,000 FIRQUEST 55.861 3.945 13.613 23.766 90.4 19,060 10.19 9.485 764
1 200,000 FQUEST 55.854 4.033 14.261 25.006 90.6 19,548 10.35 9.880 645

5 100,000 FIRQUEST 55.873 2.602 10.118 17.878 92.5 46,933 10.99 7.444 821
10 50,000 FIRQUEST 55.914 2.524 10.344 18.284 93.4 47,870 10.56 7.568 924
1 500,000 FQUEST 55.893 2.592 10.788 19.104 93.8 47,938 10.70 7.801 645

5 200,000 FIRQUEST 55.882 1.793 6.930 12.302 92.8 89,992 11.80 5.425 821
10 100,000 FIRQUEST 55.862 1.788 7.264 12.918 93.0 94,255 11.11 5.409 924
1 1,000,000 FQUEST 55.983 1.819 7.478 13.275 94.8 91,968 11.60 5.629 646
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Figure 6.8: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the M/H2/1 waiting-time process from Tables 6.19–6.21.
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Table 6.22: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/M/1/LIFO waiting-time process in Section
6.4.5 for 𝑝 ∈ {0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 0.113 5 10,000 FIRQUEST 0.113 0.005 0.017 14.809 97.3 3,237 16.79 0.005 400
10 5,000 FIRQUEST 0.112 0.005 0.016 14.112 97.0 2,779 22.79 0.004 200
1 50,000 FQUEST 0.113 0.005 0.017 15.080 97.7 3147.6 19.13 0.005 615

5 20,000 FIRQUEST 0.113 0.004 0.012 10.392 97.8 6,462 16.92 0.003 707
10 10,000 FIRQUEST 0.113 0.004 0.011 10.035 96.9 5,291 24.02 0.003 400
1 100,000 FQUEST 0.113 0.004 0.012 10.499 97.6 6142.6 19.62 0.004 622

5 40,000 FIRQUEST 0.113 0.003 0.008 7.234 97.2 13,254 16.77 0.003 793
10 20,000 FIRQUEST 0.113 0.003 0.008 7.065 95.7 10,334 24.67 0.002 759
1 200,000 FQUEST 0.113 0.003 0.008 7.240 97.1 12389.9 19.63 0.002 621

5 100,000 FIRQUEST 0.113 0.002 0.005 4.357 96.9 32,491 17.22 0.001 793
10 50,000 FIRQUEST 0.113 0.002 0.005 4.275 95.7 27,697 23.86 0.001 918
1 500,000 FQUEST 0.113 0.002 0.005 4.537 98.1 30088.6 20.25 0.002 622

5 200,000 FIRQUEST 0.113 0.001 0.003 3.041 96.6 66,436 17.03 0.001 793
10 100,000 FIRQUEST 0.113 0.001 0.003 2.983 95.6 54,758 23.97 0.001 918
1 1,000,000 FQUEST 0.113 0.001 0.004 3.119 97.4 61709.4 19.75 0.001 622

0.5 0.469 5 10,000 FIRQUEST 0.469 0.009 0.030 6.389 97.4 3,311 16.42 0.009 400
10 5,000 FIRQUEST 0.468 0.009 0.029 6.152 97.0 2,836 22.64 0.009 200
1 50,000 FQUEST 0.468 0.009 0.030 6.493 97.9 3155.2 19.13 0.009 606

5 20,000 FIRQUEST 0.469 0.007 0.021 4.447 97.6 6,410 16.99 0.006 712
10 10,000 FIRQUEST 0.469 0.007 0.020 4.270 96.5 5,428 23.42 0.006 400
1 100,000 FQUEST 0.469 0.006 0.021 4.416 97.5 6177.0 19.59 0.006 610

5 40,000 FIRQUEST 0.469 0.005 0.014 3.030 96.8 13,317 16.70 0.004 800
10 20,000 FIRQUEST 0.469 0.005 0.014 2.931 96.1 10,911 23.53 0.004 759
1 200,000 FQUEST 0.469 0.005 0.014 3.071 97.3 12270.4 19.80 0.004 610

5 100,000 FIRQUEST 0.469 0.003 0.009 1.844 97.1 33,356 16.89 0.003 800
10 50,000 FIRQUEST 0.469 0.003 0.008 1.792 95.6 26,867 24.47 0.002 916
1 500,000 FQUEST 0.469 0.003 0.009 1.943 98.2 30845.8 20.00 0.003 610

5 200,000 FIRQUEST 0.469 0.002 0.006 1.291 95.8 66,306 17.00 0.002 800
10 100,000 FIRQUEST 0.469 0.002 0.006 1.246 96.5 54,961 24.01 0.002 916
1 1,000,000 FQUEST 0.469 0.002 0.006 1.314 97.4 59792.7 20.39 0.002 610

0.7 1.358 5 10,000 FIRQUEST 1.356 0.025 0.079 5.787 97.0 3,367 16.15 0.026 400
10 5,000 FIRQUEST 1.356 0.025 0.077 5.662 96.9 3,115 20.08 0.026 200
1 50,000 FQUEST 1.357 0.024 0.080 5.879 97.9 3277.0 18.33 0.025 610

5 20,000 FIRQUEST 1.357 0.018 0.055 4.036 97.6 6,487 16.83 0.018 706
10 10,000 FIRQUEST 1.357 0.018 0.052 3.840 96.7 5,810 21.92 0.016 400
1 100,000 FQUEST 1.358 0.017 0.055 4.022 96.8 6398.5 18.99 0.017 612

5 40,000 FIRQUEST 1.358 0.012 0.037 2.751 96.8 13,385 16.66 0.012 792
10 20,000 FIRQUEST 1.357 0.013 0.037 2.691 97.1 11,131 23.18 0.011 756
1 200,000 FQUEST 1.358 0.012 0.038 2.792 96.8 12646.2 19.22 0.012 613

5 100,000 FIRQUEST 1.358 0.008 0.023 1.676 96.7 32,976 17.06 0.006 794
10 50,000 FIRQUEST 1.358 0.008 0.022 1.652 96.2 27,527 23.94 0.007 910
1 500,000 FQUEST 1.358 0.008 0.024 1.752 98.1 30382.5 20.25 0.008 613

5 200,000 FIRQUEST 1.358 0.005 0.016 1.168 95.7 65,218 17.30 0.005 793
10 100,000 FIRQUEST 1.358 0.005 0.016 1.146 97.5 56,352 23.36 0.005 910
1 1,000,000 FQUEST 1.358 0.005 0.016 1.213 97.2 61895.4 19.66 0.005 613
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Table 6.23: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/M/1/LIFO waiting-time process in Section
6.4.5 for 𝑝 ∈ {0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 6.718 5 10,000 FIRQUEST 6.707 0.183 0.629 9.371 97.6 3,728 14.31 0.256 400
10 5,000 FIRQUEST 6.707 0.181 0.623 9.291 97.0 3,875 14.92 0.270 200
1 50,000 FQUEST 6.713 0.174 0.654 9.743 98.5 3859.9 14.84 0.269 593

5 20,000 FIRQUEST 6.712 0.133 0.426 6.345 97.4 7,051 15.43 0.159 691
10 10,000 FIRQUEST 6.710 0.132 0.411 6.123 97.3 6,774 18.17 0.159 400
1 100,000 FQUEST 6.724 0.126 0.428 6.367 98.1 6923.6 17.16 0.167 598

5 40,000 FIRQUEST 6.718 0.090 0.281 4.184 97.7 13,693 16.17 0.091 760
10 20,000 FIRQUEST 6.714 0.095 0.281 4.189 96.4 12,010 21.29 0.096 745
1 200,000 FQUEST 6.724 0.089 0.290 4.312 97.4 13213.9 18.47 0.105 598

5 100,000 FIRQUEST 6.720 0.055 0.172 2.554 97.1 33,387 16.85 0.053 760
10 50,000 FIRQUEST 6.717 0.058 0.168 2.501 96.6 28,792 22.98 0.059 873
1 500,000 FQUEST 6.722 0.055 0.176 2.617 98.0 31028.6 19.54 0.056 600

5 200,000 FIRQUEST 6.719 0.040 0.117 1.743 96.2 66,179 17.10 0.034 760
10 100,000 FIRQUEST 6.717 0.039 0.114 1.703 96.4 55,663 23.56 0.033 873
1 1,000,000 FQUEST 6.718 0.039 0.123 1.825 97.5 61392.5 19.88 0.040 600

0.95 14.405 5 10,000 FIRQUEST 14.384 0.489 1.820 12.637 96.9 3,953 13.34 0.807 400
10 5,000 FIRQUEST 14.371 0.497 1.791 12.451 98.0 4,221 12.81 0.801 200
1 50,000 FQUEST 14.395 0.481 1.931 13.403 99.0 4117.0 13.46 0.885 578

5 20,000 FIRQUEST 14.393 0.364 1.203 8.361 98.2 7,251 14.92 0.475 697
10 10,000 FIRQUEST 14.382 0.357 1.191 8.274 97.0 7,298 16.11 0.517 400
1 100,000 FQUEST 14.420 0.350 1.252 8.670 98.2 7549.0 15.37 0.589 583

5 40,000 FIRQUEST 14.410 0.250 0.783 5.428 98.0 13,978 15.86 0.248 776
10 20,000 FIRQUEST 14.393 0.256 0.791 5.494 97.5 13,192 18.76 0.290 747
1 200,000 FQUEST 14.426 0.246 0.826 5.728 97.4 13572.9 17.74 0.338 585

5 100,000 FIRQUEST 14.410 0.157 0.478 3.319 96.8 34,180 16.47 0.158 776
10 50,000 FIRQUEST 14.405 0.164 0.467 3.245 96.0 28,858 22.41 0.164 878
1 500,000 FQUEST 14.416 0.152 0.498 3.452 97.9 32257.3 18.92 0.177 585

5 200,000 FIRQUEST 14.410 0.108 0.334 2.316 96.6 67,972 16.62 0.119 775
10 100,000 FIRQUEST 14.401 0.111 0.323 2.241 96.6 57,437 23.00 0.110 879
1 1,000,000 FQUEST 14.408 0.111 0.339 2.354 96.6 60983.1 20.09 0.110 587
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Table 6.24: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/M/1/LIFO waiting-time process in Section
6.4.5 for 𝑝 ∈ {0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 49.582 5 10,000 FIRQUEST 49.543 2.767 12.837 25.767 98.2 4,452 11.28 7.317 400
10 5,000 FIRQUEST 49.385 2.831 12.684 25.580 98.1 4,600 10.86 7.272 200
1 50,000 FQUEST 49.500 2.685 13.716 27.565 98.6 4570.8 11.39 8.233 592

5 20,000 FIRQUEST 49.538 1.997 7.939 15.986 98.1 8,211 12.78 4.037 705
10 10,000 FIRQUEST 49.519 1.997 8.083 16.274 98.1 8,738 12.01 4.365 400
1 100,000 FQUEST 49.680 1.905 8.358 16.783 98.6 8634.1 12.62 4.515 598

5 40,000 FIRQUEST 49.628 1.416 5.019 10.107 98.5 15,462 14.10 2.293 789
10 20,000 FIRQUEST 49.572 1.442 4.996 10.063 97.3 15,647 14.75 2.217 751
1 200,000 FQUEST 49.656 1.347 5.186 10.438 98.1 16033.9 14.17 2.398 599

5 100,000 FIRQUEST 49.600 0.873 2.789 5.621 97.7 36,334 15.46 0.959 791
10 50,000 FIRQUEST 49.613 0.893 2.786 5.615 97.6 34,273 18.48 1.137 895
1 500,000 FQUEST 49.588 0.859 2.895 5.834 97.4 35026.8 17.14 1.120 602

5 200,000 FIRQUEST 49.600 0.607 1.895 3.818 96.2 68,912 16.36 0.605 791
10 100,000 FIRQUEST 49.584 0.633 1.843 3.717 96.9 62,061 21.01 0.576 895
1 1,000,000 FQUEST 49.567 0.607 2.003 4.039 97.8 66014.7 18.35 0.729 603

0.995 71.844 5 10,000 FIRQUEST 71.734 4.767 26.868 37.213 98.2 4,541 10.92 17.575 400
10 5,000 FIRQUEST 71.506 4.989 26.025 36.201 98.2 4,692 10.50 16.847 200
1 50,000 FQUEST 71.632 4.700 28.478 39.366 98.9 4771.9 10.65 19.253 586

5 20,000 FIRQUEST 71.764 3.456 15.310 21.260 98.9 8,629 11.89 8.312 699
10 10,000 FIRQUEST 71.776 3.525 15.445 21.445 98.4 9,086 11.18 8.613 400
1 100,000 FQUEST 72.028 3.371 17.138 23.697 98.8 9088.6 11.67 10.416 595

5 40,000 FIRQUEST 71.917 2.442 9.533 13.228 98.5 16,304 13.24 4.890 778
10 20,000 FIRQUEST 71.814 2.557 9.366 13.001 98.0 16,887 12.90 4.640 748
1 200,000 FQUEST 71.932 2.390 10.005 13.894 98.8 16935.7 13.08 5.264 597

5 100,000 FIRQUEST 71.874 1.548 5.074 7.054 97.7 36,989 15.05 1.926 778
10 50,000 FIRQUEST 71.874 1.568 5.103 7.098 97.9 37,406 16.32 2.054 885
1 500,000 FQUEST 71.876 1.512 5.402 7.510 98.0 37375.1 15.69 2.311 599

5 200,000 FIRQUEST 71.863 1.064 3.427 4.768 97.4 70,930 15.83 1.248 778
10 100,000 FIRQUEST 71.851 1.115 3.342 4.649 96.8 67,291 19.00 1.103 885
1 1,000,000 FQUEST 71.835 1.080 3.487 4.853 97.8 67534.5 17.72 1.233 601
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Figure 6.9: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the M/M/1/LIFO waiting-time process from Tables 6.22–6.24.
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Table 6.25: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/M/1/M/1 total waiting-time process in
Section 6.4.6 for 𝑝 ∈ {0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 2.748 5 10,000 FIRQUEST 2.744 0.092 0.318 11.602 97.7 3,845 13.82 0.157 400
10 5,000 FIRQUEST 2.740 0.092 0.303 11.055 96.2 4,003 14.08 0.154 200
1 50,000 FQUEST 2.745 0.092 0.335 12.203 97.4 4,065 13.80 0.174 626

5 20,000 FIRQUEST 2.745 0.067 0.207 7.532 95.7 7,128 15.24 0.087 711
10 10,000 FIRQUEST 2.745 0.066 0.204 7.438 96.3 7,094 16.96 0.090 400
1 100,000 FQUEST 2.748 0.065 0.221 8.026 97.1 7,450 15.69 0.104 637

5 40,000 FIRQUEST 2.747 0.047 0.142 5.176 97.1 13,967 15.83 0.053 804
10 20,000 FIRQUEST 2.746 0.048 0.138 5.041 95.3 12,980 19.26 0.055 759
1 200,000 FQUEST 2.749 0.045 0.144 5.236 95.2 13,430 17.97 0.058 639

5 100,000 FIRQUEST 2.748 0.030 0.084 3.050 96.0 33,761 16.74 0.023 805
10 50,000 FIRQUEST 2.747 0.030 0.082 2.986 96.4 29,809 21.88 0.025 924
1 500,000 FQUEST 2.749 0.030 0.086 3.121 96.0 31,238 19.37 0.027 640

5 200,000 FIRQUEST 2.749 0.020 0.059 2.135 95.7 67,747 16.68 0.018 805
10 100,000 FIRQUEST 2.747 0.021 0.057 2.084 96.0 56,023 23.53 0.017 924
1 1,000,000 FQUEST 2.748 0.021 0.062 2.254 96.0 62,833 19.46 0.023 639

0.5 5.079 5 10,000 FIRQUEST 5.073 0.146 0.512 10.075 96.5 3,797 14.03 0.283 400
10 5,000 FIRQUEST 5.065 0.149 0.485 9.580 95.4 3,968 14.24 0.260 200
1 50,000 FQUEST 5.075 0.145 0.521 10.264 97.1 4,035 13.85 0.269 641

5 20,000 FIRQUEST 5.074 0.108 0.337 6.632 96.3 7,161 15.13 0.149 715
10 10,000 FIRQUEST 5.074 0.106 0.331 6.525 95.9 7,264 16.48 0.162 400
1 100,000 FQUEST 5.080 0.103 0.346 6.810 96.7 7,361 15.85 0.163 651

5 40,000 FIRQUEST 5.078 0.076 0.226 4.458 96.9 13,831 16.05 0.086 818
10 20,000 FIRQUEST 5.076 0.076 0.225 4.428 96.1 13,087 19.15 0.093 761
1 200,000 FQUEST 5.082 0.072 0.232 4.571 96.5 13,647 17.51 0.094 653

5 100,000 FIRQUEST 5.078 0.048 0.135 2.667 95.9 34,161 16.45 0.041 819
10 50,000 FIRQUEST 5.078 0.048 0.133 2.619 95.2 29,733 21.93 0.043 937
1 500,000 FQUEST 5.082 0.047 0.141 2.775 96.1 32,472 18.67 0.047 653

5 200,000 FIRQUEST 5.080 0.033 0.094 1.854 95.0 65,934 17.03 0.031 819
10 100,000 FIRQUEST 5.077 0.033 0.092 1.812 96.4 56,288 23.48 0.026 937
1 1,000,000 FQUEST 5.080 0.034 0.101 1.981 97.0 63,327 19.32 0.038 653

0.7 8.126 5 10,000 FIRQUEST 8.117 0.236 0.821 10.102 95.5 3,815 13.96 0.500 400
10 5,000 FIRQUEST 8.104 0.240 0.785 9.677 93.8 4,095 13.65 0.449 200
1 50,000 FQUEST 8.119 0.223 0.844 10.383 97.1 4,051 13.83 0.483 641

5 20,000 FIRQUEST 8.120 0.168 0.547 6.733 96.6 7,260 14.93 0.264 724
10 10,000 FIRQUEST 8.119 0.169 0.533 6.558 95.2 7,379 16.11 0.280 400
1 100,000 FQUEST 8.129 0.164 0.563 6.920 96.7 7,536 15.53 0.287 651

5 40,000 FIRQUEST 8.125 0.119 0.364 4.476 97.3 14,028 15.85 0.146 830
10 20,000 FIRQUEST 8.123 0.119 0.357 4.399 96.2 13,143 18.95 0.152 767
1 200,000 FQUEST 8.133 0.115 0.379 4.655 96.3 13,824 17.50 0.181 653

5 100,000 FIRQUEST 8.125 0.076 0.222 2.728 95.6 34,388 16.37 0.081 831
10 50,000 FIRQUEST 8.125 0.077 0.214 2.630 95.7 29,886 21.76 0.074 956
1 500,000 FQUEST 8.131 0.075 0.224 2.759 96.3 31,896 18.98 0.076 655

5 200,000 FIRQUEST 8.128 0.053 0.153 1.881 94.9 67,617 16.67 0.056 831
10 100,000 FIRQUEST 8.123 0.054 0.148 1.818 96.1 55,899 23.49 0.044 956
1 1,000,000 FQUEST 8.128 0.053 0.159 1.954 97.0 62,403 19.56 0.052 654
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Table 6.26: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/M/1/M/1 total waiting-time process in
Section 6.4.6 for 𝑝 ∈ {0.9, 0.95} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 13.931 5 10,000 FIRQUEST 13.918 0.488 1.784 12.750 94.4 4,089 12.81 1.320 400
10 5,000 FIRQUEST 13.885 0.497 1.779 12.764 93.7 4,271 12.63 1.214 200
1 50,000 FQUEST 13.929 0.468 1.900 13.577 95.9 4,308 12.61 1.305 645

5 20,000 FIRQUEST 13.926 0.344 1.145 8.202 95.5 7,828 13.66 0.669 733
10 10,000 FIRQUEST 13.916 0.346 1.175 8.429 94.4 8,101 14.06 0.771 400
1 100,000 FQUEST 13.941 0.341 1.164 8.329 96.6 7,971 14.23 0.696 660

5 40,000 FIRQUEST 13.935 0.241 0.758 5.436 96.6 14,737 14.93 0.382 854
10 20,000 FIRQUEST 13.923 0.240 0.745 5.342 95.3 14,507 16.61 0.376 770
1 200,000 FQUEST 13.939 0.236 0.780 5.586 96.6 15,031 15.55 0.382 661

5 100,000 FIRQUEST 13.929 0.153 0.450 3.230 95.9 35,112 16.04 0.177 855
10 50,000 FIRQUEST 13.929 0.156 0.440 3.160 94.4 31,831 20.33 0.182 966
1 500,000 FQUEST 13.933 0.152 0.470 3.372 95.0 33,091 18.25 0.207 663

5 200,000 FIRQUEST 13.933 0.105 0.319 2.287 96.3 68,473 16.48 0.131 854
10 100,000 FIRQUEST 13.929 0.111 0.300 2.154 95.0 58,744 22.25 0.102 966
1 1,000,000 FQUEST 13.931 0.111 0.322 2.314 96.6 63,294 19.12 0.125 664

0.95 17.349 5 10,000 FIRQUEST 17.320 0.719 2.812 16.116 92.9 4,278 12.00 2.222 400
10 5,000 FIRQUEST 17.285 0.725 2.769 15.911 93.3 4,500 11.44 2.151 200
1 50,000 FQUEST 17.344 0.681 2.966 16.990 95.1 4,541 11.58 2.164 632

5 20,000 FIRQUEST 17.335 0.503 1.784 10.259 94.7 8,205 12.83 1.175 727
10 10,000 FIRQUEST 17.325 0.500 1.785 10.272 93.4 8,529 12.73 1.253 400
1 100,000 FQUEST 17.362 0.495 1.802 10.328 96.3 8,564 12.79 1.205 645

5 40,000 FIRQUEST 17.352 0.354 1.148 6.609 95.6 15,627 13.96 0.655 835
10 20,000 FIRQUEST 17.332 0.354 1.151 6.629 94.6 15,797 14.65 0.673 767
1 200,000 FQUEST 17.351 0.351 1.188 6.833 96.1 16,023 14.31 0.690 646

5 100,000 FIRQUEST 17.346 0.223 0.662 3.814 95.6 36,393 15.40 0.300 835
10 50,000 FIRQUEST 17.343 0.227 0.656 3.778 94.3 35,338 17.82 0.310 949
1 500,000 FQUEST 17.348 0.222 0.690 3.971 94.9 35,396 16.87 0.333 649

5 200,000 FIRQUEST 17.350 0.150 0.467 2.687 96.5 69,678 16.20 0.209 835
10 100,000 FIRQUEST 17.345 0.163 0.445 2.562 93.8 63,490 20.56 0.178 949
1 1,000,000 FQUEST 17.346 0.164 0.478 2.756 96.9 66,141 18.37 0.206 650
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Table 6.27: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the M/M/1/M/1 total waiting-time process in
Section 6.4.6 for 𝑝 ∈ {0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.99 24.928 5 10,000 FIRQUEST 24.793 1.548 5.318 21.072 90.5 4,677 10.44 3.596 400
10 5,000 FIRQUEST 24.747 1.580 5.310 21.049 91.0 4,746 10.24 3.535 200
1 50,000 FQUEST 24.903 1.536 5.555 21.919 91.9 4,834 10.37 3.696 623

5 20,000 FIRQUEST 24.868 1.070 4.244 16.882 93.5 9,175 10.83 3.007 716
10 10,000 FIRQUEST 24.839 1.090 4.108 16.365 92.4 9,443 10.36 2.849 400
1 100,000 FQUEST 24.924 1.111 4.422 17.527 94.1 9,549 10.72 3.142 631

5 40,000 FIRQUEST 24.923 0.755 3.223 12.866 95.2 17,888 11.58 2.351 806
10 20,000 FIRQUEST 24.849 0.760 3.085 12.343 93.5 18,292 11.09 2.241 762
1 200,000 FQUEST 24.920 0.810 3.183 12.670 94.2 18,214 11.74 2.453 632

5 100,000 FIRQUEST 24.891 0.495 1.788 7.158 93.9 42,187 12.89 1.207 806
10 50,000 FIRQUEST 24.897 0.499 1.739 6.963 94.7 44,144 12.45 1.124 926
1 500,000 FQUEST 24.920 0.510 1.831 7.324 94.7 42,380 13.14 1.262 634

5 200,000 FIRQUEST 24.908 0.331 1.148 4.602 96.0 79,860 13.87 0.679 806
10 100,000 FIRQUEST 24.902 0.359 1.150 4.613 94.6 80,616 14.81 0.673 926
1 1,000,000 FQUEST 24.918 0.366 1.167 4.676 95.6 78,415 14.79 0.654 636

0.995 28.096 5 10,000 FIRQUEST 27.878 2.097 6.348 22.110 87.8 4,734 10.22 4.201 400
10 5,000 FIRQUEST 27.809 2.148 6.353 22.179 87.6 4,770 10.13 4.141 200
1 50,000 FQUEST 27.966 2.124 6.814 23.574 87.9 4,858 10.31 4.858 621

5 20,000 FIRQUEST 28.022 1.483 5.173 18.126 91.4 9,314 10.58 3.511 714
10 10,000 FIRQUEST 27.958 1.519 5.134 18.066 90.9 9,512 10.19 3.303 400
1 100,000 FQUEST 28.068 1.566 5.477 19.163 92.5 9,729 10.36 3.748 626

5 40,000 FIRQUEST 28.080 1.058 4.306 15.219 94.5 18,527 10.98 2.954 803
10 20,000 FIRQUEST 27.970 1.050 4.075 14.429 92.6 18,726 10.57 2.816 758
1 200,000 FQUEST 28.071 1.145 4.291 15.131 92.0 19,038 10.83 3.053 627

5 100,000 FIRQUEST 28.036 0.693 2.735 9.703 93.4 44,648 11.83 2.024 804
10 50,000 FIRQUEST 28.048 0.688 2.700 9.581 93.7 46,271 11.34 1.941 907
1 500,000 FQUEST 28.075 0.704 2.772 9.823 93.8 44,989 12.00 2.074 628

5 200,000 FIRQUEST 28.055 0.472 1.719 6.109 96.1 84,151 12.93 1.173 804
10 100,000 FIRQUEST 28.055 0.498 1.754 6.238 93.6 88,729 12.46 1.182 907
1 1,000,000 FQUEST 28.081 0.503 1.813 6.441 95.9 84,986 13.23 1.222 629
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Figure 6.10: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the M/M/1/M/1 total waiting-time process from Tables 6.25–6.27.
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Table 6.28: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the response-time process in the Central Server
Model 3 in Section 6.4.7 for 𝑝 ∈ {0.3, 0.5, 0.7} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.3 7.078 5 10,000 FIRQUEST 7.091 0.187 0.540 7.622 96.4 3,317 16.47 0.170 400
10 5,000 FIRQUEST 7.085 0.188 0.514 7.267 95.6 2,915 21.85 0.162 200
1 50,000 FQUEST 7.090 0.190 0.533 7.531 95.2 3,168 18.84 0.174 662

5 20,000 FIRQUEST 7.090 0.138 0.382 5.397 96.3 6,557 16.62 0.116 737
10 10,000 FIRQUEST 7.091 0.134 0.368 5.188 96.3 5,666 22.61 0.110 400
1 100,000 FQUEST 7.095 0.137 0.387 5.459 94.8 6,133 19.70 0.143 679

5 40,000 FIRQUEST 7.092 0.097 0.271 3.821 95.4 13,007 16.99 0.087 870
10 20,000 FIRQUEST 7.090 0.096 0.266 3.761 95.6 10,962 23.38 0.085 774
1 200,000 FQUEST 7.092 0.095 0.276 3.898 95.7 12,779 19.10 0.094 678

5 100,000 FIRQUEST 7.093 0.064 0.169 2.387 95.0 32,923 17.09 0.050 870
10 50,000 FIRQUEST 7.091 0.061 0.167 2.350 95.1 27,672 23.75 0.056 987
1 500,000 FQUEST 7.090 0.059 0.174 2.452 95.8 30,456 20.02 0.054 680

5 200,000 FIRQUEST 7.088 0.045 0.121 1.704 96.1 65,279 17.31 0.039 870
10 100,000 FIRQUEST 7.091 0.044 0.118 1.658 95.6 55,181 23.84 0.041 987
1 1,000,000 FQUEST 7.087 0.043 0.123 1.732 96.0 61,169 19.87 0.040 679

0.5 10.771 5 10,000 FIRQUEST 10.783 0.211 0.577 5.360 95.7 3,216 16.98 0.165 400
10 5,000 FIRQUEST 10.778 0.211 0.545 5.064 94.1 2,673 24.18 0.164 200
1 50,000 FQUEST 10.783 0.211 0.567 5.265 94.0 2,990 20.09 0.178 660

5 20,000 FIRQUEST 10.785 0.152 0.416 3.858 94.5 6,447 16.99 0.138 737
10 10,000 FIRQUEST 10.784 0.149 0.400 3.708 95.0 5,246 24.12 0.116 400
1 100,000 FQUEST 10.789 0.153 0.414 3.835 93.8 5,930 20.31 0.146 674

5 40,000 FIRQUEST 10.788 0.107 0.295 2.736 95.9 12,924 17.16 0.089 864
10 20,000 FIRQUEST 10.785 0.106 0.288 2.673 95.5 10,762 23.61 0.084 774
1 200,000 FQUEST 10.786 0.106 0.302 2.802 94.9 12,273 19.83 0.109 674

5 100,000 FIRQUEST 10.788 0.071 0.188 1.740 94.8 32,448 17.32 0.055 865
10 50,000 FIRQUEST 10.786 0.067 0.184 1.703 94.6 26,649 24.52 0.064 986
1 500,000 FQUEST 10.785 0.066 0.193 1.787 95.9 30,929 19.83 0.058 674

5 200,000 FIRQUEST 10.783 0.049 0.133 1.238 95.0 65,102 17.28 0.045 865
10 100,000 FIRQUEST 10.787 0.049 0.131 1.213 95.3 54,536 24.24 0.044 986
1 1,000,000 FQUEST 10.782 0.047 0.136 1.265 95.7 61,396 19.92 0.043 674

0.7 15.364 5 10,000 FIRQUEST 15.375 0.205 0.584 3.804 95.6 3,348 16.29 0.220 400
10 5,000 FIRQUEST 15.375 0.208 0.558 3.631 93.6 3,020 21.02 0.206 200
1 50,000 FQUEST 15.375 0.204 0.584 3.798 95.1 3,321 18.00 0.220 645

5 20,000 FIRQUEST 15.377 0.146 0.405 2.637 94.3 6,582 16.57 0.116 727
10 10,000 FIRQUEST 15.377 0.146 0.399 2.599 94.1 5,686 22.33 0.132 400
1 100,000 FQUEST 15.381 0.145 0.417 2.714 95.0 6,207 19.32 0.158 654

5 40,000 FIRQUEST 15.380 0.104 0.289 1.879 95.7 13,070 17.00 0.089 839
10 20,000 FIRQUEST 15.380 0.104 0.282 1.837 95.4 11,253 22.82 0.091 769
1 200,000 FQUEST 15.379 0.102 0.297 1.933 96.1 12,423 19.59 0.113 654

5 100,000 FIRQUEST 15.381 0.069 0.183 1.189 95.1 33,315 16.79 0.060 840
10 50,000 FIRQUEST 15.381 0.066 0.176 1.141 95.1 27,451 23.83 0.053 958
1 500,000 FQUEST 15.379 0.064 0.188 1.223 95.8 31,213 19.60 0.061 654

5 200,000 FIRQUEST 15.377 0.046 0.129 0.838 95.3 65,817 17.14 0.045 840
10 100,000 FIRQUEST 15.381 0.048 0.125 0.813 95.3 53,882 24.45 0.039 958
1 1,000,000 FQUEST 15.376 0.046 0.131 0.851 95.9 61,158 19.98 0.039 654
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Table 6.29: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the response-time process in the Central Server
Model 3 in Section 6.4.7 for 𝑝 ∈ {0.8, 0.85} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.8 18.868 5 10,000 FIRQUEST 18.876 0.191 0.558 2.957 95.1 3,395 16.05 0.203 400
10 5,000 FIRQUEST 18.877 0.191 0.551 2.922 95.3 3,229 19.42 0.216 200
1 50,000 FQUEST 18.879 0.192 0.570 3.021 96.0 3,516 16.73 0.237 619

5 20,000 FIRQUEST 18.879 0.137 0.385 2.042 95.7 6,731 16.25 0.114 720
10 10,000 FIRQUEST 18.877 0.138 0.383 2.029 94.4 6,174 20.40 0.133 400
1 100,000 FQUEST 18.884 0.133 0.395 2.093 95.6 6,496 18.43 0.149 626

5 40,000 FIRQUEST 18.880 0.097 0.269 1.425 95.2 13,071 17.07 0.086 815
10 20,000 FIRQUEST 18.881 0.097 0.266 1.408 95.2 11,586 21.94 0.082 763
1 200,000 FQUEST 18.881 0.094 0.283 1.498 96.3 12,909 18.80 0.114 626

5 100,000 FIRQUEST 18.882 0.063 0.170 0.902 95.1 33,205 16.93 0.055 816
10 50,000 FIRQUEST 18.882 0.063 0.163 0.861 94.7 28,029 23.31 0.047 927
1 500,000 FQUEST 18.880 0.059 0.177 0.939 96.5 31,837 19.31 0.061 626

5 200,000 FIRQUEST 18.878 0.043 0.119 0.633 95.3 67,015 16.89 0.039 816
10 100,000 FIRQUEST 18.883 0.045 0.116 0.614 94.0 55,207 24.00 0.035 927
1 1,000,000 FQUEST 18.878 0.042 0.123 0.650 96.6 62,613 19.42 0.043 626

0.85 21.631 5 10,000 FIRQUEST 21.642 0.181 0.542 2.506 95.9 3,422 15.92 0.189 400
10 5,000 FIRQUEST 21.637 0.181 0.537 2.484 96.6 3,264 19.32 0.191 200
1 50,000 FQUEST 21.642 0.180 0.548 2.532 96.9 3,502 16.87 0.204 585

5 20,000 FIRQUEST 21.644 0.129 0.367 1.697 96.3 6,668 16.46 0.114 693
10 10,000 FIRQUEST 21.637 0.131 0.365 1.685 95.3 6,202 20.59 0.119 400
1 100,000 FQUEST 21.645 0.125 0.374 1.729 96.2 6,556 18.26 0.124 588

5 40,000 FIRQUEST 21.642 0.092 0.253 1.169 95.7 13,199 16.84 0.075 762
10 20,000 FIRQUEST 21.643 0.093 0.248 1.148 96.2 11,112 22.99 0.075 743
1 200,000 FQUEST 21.643 0.087 0.259 1.199 96.7 12,283 19.76 0.089 588

5 100,000 FIRQUEST 21.641 0.059 0.158 0.729 95.4 33,510 16.76 0.046 762
10 50,000 FIRQUEST 21.642 0.060 0.154 0.709 93.6 27,646 23.62 0.042 866
1 500,000 FQUEST 21.640 0.055 0.164 0.760 96.6 31,393 19.33 0.059 588

5 200,000 FIRQUEST 21.638 0.040 0.111 0.511 96.1 66,386 17.00 0.033 761
10 100,000 FIRQUEST 21.643 0.043 0.108 0.498 95.3 53,789 24.59 0.029 866
1 1,000,000 FQUEST 21.638 0.039 0.116 0.536 96.1 62,836 19.35 0.043 588
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Table 6.30: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the response-time process in the Central Server
Model 3 in Section 6.4.7 for 𝑝 ∈ {0.87, 0.89} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.87 23.236 5 10,000 FIRQUEST 23.248 0.182 0.594 2.554 97.9 3,471 15.67 0.224 400
10 5,000 FIRQUEST 23.245 0.182 0.596 2.564 96.5 3,443 17.71 0.239 200
1 50,000 FQUEST 23.246 0.176 0.604 2.598 97.6 3,566 16.60 0.215 560

5 20,000 FIRQUEST 23.251 0.131 0.377 1.623 96.4 6,784 16.21 0.123 668
10 10,000 FIRQUEST 23.240 0.132 0.385 1.655 96.3 6,111 20.83 0.131 400
1 100,000 FQUEST 23.249 0.126 0.385 1.655 97.1 6,387 18.86 0.117 563

5 40,000 FIRQUEST 23.244 0.093 0.255 1.095 95.1 13,236 16.85 0.072 715
10 20,000 FIRQUEST 23.247 0.094 0.252 1.082 95.9 10,828 23.91 0.073 721
1 200,000 FQUEST 23.245 0.087 0.264 1.136 97.0 12,375 19.61 0.095 562

5 100,000 FIRQUEST 23.243 0.059 0.161 0.692 96.0 32,962 17.03 0.054 715
10 50,000 FIRQUEST 23.243 0.059 0.158 0.680 94.4 27,081 24.29 0.054 809
1 500,000 FQUEST 23.242 0.053 0.165 0.712 96.8 31,271 19.48 0.057 562

5 200,000 FIRQUEST 23.240 0.039 0.112 0.480 97.1 66,259 17.05 0.035 715
10 100,000 FIRQUEST 23.244 0.043 0.108 0.463 94.0 53,074 24.67 0.030 810
1 1,000,000 FQUEST 23.240 0.039 0.115 0.495 96.1 63,539 19.18 0.042 563

0.89 25.514 5 10,000 FIRQUEST 25.528 0.211 0.976 3.821 98.5 4,188 12.31 0.543 400
10 5,000 FIRQUEST 25.527 0.216 0.861 3.373 98.2 4,514 11.33 0.432 200
1 50,000 FQUEST 25.529 0.207 1.009 3.951 98.7 4,453 11.95 0.574 561

5 20,000 FIRQUEST 25.531 0.157 0.534 2.090 97.9 7,412 14.63 0.222 669
10 10,000 FIRQUEST 25.516 0.151 0.525 2.058 98.4 7,889 14.53 0.216 400
1 100,000 FQUEST 25.527 0.146 0.563 2.206 98.0 7,678 15.09 0.261 566

5 40,000 FIRQUEST 25.520 0.109 0.326 1.277 96.4 13,730 16.19 0.109 721
10 20,000 FIRQUEST 25.521 0.107 0.340 1.331 97.4 13,380 18.43 0.136 728
1 200,000 FQUEST 25.520 0.103 0.346 1.355 97.2 13,429 18.01 0.136 567

5 100,000 FIRQUEST 25.516 0.068 0.195 0.765 97.0 33,572 16.77 0.069 721
10 50,000 FIRQUEST 25.516 0.068 0.192 0.753 95.8 28,601 22.97 0.066 824
1 500,000 FQUEST 25.516 0.064 0.206 0.806 97.2 31,801 19.15 0.081 568

5 200,000 FIRQUEST 25.514 0.047 0.134 0.525 96.0 67,214 16.79 0.045 721
10 100,000 FIRQUEST 25.517 0.048 0.131 0.512 95.8 56,319 23.56 0.039 824
1 1,000,000 FQUEST 25.515 0.046 0.141 0.553 96.9 62,827 19.45 0.054 569
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Figure 6.11: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the response-time process in the Central Server Model 3 from Tables 6.28–6.30.
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Table 6.31: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard
to point and 95% CI estimation of 𝑦𝑝 for the response-time process in the Central Server
Model 3 in Section 6.4.7 for 𝑝 ∈ {0.9, 0.91, 0.93} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.9 27.181 5 10,000 FIRQUEST 27.197 0.274 1.789 6.568 99.0 4,620 10.63 1.163 400
10 5,000 FIRQUEST 27.201 0.289 1.546 5.678 98.4 4,736 10.28 0.946 200
1 50,000 FQUEST 27.199 0.280 1.890 6.939 98.8 4,768 10.63 1.234 575

5 20,000 FIRQUEST 27.194 0.206 0.877 3.224 98.4 8,487 12.17 0.482 690
10 10,000 FIRQUEST 27.177 0.199 0.818 3.009 98.8 9,125 11.08 0.420 400
1 100,000 FQUEST 27.187 0.199 0.946 3.478 99.1 8,931 12.00 0.513 580

5 40,000 FIRQUEST 27.180 0.143 0.511 1.880 97.2 15,670 13.90 0.242 752
10 20,000 FIRQUEST 27.180 0.139 0.499 1.835 97.9 16,463 13.55 0.226 741
1 200,000 FQUEST 27.179 0.141 0.533 1.960 97.8 16,179 14.07 0.241 582

5 100,000 FIRQUEST 27.173 0.088 0.269 0.989 97.1 35,206 15.97 0.092 753
10 50,000 FIRQUEST 27.174 0.088 0.276 1.015 96.7 33,907 18.73 0.105 851
1 500,000 FQUEST 27.175 0.085 0.298 1.098 97.0 35,338 16.94 0.132 584

5 200,000 FIRQUEST 27.173 0.064 0.183 0.673 95.1 68,169 16.56 0.068 752
10 100,000 FIRQUEST 27.174 0.062 0.182 0.668 96.7 61,823 21.14 0.068 851
1 1,000,000 FQUEST 27.175 0.062 0.192 0.708 96.8 65,556 18.53 0.069 586

0.91 29.648 5 10,000 FIRQUEST 29.686 0.478 4.173 14.011 99.4 4,734 10.22 2.469 400
10 5,000 FIRQUEST 29.695 0.493 3.848 12.914 98.8 4,793 10.03 2.387 200
1 50,000 FQUEST 29.690 0.500 4.411 14.798 99.4 4,899 10.14 2.754 593

5 20,000 FIRQUEST 29.668 0.353 2.051 6.899 98.5 9,286 10.64 1.246 701
10 10,000 FIRQUEST 29.647 0.342 1.919 6.461 99.0 9,509 10.19 1.204 400
1 100,000 FQUEST 29.656 0.344 2.176 7.323 99.2 9,615 10.54 1.362 597

5 40,000 FIRQUEST 29.639 0.246 1.093 3.686 98.1 17,735 11.69 0.638 778
10 20,000 FIRQUEST 29.640 0.233 1.021 3.441 98.0 18,307 11.06 0.594 750
1 200,000 FQUEST 29.639 0.241 1.181 3.979 98.4 18,229 11.65 0.653 598

5 100,000 FIRQUEST 29.625 0.149 0.529 1.786 96.9 39,541 13.96 0.230 778
10 50,000 FIRQUEST 29.628 0.145 0.516 1.741 96.8 41,646 13.82 0.223 882
1 500,000 FQUEST 29.632 0.148 0.589 1.987 97.8 40,609 14.12 0.290 600

5 200,000 FIRQUEST 29.627 0.110 0.340 1.147 96.2 73,255 15.35 0.149 778
10 100,000 FIRQUEST 29.627 0.104 0.332 1.120 96.2 72,615 17.12 0.131 882
1 1,000,000 FQUEST 29.633 0.108 0.366 1.234 97.6 72,436 16.31 0.152 603

0.93 44.766 5 10,000 FIRQUEST 44.811 2.690 8.840 19.899 95.7 4,351 11.63 4.468 400
10 5,000 FIRQUEST 44.873 2.620 9.148 20.544 95.1 4,626 10.76 4.708 200
1 50,000 FQUEST 44.883 2.778 8.988 20.170 94.4 4,480 11.70 4.757 615

5 20,000 FIRQUEST 44.753 1.961 5.849 13.111 95.2 7,972 13.22 2.930 715
10 10,000 FIRQUEST 44.714 1.863 6.018 13.469 95.9 8,625 12.25 3.126 400
1 100,000 FQUEST 44.691 1.988 5.955 13.376 95.3 8,425 13.05 3.069 624

5 40,000 FIRQUEST 44.665 1.393 4.047 9.079 95.1 14,936 14.62 1.931 809
10 20,000 FIRQUEST 44.668 1.323 3.963 8.866 96.4 15,198 15.18 1.890 761
1 200,000 FQUEST 44.640 1.381 4.139 9.276 94.3 15,441 14.88 1.849 626

5 100,000 FIRQUEST 44.603 0.879 2.410 5.401 94.7 34,731 16.17 0.863 810
10 50,000 FIRQUEST 44.624 0.845 2.373 5.317 94.8 33,198 19.16 0.904 931
1 500,000 FQUEST 44.636 0.848 2.511 5.627 94.9 33,600 17.89 0.978 629

5 200,000 FIRQUEST 44.642 0.626 1.719 3.851 94.6 68,187 16.56 0.625 810
10 100,000 FIRQUEST 44.616 0.627 1.650 3.698 94.2 60,088 21.63 0.588 931
1 1,000,000 FQUEST 44.658 0.598 1.783 3.993 96.4 66,094 18.27 0.676 629
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Table 6.32: Experimental results for FIRQUEST with 𝑅 = 5, 10 and FQUEST with regard to
point and 95% CI estimation of 𝑦𝑝 for the response-time process in the Central Server Model
3 in Section 6.4.7 for 𝑝 ∈ {0.95, 0.99, 0.995} based on 1,000 independent replications.

Repl. Point Avg. Avg. 95% Avg. 95% CI Avg. 95% St. Dev. Avg. Trunc.
𝑝 𝑦𝑝 𝑅 Size Method Est. |Bias | CI HL rel. prec. (%) CI cov. (%) 𝑚 𝑏 HL Point

0.95 74.481 5 10,000 FIRQUEST 74.345 3.346 8.813 11.889 93.4 3,328 16.38 3.200 400
10 5,000 FIRQUEST 74.446 3.277 8.478 11.420 93.4 3,038 20.45 3.305 200
1 50,000 FQUEST 74.440 3.387 8.725 11.739 91.6 3,246 18.30 3.404 632

5 20,000 FIRQUEST 74.343 2.462 6.413 8.636 94.0 6,428 17.02 2.068 722
10 10,000 FIRQUEST 74.330 2.345 6.160 8.293 94.4 5,480 23.01 2.090 400
1 100,000 FQUEST 74.305 2.411 6.444 8.684 93.1 6,213 19.56 2.467 638

5 40,000 FIRQUEST 74.297 1.732 4.674 6.296 95.0 13,118 16.91 1.663 828
10 20,000 FIRQUEST 74.314 1.652 4.448 5.985 94.4 10,545 24.16 1.413 767
1 200,000 FQUEST 74.300 1.685 4.692 6.318 95.0 12,572 19.33 1.619 638

5 100,000 FIRQUEST 74.289 1.113 2.930 3.945 94.2 33,166 17.00 0.832 829
10 50,000 FIRQUEST 74.306 1.048 2.827 3.804 96.0 26,753 24.45 0.760 954
1 500,000 FQUEST 74.340 1.054 3.018 4.061 95.6 30,440 20.18 0.957 639

5 200,000 FIRQUEST 74.345 0.783 2.116 2.846 95.1 66,433 16.98 0.677 829
10 100,000 FIRQUEST 74.324 0.750 2.034 2.737 95.0 55,253 24.01 0.696 954
1 1,000,000 FQUEST 74.381 0.734 2.167 2.914 95.6 62,433 19.59 0.666 638

0.99 166.528 5 10,000 FIRQUEST 166.244 4.637 12.671 7.619 93.6 3,388 15.95 4.560 400
10 5,000 FIRQUEST 166.396 4.671 12.616 7.583 94.2 3,312 18.92 4.739 200
1 50,000 FQUEST 166.402 4.300 13.277 7.976 95.0 3,458 17.23 5.676 636

5 20,000 FIRQUEST 166.312 3.288 9.143 5.499 95.1 6,726 16.28 3.298 719
10 10,000 FIRQUEST 166.398 3.237 8.675 5.213 95.2 5,848 21.84 2.697 400
1 100,000 FQUEST 166.218 3.101 9.220 5.547 96.0 6,519 18.67 3.643 642

5 40,000 FIRQUEST 166.330 2.261 6.367 3.828 95.3 13,219 16.84 2.179 817
10 20,000 FIRQUEST 166.348 2.270 6.231 3.745 95.6 11,305 22.86 2.175 764
1 200,000 FQUEST 166.261 2.261 6.529 3.926 96.0 12,843 18.95 2.532 643

5 100,000 FIRQUEST 166.281 1.454 4.028 2.422 95.7 33,467 16.93 1.161 817
10 50,000 FIRQUEST 166.340 1.413 3.839 2.308 94.8 27,420 24.05 1.152 938
1 500,000 FQUEST 166.374 1.369 4.088 2.457 96.3 31,644 19.16 1.414 644

5 200,000 FIRQUEST 166.378 1.036 2.845 1.710 94.4 67,863 16.76 0.974 817
10 100,000 FIRQUEST 166.348 1.005 2.737 1.645 95.0 54,333 24.04 0.922 938
1 1,000,000 FQUEST 166.441 0.973 2.917 1.753 95.9 60,817 19.98 1.044 644

0.995 196.230 5 10,000 FIRQUEST 195.913 5.623 15.936 8.128 94.2 3,588 15.01 7.013 400
10 5,000 FIRQUEST 196.074 5.517 16.100 8.202 94.1 3,826 15.34 7.076 200
1 50,000 FQUEST 195.971 5.254 16.823 8.584 95.9 3,838 15.00 7.756 641

5 20,000 FIRQUEST 195.961 3.910 10.838 5.531 94.5 6,885 15.94 3.763 728
10 10,000 FIRQUEST 196.157 3.900 10.788 5.499 96.1 6,414 19.71 4.374 400
1 100,000 FQUEST 195.898 3.709 11.282 5.761 95.6 7,043 16.99 4.841 651

5 40,000 FIRQUEST 195.961 2.700 7.603 3.880 94.8 13,618 16.30 2.580 838
10 20,000 FIRQUEST 196.044 2.761 7.571 3.861 94.6 12,170 21.10 2.873 765
1 200,000 FQUEST 195.965 2.654 7.898 4.029 96.4 13,205 18.37 3.247 653

5 100,000 FIRQUEST 195.959 1.719 4.760 2.429 95.3 33,796 16.70 1.555 839
10 50,000 FIRQUEST 196.016 1.683 4.630 2.362 95.9 29,296 22.51 1.548 940
1 500,000 FQUEST 196.062 1.667 4.864 2.481 95.5 31,418 19.38 1.656 654

5 200,000 FIRQUEST 196.050 1.234 3.296 1.681 94.5 65,551 17.18 1.033 839
10 100,000 FIRQUEST 196.041 1.188 3.293 1.680 96.1 59,495 22.51 1.139 940
1 1,000,000 FQUEST 196.122 1.172 3.482 1.775 96.1 61,576 19.78 1.324 654
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Figure 6.12: Plots for the average 95% CI relative precision and estimated coverage proba-
bility for the response-time process in the Central Server Model 3 from Tables 6.31–6.32.
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Figure 6.13: Frequency of Heuristic CI in Step [10] of FIRQUEST (for 𝑅 = 5, 10) and
FQUEST for selected examples. The results are based on 1,000 independent replications
with total sample sizes {50,000, 100,000, 200,000, 500,000, 1,000,000}.
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CHAPTER 7

CONCLUSIONS

This thesis had two main goals: (1) the formulation of the theoretical foundations for pro-

cedures based on STS for estimating steady-state quantiles with CIs having given coverage

probability and, potentially precision; and (2) the development and experimental evaluation

of three automated methods for effective estimation of marginal quantiles in steady-state

simulations.

Chapter 1 provided an extended literature review on steady-state quantile estimation.

Chapter 2 presented the theoretical results that constitute the basis of the proposed methods

in Chapters 4–6 including the proof of a CLT for the vector of signed weighted areas of

the STSs computed from nonoverlapping batches of the simulation output as the batch size

increases while the batch count remains fixed. Further, Chapter 2 introduced a way to

construct partial and stepwise weight functions for quantile estimation based on STS and

provided results from the empirical evaluation of a variety of variance-parameter estimators.

The experimental results in Chapter 2 did not provide a strong basis for using a weight

function other than the constant 𝑤0(𝑡) =
√

12, for 𝑡 ∈ [0, 1], and revealed the benefits of the

combined estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) of the variance parameter associated with the empirical-

quantile process. In Chapter 3 we provided exact (or nearly exact) calculations for the

expected values of the variance-parameter estimators in Chapter 2 for the special case of

i.i.d. data. These calculations verified that the STS area estimator has larger small-sample

bias compared to the its competitors computed from batched empirical quantiles; this trend

was already surfaced in Chapter 2.

Chapter 4 introduced SQSTS, the first fully automated sequential procedure for com-

puting point estimators and CIs for steady-state quantiles of a stochastic process based on

STSs. SQSTS estimates the variance parameter 𝜎2
𝑝 = lim𝑛→∞ 𝑛Var

[
�̃�𝑝 (𝑛)

]
of the sample
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quantile process {�̃�𝑝 (𝑛) : 𝑛 ≥ 1} by a linear combination of estimators computed from

nonoverlapping batches: the first estimator is computed from the associated BQEs while

the second estimator is obtained from STSs based on the batches. Extensive experimenta-

tion with a large test bed of output processes highlighted the potential benefits of SQSTS

over Sequest (Alexopoulos et al. [7]) and Sequem (Alexopoulos et al. [23]): (i) under no

CI precision requirement, SQSTS was frequently able to curtail excessive average sample

sizes, often by an order of magnitude, despite its larger initial batch size—we believe that

this dominance is partially due to the effectiveness of the von Neumann and Shapiro–Wilk

tests for the signed areas; and (ii) under tight CI relative precision requirements, the lack of

CI adjustments and lower standard deviation of the combined variance estimator allowed

SQSTS to outperform its competitors with regard to average sample size in most cases.

Moreover, SQSTS performed comparatively well against Sequest and Sequem with regard

to average absolute bias of the point estimator and estimated CI coverage probability.

Chapter 5 presented FQUEST, a fully automated fixed-sample-size procedure for com-

puting CIs for steady-state quantiles based on a single run. Although there are a few

fixed-sample-size procedures for quantile estimation (e.g., Heidelberger and Lewis [30] and

Bekki et al. [13]), to the best of our knowledge, FQUEST is the first such method that (i)

uses the STS methodology; (ii) addresses the simulation initialization problem; and (iii)

warns the user when the dataset is insufficient and, subject to user’s approval, delivers a

heuristic CI. The user provides the sample and specifies the probability of the quantile and

the required coverage probability of the requested CI. FQUEST incorporates the analysis

methods of batching, STS, and sectioning. If the sample size suffices to identify a set of

signed weighted areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏} and BQEs {�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑏}

computed from 𝑏 batches of size 𝑚 each that pass the von Neumman and Shapiro-Wilk tests

for randomness and normality, respectively, FQUEST reports a CI for the quantile 𝑦𝑝 under

consideration centered at the empirical quantile from a truncated subset of the sample path

and based on the combined estimator Ṽ𝑝 (𝑤; 𝑏, 𝑚) of 𝜎2
𝑝 . Otherwise, the procedure issues
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a warning and, upon user’s approval, formulates a wider CI from a set of CIs based on the

quantile estimator computed from the entire truncated sample, the BQEs, and the batched

area estimator A𝑝 (𝑤; 𝑏, 𝑚) obtained from the nonoverlapping batches. Experimentation

with an extensive test bed of output processes showed that FQUEST delivered CIs with

coverage probabilities close to the nominal level. This feat is quite remarkable, considering

that the state-of-the-art sequential methods Sequest and SQSTS required substantial sample

sizes for the same processes under no CI precision requirement.

Chapter 6 introduced FIRQUEST, the first fully automated procedure for computing

point estimators and CIs for steady-state quantiles based on independent replications. The

user provides a fixed number 𝑅 of replicate sample paths, each with fixed length 𝑛, and

specifies the probability of the quantile and the required coverage probability of the requested

CI. FIRQUEST incorporates the analysis methods of batching, STS, and sectioning. If

the total sample size and the replication length suffice to identify set of replicate signed

weighted areas {𝐴𝑝 (𝑤; 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏} and RBQEs
{
�̂�𝑝 ( 𝑗 , 𝑚) : 𝑗 = 1, . . . , 𝑅𝑏

}
based on 𝑏 batches of size 𝑚 from each replication that pass both the von Neumman

and Shapiro-Wilk tests, FIRQUEST reports a CI for the quantile 𝑦𝑝 under consideration

that is centered at the overall empirical quantile computed from all sample paths and

based on the combined estimator Ṽ𝑝 (𝑤; 𝑅, 𝑏, 𝑚) of 𝜎2
𝑝 . Otherwise, the procedure issues

a warning and, upon user’s approval, formulates a wider CI from a set of CIs based on

the aforementioned overall quantile estimator, the RBQEs, and the replicate signed areas

obtained from the nonoverlapping batches. Experimentation with an extensive test bed

of output processes and 5 or 10 replications showed that for sufficiently large replicate

paths FIRQUEST delivered CIs with coverage probabilities close to the nominal level.

Our experimental analysis revealed that for relatively small sample sizes, it is preferable to

use fewer independent replications with larger replication lengths (in these cases FQUEST

outperformed FIRQUEST). However, in several experimental settings and with sufficiently

large replication lengths, FIRQUEST outperformed FQUEST with regard to average CI
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relative precision.

We end with a list of topics worthy of future consideration:

• Identification of alternative weight functions for computing STS area estimators

inducing lower small-sample bias than the constant weight 𝑤0(𝑡) =
√

12, 𝑡 ∈ [0, 1].

• Development of a sequential procedure for simultaneous estimation of multiple quan-

tiles. In principle, the SQSTS, FQUEST, and FIRQUEST methods can be augmented

to yield rectangular regions for a vector of percentiles via Bonferroni’s inequality, but

the CIs for individual quantiles will be conservative. Elliptical confidence regions

for quantile vectors based on empirical quantiles computed from nonoveralpping and

overlapping batches or generalized likehood ratios have been recently proposed by Lei

et al. [90] and Pasupathy et al. [91], but the incorporation of the latter methodologies

into automated procedures will be a significant challenge.

• Potential enhancements applied to SQSTS for estimation of extreme quantiles (𝑝 ∈

(0, 0.05) ∪ (0.95, 1)).

• Development of automated fixed-sample-size methods for simultaneous estimation

of multiple quantiles from a single run or multiple independent replications.

• Development of a hybrid sequential method with an upper threshold for the allowable

sample size.

• Expansion of the experimental test bed for SQSTS, FQUEST, and FIRQUEST with

additional processes.

• Incorporation of SQSTS, FQUEST, and FIRQUEST into the Sequest app.

• Prove that SQSTS or its descendants are asymptotically valid as the precision require-

ments tend to zero.
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